1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "AMDGPUAsmUtils.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 89 return (VersionMajor >= 10) ? 6 : 4; 90 } 91 92 /// \returns Vmcnt bit shift (higher bits). 93 unsigned getVmcntBitShiftHi() { return 14; } 94 95 /// \returns Vmcnt bit width (higher bits). 96 unsigned getVmcntBitWidthHi() { return 2; } 97 98 } // end namespace anonymous 99 100 namespace llvm { 101 102 namespace AMDGPU { 103 104 #define GET_MIMGBaseOpcodesTable_IMPL 105 #define GET_MIMGDimInfoTable_IMPL 106 #define GET_MIMGInfoTable_IMPL 107 #define GET_MIMGLZMappingTable_IMPL 108 #define GET_MIMGMIPMappingTable_IMPL 109 #include "AMDGPUGenSearchableTables.inc" 110 111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 112 unsigned VDataDwords, unsigned VAddrDwords) { 113 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 114 VDataDwords, VAddrDwords); 115 return Info ? Info->Opcode : -1; 116 } 117 118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 119 const MIMGInfo *Info = getMIMGInfo(Opc); 120 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 struct MUBUFInfo { 132 uint16_t Opcode; 133 uint16_t BaseOpcode; 134 uint8_t elements; 135 bool has_vaddr; 136 bool has_srsrc; 137 bool has_soffset; 138 }; 139 140 struct MTBUFInfo { 141 uint16_t Opcode; 142 uint16_t BaseOpcode; 143 uint8_t elements; 144 bool has_vaddr; 145 bool has_srsrc; 146 bool has_soffset; 147 }; 148 149 #define GET_MTBUFInfoTable_DECL 150 #define GET_MTBUFInfoTable_IMPL 151 #define GET_MUBUFInfoTable_DECL 152 #define GET_MUBUFInfoTable_IMPL 153 #include "AMDGPUGenSearchableTables.inc" 154 155 int getMTBUFBaseOpcode(unsigned Opc) { 156 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 157 return Info ? Info->BaseOpcode : -1; 158 } 159 160 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 161 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 162 return Info ? Info->Opcode : -1; 163 } 164 165 int getMTBUFElements(unsigned Opc) { 166 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 167 return Info ? Info->elements : 0; 168 } 169 170 bool getMTBUFHasVAddr(unsigned Opc) { 171 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 172 return Info ? Info->has_vaddr : false; 173 } 174 175 bool getMTBUFHasSrsrc(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 177 return Info ? Info->has_srsrc : false; 178 } 179 180 bool getMTBUFHasSoffset(unsigned Opc) { 181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 182 return Info ? Info->has_soffset : false; 183 } 184 185 int getMUBUFBaseOpcode(unsigned Opc) { 186 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 187 return Info ? Info->BaseOpcode : -1; 188 } 189 190 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 191 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 192 return Info ? Info->Opcode : -1; 193 } 194 195 int getMUBUFElements(unsigned Opc) { 196 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 197 return Info ? Info->elements : 0; 198 } 199 200 bool getMUBUFHasVAddr(unsigned Opc) { 201 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 202 return Info ? Info->has_vaddr : false; 203 } 204 205 bool getMUBUFHasSrsrc(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 207 return Info ? Info->has_srsrc : false; 208 } 209 210 bool getMUBUFHasSoffset(unsigned Opc) { 211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 212 return Info ? Info->has_soffset : false; 213 } 214 215 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 216 // header files, so we need to wrap it in a function that takes unsigned 217 // instead. 218 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 219 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 220 } 221 222 namespace IsaInfo { 223 224 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 225 auto TargetTriple = STI->getTargetTriple(); 226 auto Version = getIsaVersion(STI->getCPU()); 227 228 Stream << TargetTriple.getArchName() << '-' 229 << TargetTriple.getVendorName() << '-' 230 << TargetTriple.getOSName() << '-' 231 << TargetTriple.getEnvironmentName() << '-' 232 << "gfx" 233 << Version.Major 234 << Version.Minor 235 << Version.Stepping; 236 237 if (hasXNACK(*STI)) 238 Stream << "+xnack"; 239 if (hasSRAMECC(*STI)) 240 Stream << "+sram-ecc"; 241 242 Stream.flush(); 243 } 244 245 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 246 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 247 STI->getFeatureBits().test(FeatureCodeObjectV3); 248 } 249 250 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 251 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 252 return 16; 253 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 254 return 32; 255 256 return 64; 257 } 258 259 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 260 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 261 return 32768; 262 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 