xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp (revision 18054d0220cfc8df9c9568c437bd6fbb59d53c3c)
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format ARM assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMAsmPrinter.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMTargetMachine.h"
19 #include "ARMTargetObjectFile.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMMCExpr.h"
23 #include "TargetInfo/ARMTargetInfo.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/TargetRegistry.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/TargetParser.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "asm-printer"
54 
55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
56                              std::unique_ptr<MCStreamer> Streamer)
57     : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr),
58       MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {}
59 
60 void ARMAsmPrinter::emitFunctionBodyEnd() {
61   // Make sure to terminate any constant pools that were at the end
62   // of the function.
63   if (!InConstantPool)
64     return;
65   InConstantPool = false;
66   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
67 }
68 
69 void ARMAsmPrinter::emitFunctionEntryLabel() {
70   if (AFI->isThumbFunction()) {
71     OutStreamer->emitAssemblerFlag(MCAF_Code16);
72     OutStreamer->emitThumbFunc(CurrentFnSym);
73   } else {
74     OutStreamer->emitAssemblerFlag(MCAF_Code32);
75   }
76 
77   // Emit symbol for CMSE non-secure entry point
78   if (AFI->isCmseNSEntryFunction()) {
79     MCSymbol *S =
80         OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName());
81     emitLinkage(&MF->getFunction(), S);
82     OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction);
83     OutStreamer->emitLabel(S);
84   }
85 
86   OutStreamer->emitLabel(CurrentFnSym);
87 }
88 
89 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) {
90   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
91   assert(Size && "C++ constructor pointer had zero size!");
92 
93   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
94   assert(GV && "C++ constructor pointer was not a GlobalValue!");
95 
96   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
97                                                            ARMII::MO_NO_FLAG),
98                                             (Subtarget->isTargetELF()
99                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
100                                              : MCSymbolRefExpr::VK_None),
101                                             OutContext);
102 
103   OutStreamer->emitValue(E, Size);
104 }
105 
106 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
107   if (PromotedGlobals.count(GV))
108     // The global was promoted into a constant pool. It should not be emitted.
109     return;
110   AsmPrinter::emitGlobalVariable(GV);
111 }
112 
113 /// runOnMachineFunction - This uses the emitInstruction()
114 /// method to print assembly for each instruction.
115 ///
116 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
117   AFI = MF.getInfo<ARMFunctionInfo>();
118   MCP = MF.getConstantPool();
119   Subtarget = &MF.getSubtarget<ARMSubtarget>();
120 
121   SetupMachineFunction(MF);
122   const Function &F = MF.getFunction();
123   const TargetMachine& TM = MF.getTarget();
124 
125   // Collect all globals that had their storage promoted to a constant pool.
126   // Functions are emitted before variables, so this accumulates promoted
127   // globals from all functions in PromotedGlobals.
128   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
129     PromotedGlobals.insert(GV);
130 
131   // Calculate this function's optimization goal.
132   unsigned OptimizationGoal;
133   if (F.hasOptNone())
134     // For best debugging illusion, speed and small size sacrificed
135     OptimizationGoal = 6;
136   else if (F.hasMinSize())
137     // Aggressively for small size, speed and debug illusion sacrificed
138     OptimizationGoal = 4;
139   else if (F.hasOptSize())
140     // For small size, but speed and debugging illusion preserved
141     OptimizationGoal = 3;
142   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
143     // Aggressively for speed, small size and debug illusion sacrificed
144     OptimizationGoal = 2;
145   else if (TM.getOptLevel() > CodeGenOpt::None)
146     // For speed, but small size and good debug illusion preserved
147     OptimizationGoal = 1;
148   else // TM.getOptLevel() == CodeGenOpt::None
149     // For good debugging, but speed and small size preserved
150     OptimizationGoal = 5;
151 
152   // Combine a new optimization goal with existing ones.
153   if (OptimizationGoals == -1) // uninitialized goals
154     OptimizationGoals = OptimizationGoal;
155   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
156     OptimizationGoals = 0;
157 
158   if (Subtarget->isTargetCOFF()) {
159     bool Internal = F.hasInternalLinkage();
160     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
161                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
162     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
163 
164     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
165     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
166     OutStreamer->EmitCOFFSymbolType(Type);
167     OutStreamer->EndCOFFSymbolDef();
168   }
169 
170   // Emit the rest of the function body.
171   emitFunctionBody();
172 
173   // Emit the XRay table for this function.
174   emitXRayTable();
175 
176   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
177   // These are created per function, rather than per TU, since it's
178   // relatively easy to exceed the thumb branch range within a TU.
179   if (! ThumbIndirectPads.empty()) {
180     OutStreamer->emitAssemblerFlag(MCAF_Code16);
181     emitAlignment(Align(2));
182     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
183       OutStreamer->emitLabel(TIP.second);
184       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
185         .addReg(TIP.first)
186         // Add predicate operands.
187         .addImm(ARMCC::AL)
188         .addReg(0));
189     }
190     ThumbIndirectPads.clear();
191   }
192 
193   // We didn't modify anything.
194   return false;
195 }
196 
197 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
198                                        raw_ostream &O) {
199   assert(MO.isGlobal() && "caller should check MO.isGlobal");
200   unsigned TF = MO.getTargetFlags();
201   if (TF & ARMII::MO_LO16)
202     O << ":lower16:";
203   else if (TF & ARMII::MO_HI16)
204     O << ":upper16:";
205   GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
206   printOffset(MO.getOffset(), O);
207 }
208 
209 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
210                                  raw_ostream &O) {
211   const MachineOperand &MO = MI->getOperand(OpNum);
212 
213   switch (MO.getType()) {
214   default: llvm_unreachable("<unknown operand type>");
215   case MachineOperand::MO_Register: {
216     Register Reg = MO.getReg();
217     assert(Register::isPhysicalRegister(Reg));
218     assert(!MO.getSubReg() && "Subregs should be eliminated!");
219     if(ARM::GPRPairRegClass.contains(Reg)) {
220       const MachineFunction &MF = *MI->getParent()->getParent();
221       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
222       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
223     }
224     O << ARMInstPrinter::getRegisterName(Reg);
225     break;
226   }
227   case MachineOperand::MO_Immediate: {
228     O << '#';
229     unsigned TF = MO.getTargetFlags();
230     if (TF == ARMII::MO_LO16)
231       O << ":lower16:";
232     else if (TF == ARMII::MO_HI16)
233       O << ":upper16:";
234     O << MO.getImm();
235     break;
236   }
237   case MachineOperand::MO_MachineBasicBlock:
238     MO.getMBB()->getSymbol()->print(O, MAI);
239     return;
240   case MachineOperand::MO_GlobalAddress: {
241     PrintSymbolOperand(MO, O);
242     break;
243   }
244   case MachineOperand::MO_ConstantPoolIndex:
245     if (Subtarget->genExecuteOnly())
246       llvm_unreachable("execute-only should not generate constant pools");
247     GetCPISymbol(MO.getIndex())->print(O, MAI);
248     break;
249   }
250 }
251 
252 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
253   // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
254   // indexes in MachineConstantPool, which isn't in sync with indexes used here.
255   const DataLayout &DL = getDataLayout();
256   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
257                                       "CPI" + Twine(getFunctionNumber()) + "_" +
258                                       Twine(CPID));
259 }
260 
261 //===--------------------------------------------------------------------===//
262 
263 MCSymbol *ARMAsmPrinter::
264 GetARMJTIPICJumpTableLabel(unsigned uid) const {
265   const DataLayout &DL = getDataLayout();
266   SmallString<60> Name;
267   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
268                             << getFunctionNumber() << '_' << uid;
269   return OutContext.getOrCreateSymbol(Name);
270 }
271 
272 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
273                                     const char *ExtraCode, raw_ostream &O) {
274   // Does this asm operand have a single letter operand modifier?
275   if (ExtraCode && ExtraCode[0]) {
276     if (ExtraCode[1] != 0) return true; // Unknown modifier.
277 
278     switch (ExtraCode[0]) {
279     default:
280       // See if this is a generic print operand
281       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
282     case 'P': // Print a VFP double precision register.
283     case 'q': // Print a NEON quad precision register.
284       printOperand(MI, OpNum, O);
285       return false;
286     case 'y': // Print a VFP single precision register as indexed double.
287       if (MI->getOperand(OpNum).isReg()) {
288         MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg();
289         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
290         // Find the 'd' register that has this 's' register as a sub-register,
291         // and determine the lane number.
292         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
293           if (!ARM::DPRRegClass.contains(*SR))
294             continue;
295           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
296           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
297           return false;
298         }
299       }
300       return true;
301     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
302       if (!MI->getOperand(OpNum).isImm())
303         return true;
304       O << ~(MI->getOperand(OpNum).getImm());
305       return false;
306     case 'L': // The low 16 bits of an immediate constant.
307       if (!MI->getOperand(OpNum).isImm())
308         return true;
309       O << (MI->getOperand(OpNum).getImm() & 0xffff);
310       return false;
311     case 'M': { // A register range suitable for LDM/STM.
312       if (!MI->getOperand(OpNum).isReg())
313         return true;
314       const MachineOperand &MO = MI->getOperand(OpNum);
315       Register RegBegin = MO.getReg();
316       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
317       // already got the operands in registers that are operands to the
318       // inline asm statement.
319       O << "{";
320       if (ARM::GPRPairRegClass.contains(RegBegin)) {
321         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
322         Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
323         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
324         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
325       }
326       O << ARMInstPrinter::getRegisterName(RegBegin);
327 
328       // FIXME: The register allocator not only may not have given us the
329       // registers in sequence, but may not be in ascending registers. This
330       // will require changes in the register allocator that'll need to be
331       // propagated down here if the operands change.
