1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 77 // Emit symbol for CMSE non-secure entry point 78 if (AFI->isCmseNSEntryFunction()) { 79 MCSymbol *S = 80 OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName()); 81 emitLinkage(&MF->getFunction(), S); 82 OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction); 83 OutStreamer->emitLabel(S); 84 } 85 86 OutStreamer->emitLabel(CurrentFnSym); 87 } 88 89 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 90 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 91 assert(Size && "C++ constructor pointer had zero size!"); 92 93 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 94 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 95 96 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 97 ARMII::MO_NO_FLAG), 98 (Subtarget->isTargetELF() 99 ? MCSymbolRefExpr::VK_ARM_TARGET1 100 : MCSymbolRefExpr::VK_None), 101 OutContext); 102 103 OutStreamer->emitValue(E, Size); 104 } 105 106 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 107 if (PromotedGlobals.count(GV)) 108 // The global was promoted into a constant pool. It should not be emitted. 109 return; 110 AsmPrinter::emitGlobalVariable(GV); 111 } 112 113 /// runOnMachineFunction - This uses the emitInstruction() 114 /// method to print assembly for each instruction. 115 /// 116 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 117 AFI = MF.getInfo<ARMFunctionInfo>(); 118 MCP = MF.getConstantPool(); 119 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 120 121 SetupMachineFunction(MF); 122 const Function &F = MF.getFunction(); 123 const TargetMachine& TM = MF.getTarget(); 124 125 // Collect all globals that had their storage promoted to a constant pool. 126 // Functions are emitted before variables, so this accumulates promoted 127 // globals from all functions in PromotedGlobals. 128 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 129 PromotedGlobals.insert(GV); 130 131 // Calculate this function's optimization goal. 132 unsigned OptimizationGoal; 133 if (F.hasOptNone()) 134 // For best debugging illusion, speed and small size sacrificed 135 OptimizationGoal = 6; 136 else if (F.hasMinSize()) 137 // Aggressively for small size, speed and debug illusion sacrificed 138 OptimizationGoal = 4; 139 else if (F.hasOptSize()) 140 // For small size, but speed and debugging illusion preserved 141 OptimizationGoal = 3; 142 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 143 // Aggressively for speed, small size and debug illusion sacrificed 144 OptimizationGoal = 2; 145 else if (TM.getOptLevel() > CodeGenOpt::None) 146 // For speed, but small size and good debug illusion preserved 147 OptimizationGoal = 1; 148 else // TM.getOptLevel() == CodeGenOpt::None 149 // For good debugging, but speed and small size preserved 150 OptimizationGoal = 5; 151 152 // Combine a new optimization goal with existing ones. 153 if (OptimizationGoals == -1) // uninitialized goals 154 OptimizationGoals = OptimizationGoal; 155 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 156 OptimizationGoals = 0; 157 158 if (Subtarget->isTargetCOFF()) { 159 bool Internal = F.hasInternalLinkage(); 160 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 161 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 162 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 163 164 OutStreamer->beginCOFFSymbolDef(CurrentFnSym); 165 OutStreamer->emitCOFFSymbolStorageClass(Scl); 166 OutStreamer->emitCOFFSymbolType(Type); 167 OutStreamer->endCOFFSymbolDef(); 168 } 169 170 // Emit the rest of the function body. 171 emitFunctionBody(); 172 173 // Emit the XRay table for this function. 174 emitXRayTable(); 175 176 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 177 // These are created per function, rather than per TU, since it's 178 // relatively easy to exceed the thumb branch range within a TU. 179 if (! ThumbIndirectPads.empty()) { 180 OutStreamer->emitAssemblerFlag(MCAF_Code16); 181 emitAlignment(Align(2)); 182 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 183 OutStreamer->emitLabel(TIP.second); 184 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 185 .addReg(TIP.first) 186 // Add predicate operands. 187 .addImm(ARMCC::AL) 188 .addReg(0)); 189 } 190 ThumbIndirectPads.clear(); 191 } 192 193 // We didn't modify anything. 194 return false; 195 } 196 197 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 198 raw_ostream &O) { 199 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 200 unsigned TF = MO.getTargetFlags(); 201 if (TF & ARMII::MO_LO16) 202 O << ":lower16:"; 203 else if (TF & ARMII::MO_HI16) 204 O << ":upper16:"; 205 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 206 printOffset(MO.getOffset(), O); 207 } 208 209 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 210 raw_ostream &O) { 211 const MachineOperand &MO = MI->getOperand(OpNum); 212 213 switch (MO.getType()) { 214 default: llvm_unreachable("<unknown operand type>"); 215 case MachineOperand::MO_Register: { 216 Register Reg = MO.getReg(); 217 assert(Register::isPhysicalRegister(Reg)); 218 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 219 if(ARM::GPRPairRegClass.contains(Reg)) { 220 const MachineFunction &MF = *MI->getParent()->getParent(); 221 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 222 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 223 } 224 O << ARMInstPrinter::getRegisterName(Reg); 225 break; 226 } 227 case MachineOperand::MO_Immediate: { 228 O << '#'; 229 unsigned TF = MO.getTargetFlags(); 230 if (TF == ARMII::MO_LO16) 231 O << ":lower16:"; 232 else if (TF == ARMII::MO_HI16) 233 O << ":upper16:"; 234 O << MO.getImm(); 235 break; 236 } 237 case MachineOperand::MO_MachineBasicBlock: 238 MO.getMBB()->getSymbol()->print(O, MAI); 239 return; 240 case MachineOperand::MO_GlobalAddress: { 241 PrintSymbolOperand(MO, O); 242 break; 243 } 244 case MachineOperand::MO_ConstantPoolIndex: 245 if (Subtarget->genExecuteOnly()) 246 llvm_unreachable("execute-only should not generate constant pools"); 247 GetCPISymbol(MO.getIndex())->print(O, MAI); 248 break; 249 } 250 } 251 252 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 253 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 254 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 255 const DataLayout &DL = getDataLayout(); 256 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 257 "CPI" + Twine(getFunctionNumber()) + "_" + 258 Twine(CPID)); 259 } 260 261 //===--------------------------------------------------------------------===// 262 263 MCSymbol *ARMAsmPrinter:: 264 GetARMJTIPICJumpTableLabel(unsigned uid) const { 265 const DataLayout &DL = getDataLayout(); 266 SmallString<60> Name; 267 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 268 << getFunctionNumber() << '_' << uid; 269 return OutContext.getOrCreateSymbol(Name); 270 } 271 272 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 273 const char *ExtraCode, raw_ostream &O) { 274 // Does this asm operand have a single letter operand modifier? 275 if (ExtraCode && ExtraCode[0]) { 276 if (ExtraCode[1] != 0) return true; // Unknown modifier. 277 278 switch (ExtraCode[0]) { 279 default: 280 // See if this is a generic print operand 281 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 282 case 'P': // Print a VFP double precision register. 283 case 'q': // Print a NEON quad precision register. 284 printOperand(MI, OpNum, O); 285 return false; 286 case 'y': // Print a VFP single precision register as indexed double. 287 if (MI->getOperand(OpNum).isReg()) { 288 MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg(); 289 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 290 // Find the 'd' register that has this 's' register as a sub-register, 291 // and determine the lane number. 292 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 293 if (!ARM::DPRRegClass.contains(*SR)) 294 continue; 295 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 296 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 297 return false; 298 } 299 } 300 return true; 301 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << ~(MI->getOperand(OpNum).getImm()); 305 return false; 306 case 'L': // The low 16 bits of an immediate constant. 307 if (!MI->getOperand(OpNum).isImm()) 308 return true; 309 O << (MI->getOperand(OpNum).getImm() & 0xffff); 310 return false; 311 case 'M': { // A register range suitable for LDM/STM. 312 if (!MI->getOperand(OpNum).isReg()) 313 return true; 314 const MachineOperand &MO = MI->getOperand(OpNum); 315 Register RegBegin = MO.getReg(); 316 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 317 // already got the operands in registers that are operands to the 318 // inline asm statement. 319 O << "{"; 320 if (ARM::GPRPairRegClass.contains(RegBegin)) { 321 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 322 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 323 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 324 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 325 } 326 O << ARMInstPrinter::getRegisterName(RegBegin); 327 328 // FIXME: The register allocator not only may not have given us the 329 // registers in sequence, but may not be in ascending registers. This 330 // will require changes in the register allocator that'll need to be 331 // propagated down here if the operands change. 332 unsigned RegOps = OpNum + 1; 333 while (MI->getOperand(RegOps).isReg()) { 334 O << ", " 335 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 336 RegOps++; 337 } 338 339 O << "}"; 340 341 return false; 342 } 343 case 'R': // The most significant register of a pair. 344 case 'Q': { // The least significant register of a pair. 345 if (OpNum == 0) 346 return true; 347 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 348 if (!FlagsOP.isImm()) 349 return true; 350 unsigned Flags = FlagsOP.getImm(); 351 352 // This operand may not be the one that actually provides the register. If 353 // it's tied to a previous one then we should refer instead to that one 354 // for registers and their classes. 