xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format ARM assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMAsmPrinter.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMTargetMachine.h"
19 #include "ARMTargetObjectFile.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMMCExpr.h"
23 #include "TargetInfo/ARMTargetInfo.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/TargetParser.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "asm-printer"
54 
55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
56                              std::unique_ptr<MCStreamer> Streamer)
57     : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr),
58       MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {}
59 
60 void ARMAsmPrinter::emitFunctionBodyEnd() {
61   // Make sure to terminate any constant pools that were at the end
62   // of the function.
63   if (!InConstantPool)
64     return;
65   InConstantPool = false;
66   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
67 }
68 
69 void ARMAsmPrinter::emitFunctionEntryLabel() {
70   if (AFI->isThumbFunction()) {
71     OutStreamer->emitAssemblerFlag(MCAF_Code16);
72     OutStreamer->emitThumbFunc(CurrentFnSym);
73   } else {
74     OutStreamer->emitAssemblerFlag(MCAF_Code32);
75   }
76 
77   // Emit symbol for CMSE non-secure entry point
78   if (AFI->isCmseNSEntryFunction()) {
79     MCSymbol *S =
80         OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName());
81     emitLinkage(&MF->getFunction(), S);
82     OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction);
83     OutStreamer->emitLabel(S);
84   }
85 
86   OutStreamer->emitLabel(CurrentFnSym);
87 }
88 
89 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) {
90   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
91   assert(Size && "C++ constructor pointer had zero size!");
92 
93   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
94   assert(GV && "C++ constructor pointer was not a GlobalValue!");
95 
96   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
97                                                            ARMII::MO_NO_FLAG),
98                                             (Subtarget->isTargetELF()
99                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
100                                              : MCSymbolRefExpr::VK_None),
101                                             OutContext);
102 
103   OutStreamer->emitValue(E, Size);
104 }
105 
106 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
107   if (PromotedGlobals.count(GV))
108     // The global was promoted into a constant pool. It should not be emitted.
109     return;
110   AsmPrinter::emitGlobalVariable(GV);
111 }
112 
113 /// runOnMachineFunction - This uses the emitInstruction()
114 /// method to print assembly for each instruction.
115 ///
116 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
117   AFI = MF.getInfo<ARMFunctionInfo>();
118   MCP = MF.getConstantPool();
119   Subtarget = &MF.getSubtarget<ARMSubtarget>();
120 
121   SetupMachineFunction(MF);
122   const Function &F = MF.getFunction();
123   const TargetMachine& TM = MF.getTarget();
124 
125   // Collect all globals that had their storage promoted to a constant pool.
126   // Functions are emitted before variables, so this accumulates promoted
127   // globals from all functions in PromotedGlobals.
128   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
129     PromotedGlobals.insert(GV);
130 
131   // Calculate this function's optimization goal.
132   unsigned OptimizationGoal;
133   if (F.hasOptNone())
134     // For best debugging illusion, speed and small size sacrificed
135     OptimizationGoal = 6;
136   else if (F.hasMinSize())
137     // Aggressively for small size, speed and debug illusion sacrificed
138     OptimizationGoal = 4;
139   else if (F.hasOptSize())
140     // For small size, but speed and debugging illusion preserved
141     OptimizationGoal = 3;
142   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
143     // Aggressively for speed, small size and debug illusion sacrificed
144     OptimizationGoal = 2;
145   else if (TM.getOptLevel() > CodeGenOpt::None)
146     // For speed, but small size and good debug illusion preserved
147     OptimizationGoal = 1;
148   else // TM.getOptLevel() == CodeGenOpt::None
149     // For good debugging, but speed and small size preserved
150     OptimizationGoal = 5;
151 
152   // Combine a new optimization goal with existing ones.
153   if (OptimizationGoals == -1) // uninitialized goals
154     OptimizationGoals = OptimizationGoal;
155   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
156     OptimizationGoals = 0;
157 
158   if (Subtarget->isTargetCOFF()) {
159     bool Internal = F.hasInternalLinkage();
160     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
161                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
162     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
163 
164     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
165     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
166     OutStreamer->EmitCOFFSymbolType(Type);
167     OutStreamer->EndCOFFSymbolDef();
168   }
169 
170   // Emit the rest of the function body.
171   emitFunctionBody();
172 
173   // Emit the XRay table for this function.
174   emitXRayTable();
175 
176   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
177   // These are created per function, rather than per TU, since it's
178   // relatively easy to exceed the thumb branch range within a TU.
179   if (! ThumbIndirectPads.empty()) {
180     OutStreamer->emitAssemblerFlag(MCAF_Code16);
181     emitAlignment(Align(2));
182     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
183       OutStreamer->emitLabel(TIP.second);
184       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
185         .addReg(TIP.first)
186         // Add predicate operands.
187         .addImm(ARMCC::AL)
188         .addReg(0));
189     }
190     ThumbIndirectPads.clear();
191   }
192 
193   // We didn't modify anything.
194   return false;
195 }
196 
197 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
198                                        raw_ostream &O) {
199   assert(MO.isGlobal() && "caller should check MO.isGlobal");
200   unsigned TF = MO.getTargetFlags();
201   if (TF & ARMII::MO_LO16)
202     O << ":lower16:";
203   else if (TF & ARMII::MO_HI16)
204     O << ":upper16:";
205   GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
206   printOffset(MO.getOffset(), O);
207 }
208 
209 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
210                                  raw_ostream &O) {
211   const MachineOperand &MO = MI->getOperand(OpNum);
212 
213   switch (MO.getType()) {
214   default: llvm_unreachable("<unknown operand type>");
215   case MachineOperand::MO_Register: {
216     Register Reg = MO.getReg();
217     assert(Register::isPhysicalRegister(Reg));
218     assert(!MO.getSubReg() && "Subregs should be eliminated!");
219     if(ARM::GPRPairRegClass.contains(Reg)) {
220       const MachineFunction &MF = *MI->getParent()->getParent();
221       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
222       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
223     }
224     O << ARMInstPrinter::getRegisterName(Reg);
225     break;
226   }
227   case MachineOperand::MO_Immediate: {
228     O << '#';
229     unsigned TF = MO.getTargetFlags();
230     if (TF == ARMII::MO_LO16)
231       O << ":lower16:";
232     else if (TF == ARMII::MO_HI16)
233       O << ":upper16:";
234     O << MO.getImm();
235     break;
236   }
237   case MachineOperand::MO_MachineBasicBlock:
238     MO.getMBB()->getSymbol()->print(O, MAI);
239     return;
240   case MachineOperand::MO_GlobalAddress: {
241     PrintSymbolOperand(MO, O);
242     break;
243   }
244   case MachineOperand::MO_ConstantPoolIndex:
245     if (Subtarget->genExecuteOnly())
246       llvm_unreachable("execute-only should not generate constant pools");
247     GetCPISymbol(MO.getIndex())->print(O, MAI);
248     break;
249   }
250 }
251 
252 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
253   // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
254   // indexes in MachineConstantPool, which isn't in sync with indexes used here.
255   const DataLayout &DL = getDataLayout();
256   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
257                                       "CPI" + Twine(getFunctionNumber()) + "_" +
258                                       Twine(CPID));
259 }
260 
261 //===--------------------------------------------------------------------===//
262 
263 MCSymbol *ARMAsmPrinter::
264 GetARMJTIPICJumpTableLabel(unsigned uid) const {
265   const DataLayout &DL = getDataLayout();
266   SmallString<60> Name;
267   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
268                             << getFunctionNumber() << '_' << uid;
269   return OutContext.getOrCreateSymbol(Name);
270 }
271 
272 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
273                                     const char *ExtraCode, raw_ostream &O) {
274   // Does this asm operand have a single letter operand modifier?
275   if (ExtraCode && ExtraCode[0]) {
276     if (ExtraCode[1] != 0) return true; // Unknown modifier.
277 
278     switch (ExtraCode[0]) {
279     default:
280       // See if this is a generic print operand
281       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
282     case 'P': // Print a VFP double precision register.
283     case 'q': // Print a NEON quad precision register.
284       printOperand(MI, OpNum, O);
285       return false;
286     case 'y': // Print a VFP single precision register as indexed double.
287       if (MI->getOperand(OpNum).isReg()) {
288         MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg();
289         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
290         // Find the 'd' register that has this 's' register as a sub-register,
291         // and determine the lane number.
292         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
293           if (!ARM::DPRRegClass.contains(*SR))
294             continue;
295           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
296           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
297           return false;
298         }
299       }
300       return true;
301     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
302       if (!MI->getOperand(OpNum).isImm())
303         return true;
304       O << ~(MI->getOperand(OpNum).getImm());
305       return false;
306     case 'L': // The low 16 bits of an immediate constant.
307       if (!MI->getOperand(OpNum).isImm())
308         return true;
309       O << (MI->getOperand(OpNum).getImm() & 0xffff);
310       return false;
311     case 'M': { // A register range suitable for LDM/STM.
312       if (!MI->getOperand(OpNum).isReg())
313         return true;
314       const MachineOperand &MO = MI->getOperand(OpNum);
315       Register RegBegin = MO.getReg();
316       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
317       // already got the operands in registers that are operands to the
318       // inline asm statement.
