1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDKernelCodeT.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IntrinsicsR600.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/MC/MCSubtargetInfo.h" 23 #include "llvm/Support/AMDHSAKernelDescriptor.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/TargetParser.h" 26 27 #define GET_INSTRINFO_NAMED_OPS 28 #define GET_INSTRMAP_INFO 29 #include "AMDGPUGenInstrInfo.inc" 30 31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 32 "amdhsa-code-object-version", llvm::cl::Hidden, 33 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4), 34 llvm::cl::ZeroOrMore); 35 36 namespace { 37 38 /// \returns Bit mask for given bit \p Shift and bit \p Width. 39 unsigned getBitMask(unsigned Shift, unsigned Width) { 40 return ((1 << Width) - 1) << Shift; 41 } 42 43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 44 /// 45 /// \returns Packed \p Dst. 46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 47 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 48 Dst |= (Src << Shift) & getBitMask(Shift, Width); 49 return Dst; 50 } 51 52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 53 /// 54 /// \returns Unpacked bits. 55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 56 return (Src & getBitMask(Shift, Width)) >> Shift; 57 } 58 59 /// \returns Vmcnt bit shift (lower bits). 60 unsigned getVmcntBitShiftLo() { return 0; } 61 62 /// \returns Vmcnt bit width (lower bits). 63 unsigned getVmcntBitWidthLo() { return 4; } 64 65 /// \returns Expcnt bit shift. 66 unsigned getExpcntBitShift() { return 4; } 67 68 /// \returns Expcnt bit width. 69 unsigned getExpcntBitWidth() { return 3; } 70 71 /// \returns Lgkmcnt bit shift. 72 unsigned getLgkmcntBitShift() { return 8; } 73 74 /// \returns Lgkmcnt bit width. 75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 76 return (VersionMajor >= 10) ? 6 : 4; 77 } 78 79 /// \returns Vmcnt bit shift (higher bits). 80 unsigned getVmcntBitShiftHi() { return 14; } 81 82 /// \returns Vmcnt bit width (higher bits). 83 unsigned getVmcntBitWidthHi() { return 2; } 84 85 } // end namespace anonymous 86 87 namespace llvm { 88 89 namespace AMDGPU { 90 91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 92 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 93 return None; 94 95 switch (AmdhsaCodeObjectVersion) { 96 case 2: 97 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 98 case 3: 99 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 100 case 4: 101 return ELF::ELFABIVERSION_AMDGPU_HSA_V4; 102 default: 103 report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") + 104 Twine(AmdhsaCodeObjectVersion)); 105 } 106 } 107 108 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 109 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 110 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 111 return false; 112 } 113 114 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 115 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 116 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 117 return false; 118 } 119 120 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) { 121 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 122 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4; 123 return false; 124 } 125 126 bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) { 127 return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI); 128 } 129 130 #define GET_MIMGBaseOpcodesTable_IMPL 131 #define GET_MIMGDimInfoTable_IMPL 132 #define GET_MIMGInfoTable_IMPL 133 #define GET_MIMGLZMappingTable_IMPL 134 #define GET_MIMGMIPMappingTable_IMPL 135 #define GET_MIMGG16MappingTable_IMPL 136 #include "AMDGPUGenSearchableTables.inc" 137 138 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 139 unsigned VDataDwords, unsigned VAddrDwords) { 140 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 141 VDataDwords, VAddrDwords); 142 return Info ? Info->Opcode : -1; 143 } 144 145 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 146 const MIMGInfo *Info = getMIMGInfo(Opc); 147 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 148 } 149 150 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 151 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 152 const MIMGInfo *NewInfo = 153 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 154 NewChannels, OrigInfo->VAddrDwords); 155 return NewInfo ? NewInfo->Opcode : -1; 156 } 157 158 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, 159 const MIMGDimInfo *Dim, bool IsA16, 160 bool IsG16Supported) { 161 unsigned AddrWords = BaseOpcode->NumExtraArgs; 162 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) + 163 (BaseOpcode->LodOrClampOrMip ? 1 : 0); 164 if (IsA16) 165 AddrWords += divideCeil(AddrComponents, 2); 166 else 167 AddrWords += AddrComponents; 168 169 // Note: For subtargets that support A16 but not G16, enabling A16 also 170 // enables 16 bit gradients. 171 // For subtargets that support A16 (operand) and G16 (done with a different 172 // instruction encoding), they are independent. 173 174 if (BaseOpcode->Gradients) { 175 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16) 176 // There are two gradients per coordinate, we pack them separately. 177 // For the 3d case, 178 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv) 179 AddrWords += alignTo<2>(Dim->NumGradients / 2); 180 else 181 AddrWords += Dim->NumGradients; 182 } 183 return AddrWords; 184 } 185 186 struct MUBUFInfo { 187 uint16_t Opcode; 188 uint16_t BaseOpcode; 189 uint8_t elements; 190 bool has_vaddr; 191 bool has_srsrc; 192 bool has_soffset; 193 bool IsBufferInv; 194 }; 195 196 struct MTBUFInfo { 197 uint16_t Opcode; 198 uint16_t BaseOpcode; 199 uint8_t elements; 200 bool has_vaddr; 201 bool has_srsrc; 202 bool has_soffset; 203 }; 204 205 struct SMInfo { 206 uint16_t Opcode; 207 bool IsBuffer; 208 }; 209 210 struct VOPInfo { 211 uint16_t Opcode; 212 bool IsSingle; 213 }; 214 215 #define GET_MTBUFInfoTable_DECL 216 #define GET_MTBUFInfoTable_IMPL 217 #define GET_MUBUFInfoTable_DECL 218 #define GET_MUBUFInfoTable_IMPL 219 #define GET_SMInfoTable_DECL 220 #define GET_SMInfoTable_IMPL 221 #define GET_VOP1InfoTable_DECL 222 #define GET_VOP1InfoTable_IMPL 223 #define GET_VOP2InfoTable_DECL 224 #define GET_VOP2InfoTable_IMPL 225 #define GET_VOP3InfoTable_DECL 226 #define GET_VOP3InfoTable_IMPL 227 #include "AMDGPUGenSearchableTables.inc" 228 229 int getMTBUFBaseOpcode(unsigned Opc) { 230 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 231 return Info ? Info->BaseOpcode : -1; 232 } 233 234 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 235 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 236 return Info ? Info->Opcode : -1; 237 } 238 239 int getMTBUFElements(unsigned Opc) { 240 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 241 return Info ? Info->elements : 0; 242 } 243 244 bool getMTBUFHasVAddr(unsigned Opc) { 245 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 246 return Info ? Info->has_vaddr : false; 247 } 248 249 bool getMTBUFHasSrsrc(unsigned Opc) { 250 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 251 return Info ? Info->has_srsrc : false; 252 } 253 254 bool getMTBUFHasSoffset(unsigned Opc) { 255 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 256 return Info ? Info->has_soffset : false; 257 } 258 259 int getMUBUFBaseOpcode(unsigned Opc) { 260 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 261 return Info ? Info->BaseOpcode : -1; 262 } 263 264 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 265 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 266 return Info ? Info->Opcode : -1; 267 } 268 269 int getMUBUFElements(unsigned Opc) { 270 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 271 return Info ? Info->elements : 0; 272 } 273 274 bool getMUBUFHasVAddr(unsigned Opc) { 275 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 276 return Info ? Info->has_vaddr : false; 277 } 278 279 bool getMUBUFHasSrsrc(unsigned Opc) { 280 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 281 return Info ? Info->has_srsrc : false; 282 } 283 284 bool getMUBUFHasSoffset(unsigned Opc) { 285 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 286 return Info ? Info->has_soffset : false; 287 } 288 289 bool getMUBUFIsBufferInv(unsigned Opc) { 290 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 291 return Info ? Info->IsBufferInv : false; 292 } 293 294 bool getSMEMIsBuffer(unsigned Opc) { 295 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 296 return Info ? Info->IsBuffer : false; 297 } 298 299 bool getVOP1IsSingle(unsigned Opc) { 300 const VOPInfo *Info = getVOP1OpcodeHelper(Opc); 301 return Info ? Info->IsSingle : false; 302 } 303 304 bool getVOP2IsSingle(unsigned Opc) { 305 const VOPInfo *Info = getVOP2OpcodeHelper(Opc); 306 return Info ? Info->IsSingle : false; 307 } 308 309 bool getVOP3IsSingle(unsigned Opc) { 310 const VOPInfo *Info = getVOP3OpcodeHelper(Opc); 311 return Info ? Info->IsSingle : false; 312 } 313 314 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 315 // header files, so we need to wrap it in a function that takes unsigned 316 // instead. 