355 unsigned TiedIdx; 356 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 357 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 358 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 359 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 360 } 361 Flags = MI->getOperand(OpNum).getImm(); 362 363 // Later code expects OpNum to be pointing at the register rather than 364 // the flags. 365 OpNum += 1; 366 } 367 368 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 369 unsigned RC; 370 bool FirstHalf; 371 const ARMBaseTargetMachine &ATM = 372 static_cast<const ARMBaseTargetMachine &>(TM); 373 374 // 'Q' should correspond to the low order register and 'R' to the high 375 // order register. Whether this corresponds to the upper or lower half 376 // depends on the endianess mode. 377 if (ExtraCode[0] == 'Q') 378 FirstHalf = ATM.isLittleEndian(); 379 else 380 // ExtraCode[0] == 'R'. 381 FirstHalf = !ATM.isLittleEndian(); 382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 383 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 384 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 385 if (NumVals != 1) 386 return true; 387 const MachineOperand &MO = MI->getOperand(OpNum); 388 if (!MO.isReg()) 389 return true; 390 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 391 Register Reg = 392 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 393 O << ARMInstPrinter::getRegisterName(Reg); 394 return false; 395 } 396 if (NumVals != 2) 397 return true; 398 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 399 if (RegOp >= MI->getNumOperands()) 400 return true; 401 const MachineOperand &MO = MI->getOperand(RegOp); 402 if (!MO.isReg()) 403 return true; 404 Register Reg = MO.getReg(); 405 O << ARMInstPrinter::getRegisterName(Reg); 406 return false; 407 } 408 409 case 'e': // The low doubleword register of a NEON quad register. 410 case 'f': { // The high doubleword register of a NEON quad register. 411 if (!MI->getOperand(OpNum).isReg()) 412 return true; 413 Register Reg = MI->getOperand(OpNum).getReg(); 414 if (!ARM::QPRRegClass.contains(Reg)) 415 return true; 416 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 417 Register SubReg = 418 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 419 O << ARMInstPrinter::getRegisterName(SubReg); 420 return false; 421 } 422 423 // This modifier is not yet supported. 424 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 425 return true; 426 case 'H': { // The highest-numbered register of a pair. 427 const MachineOperand &MO = MI->getOperand(OpNum); 428 if (!MO.isReg()) 429 return true; 430 const MachineFunction &MF = *MI->getParent()->getParent(); 431 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 432 Register Reg = MO.getReg(); 433 if(!ARM::GPRPairRegClass.contains(Reg)) 434 return false; 435 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 436 O << ARMInstPrinter::getRegisterName(Reg); 437 return false; 438 } 439 } 440 } 441 442 printOperand(MI, OpNum, O); 443 return false; 444 } 445 446 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 447 unsigned OpNum, const char *ExtraCode, 448 raw_ostream &O) { 449 // Does this asm operand have a single letter operand modifier? 450 if (ExtraCode && ExtraCode[0]) { 451 if (ExtraCode[1] != 0) return true; // Unknown modifier. 452 453 switch (ExtraCode[0]) { 454 case 'A': // A memory operand for a VLD1/VST1 instruction. 455 default: return true; // Unknown modifier. 456 case 'm': // The base register of a memory operand. 457 if (!MI->getOperand(OpNum).isReg()) 458 return true; 459 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 460 return false; 461 } 462 } 463 464 const MachineOperand &MO = MI->getOperand(OpNum); 465 assert(MO.isReg() && "unexpected inline asm memory operand"); 466 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 467 return false; 468 } 469 470 static bool isThumb(const MCSubtargetInfo& STI) { 471 return STI.getFeatureBits()[ARM::ModeThumb]; 472 } 473 474 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 475 const MCSubtargetInfo *EndInfo) const { 476 // If either end mode is unknown (EndInfo == NULL) or different than 477 // the start mode, then restore the start mode. 478 const bool WasThumb = isThumb(StartInfo); 479 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 480 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 481 } 482 } 483 484 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 485 const Triple &TT = TM.getTargetTriple(); 486 // Use unified assembler syntax. 487 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 488 489 // Emit ARM Build Attributes 490 if (TT.isOSBinFormatELF()) 491 emitAttributes(); 492 493 // Use the triple's architecture and subarchitecture to determine 494 // if we're thumb for the purposes of the top level code16 assembler 495 // flag. 496 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 497 OutStreamer->emitAssemblerFlag(MCAF_Code16); 498 } 499 500 static void 501 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 502 MachineModuleInfoImpl::StubValueTy &MCSym) { 503 // L_foo$stub: 504 OutStreamer.emitLabel(StubLabel); 505 // .indirect_symbol _foo 506 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 507 508 if (MCSym.getInt()) 509 // External to current translation unit. 510 OutStreamer.emitIntValue(0, 4/*size*/); 511 else 512 // Internal to current translation unit. 513 // 514 // When we place the LSDA into the TEXT section, the type info 515 // pointers need to be indirect and pc-rel. We accomplish this by 516 // using NLPs; however, sometimes the types are local to the file. 517 // We need to fill in the value for the NLP in those cases. 518 OutStreamer.emitValue( 519 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 520 4 /*size*/); 521 } 522 523 524 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 525 const Triple &TT = TM.getTargetTriple(); 526 if (TT.isOSBinFormatMachO()) { 527 // All darwin targets use mach-o. 528 const TargetLoweringObjectFileMachO &TLOFMacho = 529 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 530 MachineModuleInfoMachO &MMIMacho = 531 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 532 533 // Output non-lazy-pointers for external and common global variables. 534 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 535 536 if (!Stubs.empty()) { 537 // Switch with ".non_lazy_symbol_pointer" directive. 538 OutStreamer->switchSection(TLOFMacho.getNonLazySymbolPointerSection()); 539 emitAlignment(Align(4)); 540 541 for (auto &Stub : Stubs) 542 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 543 544 Stubs.clear(); 545 OutStreamer->addBlankLine(); 546 } 547 548 Stubs = MMIMacho.GetThreadLocalGVStubList(); 549 if (!Stubs.empty()) { 550 // Switch with ".non_lazy_symbol_pointer" directive. 551 OutStreamer->switchSection(TLOFMacho.getThreadLocalPointerSection()); 552 emitAlignment(Align(4)); 553 554 for (auto &Stub : Stubs) 555 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 556 557 Stubs.clear(); 558 OutStreamer->addBlankLine(); 559 } 560 561 // Funny Darwin hack: This flag tells the linker that no global symbols 562 // contain code that falls through to other global symbols (e.g. the obvious 563 // implementation of multiple entry points). If this doesn't occur, the 564 // linker can safely perform dead code stripping. Since LLVM never 565 // generates code that does this, it is always safe to set. 566 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 567 } 568 569 // The last attribute to be emitted is ABI_optimization_goals 570 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 571 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 572 573 if (OptimizationGoals > 0 && 574 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 575 Subtarget->isTargetMuslAEABI())) 576 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 577 OptimizationGoals = -1; 578 579 ATS.finishAttributeSection(); 580 } 581 582 //===----------------------------------------------------------------------===// 583 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 584 // FIXME: 585 // The following seem like one-off assembler flags, but they actually need 586 // to appear in the .ARM.attributes section in ELF. 587 // Instead of subclassing the MCELFStreamer, we do the work here. 588 589 // Returns true if all functions have the same function attribute value. 590 // It also returns true when the module has no functions. 591 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 592 StringRef Value) { 593 return !any_of(M, [&](const Function &F) { 594 return F.getFnAttribute(Attr).getValueAsString() != Value; 595 }); 596 } 597 // Returns true if all functions have the same denormal mode. 598 // It also returns true when the module has no functions. 599 static bool checkDenormalAttributeConsistency(const Module &M, 600 StringRef Attr, 601 DenormalMode Value) { 602 return !any_of(M, [&](const Function &F) { 603 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 604 return parseDenormalFPAttribute(AttrVal) != Value; 605 }); 606 } 607 608 void ARMAsmPrinter::emitAttributes() { 609 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 610 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 611 612 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 613 614 ATS.switchVendor("aeabi"); 615 616 // Compute ARM ELF Attributes based on the default subtarget that 617 // we'd have constructed. The existing ARM behavior isn't LTO clean 618 // anyhow. 