332       unsigned RegOps = OpNum + 1;
333       while (MI->getOperand(RegOps).isReg()) {
334         O << ", "
335           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
336         RegOps++;
337       }
338 
339       O << "}";
340 
341       return false;
342     }
343     case 'R': // The most significant register of a pair.
344     case 'Q': { // The least significant register of a pair.
345       if (OpNum == 0)
346         return true;
347       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
348       if (!FlagsOP.isImm())
349         return true;
350       unsigned Flags = FlagsOP.getImm();
351 
352       // This operand may not be the one that actually provides the register. If
353       // it's tied to a previous one then we should refer instead to that one
354       // for registers and their classes.
355       unsigned TiedIdx;
356       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
357         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
358           unsigned OpFlags = MI->getOperand(OpNum).getImm();
359           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
360         }
361         Flags = MI->getOperand(OpNum).getImm();
362 
363         // Later code expects OpNum to be pointing at the register rather than
364         // the flags.
365         OpNum += 1;
366       }
367 
368       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
369       unsigned RC;
370       bool FirstHalf;
371       const ARMBaseTargetMachine &ATM =
372         static_cast<const ARMBaseTargetMachine &>(TM);
373 
374       // 'Q' should correspond to the low order register and 'R' to the high
375       // order register.  Whether this corresponds to the upper or lower half
376       // depends on the endianess mode.
377       if (ExtraCode[0] == 'Q')
378         FirstHalf = ATM.isLittleEndian();
379       else
380         // ExtraCode[0] == 'R'.
381         FirstHalf = !ATM.isLittleEndian();
382       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
383       if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
384           ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
385         if (NumVals != 1)
386           return true;
387         const MachineOperand &MO = MI->getOperand(OpNum);
388         if (!MO.isReg())
389           return true;
390         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
391         Register Reg =
392             TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1);
393         O << ARMInstPrinter::getRegisterName(Reg);
394         return false;
395       }
396       if (NumVals != 2)
397         return true;
398       unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
399       if (RegOp >= MI->getNumOperands())
400         return true;
401       const MachineOperand &MO = MI->getOperand(RegOp);
402       if (!MO.isReg())
403         return true;
404       Register Reg = MO.getReg();
405       O << ARMInstPrinter::getRegisterName(Reg);
406       return false;
407     }
408 
409     case 'e': // The low doubleword register of a NEON quad register.
410     case 'f': { // The high doubleword register of a NEON quad register.
411       if (!MI->getOperand(OpNum).isReg())
412         return true;
413       Register Reg = MI->getOperand(OpNum).getReg();
414       if (!ARM::QPRRegClass.contains(Reg))
415         return true;
416       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
417       Register SubReg =
418           TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1);
419       O << ARMInstPrinter::getRegisterName(SubReg);
420       return false;
421     }
422 
423     // This modifier is not yet supported.
424     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
425       return true;
426     case 'H': { // The highest-numbered register of a pair.
427       const MachineOperand &MO = MI->getOperand(OpNum);
428       if (!MO.isReg())
429         return true;
430       const MachineFunction &MF = *MI->getParent()->getParent();
431       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
432       Register Reg = MO.getReg();
433       if(!ARM::GPRPairRegClass.contains(Reg))
434         return false;
435       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
436       O << ARMInstPrinter::getRegisterName(Reg);
437       return false;
438     }
439     }
440   }
441 
442   printOperand(MI, OpNum, O);
443   return false;
444 }
445 
446 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
447                                           unsigned OpNum, const char *ExtraCode,
448                                           raw_ostream &O) {
449   // Does this asm operand have a single letter operand modifier?
450   if (ExtraCode && ExtraCode[0]) {
451     if (ExtraCode[1] != 0) return true; // Unknown modifier.
452 
453     switch (ExtraCode[0]) {
454       case 'A': // A memory operand for a VLD1/VST1 instruction.
455       default: return true;  // Unknown modifier.
456       case 'm': // The base register of a memory operand.
457         if (!MI->getOperand(OpNum).isReg())
458           return true;
459         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
460         return false;
461     }
462   }
463 
464   const MachineOperand &MO = MI->getOperand(OpNum);
465   assert(MO.isReg() && "unexpected inline asm memory operand");
466   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
467   return false;
468 }
469 
470 static bool isThumb(const MCSubtargetInfo& STI) {
471   return STI.getFeatureBits()[ARM::ModeThumb];
472 }
473 
474 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
475                                      const MCSubtargetInfo *EndInfo) const {
476   // If either end mode is unknown (EndInfo == NULL) or different than
477   // the start mode, then restore the start mode.
478   const bool WasThumb = isThumb(StartInfo);
479   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
480     OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
481   }
482 }
483 
484 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) {
485   const Triple &TT = TM.getTargetTriple();
486   // Use unified assembler syntax.
487   OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified);
488 
489   // Emit ARM Build Attributes
490   if (TT.isOSBinFormatELF())
491     emitAttributes();
492 
493   // Use the triple's architecture and subarchitecture to determine
494   // if we're thumb for the purposes of the top level code16 assembler
495   // flag.
496   if (!M.getModuleInlineAsm().empty() && TT.isThumb())
497     OutStreamer->emitAssemblerFlag(MCAF_Code16);
498 }
499 
500 static void
501 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
502                          MachineModuleInfoImpl::StubValueTy &MCSym) {
503   // L_foo$stub:
504   OutStreamer.emitLabel(StubLabel);
505   //   .indirect_symbol _foo
506   OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
507 
508   if (MCSym.getInt())
509     // External to current translation unit.
510     OutStreamer.emitIntValue(0, 4/*size*/);
511   else
512     // Internal to current translation unit.
513     //
514     // When we place the LSDA into the TEXT section, the type info
515     // pointers need to be indirect and pc-rel. We accomplish this by
516     // using NLPs; however, sometimes the types are local to the file.
517     // We need to fill in the value for the NLP in those cases.
518     OutStreamer.emitValue(
519         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
520         4 /*size*/);
521 }
522 
523 
524 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) {
525   const Triple &TT = TM.getTargetTriple();
526   if (TT.isOSBinFormatMachO()) {
527     // All darwin targets use mach-o.
528     const TargetLoweringObjectFileMachO &TLOFMacho =
529       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
530     MachineModuleInfoMachO &MMIMacho =
531       MMI->getObjFileInfo<MachineModuleInfoMachO>();
532 
533     // Output non-lazy-pointers for external and common global variables.
534     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
535 
536     if (!Stubs.empty()) {
537       // Switch with ".non_lazy_symbol_pointer" directive.
538       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
539       emitAlignment(Align(4));
540 
541       for (auto &Stub : Stubs)
542         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
543 
544       Stubs.clear();
545       OutStreamer->AddBlankLine();
546     }
547 
548     Stubs = MMIMacho.GetThreadLocalGVStubList();
549     if (!Stubs.empty()) {
550       // Switch with ".non_lazy_symbol_pointer" directive.
551       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
552       emitAlignment(Align(4));
553 
554       for (auto &Stub : Stubs)
555         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
556 
557       Stubs.clear();
558       OutStreamer->AddBlankLine();
559     }
560 
561     // Funny Darwin hack: This flag tells the linker that no global symbols
562     // contain code that falls through to other global symbols (e.g. the obvious
563     // implementation of multiple entry points).  If this doesn't occur, the
564     // linker can safely perform dead code stripping.  Since LLVM never
565     // generates code that does this, it is always safe to set.
566     OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols);
567   }
568 
569   // The last attribute to be emitted is ABI_optimization_goals
570   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
571   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
572 
573   if (OptimizationGoals > 0 &&
574       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
575        Subtarget->isTargetMuslAEABI()))
576     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
577   OptimizationGoals = -1;
578 
579   ATS.finishAttributeSection();
580 }
581 
582 //===----------------------------------------------------------------------===//
583 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile()
584 // FIXME:
585 // The following seem like one-off assembler flags, but they actually need
586 // to appear in the .ARM.attributes section in ELF.
587 // Instead of subclassing the MCELFStreamer, we do the work here.
588 
589  // Returns true if all functions have the same function attribute value.
590  // It also returns true when the module has no functions.
591 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
592                                                StringRef Value) {
593    return !any_of(M, [&](const Function &F) {
594        return F.getFnAttribute(Attr).getValueAsString() != Value;
595    });
596 }
597 // Returns true if all functions have the same denormal mode.
598 // It also returns true when the module has no functions.
599 static bool checkDenormalAttributeConsistency(const Module &M,
600                                               StringRef Attr,
601                                               DenormalMode Value) {
602   return !any_of(M, [&](const Function &F) {
603     StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString();
604     return parseDenormalFPAttribute(AttrVal) != Value;
605   });
606 }
607 
608 void ARMAsmPrinter::emitAttributes() {
609   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
610   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
611 
612   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
613 
614   ATS.switchVendor("aeabi");
615 
616   // Compute ARM ELF Attributes based on the default subtarget that
617   // we'd have constructed. The existing ARM behavior isn't LTO clean
618   // anyhow.
619   // FIXME: For ifunc related functions we could iterate over and look
620   // for a feature string that doesn't match the default one.