319       O << "{";
320       if (ARM::GPRPairRegClass.contains(RegBegin)) {
321         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
322         Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
323         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
324         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
325       }
326       O << ARMInstPrinter::getRegisterName(RegBegin);
327 
328       // FIXME: The register allocator not only may not have given us the
329       // registers in sequence, but may not be in ascending registers. This
330       // will require changes in the register allocator that'll need to be
331       // propagated down here if the operands change.
332       unsigned RegOps = OpNum + 1;
333       while (MI->getOperand(RegOps).isReg()) {
334         O << ", "
335           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
336         RegOps++;
337       }
338 
339       O << "}";
340 
341       return false;
342     }
343     case 'R': // The most significant register of a pair.
344     case 'Q': { // The least significant register of a pair.
345       if (OpNum == 0)
346         return true;
347       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
348       if (!FlagsOP.isImm())
349         return true;
350       unsigned Flags = FlagsOP.getImm();
351 
352       // This operand may not be the one that actually provides the register. If
353       // it's tied to a previous one then we should refer instead to that one
354       // for registers and their classes.
355       unsigned TiedIdx;
356       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
357         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
358           unsigned OpFlags = MI->getOperand(OpNum).getImm();
359           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
360         }
361         Flags = MI->getOperand(OpNum).getImm();
362 
363         // Later code expects OpNum to be pointing at the register rather than
364         // the flags.
365         OpNum += 1;
366       }
367 
368       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
369       unsigned RC;
370       bool FirstHalf;
371       const ARMBaseTargetMachine &ATM =
372         static_cast<const ARMBaseTargetMachine &>(TM);
373 
374       // 'Q' should correspond to the low order register and 'R' to the high
375       // order register.  Whether this corresponds to the upper or lower half
376       // depends on the endianess mode.
377       if (ExtraCode[0] == 'Q')
378         FirstHalf = ATM.isLittleEndian();
379       else
380         // ExtraCode[0] == 'R'.
381         FirstHalf = !ATM.isLittleEndian();
382       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
383       if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
384           ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
385         if (NumVals != 1)
386           return true;
387         const MachineOperand &MO = MI->getOperand(OpNum);
388         if (!MO.isReg())
389           return true;
390         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
391         Register Reg =
392             TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1);
393         O << ARMInstPrinter::getRegisterName(Reg);
394         return false;
395       }
396       if (NumVals != 2)
397         return true;
398       unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
399       if (RegOp >= MI->getNumOperands())
400         return true;
401       const MachineOperand &MO = MI->getOperand(RegOp);
402       if (!MO.isReg())
403         return true;
404       Register Reg = MO.getReg();
405       O << ARMInstPrinter::getRegisterName(Reg);
406       return false;
407     }
408 
409     case 'e': // The low doubleword register of a NEON quad register.
410     case 'f': { // The high doubleword register of a NEON quad register.
411       if (!MI->getOperand(OpNum).isReg())
412         return true;
413       Register Reg = MI->getOperand(OpNum).getReg();
414       if (!ARM::QPRRegClass.contains(Reg))
415         return true;
416       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
417       Register SubReg =
418           TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1);
419       O << ARMInstPrinter::getRegisterName(SubReg);
420       return false;
421     }
422 
423     // This modifier is not yet supported.
424     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
425       return true;
426     case 'H': { // The highest-numbered register of a pair.
427       const MachineOperand &MO = MI->getOperand(OpNum);
428       if (!MO.isReg())
429         return true;
430       const MachineFunction &MF = *MI->getParent()->getParent();
431       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
432       Register Reg = MO.getReg();
433       if(!ARM::GPRPairRegClass.contains(Reg))
434         return false;
435       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
436       O << ARMInstPrinter::getRegisterName(Reg);
437       return false;
438     }
439     }
440   }
441 
442   printOperand(MI, OpNum, O);
443   return false;
444 }
445 
446 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
447                                           unsigned OpNum, const char *ExtraCode,
448                                           raw_ostream &O) {
449   // Does this asm operand have a single letter operand modifier?
450   if (ExtraCode && ExtraCode[0]) {
451     if (ExtraCode[1] != 0) return true; // Unknown modifier.
452 
453     switch (ExtraCode[0]) {
454       case 'A': // A memory operand for a VLD1/VST1 instruction.
455       default: return true;  // Unknown modifier.
456       case 'm': // The base register of a memory operand.
457         if (!MI->getOperand(OpNum).isReg())
458           return true;
459         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
460         return false;
461     }
462   }
463 
464   const MachineOperand &MO = MI->getOperand(OpNum);
465   assert(MO.isReg() && "unexpected inline asm memory operand");
466   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
467   return false;
468 }
469 
470 static bool isThumb(const MCSubtargetInfo& STI) {
471   return STI.getFeatureBits()[ARM::ModeThumb];
472 }
473 
474 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
475                                      const MCSubtargetInfo *EndInfo) const {
476   // If either end mode is unknown (EndInfo == NULL) or different than
477   // the start mode, then restore the start mode.
478   const bool WasThumb = isThumb(StartInfo);
479   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
480     OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
481   }
482 }
483 
484 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) {
485   const Triple &TT = TM.getTargetTriple();
486   // Use unified assembler syntax.
487   OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified);
488 
489   // Emit ARM Build Attributes
490   if (TT.isOSBinFormatELF())
491     emitAttributes();
492 
493   // Use the triple's architecture and subarchitecture to determine
494   // if we're thumb for the purposes of the top level code16 assembler
495   // flag.
496   if (!M.getModuleInlineAsm().empty() && TT.isThumb())
497     OutStreamer->emitAssemblerFlag(MCAF_Code16);
498 }
499 
500 static void
501 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
502                          MachineModuleInfoImpl::StubValueTy &MCSym) {
503   // L_foo$stub:
504   OutStreamer.emitLabel(StubLabel);
505   //   .indirect_symbol _foo
506   OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
507 
508   if (MCSym.getInt())
509     // External to current translation unit.
510     OutStreamer.emitIntValue(0, 4/*size*/);
511   else
512     // Internal to current translation unit.
513     //
514     // When we place the LSDA into the TEXT section, the type info
515     // pointers need to be indirect and pc-rel. We accomplish this by
516     // using NLPs; however, sometimes the types are local to the file.
517     // We need to fill in the value for the NLP in those cases.
518     OutStreamer.emitValue(
519         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
520         4 /*size*/);
521 }
522 
523 
524 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) {
525   const Triple &TT = TM.getTargetTriple();
526   if (TT.isOSBinFormatMachO()) {
527     // All darwin targets use mach-o.
528     const TargetLoweringObjectFileMachO &TLOFMacho =
529       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
530     MachineModuleInfoMachO &MMIMacho =
531       MMI->getObjFileInfo<MachineModuleInfoMachO>();
532 
533     // Output non-lazy-pointers for external and common global variables.
534     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
535 
536     if (!Stubs.empty()) {
537       // Switch with ".non_lazy_symbol_pointer" directive.
538       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
539       emitAlignment(Align(4));
540 
541       for (auto &Stub : Stubs)
542         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
543 
544       Stubs.clear();
545       OutStreamer->AddBlankLine();
546     }
547 
548     Stubs = MMIMacho.GetThreadLocalGVStubList();
549     if (!Stubs.empty()) {
550       // Switch with ".non_lazy_symbol_pointer" directive.
551       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
552       emitAlignment(Align(4));
553 
554       for (auto &Stub : Stubs)
555         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
556 
557       Stubs.clear();
558       OutStreamer->AddBlankLine();
559     }
560 
561     // Funny Darwin hack: This flag tells the linker that no global symbols
562     // contain code that falls through to other global symbols (e.g. the obvious
563     // implementation of multiple entry points).  If this doesn't occur, the
564     // linker can safely perform dead code stripping.  Since LLVM never
565     // generates code that does this, it is always safe to set.
566     OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols);
567   }
568 
569   // The last attribute to be emitted is ABI_optimization_goals
570   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
571   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
572 
573   if (OptimizationGoals > 0 &&
574       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
575        Subtarget->isTargetMuslAEABI()))
576     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
577   OptimizationGoals = -1;
578 
579   ATS.finishAttributeSection();
580 }
581 
582 //===----------------------------------------------------------------------===//
583 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile()
584 // FIXME:
585 // The following seem like one-off assembler flags, but they actually need
586 // to appear in the .ARM.attributes section in ELF.
587 // Instead of subclassing the MCELFStreamer, we do the work here.
588 
589  // Returns true if all functions have the same function attribute value.
590  // It also returns true when the module has no functions.
591 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
592                                                StringRef Value) {
593    return !any_of(M, [&](const Function &F) {
594        return F.getFnAttribute(Attr).getValueAsString() != Value;
595    });
596 }
597 // Returns true if all functions have the same denormal mode.
598 // It also returns true when the module has no functions.
599 static bool checkDenormalAttributeConsistency(const Module &M,
600                                               StringRef Attr,
601                                               DenormalMode Value) {
602   return !any_of(M, [&](const Function &F) {
603     StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString();
604     return parseDenormalFPAttribute(AttrVal) != Value;
605   });
606 }
607 
608 void ARMAsmPrinter::emitAttributes() {
609   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
610   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
611 
612   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
613 
614   ATS.switchVendor("aeabi");
615 
616   // Compute ARM ELF Attributes based on the default subtarget that
617   // we'd have constructed. The existing ARM behavior isn't LTO clean
618   // anyhow.