263 return 65536; 264 265 return 0; 266 } 267 268 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 269 return 4; 270 } 271 272 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 273 unsigned FlatWorkGroupSize) { 274 assert(FlatWorkGroupSize != 0); 275 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 276 return 8; 277 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 278 if (N == 1) 279 return 40; 280 N = 40 / N; 281 return std::min(N, 16u); 282 } 283 284 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 285 return getMaxWavesPerEU(STI) * getEUsPerCU(STI); 286 } 287 288 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 289 unsigned FlatWorkGroupSize) { 290 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 291 } 292 293 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 294 return 1; 295 } 296 297 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 298 // FIXME: Need to take scratch memory into account. 299 if (!isGFX10(*STI)) 300 return 10; 301 return 20; 302 } 303 304 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 305 unsigned FlatWorkGroupSize) { 306 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 307 getEUsPerCU(STI)) / getEUsPerCU(STI); 308 } 309 310 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 311 return 1; 312 } 313 314 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 315 return 2048; 316 } 317 318 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 319 unsigned FlatWorkGroupSize) { 320 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 321 getWavefrontSize(STI); 322 } 323 324 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 325 IsaVersion Version = getIsaVersion(STI->getCPU()); 326 if (Version.Major >= 10) 327 return getAddressableNumSGPRs(STI); 328 if (Version.Major >= 8) 329 return 16; 330 return 8; 331 } 332 333 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 334 return 8; 335 } 336 337 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 338 IsaVersion Version = getIsaVersion(STI->getCPU()); 339 if (Version.Major >= 8) 340 return 800; 341 return 512; 342 } 343 344 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 345 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 346 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 347 348 IsaVersion Version = getIsaVersion(STI->getCPU()); 349 if (Version.Major >= 10) 350 return 106; 351 if (Version.Major >= 8) 352 return 102; 353 return 104; 354 } 355 356 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 357 assert(WavesPerEU != 0); 358 359 IsaVersion Version = getIsaVersion(STI->getCPU()); 360 if (Version.Major >= 10) 361 return 0; 362 363 if (WavesPerEU >= getMaxWavesPerEU(STI)) 364 return 0; 365 366 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 367 if (STI->getFeatureBits().test(FeatureTrapHandler)) 368 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 369 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 370 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 371 } 372 373 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 374 bool Addressable) { 375 assert(WavesPerEU != 0); 376 377 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 378 IsaVersion Version = getIsaVersion(STI->getCPU()); 379 if (Version.Major >= 10) 380 return Addressable ? AddressableNumSGPRs : 108; 381 if (Version.Major >= 8 && !Addressable) 382 AddressableNumSGPRs = 112; 383 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 384 if (STI->getFeatureBits().test(FeatureTrapHandler)) 385 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 386 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 387 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 388 } 389 390 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 391 bool FlatScrUsed, bool XNACKUsed) { 392 unsigned ExtraSGPRs = 0; 393 if (VCCUsed) 394 ExtraSGPRs = 2; 395 396 IsaVersion Version = getIsaVersion(STI->getCPU()); 397 if (Version.Major >= 10) 398 return ExtraSGPRs; 399 400 if (Version.Major < 8) { 401 if (FlatScrUsed) 402 ExtraSGPRs = 4; 403 } else { 404 if (XNACKUsed) 405 ExtraSGPRs = 4; 406 407 if (FlatScrUsed) 408 ExtraSGPRs = 6; 409 } 410 411 return ExtraSGPRs; 412 } 413 414 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 415 bool FlatScrUsed) { 416 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 417 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 418 } 419 420 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 421 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 422 // SGPRBlocks is actual number of SGPR blocks minus 1. 423 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 424 } 425 426 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 427 Optional<bool> EnableWavefrontSize32) { 428 bool IsWave32 = EnableWavefrontSize32 ? 429 *EnableWavefrontSize32 : 430 STI->getFeatureBits().test(FeatureWavefrontSize32); 431 return IsWave32 ? 