xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp (revision 753f127f3ace09432b2baeffd71a308760641a62)
1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned>
32     AmdhsaCodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden,
33                             llvm::cl::desc("AMDHSA Code Object Version"),
34                             llvm::cl::init(4));
35 
36 // TODO-GFX11: Remove this when full 16-bit codegen is implemented.
37 static llvm::cl::opt<bool>
38     LimitTo128VGPRs("amdgpu-limit-to-128-vgprs", llvm::cl::Hidden,
39                     llvm::cl::desc("Never use more than 128 VGPRs"));
40 
41 namespace {
42 
43 /// \returns Bit mask for given bit \p Shift and bit \p Width.
44 unsigned getBitMask(unsigned Shift, unsigned Width) {
45   return ((1 << Width) - 1) << Shift;
46 }
47 
48 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
49 ///
50 /// \returns Packed \p Dst.
51 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
52   unsigned Mask = getBitMask(Shift, Width);
53   return ((Src << Shift) & Mask) | (Dst & ~Mask);
54 }
55 
56 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Unpacked bits.
59 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
60   return (Src & getBitMask(Shift, Width)) >> Shift;
61 }
62 
63 /// \returns Vmcnt bit shift (lower bits).
64 unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
65   return VersionMajor >= 11 ? 10 : 0;
66 }
67 
68 /// \returns Vmcnt bit width (lower bits).
69 unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
70   return VersionMajor >= 11 ? 6 : 4;
71 }
72 
73 /// \returns Expcnt bit shift.
74 unsigned getExpcntBitShift(unsigned VersionMajor) {
75   return VersionMajor >= 11 ? 0 : 4;
76 }
77 
78 /// \returns Expcnt bit width.
79 unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
80 
81 /// \returns Lgkmcnt bit shift.
82 unsigned getLgkmcntBitShift(unsigned VersionMajor) {
83   return VersionMajor >= 11 ? 4 : 8;
84 }
85 
86 /// \returns Lgkmcnt bit width.
87 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
88   return VersionMajor >= 10 ? 6 : 4;
89 }
90 
91 /// \returns Vmcnt bit shift (higher bits).
92 unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
93 
94 /// \returns Vmcnt bit width (higher bits).
95 unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
96   return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
97 }
98 
99 } // end namespace anonymous
100 
101 namespace llvm {
102 
103 namespace AMDGPU {
104 
105 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
106   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
107     return None;
108 
109   switch (AmdhsaCodeObjectVersion) {
110   case 2:
111     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
112   case 3:
113     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
114   case 4:
115     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
116   case 5:
117     return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
118   default:
119     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
120                        Twine(AmdhsaCodeObjectVersion));
121   }
122 }
123 
124 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
125   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
126     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
127   return false;
128 }
129 
130 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
131   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
132     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
133   return false;
134 }
135 
136 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
137   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
138     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
139   return false;
140 }
141 
142 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
143   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
144     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
145   return false;
146 }
147 
148 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
149   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
150          isHsaAbiVersion5(STI);
151 }
152 
153 unsigned getAmdhsaCodeObjectVersion() {
154   return AmdhsaCodeObjectVersion;
155 }
156 
157 unsigned getMultigridSyncArgImplicitArgPosition() {
158   switch (AmdhsaCodeObjectVersion) {
159   case 2:
160   case 3:
161   case 4:
162     return 48;
163   case 5:
164     return AMDGPU::ImplicitArg::MULTIGRID_SYNC_ARG_OFFSET;
165   default:
166     llvm_unreachable("Unexpected code object version");
167     return 0;
168   }
169 }
170 
171 
172 // FIXME: All such magic numbers about the ABI should be in a
173 // central TD file.
174 unsigned getHostcallImplicitArgPosition() {
175   switch (AmdhsaCodeObjectVersion) {
176   case 2:
177   case 3:
178   case 4:
179     return 24;
180   case 5:
181     return AMDGPU::ImplicitArg::HOSTCALL_PTR_OFFSET;
182   default:
183     llvm_unreachable("Unexpected code object version");
184     return 0;
185   }
186 }
187 
188 #define GET_MIMGBaseOpcodesTable_IMPL
189 #define GET_MIMGDimInfoTable_IMPL
190 #define GET_MIMGInfoTable_IMPL
191 #define GET_MIMGLZMappingTable_IMPL
192 #define GET_MIMGMIPMappingTable_IMPL
193 #define GET_MIMGBiasMappingTable_IMPL
194 #define GET_MIMGOffsetMappingTable_IMPL
195 #define GET_MIMGG16MappingTable_IMPL
196 #define GET_MAIInstInfoTable_IMPL
197 #include "AMDGPUGenSearchableTables.inc"
198 
199 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
200                   unsigned VDataDwords, unsigned VAddrDwords) {
201   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
202                                              VDataDwords, VAddrDwords);
203   return Info ? Info->Opcode : -1;
204 }
205 
206 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
207   const MIMGInfo *Info = getMIMGInfo(Opc);
208   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
209 }
210 
211 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
212   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
213   const MIMGInfo *NewInfo =
214       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
215                           NewChannels, OrigInfo->VAddrDwords);
216   return NewInfo ? NewInfo->Opcode : -1;
217 }
218 
219 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
220                            const MIMGDimInfo *Dim, bool IsA16,
221                            bool IsG16Supported) {
222   unsigned AddrWords = BaseOpcode->NumExtraArgs;
223   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
224                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
225   if (IsA16)
226     AddrWords += divideCeil(AddrComponents, 2);
227   else
228     AddrWords += AddrComponents;
229 
230   // Note: For subtargets that support A16 but not G16, enabling A16 also
231   // enables 16 bit gradients.
232   // For subtargets that support A16 (operand) and G16 (done with a different
233   // instruction encoding), they are independent.
234 
235   if (BaseOpcode->Gradients) {
236     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
237       // There are two gradients per coordinate, we pack them separately.
