xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   case 5:
103     return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
104   default:
105     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
106                        Twine(AmdhsaCodeObjectVersion));
107   }
108 }
109 
110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
111   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
112     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
113   return false;
114 }
115 
116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
117   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
118     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
119   return false;
120 }
121 
122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
123   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
124     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
125   return false;
126 }
127 
128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
129   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
130     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
131   return false;
132 }
133 
134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
135   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
136          isHsaAbiVersion5(STI);
137 }
138 
139 #define GET_MIMGBaseOpcodesTable_IMPL
140 #define GET_MIMGDimInfoTable_IMPL
141 #define GET_MIMGInfoTable_IMPL
142 #define GET_MIMGLZMappingTable_IMPL
143 #define GET_MIMGMIPMappingTable_IMPL
144 #define GET_MIMGBiasMappingTable_IMPL
145 #define GET_MIMGOffsetMappingTable_IMPL
146 #define GET_MIMGG16MappingTable_IMPL
147 #include "AMDGPUGenSearchableTables.inc"
148 
149 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
150                   unsigned VDataDwords, unsigned VAddrDwords) {
151   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
152                                              VDataDwords, VAddrDwords);
153   return Info ? Info->Opcode : -1;
154 }
155 
156 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
157   const MIMGInfo *Info = getMIMGInfo(Opc);
158   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
159 }
160 
161 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
162   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
163   const MIMGInfo *NewInfo =
164       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
165                           NewChannels, OrigInfo->VAddrDwords);
166   return NewInfo ? NewInfo->Opcode : -1;
167 }
168 
169 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
170                            const MIMGDimInfo *Dim, bool IsA16,
171                            bool IsG16Supported) {
172   unsigned AddrWords = BaseOpcode->NumExtraArgs;
173   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
174                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
175   if (IsA16)
176     AddrWords += divideCeil(AddrComponents, 2);
177   else
178     AddrWords += AddrComponents;
179 
180   // Note: For subtargets that support A16 but not G16, enabling A16 also
181   // enables 16 bit gradients.
182   // For subtargets that support A16 (operand) and G16 (done with a different
183   // instruction encoding), they are independent.
184 
185   if (BaseOpcode->Gradients) {
186     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
187       // There are two gradients per coordinate, we pack them separately.
188       // For the 3d case,
189       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
190       AddrWords += alignTo<2>(Dim->NumGradients / 2);
191     else
192       AddrWords += Dim->NumGradients;
193   }
194   return AddrWords;
195 }
196 
197 struct MUBUFInfo {
198   uint16_t Opcode;
199   uint16_t BaseOpcode;
200   uint8_t elements;
201   bool has_vaddr;
202   bool has_srsrc;
203   bool has_soffset;
204   bool IsBufferInv;
205 };
206 
207 struct MTBUFInfo {
208   uint16_t Opcode;
209   uint16_t BaseOpcode;
210   uint8_t elements;
211   bool has_vaddr;
212   bool has_srsrc;
213   bool has_soffset;
214 };
215 
216 struct SMInfo {
217   uint16_t Opcode;
218   bool IsBuffer;
219 };
220 
221 struct VOPInfo {
222   uint16_t Opcode;
223   bool IsSingle;
224 };
225 
226 #define GET_MTBUFInfoTable_DECL
227 #define GET_MTBUFInfoTable_IMPL
228 #define GET_MUBUFInfoTable_DECL
229 #define GET_MUBUFInfoTable_IMPL
230 #define GET_SMInfoTable_DECL
231 #define GET_SMInfoTable_IMPL
232 #define GET_VOP1InfoTable_DECL
233 #define GET_VOP1InfoTable_IMPL
234 #define GET_VOP2InfoTable_DECL
235 #define GET_VOP2InfoTable_IMPL
236 #define GET_VOP3InfoTable_DECL
237 #define GET_VOP3InfoTable_IMPL
238 #include "AMDGPUGenSearchableTables.inc"
239 
240 int getMTBUFBaseOpcode(unsigned Opc) {
241   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
242   return Info ? Info->BaseOpcode : -1;
243 }
244 
245 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
246   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
247   return Info ? Info->Opcode : -1;
248 }
249 
250 int getMTBUFElements(unsigned Opc) {
251   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
252   return Info ? Info->elements : 0;
253 }
254 
255 bool getMTBUFHasVAddr(unsigned Opc) {
256   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
257   return Info ? Info->has_vaddr : false;
258 }
259 
260 bool getMTBUFHasSrsrc(unsigned Opc) {
261   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
262   return Info ? Info->has_srsrc : false;
263 }
264 
265 bool getMTBUFHasSoffset(unsigned Opc) {
266   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
267   return Info ? Info->has_soffset : false;
268 }
269 
270 int getMUBUFBaseOpcode(unsigned Opc) {
271   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
272   return Info ? Info->BaseOpcode : -1;
273 }
274 
275 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
276   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
277   return Info ? Info->Opcode : -1;
278 }
279 
280 int getMUBUFElements(unsigned Opc) {
281   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
282   return Info ? Info->elements : 0;
283 }
284 
285 bool getMUBUFHasVAddr(unsigned Opc) {
286   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
287   return Info ? Info->has_vaddr : false;
288 }
289 
290 bool getMUBUFHasSrsrc(unsigned Opc) {
291   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
292   return Info ? Info->has_srsrc : false;
293 }
294 
295 bool getMUBUFHasSoffset(unsigned Opc) {
296   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
297   return Info ? Info->has_soffset : false;
298 }
299 
300 bool getMUBUFIsBufferInv(unsigned Opc) {
301   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
302   return Info ? Info->IsBufferInv : false;
303 }
304 
305 bool getSMEMIsBuffer(unsigned Opc) {
306   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
307   return Info ? Info->IsBuffer : false;
308 }
309 
310 bool getVOP1IsSingle(unsigned Opc) {
311   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
312   return Info ? Info->IsSingle : false;
313 }
314 
315 bool getVOP2IsSingle(unsigned Opc) {
316   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
317   return Info ? Info->IsSingle : false;
318 }
319 
320 bool getVOP3IsSingle(unsigned Opc) {
321   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
322   return Info ? Info->IsSingle : false;
323 }
324 
325 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
326 // header files, so we need to wrap it in a function that takes unsigned
327 // instead.
328 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
329   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
330 }
331 
332 namespace IsaInfo {
333 
334 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
335     : STI(STI), XnackSetting(TargetIDSetting::Any),
336       SramEccSetting(TargetIDSetting::Any) {
337   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
338     XnackSetting = TargetIDSetting::Unsupported;
339   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
340     SramEccSetting = TargetIDSetting::Unsupported;
341 }
342 
343 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
344   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
345   // absence of the target features we assume we must generate code that can run
346   // in any environment.
