1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 77 // Emit symbol for CMSE non-secure entry point 78 if (AFI->isCmseNSEntryFunction()) { 79 MCSymbol *S = 80 OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName()); 81 emitLinkage(&MF->getFunction(), S); 82 OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction); 83 OutStreamer->emitLabel(S); 84 } 85 86 OutStreamer->emitLabel(CurrentFnSym); 87 } 88 89 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 90 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 91 assert(Size && "C++ constructor pointer had zero size!"); 92 93 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 94 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 95 96 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 97 ARMII::MO_NO_FLAG), 98 (Subtarget->isTargetELF() 99 ? MCSymbolRefExpr::VK_ARM_TARGET1 100 : MCSymbolRefExpr::VK_None), 101 OutContext); 102 103 OutStreamer->emitValue(E, Size); 104 } 105 106 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 107 if (PromotedGlobals.count(GV)) 108 // The global was promoted into a constant pool. It should not be emitted. 109 return; 110 AsmPrinter::emitGlobalVariable(GV); 111 } 112 113 /// runOnMachineFunction - This uses the emitInstruction() 114 /// method to print assembly for each instruction. 115 /// 116 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 117 AFI = MF.getInfo<ARMFunctionInfo>(); 118 MCP = MF.getConstantPool(); 119 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 120 121 SetupMachineFunction(MF); 122 const Function &F = MF.getFunction(); 123 const TargetMachine& TM = MF.getTarget(); 124 125 // Collect all globals that had their storage promoted to a constant pool. 126 // Functions are emitted before variables, so this accumulates promoted 127 // globals from all functions in PromotedGlobals. 128 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 129 PromotedGlobals.insert(GV); 130 131 // Calculate this function's optimization goal. 132 unsigned OptimizationGoal; 133 if (F.hasOptNone()) 134 // For best debugging illusion, speed and small size sacrificed 135 OptimizationGoal = 6; 136 else if (F.hasMinSize()) 137 // Aggressively for small size, speed and debug illusion sacrificed 138 OptimizationGoal = 4; 139 else if (F.hasOptSize()) 140 // For small size, but speed and debugging illusion preserved 141 OptimizationGoal = 3; 142 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 143 // Aggressively for speed, small size and debug illusion sacrificed 144 OptimizationGoal = 2; 145 else if (TM.getOptLevel() > CodeGenOpt::None) 146 // For speed, but small size and good debug illusion preserved 147 OptimizationGoal = 1; 148 else // TM.getOptLevel() == CodeGenOpt::None 149 // For good debugging, but speed and small size preserved 150 OptimizationGoal = 5; 151 152 // Combine a new optimization goal with existing ones. 153 if (OptimizationGoals == -1) // uninitialized goals 154 OptimizationGoals = OptimizationGoal; 155 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 156 OptimizationGoals = 0; 157 158 if (Subtarget->isTargetCOFF()) { 159 bool Internal = F.hasInternalLinkage(); 160 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 161 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 162 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 163 164 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 165 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 166 OutStreamer->EmitCOFFSymbolType(Type); 167 OutStreamer->EndCOFFSymbolDef(); 168 } 169 170 // Emit the rest of the function body. 171 emitFunctionBody(); 172 173 // Emit the XRay table for this function. 174 emitXRayTable(); 175 176 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 177 // These are created per function, rather than per TU, since it's 178 // relatively easy to exceed the thumb branch range within a TU. 179 if (! ThumbIndirectPads.empty()) { 180 OutStreamer->emitAssemblerFlag(MCAF_Code16); 181 emitAlignment(Align(2)); 182 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 183 OutStreamer->emitLabel(TIP.second); 184 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 185 .addReg(TIP.first) 186 // Add predicate operands. 187 .addImm(ARMCC::AL) 188 .addReg(0)); 189 } 190 ThumbIndirectPads.clear(); 191 } 192 193 // We didn't modify anything. 194 return false; 195 } 196 197 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 198 raw_ostream &O) { 199 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 200 unsigned TF = MO.getTargetFlags(); 201 if (TF & ARMII::MO_LO16) 202 O << ":lower16:"; 203 else if (TF & ARMII::MO_HI16) 204 O << ":upper16:"; 205 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 206 printOffset(MO.getOffset(), O); 207 } 208 209 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 210 raw_ostream &O) { 211 const MachineOperand &MO = MI->getOperand(OpNum); 212 213 switch (MO.getType()) { 214 default: llvm_unreachable("<unknown operand type>"); 215 case MachineOperand::MO_Register: { 216 Register Reg = MO.getReg(); 217 assert(Register::isPhysicalRegister(Reg)); 218 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 219 if(ARM::GPRPairRegClass.contains(Reg)) { 220 const MachineFunction &MF = *MI->getParent()->getParent(); 221 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 222 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 223 } 224 O << ARMInstPrinter::getRegisterName(Reg); 225 break; 226 } 227 case MachineOperand::MO_Immediate: { 228 O << '#'; 229 unsigned TF = MO.getTargetFlags(); 230 if (TF == ARMII::MO_LO16) 231 O << ":lower16:"; 232 else if (TF == ARMII::MO_HI16) 233 O << ":upper16:"; 234 O << MO.getImm(); 235 break; 236 } 237 case MachineOperand::MO_MachineBasicBlock: 238 MO.getMBB()->getSymbol()->print(O, MAI); 239 return; 240 case MachineOperand::MO_GlobalAddress: { 241 PrintSymbolOperand(MO, O); 242 break; 243 } 244 case MachineOperand::MO_ConstantPoolIndex: 245 if (Subtarget->genExecuteOnly()) 246 llvm_unreachable("execute-only should not generate constant pools"); 247 GetCPISymbol(MO.getIndex())->print(O, MAI); 248 break; 249 } 250 } 251 252 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 253 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 254 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 255 const DataLayout &DL = getDataLayout(); 256 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 257 "CPI" + Twine(getFunctionNumber()) + "_" + 258 Twine(CPID)); 259 } 260 261 //===--------------------------------------------------------------------===// 262 263 MCSymbol *ARMAsmPrinter:: 264 GetARMJTIPICJumpTableLabel(unsigned uid) const { 265 const DataLayout &DL = getDataLayout(); 266 SmallString<60> Name; 267 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 268 << getFunctionNumber() << '_' << uid; 269 return OutContext.getOrCreateSymbol(Name); 270 } 271 272 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 273 const char *ExtraCode, raw_ostream &O) { 274 // Does this asm operand have a single letter operand modifier? 275 if (ExtraCode && ExtraCode[0]) { 276 if (ExtraCode[1] != 0) return true; // Unknown modifier. 277 278 switch (ExtraCode[0]) { 279 default: 280 // See if this is a generic print operand 281 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 282 case 'P': // Print a VFP double precision register. 283 case 'q': // Print a NEON quad precision register. 284 printOperand(MI, OpNum, O); 285 return false; 286 case 'y': // Print a VFP single precision register as indexed double. 287 if (MI->getOperand(OpNum).isReg()) { 288 MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg(); 289 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 290 // Find the 'd' register that has this 's' register as a sub-register, 291 // and determine the lane number. 292 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 293 if (!ARM::DPRRegClass.contains(*SR)) 294 continue; 295 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 296 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 297 return false; 298 } 299 } 300 return true; 301 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << ~(MI->getOperand(OpNum).getImm()); 305 return false; 306 case 'L': // The low 16 bits of an immediate constant. 307 if (!MI->getOperand(OpNum).isImm()) 308 return true; 309 O << (MI->getOperand(OpNum).getImm() & 0xffff); 310 return false; 311 case 'M': { // A register range suitable for LDM/STM. 312 if (!MI->getOperand(OpNum).isReg()) 313 return true; 314 const MachineOperand &MO = MI->getOperand(OpNum); 315 Register RegBegin = MO.getReg(); 316 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 317 // already got the operands in registers that are operands to the 318 // inline asm statement. 319 O << "{"; 320 if (ARM::GPRPairRegClass.contains(RegBegin)) { 321 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 322 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 323 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 324 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 325 } 326 O << ARMInstPrinter::getRegisterName(RegBegin); 327 328 // FIXME: The register allocator not only may not have given us the 329 // registers in sequence, but may not be in ascending registers. This 330 // will require changes in the register allocator that'll need to be 331 // propagated down here if the operands change. 