238       // For the 3d case,
239       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
240       AddrWords += alignTo<2>(Dim->NumGradients / 2);
241     else
242       AddrWords += Dim->NumGradients;
243   }
244   return AddrWords;
245 }
246 
247 struct MUBUFInfo {
248   uint16_t Opcode;
249   uint16_t BaseOpcode;
250   uint8_t elements;
251   bool has_vaddr;
252   bool has_srsrc;
253   bool has_soffset;
254   bool IsBufferInv;
255 };
256 
257 struct MTBUFInfo {
258   uint16_t Opcode;
259   uint16_t BaseOpcode;
260   uint8_t elements;
261   bool has_vaddr;
262   bool has_srsrc;
263   bool has_soffset;
264 };
265 
266 struct SMInfo {
267   uint16_t Opcode;
268   bool IsBuffer;
269 };
270 
271 struct VOPInfo {
272   uint16_t Opcode;
273   bool IsSingle;
274 };
275 
276 struct VOPC64DPPInfo {
277   uint16_t Opcode;
278 };
279 
280 struct VOPDComponentInfo {
281   uint16_t BaseVOP;
282   uint16_t VOPDOp;
283   bool CanBeVOPDX;
284 };
285 
286 struct VOPDInfo {
287   uint16_t Opcode;
288   uint16_t OpX;
289   uint16_t OpY;
290 };
291 
292 #define GET_MTBUFInfoTable_DECL
293 #define GET_MTBUFInfoTable_IMPL
294 #define GET_MUBUFInfoTable_DECL
295 #define GET_MUBUFInfoTable_IMPL
296 #define GET_SMInfoTable_DECL
297 #define GET_SMInfoTable_IMPL
298 #define GET_VOP1InfoTable_DECL
299 #define GET_VOP1InfoTable_IMPL
300 #define GET_VOP2InfoTable_DECL
301 #define GET_VOP2InfoTable_IMPL
302 #define GET_VOP3InfoTable_DECL
303 #define GET_VOP3InfoTable_IMPL
304 #define GET_VOPC64DPPTable_DECL
305 #define GET_VOPC64DPPTable_IMPL
306 #define GET_VOPC64DPP8Table_DECL
307 #define GET_VOPC64DPP8Table_IMPL
308 #define GET_VOPDComponentTable_DECL
309 #define GET_VOPDComponentTable_IMPL
310 #define GET_VOPDPairs_DECL
311 #define GET_VOPDPairs_IMPL
312 #define GET_WMMAOpcode2AddrMappingTable_DECL
313 #define GET_WMMAOpcode2AddrMappingTable_IMPL
314 #define GET_WMMAOpcode3AddrMappingTable_DECL
315 #define GET_WMMAOpcode3AddrMappingTable_IMPL
316 #include "AMDGPUGenSearchableTables.inc"
317 
318 int getMTBUFBaseOpcode(unsigned Opc) {
319   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
320   return Info ? Info->BaseOpcode : -1;
321 }
322 
323 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
324   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
325   return Info ? Info->Opcode : -1;
326 }
327 
328 int getMTBUFElements(unsigned Opc) {
329   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
330   return Info ? Info->elements : 0;
331 }
332 
333 bool getMTBUFHasVAddr(unsigned Opc) {
334   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
335   return Info ? Info->has_vaddr : false;
336 }
337 
338 bool getMTBUFHasSrsrc(unsigned Opc) {
339   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
340   return Info ? Info->has_srsrc : false;
341 }
342 
343 bool getMTBUFHasSoffset(unsigned Opc) {
344   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
345   return Info ? Info->has_soffset : false;
346 }
347 
348 int getMUBUFBaseOpcode(unsigned Opc) {
349   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
350   return Info ? Info->BaseOpcode : -1;
351 }
352 
353 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
354   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
355   return Info ? Info->Opcode : -1;
356 }
357 
358 int getMUBUFElements(unsigned Opc) {
359   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
360   return Info ? Info->elements : 0;
361 }
362 
363 bool getMUBUFHasVAddr(unsigned Opc) {
364   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
365   return Info ? Info->has_vaddr : false;
366 }
367 
368 bool getMUBUFHasSrsrc(unsigned Opc) {
369   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
370   return Info ? Info->has_srsrc : false;
371 }
372 
373 bool getMUBUFHasSoffset(unsigned Opc) {
374   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
375   return Info ? Info->has_soffset : false;
376 }
377 
378 bool getMUBUFIsBufferInv(unsigned Opc) {
379   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
380   return Info ? Info->IsBufferInv : false;
381 }
382 
383 bool getSMEMIsBuffer(unsigned Opc) {
384   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
385   return Info ? Info->IsBuffer : false;
386 }
387 
388 bool getVOP1IsSingle(unsigned Opc) {
389   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
390   return Info ? Info->IsSingle : false;
391 }
392 
393 bool getVOP2IsSingle(unsigned Opc) {
394   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
395   return Info ? Info->IsSingle : false;
396 }
397 
398 bool getVOP3IsSingle(unsigned Opc) {
399   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
400   return Info ? Info->IsSingle : false;
401 }
402 
403 bool isVOPC64DPP(unsigned Opc) {
404   return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
405 }
406 
407 bool getMAIIsDGEMM(unsigned Opc) {
408   const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
409   return Info ? Info->is_dgemm : false;
410 }
411 
412 bool getMAIIsGFX940XDL(unsigned Opc) {
413   const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
414   return Info ? Info->is_gfx940_xdl : false;
415 }
416 
417 CanBeVOPD getCanBeVOPD(unsigned Opc) {
418   const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
419   if (Info)
420     return {Info->CanBeVOPDX, 1};
421   else
422     return {0, 0};
423 }
424 
425 unsigned getVOPDOpcode(unsigned Opc) {
426   const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
427   return Info ? Info->VOPDOp : ~0u;
428 }
429 
430 unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
431   const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
432   return Info ? Info->Opcode3Addr : ~0u;
433 }
434 
435 unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
436   const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
437   return Info ? Info->Opcode2Addr : ~0u;
438 }
439 
440 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
441 // header files, so we need to wrap it in a function that takes unsigned
442 // instead.