347   SubtargetFeatures Features(FS);
348   Optional<bool> XnackRequested;
349   Optional<bool> SramEccRequested;
350 
351   for (const std::string &Feature : Features.getFeatures()) {
352     if (Feature == "+xnack")
353       XnackRequested = true;
354     else if (Feature == "-xnack")
355       XnackRequested = false;
356     else if (Feature == "+sramecc")
357       SramEccRequested = true;
358     else if (Feature == "-sramecc")
359       SramEccRequested = false;
360   }
361 
362   bool XnackSupported = isXnackSupported();
363   bool SramEccSupported = isSramEccSupported();
364 
365   if (XnackRequested) {
366     if (XnackSupported) {
367       XnackSetting =
368           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
369     } else {
370       // If a specific xnack setting was requested and this GPU does not support
371       // xnack emit a warning. Setting will remain set to "Unsupported".
372       if (*XnackRequested) {
373         errs() << "warning: xnack 'On' was requested for a processor that does "
374                   "not support it!\n";
375       } else {
376         errs() << "warning: xnack 'Off' was requested for a processor that "
377                   "does not support it!\n";
378       }
379     }
380   }
381 
382   if (SramEccRequested) {
383     if (SramEccSupported) {
384       SramEccSetting =
385           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
386     } else {
387       // If a specific sramecc setting was requested and this GPU does not
388       // support sramecc emit a warning. Setting will remain set to
389       // "Unsupported".
390       if (*SramEccRequested) {
391         errs() << "warning: sramecc 'On' was requested for a processor that "
392                   "does not support it!\n";
393       } else {
394         errs() << "warning: sramecc 'Off' was requested for a processor that "
395                   "does not support it!\n";
396       }
397     }
398   }
399 }
400 
401 static TargetIDSetting
402 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
403   if (FeatureString.endswith("-"))
404     return TargetIDSetting::Off;
405   if (FeatureString.endswith("+"))
406     return TargetIDSetting::On;
407 
408   llvm_unreachable("Malformed feature string");
409 }
410 
411 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
412   SmallVector<StringRef, 3> TargetIDSplit;
413   TargetID.split(TargetIDSplit, ':');
414 
415   for (const auto &FeatureString : TargetIDSplit) {
416     if (FeatureString.startswith("xnack"))
417       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
418     if (FeatureString.startswith("sramecc"))
419       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
420   }
421 }
422 
423 std::string AMDGPUTargetID::toString() const {
424   std::string StringRep;
425   raw_string_ostream StreamRep(StringRep);
426 
427   auto TargetTriple = STI.getTargetTriple();
428   auto Version = getIsaVersion(STI.getCPU());
429 
430   StreamRep << TargetTriple.getArchName() << '-'
431             << TargetTriple.getVendorName() << '-'
432             << TargetTriple.getOSName() << '-'
433             << TargetTriple.getEnvironmentName() << '-';
434 
435   std::string Processor;
436   // TODO: Following else statement is present here because we used various
437   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
438   // Remove once all aliases are removed from GCNProcessors.td.
439   if (Version.Major >= 9)
440     Processor = STI.getCPU().str();
441   else
442     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
443                  Twine(Version.Stepping))
444                     .str();
445 
446   std::string Features;
447   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
448     switch (*HsaAbiVersion) {
449     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
450       // Code object V2 only supported specific processors and had fixed
451       // settings for the XNACK.
452       if (Processor == "gfx600") {
453       } else if (Processor == "gfx601") {
454       } else if (Processor == "gfx602") {
455       } else if (Processor == "gfx700") {
456       } else if (Processor == "gfx701") {
457       } else if (Processor == "gfx702") {
458       } else if (Processor == "gfx703") {
459       } else if (Processor == "gfx704") {
460       } else if (Processor == "gfx705") {
461       } else if (Processor == "gfx801") {
462         if (!isXnackOnOrAny())
463           report_fatal_error(
464               "AMD GPU code object V2 does not support processor " +
465               Twine(Processor) + " without XNACK");
466       } else if (Processor == "gfx802") {
467       } else if (Processor == "gfx803") {
468       } else if (Processor == "gfx805") {
469       } else if (Processor == "gfx810") {
470         if (!isXnackOnOrAny())
471           report_fatal_error(
472               "AMD GPU code object V2 does not support processor " +
473               Twine(Processor) + " without XNACK");
474       } else if (Processor == "gfx900") {
475         if (isXnackOnOrAny())
476           Processor = "gfx901";
477       } else if (Processor == "gfx902") {
478         if (isXnackOnOrAny())
479           Processor = "gfx903";
480       } else if (Processor == "gfx904") {
481         if (isXnackOnOrAny())
482           Processor = "gfx905";
483       } else if (Processor == "gfx906") {
484         if (isXnackOnOrAny())
485           Processor = "gfx907";
486       } else if (Processor == "gfx90c") {
487         if (isXnackOnOrAny())
488           report_fatal_error(
489               "AMD GPU code object V2 does not support processor " +
490               Twine(Processor) + " with XNACK being ON or ANY");
491       } else {
492         report_fatal_error(
493             "AMD GPU code object V2 does not support processor " +
494             Twine(Processor));
495       }
496       break;
497     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
498       // xnack.
499       if (isXnackOnOrAny())
500         Features += "+xnack";
501       // In code object v2 and v3, "sramecc" feature was spelled with a
502       // hyphen ("sram-ecc").
503       if (isSramEccOnOrAny())
504         Features += "+sram-ecc";
505       break;
506     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
507     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
508       // sramecc.
509       if (getSramEccSetting() == TargetIDSetting::Off)
510         Features += ":sramecc-";
511       else if (getSramEccSetting() == TargetIDSetting::On)
512         Features += ":sramecc+";
513       // xnack.
514       if (getXnackSetting() == TargetIDSetting::Off)
515         Features += ":xnack-";
516       else if (getXnackSetting() == TargetIDSetting::On)
517         Features += ":xnack+";
518       break;
519     default:
520       break;
521     }
522   }
523 
524   StreamRep << Processor << Features;
525 
526   StreamRep.flush();
527   return StringRep;
528 }
529 
530 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
531   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
532     return 16;
533   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
534     return 32;
535 
536   return 64;
537 }
538 
539 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
540   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
541     return 32768;
542   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
543     return 65536;
544 
545   return 0;
546 }
547 
548 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
549   // "Per CU" really means "per whatever functional block the waves of a
550   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
551   // two SIMDs.
552   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
553     return 2;
554   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
555   // two CUs, so a total of four SIMDs.
556   return 4;
557 }
558 
559 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
560                                unsigned FlatWorkGroupSize) {
561   assert(FlatWorkGroupSize != 0);
562   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
563     return 8;
564   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
565   if (N == 1)
566     return 40;
567   N = 40 / N;
568   return std::min(N, 16u);
569 }
570 
571 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
572   return 1;
573 }
574 
575 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
576   // FIXME: Need to take scratch memory into account.
577   if (isGFX90A(*STI))
578     return 8;
579   if (!isGFX10Plus(*STI))
580     return 10;
581   return hasGFX10_3Insts(*STI) ? 16 : 20;
582 }
583 
584 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
585                                    unsigned FlatWorkGroupSize) {
586   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
587                     getEUsPerCU(STI));
588 }
589 
590 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
591   return 1;
592 }
593 
594 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
595   // Some subtargets allow encoding 2048, but this isn't tested or supported.