332 unsigned RegOps = OpNum + 1; 333 while (MI->getOperand(RegOps).isReg()) { 334 O << ", " 335 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 336 RegOps++; 337 } 338 339 O << "}"; 340 341 return false; 342 } 343 case 'R': // The most significant register of a pair. 344 case 'Q': { // The least significant register of a pair. 345 if (OpNum == 0) 346 return true; 347 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 348 if (!FlagsOP.isImm()) 349 return true; 350 unsigned Flags = FlagsOP.getImm(); 351 352 // This operand may not be the one that actually provides the register. If 353 // it's tied to a previous one then we should refer instead to that one 354 // for registers and their classes. 355 unsigned TiedIdx; 356 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 357 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 358 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 359 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 360 } 361 Flags = MI->getOperand(OpNum).getImm(); 362 363 // Later code expects OpNum to be pointing at the register rather than 364 // the flags. 365 OpNum += 1; 366 } 367 368 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 369 unsigned RC; 370 bool FirstHalf; 371 const ARMBaseTargetMachine &ATM = 372 static_cast<const ARMBaseTargetMachine &>(TM); 373 374 // 'Q' should correspond to the low order register and 'R' to the high 375 // order register. Whether this corresponds to the upper or lower half 376 // depends on the endianess mode. 377 if (ExtraCode[0] == 'Q') 378 FirstHalf = ATM.isLittleEndian(); 379 else 380 // ExtraCode[0] == 'R'. 381 FirstHalf = !ATM.isLittleEndian(); 382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 383 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 384 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 385 if (NumVals != 1) 386 return true; 387 const MachineOperand &MO = MI->getOperand(OpNum); 388 if (!MO.isReg()) 389 return true; 390 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 391 Register Reg = 392 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 393 O << ARMInstPrinter::getRegisterName(Reg); 394 return false; 395 } 396 if (NumVals != 2) 397 return true; 398 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 399 if (RegOp >= MI->getNumOperands()) 400 return true; 401 const MachineOperand &MO = MI->getOperand(RegOp); 402 if (!MO.isReg()) 403 return true; 404 Register Reg = MO.getReg(); 405 O << ARMInstPrinter::getRegisterName(Reg); 406 return false; 407 } 408 409 case 'e': // The low doubleword register of a NEON quad register. 410 case 'f': { // The high doubleword register of a NEON quad register. 411 if (!MI->getOperand(OpNum).isReg()) 412 return true; 413 Register Reg = MI->getOperand(OpNum).getReg(); 414 if (!ARM::QPRRegClass.contains(Reg)) 415 return true; 416 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 417 Register SubReg = 418 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 419 O << ARMInstPrinter::getRegisterName(SubReg); 420 return false; 421 } 422 423 // This modifier is not yet supported. 424 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 425 return true; 426 case 'H': { // The highest-numbered register of a pair. 427 const MachineOperand &MO = MI->getOperand(OpNum); 428 if (!MO.isReg()) 429 return true; 430 const MachineFunction &MF = *MI->getParent()->getParent(); 431 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 432 Register Reg = MO.getReg(); 433 if(!ARM::GPRPairRegClass.contains(Reg)) 434 return false; 435 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 436 O << ARMInstPrinter::getRegisterName(Reg); 437 return false; 438 } 439 } 440 } 441 442 printOperand(MI, OpNum, O); 443 return false; 444 } 445 446 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 447 unsigned OpNum, const char *ExtraCode, 448 raw_ostream &O) { 449 // Does this asm operand have a single letter operand modifier? 450 if (ExtraCode && ExtraCode[0]) { 451 if (ExtraCode[1] != 0) return true; // Unknown modifier. 452 453 switch (ExtraCode[0]) { 454 case 'A': // A memory operand for a VLD1/VST1 instruction. 455 default: return true; // Unknown modifier. 456 case 'm': // The base register of a memory operand. 457 if (!MI->getOperand(OpNum).isReg()) 458 return true; 459 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 460 return false; 461 } 462 } 463 464 const MachineOperand &MO = MI->getOperand(OpNum); 465 assert(MO.isReg() && "unexpected inline asm memory operand"); 466 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 467 return false; 468 } 469 470 static bool isThumb(const MCSubtargetInfo& STI) { 471 return STI.getFeatureBits()[ARM::ModeThumb]; 472 } 473 474 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 475 const MCSubtargetInfo *EndInfo) const { 476 // If either end mode is unknown (EndInfo == NULL) or different than 477 // the start mode, then restore the start mode. 478 const bool WasThumb = isThumb(StartInfo); 479 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 480 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 481 } 482 } 483 484 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 485 const Triple &TT = TM.getTargetTriple(); 486 // Use unified assembler syntax. 487 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 488 489 // Emit ARM Build Attributes 490 if (TT.isOSBinFormatELF()) 491 emitAttributes(); 492 493 // Use the triple's architecture and subarchitecture to determine 494 // if we're thumb for the purposes of the top level code16 assembler 495 // flag. 496 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 497 OutStreamer->emitAssemblerFlag(MCAF_Code16); 498 } 499 500 static void 501 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 502 MachineModuleInfoImpl::StubValueTy &MCSym) { 503 // L_foo$stub: 504 OutStreamer.emitLabel(StubLabel); 505 // .indirect_symbol _foo 506 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 507 508 if (MCSym.getInt()) 509 // External to current translation unit. 510 OutStreamer.emitIntValue(0, 4/*size*/); 511 else 512 // Internal to current translation unit. 513 // 514 // When we place the LSDA into the TEXT section, the type info 515 // pointers need to be indirect and pc-rel. We accomplish this by 516 // using NLPs; however, sometimes the types are local to the file. 517 // We need to fill in the value for the NLP in those cases. 518 OutStreamer.emitValue( 519 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 520 4 /*size*/); 521 } 522 523 524 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 525 const Triple &TT = TM.getTargetTriple(); 526 if (TT.isOSBinFormatMachO()) { 527 // All darwin targets use mach-o. 528 const TargetLoweringObjectFileMachO &TLOFMacho = 529 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 530 MachineModuleInfoMachO &MMIMacho = 531 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 532 533 // Output non-lazy-pointers for external and common global variables. 534 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 535 536 if (!Stubs.empty()) { 537 // Switch with ".non_lazy_symbol_pointer" directive. 538 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 539 emitAlignment(Align(4)); 540 541 for (auto &Stub : Stubs) 542 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 543 544 Stubs.clear(); 545 OutStreamer->AddBlankLine(); 546 } 547 548 Stubs = MMIMacho.GetThreadLocalGVStubList(); 549 if (!Stubs.empty()) { 550 // Switch with ".non_lazy_symbol_pointer" directive. 551 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 552 emitAlignment(Align(4)); 553 554 for (auto &Stub : Stubs) 555 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 556 557 Stubs.clear(); 558 OutStreamer->AddBlankLine(); 559 } 560 561 // Funny Darwin hack: This flag tells the linker that no global symbols 562 // contain code that falls through to other global symbols (e.g. the obvious 563 // implementation of multiple entry points). If this doesn't occur, the 564 // linker can safely perform dead code stripping. Since LLVM never 565 // generates code that does this, it is always safe to set. 566 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 567 } 568 569 // The last attribute to be emitted is ABI_optimization_goals 570 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 571 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 572 573 if (OptimizationGoals > 0 && 574 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 575 Subtarget->isTargetMuslAEABI())) 576 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 577 OptimizationGoals = -1; 578 579 ATS.finishAttributeSection(); 580 } 581 582 //===----------------------------------------------------------------------===// 583 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 584 // FIXME: 585 // The following seem like one-off assembler flags, but they actually need 586 // to appear in the .ARM.attributes section in ELF. 587 // Instead of subclassing the MCELFStreamer, we do the work here. 588 589 // Returns true if all functions have the same function attribute value. 590 // It also returns true when the module has no functions. 591 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 592 StringRef Value) { 593 return !any_of(M, [&](const Function &F) { 594 return F.getFnAttribute(Attr).getValueAsString() != Value; 595 }); 596 } 597 // Returns true if all functions have the same denormal mode. 598 // It also returns true when the module has no functions. 599 static bool checkDenormalAttributeConsistency(const Module &M, 600 StringRef Attr, 601 DenormalMode Value) { 602 return !any_of(M, [&](const Function &F) { 603 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 604 return parseDenormalFPAttribute(AttrVal) != Value; 605 }); 606 } 607 608 void ARMAsmPrinter::emitAttributes() { 609 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 610 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 611 612 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 613 614 ATS.switchVendor("aeabi"); 615 616 // Compute ARM ELF Attributes based on the default subtarget that 617 // we'd have constructed. The existing ARM behavior isn't LTO clean 618 // anyhow. 