8 : 4; 432 } 433 434 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 435 Optional<bool> EnableWavefrontSize32) { 436 return getVGPRAllocGranule(STI, EnableWavefrontSize32); 437 } 438 439 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 440 if (!isGFX10(*STI)) 441 return 256; 442 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 443 } 444 445 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 446 return 256; 447 } 448 449 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 450 assert(WavesPerEU != 0); 451 452 if (WavesPerEU >= getMaxWavesPerEU(STI)) 453 return 0; 454 unsigned MinNumVGPRs = 455 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 456 getVGPRAllocGranule(STI)) + 1; 457 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 458 } 459 460 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 461 assert(WavesPerEU != 0); 462 463 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 464 getVGPRAllocGranule(STI)); 465 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 466 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 467 } 468 469 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 470 Optional<bool> EnableWavefrontSize32) { 471 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 472 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 473 // VGPRBlocks is actual number of VGPR blocks minus 1. 474 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 475 } 476 477 } // end namespace IsaInfo 478 479 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 480 const MCSubtargetInfo *STI) { 481 IsaVersion Version = getIsaVersion(STI->getCPU()); 482 483 memset(&Header, 0, sizeof(Header)); 484 485 Header.amd_kernel_code_version_major = 1; 486 Header.amd_kernel_code_version_minor = 2; 487 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 488 Header.amd_machine_version_major = Version.Major; 489 Header.amd_machine_version_minor = Version.Minor; 490 Header.amd_machine_version_stepping = Version.Stepping; 491 Header.kernel_code_entry_byte_offset = sizeof(Header); 492 Header.wavefront_size = 6; 493 494 // If the code object does not support indirect functions, then the value must 495 // be 0xffffffff. 496 Header.call_convention = -1; 497 498 // These alignment values are specified in powers of two, so alignment = 499 // 2^n. The minimum alignment is 2^4 = 16. 500 Header.kernarg_segment_alignment = 4; 501 Header.group_segment_alignment = 4; 502 Header.private_segment_alignment = 4; 503 504 if (Version.Major >= 10) { 505 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 506 Header.wavefront_size = 5; 507 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 508 } 509 Header.compute_pgm_resource_registers |= 510 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 511 S_00B848_MEM_ORDERED(1); 512 } 513 } 514 515 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 516 const MCSubtargetInfo *STI) { 517 IsaVersion Version = getIsaVersion(STI->getCPU()); 518 519 amdhsa::kernel_descriptor_t KD; 520 memset(&KD, 0, sizeof(KD)); 521 522 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 523 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 524 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 525 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 526 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 527 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 528 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 529 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 530 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 531 if (Version.Major >= 10) { 532 AMDHSA_BITS_SET(KD.kernel_code_properties, 533 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 534 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 535 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 536 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 537 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 538 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 539 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 540 } 541 return KD; 542 } 543 544 bool isGroupSegment(const GlobalValue *GV) { 545 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 546 } 547 548 bool isGlobalSegment(const GlobalValue *GV) { 549 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 550 } 551 552 bool isReadOnlySegment(const GlobalValue *GV) { 553 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 554 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 555 } 556 557 bool shouldEmitConstantsToTextSection(const Triple &TT) { 558 return TT.getOS() == Triple::AMDPAL; 559 } 560 561 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 562 Attribute A = F.getFnAttribute(Name); 563 int Result = Default; 564 565 if (A.isStringAttribute()) { 566 StringRef Str = A.getValueAsString(); 567 if (Str.getAsInteger(0, Result)) { 568 LLVMContext &Ctx = F.getContext(); 