621   const Triple &TT = TM.getTargetTriple();
622   StringRef CPU = TM.getTargetCPU();
623   StringRef FS = TM.getTargetFeatureString();
624   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
625   if (!FS.empty()) {
626     if (!ArchFS.empty())
627       ArchFS = (Twine(ArchFS) + "," + FS).str();
628     else
629       ArchFS = std::string(FS);
630   }
631   const ARMBaseTargetMachine &ATM =
632       static_cast<const ARMBaseTargetMachine &>(TM);
633   const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM,
634                          ATM.isLittleEndian());
635 
636   // Emit build attributes for the available hardware.
637   ATS.emitTargetAttributes(STI);
638 
639   // RW data addressing.
640   if (isPositionIndependent()) {
641     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
642                       ARMBuildAttrs::AddressRWPCRel);
643   } else if (STI.isRWPI()) {
644     // RWPI specific attributes.
645     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
646                       ARMBuildAttrs::AddressRWSBRel);
647   }
648 
649   // RO data addressing.
650   if (isPositionIndependent() || STI.isROPI()) {
651     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
652                       ARMBuildAttrs::AddressROPCRel);
653   }
654 
655   // GOT use.
656   if (isPositionIndependent()) {
657     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
658                       ARMBuildAttrs::AddressGOT);
659   } else {
660     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
661                       ARMBuildAttrs::AddressDirect);
662   }
663 
664   // Set FP Denormals.
665   if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math",
666                                         DenormalMode::getPreserveSign()))
667     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
668                       ARMBuildAttrs::PreserveFPSign);
669   else if (checkDenormalAttributeConsistency(*MMI->getModule(),
670                                              "denormal-fp-math",
671                                              DenormalMode::getPositiveZero()))
672     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
673                       ARMBuildAttrs::PositiveZero);
674   else if (!TM.Options.UnsafeFPMath)
675     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
676                       ARMBuildAttrs::IEEEDenormals);
677   else {
678     if (!STI.hasVFP2Base()) {
679       // When the target doesn't have an FPU (by design or
680       // intention), the assumptions made on the software support
681       // mirror that of the equivalent hardware support *if it
682       // existed*. For v7 and better we indicate that denormals are
683       // flushed preserving sign, and for V6 we indicate that
684       // denormals are flushed to positive zero.
685       if (STI.hasV7Ops())
686         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
687                           ARMBuildAttrs::PreserveFPSign);
688     } else if (STI.hasVFP3Base()) {
689       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
690       // the sign bit of the zero matches the sign bit of the input or
691       // result that is being flushed to zero.
692       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
693                         ARMBuildAttrs::PreserveFPSign);
694     }
695     // For VFPv2 implementations it is implementation defined as
696     // to whether denormals are flushed to positive zero or to
697     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
698     // LLVM has chosen to flush this to positive zero (most likely for
699     // GCC compatibility), so that's the chosen value here (the
700     // absence of its emission implies zero).
701   }
702 
703   // Set FP exceptions and rounding
704   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
705                                          "no-trapping-math", "true") ||
706       TM.Options.NoTrappingFPMath)
707     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
708                       ARMBuildAttrs::Not_Allowed);
709   else if (!TM.Options.UnsafeFPMath) {
710     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
711 
712     // If the user has permitted this code to choose the IEEE 754
713     // rounding at run-time, emit the rounding attribute.
714     if (TM.Options.HonorSignDependentRoundingFPMathOption)
715       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
716   }
717 
718   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
719   // equivalent of GCC's -ffinite-math-only flag.
720   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
721     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
722                       ARMBuildAttrs::Allowed);
723   else
724     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
725                       ARMBuildAttrs::AllowIEEE754);
726 
727   // FIXME: add more flags to ARMBuildAttributes.h
728   // 8-bytes alignment stuff.
729   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
730   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
731 
732   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
733   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
734     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
735 
736   // FIXME: To support emitting this build attribute as GCC does, the
737   // -mfp16-format option and associated plumbing must be
738   // supported. For now the __fp16 type is exposed by default, so this
739   // attribute should be emitted with value 1.
740   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
741                     ARMBuildAttrs::FP16FormatIEEE);
742 
743   if (MMI) {
744     if (const Module *SourceModule = MMI->getModule()) {
745       // ABI_PCS_wchar_t to indicate wchar_t width
746       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
747       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
748               SourceModule->getModuleFlag("wchar_size"))) {
749         int WCharWidth = WCharWidthValue->getZExtValue();
750         assert((WCharWidth == 2 || WCharWidth == 4) &&
751                "wchar_t width must be 2 or 4 bytes");
752         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
753       }
754 
755       // ABI_enum_size to indicate enum width
756       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
757       //        (all enums contain a value needing 32 bits to encode).
758       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
759               SourceModule->getModuleFlag("min_enum_size"))) {
760         int EnumWidth = EnumWidthValue->getZExtValue();
761         assert((EnumWidth == 1 || EnumWidth == 4) &&
762                "Minimum enum width must be 1 or 4 bytes");
763         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
764         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
765       }
766 
767       auto *PACValue = mdconst::extract_or_null<ConstantInt>(
768           SourceModule->getModuleFlag("sign-return-address"));
769       if (PACValue && PACValue->getZExtValue() == 1) {
770         // If "+pacbti" is used as an architecture extension,
771         // Tag_PAC_extension is emitted in
772         // ARMTargetStreamer::emitTargetAttributes().
773         if (!STI.hasPACBTI()) {
774           ATS.emitAttribute(ARMBuildAttrs::PAC_extension,
775                             ARMBuildAttrs::AllowPACInNOPSpace);
776         }
777         ATS.emitAttribute(ARMBuildAttrs::PACRET_use, ARMBuildAttrs::PACRETUsed);
778       }
779 
780       auto *BTIValue = mdconst::extract_or_null<ConstantInt>(
781           SourceModule->getModuleFlag("branch-target-enforcement"));
782       if (BTIValue && BTIValue->getZExtValue() == 1) {
783         // If "+pacbti" is used as an architecture extension,
784         // Tag_BTI_extension is emitted in
785         // ARMTargetStreamer::emitTargetAttributes().
786         if (!STI.hasPACBTI()) {
787           ATS.emitAttribute(ARMBuildAttrs::BTI_extension,
788                             ARMBuildAttrs::AllowBTIInNOPSpace);
789         }
790         ATS.emitAttribute(ARMBuildAttrs::BTI_use, ARMBuildAttrs::BTIUsed);
791       }
792     }
793   }
794 
795   // We currently do not support using R9 as the TLS pointer.
796   if (STI.isRWPI())
797     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
798                       ARMBuildAttrs::R9IsSB);
799   else if (STI.isR9Reserved())
800     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
801                       ARMBuildAttrs::R9Reserved);
802   else
803     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
804                       ARMBuildAttrs::R9IsGPR);
805 }
806 
807 //===----------------------------------------------------------------------===//
808 
809 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
810                              unsigned LabelId, MCContext &Ctx) {
811 
812   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
813                        + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
814   return Label;
815 }
816 
817 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
818                              unsigned LabelId, MCContext &Ctx) {
819 
820   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
821                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
822   return Label;
823 }
824 
825 static MCSymbolRefExpr::VariantKind
826 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
827   switch (Modifier) {
828   case ARMCP::no_modifier:
829     return MCSymbolRefExpr::VK_None;
830   case ARMCP::TLSGD:
831     return MCSymbolRefExpr::VK_TLSGD;
832   case ARMCP::TPOFF:
833     return MCSymbolRefExpr::VK_TPOFF;
834   case ARMCP::GOTTPOFF:
835     return MCSymbolRefExpr::VK_GOTTPOFF;
836   case ARMCP::SBREL:
837     return MCSymbolRefExpr::VK_ARM_SBREL;
838   case ARMCP::GOT_PREL:
839     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
840   case ARMCP::SECREL:
841     return MCSymbolRefExpr::VK_SECREL;
842   }
843   llvm_unreachable("Invalid ARMCPModifier!");
844 }
845 
846 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
847                                         unsigned char TargetFlags) {
848   if (Subtarget->isTargetMachO()) {
849     bool IsIndirect =
850         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
851 
852     if (!IsIndirect)
853       return getSymbol(GV);
854 
855     // FIXME: Remove this when Darwin transition to @GOT like syntax.
856     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
857     MachineModuleInfoMachO &MMIMachO =
858       MMI->getObjFileInfo<MachineModuleInfoMachO>();
859     MachineModuleInfoImpl::StubValueTy &StubSym =
860         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
861                             : MMIMachO.getGVStubEntry(MCSym);
862 
863     if (!StubSym.getPointer())
864       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
865                                                    !GV->hasInternalLinkage());
866     return MCSym;
867   } else if (Subtarget->isTargetCOFF()) {
868     assert(Subtarget->isTargetWindows() &&
869            "Windows is the only supported COFF target");
870 
871     bool IsIndirect =
872         (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
873     if (!IsIndirect)
874       return getSymbol(GV);
875 
876     SmallString<128> Name;
877     if (TargetFlags & ARMII::MO_DLLIMPORT)
878       Name = "__imp_";
879     else if (TargetFlags & ARMII::MO_COFFSTUB)
880       Name = ".refptr.";
881     getNameWithPrefix(Name, GV);
882 
883     MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
884 
885     if (TargetFlags & ARMII::MO_COFFSTUB) {
886       MachineModuleInfoCOFF &MMICOFF =
887           MMI->getObjFileInfo<MachineModuleInfoCOFF>();
888       MachineModuleInfoImpl::StubValueTy &StubSym =
889           MMICOFF.getGVStubEntry(MCSym);
890 
891       if (!StubSym.getPointer())
892         StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
893     }
894 
895     return MCSym;
896   } else if (Subtarget->isTargetELF()) {
897     return getSymbol(GV);
898   }
899   llvm_unreachable("unexpected target");
900 }
901 
902 void ARMAsmPrinter::emitMachineConstantPoolValue(
903     MachineConstantPoolValue *MCPV) {
904   const DataLayout &DL = getDataLayout();
905   int Size = DL.getTypeAllocSize(MCPV->getType());
906 
907   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
908 
909   if (ACPV->isPromotedGlobal()) {
910     // This constant pool entry is actually a global whose storage has been
911     // promoted into the constant pool. This global may be referenced still
912     // by debug information, and due to the way AsmPrinter is set up, the debug
913     // info is immutable by the time we decide to promote globals to constant
914     // pools. Because of this, we need to ensure we emit a symbol for the global
915     // with private linkage (the default) so debug info can refer to it.