619 // FIXME: For ifunc related functions we could iterate over and look 620 // for a feature string that doesn't match the default one. 621 const Triple &TT = TM.getTargetTriple(); 622 StringRef CPU = TM.getTargetCPU(); 623 StringRef FS = TM.getTargetFeatureString(); 624 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 625 if (!FS.empty()) { 626 if (!ArchFS.empty()) 627 ArchFS = (Twine(ArchFS) + "," + FS).str(); 628 else 629 ArchFS = std::string(FS); 630 } 631 const ARMBaseTargetMachine &ATM = 632 static_cast<const ARMBaseTargetMachine &>(TM); 633 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 634 ATM.isLittleEndian()); 635 636 // Emit build attributes for the available hardware. 637 ATS.emitTargetAttributes(STI); 638 639 // RW data addressing. 640 if (isPositionIndependent()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 642 ARMBuildAttrs::AddressRWPCRel); 643 } else if (STI.isRWPI()) { 644 // RWPI specific attributes. 645 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 646 ARMBuildAttrs::AddressRWSBRel); 647 } 648 649 // RO data addressing. 650 if (isPositionIndependent() || STI.isROPI()) { 651 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 652 ARMBuildAttrs::AddressROPCRel); 653 } 654 655 // GOT use. 656 if (isPositionIndependent()) { 657 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 658 ARMBuildAttrs::AddressGOT); 659 } else { 660 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 661 ARMBuildAttrs::AddressDirect); 662 } 663 664 // Set FP Denormals. 665 if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", 666 DenormalMode::getPreserveSign())) 667 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 668 ARMBuildAttrs::PreserveFPSign); 669 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 670 "denormal-fp-math", 671 DenormalMode::getPositiveZero())) 672 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 673 ARMBuildAttrs::PositiveZero); 674 else if (!TM.Options.UnsafeFPMath) 675 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 676 ARMBuildAttrs::IEEEDenormals); 677 else { 678 if (!STI.hasVFP2Base()) { 679 // When the target doesn't have an FPU (by design or 680 // intention), the assumptions made on the software support 681 // mirror that of the equivalent hardware support *if it 682 // existed*. For v7 and better we indicate that denormals are 683 // flushed preserving sign, and for V6 we indicate that 684 // denormals are flushed to positive zero. 685 if (STI.hasV7Ops()) 686 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 687 ARMBuildAttrs::PreserveFPSign); 688 } else if (STI.hasVFP3Base()) { 689 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 690 // the sign bit of the zero matches the sign bit of the input or 691 // result that is being flushed to zero. 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 693 ARMBuildAttrs::PreserveFPSign); 694 } 695 // For VFPv2 implementations it is implementation defined as 696 // to whether denormals are flushed to positive zero or to 697 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 698 // LLVM has chosen to flush this to positive zero (most likely for 699 // GCC compatibility), so that's the chosen value here (the 700 // absence of its emission implies zero). 701 } 702 703 // Set FP exceptions and rounding 704 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 705 "no-trapping-math", "true") || 706 TM.Options.NoTrappingFPMath) 707 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 708 ARMBuildAttrs::Not_Allowed); 709 else if (!TM.Options.UnsafeFPMath) { 710 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 711 712 // If the user has permitted this code to choose the IEEE 754 713 // rounding at run-time, emit the rounding attribute. 714 if (TM.Options.HonorSignDependentRoundingFPMathOption) 715 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 716 } 717 718 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 719 // equivalent of GCC's -ffinite-math-only flag. 720 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 721 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 722 ARMBuildAttrs::Allowed); 723 else 724 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 725 ARMBuildAttrs::AllowIEEE754); 726 727 // FIXME: add more flags to ARMBuildAttributes.h 728 // 8-bytes alignment stuff. 729 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 730 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 731 732 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 733 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 734 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 735 736 // FIXME: To support emitting this build attribute as GCC does, the 737 // -mfp16-format option and associated plumbing must be 738 // supported. For now the __fp16 type is exposed by default, so this 739 // attribute should be emitted with value 1. 740 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 741 ARMBuildAttrs::FP16FormatIEEE); 742 743 if (const Module *SourceModule = MMI->getModule()) { 744 // ABI_PCS_wchar_t to indicate wchar_t width 745 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 746 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 747 SourceModule->getModuleFlag("wchar_size"))) { 748 int WCharWidth = WCharWidthValue->getZExtValue(); 749 assert((WCharWidth == 2 || WCharWidth == 4) && 750 "wchar_t width must be 2 or 4 bytes"); 751 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 752 } 753 754 // ABI_enum_size to indicate enum width 755 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 756 // (all enums contain a value needing 32 bits to encode). 757 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 758 SourceModule->getModuleFlag("min_enum_size"))) { 759 int EnumWidth = EnumWidthValue->getZExtValue(); 760 assert((EnumWidth == 1 || EnumWidth == 4) && 761 "Minimum enum width must be 1 or 4 bytes"); 762 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 763 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 764 } 765 766 auto *PACValue = mdconst::extract_or_null<ConstantInt>( 767 SourceModule->getModuleFlag("sign-return-address")); 768 if (PACValue && PACValue->getZExtValue() == 1) { 769 // If "+pacbti" is used as an architecture extension, 770 // Tag_PAC_extension is emitted in 771 // ARMTargetStreamer::emitTargetAttributes(). 772 if (!STI.hasPACBTI()) { 773 ATS.emitAttribute(ARMBuildAttrs::PAC_extension, 774 ARMBuildAttrs::AllowPACInNOPSpace); 775 } 776 ATS.emitAttribute(ARMBuildAttrs::PACRET_use, ARMBuildAttrs::PACRETUsed); 777 } 778 779 auto *BTIValue = mdconst::extract_or_null<ConstantInt>( 780 SourceModule->getModuleFlag("branch-target-enforcement")); 781 if (BTIValue && BTIValue->getZExtValue() == 1) { 782 // If "+pacbti" is used as an architecture extension, 783 // Tag_BTI_extension is emitted in 784 // ARMTargetStreamer::emitTargetAttributes(). 785 if (!STI.hasPACBTI()) { 786 ATS.emitAttribute(ARMBuildAttrs::BTI_extension, 787 ARMBuildAttrs::AllowBTIInNOPSpace); 788 } 789 ATS.emitAttribute(ARMBuildAttrs::BTI_use, ARMBuildAttrs::BTIUsed); 790 } 791 } 792 793 // We currently do not support using R9 as the TLS pointer. 794 if (STI.isRWPI()) 795 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 796 ARMBuildAttrs::R9IsSB); 797 else if (STI.isR9Reserved()) 798 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 799 ARMBuildAttrs::R9Reserved); 800 else 801 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 802 ARMBuildAttrs::R9IsGPR); 803 } 804 805 //===----------------------------------------------------------------------===// 806 807 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 808 unsigned LabelId, MCContext &Ctx) { 809 810 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 811 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 812 return Label; 813 } 814 815 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 816 unsigned LabelId, MCContext &Ctx) { 817 818 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 819 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 820 return Label; 821 } 822 823 static MCSymbolRefExpr::VariantKind 824 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 825 switch (Modifier) { 826 case ARMCP::no_modifier: 827 return MCSymbolRefExpr::VK_None; 828 case ARMCP::TLSGD: 829 return MCSymbolRefExpr::VK_TLSGD; 830 case ARMCP::TPOFF: 831 return MCSymbolRefExpr::VK_TPOFF; 832 case ARMCP::GOTTPOFF: 833 return MCSymbolRefExpr::VK_GOTTPOFF; 834 case ARMCP::SBREL: 835 return MCSymbolRefExpr::VK_ARM_SBREL; 836 case ARMCP::GOT_PREL: 837 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 838 case ARMCP::SECREL: 839 return MCSymbolRefExpr::VK_SECREL; 840 } 841 llvm_unreachable("Invalid ARMCPModifier!"); 842 } 843 844 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 845 unsigned char TargetFlags) { 846 if (Subtarget->isTargetMachO()) { 847 bool IsIndirect = 848 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 849 850 if (!IsIndirect) 851 return getSymbol(GV); 852 853 // FIXME: Remove this when Darwin transition to @GOT like syntax. 