596   return 1024;
597 }
598 
599 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
600                               unsigned FlatWorkGroupSize) {
601   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
602 }
603 
604 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
605   IsaVersion Version = getIsaVersion(STI->getCPU());
606   if (Version.Major >= 10)
607     return getAddressableNumSGPRs(STI);
608   if (Version.Major >= 8)
609     return 16;
610   return 8;
611 }
612 
613 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
614   return 8;
615 }
616 
617 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
618   IsaVersion Version = getIsaVersion(STI->getCPU());
619   if (Version.Major >= 8)
620     return 800;
621   return 512;
622 }
623 
624 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
625   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
626     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
627 
628   IsaVersion Version = getIsaVersion(STI->getCPU());
629   if (Version.Major >= 10)
630     return 106;
631   if (Version.Major >= 8)
632     return 102;
633   return 104;
634 }
635 
636 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
637   assert(WavesPerEU != 0);
638 
639   IsaVersion Version = getIsaVersion(STI->getCPU());
640   if (Version.Major >= 10)
641     return 0;
642 
643   if (WavesPerEU >= getMaxWavesPerEU(STI))
644     return 0;
645 
646   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
647   if (STI->getFeatureBits().test(FeatureTrapHandler))
648     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
649   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
650   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
651 }
652 
653 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
654                         bool Addressable) {
655   assert(WavesPerEU != 0);
656 
657   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
658   IsaVersion Version = getIsaVersion(STI->getCPU());
659   if (Version.Major >= 10)
660     return Addressable ? AddressableNumSGPRs : 108;
661   if (Version.Major >= 8 && !Addressable)
662     AddressableNumSGPRs = 112;
663   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
664   if (STI->getFeatureBits().test(FeatureTrapHandler))
665     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
666   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
667   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
668 }
669 
670 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
671                           bool FlatScrUsed, bool XNACKUsed) {
672   unsigned ExtraSGPRs = 0;
673   if (VCCUsed)
674     ExtraSGPRs = 2;
675 
676   IsaVersion Version = getIsaVersion(STI->getCPU());
677   if (Version.Major >= 10)
678     return ExtraSGPRs;
679 
680   if (Version.Major < 8) {
681     if (FlatScrUsed)
682       ExtraSGPRs = 4;
683   } else {
684     if (XNACKUsed)
685       ExtraSGPRs = 4;
686 
687     if (FlatScrUsed ||
688         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
689       ExtraSGPRs = 6;
690   }
691 
692   return ExtraSGPRs;
693 }
694 
695 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
696                           bool FlatScrUsed) {
697   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
698                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
699 }
700 
701 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
702   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
703   // SGPRBlocks is actual number of SGPR blocks minus 1.
704   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
705 }
706 
707 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
708                              Optional<bool> EnableWavefrontSize32) {
709   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
710     return 8;
711 
712   bool IsWave32 = EnableWavefrontSize32 ?
713       *EnableWavefrontSize32 :
714       STI->getFeatureBits().test(FeatureWavefrontSize32);
715 
716   if (hasGFX10_3Insts(*STI))
717     return IsWave32 ? 16 : 8;
718 
719   return IsWave32 ? 8 : 4;
720 }
721 
722 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
723                                 Optional<bool> EnableWavefrontSize32) {
724   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
725     return 8;
726 
727   bool IsWave32 = EnableWavefrontSize32 ?
728       *EnableWavefrontSize32 :
729       STI->getFeatureBits().test(FeatureWavefrontSize32);
730 
731   return IsWave32 ? 8 : 4;
732 }
733 
734 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
735   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
736     return 512;
737   if (!isGFX10Plus(*STI))
738     return 256;
739   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
740 }
741 
742 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
743   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
744     return 512;
745   return 256;
746 }
747 
748 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
749   assert(WavesPerEU != 0);
750 
751   if (WavesPerEU >= getMaxWavesPerEU(STI))
752     return 0;
753   unsigned MinNumVGPRs =
754       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
755                 getVGPRAllocGranule(STI)) + 1;
756   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
757 }
758 
759 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
760   assert(WavesPerEU != 0);
761 
762   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
763                                    getVGPRAllocGranule(STI));
764   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
765   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
766 }
767 
768 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
769                           Optional<bool> EnableWavefrontSize32) {
770   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
771                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
772   // VGPRBlocks is actual number of VGPR blocks minus 1.
773   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
774 }
775 
776 } // end namespace IsaInfo
777 
778 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
779                                const MCSubtargetInfo *STI) {
780   IsaVersion Version = getIsaVersion(STI->getCPU());
781 
782   memset(&Header, 0, sizeof(Header));
783 
784   Header.amd_kernel_code_version_major = 1;
785   Header.amd_kernel_code_version_minor = 2;
786   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
787   Header.amd_machine_version_major = Version.Major;
788   Header.amd_machine_version_minor = Version.Minor;
789   Header.amd_machine_version_stepping = Version.Stepping;
790   Header.kernel_code_entry_byte_offset = sizeof(Header);
791   Header.wavefront_size = 6;
792 
793   // If the code object does not support indirect functions, then the value must
794   // be 0xffffffff.
795   Header.call_convention = -1;
796 
797   // These alignment values are specified in powers of two, so alignment =
798   // 2^n.  The minimum alignment is 2^4 = 16.