916     //
917     // However, if this global is promoted into several functions we must ensure
918     // we don't try and emit duplicate symbols!
919     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
920     for (const auto *GV : ACPC->promotedGlobals()) {
921       if (!EmittedPromotedGlobalLabels.count(GV)) {
922         MCSymbol *GVSym = getSymbol(GV);
923         OutStreamer->emitLabel(GVSym);
924         EmittedPromotedGlobalLabels.insert(GV);
925       }
926     }
927     return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
928   }
929 
930   MCSymbol *MCSym;
931   if (ACPV->isLSDA()) {
932     MCSym = getMBBExceptionSym(MF->front());
933   } else if (ACPV->isBlockAddress()) {
934     const BlockAddress *BA =
935       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
936     MCSym = GetBlockAddressSymbol(BA);
937   } else if (ACPV->isGlobalValue()) {
938     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
939 
940     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
941     // flag the global as MO_NONLAZY.
942     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
943     MCSym = GetARMGVSymbol(GV, TF);
944   } else if (ACPV->isMachineBasicBlock()) {
945     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
946     MCSym = MBB->getSymbol();
947   } else {
948     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
949     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
950     MCSym = GetExternalSymbolSymbol(Sym);
951   }
952 
953   // Create an MCSymbol for the reference.
954   const MCExpr *Expr =
955     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
956                             OutContext);
957 
958   if (ACPV->getPCAdjustment()) {
959     MCSymbol *PCLabel =
960         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
961                     ACPV->getLabelId(), OutContext);
962     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
963     PCRelExpr =
964       MCBinaryExpr::createAdd(PCRelExpr,
965                               MCConstantExpr::create(ACPV->getPCAdjustment(),
966                                                      OutContext),
967                               OutContext);
968     if (ACPV->mustAddCurrentAddress()) {
969       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
970       // label, so just emit a local label end reference that instead.
971       MCSymbol *DotSym = OutContext.createTempSymbol();
972       OutStreamer->emitLabel(DotSym);
973       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
974       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
975     }
976     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
977   }
978   OutStreamer->emitValue(Expr, Size);
979 }
980 
981 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) {
982   const MachineOperand &MO1 = MI->getOperand(1);
983   unsigned JTI = MO1.getIndex();
984 
985   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
986   // ARM mode tables.
987   emitAlignment(Align(4));
988 
989   // Emit a label for the jump table.
990   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
991   OutStreamer->emitLabel(JTISymbol);
992 
993   // Mark the jump table as data-in-code.
994   OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
995 
996   // Emit each entry of the table.
997   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
998   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
999   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1000 
1001   for (MachineBasicBlock *MBB : JTBBs) {
1002     // Construct an MCExpr for the entry. We want a value of the form:
1003     // (BasicBlockAddr - TableBeginAddr)
1004     //
1005     // For example, a table with entries jumping to basic blocks BB0 and BB1
1006     // would look like:
1007     // LJTI_0_0:
1008     //    .word (LBB0 - LJTI_0_0)
1009     //    .word (LBB1 - LJTI_0_0)
1010     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1011 
1012     if (isPositionIndependent() || Subtarget->isROPI())
1013       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
1014                                                                    OutContext),
1015                                      OutContext);
1016     // If we're generating a table of Thumb addresses in static relocation
1017     // model, we need to add one to keep interworking correctly.
1018     else if (AFI->isThumbFunction())
1019       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
1020                                      OutContext);
1021     OutStreamer->emitValue(Expr, 4);
1022   }
1023   // Mark the end of jump table data-in-code region.
1024   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1025 }
1026 
1027 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) {
1028   const MachineOperand &MO1 = MI->getOperand(1);
1029   unsigned JTI = MO1.getIndex();
1030 
1031   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
1032   // ARM mode tables.
1033   emitAlignment(Align(4));
1034 
1035   // Emit a label for the jump table.
1036   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1037   OutStreamer->emitLabel(JTISymbol);
1038 
1039   // Emit each entry of the table.
1040   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1041   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1042   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1043 
1044   for (MachineBasicBlock *MBB : JTBBs) {
1045     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1046                                                           OutContext);
1047     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1048     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1049         .addExpr(MBBSymbolExpr)
1050         .addImm(ARMCC::AL)
1051         .addReg(0));
1052   }
1053 }
1054 
1055 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI,
1056                                         unsigned OffsetWidth) {
1057   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1058   const MachineOperand &MO1 = MI->getOperand(1);
1059   unsigned JTI = MO1.getIndex();
1060 
1061   if (Subtarget->isThumb1Only())
1062     emitAlignment(Align(4));
1063 
1064   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1065   OutStreamer->emitLabel(JTISymbol);
1066 
1067   // Emit each entry of the table.
1068   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1069   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1070   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1071 
1072   // Mark the jump table as data-in-code.
1073   OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1074                                                : MCDR_DataRegionJT16);
1075 
1076   for (auto MBB : JTBBs) {
1077     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1078                                                           OutContext);
1079     // Otherwise it's an offset from the dispatch instruction. Construct an
1080     // MCExpr for the entry. We want a value of the form:
1081     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1082     //
1083     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1084     // would look like:
1085     // LJTI_0_0:
1086     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1087     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1088     // where LCPI0_0 is a label defined just before the TBB instruction using
1089     // this table.
1090     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1091     const MCExpr *Expr = MCBinaryExpr::createAdd(
1092         MCSymbolRefExpr::create(TBInstPC, OutContext),
1093         MCConstantExpr::create(4, OutContext), OutContext);
1094     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1095     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1096                                    OutContext);
1097     OutStreamer->emitValue(Expr, OffsetWidth);
1098   }
1099   // Mark the end of jump table data-in-code region. 32-bit offsets use
1100   // actual branch instructions here, so we don't mark those as a data-region
1101   // at all.
1102   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1103 
1104   // Make sure the next instruction is 2-byte aligned.
1105   emitAlignment(Align(2));
1106 }
1107 
1108 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1109   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1110       "Only instruction which are involved into frame setup code are allowed");
1111 
1112   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1113   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1114   const MachineFunction &MF = *MI->getParent()->getParent();
1115   const TargetRegisterInfo *TargetRegInfo =
1116     MF.getSubtarget().getRegisterInfo();
1117   const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1118 
1119   Register FramePtr = TargetRegInfo->getFrameRegister(MF);
1120   unsigned Opc = MI->getOpcode();
1121   unsigned SrcReg, DstReg;
1122 
1123   switch (Opc) {
1124   case ARM::tPUSH:
1125     // special case: tPUSH does not have src/dst regs.
1126     SrcReg = DstReg = ARM::SP;
1127     break;
1128   case ARM::tLDRpci:
1129   case ARM::t2MOVi16:
1130   case ARM::t2MOVTi16:
1131     // special cases:
1132     // 1) for Thumb1 code we sometimes materialize the constant via constpool
1133     //    load.
1134     // 2) for Thumb2 execute only code we materialize the constant via
1135     //    immediate constants in 2 separate instructions (MOVW/MOVT).
1136     SrcReg = ~0U;
1137     DstReg = MI->getOperand(0).getReg();
1138     break;
1139   default:
1140     SrcReg = MI->getOperand(1).getReg();
1141     DstReg = MI->getOperand(0).getReg();
1142     break;
1143   }
1144 
1145   // Try to figure out the unwinding opcode out of src / dst regs.
1146   if (MI->mayStore()) {
1147     // Register saves.
1148     assert(DstReg == ARM::SP &&
1149            "Only stack pointer as a destination reg is supported");
1150 
1151     SmallVector<unsigned, 4> RegList;
1152     // Skip src & dst reg, and pred ops.
1153     unsigned StartOp = 2 + 2;
1154     // Use all the operands.
1155     unsigned NumOffset = 0;
1156     // Amount of SP adjustment folded into a push, before the
1157     // registers are stored (pad at higher addresses).
1158     unsigned PadBefore = 0;
1159     // Amount of SP adjustment folded into a push, after the
1160     // registers are stored (pad at lower addresses).
1161     unsigned PadAfter = 0;
1162 
1163     switch (Opc) {
1164     default:
1165       MI->print(errs());
1166       llvm_unreachable("Unsupported opcode for unwinding information");
1167     case ARM::tPUSH:
1168       // Special case here: no src & dst reg, but two extra imp ops.
1169       StartOp = 2; NumOffset = 2;
1170       LLVM_FALLTHROUGH;
1171     case ARM::STMDB_UPD:
1172     case ARM::t2STMDB_UPD:
1173     case ARM::VSTMDDB_UPD:
1174       assert(SrcReg == ARM::SP &&
1175              "Only stack pointer as a source reg is supported");
1176       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1177            i != NumOps; ++i) {
1178         const MachineOperand &MO = MI->getOperand(i);
1179         // Actually, there should never be any impdef stuff here. Skip it
1180         // temporary to workaround PR11902.