619 // FIXME: For ifunc related functions we could iterate over and look 620 // for a feature string that doesn't match the default one. 621 const Triple &TT = TM.getTargetTriple(); 622 StringRef CPU = TM.getTargetCPU(); 623 StringRef FS = TM.getTargetFeatureString(); 624 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 625 if (!FS.empty()) { 626 if (!ArchFS.empty()) 627 ArchFS = (Twine(ArchFS) + "," + FS).str(); 628 else 629 ArchFS = std::string(FS); 630 } 631 const ARMBaseTargetMachine &ATM = 632 static_cast<const ARMBaseTargetMachine &>(TM); 633 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 634 ATM.isLittleEndian()); 635 636 // Emit build attributes for the available hardware. 637 ATS.emitTargetAttributes(STI); 638 639 // RW data addressing. 640 if (isPositionIndependent()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 642 ARMBuildAttrs::AddressRWPCRel); 643 } else if (STI.isRWPI()) { 644 // RWPI specific attributes. 645 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 646 ARMBuildAttrs::AddressRWSBRel); 647 } 648 649 // RO data addressing. 650 if (isPositionIndependent() || STI.isROPI()) { 651 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 652 ARMBuildAttrs::AddressROPCRel); 653 } 654 655 // GOT use. 656 if (isPositionIndependent()) { 657 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 658 ARMBuildAttrs::AddressGOT); 659 } else { 660 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 661 ARMBuildAttrs::AddressDirect); 662 } 663 664 // Set FP Denormals. 665 if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", 666 DenormalMode::getPreserveSign())) 667 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 668 ARMBuildAttrs::PreserveFPSign); 669 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 670 "denormal-fp-math", 671 DenormalMode::getPositiveZero())) 672 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 673 ARMBuildAttrs::PositiveZero); 674 else if (!TM.Options.UnsafeFPMath) 675 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 676 ARMBuildAttrs::IEEEDenormals); 677 else { 678 if (!STI.hasVFP2Base()) { 679 // When the target doesn't have an FPU (by design or 680 // intention), the assumptions made on the software support 681 // mirror that of the equivalent hardware support *if it 682 // existed*. For v7 and better we indicate that denormals are 683 // flushed preserving sign, and for V6 we indicate that 684 // denormals are flushed to positive zero. 685 if (STI.hasV7Ops()) 686 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 687 ARMBuildAttrs::PreserveFPSign); 688 } else if (STI.hasVFP3Base()) { 689 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 690 // the sign bit of the zero matches the sign bit of the input or 691 // result that is being flushed to zero. 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 693 ARMBuildAttrs::PreserveFPSign); 694 } 695 // For VFPv2 implementations it is implementation defined as 696 // to whether denormals are flushed to positive zero or to 697 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 698 // LLVM has chosen to flush this to positive zero (most likely for 699 // GCC compatibility), so that's the chosen value here (the 700 // absence of its emission implies zero). 701 } 702 703 // Set FP exceptions and rounding 704 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 705 "no-trapping-math", "true") || 706 TM.Options.NoTrappingFPMath) 707 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 708 ARMBuildAttrs::Not_Allowed); 709 else if (!TM.Options.UnsafeFPMath) { 710 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 711 712 // If the user has permitted this code to choose the IEEE 754 713 // rounding at run-time, emit the rounding attribute. 714 if (TM.Options.HonorSignDependentRoundingFPMathOption) 715 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 716 } 717 718 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 719 // equivalent of GCC's -ffinite-math-only flag. 720 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 721 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 722 ARMBuildAttrs::Allowed); 723 else 724 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 725 ARMBuildAttrs::AllowIEEE754); 726 727 // FIXME: add more flags to ARMBuildAttributes.h 728 // 8-bytes alignment stuff. 729 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 730 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 731 732 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 733 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 734 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 735 736 // FIXME: To support emitting this build attribute as GCC does, the 737 // -mfp16-format option and associated plumbing must be 738 // supported. For now the __fp16 type is exposed by default, so this 739 // attribute should be emitted with value 1. 740 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 741 ARMBuildAttrs::FP16FormatIEEE); 742 743 if (MMI) { 744 if (const Module *SourceModule = MMI->getModule()) { 745 // ABI_PCS_wchar_t to indicate wchar_t width 746 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 747 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 748 SourceModule->getModuleFlag("wchar_size"))) { 749 int WCharWidth = WCharWidthValue->getZExtValue(); 750 assert((WCharWidth == 2 || WCharWidth == 4) && 751 "wchar_t width must be 2 or 4 bytes"); 752 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 753 } 754 755 // ABI_enum_size to indicate enum width 756 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 757 // (all enums contain a value needing 32 bits to encode). 758 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 759 SourceModule->getModuleFlag("min_enum_size"))) { 760 int EnumWidth = EnumWidthValue->getZExtValue(); 761 assert((EnumWidth == 1 || EnumWidth == 4) && 762 "Minimum enum width must be 1 or 4 bytes"); 763 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 764 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 765 } 766 767 auto *PACValue = mdconst::extract_or_null<ConstantInt>( 768 SourceModule->getModuleFlag("sign-return-address")); 769 if (PACValue && PACValue->getZExtValue() == 1) { 770 // If "+pacbti" is used as an architecture extension, 771 // Tag_PAC_extension is emitted in 772 // ARMTargetStreamer::emitTargetAttributes(). 773 if (!STI.hasPACBTI()) { 774 ATS.emitAttribute(ARMBuildAttrs::PAC_extension, 775 ARMBuildAttrs::AllowPACInNOPSpace); 776 } 777 ATS.emitAttribute(ARMBuildAttrs::PACRET_use, ARMBuildAttrs::PACRETUsed); 778 } 779 780 auto *BTIValue = mdconst::extract_or_null<ConstantInt>( 781 SourceModule->getModuleFlag("branch-target-enforcement")); 782 if (BTIValue && BTIValue->getZExtValue() == 1) { 783 // If "+pacbti" is used as an architecture extension, 784 // Tag_BTI_extension is emitted in 785 // ARMTargetStreamer::emitTargetAttributes(). 786 if (!STI.hasPACBTI()) { 787 ATS.emitAttribute(ARMBuildAttrs::BTI_extension, 788 ARMBuildAttrs::AllowBTIInNOPSpace); 789 } 790 ATS.emitAttribute(ARMBuildAttrs::BTI_use, ARMBuildAttrs::BTIUsed); 791 } 792 } 793 } 794 795 // We currently do not support using R9 as the TLS pointer. 796 if (STI.isRWPI()) 797 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 798 ARMBuildAttrs::R9IsSB); 799 else if (STI.isR9Reserved()) 800 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 801 ARMBuildAttrs::R9Reserved); 802 else 803 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 804 ARMBuildAttrs::R9IsGPR); 805 } 806 807 //===----------------------------------------------------------------------===// 808 809 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 810 unsigned LabelId, MCContext &Ctx) { 811 812 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 813 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 814 return Label; 815 } 816 817 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 818 unsigned LabelId, MCContext &Ctx) { 819 820 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 821 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 822 return Label; 823 } 824 825 static MCSymbolRefExpr::VariantKind 826 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 827 switch (Modifier) { 828 case ARMCP::no_modifier: 829 return MCSymbolRefExpr::VK_None; 830 case ARMCP::TLSGD: 831 return MCSymbolRefExpr::VK_TLSGD; 832 case ARMCP::TPOFF: 833 return MCSymbolRefExpr::VK_TPOFF; 834 case ARMCP::GOTTPOFF: 835 return MCSymbolRefExpr::VK_GOTTPOFF; 836 case ARMCP::SBREL: 837 return MCSymbolRefExpr::VK_ARM_SBREL; 838 case ARMCP::GOT_PREL: 839 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 840 case ARMCP::SECREL: 841 return MCSymbolRefExpr::VK_SECREL; 842 } 843 llvm_unreachable("Invalid ARMCPModifier!"); 844 } 845 846 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 847 unsigned char TargetFlags) { 848 if (Subtarget->isTargetMachO()) { 849 bool IsIndirect = 850 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 851 852 if (!IsIndirect) 853 return getSymbol(GV); 854 855 // FIXME: Remove this when Darwin transition to @GOT like syntax. 