854 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 855 MachineModuleInfoMachO &MMIMachO = 856 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 857 MachineModuleInfoImpl::StubValueTy &StubSym = 858 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 859 : MMIMachO.getGVStubEntry(MCSym); 860 861 if (!StubSym.getPointer()) 862 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 863 !GV->hasInternalLinkage()); 864 return MCSym; 865 } else if (Subtarget->isTargetCOFF()) { 866 assert(Subtarget->isTargetWindows() && 867 "Windows is the only supported COFF target"); 868 869 bool IsIndirect = 870 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 871 if (!IsIndirect) 872 return getSymbol(GV); 873 874 SmallString<128> Name; 875 if (TargetFlags & ARMII::MO_DLLIMPORT) 876 Name = "__imp_"; 877 else if (TargetFlags & ARMII::MO_COFFSTUB) 878 Name = ".refptr."; 879 getNameWithPrefix(Name, GV); 880 881 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 882 883 if (TargetFlags & ARMII::MO_COFFSTUB) { 884 MachineModuleInfoCOFF &MMICOFF = 885 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 886 MachineModuleInfoImpl::StubValueTy &StubSym = 887 MMICOFF.getGVStubEntry(MCSym); 888 889 if (!StubSym.getPointer()) 890 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 891 } 892 893 return MCSym; 894 } else if (Subtarget->isTargetELF()) { 895 return getSymbol(GV); 896 } 897 llvm_unreachable("unexpected target"); 898 } 899 900 void ARMAsmPrinter::emitMachineConstantPoolValue( 901 MachineConstantPoolValue *MCPV) { 902 const DataLayout &DL = getDataLayout(); 903 int Size = DL.getTypeAllocSize(MCPV->getType()); 904 905 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 906 907 if (ACPV->isPromotedGlobal()) { 908 // This constant pool entry is actually a global whose storage has been 909 // promoted into the constant pool. This global may be referenced still 910 // by debug information, and due to the way AsmPrinter is set up, the debug 911 // info is immutable by the time we decide to promote globals to constant 912 // pools. Because of this, we need to ensure we emit a symbol for the global 913 // with private linkage (the default) so debug info can refer to it. 914 // 915 // However, if this global is promoted into several functions we must ensure 916 // we don't try and emit duplicate symbols! 917 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 918 for (const auto *GV : ACPC->promotedGlobals()) { 919 if (!EmittedPromotedGlobalLabels.count(GV)) { 920 MCSymbol *GVSym = getSymbol(GV); 921 OutStreamer->emitLabel(GVSym); 922 EmittedPromotedGlobalLabels.insert(GV); 923 } 924 } 925 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 926 } 927 928 MCSymbol *MCSym; 929 if (ACPV->isLSDA()) { 930 MCSym = getMBBExceptionSym(MF->front()); 931 } else if (ACPV->isBlockAddress()) { 932 const BlockAddress *BA = 933 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 934 MCSym = GetBlockAddressSymbol(BA); 935 } else if (ACPV->isGlobalValue()) { 936 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 937 938 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 939 // flag the global as MO_NONLAZY. 940 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 941 MCSym = GetARMGVSymbol(GV, TF); 942 } else if (ACPV->isMachineBasicBlock()) { 943 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 944 MCSym = MBB->getSymbol(); 945 } else { 946 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 947 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 948 MCSym = GetExternalSymbolSymbol(Sym); 949 } 950 951 // Create an MCSymbol for the reference. 952 const MCExpr *Expr = 953 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 954 OutContext); 955 956 if (ACPV->getPCAdjustment()) { 957 MCSymbol *PCLabel = 958 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 959 ACPV->getLabelId(), OutContext); 960 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 961 PCRelExpr = 962 MCBinaryExpr::createAdd(PCRelExpr, 963 MCConstantExpr::create(ACPV->getPCAdjustment(), 964 OutContext), 965 OutContext); 966 if (ACPV->mustAddCurrentAddress()) { 967 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 968 // label, so just emit a local label end reference that instead. 969 MCSymbol *DotSym = OutContext.createTempSymbol(); 970 OutStreamer->emitLabel(DotSym); 971 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 972 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 973 } 974 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 975 } 976 OutStreamer->emitValue(Expr, Size); 977 } 978 979 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 980 const MachineOperand &MO1 = MI->getOperand(1); 981 unsigned JTI = MO1.getIndex(); 982 983 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 984 // ARM mode tables. 985 emitAlignment(Align(4)); 986 987 // Emit a label for the jump table. 988 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 989 OutStreamer->emitLabel(JTISymbol); 990 991 // Mark the jump table as data-in-code. 992 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 993 994 // Emit each entry of the table. 995 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 996 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 997 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 998 999 for (MachineBasicBlock *MBB : JTBBs) { 1000 // Construct an MCExpr for the entry. We want a value of the form: 1001 // (BasicBlockAddr - TableBeginAddr) 1002 // 1003 // For example, a table with entries jumping to basic blocks BB0 and BB1 1004 // would look like: 1005 // LJTI_0_0: 1006 // .word (LBB0 - LJTI_0_0) 1007 // .word (LBB1 - LJTI_0_0) 1008 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1009 1010 if (isPositionIndependent() || Subtarget->isROPI()) 1011 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1012 OutContext), 1013 OutContext); 1014 // If we're generating a table of Thumb addresses in static relocation 1015 // model, we need to add one to keep interworking correctly. 1016 else if (AFI->isThumbFunction()) 1017 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1018 OutContext); 1019 OutStreamer->emitValue(Expr, 4); 1020 } 1021 // Mark the end of jump table data-in-code region. 1022 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1023 } 1024 1025 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 1026 const MachineOperand &MO1 = MI->getOperand(1); 1027 unsigned JTI = MO1.getIndex(); 1028 1029 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1030 // ARM mode tables. 1031 emitAlignment(Align(4)); 1032 1033 // Emit a label for the jump table. 1034 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1035 OutStreamer->emitLabel(JTISymbol); 1036 1037 // Emit each entry of the table. 1038 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1039 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1040 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1041 1042 for (MachineBasicBlock *MBB : JTBBs) { 1043 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1044 OutContext); 1045 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1046 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1047 .addExpr(MBBSymbolExpr) 1048 .addImm(ARMCC::AL) 1049 .addReg(0)); 1050 } 1051 } 1052 1053 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1054 unsigned OffsetWidth) { 1055 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1056 const MachineOperand &MO1 = MI->getOperand(1); 1057 unsigned JTI = MO1.getIndex(); 1058 1059 if (Subtarget->isThumb1Only()) 1060 emitAlignment(Align(4)); 1061 1062 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1063 OutStreamer->emitLabel(JTISymbol); 1064 1065 // Emit each entry of the table. 1066 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1067 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1068 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1069 1070 // Mark the jump table as data-in-code. 1071 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1072 : MCDR_DataRegionJT16); 1073 1074 for (auto MBB : JTBBs) { 1075 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1076 OutContext); 1077 // Otherwise it's an offset from the dispatch instruction. Construct an 1078 // MCExpr for the entry. We want a value of the form: 1079 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1080 // 1081 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1082 // would look like: 1083 // LJTI_0_0: 1084 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1085 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1086 // where LCPI0_0 is a label defined just before the TBB instruction using 1087 // this table. 1088 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1089 const MCExpr *Expr = MCBinaryExpr::createAdd( 1090 MCSymbolRefExpr::create(TBInstPC, OutContext), 1091 MCConstantExpr::create(4, OutContext), OutContext); 1092 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1093 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1094 OutContext); 1095 OutStreamer->emitValue(Expr, OffsetWidth); 1096 } 1097 // Mark the end of jump table data-in-code region. 32-bit offsets use 1098 // actual branch instructions here, so we don't mark those as a data-region 1099 // at all. 1100 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1101 1102 // Make sure the next instruction is 2-byte aligned. 1103 emitAlignment(Align(2)); 1104 } 1105 1106 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1107 assert(MI->getFlag(MachineInstr::FrameSetup) && 1108 "Only instruction which are involved into frame setup code are allowed"); 1109 1110 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1111 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1112 const MachineFunction &MF = *MI->getParent()->getParent(); 1113 const TargetRegisterInfo *TargetRegInfo = 1114 MF.getSubtarget().getRegisterInfo(); 1115 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1116 1117 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1118 unsigned Opc = MI->getOpcode(); 1119 unsigned SrcReg, DstReg; 1120 1121 switch (Opc) { 1122 case ARM::tPUSH: 1123 // special case: tPUSH does not have src/dst regs. 1124 SrcReg = DstReg = ARM::SP; 1125 break; 1126 case ARM::tLDRpci: 1127 case ARM::t2MOVi16: 1128 case ARM::t2MOVTi16: 1129 // special cases: 1130 // 1) for Thumb1 code we sometimes materialize the constant via constpool 1131 // load. 1132 // 2) for Thumb2 execute only code we materialize the constant via 1133 // immediate constants in 2 separate instructions (MOVW/MOVT). 