443 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
444   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
445 }
446 
447 int getVOPDFull(unsigned OpX, unsigned OpY) {
448   const VOPDInfo *Info = getVOPDInfoFromComponentOpcodes(OpX, OpY);
449   return Info ? Info->Opcode : -1;
450 }
451 
452 namespace IsaInfo {
453 
454 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
455     : STI(STI), XnackSetting(TargetIDSetting::Any),
456       SramEccSetting(TargetIDSetting::Any) {
457   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
458     XnackSetting = TargetIDSetting::Unsupported;
459   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
460     SramEccSetting = TargetIDSetting::Unsupported;
461 }
462 
463 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
464   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
465   // absence of the target features we assume we must generate code that can run
466   // in any environment.
467   SubtargetFeatures Features(FS);
468   Optional<bool> XnackRequested;
469   Optional<bool> SramEccRequested;
470 
471   for (const std::string &Feature : Features.getFeatures()) {
472     if (Feature == "+xnack")
473       XnackRequested = true;
474     else if (Feature == "-xnack")
475       XnackRequested = false;
476     else if (Feature == "+sramecc")
477       SramEccRequested = true;
478     else if (Feature == "-sramecc")
479       SramEccRequested = false;
480   }
481 
482   bool XnackSupported = isXnackSupported();
483   bool SramEccSupported = isSramEccSupported();
484 
485   if (XnackRequested) {
486     if (XnackSupported) {
487       XnackSetting =
488           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
489     } else {
490       // If a specific xnack setting was requested and this GPU does not support
491       // xnack emit a warning. Setting will remain set to "Unsupported".
492       if (*XnackRequested) {
493         errs() << "warning: xnack 'On' was requested for a processor that does "
494                   "not support it!\n";
495       } else {
496         errs() << "warning: xnack 'Off' was requested for a processor that "
497                   "does not support it!\n";
498       }
499     }
500   }
501 
502   if (SramEccRequested) {
503     if (SramEccSupported) {
504       SramEccSetting =
505           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
506     } else {
507       // If a specific sramecc setting was requested and this GPU does not
508       // support sramecc emit a warning. Setting will remain set to
509       // "Unsupported".
510       if (*SramEccRequested) {
511         errs() << "warning: sramecc 'On' was requested for a processor that "
512                   "does not support it!\n";
513       } else {
514         errs() << "warning: sramecc 'Off' was requested for a processor that "
515                   "does not support it!\n";
516       }
517     }
518   }
519 }
520 
521 static TargetIDSetting
522 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
523   if (FeatureString.endswith("-"))
524     return TargetIDSetting::Off;
525   if (FeatureString.endswith("+"))
526     return TargetIDSetting::On;
527 
528   llvm_unreachable("Malformed feature string");
529 }
530 
531 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
532   SmallVector<StringRef, 3> TargetIDSplit;
533   TargetID.split(TargetIDSplit, ':');
534 
535   for (const auto &FeatureString : TargetIDSplit) {
536     if (FeatureString.startswith("xnack"))
537       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
538     if (FeatureString.startswith("sramecc"))
539       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
540   }
541 }
542 
543 std::string AMDGPUTargetID::toString() const {
544   std::string StringRep;
545   raw_string_ostream StreamRep(StringRep);
546 
547   auto TargetTriple = STI.getTargetTriple();
548   auto Version = getIsaVersion(STI.getCPU());
549 
550   StreamRep << TargetTriple.getArchName() << '-'
551             << TargetTriple.getVendorName() << '-'
552             << TargetTriple.getOSName() << '-'
553             << TargetTriple.getEnvironmentName() << '-';
554 
555   std::string Processor;
556   // TODO: Following else statement is present here because we used various
557   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
558   // Remove once all aliases are removed from GCNProcessors.td.
559   if (Version.Major >= 9)
560     Processor = STI.getCPU().str();
561   else
562     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
563                  Twine(Version.Stepping))
564                     .str();
565 
566   std::string Features;
567   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
568     switch (*HsaAbiVersion) {
569     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
570       // Code object V2 only supported specific processors and had fixed
571       // settings for the XNACK.
572       if (Processor == "gfx600") {
573       } else if (Processor == "gfx601") {
574       } else if (Processor == "gfx602") {
575       } else if (Processor == "gfx700") {
576       } else if (Processor == "gfx701") {
577       } else if (Processor == "gfx702") {
578       } else if (Processor == "gfx703") {
579       } else if (Processor == "gfx704") {
580       } else if (Processor == "gfx705") {
581       } else if (Processor == "gfx801") {
582         if (!isXnackOnOrAny())
583           report_fatal_error(
584               "AMD GPU code object V2 does not support processor " +
585               Twine(Processor) + " without XNACK");
586       } else if (Processor == "gfx802") {
587       } else if (Processor == "gfx803") {
588       } else if (Processor == "gfx805") {
589       } else if (Processor == "gfx810") {
590         if (!isXnackOnOrAny())
591           report_fatal_error(
592               "AMD GPU code object V2 does not support processor " +
593               Twine(Processor) + " without XNACK");
594       } else if (Processor == "gfx900") {
595         if (isXnackOnOrAny())
596           Processor = "gfx901";
597       } else if (Processor == "gfx902") {
598         if (isXnackOnOrAny())
599           Processor = "gfx903";
600       } else if (Processor == "gfx904") {
601         if (isXnackOnOrAny())
602           Processor = "gfx905";
603       } else if (Processor == "gfx906") {
604         if (isXnackOnOrAny())
605           Processor = "gfx907";
606       } else if (Processor == "gfx90c") {
607         if (isXnackOnOrAny())
608           report_fatal_error(
609               "AMD GPU code object V2 does not support processor " +
610               Twine(Processor) + " with XNACK being ON or ANY");
611       } else {
612         report_fatal_error(
613             "AMD GPU code object V2 does not support processor " +
614             Twine(Processor));
615       }
616       break;
617     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
618       // xnack.
619       if (isXnackOnOrAny())
620         Features += "+xnack";
621       // In code object v2 and v3, "sramecc" feature was spelled with a
622       // hyphen ("sram-ecc").