619   // FIXME: For ifunc related functions we could iterate over and look
620   // for a feature string that doesn't match the default one.
621   const Triple &TT = TM.getTargetTriple();
622   StringRef CPU = TM.getTargetCPU();
623   StringRef FS = TM.getTargetFeatureString();
624   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
625   if (!FS.empty()) {
626     if (!ArchFS.empty())
627       ArchFS = (Twine(ArchFS) + "," + FS).str();
628     else
629       ArchFS = std::string(FS);
630   }
631   const ARMBaseTargetMachine &ATM =
632       static_cast<const ARMBaseTargetMachine &>(TM);
633   const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM,
634                          ATM.isLittleEndian());
635 
636   // Emit build attributes for the available hardware.
637   ATS.emitTargetAttributes(STI);
638 
639   // RW data addressing.
640   if (isPositionIndependent()) {
641     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
642                       ARMBuildAttrs::AddressRWPCRel);
643   } else if (STI.isRWPI()) {
644     // RWPI specific attributes.
645     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
646                       ARMBuildAttrs::AddressRWSBRel);
647   }
648 
649   // RO data addressing.
650   if (isPositionIndependent() || STI.isROPI()) {
651     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
652                       ARMBuildAttrs::AddressROPCRel);
653   }
654 
655   // GOT use.
656   if (isPositionIndependent()) {
657     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
658                       ARMBuildAttrs::AddressGOT);
659   } else {
660     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
661                       ARMBuildAttrs::AddressDirect);
662   }
663 
664   // Set FP Denormals.
665   if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math",
666                                         DenormalMode::getPreserveSign()))
667     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
668                       ARMBuildAttrs::PreserveFPSign);
669   else if (checkDenormalAttributeConsistency(*MMI->getModule(),
670                                              "denormal-fp-math",
671                                              DenormalMode::getPositiveZero()))
672     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
673                       ARMBuildAttrs::PositiveZero);
674   else if (!TM.Options.UnsafeFPMath)
675     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
676                       ARMBuildAttrs::IEEEDenormals);
677   else {
678     if (!STI.hasVFP2Base()) {
679       // When the target doesn't have an FPU (by design or
680       // intention), the assumptions made on the software support
681       // mirror that of the equivalent hardware support *if it
682       // existed*. For v7 and better we indicate that denormals are
683       // flushed preserving sign, and for V6 we indicate that
684       // denormals are flushed to positive zero.
685       if (STI.hasV7Ops())
686         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
687                           ARMBuildAttrs::PreserveFPSign);
688     } else if (STI.hasVFP3Base()) {
689       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
690       // the sign bit of the zero matches the sign bit of the input or
691       // result that is being flushed to zero.
692       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
693                         ARMBuildAttrs::PreserveFPSign);
694     }
695     // For VFPv2 implementations it is implementation defined as
696     // to whether denormals are flushed to positive zero or to
697     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
698     // LLVM has chosen to flush this to positive zero (most likely for
699     // GCC compatibility), so that's the chosen value here (the
700     // absence of its emission implies zero).
701   }
702 
703   // Set FP exceptions and rounding
704   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
705                                          "no-trapping-math", "true") ||
706       TM.Options.NoTrappingFPMath)
707     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
708                       ARMBuildAttrs::Not_Allowed);
709   else if (!TM.Options.UnsafeFPMath) {
710     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
711 
712     // If the user has permitted this code to choose the IEEE 754
713     // rounding at run-time, emit the rounding attribute.
714     if (TM.Options.HonorSignDependentRoundingFPMathOption)
715       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
716   }
717 
718   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
719   // equivalent of GCC's -ffinite-math-only flag.
720   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
721     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
722                       ARMBuildAttrs::Allowed);
723   else
724     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
725                       ARMBuildAttrs::AllowIEEE754);
726 
727   // FIXME: add more flags to ARMBuildAttributes.h
728   // 8-bytes alignment stuff.
729   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
730   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
731 
732   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
733   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
734     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
735 
736   // FIXME: To support emitting this build attribute as GCC does, the
737   // -mfp16-format option and associated plumbing must be
738   // supported. For now the __fp16 type is exposed by default, so this
739   // attribute should be emitted with value 1.
740   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
741                     ARMBuildAttrs::FP16FormatIEEE);
742 
743   if (MMI) {
744     if (const Module *SourceModule = MMI->getModule()) {
745       // ABI_PCS_wchar_t to indicate wchar_t width
746       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
747       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
748               SourceModule->getModuleFlag("wchar_size"))) {
749         int WCharWidth = WCharWidthValue->getZExtValue();
750         assert((WCharWidth == 2 || WCharWidth == 4) &&
751                "wchar_t width must be 2 or 4 bytes");
752         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
753       }
754 
755       // ABI_enum_size to indicate enum width
756       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
757       //        (all enums contain a value needing 32 bits to encode).
758       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
759               SourceModule->getModuleFlag("min_enum_size"))) {
760         int EnumWidth = EnumWidthValue->getZExtValue();
761         assert((EnumWidth == 1 || EnumWidth == 4) &&
762                "Minimum enum width must be 1 or 4 bytes");
763         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
764         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
765       }
766     }
767   }
768 
769   // We currently do not support using R9 as the TLS pointer.
770   if (STI.isRWPI())
771     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
772                       ARMBuildAttrs::R9IsSB);
773   else if (STI.isR9Reserved())
774     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
775                       ARMBuildAttrs::R9Reserved);
776   else
777     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
778                       ARMBuildAttrs::R9IsGPR);
779 }
780 
781 //===----------------------------------------------------------------------===//
782 
783 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
784                              unsigned LabelId, MCContext &Ctx) {
785 
786   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
787                        + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
788   return Label;
789 }
790 
791 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
792                              unsigned LabelId, MCContext &Ctx) {
793 
794   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
795                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
796   return Label;
797 }
798 
799 static MCSymbolRefExpr::VariantKind
800 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
801   switch (Modifier) {
802   case ARMCP::no_modifier:
803     return MCSymbolRefExpr::VK_None;
804   case ARMCP::TLSGD:
805     return MCSymbolRefExpr::VK_TLSGD;
806   case ARMCP::TPOFF:
807     return MCSymbolRefExpr::VK_TPOFF;
808   case ARMCP::GOTTPOFF:
809     return MCSymbolRefExpr::VK_GOTTPOFF;
810   case ARMCP::SBREL:
811     return MCSymbolRefExpr::VK_ARM_SBREL;
812   case ARMCP::GOT_PREL:
813     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
814   case ARMCP::SECREL:
815     return MCSymbolRefExpr::VK_SECREL;
816   }
817   llvm_unreachable("Invalid ARMCPModifier!");
818 }
819 
820 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
821                                         unsigned char TargetFlags) {
822   if (Subtarget->isTargetMachO()) {
823     bool IsIndirect =
824         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
825 
826     if (!IsIndirect)
827       return getSymbol(GV);
828 
829     // FIXME: Remove this when Darwin transition to @GOT like syntax.
830     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
831     MachineModuleInfoMachO &MMIMachO =
832       MMI->getObjFileInfo<MachineModuleInfoMachO>();
833     MachineModuleInfoImpl::StubValueTy &StubSym =
834         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
835                             : MMIMachO.getGVStubEntry(MCSym);
836 
837     if (!StubSym.getPointer())
838       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
839                                                    !GV->hasInternalLinkage());
840     return MCSym;
841   } else if (Subtarget->isTargetCOFF()) {
842     assert(Subtarget->isTargetWindows() &&
843            "Windows is the only supported COFF target");
844 
845     bool IsIndirect =
846         (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
847     if (!IsIndirect)
848       return getSymbol(GV);
849 
850     SmallString<128> Name;
851     if (TargetFlags & ARMII::MO_DLLIMPORT)
852       Name = "__imp_";
853     else if (TargetFlags & ARMII::MO_COFFSTUB)
854       Name = ".refptr.";
855     getNameWithPrefix(Name, GV);
856 
857     MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
858 
859     if (TargetFlags & ARMII::MO_COFFSTUB) {
860       MachineModuleInfoCOFF &MMICOFF =
861           MMI->getObjFileInfo<MachineModuleInfoCOFF>();
862       MachineModuleInfoImpl::StubValueTy &StubSym =
863           MMICOFF.getGVStubEntry(MCSym);
864 
865       if (!StubSym.getPointer())
866         StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
867     }
868 
869     return MCSym;
870   } else if (Subtarget->isTargetELF()) {
871     return getSymbol(GV);
872   }
873   llvm_unreachable("unexpected target");
874 }
875 
876 void ARMAsmPrinter::emitMachineConstantPoolValue(
877     MachineConstantPoolValue *MCPV) {
878   const DataLayout &DL = getDataLayout();
879   int Size = DL.getTypeAllocSize(MCPV->getType());
880 
881   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
882 
883   if (ACPV->isPromotedGlobal()) {
884     // This constant pool entry is actually a global whose storage has been
885     // promoted into the constant pool. This global may be referenced still
886     // by debug information, and due to the way AsmPrinter is set up, the debug
887     // info is immutable by the time we decide to promote globals to constant
888     // pools. Because of this, we need to ensure we emit a symbol for the global
889     // with private linkage (the default) so debug info can refer to it.