1134 SrcReg = ~0U; 1135 DstReg = MI->getOperand(0).getReg(); 1136 break; 1137 default: 1138 SrcReg = MI->getOperand(1).getReg(); 1139 DstReg = MI->getOperand(0).getReg(); 1140 break; 1141 } 1142 1143 // Try to figure out the unwinding opcode out of src / dst regs. 1144 if (MI->mayStore()) { 1145 // Register saves. 1146 assert(DstReg == ARM::SP && 1147 "Only stack pointer as a destination reg is supported"); 1148 1149 SmallVector<unsigned, 4> RegList; 1150 // Skip src & dst reg, and pred ops. 1151 unsigned StartOp = 2 + 2; 1152 // Use all the operands. 1153 unsigned NumOffset = 0; 1154 // Amount of SP adjustment folded into a push, before the 1155 // registers are stored (pad at higher addresses). 1156 unsigned PadBefore = 0; 1157 // Amount of SP adjustment folded into a push, after the 1158 // registers are stored (pad at lower addresses). 1159 unsigned PadAfter = 0; 1160 1161 switch (Opc) { 1162 default: 1163 MI->print(errs()); 1164 llvm_unreachable("Unsupported opcode for unwinding information"); 1165 case ARM::tPUSH: 1166 // Special case here: no src & dst reg, but two extra imp ops. 1167 StartOp = 2; NumOffset = 2; 1168 LLVM_FALLTHROUGH; 1169 case ARM::STMDB_UPD: 1170 case ARM::t2STMDB_UPD: 1171 case ARM::VSTMDDB_UPD: 1172 assert(SrcReg == ARM::SP && 1173 "Only stack pointer as a source reg is supported"); 1174 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1175 i != NumOps; ++i) { 1176 const MachineOperand &MO = MI->getOperand(i); 1177 // Actually, there should never be any impdef stuff here. Skip it 1178 // temporary to workaround PR11902. 1179 if (MO.isImplicit()) 1180 continue; 1181 // Registers, pushed as a part of folding an SP update into the 1182 // push instruction are marked as undef and should not be 1183 // restored when unwinding, because the function can modify the 1184 // corresponding stack slots. 1185 if (MO.isUndef()) { 1186 assert(RegList.empty() && 1187 "Pad registers must come before restored ones"); 1188 unsigned Width = 1189 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1190 PadAfter += Width; 1191 continue; 1192 } 1193 // Check for registers that are remapped (for a Thumb1 prologue that 1194 // saves high registers). 1195 Register Reg = MO.getReg(); 1196 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1197 Reg = RemappedReg; 1198 RegList.push_back(Reg); 1199 } 1200 break; 1201 case ARM::STR_PRE_IMM: 1202 case ARM::STR_PRE_REG: 1203 case ARM::t2STR_PRE: 1204 assert(MI->getOperand(2).getReg() == ARM::SP && 1205 "Only stack pointer as a source reg is supported"); 1206 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1207 SrcReg = RemappedReg; 1208 1209 RegList.push_back(SrcReg); 1210 break; 1211 case ARM::t2STRD_PRE: 1212 assert(MI->getOperand(3).getReg() == ARM::SP && 1213 "Only stack pointer as a source reg is supported"); 1214 SrcReg = MI->getOperand(1).getReg(); 1215 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1216 SrcReg = RemappedReg; 1217 RegList.push_back(SrcReg); 1218 SrcReg = MI->getOperand(2).getReg(); 1219 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1220 SrcReg = RemappedReg; 1221 RegList.push_back(SrcReg); 1222 PadBefore = -MI->getOperand(4).getImm() - 8; 1223 break; 1224 } 1225 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1226 if (PadBefore) 1227 ATS.emitPad(PadBefore); 1228 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1229 // Account for the SP adjustment, folded into the push. 1230 if (PadAfter) 1231 ATS.emitPad(PadAfter); 1232 } 1233 } else { 1234 // Changes of stack / frame pointer. 1235 if (SrcReg == ARM::SP) { 1236 int64_t Offset = 0; 1237 switch (Opc) { 1238 default: 1239 MI->print(errs()); 1240 llvm_unreachable("Unsupported opcode for unwinding information"); 1241 case ARM::MOVr: 1242 case ARM::tMOVr: 1243 Offset = 0; 1244 break; 1245 case ARM::ADDri: 1246 case ARM::t2ADDri: 1247 case ARM::t2ADDri12: 1248 case ARM::t2ADDspImm: 1249 case ARM::t2ADDspImm12: 1250 Offset = -MI->getOperand(2).getImm(); 1251 break; 1252 case ARM::SUBri: 1253 case ARM::t2SUBri: 1254 case ARM::t2SUBri12: 1255 case ARM::t2SUBspImm: 1256 case ARM::t2SUBspImm12: 1257 Offset = MI->getOperand(2).getImm(); 1258 break; 1259 case ARM::tSUBspi: 1260 Offset = MI->getOperand(2).getImm()*4; 1261 break; 1262 case ARM::tADDspi: 1263 case ARM::tADDrSPi: 1264 Offset = -MI->getOperand(2).getImm()*4; 1265 break; 1266 case ARM::tADDhirr: 1267 Offset = 1268 -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); 1269 break; 1270 } 1271 1272 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1273 if (DstReg == FramePtr && FramePtr != ARM::SP) 1274 // Set-up of the frame pointer. Positive values correspond to "add" 1275 // instruction. 1276 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1277 else if (DstReg == ARM::SP) { 1278 // Change of SP by an offset. Positive values correspond to "sub" 1279 // instruction. 1280 ATS.emitPad(Offset); 1281 } else { 1282 // Move of SP to a register. Positive values correspond to an "add" 1283 // instruction. 1284 ATS.emitMovSP(DstReg, -Offset); 1285 } 1286 } 1287 } else if (DstReg == ARM::SP) { 1288 MI->print(errs()); 1289 llvm_unreachable("Unsupported opcode for unwinding information"); 1290 } else { 1291 int64_t Offset = 0; 1292 switch (Opc) { 1293 case ARM::tMOVr: 1294 // If a Thumb1 function spills r8-r11, we copy the values to low 1295 // registers before pushing them. Record the copy so we can emit the 1296 // correct ".save" later. 1297 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1298 break; 1299 case ARM::tLDRpci: { 1300 // Grab the constpool index and check, whether it corresponds to 1301 // original or cloned constpool entry. 1302 unsigned CPI = MI->getOperand(1).getIndex(); 1303 const MachineConstantPool *MCP = MF.getConstantPool(); 1304 if (CPI >= MCP->getConstants().size()) 1305 CPI = AFI->getOriginalCPIdx(CPI); 1306 assert(CPI != -1U && "Invalid constpool index"); 1307 1308 // Derive the actual offset. 1309 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1310 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1311 Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1312 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1313 break; 1314 } 1315 case ARM::t2MOVi16: 1316 Offset = MI->getOperand(1).getImm(); 1317 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1318 break; 1319 case ARM::t2MOVTi16: 1320 Offset = MI->getOperand(2).getImm(); 1321 AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); 1322 break; 1323 case ARM::t2PAC: 1324 case ARM::t2PACBTI: 1325 AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; 1326 break; 1327 default: 1328 MI->print(errs()); 1329 llvm_unreachable("Unsupported opcode for unwinding information"); 1330 } 1331 } 1332 } 1333 } 1334 1335 // Simple pseudo-instructions have their lowering (with expansion to real 1336 // instructions) auto-generated. 1337 #include "ARMGenMCPseudoLowering.inc" 1338 1339 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1340 // TODOD FIXME: Enable feature predicate checks once all the test pass. 1341 // ARM_MC::verifyInstructionPredicates(MI->getOpcode(), 1342 // getSubtargetInfo().getFeatureBits()); 1343 1344 const DataLayout &DL = getDataLayout(); 1345 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1346 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1347 1348 // If we just ended a constant pool, mark it as such. 1349 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1350 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1351 InConstantPool = false; 1352 } 1353 1354 // Emit unwinding stuff for frame-related instructions 1355 if (Subtarget->isTargetEHABICompatible() && 1356 MI->getFlag(MachineInstr::FrameSetup)) 1357 EmitUnwindingInstruction(MI); 1358 1359 // Do any auto-generated pseudo lowerings. 1360 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1361 return; 1362 1363 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1364 "Pseudo flag setting opcode should be expanded early"); 1365 1366 // Check for manual lowerings. 1367 unsigned Opc = MI->getOpcode(); 1368 switch (Opc) { 1369 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1370 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1371 case ARM::LEApcrel: 1372 case ARM::tLEApcrel: 1373 case ARM::t2LEApcrel: { 1374 // FIXME: Need to also handle globals and externals 1375 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1376 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1377 ARM::t2LEApcrel ? ARM::t2ADR 1378 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1379 : ARM::ADR)) 1380 .addReg(MI->getOperand(0).getReg()) 1381 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1382 // Add predicate operands. 1383 .addImm(MI->getOperand(2).getImm()) 1384 .addReg(MI->getOperand(3).getReg())); 1385 return; 1386 } 1387 case ARM::LEApcrelJT: 1388 case ARM::tLEApcrelJT: 1389 case ARM::t2LEApcrelJT: { 1390 MCSymbol *JTIPICSymbol = 1391 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1392 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1393 ARM::t2LEApcrelJT ? ARM::t2ADR 1394 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1395 : ARM::ADR)) 1396 .addReg(MI->getOperand(0).getReg()) 1397 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1398 // Add predicate operands. 1399 .addImm(MI->getOperand(2).getImm()) 1400 .addReg(MI->getOperand(3).getReg())); 1401 return; 1402 } 1403 // Darwin call instructions are just normal call instructions with different 1404 // clobber semantics (they clobber R9). 1405 case ARM::BX_CALL: { 1406 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1407 .addReg(ARM::LR) 1408 .addReg(ARM::PC) 1409 // Add predicate operands. 