623       if (isSramEccOnOrAny())
624         Features += "+sram-ecc";
625       break;
626     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
627     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
628       // sramecc.
629       if (getSramEccSetting() == TargetIDSetting::Off)
630         Features += ":sramecc-";
631       else if (getSramEccSetting() == TargetIDSetting::On)
632         Features += ":sramecc+";
633       // xnack.
634       if (getXnackSetting() == TargetIDSetting::Off)
635         Features += ":xnack-";
636       else if (getXnackSetting() == TargetIDSetting::On)
637         Features += ":xnack+";
638       break;
639     default:
640       break;
641     }
642   }
643 
644   StreamRep << Processor << Features;
645 
646   StreamRep.flush();
647   return StringRep;
648 }
649 
650 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
651   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
652     return 16;
653   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
654     return 32;
655 
656   return 64;
657 }
658 
659 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
660   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
661     return 32768;
662   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
663     return 65536;
664 
665   return 0;
666 }
667 
668 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
669   // "Per CU" really means "per whatever functional block the waves of a
670   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
671   // two SIMDs.
672   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
673     return 2;
674   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
675   // two CUs, so a total of four SIMDs.
676   return 4;
677 }
678 
679 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
680                                unsigned FlatWorkGroupSize) {
681   assert(FlatWorkGroupSize != 0);
682   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
683     return 8;
684   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
685   if (N == 1)
686     return 40;
687   N = 40 / N;
688   return std::min(N, 16u);
689 }
690 
691 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
692   return 1;
693 }
694 
695 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
696   // FIXME: Need to take scratch memory into account.
697   if (isGFX90A(*STI))
698     return 8;
699   if (!isGFX10Plus(*STI))
700     return 10;
701   return hasGFX10_3Insts(*STI) ? 16 : 20;
702 }
703 
704 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
705                                    unsigned FlatWorkGroupSize) {
706   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
707                     getEUsPerCU(STI));
708 }
709 
710 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
711   return 1;
712 }
713 
714 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
715   // Some subtargets allow encoding 2048, but this isn't tested or supported.
716   return 1024;
717 }
718 
719 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
720                               unsigned FlatWorkGroupSize) {
721   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
722 }
723 
724 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
725   IsaVersion Version = getIsaVersion(STI->getCPU());
726   if (Version.Major >= 10)
727     return getAddressableNumSGPRs(STI);
728   if (Version.Major >= 8)
729     return 16;
730   return 8;
731 }
732 
733 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
734   return 8;
735 }
736 
737 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
738   IsaVersion Version = getIsaVersion(STI->getCPU());
739   if (Version.Major >= 8)
740     return 800;
741   return 512;
742 }
743 
744 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
745   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
746     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
747 
748   IsaVersion Version = getIsaVersion(STI->getCPU());
749   if (Version.Major >= 10)
750     return 106;
751   if (Version.Major >= 8)
752     return 102;
753   return 104;
754 }
755 
756 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
757   assert(WavesPerEU != 0);
758 
759   IsaVersion Version = getIsaVersion(STI->getCPU());
760   if (Version.Major >= 10)
761     return 0;
762 
763   if (WavesPerEU >= getMaxWavesPerEU(STI))
764     return 0;
765 
766   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
767   if (STI->getFeatureBits().test(FeatureTrapHandler))
768     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
769   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
770   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
771 }
772 
773 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
774                         bool Addressable) {
775   assert(WavesPerEU != 0);
776 
777   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
778   IsaVersion Version = getIsaVersion(STI->getCPU());
779   if (Version.Major >= 10)
780     return Addressable ? AddressableNumSGPRs : 108;
781   if (Version.Major >= 8 && !Addressable)
782     AddressableNumSGPRs = 112;
783   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
784   if (STI->getFeatureBits().test(FeatureTrapHandler))
785     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
786   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
787   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
788 }
789 
790 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
791                           bool FlatScrUsed, bool XNACKUsed) {
792   unsigned ExtraSGPRs = 0;
793   if (VCCUsed)
794     ExtraSGPRs = 2;
795 
796   IsaVersion Version = getIsaVersion(STI->getCPU());
797   if (Version.Major >= 10)
798     return ExtraSGPRs;
799 
800   if (Version.Major < 8) {
801     if (FlatScrUsed)
802       ExtraSGPRs = 4;
803   } else {
804     if (XNACKUsed)
805       ExtraSGPRs = 4;
806 
807     if (FlatScrUsed ||
808         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
809       ExtraSGPRs = 6;
810   }
811 
812   return ExtraSGPRs;
813 }
814 
815 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
816                           bool FlatScrUsed) {
817   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
818                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
819 }
820 
821 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
822   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
823   // SGPRBlocks is actual number of SGPR blocks minus 1.
824   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
825 }
826 
827 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
828                              Optional<bool> EnableWavefrontSize32) {
829   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
830     return 8;
831 
832   bool IsWave32 = EnableWavefrontSize32 ?
833       *EnableWavefrontSize32 :
834       STI->getFeatureBits().test(FeatureWavefrontSize32);
835 
836   if (hasGFX10_3Insts(*STI))
837     return IsWave32 ? 16 : 8;
838 
839   return IsWave32 ? 8 : 4;
840 }
841 
842 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
843                                 Optional<bool> EnableWavefrontSize32) {
844   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
845     return 8;
846 
847   bool IsWave32 = EnableWavefrontSize32 ?
848       *EnableWavefrontSize32 :
849       STI->getFeatureBits().test(FeatureWavefrontSize32);
850 
851   return IsWave32 ? 8 : 4;
852 }
853 
854 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
855   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
856     return 512;
857   if (!isGFX10Plus(*STI))
858     return 256;
859   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
860 }
861 
862 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
863   if (LimitTo128VGPRs.getNumOccurrences() ? LimitTo128VGPRs
864                                           : isGFX11Plus(*STI)) {
865     // GFX11 changes the encoding of 16-bit operands in VOP1/2/C instructions
866     // such that values 128..255 no longer mean v128..v255, they mean
867     // v0.hi..v127.hi instead. Until the compiler understands this, it is not
868     // safe to use v128..v255.