856 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 857 MachineModuleInfoMachO &MMIMachO = 858 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 859 MachineModuleInfoImpl::StubValueTy &StubSym = 860 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 861 : MMIMachO.getGVStubEntry(MCSym); 862 863 if (!StubSym.getPointer()) 864 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 865 !GV->hasInternalLinkage()); 866 return MCSym; 867 } else if (Subtarget->isTargetCOFF()) { 868 assert(Subtarget->isTargetWindows() && 869 "Windows is the only supported COFF target"); 870 871 bool IsIndirect = 872 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 873 if (!IsIndirect) 874 return getSymbol(GV); 875 876 SmallString<128> Name; 877 if (TargetFlags & ARMII::MO_DLLIMPORT) 878 Name = "__imp_"; 879 else if (TargetFlags & ARMII::MO_COFFSTUB) 880 Name = ".refptr."; 881 getNameWithPrefix(Name, GV); 882 883 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 884 885 if (TargetFlags & ARMII::MO_COFFSTUB) { 886 MachineModuleInfoCOFF &MMICOFF = 887 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 888 MachineModuleInfoImpl::StubValueTy &StubSym = 889 MMICOFF.getGVStubEntry(MCSym); 890 891 if (!StubSym.getPointer()) 892 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 893 } 894 895 return MCSym; 896 } else if (Subtarget->isTargetELF()) { 897 return getSymbol(GV); 898 } 899 llvm_unreachable("unexpected target"); 900 } 901 902 void ARMAsmPrinter::emitMachineConstantPoolValue( 903 MachineConstantPoolValue *MCPV) { 904 const DataLayout &DL = getDataLayout(); 905 int Size = DL.getTypeAllocSize(MCPV->getType()); 906 907 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 908 909 if (ACPV->isPromotedGlobal()) { 910 // This constant pool entry is actually a global whose storage has been 911 // promoted into the constant pool. This global may be referenced still 912 // by debug information, and due to the way AsmPrinter is set up, the debug 913 // info is immutable by the time we decide to promote globals to constant 914 // pools. Because of this, we need to ensure we emit a symbol for the global 915 // with private linkage (the default) so debug info can refer to it. 916 // 917 // However, if this global is promoted into several functions we must ensure 918 // we don't try and emit duplicate symbols! 919 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 920 for (const auto *GV : ACPC->promotedGlobals()) { 921 if (!EmittedPromotedGlobalLabels.count(GV)) { 922 MCSymbol *GVSym = getSymbol(GV); 923 OutStreamer->emitLabel(GVSym); 924 EmittedPromotedGlobalLabels.insert(GV); 925 } 926 } 927 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 928 } 929 930 MCSymbol *MCSym; 931 if (ACPV->isLSDA()) { 932 MCSym = getMBBExceptionSym(MF->front()); 933 } else if (ACPV->isBlockAddress()) { 934 const BlockAddress *BA = 935 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 936 MCSym = GetBlockAddressSymbol(BA); 937 } else if (ACPV->isGlobalValue()) { 938 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 939 940 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 941 // flag the global as MO_NONLAZY. 942 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 943 MCSym = GetARMGVSymbol(GV, TF); 944 } else if (ACPV->isMachineBasicBlock()) { 945 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 946 MCSym = MBB->getSymbol(); 947 } else { 948 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 949 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 950 MCSym = GetExternalSymbolSymbol(Sym); 951 } 952 953 // Create an MCSymbol for the reference. 954 const MCExpr *Expr = 955 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 956 OutContext); 957 958 if (ACPV->getPCAdjustment()) { 959 MCSymbol *PCLabel = 960 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 961 ACPV->getLabelId(), OutContext); 962 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 963 PCRelExpr = 964 MCBinaryExpr::createAdd(PCRelExpr, 965 MCConstantExpr::create(ACPV->getPCAdjustment(), 966 OutContext), 967 OutContext); 968 if (ACPV->mustAddCurrentAddress()) { 969 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 970 // label, so just emit a local label end reference that instead. 971 MCSymbol *DotSym = OutContext.createTempSymbol(); 972 OutStreamer->emitLabel(DotSym); 973 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 974 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 975 } 976 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 977 } 978 OutStreamer->emitValue(Expr, Size); 979 } 980 981 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 982 const MachineOperand &MO1 = MI->getOperand(1); 983 unsigned JTI = MO1.getIndex(); 984 985 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 986 // ARM mode tables. 987 emitAlignment(Align(4)); 988 989 // Emit a label for the jump table. 990 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 991 OutStreamer->emitLabel(JTISymbol); 992 993 // Mark the jump table as data-in-code. 994 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 995 996 // Emit each entry of the table. 997 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 998 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 999 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1000 1001 for (MachineBasicBlock *MBB : JTBBs) { 1002 // Construct an MCExpr for the entry. We want a value of the form: 1003 // (BasicBlockAddr - TableBeginAddr) 1004 // 1005 // For example, a table with entries jumping to basic blocks BB0 and BB1 1006 // would look like: 1007 // LJTI_0_0: 1008 // .word (LBB0 - LJTI_0_0) 1009 // .word (LBB1 - LJTI_0_0) 1010 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1011 1012 if (isPositionIndependent() || Subtarget->isROPI()) 1013 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1014 OutContext), 1015 OutContext); 1016 // If we're generating a table of Thumb addresses in static relocation 1017 // model, we need to add one to keep interworking correctly. 1018 else if (AFI->isThumbFunction()) 1019 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1020 OutContext); 1021 OutStreamer->emitValue(Expr, 4); 1022 } 1023 // Mark the end of jump table data-in-code region. 1024 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1025 } 1026 1027 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 1028 const MachineOperand &MO1 = MI->getOperand(1); 1029 unsigned JTI = MO1.getIndex(); 1030 1031 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1032 // ARM mode tables. 1033 emitAlignment(Align(4)); 1034 1035 // Emit a label for the jump table. 1036 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1037 OutStreamer->emitLabel(JTISymbol); 1038 1039 // Emit each entry of the table. 1040 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1041 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1042 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1043 1044 for (MachineBasicBlock *MBB : JTBBs) { 1045 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1046 OutContext); 1047 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1048 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1049 .addExpr(MBBSymbolExpr) 1050 .addImm(ARMCC::AL) 1051 .addReg(0)); 1052 } 1053 } 1054 1055 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1056 unsigned OffsetWidth) { 1057 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1058 const MachineOperand &MO1 = MI->getOperand(1); 1059 unsigned JTI = MO1.getIndex(); 1060 1061 if (Subtarget->isThumb1Only()) 1062 emitAlignment(Align(4)); 1063 1064 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1065 OutStreamer->emitLabel(JTISymbol); 1066 1067 // Emit each entry of the table. 1068 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1069 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1070 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1071 1072 // Mark the jump table as data-in-code. 1073 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1074 : MCDR_DataRegionJT16); 1075 1076 for (auto MBB : JTBBs) { 1077 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1078 OutContext); 1079 // Otherwise it's an offset from the dispatch instruction. Construct an 1080 // MCExpr for the entry. We want a value of the form: 1081 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1082 // 1083 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1084 // would look like: 1085 // LJTI_0_0: 1086 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1087 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1088 // where LCPI0_0 is a label defined just before the TBB instruction using 1089 // this table. 1090 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1091 const MCExpr *Expr = MCBinaryExpr::createAdd( 1092 MCSymbolRefExpr::create(TBInstPC, OutContext), 1093 MCConstantExpr::create(4, OutContext), OutContext); 1094 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1095 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1096 OutContext); 1097 OutStreamer->emitValue(Expr, OffsetWidth); 1098 } 1099 // Mark the end of jump table data-in-code region. 32-bit offsets use 1100 // actual branch instructions here, so we don't mark those as a data-region 1101 // at all. 1102 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1103 1104 // Make sure the next instruction is 2-byte aligned. 