1181         if (MO.isImplicit())
1182           continue;
1183         // Registers, pushed as a part of folding an SP update into the
1184         // push instruction are marked as undef and should not be
1185         // restored when unwinding, because the function can modify the
1186         // corresponding stack slots.
1187         if (MO.isUndef()) {
1188           assert(RegList.empty() &&
1189                  "Pad registers must come before restored ones");
1190           unsigned Width =
1191             TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1192           PadAfter += Width;
1193           continue;
1194         }
1195         // Check for registers that are remapped (for a Thumb1 prologue that
1196         // saves high registers).
1197         Register Reg = MO.getReg();
1198         if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
1199           Reg = RemappedReg;
1200         RegList.push_back(Reg);
1201       }
1202       break;
1203     case ARM::STR_PRE_IMM:
1204     case ARM::STR_PRE_REG:
1205     case ARM::t2STR_PRE:
1206       assert(MI->getOperand(2).getReg() == ARM::SP &&
1207              "Only stack pointer as a source reg is supported");
1208       if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg))
1209         SrcReg = RemappedReg;
1210 
1211       RegList.push_back(SrcReg);
1212       break;
1213     case ARM::t2STRD_PRE:
1214       assert(MI->getOperand(3).getReg() == ARM::SP &&
1215              "Only stack pointer as a source reg is supported");
1216       SrcReg = MI->getOperand(1).getReg();
1217       if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg))
1218         SrcReg = RemappedReg;
1219       RegList.push_back(SrcReg);
1220       SrcReg = MI->getOperand(2).getReg();
1221       if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg))
1222         SrcReg = RemappedReg;
1223       RegList.push_back(SrcReg);
1224       PadBefore = -MI->getOperand(4).getImm() - 8;
1225       break;
1226     }
1227     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1228       if (PadBefore)
1229         ATS.emitPad(PadBefore);
1230       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1231       // Account for the SP adjustment, folded into the push.
1232       if (PadAfter)
1233         ATS.emitPad(PadAfter);
1234     }
1235   } else {
1236     // Changes of stack / frame pointer.
1237     if (SrcReg == ARM::SP) {
1238       int64_t Offset = 0;
1239       switch (Opc) {
1240       default:
1241         MI->print(errs());
1242         llvm_unreachable("Unsupported opcode for unwinding information");
1243       case ARM::MOVr:
1244       case ARM::tMOVr:
1245         Offset = 0;
1246         break;
1247       case ARM::ADDri:
1248       case ARM::t2ADDri:
1249       case ARM::t2ADDri12:
1250       case ARM::t2ADDspImm:
1251       case ARM::t2ADDspImm12:
1252         Offset = -MI->getOperand(2).getImm();
1253         break;
1254       case ARM::SUBri:
1255       case ARM::t2SUBri:
1256       case ARM::t2SUBri12:
1257       case ARM::t2SUBspImm:
1258       case ARM::t2SUBspImm12:
1259         Offset = MI->getOperand(2).getImm();
1260         break;
1261       case ARM::tSUBspi:
1262         Offset = MI->getOperand(2).getImm()*4;
1263         break;
1264       case ARM::tADDspi:
1265       case ARM::tADDrSPi:
1266         Offset = -MI->getOperand(2).getImm()*4;
1267         break;
1268       case ARM::tADDhirr:
1269         Offset =
1270             -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg());
1271         break;
1272       }
1273 
1274       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1275         if (DstReg == FramePtr && FramePtr != ARM::SP)
1276           // Set-up of the frame pointer. Positive values correspond to "add"
1277           // instruction.
1278           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1279         else if (DstReg == ARM::SP) {
1280           // Change of SP by an offset. Positive values correspond to "sub"
1281           // instruction.
1282           ATS.emitPad(Offset);
1283         } else {
1284           // Move of SP to a register.  Positive values correspond to an "add"
1285           // instruction.
1286           ATS.emitMovSP(DstReg, -Offset);
1287         }
1288       }
1289     } else if (DstReg == ARM::SP) {
1290       MI->print(errs());
1291       llvm_unreachable("Unsupported opcode for unwinding information");
1292     } else {
1293       int64_t Offset = 0;
1294       switch (Opc) {
1295       case ARM::tMOVr:
1296         // If a Thumb1 function spills r8-r11, we copy the values to low
1297         // registers before pushing them. Record the copy so we can emit the
1298         // correct ".save" later.
1299         AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
1300         break;
1301       case ARM::tLDRpci: {
1302         // Grab the constpool index and check, whether it corresponds to
1303         // original or cloned constpool entry.
1304         unsigned CPI = MI->getOperand(1).getIndex();
1305         const MachineConstantPool *MCP = MF.getConstantPool();
1306         if (CPI >= MCP->getConstants().size())
1307           CPI = AFI->getOriginalCPIdx(CPI);
1308         assert(CPI != -1U && "Invalid constpool index");
1309 
1310         // Derive the actual offset.
1311         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1312         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1313         Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1314         AFI->EHPrologueOffsetInRegs[DstReg] = Offset;
1315         break;
1316       }
1317       case ARM::t2MOVi16:
1318         Offset = MI->getOperand(1).getImm();
1319         AFI->EHPrologueOffsetInRegs[DstReg] = Offset;
1320         break;
1321       case ARM::t2MOVTi16:
1322         Offset = MI->getOperand(2).getImm();
1323         AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16);
1324         break;
1325       case ARM::t2PAC:
1326       case ARM::t2PACBTI:
1327         AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE;
1328         break;
1329       default:
1330         MI->print(errs());
1331         llvm_unreachable("Unsupported opcode for unwinding information");
1332       }
1333     }
1334   }
1335 }
1336 
1337 // Simple pseudo-instructions have their lowering (with expansion to real
1338 // instructions) auto-generated.
1339 #include "ARMGenMCPseudoLowering.inc"
1340 
1341 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) {
1342   const DataLayout &DL = getDataLayout();
1343   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1344   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1345 
1346   // If we just ended a constant pool, mark it as such.
1347   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1348     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1349     InConstantPool = false;
1350   }
1351 
1352   // Emit unwinding stuff for frame-related instructions
1353   if (Subtarget->isTargetEHABICompatible() &&
1354        MI->getFlag(MachineInstr::FrameSetup))
1355     EmitUnwindingInstruction(MI);
1356 
1357   // Do any auto-generated pseudo lowerings.
1358   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1359     return;
1360 
1361   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1362          "Pseudo flag setting opcode should be expanded early");
1363 
1364   // Check for manual lowerings.
1365   unsigned Opc = MI->getOpcode();
1366   switch (Opc) {
1367   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1368   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1369   case ARM::LEApcrel:
1370   case ARM::tLEApcrel:
1371   case ARM::t2LEApcrel: {
1372     // FIXME: Need to also handle globals and externals
1373     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1374     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1375                                                ARM::t2LEApcrel ? ARM::t2ADR
1376                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1377                      : ARM::ADR))
1378       .addReg(MI->getOperand(0).getReg())
1379       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1380       // Add predicate operands.
1381       .addImm(MI->getOperand(2).getImm())
1382       .addReg(MI->getOperand(3).getReg()));
1383     return;
1384   }
1385   case ARM::LEApcrelJT:
1386   case ARM::tLEApcrelJT:
1387   case ARM::t2LEApcrelJT: {
1388     MCSymbol *JTIPICSymbol =
1389       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1390     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1391                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1392                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1393                      : ARM::ADR))
1394       .addReg(MI->getOperand(0).getReg())
1395       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1396       // Add predicate operands.
1397       .addImm(MI->getOperand(2).getImm())
1398       .addReg(MI->getOperand(3).getReg()));
1399     return;
1400   }
1401   // Darwin call instructions are just normal call instructions with different
1402   // clobber semantics (they clobber R9).
1403   case ARM::BX_CALL: {
1404     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1405       .addReg(ARM::LR)
1406       .addReg(ARM::PC)
1407       // Add predicate operands.
1408       .addImm(ARMCC::AL)
1409       .addReg(0)
1410       // Add 's' bit operand (always reg0 for this)
1411       .addReg(0));
1412 
1413     assert(Subtarget->hasV4TOps());
1414     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1415       .addReg(MI->getOperand(0).getReg()));
1416     return;
1417   }
1418   case ARM::tBX_CALL: {
1419     if (Subtarget->hasV5TOps())
1420       llvm_unreachable("Expected BLX to be selected for v5t+");
1421 
1422     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1423     // that the saved lr has its LSB set correctly (the arch doesn't
1424     // have blx).
1425     // So here we generate a bl to a small jump pad that does bx rN.
1426     // The jump pads are emitted after the function body.
1427 
1428     Register TReg = MI->getOperand(0).getReg();
1429     MCSymbol *TRegSym = nullptr;
1430     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1431       if (TIP.first == TReg) {
1432         TRegSym = TIP.second;
1433         break;
1434       }
1435     }
1436 
1437     if (!TRegSym) {
1438       TRegSym = OutContext.createTempSymbol();
1439       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1440     }
1441 
1442     // Create a link-saving branch to the Reg Indirect Jump Pad.
1443     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1444         // Predicate comes first here.
1445         .addImm(ARMCC::AL).addReg(0)
1446         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1447     return;
1448   }
1449   case ARM::BMOVPCRX_CALL: {
1450     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1451       .addReg(ARM::LR)
1452       .addReg(ARM::PC)
1453       // Add predicate operands.
1454       .addImm(ARMCC::AL)
1455       .addReg(0)
1456       // Add 's' bit operand (always reg0 for this)
1457       .addReg(0));
1458 
1459     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1460       .addReg(ARM::PC)
1461       .addReg(MI->getOperand(0).getReg())
1462       // Add predicate operands.