317 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 318 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 319 } 320 321 namespace IsaInfo { 322 323 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI) 324 : STI(STI), XnackSetting(TargetIDSetting::Any), 325 SramEccSetting(TargetIDSetting::Any) { 326 if (!STI.getFeatureBits().test(FeatureSupportsXNACK)) 327 XnackSetting = TargetIDSetting::Unsupported; 328 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC)) 329 SramEccSetting = TargetIDSetting::Unsupported; 330 } 331 332 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) { 333 // Check if xnack or sramecc is explicitly enabled or disabled. In the 334 // absence of the target features we assume we must generate code that can run 335 // in any environment. 336 SubtargetFeatures Features(FS); 337 Optional<bool> XnackRequested; 338 Optional<bool> SramEccRequested; 339 340 for (const std::string &Feature : Features.getFeatures()) { 341 if (Feature == "+xnack") 342 XnackRequested = true; 343 else if (Feature == "-xnack") 344 XnackRequested = false; 345 else if (Feature == "+sramecc") 346 SramEccRequested = true; 347 else if (Feature == "-sramecc") 348 SramEccRequested = false; 349 } 350 351 bool XnackSupported = isXnackSupported(); 352 bool SramEccSupported = isSramEccSupported(); 353 354 if (XnackRequested) { 355 if (XnackSupported) { 356 XnackSetting = 357 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off; 358 } else { 359 // If a specific xnack setting was requested and this GPU does not support 360 // xnack emit a warning. Setting will remain set to "Unsupported". 361 if (*XnackRequested) { 362 errs() << "warning: xnack 'On' was requested for a processor that does " 363 "not support it!\n"; 364 } else { 365 errs() << "warning: xnack 'Off' was requested for a processor that " 366 "does not support it!\n"; 367 } 368 } 369 } 370 371 if (SramEccRequested) { 372 if (SramEccSupported) { 373 SramEccSetting = 374 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off; 375 } else { 376 // If a specific sramecc setting was requested and this GPU does not 377 // support sramecc emit a warning. Setting will remain set to 378 // "Unsupported". 379 if (*SramEccRequested) { 380 errs() << "warning: sramecc 'On' was requested for a processor that " 381 "does not support it!\n"; 382 } else { 383 errs() << "warning: sramecc 'Off' was requested for a processor that " 384 "does not support it!\n"; 385 } 386 } 387 } 388 } 389 390 static TargetIDSetting 391 getTargetIDSettingFromFeatureString(StringRef FeatureString) { 392 if (FeatureString.endswith("-")) 393 return TargetIDSetting::Off; 394 if (FeatureString.endswith("+")) 395 return TargetIDSetting::On; 396 397 llvm_unreachable("Malformed feature string"); 398 } 399 400 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) { 401 SmallVector<StringRef, 3> TargetIDSplit; 402 TargetID.split(TargetIDSplit, ':'); 403 404 for (const auto &FeatureString : TargetIDSplit) { 405 if (FeatureString.startswith("xnack")) 406 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString); 407 if (FeatureString.startswith("sramecc")) 408 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString); 409 } 410 } 411 412 std::string AMDGPUTargetID::toString() const { 413 std::string StringRep = ""; 414 raw_string_ostream StreamRep(StringRep); 415 416 auto TargetTriple = STI.getTargetTriple(); 417 auto Version = getIsaVersion(STI.getCPU()); 418 419 StreamRep << TargetTriple.getArchName() << '-' 420 << TargetTriple.getVendorName() << '-' 421 << TargetTriple.getOSName() << '-' 422 << TargetTriple.getEnvironmentName() << '-'; 423 424 std::string Processor = ""; 425 // TODO: Following else statement is present here because we used various 426 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803'). 427 // Remove once all aliases are removed from GCNProcessors.td. 428 if (Version.Major >= 9) 429 Processor = STI.getCPU().str(); 430 else 431 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) + 432 Twine(Version.Stepping)) 433 .str(); 434 435 std::string Features = ""; 436 if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) { 437 switch (*HsaAbiVersion) { 438 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 439 // Code object V2 only supported specific processors and had fixed 440 // settings for the XNACK. 441 if (Processor == "gfx600") { 442 } else if (Processor == "gfx601") { 443 } else if (Processor == "gfx602") { 444 } else if (Processor == "gfx700") { 445 } else if (Processor == "gfx701") { 446 } else if (Processor == "gfx702") { 447 } else if (Processor == "gfx703") { 448 } else if (Processor == "gfx704") { 449 } else if (Processor == "gfx705") { 450 } else if (Processor == "gfx801") { 451 if (!isXnackOnOrAny()) 452 report_fatal_error( 453 "AMD GPU code object V2 does not support processor " + Processor + 454 " without XNACK"); 455 } else if (Processor == "gfx802") { 456 } else if (Processor == "gfx803") { 457 } else if (Processor == "gfx805") { 458 } else if (Processor == "gfx810") { 459 if (!isXnackOnOrAny()) 460 report_fatal_error( 461 "AMD GPU code object V2 does not support processor " + Processor + 462 " without XNACK"); 463 } else if (Processor == "gfx900") { 464 if (isXnackOnOrAny()) 465 Processor = "gfx901"; 466 } else if (Processor == "gfx902") { 467 if (isXnackOnOrAny()) 468 Processor = "gfx903"; 469 } else if (Processor == "gfx904") { 470 if (isXnackOnOrAny()) 471 Processor = "gfx905"; 472 } else if (Processor == "gfx906") { 473 if (isXnackOnOrAny()) 474 Processor = "gfx907"; 475 } else if (Processor == "gfx90c") { 476 if (isXnackOnOrAny()) 477 report_fatal_error( 478 "AMD GPU code object V2 does not support processor " + Processor + 479 " with XNACK being ON or ANY"); 480 } else { 481 report_fatal_error( 482 "AMD GPU code object V2 does not support processor " + Processor); 483 } 484 break; 485 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 486 // xnack. 487 if (isXnackOnOrAny()) 488 Features += "+xnack"; 489 // In code object v2 and v3, "sramecc" feature was spelled with a 490 // hyphen ("sram-ecc"). 491 if (isSramEccOnOrAny()) 492 Features += "+sram-ecc"; 493 break; 494 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 495 // sramecc. 496 if (getSramEccSetting() == TargetIDSetting::Off) 497 Features += ":sramecc-"; 498 else if (getSramEccSetting() == TargetIDSetting::On) 499 Features += ":sramecc+"; 500 // xnack. 501 if (getXnackSetting() == TargetIDSetting::Off) 502 Features += ":xnack-"; 503 else if (getXnackSetting() == TargetIDSetting::On) 504 Features += ":xnack+"; 505 break; 506 default: 507 break; 508 } 509 } 510 511 StreamRep << Processor << Features; 512 513 StreamRep.flush(); 514 return StringRep; 515 } 516 517 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 518 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 519 return 16; 520 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 521 return 32; 522 523 return 64; 524 } 525 526 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 527 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 528 return 32768; 529 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 530 return 65536; 531 532 return 0; 533 } 534 535 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 536 // "Per CU" really means "per whatever functional block the waves of a 537 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 538 // two SIMDs. 