1410 .addImm(ARMCC::AL) 1411 .addReg(0) 1412 // Add 's' bit operand (always reg0 for this) 1413 .addReg(0)); 1414 1415 assert(Subtarget->hasV4TOps()); 1416 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1417 .addReg(MI->getOperand(0).getReg())); 1418 return; 1419 } 1420 case ARM::tBX_CALL: { 1421 if (Subtarget->hasV5TOps()) 1422 llvm_unreachable("Expected BLX to be selected for v5t+"); 1423 1424 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1425 // that the saved lr has its LSB set correctly (the arch doesn't 1426 // have blx). 1427 // So here we generate a bl to a small jump pad that does bx rN. 1428 // The jump pads are emitted after the function body. 1429 1430 Register TReg = MI->getOperand(0).getReg(); 1431 MCSymbol *TRegSym = nullptr; 1432 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1433 if (TIP.first == TReg) { 1434 TRegSym = TIP.second; 1435 break; 1436 } 1437 } 1438 1439 if (!TRegSym) { 1440 TRegSym = OutContext.createTempSymbol(); 1441 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1442 } 1443 1444 // Create a link-saving branch to the Reg Indirect Jump Pad. 1445 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1446 // Predicate comes first here. 1447 .addImm(ARMCC::AL).addReg(0) 1448 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1449 return; 1450 } 1451 case ARM::BMOVPCRX_CALL: { 1452 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1453 .addReg(ARM::LR) 1454 .addReg(ARM::PC) 1455 // Add predicate operands. 1456 .addImm(ARMCC::AL) 1457 .addReg(0) 1458 // Add 's' bit operand (always reg0 for this) 1459 .addReg(0)); 1460 1461 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1462 .addReg(ARM::PC) 1463 .addReg(MI->getOperand(0).getReg()) 1464 // Add predicate operands. 1465 .addImm(ARMCC::AL) 1466 .addReg(0) 1467 // Add 's' bit operand (always reg0 for this) 1468 .addReg(0)); 1469 return; 1470 } 1471 case ARM::BMOVPCB_CALL: { 1472 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1473 .addReg(ARM::LR) 1474 .addReg(ARM::PC) 1475 // Add predicate operands. 1476 .addImm(ARMCC::AL) 1477 .addReg(0) 1478 // Add 's' bit operand (always reg0 for this) 1479 .addReg(0)); 1480 1481 const MachineOperand &Op = MI->getOperand(0); 1482 const GlobalValue *GV = Op.getGlobal(); 1483 const unsigned TF = Op.getTargetFlags(); 1484 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1485 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1486 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1487 .addExpr(GVSymExpr) 1488 // Add predicate operands. 1489 .addImm(ARMCC::AL) 1490 .addReg(0)); 1491 return; 1492 } 1493 case ARM::MOVi16_ga_pcrel: 1494 case ARM::t2MOVi16_ga_pcrel: { 1495 MCInst TmpInst; 1496 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1497 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1498 1499 unsigned TF = MI->getOperand(1).getTargetFlags(); 1500 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1501 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1502 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1503 1504 MCSymbol *LabelSym = 1505 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1506 MI->getOperand(2).getImm(), OutContext); 1507 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1508 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1509 const MCExpr *PCRelExpr = 1510 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1511 MCBinaryExpr::createAdd(LabelSymExpr, 1512 MCConstantExpr::create(PCAdj, OutContext), 1513 OutContext), OutContext), OutContext); 1514 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1515 1516 // Add predicate operands. 1517 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1518 TmpInst.addOperand(MCOperand::createReg(0)); 1519 // Add 's' bit operand (always reg0 for this) 1520 TmpInst.addOperand(MCOperand::createReg(0)); 1521 EmitToStreamer(*OutStreamer, TmpInst); 1522 return; 1523 } 1524 case ARM::MOVTi16_ga_pcrel: 1525 case ARM::t2MOVTi16_ga_pcrel: { 1526 MCInst TmpInst; 1527 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1528 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1529 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1530 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1531 1532 unsigned TF = MI->getOperand(2).getTargetFlags(); 1533 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1534 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1535 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1536 1537 MCSymbol *LabelSym = 1538 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1539 MI->getOperand(3).getImm(), OutContext); 1540 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1541 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1542 const MCExpr *PCRelExpr = 1543 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1544 MCBinaryExpr::createAdd(LabelSymExpr, 1545 MCConstantExpr::create(PCAdj, OutContext), 1546 OutContext), OutContext), OutContext); 1547 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1548 // Add predicate operands. 1549 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1550 TmpInst.addOperand(MCOperand::createReg(0)); 1551 // Add 's' bit operand (always reg0 for this) 1552 TmpInst.addOperand(MCOperand::createReg(0)); 1553 EmitToStreamer(*OutStreamer, TmpInst); 1554 return; 1555 } 1556 case ARM::t2BFi: 1557 case ARM::t2BFic: 1558 case ARM::t2BFLi: 1559 case ARM::t2BFr: 1560 case ARM::t2BFLr: { 1561 // This is a Branch Future instruction. 1562 1563 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1564 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1565 MI->getOperand(0).getIndex(), OutContext), 1566 OutContext); 1567 1568 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1569 if (MI->getOperand(1).isReg()) { 1570 // For BFr/BFLr 1571 MCInst.addReg(MI->getOperand(1).getReg()); 1572 } else { 1573 // For BFi/BFLi/BFic 1574 const MCExpr *BranchTarget; 1575 if (MI->getOperand(1).isMBB()) 1576 BranchTarget = MCSymbolRefExpr::create( 1577 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1578 else if (MI->getOperand(1).isGlobal()) { 1579 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1580 BranchTarget = MCSymbolRefExpr::create( 1581 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1582 } else if (MI->getOperand(1).isSymbol()) { 1583 BranchTarget = MCSymbolRefExpr::create( 1584 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1585 OutContext); 1586 } else 1587 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1588 1589 MCInst.addExpr(BranchTarget); 1590 } 1591 1592 if (Opc == ARM::t2BFic) { 1593 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1594 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1595 MI->getOperand(2).getIndex(), OutContext), 1596 OutContext); 1597 MCInst.addExpr(ElseLabel); 1598 MCInst.addImm(MI->getOperand(3).getImm()); 1599 } else { 1600 MCInst.addImm(MI->getOperand(2).getImm()) 1601 .addReg(MI->getOperand(3).getReg()); 1602 } 1603 1604 EmitToStreamer(*OutStreamer, MCInst); 1605 return; 1606 } 1607 case ARM::t2BF_LabelPseudo: { 1608 // This is a pseudo op for a label used by a branch future instruction 1609 1610 // Emit the label. 1611 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1612 getFunctionNumber(), 1613 MI->getOperand(0).getIndex(), OutContext)); 1614 return; 1615 } 1616 case ARM::tPICADD: { 1617 // This is a pseudo op for a label + instruction sequence, which looks like: 1618 // LPC0: 1619 // add r0, pc 1620 // This adds the address of LPC0 to r0. 1621 1622 // Emit the label. 1623 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1624 getFunctionNumber(), 1625 MI->getOperand(2).getImm(), OutContext)); 1626 1627 // Form and emit the add. 1628 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1629 .addReg(MI->getOperand(0).getReg()) 1630 .addReg(MI->getOperand(0).getReg()) 1631 .addReg(ARM::PC) 1632 // Add predicate operands. 1633 .addImm(ARMCC::AL) 1634 .addReg(0)); 1635 return; 1636 } 1637 case ARM::PICADD: { 1638 // This is a pseudo op for a label + instruction sequence, which looks like: 1639 // LPC0: 1640 // add r0, pc, r0 1641 // This adds the address of LPC0 to r0. 1642 1643 // Emit the label. 1644 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1645 getFunctionNumber(), 1646 MI->getOperand(2).getImm(), OutContext)); 1647 1648 // Form and emit the add. 1649 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1650 .addReg(MI->getOperand(0).getReg()) 1651 .addReg(ARM::PC) 1652 .addReg(MI->getOperand(1).getReg()) 1653 // Add predicate operands. 1654 .addImm(MI->getOperand(3).getImm()) 1655 .addReg(MI->getOperand(4).getReg()) 1656 // Add 's' bit operand (always reg0 for this) 1657 .addReg(0)); 1658 return; 1659 } 1660 case ARM::PICSTR: 1661 case ARM::PICSTRB: 1662 case ARM::PICSTRH: 1663 case ARM::PICLDR: 1664 case ARM::PICLDRB: 1665 case ARM::PICLDRH: 1666 case ARM::PICLDRSB: 1667 case ARM::PICLDRSH: { 1668 // This is a pseudo op for a label + instruction sequence, which looks like: 1669 // LPC0: 1670 // OP r0, [pc, r0] 1671 // The LCP0 label is referenced by a constant pool entry in order to get 1672 // a PC-relative address at the ldr instruction. 1673 1674 // Emit the label. 1675 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1676 getFunctionNumber(), 1677 MI->getOperand(2).getImm(), OutContext)); 1678 1679 // Form and emit the load 1680 unsigned Opcode; 1681 switch (MI->getOpcode()) { 1682 default: 1683 llvm_unreachable("Unexpected opcode!"); 1684 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1685 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1686 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1687 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1688 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1689 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1690 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1691 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1692 } 1693 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1694 .addReg(MI->getOperand(0).getReg()) 1695 .addReg(ARM::PC) 1696 .addReg(MI->getOperand(1).getReg()) 1697 .addImm(0) 1698 // Add predicate operands. 