1463       .addImm(ARMCC::AL)
1464       .addReg(0)
1465       // Add 's' bit operand (always reg0 for this)
1466       .addReg(0));
1467     return;
1468   }
1469   case ARM::BMOVPCB_CALL: {
1470     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1471       .addReg(ARM::LR)
1472       .addReg(ARM::PC)
1473       // Add predicate operands.
1474       .addImm(ARMCC::AL)
1475       .addReg(0)
1476       // Add 's' bit operand (always reg0 for this)
1477       .addReg(0));
1478 
1479     const MachineOperand &Op = MI->getOperand(0);
1480     const GlobalValue *GV = Op.getGlobal();
1481     const unsigned TF = Op.getTargetFlags();
1482     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1483     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1484     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1485       .addExpr(GVSymExpr)
1486       // Add predicate operands.
1487       .addImm(ARMCC::AL)
1488       .addReg(0));
1489     return;
1490   }
1491   case ARM::MOVi16_ga_pcrel:
1492   case ARM::t2MOVi16_ga_pcrel: {
1493     MCInst TmpInst;
1494     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1495     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1496 
1497     unsigned TF = MI->getOperand(1).getTargetFlags();
1498     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1499     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1500     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1501 
1502     MCSymbol *LabelSym =
1503         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1504                     MI->getOperand(2).getImm(), OutContext);
1505     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1506     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1507     const MCExpr *PCRelExpr =
1508       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1509                                       MCBinaryExpr::createAdd(LabelSymExpr,
1510                                       MCConstantExpr::create(PCAdj, OutContext),
1511                                       OutContext), OutContext), OutContext);
1512       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1513 
1514     // Add predicate operands.
1515     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1516     TmpInst.addOperand(MCOperand::createReg(0));
1517     // Add 's' bit operand (always reg0 for this)
1518     TmpInst.addOperand(MCOperand::createReg(0));
1519     EmitToStreamer(*OutStreamer, TmpInst);
1520     return;
1521   }
1522   case ARM::MOVTi16_ga_pcrel:
1523   case ARM::t2MOVTi16_ga_pcrel: {
1524     MCInst TmpInst;
1525     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1526                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1527     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1528     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1529 
1530     unsigned TF = MI->getOperand(2).getTargetFlags();
1531     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1532     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1533     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1534 
1535     MCSymbol *LabelSym =
1536         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1537                     MI->getOperand(3).getImm(), OutContext);
1538     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1539     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1540     const MCExpr *PCRelExpr =
1541         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1542                                    MCBinaryExpr::createAdd(LabelSymExpr,
1543                                       MCConstantExpr::create(PCAdj, OutContext),
1544                                           OutContext), OutContext), OutContext);
1545       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1546     // Add predicate operands.
1547     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1548     TmpInst.addOperand(MCOperand::createReg(0));
1549     // Add 's' bit operand (always reg0 for this)
1550     TmpInst.addOperand(MCOperand::createReg(0));
1551     EmitToStreamer(*OutStreamer, TmpInst);
1552     return;
1553   }
1554   case ARM::t2BFi:
1555   case ARM::t2BFic:
1556   case ARM::t2BFLi:
1557   case ARM::t2BFr:
1558   case ARM::t2BFLr: {
1559     // This is a Branch Future instruction.
1560 
1561     const MCExpr *BranchLabel = MCSymbolRefExpr::create(
1562         getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1563                    MI->getOperand(0).getIndex(), OutContext),
1564         OutContext);
1565 
1566     auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
1567     if (MI->getOperand(1).isReg()) {
1568       // For BFr/BFLr
1569       MCInst.addReg(MI->getOperand(1).getReg());
1570     } else {
1571       // For BFi/BFLi/BFic
1572       const MCExpr *BranchTarget;
1573       if (MI->getOperand(1).isMBB())
1574         BranchTarget = MCSymbolRefExpr::create(
1575             MI->getOperand(1).getMBB()->getSymbol(), OutContext);
1576       else if (MI->getOperand(1).isGlobal()) {
1577         const GlobalValue *GV = MI->getOperand(1).getGlobal();
1578         BranchTarget = MCSymbolRefExpr::create(
1579             GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
1580       } else if (MI->getOperand(1).isSymbol()) {
1581         BranchTarget = MCSymbolRefExpr::create(
1582             GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
1583             OutContext);
1584       } else
1585         llvm_unreachable("Unhandled operand kind in Branch Future instruction");
1586 
1587       MCInst.addExpr(BranchTarget);
1588     }
1589 
1590     if (Opc == ARM::t2BFic) {
1591       const MCExpr *ElseLabel = MCSymbolRefExpr::create(
1592           getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1593                      MI->getOperand(2).getIndex(), OutContext),
1594           OutContext);
1595       MCInst.addExpr(ElseLabel);
1596       MCInst.addImm(MI->getOperand(3).getImm());
1597     } else {
1598       MCInst.addImm(MI->getOperand(2).getImm())
1599           .addReg(MI->getOperand(3).getReg());
1600     }
1601 
1602     EmitToStreamer(*OutStreamer, MCInst);
1603     return;
1604   }
1605   case ARM::t2BF_LabelPseudo: {
1606     // This is a pseudo op for a label used by a branch future instruction
1607 
1608     // Emit the label.
1609     OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
1610                                        getFunctionNumber(),
1611                                        MI->getOperand(0).getIndex(), OutContext));
1612     return;
1613   }
1614   case ARM::tPICADD: {
1615     // This is a pseudo op for a label + instruction sequence, which looks like:
1616     // LPC0:
1617     //     add r0, pc
1618     // This adds the address of LPC0 to r0.
1619 
1620     // Emit the label.
1621     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1622                                        getFunctionNumber(),
1623                                        MI->getOperand(2).getImm(), OutContext));
1624 
1625     // Form and emit the add.
1626     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1627       .addReg(MI->getOperand(0).getReg())
1628       .addReg(MI->getOperand(0).getReg())
1629       .addReg(ARM::PC)
1630       // Add predicate operands.
1631       .addImm(ARMCC::AL)
1632       .addReg(0));
1633     return;
1634   }
1635   case ARM::PICADD: {
1636     // This is a pseudo op for a label + instruction sequence, which looks like:
1637     // LPC0:
1638     //     add r0, pc, r0
1639     // This adds the address of LPC0 to r0.
1640 
1641     // Emit the label.
1642     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1643                                        getFunctionNumber(),
1644                                        MI->getOperand(2).getImm(), OutContext));
1645 
1646     // Form and emit the add.
1647     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1648       .addReg(MI->getOperand(0).getReg())
1649       .addReg(ARM::PC)
1650       .addReg(MI->getOperand(1).getReg())
1651       // Add predicate operands.
1652       .addImm(MI->getOperand(3).getImm())
1653       .addReg(MI->getOperand(4).getReg())
1654       // Add 's' bit operand (always reg0 for this)
1655       .addReg(0));
1656     return;
1657   }
1658   case ARM::PICSTR:
1659   case ARM::PICSTRB:
1660   case ARM::PICSTRH:
1661   case ARM::PICLDR:
1662   case ARM::PICLDRB:
1663   case ARM::PICLDRH:
1664   case ARM::PICLDRSB:
1665   case ARM::PICLDRSH: {
1666     // This is a pseudo op for a label + instruction sequence, which looks like:
1667     // LPC0:
1668     //     OP r0, [pc, r0]
1669     // The LCP0 label is referenced by a constant pool entry in order to get
1670     // a PC-relative address at the ldr instruction.
1671 
1672     // Emit the label.
1673     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1674                                        getFunctionNumber(),
1675                                        MI->getOperand(2).getImm(), OutContext));
1676 
1677     // Form and emit the load
1678     unsigned Opcode;
1679     switch (MI->getOpcode()) {
1680     default:
1681       llvm_unreachable("Unexpected opcode!");
1682     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1683     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1684     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1685     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1686     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1687     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1688     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1689     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1690     }
1691     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1692       .addReg(MI->getOperand(0).getReg())
1693       .addReg(ARM::PC)
1694       .addReg(MI->getOperand(1).getReg())
1695       .addImm(0)
1696       // Add predicate operands.
1697       .addImm(MI->getOperand(3).getImm())
1698       .addReg(MI->getOperand(4).getReg()));
1699 
1700     return;
1701   }
1702   case ARM::CONSTPOOL_ENTRY: {
1703     if (Subtarget->genExecuteOnly())
1704       llvm_unreachable("execute-only should not generate constant pools");
1705 
1706     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1707     /// in the function.  The first operand is the ID# for this instruction, the
1708     /// second is the index into the MachineConstantPool that this is, the third
1709     /// is the size in bytes of this constant pool entry.
1710     /// The required alignment is specified on the basic block holding this MI.
1711     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1712     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1713 
1714     // If this is the first entry of the pool, mark it.
1715     if (!InConstantPool) {
1716       OutStreamer->emitDataRegion(MCDR_DataRegion);
1717       InConstantPool = true;
1718     }
1719 
1720     OutStreamer->emitLabel(GetCPISymbol(LabelId));
1721 
1722     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1723     if (MCPE.isMachineConstantPoolEntry())
1724       emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1725     else
1726       emitGlobalConstant(DL, MCPE.Val.ConstVal);
1727     return;
1728   }
1729   case ARM::JUMPTABLE_ADDRS:
1730     emitJumpTableAddrs(MI);
1731     return;
1732   case ARM::JUMPTABLE_INSTS:
1733     emitJumpTableInsts(MI);
1734     return;
1735   case ARM::JUMPTABLE_TBB:
1736   case ARM::JUMPTABLE_TBH:
1737     emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1738     return;
1739   case ARM::t2BR_JT: {
1740     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1741       .addReg(ARM::PC)
1742       .addReg(MI->getOperand(0).getReg())
1743       // Add predicate operands.