890     //
891     // However, if this global is promoted into several functions we must ensure
892     // we don't try and emit duplicate symbols!
893     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
894     for (const auto *GV : ACPC->promotedGlobals()) {
895       if (!EmittedPromotedGlobalLabels.count(GV)) {
896         MCSymbol *GVSym = getSymbol(GV);
897         OutStreamer->emitLabel(GVSym);
898         EmittedPromotedGlobalLabels.insert(GV);
899       }
900     }
901     return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
902   }
903 
904   MCSymbol *MCSym;
905   if (ACPV->isLSDA()) {
906     MCSym = getMBBExceptionSym(MF->front());
907   } else if (ACPV->isBlockAddress()) {
908     const BlockAddress *BA =
909       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
910     MCSym = GetBlockAddressSymbol(BA);
911   } else if (ACPV->isGlobalValue()) {
912     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
913 
914     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
915     // flag the global as MO_NONLAZY.
916     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
917     MCSym = GetARMGVSymbol(GV, TF);
918   } else if (ACPV->isMachineBasicBlock()) {
919     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
920     MCSym = MBB->getSymbol();
921   } else {
922     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
923     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
924     MCSym = GetExternalSymbolSymbol(Sym);
925   }
926 
927   // Create an MCSymbol for the reference.
928   const MCExpr *Expr =
929     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
930                             OutContext);
931 
932   if (ACPV->getPCAdjustment()) {
933     MCSymbol *PCLabel =
934         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
935                     ACPV->getLabelId(), OutContext);
936     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
937     PCRelExpr =
938       MCBinaryExpr::createAdd(PCRelExpr,
939                               MCConstantExpr::create(ACPV->getPCAdjustment(),
940                                                      OutContext),
941                               OutContext);
942     if (ACPV->mustAddCurrentAddress()) {
943       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
944       // label, so just emit a local label end reference that instead.
945       MCSymbol *DotSym = OutContext.createTempSymbol();
946       OutStreamer->emitLabel(DotSym);
947       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
948       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
949     }
950     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
951   }
952   OutStreamer->emitValue(Expr, Size);
953 }
954 
955 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) {
956   const MachineOperand &MO1 = MI->getOperand(1);
957   unsigned JTI = MO1.getIndex();
958 
959   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
960   // ARM mode tables.
961   emitAlignment(Align(4));
962 
963   // Emit a label for the jump table.
964   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
965   OutStreamer->emitLabel(JTISymbol);
966 
967   // Mark the jump table as data-in-code.
968   OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
969 
970   // Emit each entry of the table.
971   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
972   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
973   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
974 
975   for (MachineBasicBlock *MBB : JTBBs) {
976     // Construct an MCExpr for the entry. We want a value of the form:
977     // (BasicBlockAddr - TableBeginAddr)
978     //
979     // For example, a table with entries jumping to basic blocks BB0 and BB1
980     // would look like:
981     // LJTI_0_0:
982     //    .word (LBB0 - LJTI_0_0)
983     //    .word (LBB1 - LJTI_0_0)
984     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
985 
986     if (isPositionIndependent() || Subtarget->isROPI())
987       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
988                                                                    OutContext),
989                                      OutContext);
990     // If we're generating a table of Thumb addresses in static relocation
991     // model, we need to add one to keep interworking correctly.
992     else if (AFI->isThumbFunction())
993       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
994                                      OutContext);
995     OutStreamer->emitValue(Expr, 4);
996   }
997   // Mark the end of jump table data-in-code region.
998   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
999 }
1000 
1001 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) {
1002   const MachineOperand &MO1 = MI->getOperand(1);
1003   unsigned JTI = MO1.getIndex();
1004 
1005   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
1006   // ARM mode tables.
1007   emitAlignment(Align(4));
1008 
1009   // Emit a label for the jump table.
1010   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1011   OutStreamer->emitLabel(JTISymbol);
1012 
1013   // Emit each entry of the table.
1014   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1015   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1016   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1017 
1018   for (MachineBasicBlock *MBB : JTBBs) {
1019     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1020                                                           OutContext);
1021     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1022     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1023         .addExpr(MBBSymbolExpr)
1024         .addImm(ARMCC::AL)
1025         .addReg(0));
1026   }
1027 }
1028 
1029 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI,
1030                                         unsigned OffsetWidth) {
1031   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1032   const MachineOperand &MO1 = MI->getOperand(1);
1033   unsigned JTI = MO1.getIndex();
1034 
1035   if (Subtarget->isThumb1Only())
1036     emitAlignment(Align(4));
1037 
1038   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1039   OutStreamer->emitLabel(JTISymbol);
1040 
1041   // Emit each entry of the table.
1042   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1043   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1044   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1045 
1046   // Mark the jump table as data-in-code.
1047   OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1048                                                : MCDR_DataRegionJT16);
1049 
1050   for (auto MBB : JTBBs) {
1051     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1052                                                           OutContext);
1053     // Otherwise it's an offset from the dispatch instruction. Construct an
1054     // MCExpr for the entry. We want a value of the form:
1055     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1056     //
1057     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1058     // would look like:
1059     // LJTI_0_0:
1060     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1061     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1062     // where LCPI0_0 is a label defined just before the TBB instruction using
1063     // this table.
1064     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1065     const MCExpr *Expr = MCBinaryExpr::createAdd(
1066         MCSymbolRefExpr::create(TBInstPC, OutContext),
1067         MCConstantExpr::create(4, OutContext), OutContext);
1068     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1069     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1070                                    OutContext);
1071     OutStreamer->emitValue(Expr, OffsetWidth);
1072   }
1073   // Mark the end of jump table data-in-code region. 32-bit offsets use
1074   // actual branch instructions here, so we don't mark those as a data-region
1075   // at all.
1076   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1077 
1078   // Make sure the next instruction is 2-byte aligned.
1079   emitAlignment(Align(2));
1080 }
1081 
1082 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1083   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1084       "Only instruction which are involved into frame setup code are allowed");
1085 
1086   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1087   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1088   const MachineFunction &MF = *MI->getParent()->getParent();
1089   const TargetRegisterInfo *TargetRegInfo =
1090     MF.getSubtarget().getRegisterInfo();
1091   const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1092 
1093   Register FramePtr = TargetRegInfo->getFrameRegister(MF);
1094   unsigned Opc = MI->getOpcode();
1095   unsigned SrcReg, DstReg;
1096 
1097   switch (Opc) {
1098   case ARM::tPUSH:
1099     // special case: tPUSH does not have src/dst regs.
1100     SrcReg = DstReg = ARM::SP;
1101     break;
1102   case ARM::tLDRpci:
1103   case ARM::t2MOVi16:
1104   case ARM::t2MOVTi16:
1105     // special cases:
1106     // 1) for Thumb1 code we sometimes materialize the constant via constpool
1107     //    load.
1108     // 2) for Thumb2 execute only code we materialize the constant via
1109     //    immediate constants in 2 separate instructions (MOVW/MOVT).
1110     SrcReg = ~0U;
1111     DstReg = MI->getOperand(0).getReg();
1112     break;
1113   default:
1114     SrcReg = MI->getOperand(1).getReg();
1115     DstReg = MI->getOperand(0).getReg();
1116     break;
1117   }
1118 
1119   // Try to figure out the unwinding opcode out of src / dst regs.
1120   if (MI->mayStore()) {
1121     // Register saves.
1122     assert(DstReg == ARM::SP &&
1123            "Only stack pointer as a destination reg is supported");
1124 
1125     SmallVector<unsigned, 4> RegList;
1126     // Skip src & dst reg, and pred ops.
1127     unsigned StartOp = 2 + 2;
1128     // Use all the operands.
1129     unsigned NumOffset = 0;
1130     // Amount of SP adjustment folded into a push.
1131     unsigned Pad = 0;
1132 
1133     switch (Opc) {
1134     default:
1135       MI->print(errs());
1136       llvm_unreachable("Unsupported opcode for unwinding information");
1137     case ARM::tPUSH:
1138       // Special case here: no src & dst reg, but two extra imp ops.
1139       StartOp = 2; NumOffset = 2;
1140       LLVM_FALLTHROUGH;
1141     case ARM::STMDB_UPD:
1142     case ARM::t2STMDB_UPD:
1143     case ARM::VSTMDDB_UPD:
1144       assert(SrcReg == ARM::SP &&
1145              "Only stack pointer as a source reg is supported");
1146       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1147            i != NumOps; ++i) {
1148         const MachineOperand &MO = MI->getOperand(i);
1149         // Actually, there should never be any impdef stuff here. Skip it
1150         // temporary to workaround PR11902.
1151         if (MO.isImplicit())
1152           continue;
1153         // Registers, pushed as a part of folding an SP update into the
1154         // push instruction are marked as undef and should not be
1155         // restored when unwinding, because the function can modify the
1156         // corresponding stack slots.