869     // TODO-GFX11: Remove this when full 16-bit codegen is implemented.
870     return 128;
871   }
872   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
873     return 512;
874   return 256;
875 }
876 
877 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
878   assert(WavesPerEU != 0);
879 
880   if (WavesPerEU >= getMaxWavesPerEU(STI))
881     return 0;
882   unsigned MinNumVGPRs =
883       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
884                 getVGPRAllocGranule(STI)) + 1;
885   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
886 }
887 
888 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
889   assert(WavesPerEU != 0);
890 
891   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
892                                    getVGPRAllocGranule(STI));
893   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
894   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
895 }
896 
897 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
898                           Optional<bool> EnableWavefrontSize32) {
899   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
900                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
901   // VGPRBlocks is actual number of VGPR blocks minus 1.
902   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
903 }
904 
905 } // end namespace IsaInfo
906 
907 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
908                                const MCSubtargetInfo *STI) {
909   IsaVersion Version = getIsaVersion(STI->getCPU());
910 
911   memset(&Header, 0, sizeof(Header));
912 
913   Header.amd_kernel_code_version_major = 1;
914   Header.amd_kernel_code_version_minor = 2;
915   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
916   Header.amd_machine_version_major = Version.Major;
917   Header.amd_machine_version_minor = Version.Minor;
918   Header.amd_machine_version_stepping = Version.Stepping;
919   Header.kernel_code_entry_byte_offset = sizeof(Header);
920   Header.wavefront_size = 6;
921 
922   // If the code object does not support indirect functions, then the value must
923   // be 0xffffffff.
924   Header.call_convention = -1;
925 
926   // These alignment values are specified in powers of two, so alignment =
927   // 2^n.  The minimum alignment is 2^4 = 16.
928   Header.kernarg_segment_alignment = 4;
929   Header.group_segment_alignment = 4;
930   Header.private_segment_alignment = 4;
931 
932   if (Version.Major >= 10) {
933     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
934       Header.wavefront_size = 5;
935       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
936     }
937     Header.compute_pgm_resource_registers |=
938       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
939       S_00B848_MEM_ORDERED(1);
940   }
941 }
942 
943 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
944     const MCSubtargetInfo *STI) {
945   IsaVersion Version = getIsaVersion(STI->getCPU());
946 
947   amdhsa::kernel_descriptor_t KD;
948   memset(&KD, 0, sizeof(KD));
949 
950   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
951                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
952                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
953   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
954                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
955   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
956                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
957   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
958                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
959   if (Version.Major >= 10) {
960     AMDHSA_BITS_SET(KD.kernel_code_properties,
961                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
962                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
963     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
964                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
965                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
966     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
967                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
968   }
969   if (AMDGPU::isGFX90A(*STI)) {
970     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
971                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
972                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
973   }
974   return KD;
975 }
976 
977 bool isGroupSegment(const GlobalValue *GV) {
978   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
979 }
980 
981 bool isGlobalSegment(const GlobalValue *GV) {
982   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
983 }
984 
985 bool isReadOnlySegment(const GlobalValue *GV) {
986   unsigned AS = GV->getAddressSpace();
987   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
988          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
989 }
990 
991 bool shouldEmitConstantsToTextSection(const Triple &TT) {
992   return TT.getArch() == Triple::r600;
993 }
994 
995 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
996   Attribute A = F.getFnAttribute(Name);
997   int Result = Default;
998 
999   if (A.isStringAttribute()) {
1000     StringRef Str = A.getValueAsString();
1001     if (Str.getAsInteger(0, Result)) {
1002       LLVMContext &Ctx = F.getContext();
1003       Ctx.emitError("can't parse integer attribute " + Name);
1004     }
1005   }
1006 
1007   return Result;
1008 }
1009 
1010 std::pair<int, int> getIntegerPairAttribute(const Function &F,
1011                                             StringRef Name,
1012                                             std::pair<int, int> Default,
1013                                             bool OnlyFirstRequired) {
1014   Attribute A = F.getFnAttribute(Name);
1015   if (!A.isStringAttribute())
1016     return Default;
1017 
1018   LLVMContext &Ctx = F.getContext();
1019   std::pair<int, int> Ints = Default;
1020   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
1021   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
1022     Ctx.emitError("can't parse first integer attribute " + Name);
1023     return Default;
1024   }
1025   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
1026     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
1027       Ctx.emitError("can't parse second integer attribute " + Name);
1028       return Default;
1029     }
1030   }
1031 
1032   return Ints;
1033 }
1034 
1035 unsigned getVmcntBitMask(const IsaVersion &Version) {
1036   return (1 << (getVmcntBitWidthLo(Version.Major) +
1037                 getVmcntBitWidthHi(Version.Major))) -
1038          1;
1039 }
1040 
1041 unsigned getExpcntBitMask(const IsaVersion &Version) {
1042   return (1 << getExpcntBitWidth(Version.Major)) - 1;
1043 }
1044 
1045 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
1046   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
1047 }
1048 
1049 unsigned getWaitcntBitMask(const IsaVersion &Version) {
1050   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
1051                                 getVmcntBitWidthLo(Version.Major));
1052   unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
1053                                getExpcntBitWidth(Version.Major));
1054   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
1055                                 getLgkmcntBitWidth(Version.Major));
1056   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
1057                                 getVmcntBitWidthHi(Version.Major));
1058   return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
1059 }
1060 
1061 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1062   unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
1063                                 getVmcntBitWidthLo(Version.Major));
1064   unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
1065                                 getVmcntBitWidthHi(Version.Major));
1066   return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
1067 }
1068 
1069 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
1070   return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
1071                     getExpcntBitWidth(Version.Major));
1072 }
1073 
1074 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1075   return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
1076                     getLgkmcntBitWidth(Version.Major));
1077 }
1078 
1079 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
1080                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
1081   Vmcnt = decodeVmcnt(Version, Waitcnt);
1082   Expcnt = decodeExpcnt(Version, Waitcnt);
1083   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
1084 }
1085 
1086 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
1087   Waitcnt Decoded;
1088   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
1089   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1090   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
1091   return Decoded;
1092 }
1093 
1094 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1095                      unsigned Vmcnt) {
1096   Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
1097                      getVmcntBitWidthLo(Version.Major));
1098   return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
1099                   getVmcntBitShiftHi(Version.Major),
1100                   getVmcntBitWidthHi(Version.Major));
1101 }
1102 
1103 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1104                       unsigned Expcnt) {
1105   return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
1106                   getExpcntBitWidth(Version.Major));
1107 }
1108 
1109 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1110                        unsigned Lgkmcnt) {
1111   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
1112                   getLgkmcntBitWidth(Version.Major));
1113 }
1114 
1115 unsigned encodeWaitcnt(const IsaVersion &Version,
1116                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
1117   unsigned Waitcnt = getWaitcntBitMask(Version);
1118   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
1119   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1120   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1121   return Waitcnt;
1122 }
1123 
1124 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1125   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1126 }
1127 
1128 //===----------------------------------------------------------------------===//
1129 // Custom Operands.