569 Ctx.emitError("can't parse integer attribute " + Name); 570 } 571 } 572 573 return Result; 574 } 575 576 std::pair<int, int> getIntegerPairAttribute(const Function &F, 577 StringRef Name, 578 std::pair<int, int> Default, 579 bool OnlyFirstRequired) { 580 Attribute A = F.getFnAttribute(Name); 581 if (!A.isStringAttribute()) 582 return Default; 583 584 LLVMContext &Ctx = F.getContext(); 585 std::pair<int, int> Ints = Default; 586 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 587 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 588 Ctx.emitError("can't parse first integer attribute " + Name); 589 return Default; 590 } 591 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 592 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 593 Ctx.emitError("can't parse second integer attribute " + Name); 594 return Default; 595 } 596 } 597 598 return Ints; 599 } 600 601 unsigned getVmcntBitMask(const IsaVersion &Version) { 602 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 603 if (Version.Major < 9) 604 return VmcntLo; 605 606 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 607 return VmcntLo | VmcntHi; 608 } 609 610 unsigned getExpcntBitMask(const IsaVersion &Version) { 611 return (1 << getExpcntBitWidth()) - 1; 612 } 613 614 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 615 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 616 } 617 618 unsigned getWaitcntBitMask(const IsaVersion &Version) { 619 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 620 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 621 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 622 getLgkmcntBitWidth(Version.Major)); 623 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 624 if (Version.Major < 9) 625 return Waitcnt; 626 627 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 628 return Waitcnt | VmcntHi; 629 } 630 631 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 632 unsigned VmcntLo = 633 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 634 if (Version.Major < 9) 635 return VmcntLo; 636 637 unsigned VmcntHi = 638 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 639 VmcntHi <<= getVmcntBitWidthLo(); 640 return VmcntLo | VmcntHi; 641 } 642 643 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 644 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 645 } 646 647 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 648 return unpackBits(Waitcnt, getLgkmcntBitShift(), 649 getLgkmcntBitWidth(Version.Major)); 650 } 651 652 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 653 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 654 Vmcnt = decodeVmcnt(Version, Waitcnt); 655 Expcnt = decodeExpcnt(Version, Waitcnt); 656 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 657 } 658 659 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 660 Waitcnt Decoded; 661 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 662 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 663 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 664 return Decoded; 665 } 666 667 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 668 unsigned Vmcnt) { 669 Waitcnt = 670 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 671 if (Version.Major < 9) 672 return Waitcnt; 673 674 Vmcnt >>= getVmcntBitWidthLo(); 675 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 676 } 677 678 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 679 unsigned Expcnt) { 680 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 681 } 682 683 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 684 unsigned Lgkmcnt) { 685 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 686 getLgkmcntBitWidth(Version.Major)); 687 } 688 689 unsigned encodeWaitcnt(const IsaVersion &Version, 690 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 691 unsigned Waitcnt = getWaitcntBitMask(Version); 692 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 693 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 694 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 695 return Waitcnt; 696 } 697 698 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 699 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 700 } 701 702 //===----------------------------------------------------------------------===// 703 // hwreg 704 //===----------------------------------------------------------------------===// 705 706 namespace Hwreg { 707 708 int64_t getHwregId(const StringRef Name) { 709 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 710 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 711 return Id; 712 } 713 return ID_UNKNOWN_; 714 } 715 716 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 717 if (isSI(STI) || isCI(STI) || isVI(STI)) 718 return ID_SYMBOLIC_FIRST_GFX9_; 719 else if (isGFX9(STI)) 720 return ID_SYMBOLIC_FIRST_GFX10_; 721 else 722 return ID_SYMBOLIC_LAST_; 