799   Header.kernarg_segment_alignment = 4;
800   Header.group_segment_alignment = 4;
801   Header.private_segment_alignment = 4;
802 
803   if (Version.Major >= 10) {
804     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
805       Header.wavefront_size = 5;
806       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
807     }
808     Header.compute_pgm_resource_registers |=
809       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
810       S_00B848_MEM_ORDERED(1);
811   }
812 }
813 
814 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
815     const MCSubtargetInfo *STI) {
816   IsaVersion Version = getIsaVersion(STI->getCPU());
817 
818   amdhsa::kernel_descriptor_t KD;
819   memset(&KD, 0, sizeof(KD));
820 
821   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
822                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
823                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
824   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
825                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
826   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
827                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
828   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
829                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
830   if (Version.Major >= 10) {
831     AMDHSA_BITS_SET(KD.kernel_code_properties,
832                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
833                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
834     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
835                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
836                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
837     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
838                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
839   }
840   if (AMDGPU::isGFX90A(*STI)) {
841     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
842                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
843                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
844   }
845   return KD;
846 }
847 
848 bool isGroupSegment(const GlobalValue *GV) {
849   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
850 }
851 
852 bool isGlobalSegment(const GlobalValue *GV) {
853   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
854 }
855 
856 bool isReadOnlySegment(const GlobalValue *GV) {
857   unsigned AS = GV->getAddressSpace();
858   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
859          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
860 }
861 
862 bool shouldEmitConstantsToTextSection(const Triple &TT) {
863   return TT.getArch() == Triple::r600;
864 }
865 
866 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
867   Attribute A = F.getFnAttribute(Name);
868   int Result = Default;
869 
870   if (A.isStringAttribute()) {
871     StringRef Str = A.getValueAsString();
872     if (Str.getAsInteger(0, Result)) {
873       LLVMContext &Ctx = F.getContext();
874       Ctx.emitError("can't parse integer attribute " + Name);
875     }
876   }
877 
878   return Result;
879 }
880 
881 std::pair<int, int> getIntegerPairAttribute(const Function &F,
882                                             StringRef Name,
883                                             std::pair<int, int> Default,
884                                             bool OnlyFirstRequired) {
885   Attribute A = F.getFnAttribute(Name);
886   if (!A.isStringAttribute())
887     return Default;
888 
889   LLVMContext &Ctx = F.getContext();
890   std::pair<int, int> Ints = Default;
891   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
892   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
893     Ctx.emitError("can't parse first integer attribute " + Name);
894     return Default;
895   }
896   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
897     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
898       Ctx.emitError("can't parse second integer attribute " + Name);
899       return Default;
900     }
901   }
902 
903   return Ints;
904 }
905 
906 unsigned getVmcntBitMask(const IsaVersion &Version) {
907   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
908   if (Version.Major < 9)
909     return VmcntLo;
910 
911   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
912   return VmcntLo | VmcntHi;
913 }
914 
915 unsigned getExpcntBitMask(const IsaVersion &Version) {
916   return (1 << getExpcntBitWidth()) - 1;
917 }
918 
919 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
920   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
921 }
922 
923 unsigned getWaitcntBitMask(const IsaVersion &Version) {
924   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
925   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
926   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
927                                 getLgkmcntBitWidth(Version.Major));
928   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
929   if (Version.Major < 9)
930     return Waitcnt;
931 
932   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
933   return Waitcnt | VmcntHi;
934 }
935 
936 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
937   unsigned VmcntLo =
938       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
939   if (Version.Major < 9)
940     return VmcntLo;
941 
942   unsigned VmcntHi =
943       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
944   VmcntHi <<= getVmcntBitWidthLo();
945   return VmcntLo | VmcntHi;
946 }
947 
948 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
949   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
950 }
951 
952 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
953   return unpackBits(Waitcnt, getLgkmcntBitShift(),
954                     getLgkmcntBitWidth(Version.Major));
955 }
956 
957 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
958                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
959   Vmcnt = decodeVmcnt(Version, Waitcnt);
960   Expcnt = decodeExpcnt(Version, Waitcnt);
961   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
962 }
963 
964 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
965   Waitcnt Decoded;
966   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
967   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
968   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
969   return Decoded;
970 }
971 
972 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
973                      unsigned Vmcnt) {
974   Waitcnt =
975       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
976   if (Version.Major < 9)
977     return Waitcnt;
978 
979   Vmcnt >>= getVmcntBitWidthLo();
980   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
981 }
982 
983 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
984                       unsigned Expcnt) {
985   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
986 }
987 
988 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
989                        unsigned Lgkmcnt) {
990   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
991                                     getLgkmcntBitWidth(Version.Major));
992 }
993 
994 unsigned encodeWaitcnt(const IsaVersion &Version,
995                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
996   unsigned Waitcnt = getWaitcntBitMask(Version);
997   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
998   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
999   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1000   return Waitcnt;
1001 }
1002 
1003 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1004   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 // hwreg
1009 //===----------------------------------------------------------------------===//
1010 
1011 namespace Hwreg {
1012 
1013 int64_t getHwregId(const StringRef Name) {
1014   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1015     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1016       return Id;
1017   }
1018   return ID_UNKNOWN_;
1019 }
1020 
1021 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1022   if (isSI(STI) || isCI(STI) || isVI(STI))
1023     return ID_SYMBOLIC_FIRST_GFX9_;
1024   else if (isGFX9(STI))
1025     return ID_SYMBOLIC_FIRST_GFX10_;
1026   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1027     return ID_SYMBOLIC_FIRST_GFX1030_;
1028   else
1029     return ID_SYMBOLIC_LAST_;
1030 }
1031 
1032 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1033   switch (Id) {
1034   case ID_HW_ID:
1035     return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1036   case ID_HW_ID1:
1037   case ID_HW_ID2:
1038     return isGFX10Plus(STI);
1039   case ID_XNACK_MASK:
1040     return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1041   default:
1042     return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1043            IdSymbolic[Id];
1044   }
1045 }
1046 
1047 bool isValidHwreg(int64_t Id) {
1048   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1049 }
1050 
1051 bool isValidHwregOffset(int64_t Offset) {
1052   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1053 }
1054 
1055 bool isValidHwregWidth(int64_t Width) {
1056   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1057 }
1058 
1059 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1060   return (Id << ID_SHIFT_) |
1061          (Offset << OFFSET_SHIFT_) |
1062          ((Width - 1) << WIDTH_M1_SHIFT_);
1063 }
1064 