1105 emitAlignment(Align(2)); 1106 } 1107 1108 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1109 assert(MI->getFlag(MachineInstr::FrameSetup) && 1110 "Only instruction which are involved into frame setup code are allowed"); 1111 1112 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1113 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1114 const MachineFunction &MF = *MI->getParent()->getParent(); 1115 const TargetRegisterInfo *TargetRegInfo = 1116 MF.getSubtarget().getRegisterInfo(); 1117 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1118 1119 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1120 unsigned Opc = MI->getOpcode(); 1121 unsigned SrcReg, DstReg; 1122 1123 switch (Opc) { 1124 case ARM::tPUSH: 1125 // special case: tPUSH does not have src/dst regs. 1126 SrcReg = DstReg = ARM::SP; 1127 break; 1128 case ARM::tLDRpci: 1129 case ARM::t2MOVi16: 1130 case ARM::t2MOVTi16: 1131 // special cases: 1132 // 1) for Thumb1 code we sometimes materialize the constant via constpool 1133 // load. 1134 // 2) for Thumb2 execute only code we materialize the constant via 1135 // immediate constants in 2 separate instructions (MOVW/MOVT). 1136 SrcReg = ~0U; 1137 DstReg = MI->getOperand(0).getReg(); 1138 break; 1139 default: 1140 SrcReg = MI->getOperand(1).getReg(); 1141 DstReg = MI->getOperand(0).getReg(); 1142 break; 1143 } 1144 1145 // Try to figure out the unwinding opcode out of src / dst regs. 1146 if (MI->mayStore()) { 1147 // Register saves. 1148 assert(DstReg == ARM::SP && 1149 "Only stack pointer as a destination reg is supported"); 1150 1151 SmallVector<unsigned, 4> RegList; 1152 // Skip src & dst reg, and pred ops. 1153 unsigned StartOp = 2 + 2; 1154 // Use all the operands. 1155 unsigned NumOffset = 0; 1156 // Amount of SP adjustment folded into a push, before the 1157 // registers are stored (pad at higher addresses). 1158 unsigned PadBefore = 0; 1159 // Amount of SP adjustment folded into a push, after the 1160 // registers are stored (pad at lower addresses). 1161 unsigned PadAfter = 0; 1162 1163 switch (Opc) { 1164 default: 1165 MI->print(errs()); 1166 llvm_unreachable("Unsupported opcode for unwinding information"); 1167 case ARM::tPUSH: 1168 // Special case here: no src & dst reg, but two extra imp ops. 1169 StartOp = 2; NumOffset = 2; 1170 LLVM_FALLTHROUGH; 1171 case ARM::STMDB_UPD: 1172 case ARM::t2STMDB_UPD: 1173 case ARM::VSTMDDB_UPD: 1174 assert(SrcReg == ARM::SP && 1175 "Only stack pointer as a source reg is supported"); 1176 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1177 i != NumOps; ++i) { 1178 const MachineOperand &MO = MI->getOperand(i); 1179 // Actually, there should never be any impdef stuff here. Skip it 1180 // temporary to workaround PR11902. 1181 if (MO.isImplicit()) 1182 continue; 1183 // Registers, pushed as a part of folding an SP update into the 1184 // push instruction are marked as undef and should not be 1185 // restored when unwinding, because the function can modify the 1186 // corresponding stack slots. 1187 if (MO.isUndef()) { 1188 assert(RegList.empty() && 1189 "Pad registers must come before restored ones"); 1190 unsigned Width = 1191 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1192 PadAfter += Width; 1193 continue; 1194 } 1195 // Check for registers that are remapped (for a Thumb1 prologue that 1196 // saves high registers). 1197 Register Reg = MO.getReg(); 1198 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1199 Reg = RemappedReg; 1200 RegList.push_back(Reg); 1201 } 1202 break; 1203 case ARM::STR_PRE_IMM: 1204 case ARM::STR_PRE_REG: 1205 case ARM::t2STR_PRE: 1206 assert(MI->getOperand(2).getReg() == ARM::SP && 1207 "Only stack pointer as a source reg is supported"); 1208 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1209 SrcReg = RemappedReg; 1210 1211 RegList.push_back(SrcReg); 1212 break; 1213 case ARM::t2STRD_PRE: 1214 assert(MI->getOperand(3).getReg() == ARM::SP && 1215 "Only stack pointer as a source reg is supported"); 1216 SrcReg = MI->getOperand(1).getReg(); 1217 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1218 SrcReg = RemappedReg; 1219 RegList.push_back(SrcReg); 1220 SrcReg = MI->getOperand(2).getReg(); 1221 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1222 SrcReg = RemappedReg; 1223 RegList.push_back(SrcReg); 1224 PadBefore = -MI->getOperand(4).getImm() - 8; 1225 break; 1226 } 1227 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1228 if (PadBefore) 1229 ATS.emitPad(PadBefore); 1230 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1231 // Account for the SP adjustment, folded into the push. 1232 if (PadAfter) 1233 ATS.emitPad(PadAfter); 1234 } 1235 } else { 1236 // Changes of stack / frame pointer. 1237 if (SrcReg == ARM::SP) { 1238 int64_t Offset = 0; 1239 switch (Opc) { 1240 default: 1241 MI->print(errs()); 1242 llvm_unreachable("Unsupported opcode for unwinding information"); 1243 case ARM::MOVr: 1244 case ARM::tMOVr: 1245 Offset = 0; 1246 break; 1247 case ARM::ADDri: 1248 case ARM::t2ADDri: 1249 case ARM::t2ADDri12: 1250 case ARM::t2ADDspImm: 1251 case ARM::t2ADDspImm12: 1252 Offset = -MI->getOperand(2).getImm(); 1253 break; 1254 case ARM::SUBri: 1255 case ARM::t2SUBri: 1256 case ARM::t2SUBri12: 1257 case ARM::t2SUBspImm: 1258 case ARM::t2SUBspImm12: 1259 Offset = MI->getOperand(2).getImm(); 1260 break; 1261 case ARM::tSUBspi: 1262 Offset = MI->getOperand(2).getImm()*4; 1263 break; 1264 case ARM::tADDspi: 1265 case ARM::tADDrSPi: 1266 Offset = -MI->getOperand(2).getImm()*4; 1267 break; 1268 case ARM::tADDhirr: 1269 Offset = 1270 -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); 1271 break; 1272 } 1273 1274 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1275 if (DstReg == FramePtr && FramePtr != ARM::SP) 1276 // Set-up of the frame pointer. Positive values correspond to "add" 1277 // instruction. 1278 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1279 else if (DstReg == ARM::SP) { 1280 // Change of SP by an offset. Positive values correspond to "sub" 1281 // instruction. 1282 ATS.emitPad(Offset); 1283 } else { 1284 // Move of SP to a register. Positive values correspond to an "add" 1285 // instruction. 1286 ATS.emitMovSP(DstReg, -Offset); 1287 } 1288 } 1289 } else if (DstReg == ARM::SP) { 1290 MI->print(errs()); 1291 llvm_unreachable("Unsupported opcode for unwinding information"); 1292 } else { 1293 int64_t Offset = 0; 1294 switch (Opc) { 1295 case ARM::tMOVr: 1296 // If a Thumb1 function spills r8-r11, we copy the values to low 1297 // registers before pushing them. Record the copy so we can emit the 1298 // correct ".save" later. 1299 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1300 break; 1301 case ARM::tLDRpci: { 1302 // Grab the constpool index and check, whether it corresponds to 1303 // original or cloned constpool entry. 1304 unsigned CPI = MI->getOperand(1).getIndex(); 1305 const MachineConstantPool *MCP = MF.getConstantPool(); 1306 if (CPI >= MCP->getConstants().size()) 1307 CPI = AFI->getOriginalCPIdx(CPI); 1308 assert(CPI != -1U && "Invalid constpool index"); 1309 1310 // Derive the actual offset. 1311 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1312 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1313 Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1314 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1315 break; 1316 } 1317 case ARM::t2MOVi16: 1318 Offset = MI->getOperand(1).getImm(); 1319 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1320 break; 1321 case ARM::t2MOVTi16: 1322 Offset = MI->getOperand(2).getImm(); 1323 AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); 1324 break; 1325 case ARM::t2PAC: 1326 case ARM::t2PACBTI: 1327 AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; 1328 break; 1329 default: 1330 MI->print(errs()); 1331 llvm_unreachable("Unsupported opcode for unwinding information"); 1332 } 1333 } 1334 } 1335 } 1336 1337 // Simple pseudo-instructions have their lowering (with expansion to real 1338 // instructions) auto-generated. 1339 #include "ARMGenMCPseudoLowering.inc" 1340 1341 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1342 const DataLayout &DL = getDataLayout(); 1343 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1344 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1345 1346 // If we just ended a constant pool, mark it as such. 1347 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1348 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1349 InConstantPool = false; 1350 } 1351 1352 // Emit unwinding stuff for frame-related instructions 1353 if (Subtarget->isTargetEHABICompatible() && 1354 MI->getFlag(MachineInstr::FrameSetup)) 1355 EmitUnwindingInstruction(MI); 1356 1357 // Do any auto-generated pseudo lowerings. 1358 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1359 return; 1360 1361 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1362 "Pseudo flag setting opcode should be expanded early"); 1363 1364 // Check for manual lowerings. 1365 unsigned Opc = MI->getOpcode(); 1366 switch (Opc) { 1367 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1368 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1369 case ARM::LEApcrel: 1370 case ARM::tLEApcrel: 1371 case ARM::t2LEApcrel: { 1372 // FIXME: Need to also handle globals and externals 1373 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1374 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1375 ARM::t2LEApcrel ? ARM::t2ADR 1376 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1377 : ARM::ADR)) 1378 .addReg(MI->getOperand(0).getReg()) 1379 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1380 // Add predicate operands. 1381 .addImm(MI->getOperand(2).getImm()) 1382 .addReg(MI->getOperand(3).getReg())); 1383 return; 1384 } 1385 case ARM::LEApcrelJT: 1386 case ARM::tLEApcrelJT: 1387 case ARM::t2LEApcrelJT: { 1388 MCSymbol *JTIPICSymbol = 1389 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1390 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1391 ARM::t2LEApcrelJT ? ARM::t2ADR 1392 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1393 : ARM::ADR)) 1394 .addReg(MI->getOperand(0).getReg()) 1395 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1396 // Add predicate operands. 