539 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 540 return 2; 541 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 542 // two CUs, so a total of four SIMDs. 543 return 4; 544 } 545 546 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 547 unsigned FlatWorkGroupSize) { 548 assert(FlatWorkGroupSize != 0); 549 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 550 return 8; 551 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 552 if (N == 1) 553 return 40; 554 N = 40 / N; 555 return std::min(N, 16u); 556 } 557 558 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 559 return 1; 560 } 561 562 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 563 // FIXME: Need to take scratch memory into account. 564 if (isGFX90A(*STI)) 565 return 8; 566 if (!isGFX10Plus(*STI)) 567 return 10; 568 return hasGFX10_3Insts(*STI) ? 16 : 20; 569 } 570 571 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 572 unsigned FlatWorkGroupSize) { 573 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 574 getEUsPerCU(STI)); 575 } 576 577 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 578 return 1; 579 } 580 581 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 582 // Some subtargets allow encoding 2048, but this isn't tested or supported. 583 return 1024; 584 } 585 586 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 587 unsigned FlatWorkGroupSize) { 588 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 589 } 590 591 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 592 IsaVersion Version = getIsaVersion(STI->getCPU()); 593 if (Version.Major >= 10) 594 return getAddressableNumSGPRs(STI); 595 if (Version.Major >= 8) 596 return 16; 597 return 8; 598 } 599 600 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 601 return 8; 602 } 603 604 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 605 IsaVersion Version = getIsaVersion(STI->getCPU()); 606 if (Version.Major >= 8) 607 return 800; 608 return 512; 609 } 610 611 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 612 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 613 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 614 615 IsaVersion Version = getIsaVersion(STI->getCPU()); 616 if (Version.Major >= 10) 617 return 106; 618 if (Version.Major >= 8) 619 return 102; 620 return 104; 621 } 622 623 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 624 assert(WavesPerEU != 0); 625 626 IsaVersion Version = getIsaVersion(STI->getCPU()); 627 if (Version.Major >= 10) 628 return 0; 629 630 if (WavesPerEU >= getMaxWavesPerEU(STI)) 631 return 0; 632 633 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 634 if (STI->getFeatureBits().test(FeatureTrapHandler)) 635 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 636 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 637 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 638 } 639 640 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 641 bool Addressable) { 642 assert(WavesPerEU != 0); 643 644 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 645 IsaVersion Version = getIsaVersion(STI->getCPU()); 646 if (Version.Major >= 10) 647 return Addressable ? AddressableNumSGPRs : 108; 648 if (Version.Major >= 8 && !Addressable) 649 AddressableNumSGPRs = 112; 650 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 651 if (STI->getFeatureBits().test(FeatureTrapHandler)) 652 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 653 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 654 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 655 } 656 657 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 658 bool FlatScrUsed, bool XNACKUsed) { 659 unsigned ExtraSGPRs = 0; 660 if (VCCUsed) 661 ExtraSGPRs = 2; 662 663 IsaVersion Version = getIsaVersion(STI->getCPU()); 664 if (Version.Major >= 10) 665 return ExtraSGPRs; 666 667 if (Version.Major < 8) { 668 if (FlatScrUsed) 669 ExtraSGPRs = 4; 670 } else { 671 if (XNACKUsed) 672 ExtraSGPRs = 4; 673 674 if (FlatScrUsed) 675 ExtraSGPRs = 6; 676 } 677 678 return ExtraSGPRs; 679 } 680 681 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 682 bool FlatScrUsed) { 683 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 684 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 685 } 686 687 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 688 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 689 // SGPRBlocks is actual number of SGPR blocks minus 1. 690 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 691 } 692 693 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 694 Optional<bool> EnableWavefrontSize32) { 695 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 696 return 8; 697 698 bool IsWave32 = EnableWavefrontSize32 ? 699 *EnableWavefrontSize32 : 700 STI->getFeatureBits().test(FeatureWavefrontSize32); 701 702 if (hasGFX10_3Insts(*STI)) 703 return IsWave32 ? 16 : 8; 704 705 return IsWave32 ? 8 : 4; 706 } 707 708 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 709 Optional<bool> EnableWavefrontSize32) { 710 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 711 return 8; 712 713 bool IsWave32 = EnableWavefrontSize32 ? 714 *EnableWavefrontSize32 : 715 STI->getFeatureBits().test(FeatureWavefrontSize32); 716 717 return IsWave32 ? 8 : 4; 718 } 719 720 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 721 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 722 return 512; 723 if (!isGFX10Plus(*STI)) 724 return 256; 725 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 726 } 727 728 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 729 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 730 return 512; 731 return 256; 732 } 733 734 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 735 assert(WavesPerEU != 0); 736 737 if (WavesPerEU >= getMaxWavesPerEU(STI)) 738 return 0; 739 unsigned MinNumVGPRs = 740 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 741 getVGPRAllocGranule(STI)) + 1; 742 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 743 } 744 745 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 746 assert(WavesPerEU != 0); 747 748 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 749 getVGPRAllocGranule(STI)); 750 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 751 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 752 } 753 754 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 755 Optional<bool> EnableWavefrontSize32) { 756 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 757 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 758 // VGPRBlocks is actual number of VGPR blocks minus 1. 759 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 760 } 761 762 } // end namespace IsaInfo 763 764 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 765 const MCSubtargetInfo *STI) { 766 IsaVersion Version = getIsaVersion(STI->getCPU()); 767 768 memset(&Header, 0, sizeof(Header)); 769 770 Header.amd_kernel_code_version_major = 1; 771 Header.amd_kernel_code_version_minor = 2; 772 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 773 Header.amd_machine_version_major = Version.Major; 774 Header.amd_machine_version_minor = Version.Minor; 775 Header.amd_machine_version_stepping = Version.Stepping; 776 Header.kernel_code_entry_byte_offset = sizeof(Header); 777 Header.wavefront_size = 6; 778 779 // If the code object does not support indirect functions, then the value must 780 // be 0xffffffff. 781 Header.call_convention = -1; 782 783 // These alignment values are specified in powers of two, so alignment = 784 // 2^n. The minimum alignment is 2^4 = 16. 