1065 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1066   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1067 }
1068 
1069 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1070   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1071   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1072   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1073 }
1074 
1075 } // namespace Hwreg
1076 
1077 //===----------------------------------------------------------------------===//
1078 // exp tgt
1079 //===----------------------------------------------------------------------===//
1080 
1081 namespace Exp {
1082 
1083 struct ExpTgt {
1084   StringLiteral Name;
1085   unsigned Tgt;
1086   unsigned MaxIndex;
1087 };
1088 
1089 static constexpr ExpTgt ExpTgtInfo[] = {
1090   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1091   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1092   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1093   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1094   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1095   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1096 };
1097 
1098 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1099   for (const ExpTgt &Val : ExpTgtInfo) {
1100     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1101       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1102       Name = Val.Name;
1103       return true;
1104     }
1105   }
1106   return false;
1107 }
1108 
1109 unsigned getTgtId(const StringRef Name) {
1110 
1111   for (const ExpTgt &Val : ExpTgtInfo) {
1112     if (Val.MaxIndex == 0 && Name == Val.Name)
1113       return Val.Tgt;
1114 
1115     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1116       StringRef Suffix = Name.drop_front(Val.Name.size());
1117 
1118       unsigned Id;
1119       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1120         return ET_INVALID;
1121 
1122       // Disable leading zeroes
1123       if (Suffix.size() > 1 && Suffix[0] == '0')
1124         return ET_INVALID;
1125 
1126       return Val.Tgt + Id;
1127     }
1128   }
1129   return ET_INVALID;
1130 }
1131 
1132 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1133   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1134 }
1135 
1136 } // namespace Exp
1137 
1138 //===----------------------------------------------------------------------===//
1139 // MTBUF Format
1140 //===----------------------------------------------------------------------===//
1141 
1142 namespace MTBUFFormat {
1143 
1144 int64_t getDfmt(const StringRef Name) {
1145   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1146     if (Name == DfmtSymbolic[Id])
1147       return Id;
1148   }
1149   return DFMT_UNDEF;
1150 }
1151 
1152 StringRef getDfmtName(unsigned Id) {
1153   assert(Id <= DFMT_MAX);
1154   return DfmtSymbolic[Id];
1155 }
1156 
1157 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1158   if (isSI(STI) || isCI(STI))
1159     return NfmtSymbolicSICI;
1160   if (isVI(STI) || isGFX9(STI))
1161     return NfmtSymbolicVI;
1162   return NfmtSymbolicGFX10;
1163 }
1164 
1165 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1166   auto lookupTable = getNfmtLookupTable(STI);
1167   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1168     if (Name == lookupTable[Id])
1169       return Id;
1170   }
1171   return NFMT_UNDEF;
1172 }
1173 
1174 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1175   assert(Id <= NFMT_MAX);
1176   return getNfmtLookupTable(STI)[Id];
1177 }
1178 
1179 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1180   unsigned Dfmt;
1181   unsigned Nfmt;
1182   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1183   return isValidNfmt(Nfmt, STI);
1184 }
1185 
1186 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1187   return !getNfmtName(Id, STI).empty();
1188 }
1189 
1190 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1191   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1192 }
1193 
1194 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1195   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1196   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1197 }
1198 
1199 int64_t getUnifiedFormat(const StringRef Name) {
1200   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1201     if (Name == UfmtSymbolic[Id])
1202       return Id;
1203   }
1204   return UFMT_UNDEF;
1205 }
1206 
1207 StringRef getUnifiedFormatName(unsigned Id) {
1208   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1209 }
1210 
1211 bool isValidUnifiedFormat(unsigned Id) {
1212   return Id <= UFMT_LAST;
1213 }
1214 
1215 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1216   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1217   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1218     if (Fmt == DfmtNfmt2UFmt[Id])
1219       return Id;
1220   }
1221   return UFMT_UNDEF;
1222 }
1223 
1224 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1225   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1226 }
1227 
1228 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1229   if (isGFX10Plus(STI))
1230     return UFMT_DEFAULT;
1231   return DFMT_NFMT_DEFAULT;
1232 }
1233 
1234 } // namespace MTBUFFormat
1235 
1236 //===----------------------------------------------------------------------===//
1237 // SendMsg
1238 //===----------------------------------------------------------------------===//
1239 
1240 namespace SendMsg {
1241 
1242 int64_t getMsgId(const StringRef Name) {
1243   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1244     if (IdSymbolic[i] && Name == IdSymbolic[i])
1245       return i;
1246   }
1247   return ID_UNKNOWN_;
1248 }
1249 
1250 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1251   if (Strict) {
1252     switch (MsgId) {
1253     case ID_SAVEWAVE:
1254       return isVI(STI) || isGFX9Plus(STI);
1255     case ID_STALL_WAVE_GEN:
1256     case ID_HALT_WAVES:
1257     case ID_ORDERED_PS_DONE:
1258     case ID_GS_ALLOC_REQ:
1259     case ID_GET_DOORBELL:
1260       return isGFX9Plus(STI);
1261     case ID_EARLY_PRIM_DEALLOC:
1262       return isGFX9(STI);
1263     case ID_GET_DDID:
1264       return isGFX10Plus(STI);
1265     default:
1266       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1267     }
1268   } else {
1269     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1270   }
1271 }
1272 
1273 StringRef getMsgName(int64_t MsgId) {
1274   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1275   return IdSymbolic[MsgId];
1276 }
1277 
1278 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1279   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1280   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1281   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1282   for (int i = F; i < L; ++i) {
1283     if (Name == S[i]) {
1284       return i;
1285     }
1286   }
1287   return OP_UNKNOWN_;
1288 }
1289 
1290 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1291                   bool Strict) {
1292   assert(isValidMsgId(MsgId, STI, Strict));
1293 
1294   if (!Strict)
1295     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1296 
1297   switch(MsgId)
1298   {
1299   case ID_GS:
1300     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1301   case ID_GS_DONE:
1302     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1303   case ID_SYSMSG:
1304     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1305   default:
1306     return OpId == OP_NONE_;
1307   }
1308 }
1309 
1310 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1311   assert(msgRequiresOp(MsgId));
1312   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1313 }
1314 
1315 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1316                       const MCSubtargetInfo &STI, bool Strict) {
1317   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1318 
1319   if (!Strict)
1320     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1321 
1322   switch(MsgId)
1323   {
1324   case ID_GS:
1325     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1326   case ID_GS_DONE:
1327     return (OpId == OP_GS_NOP)?
1328            (StreamId == STREAM_ID_NONE_) :
1329            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1330   default:
1331     return StreamId == STREAM_ID_NONE_;
1332   }
1333 }
1334 
1335 bool msgRequiresOp(int64_t MsgId) {
1336   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1337 }
1338 
1339 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1340   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1341 }
1342 
1343 void decodeMsg(unsigned Val,
1344                uint16_t &MsgId,
1345                uint16_t &OpId,
1346                uint16_t &StreamId) {
1347   MsgId = Val & ID_MASK_;
1348   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1349   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1350 }
1351 
1352 uint64_t encodeMsg(uint64_t MsgId,
1353                    uint64_t OpId,
1354                    uint64_t StreamId) {
1355   return (MsgId << ID_SHIFT_) |
1356          (OpId << OP_SHIFT_) |
1357          (StreamId << STREAM_ID_SHIFT_);
1358 }
1359 
1360 } // namespace SendMsg
1361 
1362 //===----------------------------------------------------------------------===//
1363 //
1364 //===----------------------------------------------------------------------===//
1365 
1366 unsigned getInitialPSInputAddr(const Function &F) {
1367   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1368 }
1369 
1370 bool getHasColorExport(const Function &F) {
1371   // As a safe default always respond as if PS has color exports.