1157         if (MO.isUndef()) {
1158           assert(RegList.empty() &&
1159                  "Pad registers must come before restored ones");
1160           unsigned Width =
1161             TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1162           Pad += Width;
1163           continue;
1164         }
1165         // Check for registers that are remapped (for a Thumb1 prologue that
1166         // saves high registers).
1167         Register Reg = MO.getReg();
1168         if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
1169           Reg = RemappedReg;
1170         RegList.push_back(Reg);
1171       }
1172       break;
1173     case ARM::STR_PRE_IMM:
1174     case ARM::STR_PRE_REG:
1175     case ARM::t2STR_PRE:
1176       assert(MI->getOperand(2).getReg() == ARM::SP &&
1177              "Only stack pointer as a source reg is supported");
1178       RegList.push_back(SrcReg);
1179       break;
1180     }
1181     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1182       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1183       // Account for the SP adjustment, folded into the push.
1184       if (Pad)
1185         ATS.emitPad(Pad);
1186     }
1187   } else {
1188     // Changes of stack / frame pointer.
1189     if (SrcReg == ARM::SP) {
1190       int64_t Offset = 0;
1191       switch (Opc) {
1192       default:
1193         MI->print(errs());
1194         llvm_unreachable("Unsupported opcode for unwinding information");
1195       case ARM::MOVr:
1196       case ARM::tMOVr:
1197         Offset = 0;
1198         break;
1199       case ARM::ADDri:
1200       case ARM::t2ADDri:
1201       case ARM::t2ADDri12:
1202       case ARM::t2ADDspImm:
1203       case ARM::t2ADDspImm12:
1204         Offset = -MI->getOperand(2).getImm();
1205         break;
1206       case ARM::SUBri:
1207       case ARM::t2SUBri:
1208       case ARM::t2SUBri12:
1209       case ARM::t2SUBspImm:
1210       case ARM::t2SUBspImm12:
1211         Offset = MI->getOperand(2).getImm();
1212         break;
1213       case ARM::tSUBspi:
1214         Offset = MI->getOperand(2).getImm()*4;
1215         break;
1216       case ARM::tADDspi:
1217       case ARM::tADDrSPi:
1218         Offset = -MI->getOperand(2).getImm()*4;
1219         break;
1220       case ARM::tADDhirr:
1221         Offset =
1222             -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg());
1223         break;
1224       }
1225 
1226       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1227         if (DstReg == FramePtr && FramePtr != ARM::SP)
1228           // Set-up of the frame pointer. Positive values correspond to "add"
1229           // instruction.
1230           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1231         else if (DstReg == ARM::SP) {
1232           // Change of SP by an offset. Positive values correspond to "sub"
1233           // instruction.
1234           ATS.emitPad(Offset);
1235         } else {
1236           // Move of SP to a register.  Positive values correspond to an "add"
1237           // instruction.
1238           ATS.emitMovSP(DstReg, -Offset);
1239         }
1240       }
1241     } else if (DstReg == ARM::SP) {
1242       MI->print(errs());
1243       llvm_unreachable("Unsupported opcode for unwinding information");
1244     } else {
1245       int64_t Offset = 0;
1246       switch (Opc) {
1247       case ARM::tMOVr:
1248         // If a Thumb1 function spills r8-r11, we copy the values to low
1249         // registers before pushing them. Record the copy so we can emit the
1250         // correct ".save" later.
1251         AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
1252         break;
1253       case ARM::tLDRpci: {
1254         // Grab the constpool index and check, whether it corresponds to
1255         // original or cloned constpool entry.
1256         unsigned CPI = MI->getOperand(1).getIndex();
1257         const MachineConstantPool *MCP = MF.getConstantPool();
1258         if (CPI >= MCP->getConstants().size())
1259           CPI = AFI->getOriginalCPIdx(CPI);
1260         assert(CPI != -1U && "Invalid constpool index");
1261 
1262         // Derive the actual offset.
1263         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1264         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1265         Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1266         AFI->EHPrologueOffsetInRegs[DstReg] = Offset;
1267         break;
1268       }
1269       case ARM::t2MOVi16:
1270         Offset = MI->getOperand(1).getImm();
1271         AFI->EHPrologueOffsetInRegs[DstReg] = Offset;
1272         break;
1273       case ARM::t2MOVTi16:
1274         Offset = MI->getOperand(2).getImm();
1275         AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16);
1276         break;
1277       default:
1278         MI->print(errs());
1279         llvm_unreachable("Unsupported opcode for unwinding information");
1280       }
1281     }
1282   }
1283 }
1284 
1285 // Simple pseudo-instructions have their lowering (with expansion to real
1286 // instructions) auto-generated.
1287 #include "ARMGenMCPseudoLowering.inc"
1288 
1289 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) {
1290   const DataLayout &DL = getDataLayout();
1291   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1292   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1293 
1294   const MachineFunction &MF = *MI->getParent()->getParent();
1295   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1296 
1297   // If we just ended a constant pool, mark it as such.
1298   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1299     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1300     InConstantPool = false;
1301   }
1302 
1303   // Emit unwinding stuff for frame-related instructions
1304   if (Subtarget->isTargetEHABICompatible() &&
1305        MI->getFlag(MachineInstr::FrameSetup))
1306     EmitUnwindingInstruction(MI);
1307 
1308   // Do any auto-generated pseudo lowerings.
1309   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1310     return;
1311 
1312   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1313          "Pseudo flag setting opcode should be expanded early");
1314 
1315   // Check for manual lowerings.
1316   unsigned Opc = MI->getOpcode();
1317   switch (Opc) {
1318   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1319   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1320   case ARM::LEApcrel:
1321   case ARM::tLEApcrel:
1322   case ARM::t2LEApcrel: {
1323     // FIXME: Need to also handle globals and externals
1324     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1325     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1326                                                ARM::t2LEApcrel ? ARM::t2ADR
1327                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1328                      : ARM::ADR))
1329       .addReg(MI->getOperand(0).getReg())
1330       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1331       // Add predicate operands.
1332       .addImm(MI->getOperand(2).getImm())
1333       .addReg(MI->getOperand(3).getReg()));
1334     return;
1335   }
1336   case ARM::LEApcrelJT:
1337   case ARM::tLEApcrelJT:
1338   case ARM::t2LEApcrelJT: {
1339     MCSymbol *JTIPICSymbol =
1340       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1341     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1342                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1343                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1344                      : ARM::ADR))
1345       .addReg(MI->getOperand(0).getReg())
1346       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1347       // Add predicate operands.
1348       .addImm(MI->getOperand(2).getImm())
1349       .addReg(MI->getOperand(3).getReg()));
1350     return;
1351   }
1352   // Darwin call instructions are just normal call instructions with different
1353   // clobber semantics (they clobber R9).
1354   case ARM::BX_CALL: {
1355     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1356       .addReg(ARM::LR)
1357       .addReg(ARM::PC)
1358       // Add predicate operands.
1359       .addImm(ARMCC::AL)
1360       .addReg(0)
1361       // Add 's' bit operand (always reg0 for this)
1362       .addReg(0));
1363 
1364     assert(Subtarget->hasV4TOps());
1365     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1366       .addReg(MI->getOperand(0).getReg()));
1367     return;
1368   }
1369   case ARM::tBX_CALL: {
1370     if (Subtarget->hasV5TOps())
1371       llvm_unreachable("Expected BLX to be selected for v5t+");
1372 
1373     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1374     // that the saved lr has its LSB set correctly (the arch doesn't
1375     // have blx).
1376     // So here we generate a bl to a small jump pad that does bx rN.
1377     // The jump pads are emitted after the function body.
1378 
1379     Register TReg = MI->getOperand(0).getReg();
1380     MCSymbol *TRegSym = nullptr;
1381     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1382       if (TIP.first == TReg) {
1383         TRegSym = TIP.second;
1384         break;
1385       }
1386     }
1387 
1388     if (!TRegSym) {
1389       TRegSym = OutContext.createTempSymbol();
1390       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1391     }
1392 
1393     // Create a link-saving branch to the Reg Indirect Jump Pad.
1394     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1395         // Predicate comes first here.
1396         .addImm(ARMCC::AL).addReg(0)
1397         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1398     return;
1399   }
1400   case ARM::BMOVPCRX_CALL: {
1401     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1402       .addReg(ARM::LR)
1403       .addReg(ARM::PC)
1404       // Add predicate operands.
1405       .addImm(ARMCC::AL)
1406       .addReg(0)
1407       // Add 's' bit operand (always reg0 for this)
1408       .addReg(0));
1409 
1410     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1411       .addReg(ARM::PC)
1412       .addReg(MI->getOperand(0).getReg())
1413       // Add predicate operands.
1414       .addImm(ARMCC::AL)
1415       .addReg(0)
1416       // Add 's' bit operand (always reg0 for this)
1417       .addReg(0));
1418     return;
1419   }
1420   case ARM::BMOVPCB_CALL: {
1421     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1422       .addReg(ARM::LR)
1423       .addReg(ARM::PC)
1424       // Add predicate operands.
1425       .addImm(ARMCC::AL)
1426       .addReg(0)
1427       // Add 's' bit operand (always reg0 for this)
1428       .addReg(0));
1429 
1430     const MachineOperand &Op = MI->getOperand(0);
1431     const GlobalValue *GV = Op.getGlobal();
1432     const unsigned TF = Op.getTargetFlags();
1433     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1434     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1435     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1436       .addExpr(GVSymExpr)
1437       // Add predicate operands.