785 Header.kernarg_segment_alignment = 4; 786 Header.group_segment_alignment = 4; 787 Header.private_segment_alignment = 4; 788 789 if (Version.Major >= 10) { 790 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 791 Header.wavefront_size = 5; 792 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 793 } 794 Header.compute_pgm_resource_registers |= 795 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 796 S_00B848_MEM_ORDERED(1); 797 } 798 } 799 800 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 801 const MCSubtargetInfo *STI) { 802 IsaVersion Version = getIsaVersion(STI->getCPU()); 803 804 amdhsa::kernel_descriptor_t KD; 805 memset(&KD, 0, sizeof(KD)); 806 807 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 808 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 809 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 810 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 811 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 812 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 813 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 814 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 815 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 816 if (Version.Major >= 10) { 817 AMDHSA_BITS_SET(KD.kernel_code_properties, 818 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 819 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 820 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 821 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 822 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 823 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 824 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 825 } 826 if (AMDGPU::isGFX90A(*STI)) { 827 AMDHSA_BITS_SET(KD.compute_pgm_rsrc3, 828 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, 829 STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0); 830 } 831 return KD; 832 } 833 834 bool isGroupSegment(const GlobalValue *GV) { 835 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 836 } 837 838 bool isGlobalSegment(const GlobalValue *GV) { 839 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 840 } 841 842 bool isReadOnlySegment(const GlobalValue *GV) { 843 unsigned AS = GV->getAddressSpace(); 844 return AS == AMDGPUAS::CONSTANT_ADDRESS || 845 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 846 } 847 848 bool shouldEmitConstantsToTextSection(const Triple &TT) { 849 return TT.getArch() == Triple::r600; 850 } 851 852 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 853 Attribute A = F.getFnAttribute(Name); 854 int Result = Default; 855 856 if (A.isStringAttribute()) { 857 StringRef Str = A.getValueAsString(); 858 if (Str.getAsInteger(0, Result)) { 859 LLVMContext &Ctx = F.getContext(); 860 Ctx.emitError("can't parse integer attribute " + Name); 861 } 862 } 863 864 return Result; 865 } 866 867 std::pair<int, int> getIntegerPairAttribute(const Function &F, 868 StringRef Name, 869 std::pair<int, int> Default, 870 bool OnlyFirstRequired) { 871 Attribute A = F.getFnAttribute(Name); 872 if (!A.isStringAttribute()) 873 return Default; 874 875 LLVMContext &Ctx = F.getContext(); 876 std::pair<int, int> Ints = Default; 877 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 878 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 879 Ctx.emitError("can't parse first integer attribute " + Name); 880 return Default; 881 } 882 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 883 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 884 Ctx.emitError("can't parse second integer attribute " + Name); 885 return Default; 886 } 887 } 888 889 return Ints; 890 } 891 892 unsigned getVmcntBitMask(const IsaVersion &Version) { 893 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 894 if (Version.Major < 9) 895 return VmcntLo; 896 897 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 898 return VmcntLo | VmcntHi; 899 } 900 901 unsigned getExpcntBitMask(const IsaVersion &Version) { 902 return (1 << getExpcntBitWidth()) - 1; 903 } 904 905 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 906 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 907 } 908 909 unsigned getWaitcntBitMask(const IsaVersion &Version) { 910 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 911 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 912 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 913 getLgkmcntBitWidth(Version.Major)); 914 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 915 if (Version.Major < 9) 916 return Waitcnt; 917 918 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 919 return Waitcnt | VmcntHi; 920 } 921 922 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 923 unsigned VmcntLo = 924 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 925 if (Version.Major < 9) 926 return VmcntLo; 927 928 unsigned VmcntHi = 929 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 930 VmcntHi <<= getVmcntBitWidthLo(); 931 return VmcntLo | VmcntHi; 932 } 933 934 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 935 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 936 } 937 938 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 939 return unpackBits(Waitcnt, getLgkmcntBitShift(), 940 getLgkmcntBitWidth(Version.Major)); 941 } 942 943 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 944 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 945 Vmcnt = decodeVmcnt(Version, Waitcnt); 946 Expcnt = decodeExpcnt(Version, Waitcnt); 947 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 948 } 949 950 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 951 Waitcnt Decoded; 952 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 953 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 954 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 955 return Decoded; 956 } 957 958 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 959 unsigned Vmcnt) { 960 Waitcnt = 961 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 962 if (Version.Major < 9) 963 return Waitcnt; 964 965 Vmcnt >>= getVmcntBitWidthLo(); 966 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 967 } 968 969 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 970 unsigned Expcnt) { 971 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 972 } 973 974 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 975 unsigned Lgkmcnt) { 976 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 977 getLgkmcntBitWidth(Version.Major)); 978 } 979 980 unsigned encodeWaitcnt(const IsaVersion &Version, 981 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 982 unsigned Waitcnt = getWaitcntBitMask(Version); 983 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 984 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 985 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 986 return Waitcnt; 987 } 988 989 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 990 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 991 } 992 993 //===----------------------------------------------------------------------===// 994 // hwreg 995 //===----------------------------------------------------------------------===// 996 997 namespace Hwreg { 998 999 int64_t getHwregId(const StringRef Name) { 1000 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 1001 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 1002 return Id; 1003 } 1004 return ID_UNKNOWN_; 1005 } 1006 1007 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 1008 if (isSI(STI) || isCI(STI) || isVI(STI)) 1009 return ID_SYMBOLIC_FIRST_GFX9_; 1010 else if (isGFX9(STI)) 1011 return ID_SYMBOLIC_FIRST_GFX10_; 1012 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 1013 return ID_SYMBOLIC_FIRST_GFX1030_; 1014 else 1015 return ID_SYMBOLIC_LAST_; 1016 } 1017 1018 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 1019 return 1020 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 1021 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 1022 } 1023 1024 bool isValidHwreg(int64_t Id) { 1025 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 1026 } 1027 1028 bool