1372   return getIntegerAttribute(
1373              F, "amdgpu-color-export",
1374              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1375 }
1376 
1377 bool getHasDepthExport(const Function &F) {
1378   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1379 }
1380 
1381 bool isShader(CallingConv::ID cc) {
1382   switch(cc) {
1383     case CallingConv::AMDGPU_VS:
1384     case CallingConv::AMDGPU_LS:
1385     case CallingConv::AMDGPU_HS:
1386     case CallingConv::AMDGPU_ES:
1387     case CallingConv::AMDGPU_GS:
1388     case CallingConv::AMDGPU_PS:
1389     case CallingConv::AMDGPU_CS:
1390       return true;
1391     default:
1392       return false;
1393   }
1394 }
1395 
1396 bool isGraphics(CallingConv::ID cc) {
1397   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1398 }
1399 
1400 bool isCompute(CallingConv::ID cc) {
1401   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1402 }
1403 
1404 bool isEntryFunctionCC(CallingConv::ID CC) {
1405   switch (CC) {
1406   case CallingConv::AMDGPU_KERNEL:
1407   case CallingConv::SPIR_KERNEL:
1408   case CallingConv::AMDGPU_VS:
1409   case CallingConv::AMDGPU_GS:
1410   case CallingConv::AMDGPU_PS:
1411   case CallingConv::AMDGPU_CS:
1412   case CallingConv::AMDGPU_ES:
1413   case CallingConv::AMDGPU_HS:
1414   case CallingConv::AMDGPU_LS:
1415     return true;
1416   default:
1417     return false;
1418   }
1419 }
1420 
1421 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1422   switch (CC) {
1423   case CallingConv::AMDGPU_Gfx:
1424     return true;
1425   default:
1426     return isEntryFunctionCC(CC);
1427   }
1428 }
1429 
1430 bool hasXNACK(const MCSubtargetInfo &STI) {
1431   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1432 }
1433 
1434 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1435   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1436 }
1437 
1438 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1439   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1440 }
1441 
1442 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1443   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1444 }
1445 
1446 bool hasG16(const MCSubtargetInfo &STI) {
1447   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1448 }
1449 
1450 bool hasPackedD16(const MCSubtargetInfo &STI) {
1451   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1452 }
1453 
1454 bool isSI(const MCSubtargetInfo &STI) {
1455   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1456 }
1457 
1458 bool isCI(const MCSubtargetInfo &STI) {
1459   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1460 }
1461 
1462 bool isVI(const MCSubtargetInfo &STI) {
1463   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1464 }
1465 
1466 bool isGFX9(const MCSubtargetInfo &STI) {
1467   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1468 }
1469 
1470 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1471   return isGFX9(STI) || isGFX10Plus(STI);
1472 }
1473 
1474 bool isGFX10(const MCSubtargetInfo &STI) {
1475   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1476 }
1477 
1478 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1479 
1480 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1481   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1482 }
1483 
1484 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1485   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1486 }
1487 
1488 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1489   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1490 }
1491 
1492 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1493   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1494 }
1495 
1496 bool isGFX90A(const MCSubtargetInfo &STI) {
1497   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1498 }
1499 
1500 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1501   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1502 }
1503 
1504 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1505   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1506   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1507   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1508     Reg == AMDGPU::SCC;
1509 }
1510 
1511 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1512   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1513     if (*R == Reg1) return true;
1514   }
1515   return false;
1516 }
1517 
1518 #define MAP_REG2REG \
1519   using namespace AMDGPU; \
1520   switch(Reg) { \
1521   default: return Reg; \
1522   CASE_CI_VI(FLAT_SCR) \
1523   CASE_CI_VI(FLAT_SCR_LO) \
1524   CASE_CI_VI(FLAT_SCR_HI) \
1525   CASE_VI_GFX9PLUS(TTMP0) \
1526   CASE_VI_GFX9PLUS(TTMP1) \
1527   CASE_VI_GFX9PLUS(TTMP2) \
1528   CASE_VI_GFX9PLUS(TTMP3) \
1529   CASE_VI_GFX9PLUS(TTMP4) \
1530   CASE_VI_GFX9PLUS(TTMP5) \
1531   CASE_VI_GFX9PLUS(TTMP6) \
1532   CASE_VI_GFX9PLUS(TTMP7) \
1533   CASE_VI_GFX9PLUS(TTMP8) \
1534   CASE_VI_GFX9PLUS(TTMP9) \
1535   CASE_VI_GFX9PLUS(TTMP10) \
1536   CASE_VI_GFX9PLUS(TTMP11) \
1537   CASE_VI_GFX9PLUS(TTMP12) \
1538   CASE_VI_GFX9PLUS(TTMP13) \
1539   CASE_VI_GFX9PLUS(TTMP14) \
1540   CASE_VI_GFX9PLUS(TTMP15) \
1541   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1542   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1543   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1544   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1545   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1546   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1547   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1548   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1549   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1550   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1551   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1552   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1553   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1554   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1555   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1556   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1557   }
1558 
1559 #define CASE_CI_VI(node) \
1560   assert(!isSI(STI)); \
1561   case node: return isCI(STI) ? node##_ci : node##_vi;
1562 
1563 #define CASE_VI_GFX9PLUS(node) \
1564   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1565 
1566 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1567   if (STI.getTargetTriple().getArch() == Triple::r600)
1568     return Reg;
1569   MAP_REG2REG
1570 }
1571 
1572 #undef CASE_CI_VI
1573 #undef CASE_VI_GFX9PLUS
1574 
1575 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1576 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1577 
1578 unsigned mc2PseudoReg(unsigned Reg) {
1579   MAP_REG2REG
1580 }
1581 
1582 #undef CASE_CI_VI
1583 #undef CASE_VI_GFX9PLUS
1584 #undef MAP_REG2REG
1585 
1586 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1587   assert(OpNo < Desc.NumOperands);
1588   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1589   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1590          OpType <= AMDGPU::OPERAND_SRC_LAST;
1591 }
1592 
1593 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1594   assert(OpNo < Desc.NumOperands);
1595   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1596   switch (OpType) {
1597   case AMDGPU::OPERAND_REG_IMM_FP32:
1598   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1599   case AMDGPU::OPERAND_REG_IMM_FP64:
1600   case AMDGPU::OPERAND_REG_IMM_FP16:
1601   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1602   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1603   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1604   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1605   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1606   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1607   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1608   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1609   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1610   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1611   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1612   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1613   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1614   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1615   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1616     return true;
1617   default:
1618     return false;
1619   }
1620 }
1621 
1622 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1623   assert(OpNo < Desc.NumOperands);
1624   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1625   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1626          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1627 }
1628 
1629 // Avoid using MCRegisterClass::getSize, since that function will go away
1630 // (move from MC* level to Target* level). Return size in bits.