1130 //
1131 // A table of custom operands shall describe "primary" operand names
1132 // first followed by aliases if any. It is not required but recommended
1133 // to arrange operands so that operand encoding match operand position
1134 // in the table. This will make disassembly a bit more efficient.
1135 // Unused slots in the table shall have an empty name.
1136 //
1137 //===----------------------------------------------------------------------===//
1138 
1139 template <class T>
1140 static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize,
1141                        T Context) {
1142   return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() &&
1143          (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context));
1144 }
1145 
1146 template <class T>
1147 static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test,
1148                      const CustomOperand<T> OpInfo[], int OpInfoSize,
1149                      T Context) {
1150   int InvalidIdx = OPR_ID_UNKNOWN;
1151   for (int Idx = 0; Idx < OpInfoSize; ++Idx) {
1152     if (Test(OpInfo[Idx])) {
1153       if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context))
1154         return Idx;
1155       InvalidIdx = OPR_ID_UNSUPPORTED;
1156     }
1157   }
1158   return InvalidIdx;
1159 }
1160 
1161 template <class T>
1162 static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[],
1163                      int OpInfoSize, T Context) {
1164   auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; };
1165   return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
1166 }
1167 
1168 template <class T>
1169 static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize,
1170                      T Context, bool QuickCheck = true) {
1171   auto Test = [=](const CustomOperand<T> &Op) {
1172     return Op.Encoding == Id && !Op.Name.empty();
1173   };
1174   // This is an optimization that should work in most cases.
1175   // As a side effect, it may cause selection of an alias
1176   // instead of a primary operand name in case of sparse tables.
1177   if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) &&
1178       OpInfo[Id].Encoding == Id) {
1179     return Id;
1180   }
1181   return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
1182 }
1183 
1184 //===----------------------------------------------------------------------===//
1185 // Custom Operand Values
1186 //===----------------------------------------------------------------------===//
1187 
1188 static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr,
1189                                                 int Size,
1190                                                 const MCSubtargetInfo &STI) {
1191   unsigned Enc = 0;
1192   for (int Idx = 0; Idx < Size; ++Idx) {
1193     const auto &Op = Opr[Idx];
1194     if (Op.isSupported(STI))
1195       Enc |= Op.encode(Op.Default);
1196   }
1197   return Enc;
1198 }
1199 
1200 static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr,
1201                                             int Size, unsigned Code,
1202                                             bool &HasNonDefaultVal,
1203                                             const MCSubtargetInfo &STI) {
1204   unsigned UsedOprMask = 0;
1205   HasNonDefaultVal = false;
1206   for (int Idx = 0; Idx < Size; ++Idx) {
1207     const auto &Op = Opr[Idx];
1208     if (!Op.isSupported(STI))
1209       continue;
1210     UsedOprMask |= Op.getMask();
1211     unsigned Val = Op.decode(Code);
1212     if (!Op.isValid(Val))
1213       return false;
1214     HasNonDefaultVal |= (Val != Op.Default);
1215   }
1216   return (Code & ~UsedOprMask) == 0;
1217 }
1218 
1219 static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
1220                                 unsigned Code, int &Idx, StringRef &Name,
1221                                 unsigned &Val, bool &IsDefault,
1222                                 const MCSubtargetInfo &STI) {
1223   while (Idx < Size) {
1224     const auto &Op = Opr[Idx++];
1225     if (Op.isSupported(STI)) {
1226       Name = Op.Name;
1227       Val = Op.decode(Code);
1228       IsDefault = (Val == Op.Default);
1229       return true;
1230     }
1231   }
1232 
1233   return false;
1234 }
1235 
1236 static int encodeCustomOperandVal(const CustomOperandVal &Op,
1237                                   int64_t InputVal) {
1238   if (InputVal < 0 || InputVal > Op.Max)
1239     return OPR_VAL_INVALID;
1240   return Op.encode(InputVal);
1241 }
1242 
1243 static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
1244                                const StringRef Name, int64_t InputVal,
1245                                unsigned &UsedOprMask,
1246                                const MCSubtargetInfo &STI) {
1247   int InvalidId = OPR_ID_UNKNOWN;
1248   for (int Idx = 0; Idx < Size; ++Idx) {
1249     const auto &Op = Opr[Idx];
1250     if (Op.Name == Name) {
1251       if (!Op.isSupported(STI)) {
1252         InvalidId = OPR_ID_UNSUPPORTED;
1253         continue;
1254       }
1255       auto OprMask = Op.getMask();
1256       if (OprMask & UsedOprMask)
1257         return OPR_ID_DUPLICATE;
1258       UsedOprMask |= OprMask;
1259       return encodeCustomOperandVal(Op, InputVal);
1260     }
1261   }
1262   return InvalidId;
1263 }
1264 
1265 //===----------------------------------------------------------------------===//
1266 // DepCtr
1267 //===----------------------------------------------------------------------===//
1268 
1269 namespace DepCtr {
1270 
1271 int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI) {
1272   static int Default = -1;
1273   if (Default == -1)
1274     Default = getDefaultCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, STI);
1275   return Default;
1276 }
1277 
1278 bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
1279                               const MCSubtargetInfo &STI) {
1280   return isSymbolicCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, Code,
1281                                          HasNonDefaultVal, STI);
1282 }
1283 
1284 bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
1285                   bool &IsDefault, const MCSubtargetInfo &STI) {
1286   return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
1287                              IsDefault, STI);
1288 }
1289 
1290 int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
1291                  const MCSubtargetInfo &STI) {
1292   return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
1293                              STI);
1294 }
1295 