isValidHwregOffset(int64_t Offset) { 1029 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 1030 } 1031 1032 bool isValidHwregWidth(int64_t Width) { 1033 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 1034 } 1035 1036 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 1037 return (Id << ID_SHIFT_) | 1038 (Offset << OFFSET_SHIFT_) | 1039 ((Width - 1) << WIDTH_M1_SHIFT_); 1040 } 1041 1042 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 1043 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 1044 } 1045 1046 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 1047 Id = (Val & ID_MASK_) >> ID_SHIFT_; 1048 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 1049 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 1050 } 1051 1052 } // namespace Hwreg 1053 1054 //===----------------------------------------------------------------------===// 1055 // exp tgt 1056 //===----------------------------------------------------------------------===// 1057 1058 namespace Exp { 1059 1060 struct ExpTgt { 1061 StringLiteral Name; 1062 unsigned Tgt; 1063 unsigned MaxIndex; 1064 }; 1065 1066 static constexpr ExpTgt ExpTgtInfo[] = { 1067 {{"null"}, ET_NULL, ET_NULL_MAX_IDX}, 1068 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX}, 1069 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX}, 1070 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX}, 1071 {{"pos"}, ET_POS0, ET_POS_MAX_IDX}, 1072 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX}, 1073 }; 1074 1075 bool getTgtName(unsigned Id, StringRef &Name, int &Index) { 1076 for (const ExpTgt &Val : ExpTgtInfo) { 1077 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) { 1078 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt); 1079 Name = Val.Name; 1080 return true; 1081 } 1082 } 1083 return false; 1084 } 1085 1086 unsigned getTgtId(const StringRef Name) { 1087 1088 for (const ExpTgt &Val : ExpTgtInfo) { 1089 if (Val.MaxIndex == 0 && Name == Val.Name) 1090 return Val.Tgt; 1091 1092 if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) { 1093 StringRef Suffix = Name.drop_front(Val.Name.size()); 1094 1095 unsigned Id; 1096 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex) 1097 return ET_INVALID; 1098 1099 // Disable leading zeroes 1100 if (Suffix.size() > 1 && Suffix[0] == '0') 1101 return ET_INVALID; 1102 1103 return Val.Tgt + Id; 1104 } 1105 } 1106 return ET_INVALID; 1107 } 1108 1109 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) { 1110 return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI); 1111 } 1112 1113 } // namespace Exp 1114 1115 //===----------------------------------------------------------------------===// 1116 // MTBUF Format 1117 //===----------------------------------------------------------------------===// 1118 1119 namespace MTBUFFormat { 1120 1121 int64_t getDfmt(const StringRef Name) { 1122 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 1123 if (Name == DfmtSymbolic[Id]) 1124 return Id; 1125 } 1126 return DFMT_UNDEF; 1127 } 1128 1129 StringRef getDfmtName(unsigned Id) { 1130 assert(Id <= DFMT_MAX); 1131 return DfmtSymbolic[Id]; 1132 } 1133 1134 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 1135 if (isSI(STI) || isCI(STI)) 1136 return NfmtSymbolicSICI; 1137 if (isVI(STI) || isGFX9(STI)) 1138 return NfmtSymbolicVI; 1139 return NfmtSymbolicGFX10; 1140 } 1141 1142 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 1143 auto lookupTable = getNfmtLookupTable(STI); 1144 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 1145 if (Name == lookupTable[Id]) 1146 return Id; 1147 } 1148 return NFMT_UNDEF; 1149 } 1150 1151 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 1152 assert(Id <= NFMT_MAX); 1153 return getNfmtLookupTable(STI)[Id]; 1154 } 1155 1156 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1157 unsigned Dfmt; 1158 unsigned Nfmt; 1159 decodeDfmtNfmt(Id, Dfmt, Nfmt); 1160 return isValidNfmt(Nfmt, STI); 1161 } 1162 1163 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1164 return !getNfmtName(Id, STI).empty(); 1165 } 1166 1167 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 1168 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 1169 } 1170 1171 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 1172 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 1173 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 1174 } 1175 1176 int64_t getUnifiedFormat(const StringRef Name) { 1177 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1178 if (Name == UfmtSymbolic[Id]) 1179 return Id; 1180 } 1181 return UFMT_UNDEF; 1182 } 1183 1184 StringRef getUnifiedFormatName(unsigned Id) { 1185 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 1186 } 1187 1188 bool isValidUnifiedFormat(unsigned Id) { 1189 return Id <= UFMT_LAST; 1190 } 1191 1192 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 1193 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 1194 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1195 if (Fmt == DfmtNfmt2UFmt[Id]) 1196 return Id; 1197 } 1198 return UFMT_UNDEF; 1199 } 1200 1201 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 1202 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 1203 } 1204 1205 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 1206 if (isGFX10Plus(STI)) 1207 return UFMT_DEFAULT; 1208 return DFMT_NFMT_DEFAULT; 1209 } 1210 1211 } // namespace MTBUFFormat 1212 1213 //===----------------------------------------------------------------------===// 1214 // SendMsg 1215 //===----------------------------------------------------------------------===// 1216 1217 namespace SendMsg { 1218 1219 int64_t getMsgId(const StringRef Name) { 1220 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 1221 if (IdSymbolic[i] && Name == IdSymbolic[i]) 1222 return i; 1223 } 1224 return ID_UNKNOWN_; 1225 } 1226 1227 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 1228 if (Strict) { 1229 switch (MsgId) { 1230 case ID_SAVEWAVE: 1231 return isVI(STI) || isGFX9Plus(STI); 1232 case ID_STALL_WAVE_GEN: 1233 case ID_HALT_WAVES: 1234 case ID_ORDERED_PS_DONE: 1235 case ID_GS_ALLOC_REQ: 1236 case ID_GET_DOORBELL: 1237 return isGFX9Plus(STI); 1238 case ID_EARLY_PRIM_DEALLOC: 1239 return isGFX9(STI); 1240 case ID_GET_DDID: 1241 return isGFX10Plus(STI); 1242 default: 1243 return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId]; 1244 } 1245 } else { 1246 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 1247 } 1248 } 1249 1250 StringRef getMsgName(int64_t MsgId) { 1251 assert(0 <= MsgId && MsgId < ID_GAPS_LAST_); 1252 return IdSymbolic[MsgId]; 1253 } 1254 1255 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 1256 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 1257 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 1258 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 1259 for (int i = F; i < L; ++i) { 1260 if (Name == S[i]) { 1261 return i; 1262 } 1263 } 1264 return OP_UNKNOWN_; 1265 } 1266 1267 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, 1268 bool Strict) { 1269 assert(isValidMsgId(MsgId, STI, Strict)); 1270 1271 if (!Strict) 1272 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 1273 1274 switch(MsgId) 1275 { 1276 case ID_GS: 1277 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 1278 case ID_GS_DONE: 1279 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 1280 case ID_SYSMSG: 1281 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 1282 default: 1283 return OpId == OP_NONE_; 1284 } 1285 } 1286 1287 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 1288 assert(msgRequiresOp(MsgId)); 1289 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 1290 } 1291 1292 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, 1293 const MCSubtargetInfo &STI, bool Strict) { 1294 assert(isValidMsgOp(MsgId, OpId, STI, Strict)); 1295 1296 if (!Strict) 1297 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 1298 1299 switch(MsgId) 1300 { 1301 case ID_GS: 1302 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 1303 case ID_GS_DONE: 1304 return (OpId == OP_GS_NOP)? 