1397 .addImm(MI->getOperand(2).getImm()) 1398 .addReg(MI->getOperand(3).getReg())); 1399 return; 1400 } 1401 // Darwin call instructions are just normal call instructions with different 1402 // clobber semantics (they clobber R9). 1403 case ARM::BX_CALL: { 1404 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1405 .addReg(ARM::LR) 1406 .addReg(ARM::PC) 1407 // Add predicate operands. 1408 .addImm(ARMCC::AL) 1409 .addReg(0) 1410 // Add 's' bit operand (always reg0 for this) 1411 .addReg(0)); 1412 1413 assert(Subtarget->hasV4TOps()); 1414 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1415 .addReg(MI->getOperand(0).getReg())); 1416 return; 1417 } 1418 case ARM::tBX_CALL: { 1419 if (Subtarget->hasV5TOps()) 1420 llvm_unreachable("Expected BLX to be selected for v5t+"); 1421 1422 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1423 // that the saved lr has its LSB set correctly (the arch doesn't 1424 // have blx). 1425 // So here we generate a bl to a small jump pad that does bx rN. 1426 // The jump pads are emitted after the function body. 1427 1428 Register TReg = MI->getOperand(0).getReg(); 1429 MCSymbol *TRegSym = nullptr; 1430 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1431 if (TIP.first == TReg) { 1432 TRegSym = TIP.second; 1433 break; 1434 } 1435 } 1436 1437 if (!TRegSym) { 1438 TRegSym = OutContext.createTempSymbol(); 1439 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1440 } 1441 1442 // Create a link-saving branch to the Reg Indirect Jump Pad. 1443 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1444 // Predicate comes first here. 1445 .addImm(ARMCC::AL).addReg(0) 1446 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1447 return; 1448 } 1449 case ARM::BMOVPCRX_CALL: { 1450 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1451 .addReg(ARM::LR) 1452 .addReg(ARM::PC) 1453 // Add predicate operands. 1454 .addImm(ARMCC::AL) 1455 .addReg(0) 1456 // Add 's' bit operand (always reg0 for this) 1457 .addReg(0)); 1458 1459 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1460 .addReg(ARM::PC) 1461 .addReg(MI->getOperand(0).getReg()) 1462 // Add predicate operands. 1463 .addImm(ARMCC::AL) 1464 .addReg(0) 1465 // Add 's' bit operand (always reg0 for this) 1466 .addReg(0)); 1467 return; 1468 } 1469 case ARM::BMOVPCB_CALL: { 1470 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1471 .addReg(ARM::LR) 1472 .addReg(ARM::PC) 1473 // Add predicate operands. 1474 .addImm(ARMCC::AL) 1475 .addReg(0) 1476 // Add 's' bit operand (always reg0 for this) 1477 .addReg(0)); 1478 1479 const MachineOperand &Op = MI->getOperand(0); 1480 const GlobalValue *GV = Op.getGlobal(); 1481 const unsigned TF = Op.getTargetFlags(); 1482 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1483 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1484 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1485 .addExpr(GVSymExpr) 1486 // Add predicate operands. 1487 .addImm(ARMCC::AL) 1488 .addReg(0)); 1489 return; 1490 } 1491 case ARM::MOVi16_ga_pcrel: 1492 case ARM::t2MOVi16_ga_pcrel: { 1493 MCInst TmpInst; 1494 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1495 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1496 1497 unsigned TF = MI->getOperand(1).getTargetFlags(); 1498 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1499 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1500 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1501 1502 MCSymbol *LabelSym = 1503 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1504 MI->getOperand(2).getImm(), OutContext); 1505 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1506 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1507 const MCExpr *PCRelExpr = 1508 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1509 MCBinaryExpr::createAdd(LabelSymExpr, 1510 MCConstantExpr::create(PCAdj, OutContext), 1511 OutContext), OutContext), OutContext); 1512 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1513 1514 // Add predicate operands. 1515 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1516 TmpInst.addOperand(MCOperand::createReg(0)); 1517 // Add 's' bit operand (always reg0 for this) 1518 TmpInst.addOperand(MCOperand::createReg(0)); 1519 EmitToStreamer(*OutStreamer, TmpInst); 1520 return; 1521 } 1522 case ARM::MOVTi16_ga_pcrel: 1523 case ARM::t2MOVTi16_ga_pcrel: { 1524 MCInst TmpInst; 1525 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1526 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1527 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1528 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1529 1530 unsigned TF = MI->getOperand(2).getTargetFlags(); 1531 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1532 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1533 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1534 1535 MCSymbol *LabelSym = 1536 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1537 MI->getOperand(3).getImm(), OutContext); 1538 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1539 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1540 const MCExpr *PCRelExpr = 1541 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1542 MCBinaryExpr::createAdd(LabelSymExpr, 1543 MCConstantExpr::create(PCAdj, OutContext), 1544 OutContext), OutContext), OutContext); 1545 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1546 // Add predicate operands. 1547 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1548 TmpInst.addOperand(MCOperand::createReg(0)); 1549 // Add 's' bit operand (always reg0 for this) 1550 TmpInst.addOperand(MCOperand::createReg(0)); 1551 EmitToStreamer(*OutStreamer, TmpInst); 1552 return; 1553 } 1554 case ARM::t2BFi: 1555 case ARM::t2BFic: 1556 case ARM::t2BFLi: 1557 case ARM::t2BFr: 1558 case ARM::t2BFLr: { 1559 // This is a Branch Future instruction. 1560 1561 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1562 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1563 MI->getOperand(0).getIndex(), OutContext), 1564 OutContext); 1565 1566 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1567 if (MI->getOperand(1).isReg()) { 1568 // For BFr/BFLr 1569 MCInst.addReg(MI->getOperand(1).getReg()); 1570 } else { 1571 // For BFi/BFLi/BFic 1572 const MCExpr *BranchTarget; 1573 if (MI->getOperand(1).isMBB()) 1574 BranchTarget = MCSymbolRefExpr::create( 1575 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1576 else if (MI->getOperand(1).isGlobal()) { 1577 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1578 BranchTarget = MCSymbolRefExpr::create( 1579 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1580 } else if (MI->getOperand(1).isSymbol()) { 1581 BranchTarget = MCSymbolRefExpr::create( 1582 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1583 OutContext); 1584 } else 1585 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1586 1587 MCInst.addExpr(BranchTarget); 1588 } 1589 1590 if (Opc == ARM::t2BFic) { 1591 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1592 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1593 MI->getOperand(2).getIndex(), OutContext), 1594 OutContext); 1595 MCInst.addExpr(ElseLabel); 1596 MCInst.addImm(MI->getOperand(3).getImm()); 1597 } else { 1598 MCInst.addImm(MI->getOperand(2).getImm()) 1599 .addReg(MI->getOperand(3).getReg()); 1600 } 1601 1602 EmitToStreamer(*OutStreamer, MCInst); 1603 return; 1604 } 1605 case ARM::t2BF_LabelPseudo: { 1606 // This is a pseudo op for a label used by a branch future instruction 1607 1608 // Emit the label. 1609 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1610 getFunctionNumber(), 1611 MI->getOperand(0).getIndex(), OutContext)); 1612 return; 1613 } 1614 case ARM::tPICADD: { 1615 // This is a pseudo op for a label + instruction sequence, which looks like: 1616 // LPC0: 1617 // add r0, pc 1618 // This adds the address of LPC0 to r0. 1619 1620 // Emit the label. 1621 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1622 getFunctionNumber(), 1623 MI->getOperand(2).getImm(), OutContext)); 1624 1625 // Form and emit the add. 1626 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1627 .addReg(MI->getOperand(0).getReg()) 1628 .addReg(MI->getOperand(0).getReg()) 1629 .addReg(ARM::PC) 1630 // Add predicate operands. 1631 .addImm(ARMCC::AL) 1632 .addReg(0)); 1633 return; 1634 } 1635 case ARM::PICADD: { 1636 // This is a pseudo op for a label + instruction sequence, which looks like: 1637 // LPC0: 1638 // add r0, pc, r0 1639 // This adds the address of LPC0 to r0. 1640 1641 // Emit the label. 1642 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1643 getFunctionNumber(), 1644 MI->getOperand(2).getImm(), OutContext)); 1645 1646 // Form and emit the add. 1647 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1648 .addReg(MI->getOperand(0).getReg()) 1649 .addReg(ARM::PC) 1650 .addReg(MI->getOperand(1).getReg()) 1651 // Add predicate operands. 1652 .addImm(MI->getOperand(3).getImm()) 1653 .addReg(MI->getOperand(4).getReg()) 1654 // Add 's' bit operand (always reg0 for this) 1655 .addReg(0)); 1656 return; 1657 } 1658 case ARM::PICSTR: 1659 case ARM::PICSTRB: 1660 case ARM::PICSTRH: 1661 case ARM::PICLDR: 1662 case ARM::PICLDRB: 1663 case ARM::PICLDRH: 1664 case ARM::PICLDRSB: 1665 case ARM::PICLDRSH: { 1666 // This is a pseudo op for a label + instruction sequence, which looks like: 1667 // LPC0: 1668 // OP r0, [pc, r0] 1669 // The LCP0 label is referenced by a constant pool entry in order to get 1670 // a PC-relative address at the ldr instruction. 