1631 unsigned getRegBitWidth(unsigned RCID) {
1632   switch (RCID) {
1633   case AMDGPU::VGPR_LO16RegClassID:
1634   case AMDGPU::VGPR_HI16RegClassID:
1635   case AMDGPU::SGPR_LO16RegClassID:
1636   case AMDGPU::AGPR_LO16RegClassID:
1637     return 16;
1638   case AMDGPU::SGPR_32RegClassID:
1639   case AMDGPU::VGPR_32RegClassID:
1640   case AMDGPU::VRegOrLds_32RegClassID:
1641   case AMDGPU::AGPR_32RegClassID:
1642   case AMDGPU::VS_32RegClassID:
1643   case AMDGPU::AV_32RegClassID:
1644   case AMDGPU::SReg_32RegClassID:
1645   case AMDGPU::SReg_32_XM0RegClassID:
1646   case AMDGPU::SRegOrLds_32RegClassID:
1647     return 32;
1648   case AMDGPU::SGPR_64RegClassID:
1649   case AMDGPU::VS_64RegClassID:
1650   case AMDGPU::SReg_64RegClassID:
1651   case AMDGPU::VReg_64RegClassID:
1652   case AMDGPU::AReg_64RegClassID:
1653   case AMDGPU::SReg_64_XEXECRegClassID:
1654   case AMDGPU::VReg_64_Align2RegClassID:
1655   case AMDGPU::AReg_64_Align2RegClassID:
1656   case AMDGPU::AV_64RegClassID:
1657   case AMDGPU::AV_64_Align2RegClassID:
1658     return 64;
1659   case AMDGPU::SGPR_96RegClassID:
1660   case AMDGPU::SReg_96RegClassID:
1661   case AMDGPU::VReg_96RegClassID:
1662   case AMDGPU::AReg_96RegClassID:
1663   case AMDGPU::VReg_96_Align2RegClassID:
1664   case AMDGPU::AReg_96_Align2RegClassID:
1665   case AMDGPU::AV_96RegClassID:
1666   case AMDGPU::AV_96_Align2RegClassID:
1667     return 96;
1668   case AMDGPU::SGPR_128RegClassID:
1669   case AMDGPU::SReg_128RegClassID:
1670   case AMDGPU::VReg_128RegClassID:
1671   case AMDGPU::AReg_128RegClassID:
1672   case AMDGPU::VReg_128_Align2RegClassID:
1673   case AMDGPU::AReg_128_Align2RegClassID:
1674   case AMDGPU::AV_128RegClassID:
1675   case AMDGPU::AV_128_Align2RegClassID:
1676     return 128;
1677   case AMDGPU::SGPR_160RegClassID:
1678   case AMDGPU::SReg_160RegClassID:
1679   case AMDGPU::VReg_160RegClassID:
1680   case AMDGPU::AReg_160RegClassID:
1681   case AMDGPU::VReg_160_Align2RegClassID:
1682   case AMDGPU::AReg_160_Align2RegClassID:
1683   case AMDGPU::AV_160RegClassID:
1684   case AMDGPU::AV_160_Align2RegClassID:
1685     return 160;
1686   case AMDGPU::SGPR_192RegClassID:
1687   case AMDGPU::SReg_192RegClassID:
1688   case AMDGPU::VReg_192RegClassID:
1689   case AMDGPU::AReg_192RegClassID:
1690   case AMDGPU::VReg_192_Align2RegClassID:
1691   case AMDGPU::AReg_192_Align2RegClassID:
1692   case AMDGPU::AV_192RegClassID:
1693   case AMDGPU::AV_192_Align2RegClassID:
1694     return 192;
1695   case AMDGPU::SGPR_224RegClassID:
1696   case AMDGPU::SReg_224RegClassID:
1697   case AMDGPU::VReg_224RegClassID:
1698   case AMDGPU::AReg_224RegClassID:
1699   case AMDGPU::VReg_224_Align2RegClassID:
1700   case AMDGPU::AReg_224_Align2RegClassID:
1701   case AMDGPU::AV_224RegClassID:
1702   case AMDGPU::AV_224_Align2RegClassID:
1703     return 224;
1704   case AMDGPU::SGPR_256RegClassID:
1705   case AMDGPU::SReg_256RegClassID:
1706   case AMDGPU::VReg_256RegClassID:
1707   case AMDGPU::AReg_256RegClassID:
1708   case AMDGPU::VReg_256_Align2RegClassID:
1709   case AMDGPU::AReg_256_Align2RegClassID:
1710   case AMDGPU::AV_256RegClassID:
1711   case AMDGPU::AV_256_Align2RegClassID:
1712     return 256;
1713   case AMDGPU::SGPR_512RegClassID:
1714   case AMDGPU::SReg_512RegClassID:
1715   case AMDGPU::VReg_512RegClassID:
1716   case AMDGPU::AReg_512RegClassID:
1717   case AMDGPU::VReg_512_Align2RegClassID:
1718   case AMDGPU::AReg_512_Align2RegClassID:
1719   case AMDGPU::AV_512RegClassID:
1720   case AMDGPU::AV_512_Align2RegClassID:
1721     return 512;
1722   case AMDGPU::SGPR_1024RegClassID:
1723   case AMDGPU::SReg_1024RegClassID:
1724   case AMDGPU::VReg_1024RegClassID:
1725   case AMDGPU::AReg_1024RegClassID:
1726   case AMDGPU::VReg_1024_Align2RegClassID:
1727   case AMDGPU::AReg_1024_Align2RegClassID:
1728   case AMDGPU::AV_1024RegClassID:
1729   case AMDGPU::AV_1024_Align2RegClassID:
1730     return 1024;
1731   default:
1732     llvm_unreachable("Unexpected register class");
1733   }
1734 }
1735 
1736 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1737   return getRegBitWidth(RC.getID());
1738 }
1739 
1740 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1741                            unsigned OpNo) {
1742   assert(OpNo < Desc.NumOperands);
1743   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1744   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1745 }
1746 
1747 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1748   if (isInlinableIntLiteral(Literal))
1749     return true;
1750 
1751   uint64_t Val = static_cast<uint64_t>(Literal);
1752   return (Val == DoubleToBits(0.0)) ||
1753          (Val == DoubleToBits(1.0)) ||
1754          (Val == DoubleToBits(-1.0)) ||
1755          (Val == DoubleToBits(0.5)) ||
1756          (Val == DoubleToBits(-0.5)) ||
1757          (Val == DoubleToBits(2.0)) ||
1758          (Val == DoubleToBits(-2.0)) ||
1759          (Val == DoubleToBits(4.0)) ||
1760          (Val == DoubleToBits(-4.0)) ||
1761          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1762 }
1763 
1764 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1765   if (isInlinableIntLiteral(Literal))
1766     return true;
1767 
1768   // The actual type of the operand does not seem to matter as long
1769   // as the bits match one of the inline immediate values.  For example:
1770   //
1771   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1772   // so it is a legal inline immediate.
1773   //
1774   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1775   // floating-point, so it is a legal inline immediate.
1776 
1777   uint32_t Val = static_cast<uint32_t>(Literal);
1778   return (Val == FloatToBits(0.0f)) ||
1779          (Val == FloatToBits(1.0f)) ||
1780          (Val == FloatToBits(-1.0f)) ||
1781          (Val == FloatToBits(0.5f)) ||
1782          (Val == FloatToBits(-0.5f)) ||
1783          (Val == FloatToBits(2.0f)) ||
1784          (Val == FloatToBits(-2.0f)) ||
1785          (Val == FloatToBits(4.0f)) ||
1786          (Val == FloatToBits(-4.0f)) ||
1787          (Val == 0x3e22f983 && HasInv2Pi);
1788 }
1789 
1790 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1791   if (!HasInv2Pi)
1792     return false;
1793 
1794   if (isInlinableIntLiteral(Literal))
1795     return true;
1796 
1797   uint16_t Val = static_cast<uint16_t>(Literal);
1798   return Val == 0x3C00 || // 1.0
1799          Val == 0xBC00 || // -1.0
1800          Val == 0x3800 || // 0.5
1801          Val == 0xB800 || // -0.5
1802          Val == 0x4000 || // 2.0
1803          Val == 0xC000 || // -2.0
1804          Val == 0x4400 || // 4.0
1805          Val == 0xC400 || // -4.0
1806          Val == 0x3118;   // 1/2pi
1807 }
1808 
1809 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1810   assert(HasInv2Pi);
1811 
1812   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1813     int16_t Trunc = static_cast<int16_t>(Literal);
1814     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1815   }
1816   if (!(Literal & 0xffff))
1817     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1818 
1819   int16_t Lo16 = static_cast<int16_t>(Literal);
1820   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1821   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1822 }
1823 
1824 bool isInlinableIntLiteralV216(int32_t Literal) {
1825   int16_t Lo16 = static_cast<int16_t>(Literal);
1826   if (isInt<16>(Literal) || isUInt<16>(Literal))
1827     return isInlinableIntLiteral(Lo16);
1828 
1829   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1830   if (!(Literal & 0xffff))
1831     return isInlinableIntLiteral(Hi16);
1832   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1833 }
1834 
1835 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1836   assert(HasInv2Pi);
1837 
1838   int16_t Lo16 = static_cast<int16_t>(Literal);
1839   if (isInt<16>(Literal) || isUInt<16>(Literal))
1840     return true;
1841 
1842   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1843   if (!(Literal & 0xffff))
1844     return true;
1845   return Lo16 == Hi16;
1846 }
1847 
1848 bool isArgPassedInSGPR(const Argument *A) {
1849   const Function *F = A->getParent();
1850 
1851   // Arguments to compute shaders are never a source of divergence.