1438       .addImm(ARMCC::AL)
1439       .addReg(0));
1440     return;
1441   }
1442   case ARM::MOVi16_ga_pcrel:
1443   case ARM::t2MOVi16_ga_pcrel: {
1444     MCInst TmpInst;
1445     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1446     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1447 
1448     unsigned TF = MI->getOperand(1).getTargetFlags();
1449     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1450     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1451     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1452 
1453     MCSymbol *LabelSym =
1454         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1455                     MI->getOperand(2).getImm(), OutContext);
1456     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1457     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1458     const MCExpr *PCRelExpr =
1459       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1460                                       MCBinaryExpr::createAdd(LabelSymExpr,
1461                                       MCConstantExpr::create(PCAdj, OutContext),
1462                                       OutContext), OutContext), OutContext);
1463       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1464 
1465     // Add predicate operands.
1466     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1467     TmpInst.addOperand(MCOperand::createReg(0));
1468     // Add 's' bit operand (always reg0 for this)
1469     TmpInst.addOperand(MCOperand::createReg(0));
1470     EmitToStreamer(*OutStreamer, TmpInst);
1471     return;
1472   }
1473   case ARM::MOVTi16_ga_pcrel:
1474   case ARM::t2MOVTi16_ga_pcrel: {
1475     MCInst TmpInst;
1476     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1477                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1478     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1479     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1480 
1481     unsigned TF = MI->getOperand(2).getTargetFlags();
1482     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1483     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1484     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1485 
1486     MCSymbol *LabelSym =
1487         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1488                     MI->getOperand(3).getImm(), OutContext);
1489     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1490     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1491     const MCExpr *PCRelExpr =
1492         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1493                                    MCBinaryExpr::createAdd(LabelSymExpr,
1494                                       MCConstantExpr::create(PCAdj, OutContext),
1495                                           OutContext), OutContext), OutContext);
1496       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1497     // Add predicate operands.
1498     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1499     TmpInst.addOperand(MCOperand::createReg(0));
1500     // Add 's' bit operand (always reg0 for this)
1501     TmpInst.addOperand(MCOperand::createReg(0));
1502     EmitToStreamer(*OutStreamer, TmpInst);
1503     return;
1504   }
1505   case ARM::t2BFi:
1506   case ARM::t2BFic:
1507   case ARM::t2BFLi:
1508   case ARM::t2BFr:
1509   case ARM::t2BFLr: {
1510     // This is a Branch Future instruction.
1511 
1512     const MCExpr *BranchLabel = MCSymbolRefExpr::create(
1513         getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1514                    MI->getOperand(0).getIndex(), OutContext),
1515         OutContext);
1516 
1517     auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
1518     if (MI->getOperand(1).isReg()) {
1519       // For BFr/BFLr
1520       MCInst.addReg(MI->getOperand(1).getReg());
1521     } else {
1522       // For BFi/BFLi/BFic
1523       const MCExpr *BranchTarget;
1524       if (MI->getOperand(1).isMBB())
1525         BranchTarget = MCSymbolRefExpr::create(
1526             MI->getOperand(1).getMBB()->getSymbol(), OutContext);
1527       else if (MI->getOperand(1).isGlobal()) {
1528         const GlobalValue *GV = MI->getOperand(1).getGlobal();
1529         BranchTarget = MCSymbolRefExpr::create(
1530             GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
1531       } else if (MI->getOperand(1).isSymbol()) {
1532         BranchTarget = MCSymbolRefExpr::create(
1533             GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
1534             OutContext);
1535       } else
1536         llvm_unreachable("Unhandled operand kind in Branch Future instruction");
1537 
1538       MCInst.addExpr(BranchTarget);
1539     }
1540 
1541       if (Opc == ARM::t2BFic) {
1542         const MCExpr *ElseLabel = MCSymbolRefExpr::create(
1543             getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1544                        MI->getOperand(2).getIndex(), OutContext),
1545             OutContext);
1546         MCInst.addExpr(ElseLabel);
1547         MCInst.addImm(MI->getOperand(3).getImm());
1548       } else {
1549         MCInst.addImm(MI->getOperand(2).getImm())
1550             .addReg(MI->getOperand(3).getReg());
1551       }
1552 
1553     EmitToStreamer(*OutStreamer, MCInst);
1554     return;
1555   }
1556   case ARM::t2BF_LabelPseudo: {
1557     // This is a pseudo op for a label used by a branch future instruction
1558 
1559     // Emit the label.
1560     OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
1561                                        getFunctionNumber(),
1562                                        MI->getOperand(0).getIndex(), OutContext));
1563     return;
1564   }
1565   case ARM::tPICADD: {
1566     // This is a pseudo op for a label + instruction sequence, which looks like:
1567     // LPC0:
1568     //     add r0, pc
1569     // This adds the address of LPC0 to r0.
1570 
1571     // Emit the label.
1572     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1573                                        getFunctionNumber(),
1574                                        MI->getOperand(2).getImm(), OutContext));
1575 
1576     // Form and emit the add.
1577     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1578       .addReg(MI->getOperand(0).getReg())
1579       .addReg(MI->getOperand(0).getReg())
1580       .addReg(ARM::PC)
1581       // Add predicate operands.
1582       .addImm(ARMCC::AL)
1583       .addReg(0));
1584     return;
1585   }
1586   case ARM::PICADD: {
1587     // This is a pseudo op for a label + instruction sequence, which looks like:
1588     // LPC0:
1589     //     add r0, pc, r0
1590     // This adds the address of LPC0 to r0.
1591 
1592     // Emit the label.
1593     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1594                                        getFunctionNumber(),
1595                                        MI->getOperand(2).getImm(), OutContext));
1596 
1597     // Form and emit the add.
1598     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1599       .addReg(MI->getOperand(0).getReg())
1600       .addReg(ARM::PC)
1601       .addReg(MI->getOperand(1).getReg())
1602       // Add predicate operands.
1603       .addImm(MI->getOperand(3).getImm())
1604       .addReg(MI->getOperand(4).getReg())
1605       // Add 's' bit operand (always reg0 for this)
1606       .addReg(0));
1607     return;
1608   }
1609   case ARM::PICSTR:
1610   case ARM::PICSTRB:
1611   case ARM::PICSTRH:
1612   case ARM::PICLDR:
1613   case ARM::PICLDRB:
1614   case ARM::PICLDRH:
1615   case ARM::PICLDRSB:
1616   case ARM::PICLDRSH: {
1617     // This is a pseudo op for a label + instruction sequence, which looks like:
1618     // LPC0:
1619     //     OP r0, [pc, r0]
1620     // The LCP0 label is referenced by a constant pool entry in order to get
1621     // a PC-relative address at the ldr instruction.
1622 
1623     // Emit the label.
1624     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1625                                        getFunctionNumber(),
1626                                        MI->getOperand(2).getImm(), OutContext));
1627 
1628     // Form and emit the load
1629     unsigned Opcode;
1630     switch (MI->getOpcode()) {
1631     default:
1632       llvm_unreachable("Unexpected opcode!");
1633     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1634     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1635     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1636     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1637     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1638     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1639     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1640     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1641     }
1642     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1643       .addReg(MI->getOperand(0).getReg())
1644       .addReg(ARM::PC)
1645       .addReg(MI->getOperand(1).getReg())
1646       .addImm(0)
1647       // Add predicate operands.
1648       .addImm(MI->getOperand(3).getImm())
1649       .addReg(MI->getOperand(4).getReg()));
1650 
1651     return;
1652   }
1653   case ARM::CONSTPOOL_ENTRY: {
1654     if (Subtarget->genExecuteOnly())
1655       llvm_unreachable("execute-only should not generate constant pools");
1656 
1657     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1658     /// in the function.  The first operand is the ID# for this instruction, the
1659     /// second is the index into the MachineConstantPool that this is, the third
1660     /// is the size in bytes of this constant pool entry.
1661     /// The required alignment is specified on the basic block holding this MI.
1662     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1663     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1664 
1665     // If this is the first entry of the pool, mark it.
1666     if (!InConstantPool) {
1667       OutStreamer->emitDataRegion(MCDR_DataRegion);
1668       InConstantPool = true;
1669     }
1670 
1671     OutStreamer->emitLabel(GetCPISymbol(LabelId));
1672 
1673     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1674     if (MCPE.isMachineConstantPoolEntry())
1675       emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1676     else
1677       emitGlobalConstant(DL, MCPE.Val.ConstVal);
1678     return;
1679   }
1680   case ARM::JUMPTABLE_ADDRS:
1681     emitJumpTableAddrs(MI);
1682     return;
1683   case ARM::JUMPTABLE_INSTS:
1684     emitJumpTableInsts(MI);
1685     return;
1686   case ARM::JUMPTABLE_TBB:
1687   case ARM::JUMPTABLE_TBH:
1688     emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1689     return;
1690   case ARM::t2BR_JT: {
1691     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1692       .addReg(ARM::PC)
1693       .addReg(MI->getOperand(0).getReg())
1694       // Add predicate operands.