1671 1672 // Emit the label. 1673 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1674 getFunctionNumber(), 1675 MI->getOperand(2).getImm(), OutContext)); 1676 1677 // Form and emit the load 1678 unsigned Opcode; 1679 switch (MI->getOpcode()) { 1680 default: 1681 llvm_unreachable("Unexpected opcode!"); 1682 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1683 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1684 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1685 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1686 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1687 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1688 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1689 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1690 } 1691 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1692 .addReg(MI->getOperand(0).getReg()) 1693 .addReg(ARM::PC) 1694 .addReg(MI->getOperand(1).getReg()) 1695 .addImm(0) 1696 // Add predicate operands. 1697 .addImm(MI->getOperand(3).getImm()) 1698 .addReg(MI->getOperand(4).getReg())); 1699 1700 return; 1701 } 1702 case ARM::CONSTPOOL_ENTRY: { 1703 if (Subtarget->genExecuteOnly()) 1704 llvm_unreachable("execute-only should not generate constant pools"); 1705 1706 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1707 /// in the function. The first operand is the ID# for this instruction, the 1708 /// second is the index into the MachineConstantPool that this is, the third 1709 /// is the size in bytes of this constant pool entry. 1710 /// The required alignment is specified on the basic block holding this MI. 1711 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1712 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1713 1714 // If this is the first entry of the pool, mark it. 1715 if (!InConstantPool) { 1716 OutStreamer->emitDataRegion(MCDR_DataRegion); 1717 InConstantPool = true; 1718 } 1719 1720 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1721 1722 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1723 if (MCPE.isMachineConstantPoolEntry()) 1724 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1725 else 1726 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1727 return; 1728 } 1729 case ARM::JUMPTABLE_ADDRS: 1730 emitJumpTableAddrs(MI); 1731 return; 1732 case ARM::JUMPTABLE_INSTS: 1733 emitJumpTableInsts(MI); 1734 return; 1735 case ARM::JUMPTABLE_TBB: 1736 case ARM::JUMPTABLE_TBH: 1737 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1738 return; 1739 case ARM::t2BR_JT: { 1740 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1741 .addReg(ARM::PC) 1742 .addReg(MI->getOperand(0).getReg()) 1743 // Add predicate operands. 1744 .addImm(ARMCC::AL) 1745 .addReg(0)); 1746 return; 1747 } 1748 case ARM::t2TBB_JT: 1749 case ARM::t2TBH_JT: { 1750 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1751 // Lower and emit the PC label, then the instruction itself. 1752 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1753 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1754 .addReg(MI->getOperand(0).getReg()) 1755 .addReg(MI->getOperand(1).getReg()) 1756 // Add predicate operands. 1757 .addImm(ARMCC::AL) 1758 .addReg(0)); 1759 return; 1760 } 1761 case ARM::tTBB_JT: 1762 case ARM::tTBH_JT: { 1763 1764 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1765 Register Base = MI->getOperand(0).getReg(); 1766 Register Idx = MI->getOperand(1).getReg(); 1767 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1768 1769 // Multiply up idx if necessary. 1770 if (!Is8Bit) 1771 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1772 .addReg(Idx) 1773 .addReg(ARM::CPSR) 1774 .addReg(Idx) 1775 .addImm(1) 1776 // Add predicate operands. 1777 .addImm(ARMCC::AL) 1778 .addReg(0)); 1779 1780 if (Base == ARM::PC) { 1781 // TBB [base, idx] = 1782 // ADDS idx, idx, base 1783 // LDRB idx, [idx, #4] ; or LDRH if TBH 1784 // LSLS idx, #1 1785 // ADDS pc, pc, idx 1786 1787 // When using PC as the base, it's important that there is no padding 1788 // between the last ADDS and the start of the jump table. The jump table 1789 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1790 // 1791 // FIXME: Ideally we could vary the LDRB index based on the padding 1792 // between the sequence and jump table, however that relies on MCExprs 1793 // for load indexes which are currently not supported. 1794 OutStreamer->emitCodeAlignment(4, &getSubtargetInfo()); 1795 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1796 .addReg(Idx) 1797 .addReg(Idx) 1798 .addReg(Base) 1799 // Add predicate operands. 1800 .addImm(ARMCC::AL) 1801 .addReg(0)); 1802 1803 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1804 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1805 .addReg(Idx) 1806 .addReg(Idx) 1807 .addImm(Is8Bit ? 4 : 2) 1808 // Add predicate operands. 1809 .addImm(ARMCC::AL) 1810 .addReg(0)); 1811 } else { 1812 // TBB [base, idx] = 1813 // LDRB idx, [base, idx] ; or LDRH if TBH 1814 // LSLS idx, #1 1815 // ADDS pc, pc, idx 1816 1817 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1818 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1819 .addReg(Idx) 1820 .addReg(Base) 1821 .addReg(Idx) 1822 // Add predicate operands. 1823 .addImm(ARMCC::AL) 1824 .addReg(0)); 1825 } 1826 1827 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1828 .addReg(Idx) 1829 .addReg(ARM::CPSR) 1830 .addReg(Idx) 1831 .addImm(1) 1832 // Add predicate operands. 1833 .addImm(ARMCC::AL) 1834 .addReg(0)); 1835 1836 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1837 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1838 .addReg(ARM::PC) 1839 .addReg(ARM::PC) 1840 .addReg(Idx) 1841 // Add predicate operands. 1842 .addImm(ARMCC::AL) 1843 .addReg(0)); 1844 return; 1845 } 1846 case ARM::tBR_JTr: 1847 case ARM::BR_JTr: { 1848 // mov pc, target 1849 MCInst TmpInst; 1850 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1851 ARM::MOVr : ARM::tMOVr; 1852 TmpInst.setOpcode(Opc); 1853 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1854 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1855 // Add predicate operands. 1856 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1857 TmpInst.addOperand(MCOperand::createReg(0)); 1858 // Add 's' bit operand (always reg0 for this) 1859 if (Opc == ARM::MOVr) 1860 TmpInst.addOperand(MCOperand::createReg(0)); 1861 EmitToStreamer(*OutStreamer, TmpInst); 1862 return; 1863 } 1864 case ARM::BR_JTm_i12: { 1865 // ldr pc, target 1866 MCInst TmpInst; 1867 TmpInst.setOpcode(ARM::LDRi12); 1868 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1869 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1870 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1871 // Add predicate operands. 1872 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1873 TmpInst.addOperand(MCOperand::createReg(0)); 1874 EmitToStreamer(*OutStreamer, TmpInst); 1875 return; 1876 } 1877 case ARM::BR_JTm_rs: { 1878 // ldr pc, target 1879 MCInst TmpInst; 1880 TmpInst.setOpcode(ARM::LDRrs); 1881 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1882 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1883 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1884 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1885 // Add predicate operands. 1886 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1887 TmpInst.addOperand(MCOperand::createReg(0)); 1888 EmitToStreamer(*OutStreamer, TmpInst); 1889 return; 1890 } 1891 case ARM::BR_JTadd: { 1892 // add pc, target, idx 1893 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1894 .addReg(ARM::PC) 1895 .addReg(MI->getOperand(0).getReg()) 1896 .addReg(MI->getOperand(1).getReg()) 1897 // Add predicate operands. 1898 .addImm(ARMCC::AL) 1899 .addReg(0) 1900 // Add 's' bit operand (always reg0 for this) 1901 .addReg(0)); 1902 return; 1903 } 1904 case ARM::SPACE: 1905 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1906 return; 1907 case ARM::TRAP: { 1908 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1909 // FIXME: Remove this special case when they do. 1910 if (!Subtarget->isTargetMachO()) { 1911 uint32_t Val = 0xe7ffdefeUL; 1912 OutStreamer->AddComment("trap"); 1913 ATS.emitInst(Val); 1914 return; 1915 } 1916 break; 1917 } 1918 case ARM::TRAPNaCl: { 1919 uint32_t Val = 0xe7fedef0UL; 1920 OutStreamer->AddComment("trap"); 1921 ATS.emitInst(Val); 1922 return; 1923 } 1924 case ARM::tTRAP: { 1925 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1926 // FIXME: Remove this special case when they do. 1927 if (!Subtarget->isTargetMachO()) { 1928 uint16_t Val = 0xdefe; 1929 OutStreamer->AddComment("trap"); 1930 ATS.emitInst(Val, 'n'); 1931 return; 1932 } 1933 break; 1934 } 1935 case ARM::t2Int_eh_sjlj_setjmp: 1936 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1937 case ARM::tInt_eh_sjlj_setjmp: { 1938 // Two incoming args: GPR:$src, GPR:$val 1939 // mov $val, pc 1940 // adds $val, #7 1941 // str $val, [$src, #4] 1942 // movs r0, #0 1943 // b LSJLJEH 1944 // movs r0, #1 1945 // LSJLJEH: 1946 Register SrcReg = MI->getOperand(0).getReg(); 1947 Register ValReg = MI->getOperand(1).getReg(); 1948 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH"); 1949 OutStreamer->AddComment("eh_setjmp begin"); 1950 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1951 .addReg(ValReg) 1952 .addReg(ARM::PC) 1953 // Predicate. 1954 .addImm(ARMCC::AL) 1955 .addReg(0)); 1956 1957 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1958 .addReg(ValReg) 1959 // 's' bit operand 1960 .addReg(ARM::CPSR) 1961 .addReg(ValReg) 1962 .addImm(7) 1963 // Predicate. 