1305 (StreamId == STREAM_ID_NONE_) : 1306 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 1307 default: 1308 return StreamId == STREAM_ID_NONE_; 1309 } 1310 } 1311 1312 bool msgRequiresOp(int64_t MsgId) { 1313 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 1314 } 1315 1316 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 1317 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 1318 } 1319 1320 void decodeMsg(unsigned Val, 1321 uint16_t &MsgId, 1322 uint16_t &OpId, 1323 uint16_t &StreamId) { 1324 MsgId = Val & ID_MASK_; 1325 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 1326 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 1327 } 1328 1329 uint64_t encodeMsg(uint64_t MsgId, 1330 uint64_t OpId, 1331 uint64_t StreamId) { 1332 return (MsgId << ID_SHIFT_) | 1333 (OpId << OP_SHIFT_) | 1334 (StreamId << STREAM_ID_SHIFT_); 1335 } 1336 1337 } // namespace SendMsg 1338 1339 //===----------------------------------------------------------------------===// 1340 // 1341 //===----------------------------------------------------------------------===// 1342 1343 unsigned getInitialPSInputAddr(const Function &F) { 1344 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1345 } 1346 1347 bool getHasColorExport(const Function &F) { 1348 // As a safe default always respond as if PS has color exports. 1349 return getIntegerAttribute( 1350 F, "amdgpu-color-export", 1351 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0; 1352 } 1353 1354 bool getHasDepthExport(const Function &F) { 1355 return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0; 1356 } 1357 1358 bool isShader(CallingConv::ID cc) { 1359 switch(cc) { 1360 case CallingConv::AMDGPU_VS: 1361 case CallingConv::AMDGPU_LS: 1362 case CallingConv::AMDGPU_HS: 1363 case CallingConv::AMDGPU_ES: 1364 case CallingConv::AMDGPU_GS: 1365 case CallingConv::AMDGPU_PS: 1366 case CallingConv::AMDGPU_CS: 1367 return true; 1368 default: 1369 return false; 1370 } 1371 } 1372 1373 bool isGraphics(CallingConv::ID cc) { 1374 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1375 } 1376 1377 bool isCompute(CallingConv::ID cc) { 1378 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1379 } 1380 1381 bool isEntryFunctionCC(CallingConv::ID CC) { 1382 switch (CC) { 1383 case CallingConv::AMDGPU_KERNEL: 1384 case CallingConv::SPIR_KERNEL: 1385 case CallingConv::AMDGPU_VS: 1386 case CallingConv::AMDGPU_GS: 1387 case CallingConv::AMDGPU_PS: 1388 case CallingConv::AMDGPU_CS: 1389 case CallingConv::AMDGPU_ES: 1390 case CallingConv::AMDGPU_HS: 1391 case CallingConv::AMDGPU_LS: 1392 return true; 1393 default: 1394 return false; 1395 } 1396 } 1397 1398 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1399 switch (CC) { 1400 case CallingConv::AMDGPU_Gfx: 1401 return true; 1402 default: 1403 return isEntryFunctionCC(CC); 1404 } 1405 } 1406 1407 bool hasXNACK(const MCSubtargetInfo &STI) { 1408 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1409 } 1410 1411 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1412 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1413 } 1414 1415 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1416 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1417 } 1418 1419 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1420 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1421 } 1422 1423 bool hasG16(const MCSubtargetInfo &STI) { 1424 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1425 } 1426 1427 bool hasPackedD16(const MCSubtargetInfo &STI) { 1428 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1429 } 1430 1431 bool isSI(const MCSubtargetInfo &STI) { 1432 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1433 } 1434 1435 bool isCI(const MCSubtargetInfo &STI) { 1436 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1437 } 1438 1439 bool isVI(const MCSubtargetInfo &STI) { 1440 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1441 } 1442 1443 bool isGFX9(const MCSubtargetInfo &STI) { 1444 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1445 } 1446 1447 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1448 return isGFX9(STI) || isGFX10Plus(STI); 1449 } 1450 1451 bool isGFX10(const MCSubtargetInfo &STI) { 1452 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1453 } 1454 1455 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1456 1457 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1458 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1459 } 1460 1461 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) { 1462 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding]; 1463 } 1464 1465 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1466 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1467 } 1468 1469 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1470 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1471 } 1472 1473 bool isGFX90A(const MCSubtargetInfo &STI) { 1474 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1475 } 1476 1477 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) { 1478 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1479 } 1480 1481 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1482 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1483 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1484 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1485 Reg == AMDGPU::SCC; 1486 } 1487 1488 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1489 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1490 if (*R == Reg1) return true; 1491 } 1492 return false; 1493 } 1494 1495 #define MAP_REG2REG \ 1496 using namespace AMDGPU; \ 1497 switch(Reg) { \ 1498 default: return Reg; \ 1499 CASE_CI_VI(FLAT_SCR) \ 1500 CASE_CI_VI(FLAT_SCR_LO) \ 1501 CASE_CI_VI(FLAT_SCR_HI) \ 1502 CASE_VI_GFX9PLUS(TTMP0) \ 1503 CASE_VI_GFX9PLUS(TTMP1) \ 1504 CASE_VI_GFX9PLUS(TTMP2) \ 1505 CASE_VI_GFX9PLUS(TTMP3) \ 1506 CASE_VI_GFX9PLUS(TTMP4) \ 1507 CASE_VI_GFX9PLUS(TTMP5) \ 1508 CASE_VI_GFX9PLUS(TTMP6) \ 1509 CASE_VI_GFX9PLUS(TTMP7) \ 1510 CASE_VI_GFX9PLUS(TTMP8) \ 1511 CASE_VI_GFX9PLUS(TTMP9) \ 1512 CASE_VI_GFX9PLUS(TTMP10) \ 1513 CASE_VI_GFX9PLUS(TTMP11) \ 1514 CASE_VI_GFX9PLUS(TTMP12) \ 1515 CASE_VI_GFX9PLUS(TTMP13) \ 1516 CASE_VI_GFX9PLUS(TTMP14) \ 1517 CASE_VI_GFX9PLUS(TTMP15) \ 1518 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1519 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1520 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1521 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1522 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1523 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1524 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1525 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1526 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1527 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1528 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1529 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1530 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1531 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1532 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1533 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1534 } 1535 1536 #define CASE_CI_VI(node) \ 1537 assert(!isSI(STI)); \ 1538 case node: return isCI(STI) ? node##_ci : node##_vi; 1539 1540 #define CASE_VI_GFX9PLUS(node) \ 1541 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1542 1543 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1544 if (STI.getTargetTriple().getArch() == Triple::r600) 1545 return Reg; 1546 MAP_REG2REG 1547 } 1548 1549 #undef CASE_CI_VI 1550 #undef CASE_VI_GFX9PLUS 1551 1552 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1553 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1554 1555 unsigned mc2PseudoReg(unsigned Reg) { 1556 MAP_REG2REG 1557 } 1558 1559 #undef CASE_CI_VI 1560 #undef CASE_VI_GFX9PLUS 1561 #undef MAP_REG2REG 1562 1563 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1564 assert(OpNo < Desc.NumOperands); 1565 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1566 