1296 } // namespace DepCtr
1297 
1298 //===----------------------------------------------------------------------===//
1299 // hwreg
1300 //===----------------------------------------------------------------------===//
1301 
1302 namespace Hwreg {
1303 
1304 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
1305   int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI);
1306   return (Idx < 0) ? Idx : Opr[Idx].Encoding;
1307 }
1308 
1309 bool isValidHwreg(int64_t Id) {
1310   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1311 }
1312 
1313 bool isValidHwregOffset(int64_t Offset) {
1314   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1315 }
1316 
1317 bool isValidHwregWidth(int64_t Width) {
1318   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1319 }
1320 
1321 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1322   return (Id << ID_SHIFT_) |
1323          (Offset << OFFSET_SHIFT_) |
1324          ((Width - 1) << WIDTH_M1_SHIFT_);
1325 }
1326 
1327 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1328   int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI);
1329   return (Idx < 0) ? "" : Opr[Idx].Name;
1330 }
1331 
1332 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1333   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1334   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1335   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1336 }
1337 
1338 } // namespace Hwreg
1339 
1340 //===----------------------------------------------------------------------===//
1341 // exp tgt
1342 //===----------------------------------------------------------------------===//
1343 
1344 namespace Exp {
1345 
1346 struct ExpTgt {
1347   StringLiteral Name;
1348   unsigned Tgt;
1349   unsigned MaxIndex;
1350 };
1351 
1352 static constexpr ExpTgt ExpTgtInfo[] = {
1353   {{"null"},           ET_NULL,            ET_NULL_MAX_IDX},
1354   {{"mrtz"},           ET_MRTZ,            ET_MRTZ_MAX_IDX},
1355   {{"prim"},           ET_PRIM,            ET_PRIM_MAX_IDX},
1356   {{"mrt"},            ET_MRT0,            ET_MRT_MAX_IDX},
1357   {{"pos"},            ET_POS0,            ET_POS_MAX_IDX},
1358   {{"dual_src_blend"}, ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
1359   {{"param"},          ET_PARAM0,          ET_PARAM_MAX_IDX},
1360 };
1361 
1362 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1363   for (const ExpTgt &Val : ExpTgtInfo) {
1364     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1365       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1366       Name = Val.Name;
1367       return true;
1368     }
1369   }
1370   return false;
1371 }
1372 
1373 unsigned getTgtId(const StringRef Name) {
1374 
1375   for (const ExpTgt &Val : ExpTgtInfo) {
1376     if (Val.MaxIndex == 0 && Name == Val.Name)
1377       return Val.Tgt;
1378 
1379     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1380       StringRef Suffix = Name.drop_front(Val.Name.size());
1381 
1382       unsigned Id;
1383       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1384         return ET_INVALID;
1385 
1386       // Disable leading zeroes
1387       if (Suffix.size() > 1 && Suffix[0] == '0')
1388         return ET_INVALID;
1389 
1390       return Val.Tgt + Id;
1391     }
1392   }
1393   return ET_INVALID;
1394 }
1395 
1396 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1397   switch (Id) {
1398   case ET_NULL:
1399     return !isGFX11Plus(STI);
1400   case ET_POS4:
1401   case ET_PRIM:
1402     return isGFX10Plus(STI);
1403   case ET_DUAL_SRC_BLEND0:
1404   case ET_DUAL_SRC_BLEND1:
1405     return isGFX11Plus(STI);
1406   default:
1407     if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
1408       return !isGFX11Plus(STI);
1409     return true;
1410   }
1411 }
1412 
1413 } // namespace Exp
1414 
1415 //===----------------------------------------------------------------------===//
1416 // MTBUF Format
1417 //===----------------------------------------------------------------------===//
1418 
1419 namespace MTBUFFormat {
1420 
1421 int64_t getDfmt(const StringRef Name) {
1422   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1423     if (Name == DfmtSymbolic[Id])
1424       return Id;
1425   }
1426   return DFMT_UNDEF;
1427 }
1428 
1429 StringRef getDfmtName(unsigned Id) {
1430   assert(Id <= DFMT_MAX);
1431   return DfmtSymbolic[Id];
1432 }
1433 
1434 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1435   if (isSI(STI) || isCI(STI))
1436     return NfmtSymbolicSICI;
1437   if (isVI(STI) || isGFX9(STI))
1438     return NfmtSymbolicVI;
1439   return NfmtSymbolicGFX10;
1440 }
1441 
1442 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1443   auto lookupTable = getNfmtLookupTable(STI);
1444   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1445     if (Name == lookupTable[Id])
1446       return Id;
1447   }
1448   return NFMT_UNDEF;
1449 }
1450 
1451 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1452   assert(Id <= NFMT_MAX);
1453   return getNfmtLookupTable(STI)[Id];
1454 }
1455 
1456 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1457   unsigned Dfmt;
1458   unsigned Nfmt;
1459   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1460   return isValidNfmt(Nfmt, STI);
1461 }
1462 
1463 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1464   return !getNfmtName(Id, STI).empty();
1465 }
1466 
1467 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1468   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1469 }
1470 
1471 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1472   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1473   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1474 }
1475 
1476 int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
1477   if (isGFX11Plus(STI)) {
1478     for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
1479       if (Name == UfmtSymbolicGFX11[Id])
1480         return Id;
1481     }
1482   } else {
1483     for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
1484       if (Name == UfmtSymbolicGFX10[Id])
1485         return Id;
1486     }
1487   }
1488   return UFMT_UNDEF;
1489 }
1490 
1491 StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI) {
1492   if(isValidUnifiedFormat(Id, STI))
1493     return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
1494   return "";
1495 }
1496 
1497 bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
1498   return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
1499 }
1500 
1501 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