1744       .addImm(ARMCC::AL)
1745       .addReg(0));
1746     return;
1747   }
1748   case ARM::t2TBB_JT:
1749   case ARM::t2TBH_JT: {
1750     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1751     // Lower and emit the PC label, then the instruction itself.
1752     OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1753     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1754                                      .addReg(MI->getOperand(0).getReg())
1755                                      .addReg(MI->getOperand(1).getReg())
1756                                      // Add predicate operands.
1757                                      .addImm(ARMCC::AL)
1758                                      .addReg(0));
1759     return;
1760   }
1761   case ARM::tTBB_JT:
1762   case ARM::tTBH_JT: {
1763 
1764     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1765     Register Base = MI->getOperand(0).getReg();
1766     Register Idx = MI->getOperand(1).getReg();
1767     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1768 
1769     // Multiply up idx if necessary.
1770     if (!Is8Bit)
1771       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1772                                        .addReg(Idx)
1773                                        .addReg(ARM::CPSR)
1774                                        .addReg(Idx)
1775                                        .addImm(1)
1776                                        // Add predicate operands.
1777                                        .addImm(ARMCC::AL)
1778                                        .addReg(0));
1779 
1780     if (Base == ARM::PC) {
1781       // TBB [base, idx] =
1782       //    ADDS idx, idx, base
1783       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1784       //    LSLS idx, #1
1785       //    ADDS pc, pc, idx
1786 
1787       // When using PC as the base, it's important that there is no padding
1788       // between the last ADDS and the start of the jump table. The jump table
1789       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1790       //
1791       // FIXME: Ideally we could vary the LDRB index based on the padding
1792       // between the sequence and jump table, however that relies on MCExprs
1793       // for load indexes which are currently not supported.
1794       OutStreamer->emitCodeAlignment(4, &getSubtargetInfo());
1795       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1796                                        .addReg(Idx)
1797                                        .addReg(Idx)
1798                                        .addReg(Base)
1799                                        // Add predicate operands.
1800                                        .addImm(ARMCC::AL)
1801                                        .addReg(0));
1802 
1803       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1804       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1805                                        .addReg(Idx)
1806                                        .addReg(Idx)
1807                                        .addImm(Is8Bit ? 4 : 2)
1808                                        // Add predicate operands.
1809                                        .addImm(ARMCC::AL)
1810                                        .addReg(0));
1811     } else {
1812       // TBB [base, idx] =
1813       //    LDRB idx, [base, idx] ; or LDRH if TBH
1814       //    LSLS idx, #1
1815       //    ADDS pc, pc, idx
1816 
1817       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1818       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1819                                        .addReg(Idx)
1820                                        .addReg(Base)
1821                                        .addReg(Idx)
1822                                        // Add predicate operands.
1823                                        .addImm(ARMCC::AL)
1824                                        .addReg(0));
1825     }
1826 
1827     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1828                                      .addReg(Idx)
1829                                      .addReg(ARM::CPSR)
1830                                      .addReg(Idx)
1831                                      .addImm(1)
1832                                      // Add predicate operands.
1833                                      .addImm(ARMCC::AL)
1834                                      .addReg(0));
1835 
1836     OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1837     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1838                                      .addReg(ARM::PC)
1839                                      .addReg(ARM::PC)
1840                                      .addReg(Idx)
1841                                      // Add predicate operands.
1842                                      .addImm(ARMCC::AL)
1843                                      .addReg(0));
1844     return;
1845   }
1846   case ARM::tBR_JTr:
1847   case ARM::BR_JTr: {
1848     // mov pc, target
1849     MCInst TmpInst;
1850     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1851       ARM::MOVr : ARM::tMOVr;
1852     TmpInst.setOpcode(Opc);
1853     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1854     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1855     // Add predicate operands.
1856     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1857     TmpInst.addOperand(MCOperand::createReg(0));
1858     // Add 's' bit operand (always reg0 for this)
1859     if (Opc == ARM::MOVr)
1860       TmpInst.addOperand(MCOperand::createReg(0));
1861     EmitToStreamer(*OutStreamer, TmpInst);
1862     return;
1863   }
1864   case ARM::BR_JTm_i12: {
1865     // ldr pc, target
1866     MCInst TmpInst;
1867     TmpInst.setOpcode(ARM::LDRi12);
1868     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1869     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1870     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1871     // Add predicate operands.
1872     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1873     TmpInst.addOperand(MCOperand::createReg(0));
1874     EmitToStreamer(*OutStreamer, TmpInst);
1875     return;
1876   }
1877   case ARM::BR_JTm_rs: {
1878     // ldr pc, target
1879     MCInst TmpInst;
1880     TmpInst.setOpcode(ARM::LDRrs);
1881     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1882     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1883     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1884     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1885     // Add predicate operands.
1886     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1887     TmpInst.addOperand(MCOperand::createReg(0));
1888     EmitToStreamer(*OutStreamer, TmpInst);
1889     return;
1890   }
1891   case ARM::BR_JTadd: {
1892     // add pc, target, idx
1893     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1894       .addReg(ARM::PC)
1895       .addReg(MI->getOperand(0).getReg())
1896       .addReg(MI->getOperand(1).getReg())
1897       // Add predicate operands.
1898       .addImm(ARMCC::AL)
1899       .addReg(0)
1900       // Add 's' bit operand (always reg0 for this)
1901       .addReg(0));
1902     return;
1903   }
1904   case ARM::SPACE:
1905     OutStreamer->emitZeros(MI->getOperand(1).getImm());
1906     return;
1907   case ARM::TRAP: {
1908     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1909     // FIXME: Remove this special case when they do.
1910     if (!Subtarget->isTargetMachO()) {
1911       uint32_t Val = 0xe7ffdefeUL;
1912       OutStreamer->AddComment("trap");
1913       ATS.emitInst(Val);
1914       return;
1915     }
1916     break;
1917   }
1918   case ARM::TRAPNaCl: {
1919     uint32_t Val = 0xe7fedef0UL;
1920     OutStreamer->AddComment("trap");
1921     ATS.emitInst(Val);
1922     return;
1923   }
1924   case ARM::tTRAP: {
1925     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1926     // FIXME: Remove this special case when they do.
1927     if (!Subtarget->isTargetMachO()) {
1928       uint16_t Val = 0xdefe;
1929       OutStreamer->AddComment("trap");
1930       ATS.emitInst(Val, 'n');
1931       return;
1932     }
1933     break;
1934   }
1935   case ARM::t2Int_eh_sjlj_setjmp:
1936   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1937   case ARM::tInt_eh_sjlj_setjmp: {
1938     // Two incoming args: GPR:$src, GPR:$val
1939     // mov $val, pc
1940     // adds $val, #7
1941     // str $val, [$src, #4]
1942     // movs r0, #0
1943     // b LSJLJEH
1944     // movs r0, #1
1945     // LSJLJEH:
1946     Register SrcReg = MI->getOperand(0).getReg();
1947     Register ValReg = MI->getOperand(1).getReg();
1948     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH");
1949     OutStreamer->AddComment("eh_setjmp begin");
1950     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1951       .addReg(ValReg)
1952       .addReg(ARM::PC)
1953       // Predicate.
1954       .addImm(ARMCC::AL)
1955       .addReg(0));
1956 
1957     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1958       .addReg(ValReg)
1959       // 's' bit operand
1960       .addReg(ARM::CPSR)
1961       .addReg(ValReg)
1962       .addImm(7)
1963       // Predicate.
1964       .addImm(ARMCC::AL)
1965       .addReg(0));
1966 
1967     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1968       .addReg(ValReg)
1969       .addReg(SrcReg)
1970       // The offset immediate is #4. The operand value is scaled by 4 for the
1971       // tSTR instruction.
1972       .addImm(1)
1973       // Predicate.
1974       .addImm(ARMCC::AL)
1975       .addReg(0));
1976 
1977     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1978       .addReg(ARM::R0)
1979       .addReg(ARM::CPSR)
1980       .addImm(0)
1981       // Predicate.
1982       .addImm(ARMCC::AL)
1983       .addReg(0));
1984 
1985     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1986     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1987       .addExpr(SymbolExpr)
1988       .addImm(ARMCC::AL)
1989       .addReg(0));
1990 
1991     OutStreamer->AddComment("eh_setjmp end");
1992     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1993       .addReg(ARM::R0)
1994       .addReg(ARM::CPSR)
1995       .addImm(1)
1996       // Predicate.
1997       .addImm(ARMCC::AL)
1998       .addReg(0));
1999 
2000     OutStreamer->emitLabel(Label);
2001     return;
2002   }
2003 
2004   case ARM::Int_eh_sjlj_setjmp_nofp:
2005   case ARM::Int_eh_sjlj_setjmp: {
2006     // Two incoming args: GPR:$src, GPR:$val
2007     // add $val, pc, #8
2008     // str $val, [$src, #+4]
2009     // mov r0, #0
2010     // add pc, pc, #0
2011     // mov r0, #1
2012     Register SrcReg = MI->getOperand(0).getReg();
2013     Register ValReg = MI->getOperand(1).getReg();
2014 
2015     OutStreamer->AddComment("eh_setjmp begin");
2016     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
2017       .addReg(ValReg)
2018       .addReg(ARM::PC)
2019       .addImm(8)
2020       // Predicate.