1695       .addImm(ARMCC::AL)
1696       .addReg(0));
1697     return;
1698   }
1699   case ARM::t2TBB_JT:
1700   case ARM::t2TBH_JT: {
1701     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1702     // Lower and emit the PC label, then the instruction itself.
1703     OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1704     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1705                                      .addReg(MI->getOperand(0).getReg())
1706                                      .addReg(MI->getOperand(1).getReg())
1707                                      // Add predicate operands.
1708                                      .addImm(ARMCC::AL)
1709                                      .addReg(0));
1710     return;
1711   }
1712   case ARM::tTBB_JT:
1713   case ARM::tTBH_JT: {
1714 
1715     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1716     Register Base = MI->getOperand(0).getReg();
1717     Register Idx = MI->getOperand(1).getReg();
1718     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1719 
1720     // Multiply up idx if necessary.
1721     if (!Is8Bit)
1722       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1723                                        .addReg(Idx)
1724                                        .addReg(ARM::CPSR)
1725                                        .addReg(Idx)
1726                                        .addImm(1)
1727                                        // Add predicate operands.
1728                                        .addImm(ARMCC::AL)
1729                                        .addReg(0));
1730 
1731     if (Base == ARM::PC) {
1732       // TBB [base, idx] =
1733       //    ADDS idx, idx, base
1734       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1735       //    LSLS idx, #1
1736       //    ADDS pc, pc, idx
1737 
1738       // When using PC as the base, it's important that there is no padding
1739       // between the last ADDS and the start of the jump table. The jump table
1740       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1741       //
1742       // FIXME: Ideally we could vary the LDRB index based on the padding
1743       // between the sequence and jump table, however that relies on MCExprs
1744       // for load indexes which are currently not supported.
1745       OutStreamer->emitCodeAlignment(4);
1746       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1747                                        .addReg(Idx)
1748                                        .addReg(Idx)
1749                                        .addReg(Base)
1750                                        // Add predicate operands.
1751                                        .addImm(ARMCC::AL)
1752                                        .addReg(0));
1753 
1754       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1755       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1756                                        .addReg(Idx)
1757                                        .addReg(Idx)
1758                                        .addImm(Is8Bit ? 4 : 2)
1759                                        // Add predicate operands.
1760                                        .addImm(ARMCC::AL)
1761                                        .addReg(0));
1762     } else {
1763       // TBB [base, idx] =
1764       //    LDRB idx, [base, idx] ; or LDRH if TBH
1765       //    LSLS idx, #1
1766       //    ADDS pc, pc, idx
1767 
1768       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1769       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1770                                        .addReg(Idx)
1771                                        .addReg(Base)
1772                                        .addReg(Idx)
1773                                        // Add predicate operands.
1774                                        .addImm(ARMCC::AL)
1775                                        .addReg(0));
1776     }
1777 
1778     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1779                                      .addReg(Idx)
1780                                      .addReg(ARM::CPSR)
1781                                      .addReg(Idx)
1782                                      .addImm(1)
1783                                      // Add predicate operands.
1784                                      .addImm(ARMCC::AL)
1785                                      .addReg(0));
1786 
1787     OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1788     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1789                                      .addReg(ARM::PC)
1790                                      .addReg(ARM::PC)
1791                                      .addReg(Idx)
1792                                      // Add predicate operands.
1793                                      .addImm(ARMCC::AL)
1794                                      .addReg(0));
1795     return;
1796   }
1797   case ARM::tBR_JTr:
1798   case ARM::BR_JTr: {
1799     // mov pc, target
1800     MCInst TmpInst;
1801     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1802       ARM::MOVr : ARM::tMOVr;
1803     TmpInst.setOpcode(Opc);
1804     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1805     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1806     // Add predicate operands.
1807     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1808     TmpInst.addOperand(MCOperand::createReg(0));
1809     // Add 's' bit operand (always reg0 for this)
1810     if (Opc == ARM::MOVr)
1811       TmpInst.addOperand(MCOperand::createReg(0));
1812     EmitToStreamer(*OutStreamer, TmpInst);
1813     return;
1814   }
1815   case ARM::BR_JTm_i12: {
1816     // ldr pc, target
1817     MCInst TmpInst;
1818     TmpInst.setOpcode(ARM::LDRi12);
1819     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1820     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1821     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1822     // Add predicate operands.
1823     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1824     TmpInst.addOperand(MCOperand::createReg(0));
1825     EmitToStreamer(*OutStreamer, TmpInst);
1826     return;
1827   }
1828   case ARM::BR_JTm_rs: {
1829     // ldr pc, target
1830     MCInst TmpInst;
1831     TmpInst.setOpcode(ARM::LDRrs);
1832     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1833     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1834     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1835     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1836     // Add predicate operands.
1837     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1838     TmpInst.addOperand(MCOperand::createReg(0));
1839     EmitToStreamer(*OutStreamer, TmpInst);
1840     return;
1841   }
1842   case ARM::BR_JTadd: {
1843     // add pc, target, idx
1844     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1845       .addReg(ARM::PC)
1846       .addReg(MI->getOperand(0).getReg())
1847       .addReg(MI->getOperand(1).getReg())
1848       // Add predicate operands.
1849       .addImm(ARMCC::AL)
1850       .addReg(0)
1851       // Add 's' bit operand (always reg0 for this)
1852       .addReg(0));
1853     return;
1854   }
1855   case ARM::SPACE:
1856     OutStreamer->emitZeros(MI->getOperand(1).getImm());
1857     return;
1858   case ARM::TRAP: {
1859     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1860     // FIXME: Remove this special case when they do.
1861     if (!Subtarget->isTargetMachO()) {
1862       uint32_t Val = 0xe7ffdefeUL;
1863       OutStreamer->AddComment("trap");
1864       ATS.emitInst(Val);
1865       return;
1866     }
1867     break;
1868   }
1869   case ARM::TRAPNaCl: {
1870     uint32_t Val = 0xe7fedef0UL;
1871     OutStreamer->AddComment("trap");
1872     ATS.emitInst(Val);
1873     return;
1874   }
1875   case ARM::tTRAP: {
1876     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1877     // FIXME: Remove this special case when they do.
1878     if (!Subtarget->isTargetMachO()) {
1879       uint16_t Val = 0xdefe;
1880       OutStreamer->AddComment("trap");
1881       ATS.emitInst(Val, 'n');
1882       return;
1883     }
1884     break;
1885   }
1886   case ARM::t2Int_eh_sjlj_setjmp:
1887   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1888   case ARM::tInt_eh_sjlj_setjmp: {
1889     // Two incoming args: GPR:$src, GPR:$val
1890     // mov $val, pc
1891     // adds $val, #7
1892     // str $val, [$src, #4]
1893     // movs r0, #0
1894     // b LSJLJEH
1895     // movs r0, #1
1896     // LSJLJEH:
1897     Register SrcReg = MI->getOperand(0).getReg();
1898     Register ValReg = MI->getOperand(1).getReg();
1899     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH");
1900     OutStreamer->AddComment("eh_setjmp begin");
1901     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1902       .addReg(ValReg)
1903       .addReg(ARM::PC)
1904       // Predicate.
1905       .addImm(ARMCC::AL)
1906       .addReg(0));
1907 
1908     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1909       .addReg(ValReg)
1910       // 's' bit operand
1911       .addReg(ARM::CPSR)
1912       .addReg(ValReg)
1913       .addImm(7)
1914       // Predicate.
1915       .addImm(ARMCC::AL)
1916       .addReg(0));
1917 
1918     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1919       .addReg(ValReg)
1920       .addReg(SrcReg)
1921       // The offset immediate is #4. The operand value is scaled by 4 for the
1922       // tSTR instruction.
1923       .addImm(1)
1924       // Predicate.
1925       .addImm(ARMCC::AL)
1926       .addReg(0));
1927 
1928     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1929       .addReg(ARM::R0)
1930       .addReg(ARM::CPSR)
1931       .addImm(0)
1932       // Predicate.
1933       .addImm(ARMCC::AL)
1934       .addReg(0));
1935 
1936     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1937     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1938       .addExpr(SymbolExpr)
1939       .addImm(ARMCC::AL)
1940       .addReg(0));
1941 
1942     OutStreamer->AddComment("eh_setjmp end");
1943     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1944       .addReg(ARM::R0)
1945       .addReg(ARM::CPSR)
1946       .addImm(1)
1947       // Predicate.
1948       .addImm(ARMCC::AL)
1949       .addReg(0));
1950 
1951     OutStreamer->emitLabel(Label);
1952     return;
1953   }
1954 
1955   case ARM::Int_eh_sjlj_setjmp_nofp:
1956   case ARM::Int_eh_sjlj_setjmp: {
1957     // Two incoming args: GPR:$src, GPR:$val
1958     // add $val, pc, #8
1959     // str $val, [$src, #+4]
1960     // mov r0, #0
1961     // add pc, pc, #0
1962     // mov r0, #1
1963     Register SrcReg = MI->getOperand(0).getReg();
1964     Register ValReg = MI->getOperand(1).getReg();
1965 
1966     OutStreamer->AddComment("eh_setjmp begin");
1967     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1968       .addReg(ValReg)
1969       .addReg(ARM::PC)
1970       .addImm(8)
1971       // Predicate.