723 } 724 725 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 726 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 727 IdSymbolic[Id]; 728 } 729 730 bool isValidHwreg(int64_t Id) { 731 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 732 } 733 734 bool isValidHwregOffset(int64_t Offset) { 735 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 736 } 737 738 bool isValidHwregWidth(int64_t Width) { 739 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 740 } 741 742 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 743 return (Id << ID_SHIFT_) | 744 (Offset << OFFSET_SHIFT_) | 745 ((Width - 1) << WIDTH_M1_SHIFT_); 746 } 747 748 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 749 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 750 } 751 752 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 753 Id = (Val & ID_MASK_) >> ID_SHIFT_; 754 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 755 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 756 } 757 758 } // namespace Hwreg 759 760 //===----------------------------------------------------------------------===// 761 // SendMsg 762 //===----------------------------------------------------------------------===// 763 764 namespace SendMsg { 765 766 int64_t getMsgId(const StringRef Name) { 767 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 768 if (IdSymbolic[i] && Name == IdSymbolic[i]) 769 return i; 770 } 771 return ID_UNKNOWN_; 772 } 773 774 static bool isValidMsgId(int64_t MsgId) { 775 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 776 } 777 778 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 779 if (Strict) { 780 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 781 return isGFX9(STI) || isGFX10(STI); 782 else 783 return isValidMsgId(MsgId); 784 } else { 785 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 786 } 787 } 788 789 StringRef getMsgName(int64_t MsgId) { 790 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 791 } 792 793 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 794 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 795 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 796 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 797 for (int i = F; i < L; ++i) { 798 if (Name == S[i]) { 799 return i; 800 } 801 } 802 return OP_UNKNOWN_; 803 } 804 805 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 806 807 if (!Strict) 808 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 809 810 switch(MsgId) 811 { 812 case ID_GS: 813 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 814 case ID_GS_DONE: 815 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 816 case ID_SYSMSG: 817 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 818 default: 819 return OpId == OP_NONE_; 820 } 821 } 822 823 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 824 assert(msgRequiresOp(MsgId)); 825 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 826 } 827 828 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 829 830 if (!Strict) 831 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 832 833 switch(MsgId) 834 { 835 case ID_GS: 836 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 837 case ID_GS_DONE: 838 return (OpId == OP_GS_NOP)? 839 (StreamId == STREAM_ID_NONE_) : 840 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 841 default: 842 return StreamId == STREAM_ID_NONE_; 843 } 844 } 845 846 bool msgRequiresOp(int64_t MsgId) { 847 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 848 } 849 850 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 851 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 852 } 853 854 void decodeMsg(unsigned Val, 855 uint16_t &MsgId, 856 uint16_t &OpId, 857 uint16_t &StreamId) { 858 MsgId = Val & ID_MASK_; 859 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 860 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 861 } 862 863 uint64_t encodeMsg(uint64_t MsgId, 864 uint64_t OpId, 865 uint64_t StreamId) { 866 return (MsgId << ID_SHIFT_) | 867 (OpId << OP_SHIFT_) | 868 (StreamId << STREAM_ID_SHIFT_); 869 } 870 871 } // namespace SendMsg 872 873 //===----------------------------------------------------------------------===// 874 // 875 //===----------------------------------------------------------------------===// 876 877 unsigned getInitialPSInputAddr(const Function &F) { 878 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 879 } 880 881 bool isShader(CallingConv::ID cc) { 882 switch(cc) { 883 case CallingConv::AMDGPU_VS: 884 case CallingConv::AMDGPU_LS: 885 case CallingConv::AMDGPU_HS: 886 case CallingConv::AMDGPU_ES: 887 case CallingConv::AMDGPU_GS: 888 case CallingConv::AMDGPU_PS: 889 case CallingConv::AMDGPU_CS: 890 return true; 891 default: 892 return false; 893 } 894 } 895 896 bool isCompute(CallingConv::ID cc) { 897 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 898 } 899 900 bool isEntryFunctionCC(CallingConv::ID CC) { 901 switch (CC) { 902 case CallingConv::AMDGPU_KERNEL: 903 case CallingConv::SPIR_KERNEL: 904 case CallingConv::AMDGPU_VS: 905 case CallingConv::AMDGPU_GS: 906 case CallingConv::AMDGPU_PS: 907 case CallingConv::AMDGPU_CS: 908 case CallingConv::AMDGPU_ES: 909 case CallingConv::AMDGPU_HS: 910 case CallingConv::AMDGPU_LS: 911 return true; 912 default: 913 return false; 914 } 915 } 916 917 bool hasXNACK(const MCSubtargetInfo &STI) { 918 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 919 } 920 921 bool hasSRAMECC(const MCSubtargetInfo &STI) { 922 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 923 } 924 925 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 926 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 927 } 928 929 bool hasPackedD16(const MCSubtargetInfo &STI) { 930 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 931 } 932 933 bool isSI(const MCSubtargetInfo &STI) { 934 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 935 } 936 937 bool isCI(const MCSubtargetInfo &STI) { 938 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 939 } 940 941 bool isVI(const MCSubtargetInfo &STI) { 942 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 943 } 944 945 bool isGFX9(const MCSubtargetInfo &STI) { 946 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 947 } 948 949 bool isGFX10(const MCSubtargetInfo &STI) { 950 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 951 } 952 953 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 954 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 955 } 956 957 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 958 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 959 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 960 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 961 Reg == AMDGPU::SCC; 962 } 963 964 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 965 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 966 if (*R == Reg1) return true; 967 } 968 return false; 969 } 970 971 #define MAP_REG2REG \ 972 using namespace AMDGPU; \ 973 switch(Reg) { \ 974 default: return Reg; \ 975 CASE_CI_VI(FLAT_SCR) \ 976 CASE_CI_VI(FLAT_SCR_LO) \ 977 CASE_CI_VI(FLAT_SCR_HI) \ 978 CASE_VI_GFX9_GFX10(TTMP0) \ 979 CASE_VI_GFX9_GFX10(TTMP1) \ 980 CASE_VI_GFX9_GFX10(TTMP2) \ 981 CASE_VI_GFX9_GFX10(TTMP3) \ 982 CASE_VI_GFX9_GFX10(TTMP4) \ 983 CASE_VI_GFX9_GFX10(TTMP5) \ 984 CASE_VI_GFX9_GFX10(TTMP6) \ 985 CASE_VI_GFX9_GFX10(TTMP7) \ 986 CASE_VI_GFX9_GFX10(TTMP8) \ 987 CASE_VI_GFX9_GFX10(TTMP9) \ 988 CASE_VI_GFX9_GFX10(TTMP10) \ 989 CASE_VI_GFX9_GFX10(TTMP11) \ 990 CASE_VI_GFX9_GFX10(TTMP12) \ 991 CASE_VI_GFX9_GFX10(TTMP13) \ 992 CASE_VI_GFX9_GFX10(TTMP14) \ 993 CASE_VI_GFX9_GFX10(TTMP15) \ 994 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 995 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 996 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 997 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 998 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 999 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1000 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1001 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1002 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1003 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1004 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1005 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1006 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1007 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1008 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1009 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1010 } 1011 1012 #define CASE_CI_VI(node) \ 1013 assert(!isSI(STI)); \ 1014 case node: return isCI(STI) ? node##_ci : node##_vi; 1015 1016 #define CASE_VI_GFX9_GFX10(node) \ 1017 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1018 1019 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1020 if (STI.getTargetTriple().getArch() == Triple::r600) 1021 return Reg; 1022 MAP_REG2REG 1023 } 1024 1025 #undef CASE_CI_VI 1026 #undef CASE_VI_GFX9_GFX10 1027 1028 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1029 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1030 1031 unsigned mc2PseudoReg(unsigned Reg) { 1032 MAP_REG2REG 1033 } 1034 1035 #undef CASE_CI_VI 1036 #undef CASE_VI_GFX9_GFX10 1037 #undef MAP_REG2REG 1038 1039 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1040 assert(OpNo < Desc.NumOperands); 1041 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1042 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1043 OpType <= AMDGPU::OPERAND_SRC_LAST; 1044 } 1045 1046 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1047 assert(OpNo < Desc.NumOperands); 1048 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1049 switch (OpType) { 