2021       .addImm(ARMCC::AL)
2022       .addReg(0)
2023       // 's' bit operand (always reg0 for this).
2024       .addReg(0));
2025 
2026     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
2027       .addReg(ValReg)
2028       .addReg(SrcReg)
2029       .addImm(4)
2030       // Predicate.
2031       .addImm(ARMCC::AL)
2032       .addReg(0));
2033 
2034     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
2035       .addReg(ARM::R0)
2036       .addImm(0)
2037       // Predicate.
2038       .addImm(ARMCC::AL)
2039       .addReg(0)
2040       // 's' bit operand (always reg0 for this).
2041       .addReg(0));
2042 
2043     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
2044       .addReg(ARM::PC)
2045       .addReg(ARM::PC)
2046       .addImm(0)
2047       // Predicate.
2048       .addImm(ARMCC::AL)
2049       .addReg(0)
2050       // 's' bit operand (always reg0 for this).
2051       .addReg(0));
2052 
2053     OutStreamer->AddComment("eh_setjmp end");
2054     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
2055       .addReg(ARM::R0)
2056       .addImm(1)
2057       // Predicate.
2058       .addImm(ARMCC::AL)
2059       .addReg(0)
2060       // 's' bit operand (always reg0 for this).
2061       .addReg(0));
2062     return;
2063   }
2064   case ARM::Int_eh_sjlj_longjmp: {
2065     // ldr sp, [$src, #8]
2066     // ldr $scratch, [$src, #4]
2067     // ldr r7, [$src]
2068     // bx $scratch
2069     Register SrcReg = MI->getOperand(0).getReg();
2070     Register ScratchReg = MI->getOperand(1).getReg();
2071     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2072       .addReg(ARM::SP)
2073       .addReg(SrcReg)
2074       .addImm(8)
2075       // Predicate.
2076       .addImm(ARMCC::AL)
2077       .addReg(0));
2078 
2079     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2080       .addReg(ScratchReg)
2081       .addReg(SrcReg)
2082       .addImm(4)
2083       // Predicate.
2084       .addImm(ARMCC::AL)
2085       .addReg(0));
2086 
2087     const MachineFunction &MF = *MI->getParent()->getParent();
2088     const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2089 
2090     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2091       // These platforms always use the same frame register
2092       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2093                                        .addReg(STI.getFramePointerReg())
2094                                        .addReg(SrcReg)
2095                                        .addImm(0)
2096                                        // Predicate.
2097                                        .addImm(ARMCC::AL)
2098                                        .addReg(0));
2099     } else {
2100       // If the calling code might use either R7 or R11 as
2101       // frame pointer register, restore it into both.
2102       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2103         .addReg(ARM::R7)
2104         .addReg(SrcReg)
2105         .addImm(0)
2106         // Predicate.
2107         .addImm(ARMCC::AL)
2108         .addReg(0));
2109       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2110         .addReg(ARM::R11)
2111         .addReg(SrcReg)
2112         .addImm(0)
2113         // Predicate.
2114         .addImm(ARMCC::AL)
2115         .addReg(0));
2116     }
2117 
2118     assert(Subtarget->hasV4TOps());
2119     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
2120       .addReg(ScratchReg)
2121       // Predicate.
2122       .addImm(ARMCC::AL)
2123       .addReg(0));
2124     return;
2125   }
2126   case ARM::tInt_eh_sjlj_longjmp: {
2127     // ldr $scratch, [$src, #8]
2128     // mov sp, $scratch
2129     // ldr $scratch, [$src, #4]
2130     // ldr r7, [$src]
2131     // bx $scratch
2132     Register SrcReg = MI->getOperand(0).getReg();
2133     Register ScratchReg = MI->getOperand(1).getReg();
2134 
2135     const MachineFunction &MF = *MI->getParent()->getParent();
2136     const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2137 
2138     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2139       .addReg(ScratchReg)
2140       .addReg(SrcReg)
2141       // The offset immediate is #8. The operand value is scaled by 4 for the
2142       // tLDR instruction.
2143       .addImm(2)
2144       // Predicate.
2145       .addImm(ARMCC::AL)
2146       .addReg(0));
2147 
2148     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
2149       .addReg(ARM::SP)
2150       .addReg(ScratchReg)
2151       // Predicate.
2152       .addImm(ARMCC::AL)
2153       .addReg(0));
2154 
2155     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2156       .addReg(ScratchReg)
2157       .addReg(SrcReg)
2158       .addImm(1)
2159       // Predicate.
2160       .addImm(ARMCC::AL)
2161       .addReg(0));
2162 
2163     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2164       // These platforms always use the same frame register
2165       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2166                                        .addReg(STI.getFramePointerReg())
2167                                        .addReg(SrcReg)
2168                                        .addImm(0)
2169                                        // Predicate.
2170                                        .addImm(ARMCC::AL)
2171                                        .addReg(0));
2172     } else {
2173       // If the calling code might use either R7 or R11 as
2174       // frame pointer register, restore it into both.
2175       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2176         .addReg(ARM::R7)
2177         .addReg(SrcReg)
2178         .addImm(0)
2179         // Predicate.
2180         .addImm(ARMCC::AL)
2181         .addReg(0));
2182       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2183         .addReg(ARM::R11)
2184         .addReg(SrcReg)
2185         .addImm(0)
2186         // Predicate.
2187         .addImm(ARMCC::AL)
2188         .addReg(0));
2189     }
2190 
2191     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2192       .addReg(ScratchReg)
2193       // Predicate.
2194       .addImm(ARMCC::AL)
2195       .addReg(0));
2196     return;
2197   }
2198   case ARM::tInt_WIN_eh_sjlj_longjmp: {
2199     // ldr.w r11, [$src, #0]
2200     // ldr.w  sp, [$src, #8]
2201     // ldr.w  pc, [$src, #4]
2202 
2203     Register SrcReg = MI->getOperand(0).getReg();
2204 
2205     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2206                                      .addReg(ARM::R11)
2207                                      .addReg(SrcReg)
2208                                      .addImm(0)
2209                                      // Predicate
2210                                      .addImm(ARMCC::AL)
2211                                      .addReg(0));
2212     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2213                                      .addReg(ARM::SP)
2214                                      .addReg(SrcReg)
2215                                      .addImm(8)
2216                                      // Predicate
2217                                      .addImm(ARMCC::AL)
2218                                      .addReg(0));
2219     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2220                                      .addReg(ARM::PC)
2221                                      .addReg(SrcReg)
2222                                      .addImm(4)
2223                                      // Predicate
2224                                      .addImm(ARMCC::AL)
2225                                      .addReg(0));
2226     return;
2227   }
2228   case ARM::PATCHABLE_FUNCTION_ENTER:
2229     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2230     return;
2231   case ARM::PATCHABLE_FUNCTION_EXIT:
2232     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2233     return;
2234   case ARM::PATCHABLE_TAIL_CALL:
2235     LowerPATCHABLE_TAIL_CALL(*MI);
2236     return;
2237   case ARM::SpeculationBarrierISBDSBEndBB: {
2238     // Print DSB SYS + ISB
2239     MCInst TmpInstDSB;
2240     TmpInstDSB.setOpcode(ARM::DSB);
2241     TmpInstDSB.addOperand(MCOperand::createImm(0xf));
2242     EmitToStreamer(*OutStreamer, TmpInstDSB);
2243     MCInst TmpInstISB;
2244     TmpInstISB.setOpcode(ARM::ISB);
2245     TmpInstISB.addOperand(MCOperand::createImm(0xf));
2246     EmitToStreamer(*OutStreamer, TmpInstISB);
2247     return;
2248   }
2249   case ARM::t2SpeculationBarrierISBDSBEndBB: {
2250     // Print DSB SYS + ISB
2251     MCInst TmpInstDSB;
2252     TmpInstDSB.setOpcode(ARM::t2DSB);
2253     TmpInstDSB.addOperand(MCOperand::createImm(0xf));
2254     TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL));
2255     TmpInstDSB.addOperand(MCOperand::createReg(0));
2256     EmitToStreamer(*OutStreamer, TmpInstDSB);
2257     MCInst TmpInstISB;
2258     TmpInstISB.setOpcode(ARM::t2ISB);
2259     TmpInstISB.addOperand(MCOperand::createImm(0xf));
2260     TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL));
2261     TmpInstISB.addOperand(MCOperand::createReg(0));
2262     EmitToStreamer(*OutStreamer, TmpInstISB);
2263     return;
2264   }
2265   case ARM::SpeculationBarrierSBEndBB: {
2266     // Print SB
2267     MCInst TmpInstSB;
2268     TmpInstSB.setOpcode(ARM::SB);
2269     EmitToStreamer(*OutStreamer, TmpInstSB);
2270     return;
2271   }
2272   case ARM::t2SpeculationBarrierSBEndBB: {
2273     // Print SB
2274     MCInst TmpInstSB;
2275     TmpInstSB.setOpcode(ARM::t2SB);
2276     EmitToStreamer(*OutStreamer, TmpInstSB);
2277     return;
2278   }
2279   }
2280 
2281   MCInst TmpInst;
2282   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2283 
2284   EmitToStreamer(*OutStreamer, TmpInst);
2285 }
2286 
2287 //===----------------------------------------------------------------------===//
2288 // Target Registry Stuff
2289 //===----------------------------------------------------------------------===//
2290 
2291 // Force static initialization.
2292 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() {
2293   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2294   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2295   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2296   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2297 }
2298