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1567 OpType <= AMDGPU::OPERAND_SRC_LAST; 1568 } 1569 1570 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1571 assert(OpNo < Desc.NumOperands); 1572 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1573 switch (OpType) { 1574 case AMDGPU::OPERAND_REG_IMM_FP32: 1575 case AMDGPU::OPERAND_REG_IMM_FP64: 1576 case AMDGPU::OPERAND_REG_IMM_FP16: 1577 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1578 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1579 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1580 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1581 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1582 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1583 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1584 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1585 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1586 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1587 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1588 case AMDGPU::OPERAND_REG_IMM_V2FP32: 1589 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 1590 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 1591 return true; 1592 default: 1593 return false; 1594 } 1595 } 1596 1597 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1598 assert(OpNo < Desc.NumOperands); 1599 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1600 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1601 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1602 } 1603 1604 // Avoid using MCRegisterClass::getSize, since that function will go away 1605 // (move from MC* level to Target* level). Return size in bits. 1606 unsigned getRegBitWidth(unsigned RCID) { 1607 switch (RCID) { 1608 case AMDGPU::VGPR_LO16RegClassID: 1609 case AMDGPU::VGPR_HI16RegClassID: 1610 case AMDGPU::SGPR_LO16RegClassID: 1611 case AMDGPU::AGPR_LO16RegClassID: 1612 return 16; 1613 case AMDGPU::SGPR_32RegClassID: 1614 case AMDGPU::VGPR_32RegClassID: 1615 case AMDGPU::VRegOrLds_32RegClassID: 1616 case AMDGPU::AGPR_32RegClassID: 1617 case AMDGPU::VS_32RegClassID: 1618 case AMDGPU::AV_32RegClassID: 1619 case AMDGPU::SReg_32RegClassID: 1620 case AMDGPU::SReg_32_XM0RegClassID: 1621 case AMDGPU::SRegOrLds_32RegClassID: 1622 return 32; 1623 case AMDGPU::SGPR_64RegClassID: 1624 case AMDGPU::VS_64RegClassID: 1625 case AMDGPU::AV_64RegClassID: 1626 case AMDGPU::SReg_64RegClassID: 1627 case AMDGPU::VReg_64RegClassID: 1628 case AMDGPU::AReg_64RegClassID: 1629 case AMDGPU::SReg_64_XEXECRegClassID: 1630 case AMDGPU::VReg_64_Align2RegClassID: 1631 case AMDGPU::AReg_64_Align2RegClassID: 1632 return 64; 1633 case AMDGPU::SGPR_96RegClassID: 1634 case AMDGPU::SReg_96RegClassID: 1635 case AMDGPU::VReg_96RegClassID: 1636 case AMDGPU::AReg_96RegClassID: 1637 case AMDGPU::VReg_96_Align2RegClassID: 1638 case AMDGPU::AReg_96_Align2RegClassID: 1639 case AMDGPU::AV_96RegClassID: 1640 return 96; 1641 case AMDGPU::SGPR_128RegClassID: 1642 case AMDGPU::SReg_128RegClassID: 1643 case AMDGPU::VReg_128RegClassID: 1644 case AMDGPU::AReg_128RegClassID: 1645 case AMDGPU::VReg_128_Align2RegClassID: 1646 case AMDGPU::AReg_128_Align2RegClassID: 1647 case AMDGPU::AV_128RegClassID: 1648 return 128; 1649 case AMDGPU::SGPR_160RegClassID: 1650 case AMDGPU::SReg_160RegClassID: 1651 case AMDGPU::VReg_160RegClassID: 1652 case AMDGPU::AReg_160RegClassID: 1653 case AMDGPU::VReg_160_Align2RegClassID: 1654 case AMDGPU::AReg_160_Align2RegClassID: 1655 case AMDGPU::AV_160RegClassID: 1656 return 160; 1657 case AMDGPU::SGPR_192RegClassID: 1658 case AMDGPU::SReg_192RegClassID: 1659 case AMDGPU::VReg_192RegClassID: 1660 case AMDGPU::AReg_192RegClassID: 1661 case AMDGPU::VReg_192_Align2RegClassID: 1662 case AMDGPU::AReg_192_Align2RegClassID: 1663 return 192; 1664 case AMDGPU::SGPR_224RegClassID: 1665 case AMDGPU::SReg_224RegClassID: 1666 case AMDGPU::VReg_224RegClassID: 1667 case AMDGPU::AReg_224RegClassID: 1668 case AMDGPU::VReg_224_Align2RegClassID: 1669 case AMDGPU::AReg_224_Align2RegClassID: 1670 return 224; 1671 case AMDGPU::SGPR_256RegClassID: 1672 case AMDGPU::SReg_256RegClassID: 1673 case AMDGPU::VReg_256RegClassID: 1674 case AMDGPU::AReg_256RegClassID: 1675 case AMDGPU::VReg_256_Align2RegClassID: 1676 case AMDGPU::AReg_256_Align2RegClassID: 1677 return 256; 1678 case AMDGPU::SGPR_512RegClassID: 1679 case AMDGPU::SReg_512RegClassID: 1680 case AMDGPU::VReg_512RegClassID: 1681 case AMDGPU::AReg_512RegClassID: 1682 case AMDGPU::VReg_512_Align2RegClassID: 1683 case AMDGPU::AReg_512_Align2RegClassID: 1684 return 512; 1685 case AMDGPU::SGPR_1024RegClassID: 1686 case AMDGPU::SReg_1024RegClassID: 1687 case AMDGPU::VReg_1024RegClassID: 1688 case AMDGPU::AReg_1024RegClassID: 1689 case AMDGPU::VReg_1024_Align2RegClassID: 1690 case AMDGPU::AReg_1024_Align2RegClassID: 1691 return 1024; 1692 default: 1693 llvm_unreachable("Unexpected register class"); 1694 } 1695 } 1696 1697 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1698 return getRegBitWidth(RC.getID()); 1699 } 1700 1701 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1702 unsigned OpNo) { 1703 assert(OpNo < Desc.NumOperands); 1704 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1705 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1706 } 1707 1708 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1709 if (isInlinableIntLiteral(Literal)) 1710 return true; 1711 1712 uint64_t Val = static_cast<uint64_t>(Literal); 1713 return (Val == DoubleToBits(0.0)) || 1714 (Val == DoubleToBits(1.0)) || 1715 (Val == DoubleToBits(-1.0)) || 1716 (Val == DoubleToBits(0.5)) || 1717 (Val == DoubleToBits(-0.5)) || 1718 (Val == DoubleToBits(2.0)) || 1719 (Val == DoubleToBits(-2.0)) || 1720 (Val == DoubleToBits(4.0)) || 1721 (Val == DoubleToBits(-4.0)) || 1722 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1723 } 1724 1725 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1726 if (isInlinableIntLiteral(Literal)) 1727 return true; 1728 1729 // The actual type of the operand does not seem to matter as long 1730 // as the bits match one of the inline immediate values. For example: 1731 // 1732 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1733 // so it is a legal inline immediate. 1734 // 1735 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1736 // floating-point, so it is a legal inline immediate. 1737 1738 uint32_t Val = static_cast<uint32_t>(Literal); 1739 return (Val == FloatToBits(0.0f)) || 1740 (Val == FloatToBits(1.0f)) || 1741 (Val == FloatToBits(-1.0f)) || 1742 (Val == FloatToBits(0.5f)) || 1743 (Val == FloatToBits(-0.5f)) || 1744 (Val == FloatToBits(2.0f)) || 1745 (Val == FloatToBits(-2.0f)) || 1746 (Val == FloatToBits(4.0f)) || 1747 (Val == FloatToBits(-4.0f)) || 1748 (Val == 0x3e22f983 && HasInv2Pi); 1749 } 1750 1751 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1752 if (!HasInv2Pi) 1753 return false; 1754 1755 if (isInlinableIntLiteral(Literal)) 1756 return true; 1757 1758 uint16_t Val = static_cast<uint16_t>(Literal); 1759 return Val == 0x3C00 || // 1.0 1760 Val == 0xBC00 || // -1.0 1761 Val == 0x3800 || // 0.5 1762 Val == 0xB800 || // -0.5 1763 Val == 0x4000 || // 2.0 1764 Val == 0xC000 || // -2.0 1765 Val == 0x4400 || // 4.0 1766 Val == 0xC400 || // -4.0 1767 Val == 0x3118; // 1/2pi 1768 } 1769 1770 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1771 assert(HasInv2Pi); 1772 1773 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1774 int16_t Trunc = static_cast<int16_t>(Literal); 1775 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1776 } 1777 if (!(Literal & 0xffff)) 1778 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1779 1780 int16_t Lo16 = static_cast<int16_t>(Literal); 1781 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1782 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1783 } 1784 1785 bool isInlinableIntLiteralV216(int32_t Literal) { 1786 int16_t Lo16 = static_cast<int16_t>(Literal); 1787 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1788 return isInlinableIntLiteral(Lo16); 1789 1790 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1791 if (!