1699 .addImm(MI->getOperand(3).getImm()) 1700 .addReg(MI->getOperand(4).getReg())); 1701 1702 return; 1703 } 1704 case ARM::CONSTPOOL_ENTRY: { 1705 if (Subtarget->genExecuteOnly()) 1706 llvm_unreachable("execute-only should not generate constant pools"); 1707 1708 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1709 /// in the function. The first operand is the ID# for this instruction, the 1710 /// second is the index into the MachineConstantPool that this is, the third 1711 /// is the size in bytes of this constant pool entry. 1712 /// The required alignment is specified on the basic block holding this MI. 1713 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1714 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1715 1716 // If this is the first entry of the pool, mark it. 1717 if (!InConstantPool) { 1718 OutStreamer->emitDataRegion(MCDR_DataRegion); 1719 InConstantPool = true; 1720 } 1721 1722 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1723 1724 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1725 if (MCPE.isMachineConstantPoolEntry()) 1726 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1727 else 1728 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1729 return; 1730 } 1731 case ARM::JUMPTABLE_ADDRS: 1732 emitJumpTableAddrs(MI); 1733 return; 1734 case ARM::JUMPTABLE_INSTS: 1735 emitJumpTableInsts(MI); 1736 return; 1737 case ARM::JUMPTABLE_TBB: 1738 case ARM::JUMPTABLE_TBH: 1739 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1740 return; 1741 case ARM::t2BR_JT: { 1742 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1743 .addReg(ARM::PC) 1744 .addReg(MI->getOperand(0).getReg()) 1745 // Add predicate operands. 1746 .addImm(ARMCC::AL) 1747 .addReg(0)); 1748 return; 1749 } 1750 case ARM::t2TBB_JT: 1751 case ARM::t2TBH_JT: { 1752 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1753 // Lower and emit the PC label, then the instruction itself. 1754 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1755 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1756 .addReg(MI->getOperand(0).getReg()) 1757 .addReg(MI->getOperand(1).getReg()) 1758 // Add predicate operands. 1759 .addImm(ARMCC::AL) 1760 .addReg(0)); 1761 return; 1762 } 1763 case ARM::tTBB_JT: 1764 case ARM::tTBH_JT: { 1765 1766 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1767 Register Base = MI->getOperand(0).getReg(); 1768 Register Idx = MI->getOperand(1).getReg(); 1769 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1770 1771 // Multiply up idx if necessary. 1772 if (!Is8Bit) 1773 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1774 .addReg(Idx) 1775 .addReg(ARM::CPSR) 1776 .addReg(Idx) 1777 .addImm(1) 1778 // Add predicate operands. 1779 .addImm(ARMCC::AL) 1780 .addReg(0)); 1781 1782 if (Base == ARM::PC) { 1783 // TBB [base, idx] = 1784 // ADDS idx, idx, base 1785 // LDRB idx, [idx, #4] ; or LDRH if TBH 1786 // LSLS idx, #1 1787 // ADDS pc, pc, idx 1788 1789 // When using PC as the base, it's important that there is no padding 1790 // between the last ADDS and the start of the jump table. The jump table 1791 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1792 // 1793 // FIXME: Ideally we could vary the LDRB index based on the padding 1794 // between the sequence and jump table, however that relies on MCExprs 1795 // for load indexes which are currently not supported. 1796 OutStreamer->emitCodeAlignment(4, &getSubtargetInfo()); 1797 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1798 .addReg(Idx) 1799 .addReg(Idx) 1800 .addReg(Base) 1801 // Add predicate operands. 1802 .addImm(ARMCC::AL) 1803 .addReg(0)); 1804 1805 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1806 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1807 .addReg(Idx) 1808 .addReg(Idx) 1809 .addImm(Is8Bit ? 4 : 2) 1810 // Add predicate operands. 1811 .addImm(ARMCC::AL) 1812 .addReg(0)); 1813 } else { 1814 // TBB [base, idx] = 1815 // LDRB idx, [base, idx] ; or LDRH if TBH 1816 // LSLS idx, #1 1817 // ADDS pc, pc, idx 1818 1819 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1820 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1821 .addReg(Idx) 1822 .addReg(Base) 1823 .addReg(Idx) 1824 // Add predicate operands. 1825 .addImm(ARMCC::AL) 1826 .addReg(0)); 1827 } 1828 1829 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1830 .addReg(Idx) 1831 .addReg(ARM::CPSR) 1832 .addReg(Idx) 1833 .addImm(1) 1834 // Add predicate operands. 1835 .addImm(ARMCC::AL) 1836 .addReg(0)); 1837 1838 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1839 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1840 .addReg(ARM::PC) 1841 .addReg(ARM::PC) 1842 .addReg(Idx) 1843 // Add predicate operands. 1844 .addImm(ARMCC::AL) 1845 .addReg(0)); 1846 return; 1847 } 1848 case ARM::tBR_JTr: 1849 case ARM::BR_JTr: { 1850 // mov pc, target 1851 MCInst TmpInst; 1852 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1853 ARM::MOVr : ARM::tMOVr; 1854 TmpInst.setOpcode(Opc); 1855 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1856 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1857 // Add predicate operands. 1858 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1859 TmpInst.addOperand(MCOperand::createReg(0)); 1860 // Add 's' bit operand (always reg0 for this) 1861 if (Opc == ARM::MOVr) 1862 TmpInst.addOperand(MCOperand::createReg(0)); 1863 EmitToStreamer(*OutStreamer, TmpInst); 1864 return; 1865 } 1866 case ARM::BR_JTm_i12: { 1867 // ldr pc, target 1868 MCInst TmpInst; 1869 TmpInst.setOpcode(ARM::LDRi12); 1870 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1871 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1872 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1873 // Add predicate operands. 1874 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1875 TmpInst.addOperand(MCOperand::createReg(0)); 1876 EmitToStreamer(*OutStreamer, TmpInst); 1877 return; 1878 } 1879 case ARM::BR_JTm_rs: { 1880 // ldr pc, target 1881 MCInst TmpInst; 1882 TmpInst.setOpcode(ARM::LDRrs); 1883 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1884 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1885 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1886 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1887 // Add predicate operands. 1888 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1889 TmpInst.addOperand(MCOperand::createReg(0)); 1890 EmitToStreamer(*OutStreamer, TmpInst); 1891 return; 1892 } 1893 case ARM::BR_JTadd: { 1894 // add pc, target, idx 1895 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1896 .addReg(ARM::PC) 1897 .addReg(MI->getOperand(0).getReg()) 1898 .addReg(MI->getOperand(1).getReg()) 1899 // Add predicate operands. 1900 .addImm(ARMCC::AL) 1901 .addReg(0) 1902 // Add 's' bit operand (always reg0 for this) 1903 .addReg(0)); 1904 return; 1905 } 1906 case ARM::SPACE: 1907 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1908 return; 1909 case ARM::TRAP: { 1910 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1911 // FIXME: Remove this special case when they do. 1912 if (!Subtarget->isTargetMachO()) { 1913 uint32_t Val = 0xe7ffdefeUL; 1914 OutStreamer->AddComment("trap"); 1915 ATS.emitInst(Val); 1916 return; 1917 } 1918 break; 1919 } 1920 case ARM::TRAPNaCl: { 1921 uint32_t Val = 0xe7fedef0UL; 1922 OutStreamer->AddComment("trap"); 1923 ATS.emitInst(Val); 1924 return; 1925 } 1926 case ARM::tTRAP: { 1927 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1928 // FIXME: Remove this special case when they do. 1929 if (!Subtarget->isTargetMachO()) { 1930 uint16_t Val = 0xdefe; 1931 OutStreamer->AddComment("trap"); 1932 ATS.emitInst(Val, 'n'); 1933 return; 1934 } 1935 break; 1936 } 1937 case ARM::t2Int_eh_sjlj_setjmp: 1938 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1939 case ARM::tInt_eh_sjlj_setjmp: { 1940 // Two incoming args: GPR:$src, GPR:$val 1941 // mov $val, pc 1942 // adds $val, #7 1943 // str $val, [$src, #4] 1944 // movs r0, #0 1945 // b LSJLJEH 1946 // movs r0, #1 1947 // LSJLJEH: 1948 Register SrcReg = MI->getOperand(0).getReg(); 1949 Register ValReg = MI->getOperand(1).getReg(); 1950 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH"); 1951 OutStreamer->AddComment("eh_setjmp begin"); 1952 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1953 .addReg(ValReg) 1954 .addReg(ARM::PC) 1955 // Predicate. 1956 .addImm(ARMCC::AL) 1957 .addReg(0)); 1958 1959 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1960 .addReg(ValReg) 1961 // 's' bit operand 1962 .addReg(ARM::CPSR) 1963 .addReg(ValReg) 1964 .addImm(7) 1965 // Predicate. 1966 .addImm(ARMCC::AL) 1967 .addReg(0)); 1968 1969 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1970 .addReg(ValReg) 1971 .addReg(SrcReg) 1972 // The offset immediate is #4. The operand value is scaled by 4 for the 1973 // tSTR instruction. 1974 .addImm(1) 1975 // Predicate. 1976 .addImm(ARMCC::AL) 1977 .addReg(0)); 1978 1979 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1980 .addReg(ARM::R0) 1981 .addReg(ARM::CPSR) 1982 .addImm(0) 1983 // Predicate. 1984 .addImm(ARMCC::AL) 1985 .addReg(0)); 1986 1987 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1988 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1989 .addExpr(SymbolExpr) 1990 .addImm(ARMCC::AL) 1991 .addReg(0)); 1992 1993 OutStreamer->AddComment("eh_setjmp end"); 1994 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1995 .addReg(ARM::R0) 1996 .addReg(ARM::CPSR) 1997 .addImm(1) 1998 // Predicate. 