1050 case AMDGPU::OPERAND_REG_IMM_FP32: 1051 case AMDGPU::OPERAND_REG_IMM_FP64: 1052 case AMDGPU::OPERAND_REG_IMM_FP16: 1053 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1054 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1055 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1056 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1057 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1058 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1059 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1060 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1061 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1062 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1063 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1064 return true; 1065 default: 1066 return false; 1067 } 1068 } 1069 1070 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1071 assert(OpNo < Desc.NumOperands); 1072 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1073 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1074 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1075 } 1076 1077 // Avoid using MCRegisterClass::getSize, since that function will go away 1078 // (move from MC* level to Target* level). Return size in bits. 1079 unsigned getRegBitWidth(unsigned RCID) { 1080 switch (RCID) { 1081 case AMDGPU::SGPR_32RegClassID: 1082 case AMDGPU::VGPR_32RegClassID: 1083 case AMDGPU::VRegOrLds_32RegClassID: 1084 case AMDGPU::AGPR_32RegClassID: 1085 case AMDGPU::VS_32RegClassID: 1086 case AMDGPU::AV_32RegClassID: 1087 case AMDGPU::SReg_32RegClassID: 1088 case AMDGPU::SReg_32_XM0RegClassID: 1089 case AMDGPU::SRegOrLds_32RegClassID: 1090 return 32; 1091 case AMDGPU::SGPR_64RegClassID: 1092 case AMDGPU::VS_64RegClassID: 1093 case AMDGPU::AV_64RegClassID: 1094 case AMDGPU::SReg_64RegClassID: 1095 case AMDGPU::VReg_64RegClassID: 1096 case AMDGPU::AReg_64RegClassID: 1097 case AMDGPU::SReg_64_XEXECRegClassID: 1098 return 64; 1099 case AMDGPU::SGPR_96RegClassID: 1100 case AMDGPU::SReg_96RegClassID: 1101 case AMDGPU::VReg_96RegClassID: 1102 return 96; 1103 case AMDGPU::SGPR_128RegClassID: 1104 case AMDGPU::SReg_128RegClassID: 1105 case AMDGPU::VReg_128RegClassID: 1106 case AMDGPU::AReg_128RegClassID: 1107 return 128; 1108 case AMDGPU::SGPR_160RegClassID: 1109 case AMDGPU::SReg_160RegClassID: 1110 case AMDGPU::VReg_160RegClassID: 1111 return 160; 1112 case AMDGPU::SReg_256RegClassID: 1113 case AMDGPU::VReg_256RegClassID: 1114 return 256; 1115 case AMDGPU::SReg_512RegClassID: 1116 case AMDGPU::VReg_512RegClassID: 1117 case AMDGPU::AReg_512RegClassID: 1118 return 512; 1119 case AMDGPU::SReg_1024RegClassID: 1120 case AMDGPU::VReg_1024RegClassID: 1121 case AMDGPU::AReg_1024RegClassID: 1122 return 1024; 1123 default: 1124 llvm_unreachable("Unexpected register class"); 1125 } 1126 } 1127 1128 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1129 return getRegBitWidth(RC.getID()); 1130 } 1131 1132 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1133 unsigned OpNo) { 1134 assert(OpNo < Desc.NumOperands); 1135 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1136 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1137 } 1138 1139 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1140 if (Literal >= -16 && Literal <= 64) 1141 return true; 1142 1143 uint64_t Val = static_cast<uint64_t>(Literal); 1144 return (Val == DoubleToBits(0.0)) || 1145 (Val == DoubleToBits(1.0)) || 1146 (Val == DoubleToBits(-1.0)) || 1147 (Val == DoubleToBits(0.5)) || 1148 (Val == DoubleToBits(-0.5)) || 1149 (Val == DoubleToBits(2.0)) || 1150 (Val == DoubleToBits(-2.0)) || 1151 (Val == DoubleToBits(4.0)) || 1152 (Val == DoubleToBits(-4.0)) || 1153 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1154 } 1155 1156 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1157 if (Literal >= -16 && Literal <= 64) 1158 return true; 1159 1160 // The actual type of the operand does not seem to matter as long 1161 // as the bits match one of the inline immediate values. For example: 1162 // 1163 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1164 // so it is a legal inline immediate. 1165 // 1166 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1167 // floating-point, so it is a legal inline immediate. 1168 1169 uint32_t Val = static_cast<uint32_t>(Literal); 1170 return (Val == FloatToBits(0.0f)) || 1171 (Val == FloatToBits(1.0f)) || 1172 (Val == FloatToBits(-1.0f)) || 1173 (Val == FloatToBits(0.5f)) || 1174 (Val == FloatToBits(-0.5f)) || 1175 (Val == FloatToBits(2.0f)) || 1176 (Val == FloatToBits(-2.0f)) || 1177 (Val == FloatToBits(4.0f)) || 1178 (Val == FloatToBits(-4.0f)) || 1179 (Val == 0x3e22f983 && HasInv2Pi); 1180 } 1181 1182 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1183 if (!HasInv2Pi) 1184 return false; 1185 1186 if (Literal >= -16 && Literal <= 64) 1187 return true; 1188 1189 uint16_t Val = static_cast<uint16_t>(Literal); 1190 return Val == 0x3C00 || // 1.0 1191 Val == 0xBC00 || // -1.0 1192 Val == 0x3800 || // 0.5 1193 Val == 0xB800 || // -0.5 1194 Val == 0x4000 || // 2.0 1195 Val == 0xC000 || // -2.0 1196 Val == 0x4400 || // 4.0 1197 Val == 0xC400 || // -4.0 1198 Val == 0x3118; // 1/2pi 1199 } 1200 1201 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1202 assert(HasInv2Pi); 1203 1204 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1205 int16_t Trunc = static_cast<int16_t>(Literal); 1206 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1207 } 1208 if (!