1852   CallingConv::ID CC = F->getCallingConv();
1853   switch (CC) {
1854   case CallingConv::AMDGPU_KERNEL:
1855   case CallingConv::SPIR_KERNEL:
1856     return true;
1857   case CallingConv::AMDGPU_VS:
1858   case CallingConv::AMDGPU_LS:
1859   case CallingConv::AMDGPU_HS:
1860   case CallingConv::AMDGPU_ES:
1861   case CallingConv::AMDGPU_GS:
1862   case CallingConv::AMDGPU_PS:
1863   case CallingConv::AMDGPU_CS:
1864   case CallingConv::AMDGPU_Gfx:
1865     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1866     // Everything else is in VGPRs.
1867     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1868            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1869   default:
1870     // TODO: Should calls support inreg for SGPR inputs?
1871     return false;
1872   }
1873 }
1874 
1875 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1876   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1877 }
1878 
1879 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1880   return isGFX9Plus(ST);
1881 }
1882 
1883 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1884                                       int64_t EncodedOffset) {
1885   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1886                                : isUInt<8>(EncodedOffset);
1887 }
1888 
1889 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1890                                     int64_t EncodedOffset,
1891                                     bool IsBuffer) {
1892   return !IsBuffer &&
1893          hasSMRDSignedImmOffset(ST) &&
1894          isInt<21>(EncodedOffset);
1895 }
1896 
1897 static bool isDwordAligned(uint64_t ByteOffset) {
1898   return (ByteOffset & 3) == 0;
1899 }
1900 
1901 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1902                                 uint64_t ByteOffset) {
1903   if (hasSMEMByteOffset(ST))
1904     return ByteOffset;
1905 
1906   assert(isDwordAligned(ByteOffset));
1907   return ByteOffset >> 2;
1908 }
1909 
1910 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1911                                        int64_t ByteOffset, bool IsBuffer) {
1912   // The signed version is always a byte offset.
1913   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1914     assert(hasSMEMByteOffset(ST));
1915     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1916   }
1917 
1918   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1919     return None;
1920 
1921   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1922   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1923              ? Optional<int64_t>(EncodedOffset)
1924              : None;
1925 }
1926 
1927 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1928                                                 int64_t ByteOffset) {
1929   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1930     return None;
1931 
1932   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1933   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1934 }
1935 
1936 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1937   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1938   if (AMDGPU::isGFX10(ST))
1939     return Signed ? 12 : 11;
1940 
1941   return Signed ? 13 : 12;
1942 }
1943 
1944 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1945 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1946 // hardware bug needing a workaround).
1947 //
1948 // The required alignment ensures that individual address components remain
1949 // aligned if they are aligned to begin with. It also ensures that additional
1950 // offsets within the given alignment can be added to the resulting ImmOffset.
1951 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1952                       const GCNSubtarget *Subtarget, Align Alignment) {
1953   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1954   uint32_t Overflow = 0;
1955 
1956   if (Imm > MaxImm) {
1957     if (Imm <= MaxImm + 64) {
1958       // Use an SOffset inline constant for 4..64
1959       Overflow = Imm - MaxImm;
1960       Imm = MaxImm;
1961     } else {
1962       // Try to keep the same value in SOffset for adjacent loads, so that
1963       // the corresponding register contents can be re-used.
1964       //
1965       // Load values with all low-bits (except for alignment bits) set into
1966       // SOffset, so that a larger range of values can be covered using
1967       // s_movk_i32.
1968       //
1969       // Atomic operations fail to work correctly when individual address
1970       // components are unaligned, even if their sum is aligned.
1971       uint32_t High = (Imm + Alignment.value()) & ~4095;
1972       uint32_t Low = (Imm + Alignment.value()) & 4095;
1973       Imm = Low;
1974       Overflow = High - Alignment.value();
1975     }
1976   }
1977 
1978   // There is a hardware bug in SI and CI which prevents address clamping in
1979   // MUBUF instructions from working correctly with SOffsets. The immediate
1980   // offset is unaffected.
1981   if (Overflow > 0 &&
1982       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1983     return false;
1984 
1985   ImmOffset = Imm;
1986   SOffset = Overflow;
1987   return true;
1988 }
1989 
1990 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1991   *this = getDefaultForCallingConv(F.getCallingConv());
1992 
1993   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1994   if (!IEEEAttr.empty())
1995     IEEE = IEEEAttr == "true";
1996 
1997   StringRef DX10ClampAttr
1998     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1999   if (!DX10ClampAttr.empty())
2000     DX10Clamp = DX10ClampAttr == "true";
2001 
2002   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2003   if (!DenormF32Attr.empty()) {
2004     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2005     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2006     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2007   }
2008 
2009   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2010   if (!DenormAttr.empty()) {
2011     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2012 
2013     if (DenormF32Attr.empty()) {
2014       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2015       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2016     }
2017 
2018     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2019     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2020   }
2021 }
2022 
2023 namespace {
2024 
2025 struct SourceOfDivergence {
2026   unsigned Intr;
2027 };
2028 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2029 
2030 #define GET_SourcesOfDivergence_IMPL
2031 #define GET_Gfx9BufferFormat_IMPL
2032 #define GET_Gfx10PlusBufferFormat_IMPL
2033 #include "AMDGPUGenSearchableTables.inc"
2034 
2035 } // end anonymous namespace
2036 
2037 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2038   return lookupSourceOfDivergence(IntrID);
2039 }
2040 
2041 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2042                                                   uint8_t NumComponents,
2043                                                   uint8_t NumFormat,
2044                                                   const MCSubtargetInfo &STI) {
2045   return isGFX10Plus(STI)
2046              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2047                                             NumFormat)
2048              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2049 }
2050 
2051 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2052                                                   const MCSubtargetInfo &STI) {
2053   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2054                           : getGfx9BufferFormatInfo(Format);
2055 }
2056 
2057 } // namespace AMDGPU
2058 
2059 raw_ostream &operator<<(raw_ostream &OS,
2060                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2061   switch (S) {
2062   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2063     OS << "Unsupported";
2064     break;
2065   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2066     OS << "Any";
2067     break;
2068   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2069     OS << "Off";
2070     break;
2071   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2072     OS << "On";
2073     break;
2074   }
2075   return OS;
2076 }
2077 
2078 } // namespace llvm
2079