(Literal & 0xffff)) 1792 return isInlinableIntLiteral(Hi16); 1793 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1794 } 1795 1796 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1797 assert(HasInv2Pi); 1798 1799 int16_t Lo16 = static_cast<int16_t>(Literal); 1800 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1801 return true; 1802 1803 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1804 if (!(Literal & 0xffff)) 1805 return true; 1806 return Lo16 == Hi16; 1807 } 1808 1809 bool isArgPassedInSGPR(const Argument *A) { 1810 const Function *F = A->getParent(); 1811 1812 // Arguments to compute shaders are never a source of divergence. 1813 CallingConv::ID CC = F->getCallingConv(); 1814 switch (CC) { 1815 case CallingConv::AMDGPU_KERNEL: 1816 case CallingConv::SPIR_KERNEL: 1817 return true; 1818 case CallingConv::AMDGPU_VS: 1819 case CallingConv::AMDGPU_LS: 1820 case CallingConv::AMDGPU_HS: 1821 case CallingConv::AMDGPU_ES: 1822 case CallingConv::AMDGPU_GS: 1823 case CallingConv::AMDGPU_PS: 1824 case CallingConv::AMDGPU_CS: 1825 case CallingConv::AMDGPU_Gfx: 1826 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1827 // Everything else is in VGPRs. 1828 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1829 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1830 default: 1831 // TODO: Should calls support inreg for SGPR inputs? 1832 return false; 1833 } 1834 } 1835 1836 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1837 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1838 } 1839 1840 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1841 return isGFX9Plus(ST); 1842 } 1843 1844 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1845 int64_t EncodedOffset) { 1846 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1847 : isUInt<8>(EncodedOffset); 1848 } 1849 1850 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1851 int64_t EncodedOffset, 1852 bool IsBuffer) { 1853 return !IsBuffer && 1854 hasSMRDSignedImmOffset(ST) && 1855 isInt<21>(EncodedOffset); 1856 } 1857 1858 static bool isDwordAligned(uint64_t ByteOffset) { 1859 return (ByteOffset & 3) == 0; 1860 } 1861 1862 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1863 uint64_t ByteOffset) { 1864 if (hasSMEMByteOffset(ST)) 1865 return ByteOffset; 1866 1867 assert(isDwordAligned(ByteOffset)); 1868 return ByteOffset >> 2; 1869 } 1870 1871 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1872 int64_t ByteOffset, bool IsBuffer) { 1873 // The signed version is always a byte offset. 1874 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1875 assert(hasSMEMByteOffset(ST)); 1876 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1877 } 1878 1879 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1880 return None; 1881 1882 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1883 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1884 ? Optional<int64_t>(EncodedOffset) 1885 : None; 1886 } 1887 1888 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1889 int64_t ByteOffset) { 1890 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1891 return None; 1892 1893 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1894 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1895 } 1896 1897 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 1898 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 1899 if (AMDGPU::isGFX10(ST)) 1900 return Signed ? 12 : 11; 1901 1902 return Signed ? 13 : 12; 1903 } 1904 1905 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1906 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1907 // hardware bug needing a workaround). 1908 // 1909 // The required alignment ensures that individual address components remain 1910 // aligned if they are aligned to begin with. It also ensures that additional 1911 // offsets within the given alignment can be added to the resulting ImmOffset. 1912 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1913 const GCNSubtarget *Subtarget, Align Alignment) { 1914 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1915 uint32_t Overflow = 0; 1916 1917 if (Imm > MaxImm) { 1918 if (Imm <= MaxImm + 64) { 1919 // Use an SOffset inline constant for 4..64 1920 Overflow = Imm - MaxImm; 1921 Imm = MaxImm; 1922 } else { 1923 // Try to keep the same value in SOffset for adjacent loads, so that 1924 // the corresponding register contents can be re-used. 1925 // 1926 // Load values with all low-bits (except for alignment bits) set into 1927 // SOffset, so that a larger range of values can be covered using 1928 // s_movk_i32. 1929 // 1930 // Atomic operations fail to work correctly when individual address 1931 // components are unaligned, even if their sum is aligned. 1932 uint32_t High = (Imm + Alignment.value()) & ~4095; 1933 uint32_t Low = (Imm + Alignment.value()) & 4095; 1934 Imm = Low; 1935 Overflow = High - Alignment.value(); 1936 } 1937 } 1938 1939 // There is a hardware bug in SI and CI which prevents address clamping in 1940 // MUBUF instructions from working correctly with SOffsets. The immediate 1941 // offset is unaffected. 1942 if (Overflow > 0 && 1943 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1944 return false; 1945 1946 ImmOffset = Imm; 1947 SOffset = Overflow; 1948 return true; 1949 } 1950 1951 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1952 *this = getDefaultForCallingConv(F.getCallingConv()); 1953 1954 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1955 if (!IEEEAttr.empty()) 1956 IEEE = IEEEAttr == "true"; 1957 1958 StringRef DX10ClampAttr 1959 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1960 if (!DX10ClampAttr.empty()) 1961 DX10Clamp = DX10ClampAttr == "true"; 1962 1963 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1964 if (!DenormF32Attr.empty()) { 1965 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1966 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1967 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1968 } 1969 1970 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1971 if (!DenormAttr.empty()) { 1972 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1973 1974 if (DenormF32Attr.empty()) { 1975 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1976 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1977 } 1978 1979 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1980 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1981 } 1982 } 1983 1984 namespace { 1985 1986 struct SourceOfDivergence { 1987 unsigned Intr; 1988 }; 1989 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1990 1991 #define GET_SourcesOfDivergence_IMPL 1992 #define GET_Gfx9BufferFormat_IMPL 1993 #define GET_Gfx10PlusBufferFormat_IMPL 1994 #include "AMDGPUGenSearchableTables.inc" 1995 1996 } // end anonymous namespace 1997 1998 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1999 return lookupSourceOfDivergence(IntrID); 2000 } 2001 2002 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 2003 uint8_t NumComponents, 2004 uint8_t NumFormat, 2005 const MCSubtargetInfo &STI) { 2006 return isGFX10Plus(STI) 2007 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 2008 NumFormat) 2009 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 2010 } 2011 2012 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 2013 const MCSubtargetInfo &STI) { 2014 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 2015 : getGfx9BufferFormatInfo(Format); 2016 } 2017 2018 } // namespace AMDGPU 2019 2020 raw_ostream &operator<<(raw_ostream &OS, 2021 const AMDGPU::IsaInfo::TargetIDSetting S) { 2022 switch (S) { 2023 case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported): 2024 OS << "Unsupported"; 2025 break; 2026 case (AMDGPU::IsaInfo::TargetIDSetting::Any): 2027 OS << "Any"; 2028 break; 2029 case (AMDGPU::IsaInfo::TargetIDSetting::Off): 2030 OS << "Off"; 2031 break; 2032 case (AMDGPU::IsaInfo::TargetIDSetting::On): 2033 OS << "On"; 2034 break; 2035 } 2036 return OS; 2037 } 2038 2039 } // namespace llvm 2040