(Literal & 0xffff)) 1209 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1210 1211 int16_t Lo16 = static_cast<int16_t>(Literal); 1212 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1213 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1214 } 1215 1216 bool isArgPassedInSGPR(const Argument *A) { 1217 const Function *F = A->getParent(); 1218 1219 // Arguments to compute shaders are never a source of divergence. 1220 CallingConv::ID CC = F->getCallingConv(); 1221 switch (CC) { 1222 case CallingConv::AMDGPU_KERNEL: 1223 case CallingConv::SPIR_KERNEL: 1224 return true; 1225 case CallingConv::AMDGPU_VS: 1226 case CallingConv::AMDGPU_LS: 1227 case CallingConv::AMDGPU_HS: 1228 case CallingConv::AMDGPU_ES: 1229 case CallingConv::AMDGPU_GS: 1230 case CallingConv::AMDGPU_PS: 1231 case CallingConv::AMDGPU_CS: 1232 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1233 // Everything else is in VGPRs. 1234 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1235 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1236 default: 1237 // TODO: Should calls support inreg for SGPR inputs? 1238 return false; 1239 } 1240 } 1241 1242 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1243 return isGCN3Encoding(ST) || isGFX10(ST); 1244 } 1245 1246 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1247 if (hasSMEMByteOffset(ST)) 1248 return ByteOffset; 1249 return ByteOffset >> 2; 1250 } 1251 1252 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1253 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 1254 return (hasSMEMByteOffset(ST)) ? 1255 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 1256 } 1257 1258 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1259 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1260 // hardware bug needing a workaround). 1261 // 1262 // The required alignment ensures that individual address components remain 1263 // aligned if they are aligned to begin with. It also ensures that additional 1264 // offsets within the given alignment can be added to the resulting ImmOffset. 1265 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1266 const GCNSubtarget *Subtarget, uint32_t Align) { 1267 const uint32_t MaxImm = alignDown(4095, Align); 1268 uint32_t Overflow = 0; 1269 1270 if (Imm > MaxImm) { 1271 if (Imm <= MaxImm + 64) { 1272 // Use an SOffset inline constant for 4..64 1273 Overflow = Imm - MaxImm; 1274 Imm = MaxImm; 1275 } else { 1276 // Try to keep the same value in SOffset for adjacent loads, so that 1277 // the corresponding register contents can be re-used. 1278 // 1279 // Load values with all low-bits (except for alignment bits) set into 1280 // SOffset, so that a larger range of values can be covered using 1281 // s_movk_i32. 1282 // 1283 // Atomic operations fail to work correctly when individual address 1284 // components are unaligned, even if their sum is aligned. 1285 uint32_t High = (Imm + Align) & ~4095; 1286 uint32_t Low = (Imm + Align) & 4095; 1287 Imm = Low; 1288 Overflow = High - Align; 1289 } 1290 } 1291 1292 // There is a hardware bug in SI and CI which prevents address clamping in 1293 // MUBUF instructions from working correctly with SOffsets. The immediate 1294 // offset is unaffected. 1295 if (Overflow > 0 && 1296 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1297 return false; 1298 1299 ImmOffset = Imm; 1300 SOffset = Overflow; 1301 return true; 1302 } 1303 1304 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1305 *this = getDefaultForCallingConv(F.getCallingConv()); 1306 1307 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1308 if (!IEEEAttr.empty()) 1309 IEEE = IEEEAttr == "true"; 1310 1311 StringRef DX10ClampAttr 1312 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1313 if (!DX10ClampAttr.empty()) 1314 DX10Clamp = DX10ClampAttr == "true"; 1315 } 1316 1317 namespace { 1318 1319 struct SourceOfDivergence { 1320 unsigned Intr; 1321 }; 1322 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1323 1324 #define GET_SourcesOfDivergence_IMPL 1325 #include "AMDGPUGenSearchableTables.inc" 1326 1327 } // end anonymous namespace 1328 1329 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1330 return lookupSourceOfDivergence(IntrID); 1331 } 1332 1333 } // namespace AMDGPU 1334 } // namespace llvm 1335