1999 .addImm(ARMCC::AL) 2000 .addReg(0)); 2001 2002 OutStreamer->emitLabel(Label); 2003 return; 2004 } 2005 2006 case ARM::Int_eh_sjlj_setjmp_nofp: 2007 case ARM::Int_eh_sjlj_setjmp: { 2008 // Two incoming args: GPR:$src, GPR:$val 2009 // add $val, pc, #8 2010 // str $val, [$src, #+4] 2011 // mov r0, #0 2012 // add pc, pc, #0 2013 // mov r0, #1 2014 Register SrcReg = MI->getOperand(0).getReg(); 2015 Register ValReg = MI->getOperand(1).getReg(); 2016 2017 OutStreamer->AddComment("eh_setjmp begin"); 2018 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2019 .addReg(ValReg) 2020 .addReg(ARM::PC) 2021 .addImm(8) 2022 // Predicate. 2023 .addImm(ARMCC::AL) 2024 .addReg(0) 2025 // 's' bit operand (always reg0 for this). 2026 .addReg(0)); 2027 2028 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 2029 .addReg(ValReg) 2030 .addReg(SrcReg) 2031 .addImm(4) 2032 // Predicate. 2033 .addImm(ARMCC::AL) 2034 .addReg(0)); 2035 2036 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2037 .addReg(ARM::R0) 2038 .addImm(0) 2039 // Predicate. 2040 .addImm(ARMCC::AL) 2041 .addReg(0) 2042 // 's' bit operand (always reg0 for this). 2043 .addReg(0)); 2044 2045 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2046 .addReg(ARM::PC) 2047 .addReg(ARM::PC) 2048 .addImm(0) 2049 // Predicate. 2050 .addImm(ARMCC::AL) 2051 .addReg(0) 2052 // 's' bit operand (always reg0 for this). 2053 .addReg(0)); 2054 2055 OutStreamer->AddComment("eh_setjmp end"); 2056 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2057 .addReg(ARM::R0) 2058 .addImm(1) 2059 // Predicate. 2060 .addImm(ARMCC::AL) 2061 .addReg(0) 2062 // 's' bit operand (always reg0 for this). 2063 .addReg(0)); 2064 return; 2065 } 2066 case ARM::Int_eh_sjlj_longjmp: { 2067 // ldr sp, [$src, #8] 2068 // ldr $scratch, [$src, #4] 2069 // ldr r7, [$src] 2070 // bx $scratch 2071 Register SrcReg = MI->getOperand(0).getReg(); 2072 Register ScratchReg = MI->getOperand(1).getReg(); 2073 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2074 .addReg(ARM::SP) 2075 .addReg(SrcReg) 2076 .addImm(8) 2077 // Predicate. 2078 .addImm(ARMCC::AL) 2079 .addReg(0)); 2080 2081 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2082 .addReg(ScratchReg) 2083 .addReg(SrcReg) 2084 .addImm(4) 2085 // Predicate. 2086 .addImm(ARMCC::AL) 2087 .addReg(0)); 2088 2089 const MachineFunction &MF = *MI->getParent()->getParent(); 2090 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2091 2092 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2093 // These platforms always use the same frame register 2094 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2095 .addReg(STI.getFramePointerReg()) 2096 .addReg(SrcReg) 2097 .addImm(0) 2098 // Predicate. 2099 .addImm(ARMCC::AL) 2100 .addReg(0)); 2101 } else { 2102 // If the calling code might use either R7 or R11 as 2103 // frame pointer register, restore it into both. 2104 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2105 .addReg(ARM::R7) 2106 .addReg(SrcReg) 2107 .addImm(0) 2108 // Predicate. 2109 .addImm(ARMCC::AL) 2110 .addReg(0)); 2111 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2112 .addReg(ARM::R11) 2113 .addReg(SrcReg) 2114 .addImm(0) 2115 // Predicate. 2116 .addImm(ARMCC::AL) 2117 .addReg(0)); 2118 } 2119 2120 assert(Subtarget->hasV4TOps()); 2121 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2122 .addReg(ScratchReg) 2123 // Predicate. 2124 .addImm(ARMCC::AL) 2125 .addReg(0)); 2126 return; 2127 } 2128 case ARM::tInt_eh_sjlj_longjmp: { 2129 // ldr $scratch, [$src, #8] 2130 // mov sp, $scratch 2131 // ldr $scratch, [$src, #4] 2132 // ldr r7, [$src] 2133 // bx $scratch 2134 Register SrcReg = MI->getOperand(0).getReg(); 2135 Register ScratchReg = MI->getOperand(1).getReg(); 2136 2137 const MachineFunction &MF = *MI->getParent()->getParent(); 2138 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2139 2140 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2141 .addReg(ScratchReg) 2142 .addReg(SrcReg) 2143 // The offset immediate is #8. The operand value is scaled by 4 for the 2144 // tLDR instruction. 2145 .addImm(2) 2146 // Predicate. 2147 .addImm(ARMCC::AL) 2148 .addReg(0)); 2149 2150 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2151 .addReg(ARM::SP) 2152 .addReg(ScratchReg) 2153 // Predicate. 2154 .addImm(ARMCC::AL) 2155 .addReg(0)); 2156 2157 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2158 .addReg(ScratchReg) 2159 .addReg(SrcReg) 2160 .addImm(1) 2161 // Predicate. 2162 .addImm(ARMCC::AL) 2163 .addReg(0)); 2164 2165 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2166 // These platforms always use the same frame register 2167 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2168 .addReg(STI.getFramePointerReg()) 2169 .addReg(SrcReg) 2170 .addImm(0) 2171 // Predicate. 2172 .addImm(ARMCC::AL) 2173 .addReg(0)); 2174 } else { 2175 // If the calling code might use either R7 or R11 as 2176 // frame pointer register, restore it into both. 2177 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2178 .addReg(ARM::R7) 2179 .addReg(SrcReg) 2180 .addImm(0) 2181 // Predicate. 2182 .addImm(ARMCC::AL) 2183 .addReg(0)); 2184 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2185 .addReg(ARM::R11) 2186 .addReg(SrcReg) 2187 .addImm(0) 2188 // Predicate. 2189 .addImm(ARMCC::AL) 2190 .addReg(0)); 2191 } 2192 2193 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2194 .addReg(ScratchReg) 2195 // Predicate. 2196 .addImm(ARMCC::AL) 2197 .addReg(0)); 2198 return; 2199 } 2200 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2201 // ldr.w r11, [$src, #0] 2202 // ldr.w sp, [$src, #8] 2203 // ldr.w pc, [$src, #4] 2204 2205 Register SrcReg = MI->getOperand(0).getReg(); 2206 2207 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2208 .addReg(ARM::R11) 2209 .addReg(SrcReg) 2210 .addImm(0) 2211 // Predicate 2212 .addImm(ARMCC::AL) 2213 .addReg(0)); 2214 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2215 .addReg(ARM::SP) 2216 .addReg(SrcReg) 2217 .addImm(8) 2218 // Predicate 2219 .addImm(ARMCC::AL) 2220 .addReg(0)); 2221 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2222 .addReg(ARM::PC) 2223 .addReg(SrcReg) 2224 .addImm(4) 2225 // Predicate 2226 .addImm(ARMCC::AL) 2227 .addReg(0)); 2228 return; 2229 } 2230 case ARM::PATCHABLE_FUNCTION_ENTER: 2231 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2232 return; 2233 case ARM::PATCHABLE_FUNCTION_EXIT: 2234 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2235 return; 2236 case ARM::PATCHABLE_TAIL_CALL: 2237 LowerPATCHABLE_TAIL_CALL(*MI); 2238 return; 2239 case ARM::SpeculationBarrierISBDSBEndBB: { 2240 // Print DSB SYS + ISB 2241 MCInst TmpInstDSB; 2242 TmpInstDSB.setOpcode(ARM::DSB); 2243 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 2244 EmitToStreamer(*OutStreamer, TmpInstDSB); 2245 MCInst TmpInstISB; 2246 TmpInstISB.setOpcode(ARM::ISB); 2247 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 2248 EmitToStreamer(*OutStreamer, TmpInstISB); 2249 return; 2250 } 2251 case ARM::t2SpeculationBarrierISBDSBEndBB: { 2252 // Print DSB SYS + ISB 2253 MCInst TmpInstDSB; 2254 TmpInstDSB.setOpcode(ARM::t2DSB); 2255 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 2256 TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL)); 2257 TmpInstDSB.addOperand(MCOperand::createReg(0)); 2258 EmitToStreamer(*OutStreamer, TmpInstDSB); 2259 MCInst TmpInstISB; 2260 TmpInstISB.setOpcode(ARM::t2ISB); 2261 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 2262 TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL)); 2263 TmpInstISB.addOperand(MCOperand::createReg(0)); 2264 EmitToStreamer(*OutStreamer, TmpInstISB); 2265 return; 2266 } 2267 case ARM::SpeculationBarrierSBEndBB: { 2268 // Print SB 2269 MCInst TmpInstSB; 2270 TmpInstSB.setOpcode(ARM::SB); 2271 EmitToStreamer(*OutStreamer, TmpInstSB); 2272 return; 2273 } 2274 case ARM::t2SpeculationBarrierSBEndBB: { 2275 // Print SB 2276 MCInst TmpInstSB; 2277 TmpInstSB.setOpcode(ARM::t2SB); 2278 EmitToStreamer(*OutStreamer, TmpInstSB); 2279 return; 2280 } 2281 2282 case ARM::SEH_StackAlloc: 2283 ATS.emitARMWinCFIAllocStack(MI->getOperand(0).getImm(), 2284 MI->getOperand(1).getImm()); 2285 return; 2286 2287 case ARM::SEH_SaveRegs: 2288 case ARM::SEH_SaveRegs_Ret: 2289 ATS.emitARMWinCFISaveRegMask(MI->getOperand(0).getImm(), 2290 MI->getOperand(1).getImm()); 2291 return; 2292 2293 case ARM::SEH_SaveSP: 2294 ATS.emitARMWinCFISaveSP(MI->getOperand(0).getImm()); 2295 return; 2296 2297 case ARM::SEH_SaveFRegs: 2298 ATS.emitARMWinCFISaveFRegs(MI->getOperand(0).getImm(), 2299 MI->getOperand(1).getImm()); 2300 return; 2301 2302 case ARM::SEH_SaveLR: 2303 ATS.emitARMWinCFISaveLR(MI->getOperand(0).getImm()); 2304 return; 2305 2306 case ARM::SEH_Nop: 2307 case ARM::SEH_Nop_Ret: 2308 ATS.emitARMWinCFINop(MI->getOperand(0).getImm()); 2309 return; 2310 2311 case ARM::SEH_PrologEnd: 2312 ATS.emitARMWinCFIPrologEnd(/*Fragment=*/false); 2313 return; 2314 2315 case ARM::SEH_EpilogStart: 2316 ATS.emitARMWinCFIEpilogStart(ARMCC::AL); 2317 return; 2318 2319 case ARM::SEH_EpilogEnd: 2320 ATS.emitARMWinCFIEpilogEnd(); 2321 return; 2322 } 2323 2324 MCInst TmpInst; 2325 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2326 2327 EmitToStreamer(*OutStreamer, TmpInst); 2328 } 2329 2330 //===----------------------------------------------------------------------===// 2331 // Target Registry Stuff 2332 //===----------------------------------------------------------------------===// 2333 2334 // Force static initialization. 2335 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2336 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2337 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2338 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2339 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2340 } 2341