1964 .addImm(ARMCC::AL) 1965 .addReg(0)); 1966 1967 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1968 .addReg(ValReg) 1969 .addReg(SrcReg) 1970 // The offset immediate is #4. The operand value is scaled by 4 for the 1971 // tSTR instruction. 1972 .addImm(1) 1973 // Predicate. 1974 .addImm(ARMCC::AL) 1975 .addReg(0)); 1976 1977 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1978 .addReg(ARM::R0) 1979 .addReg(ARM::CPSR) 1980 .addImm(0) 1981 // Predicate. 1982 .addImm(ARMCC::AL) 1983 .addReg(0)); 1984 1985 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1986 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1987 .addExpr(SymbolExpr) 1988 .addImm(ARMCC::AL) 1989 .addReg(0)); 1990 1991 OutStreamer->AddComment("eh_setjmp end"); 1992 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1993 .addReg(ARM::R0) 1994 .addReg(ARM::CPSR) 1995 .addImm(1) 1996 // Predicate. 1997 .addImm(ARMCC::AL) 1998 .addReg(0)); 1999 2000 OutStreamer->emitLabel(Label); 2001 return; 2002 } 2003 2004 case ARM::Int_eh_sjlj_setjmp_nofp: 2005 case ARM::Int_eh_sjlj_setjmp: { 2006 // Two incoming args: GPR:$src, GPR:$val 2007 // add $val, pc, #8 2008 // str $val, [$src, #+4] 2009 // mov r0, #0 2010 // add pc, pc, #0 2011 // mov r0, #1 2012 Register SrcReg = MI->getOperand(0).getReg(); 2013 Register ValReg = MI->getOperand(1).getReg(); 2014 2015 OutStreamer->AddComment("eh_setjmp begin"); 2016 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2017 .addReg(ValReg) 2018 .addReg(ARM::PC) 2019 .addImm(8) 2020 // Predicate. 2021 .addImm(ARMCC::AL) 2022 .addReg(0) 2023 // 's' bit operand (always reg0 for this). 2024 .addReg(0)); 2025 2026 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 2027 .addReg(ValReg) 2028 .addReg(SrcReg) 2029 .addImm(4) 2030 // Predicate. 2031 .addImm(ARMCC::AL) 2032 .addReg(0)); 2033 2034 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2035 .addReg(ARM::R0) 2036 .addImm(0) 2037 // Predicate. 2038 .addImm(ARMCC::AL) 2039 .addReg(0) 2040 // 's' bit operand (always reg0 for this). 2041 .addReg(0)); 2042 2043 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2044 .addReg(ARM::PC) 2045 .addReg(ARM::PC) 2046 .addImm(0) 2047 // Predicate. 2048 .addImm(ARMCC::AL) 2049 .addReg(0) 2050 // 's' bit operand (always reg0 for this). 2051 .addReg(0)); 2052 2053 OutStreamer->AddComment("eh_setjmp end"); 2054 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2055 .addReg(ARM::R0) 2056 .addImm(1) 2057 // Predicate. 2058 .addImm(ARMCC::AL) 2059 .addReg(0) 2060 // 's' bit operand (always reg0 for this). 2061 .addReg(0)); 2062 return; 2063 } 2064 case ARM::Int_eh_sjlj_longjmp: { 2065 // ldr sp, [$src, #8] 2066 // ldr $scratch, [$src, #4] 2067 // ldr r7, [$src] 2068 // bx $scratch 2069 Register SrcReg = MI->getOperand(0).getReg(); 2070 Register ScratchReg = MI->getOperand(1).getReg(); 2071 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2072 .addReg(ARM::SP) 2073 .addReg(SrcReg) 2074 .addImm(8) 2075 // Predicate. 2076 .addImm(ARMCC::AL) 2077 .addReg(0)); 2078 2079 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2080 .addReg(ScratchReg) 2081 .addReg(SrcReg) 2082 .addImm(4) 2083 // Predicate. 2084 .addImm(ARMCC::AL) 2085 .addReg(0)); 2086 2087 const MachineFunction &MF = *MI->getParent()->getParent(); 2088 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2089 2090 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2091 // These platforms always use the same frame register 2092 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2093 .addReg(STI.getFramePointerReg()) 2094 .addReg(SrcReg) 2095 .addImm(0) 2096 // Predicate. 2097 .addImm(ARMCC::AL) 2098 .addReg(0)); 2099 } else { 2100 // If the calling code might use either R7 or R11 as 2101 // frame pointer register, restore it into both. 2102 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2103 .addReg(ARM::R7) 2104 .addReg(SrcReg) 2105 .addImm(0) 2106 // Predicate. 2107 .addImm(ARMCC::AL) 2108 .addReg(0)); 2109 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2110 .addReg(ARM::R11) 2111 .addReg(SrcReg) 2112 .addImm(0) 2113 // Predicate. 2114 .addImm(ARMCC::AL) 2115 .addReg(0)); 2116 } 2117 2118 assert(Subtarget->hasV4TOps()); 2119 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2120 .addReg(ScratchReg) 2121 // Predicate. 2122 .addImm(ARMCC::AL) 2123 .addReg(0)); 2124 return; 2125 } 2126 case ARM::tInt_eh_sjlj_longjmp: { 2127 // ldr $scratch, [$src, #8] 2128 // mov sp, $scratch 2129 // ldr $scratch, [$src, #4] 2130 // ldr r7, [$src] 2131 // bx $scratch 2132 Register SrcReg = MI->getOperand(0).getReg(); 2133 Register ScratchReg = MI->getOperand(1).getReg(); 2134 2135 const MachineFunction &MF = *MI->getParent()->getParent(); 2136 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2137 2138 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2139 .addReg(ScratchReg) 2140 .addReg(SrcReg) 2141 // The offset immediate is #8. The operand value is scaled by 4 for the 2142 // tLDR instruction. 2143 .addImm(2) 2144 // Predicate. 2145 .addImm(ARMCC::AL) 2146 .addReg(0)); 2147 2148 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2149 .addReg(ARM::SP) 2150 .addReg(ScratchReg) 2151 // Predicate. 2152 .addImm(ARMCC::AL) 2153 .addReg(0)); 2154 2155 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2156 .addReg(ScratchReg) 2157 .addReg(SrcReg) 2158 .addImm(1) 2159 // Predicate. 2160 .addImm(ARMCC::AL) 2161 .addReg(0)); 2162 2163 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2164 // These platforms always use the same frame register 2165 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2166 .addReg(STI.getFramePointerReg()) 2167 .addReg(SrcReg) 2168 .addImm(0) 2169 // Predicate. 2170 .addImm(ARMCC::AL) 2171 .addReg(0)); 2172 } else { 2173 // If the calling code might use either R7 or R11 as 2174 // frame pointer register, restore it into both. 2175 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2176 .addReg(ARM::R7) 2177 .addReg(SrcReg) 2178 .addImm(0) 2179 // Predicate. 2180 .addImm(ARMCC::AL) 2181 .addReg(0)); 2182 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2183 .addReg(ARM::R11) 2184 .addReg(SrcReg) 2185 .addImm(0) 2186 // Predicate. 2187 .addImm(ARMCC::AL) 2188 .addReg(0)); 2189 } 2190 2191 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2192 .addReg(ScratchReg) 2193 // Predicate. 2194 .addImm(ARMCC::AL) 2195 .addReg(0)); 2196 return; 2197 } 2198 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2199 // ldr.w r11, [$src, #0] 2200 // ldr.w sp, [$src, #8] 2201 // ldr.w pc, [$src, #4] 2202 2203 Register SrcReg = MI->getOperand(0).getReg(); 2204 2205 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2206 .addReg(ARM::R11) 2207 .addReg(SrcReg) 2208 .addImm(0) 2209 // Predicate 2210 .addImm(ARMCC::AL) 2211 .addReg(0)); 2212 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2213 .addReg(ARM::SP) 2214 .addReg(SrcReg) 2215 .addImm(8) 2216 // Predicate 2217 .addImm(ARMCC::AL) 2218 .addReg(0)); 2219 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2220 .addReg(ARM::PC) 2221 .addReg(SrcReg) 2222 .addImm(4) 2223 // Predicate 2224 .addImm(ARMCC::AL) 2225 .addReg(0)); 2226 return; 2227 } 2228 case ARM::PATCHABLE_FUNCTION_ENTER: 2229 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2230 return; 2231 case ARM::PATCHABLE_FUNCTION_EXIT: 2232 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2233 return; 2234 case ARM::PATCHABLE_TAIL_CALL: 2235 LowerPATCHABLE_TAIL_CALL(*MI); 2236 return; 2237 case ARM::SpeculationBarrierISBDSBEndBB: { 2238 // Print DSB SYS + ISB 2239 MCInst TmpInstDSB; 2240 TmpInstDSB.setOpcode(ARM::DSB); 2241 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 2242 EmitToStreamer(*OutStreamer, TmpInstDSB); 2243 MCInst TmpInstISB; 2244 TmpInstISB.setOpcode(ARM::ISB); 2245 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 2246 EmitToStreamer(*OutStreamer, TmpInstISB); 2247 return; 2248 } 2249 case ARM::t2SpeculationBarrierISBDSBEndBB: { 2250 // Print DSB SYS + ISB 2251 MCInst TmpInstDSB; 2252 TmpInstDSB.setOpcode(ARM::t2DSB); 2253 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 2254 TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL)); 2255 TmpInstDSB.addOperand(MCOperand::createReg(0)); 2256 EmitToStreamer(*OutStreamer, TmpInstDSB); 2257 MCInst TmpInstISB; 2258 TmpInstISB.setOpcode(ARM::t2ISB); 2259 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 2260 TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL)); 2261 TmpInstISB.addOperand(MCOperand::createReg(0)); 2262 EmitToStreamer(*OutStreamer, TmpInstISB); 2263 return; 2264 } 2265 case ARM::SpeculationBarrierSBEndBB: { 2266 // Print SB 2267 MCInst TmpInstSB; 2268 TmpInstSB.setOpcode(ARM::SB); 2269 EmitToStreamer(*OutStreamer, TmpInstSB); 2270 return; 2271 } 2272 case ARM::t2SpeculationBarrierSBEndBB: { 2273 // Print SB 2274 MCInst TmpInstSB; 2275 TmpInstSB.setOpcode(ARM::t2SB); 2276 EmitToStreamer(*OutStreamer, TmpInstSB); 2277 return; 2278 } 2279 } 2280 2281 MCInst TmpInst; 2282 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2283 2284 EmitToStreamer(*OutStreamer, TmpInst); 2285 } 2286 2287 //===----------------------------------------------------------------------===// 2288 // Target Registry Stuff 2289 //===----------------------------------------------------------------------===// 2290 2291 // Force static initialization. 2292 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2293 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2294 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2295 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2296 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2297 } 2298