1972       .addImm(ARMCC::AL)
1973       .addReg(0)
1974       // 's' bit operand (always reg0 for this).
1975       .addReg(0));
1976 
1977     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1978       .addReg(ValReg)
1979       .addReg(SrcReg)
1980       .addImm(4)
1981       // Predicate.
1982       .addImm(ARMCC::AL)
1983       .addReg(0));
1984 
1985     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1986       .addReg(ARM::R0)
1987       .addImm(0)
1988       // Predicate.
1989       .addImm(ARMCC::AL)
1990       .addReg(0)
1991       // 's' bit operand (always reg0 for this).
1992       .addReg(0));
1993 
1994     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1995       .addReg(ARM::PC)
1996       .addReg(ARM::PC)
1997       .addImm(0)
1998       // Predicate.
1999       .addImm(ARMCC::AL)
2000       .addReg(0)
2001       // 's' bit operand (always reg0 for this).
2002       .addReg(0));
2003 
2004     OutStreamer->AddComment("eh_setjmp end");
2005     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
2006       .addReg(ARM::R0)
2007       .addImm(1)
2008       // Predicate.
2009       .addImm(ARMCC::AL)
2010       .addReg(0)
2011       // 's' bit operand (always reg0 for this).
2012       .addReg(0));
2013     return;
2014   }
2015   case ARM::Int_eh_sjlj_longjmp: {
2016     // ldr sp, [$src, #8]
2017     // ldr $scratch, [$src, #4]
2018     // ldr r7, [$src]
2019     // bx $scratch
2020     Register SrcReg = MI->getOperand(0).getReg();
2021     Register ScratchReg = MI->getOperand(1).getReg();
2022     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2023       .addReg(ARM::SP)
2024       .addReg(SrcReg)
2025       .addImm(8)
2026       // Predicate.
2027       .addImm(ARMCC::AL)
2028       .addReg(0));
2029 
2030     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2031       .addReg(ScratchReg)
2032       .addReg(SrcReg)
2033       .addImm(4)
2034       // Predicate.
2035       .addImm(ARMCC::AL)
2036       .addReg(0));
2037 
2038     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2039       // These platforms always use the same frame register
2040       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2041                                        .addReg(STI.getFramePointerReg())
2042                                        .addReg(SrcReg)
2043                                        .addImm(0)
2044                                        // Predicate.
2045                                        .addImm(ARMCC::AL)
2046                                        .addReg(0));
2047     } else {
2048       // If the calling code might use either R7 or R11 as
2049       // frame pointer register, restore it into both.
2050       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2051         .addReg(ARM::R7)
2052         .addReg(SrcReg)
2053         .addImm(0)
2054         // Predicate.
2055         .addImm(ARMCC::AL)
2056         .addReg(0));
2057       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2058         .addReg(ARM::R11)
2059         .addReg(SrcReg)
2060         .addImm(0)
2061         // Predicate.
2062         .addImm(ARMCC::AL)
2063         .addReg(0));
2064     }
2065 
2066     assert(Subtarget->hasV4TOps());
2067     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
2068       .addReg(ScratchReg)
2069       // Predicate.
2070       .addImm(ARMCC::AL)
2071       .addReg(0));
2072     return;
2073   }
2074   case ARM::tInt_eh_sjlj_longjmp: {
2075     // ldr $scratch, [$src, #8]
2076     // mov sp, $scratch
2077     // ldr $scratch, [$src, #4]
2078     // ldr r7, [$src]
2079     // bx $scratch
2080     Register SrcReg = MI->getOperand(0).getReg();
2081     Register ScratchReg = MI->getOperand(1).getReg();
2082 
2083     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2084       .addReg(ScratchReg)
2085       .addReg(SrcReg)
2086       // The offset immediate is #8. The operand value is scaled by 4 for the
2087       // tLDR instruction.
2088       .addImm(2)
2089       // Predicate.
2090       .addImm(ARMCC::AL)
2091       .addReg(0));
2092 
2093     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
2094       .addReg(ARM::SP)
2095       .addReg(ScratchReg)
2096       // Predicate.
2097       .addImm(ARMCC::AL)
2098       .addReg(0));
2099 
2100     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2101       .addReg(ScratchReg)
2102       .addReg(SrcReg)
2103       .addImm(1)
2104       // Predicate.
2105       .addImm(ARMCC::AL)
2106       .addReg(0));
2107 
2108     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2109       // These platforms always use the same frame register
2110       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2111                                        .addReg(STI.getFramePointerReg())
2112                                        .addReg(SrcReg)
2113                                        .addImm(0)
2114                                        // Predicate.
2115                                        .addImm(ARMCC::AL)
2116                                        .addReg(0));
2117     } else {
2118       // If the calling code might use either R7 or R11 as
2119       // frame pointer register, restore it into both.
2120       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2121         .addReg(ARM::R7)
2122         .addReg(SrcReg)
2123         .addImm(0)
2124         // Predicate.
2125         .addImm(ARMCC::AL)
2126         .addReg(0));
2127       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2128         .addReg(ARM::R11)
2129         .addReg(SrcReg)
2130         .addImm(0)
2131         // Predicate.
2132         .addImm(ARMCC::AL)
2133         .addReg(0));
2134     }
2135 
2136     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2137       .addReg(ScratchReg)
2138       // Predicate.
2139       .addImm(ARMCC::AL)
2140       .addReg(0));
2141     return;
2142   }
2143   case ARM::tInt_WIN_eh_sjlj_longjmp: {
2144     // ldr.w r11, [$src, #0]
2145     // ldr.w  sp, [$src, #8]
2146     // ldr.w  pc, [$src, #4]
2147 
2148     Register SrcReg = MI->getOperand(0).getReg();
2149 
2150     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2151                                      .addReg(ARM::R11)
2152                                      .addReg(SrcReg)
2153                                      .addImm(0)
2154                                      // Predicate
2155                                      .addImm(ARMCC::AL)
2156                                      .addReg(0));
2157     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2158                                      .addReg(ARM::SP)
2159                                      .addReg(SrcReg)
2160                                      .addImm(8)
2161                                      // Predicate
2162                                      .addImm(ARMCC::AL)
2163                                      .addReg(0));
2164     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2165                                      .addReg(ARM::PC)
2166                                      .addReg(SrcReg)
2167                                      .addImm(4)
2168                                      // Predicate
2169                                      .addImm(ARMCC::AL)
2170                                      .addReg(0));
2171     return;
2172   }
2173   case ARM::PATCHABLE_FUNCTION_ENTER:
2174     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2175     return;
2176   case ARM::PATCHABLE_FUNCTION_EXIT:
2177     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2178     return;
2179   case ARM::PATCHABLE_TAIL_CALL:
2180     LowerPATCHABLE_TAIL_CALL(*MI);
2181     return;
2182   case ARM::SpeculationBarrierISBDSBEndBB: {
2183     // Print DSB SYS + ISB
2184     MCInst TmpInstDSB;
2185     TmpInstDSB.setOpcode(ARM::DSB);
2186     TmpInstDSB.addOperand(MCOperand::createImm(0xf));
2187     EmitToStreamer(*OutStreamer, TmpInstDSB);
2188     MCInst TmpInstISB;
2189     TmpInstISB.setOpcode(ARM::ISB);
2190     TmpInstISB.addOperand(MCOperand::createImm(0xf));
2191     EmitToStreamer(*OutStreamer, TmpInstISB);
2192     return;
2193   }
2194   case ARM::t2SpeculationBarrierISBDSBEndBB: {
2195     // Print DSB SYS + ISB
2196     MCInst TmpInstDSB;
2197     TmpInstDSB.setOpcode(ARM::t2DSB);
2198     TmpInstDSB.addOperand(MCOperand::createImm(0xf));
2199     TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL));
2200     TmpInstDSB.addOperand(MCOperand::createReg(0));
2201     EmitToStreamer(*OutStreamer, TmpInstDSB);
2202     MCInst TmpInstISB;
2203     TmpInstISB.setOpcode(ARM::t2ISB);
2204     TmpInstISB.addOperand(MCOperand::createImm(0xf));
2205     TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL));
2206     TmpInstISB.addOperand(MCOperand::createReg(0));
2207     EmitToStreamer(*OutStreamer, TmpInstISB);
2208     return;
2209   }
2210   case ARM::SpeculationBarrierSBEndBB: {
2211     // Print SB
2212     MCInst TmpInstSB;
2213     TmpInstSB.setOpcode(ARM::SB);
2214     EmitToStreamer(*OutStreamer, TmpInstSB);
2215     return;
2216   }
2217   case ARM::t2SpeculationBarrierSBEndBB: {
2218     // Print SB
2219     MCInst TmpInstSB;
2220     TmpInstSB.setOpcode(ARM::t2SB);
2221     EmitToStreamer(*OutStreamer, TmpInstSB);
2222     return;
2223   }
2224   }
2225 
2226   MCInst TmpInst;
2227   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2228 
2229   EmitToStreamer(*OutStreamer, TmpInst);
2230 }
2231 
2232 //===----------------------------------------------------------------------===//
2233 // Target Registry Stuff
2234 //===----------------------------------------------------------------------===//
2235 
2236 // Force static initialization.
2237 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() {
2238   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2239   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2240   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2241   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2242 }
2243