1502                              const MCSubtargetInfo &STI) {
1503   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1504   if (isGFX11Plus(STI)) {
1505     for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
1506       if (Fmt == DfmtNfmt2UFmtGFX11[Id])
1507         return Id;
1508     }
1509   } else {
1510     for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
1511       if (Fmt == DfmtNfmt2UFmtGFX10[Id])
1512         return Id;
1513     }
1514   }
1515   return UFMT_UNDEF;
1516 }
1517 
1518 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1519   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1520 }
1521 
1522 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1523   if (isGFX10Plus(STI))
1524     return UFMT_DEFAULT;
1525   return DFMT_NFMT_DEFAULT;
1526 }
1527 
1528 } // namespace MTBUFFormat
1529 
1530 //===----------------------------------------------------------------------===//
1531 // SendMsg
1532 //===----------------------------------------------------------------------===//
1533 
1534 namespace SendMsg {
1535 
1536 static uint64_t getMsgIdMask(const MCSubtargetInfo &STI) {
1537   return isGFX11Plus(STI) ? ID_MASK_GFX11Plus_ : ID_MASK_PreGFX11_;
1538 }
1539 
1540 int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI) {
1541   int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Msg, MSG_SIZE, STI);
1542   return (Idx < 0) ? Idx : Msg[Idx].Encoding;
1543 }
1544 
1545 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
1546   return (MsgId & ~(getMsgIdMask(STI))) == 0;
1547 }
1548 
1549 StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI) {
1550   int Idx = getOprIdx<const MCSubtargetInfo &>(MsgId, Msg, MSG_SIZE, STI);
1551   return (Idx < 0) ? "" : Msg[Idx].Name;
1552 }
1553 
1554 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1555   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1556   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1557   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1558   for (int i = F; i < L; ++i) {
1559     if (Name == S[i]) {
1560       return i;
1561     }
1562   }
1563   return OP_UNKNOWN_;
1564 }
1565 
1566 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1567                   bool Strict) {
1568   assert(isValidMsgId(MsgId, STI));
1569 
1570   if (!Strict)
1571     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1572 
1573   if (MsgId == ID_SYSMSG)
1574     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1575   if (!isGFX11Plus(STI)) {
1576     switch (MsgId) {
1577     case ID_GS_PreGFX11:
1578       return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1579     case ID_GS_DONE_PreGFX11:
1580       return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1581     }
1582   }
1583   return OpId == OP_NONE_;
1584 }
1585 
1586 StringRef getMsgOpName(int64_t MsgId, int64_t OpId,
1587                        const MCSubtargetInfo &STI) {
1588   assert(msgRequiresOp(MsgId, STI));
1589   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1590 }
1591 
1592 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1593                       const MCSubtargetInfo &STI, bool Strict) {
1594   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1595 
1596   if (!Strict)
1597     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1598 
1599   if (!isGFX11Plus(STI)) {
1600     switch (MsgId) {
1601     case ID_GS_PreGFX11:
1602       return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1603     case ID_GS_DONE_PreGFX11:
1604       return (OpId == OP_GS_NOP) ?
1605           (StreamId == STREAM_ID_NONE_) :
1606           (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1607     }
1608   }
1609   return StreamId == STREAM_ID_NONE_;
1610 }
1611 
1612 bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
1613   return MsgId == ID_SYSMSG ||
1614       (!isGFX11Plus(STI) &&
1615        (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
1616 }
1617 
1618 bool msgSupportsStream(int64_t MsgId, int64_t OpId,
1619                        const MCSubtargetInfo &STI) {
1620   return !isGFX11Plus(STI) &&
1621       (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
1622       OpId != OP_GS_NOP;
1623 }
1624 
1625 void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
1626                uint16_t &StreamId, const MCSubtargetInfo &STI) {
1627   MsgId = Val & getMsgIdMask(STI);
1628   if (isGFX11Plus(STI)) {
1629     OpId = 0;
1630     StreamId = 0;
1631   } else {
1632     OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1633     StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1634   }
1635 }
1636 
1637 uint64_t encodeMsg(uint64_t MsgId,
1638                    uint64_t OpId,
1639                    uint64_t StreamId) {
1640   return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
1641 }
1642 
1643 } // namespace SendMsg
1644 
1645 //===----------------------------------------------------------------------===//
1646 //
1647 //===----------------------------------------------------------------------===//
1648 
1649 unsigned getInitialPSInputAddr(const Function &F) {
1650   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1651 }
1652 
1653 bool getHasColorExport(const Function &F) {
1654   // As a safe default always respond as if PS has color exports.
1655   return getIntegerAttribute(
1656              F, "amdgpu-color-export",
1657              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1658 }
1659 
1660 bool getHasDepthExport(const Function &F) {
1661   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1662 }
1663 
1664 bool isShader(CallingConv::ID cc) {
1665   switch(cc) {
1666     case CallingConv::AMDGPU_VS:
1667     case CallingConv::AMDGPU_LS:
1668     case CallingConv::AMDGPU_HS:
1669     case CallingConv::AMDGPU_ES:
1670     case CallingConv::AMDGPU_GS:
1671     case CallingConv::AMDGPU_PS:
1672     case CallingConv::AMDGPU_CS:
1673       return true;
1674     default:
1675       return false;
1676   }
1677 }
1678 
1679 bool isGraphics(CallingConv::ID cc) {
1680   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1681 }
1682 
1683 bool isCompute(CallingConv::ID cc) {
1684   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1685 }
1686 
1687 bool isEntryFunctionCC(CallingConv::ID CC) {
1688   switch (CC) {
1689   case CallingConv::AMDGPU_KERNEL:
1690   case CallingConv::SPIR_KERNEL:
1691   case CallingConv::AMDGPU_VS:
1692   case CallingConv::AMDGPU_GS:
1693   case CallingConv::AMDGPU_PS:
1694   case CallingConv::AMDGPU_CS:
1695   case CallingConv::AMDGPU_ES:
1696   case CallingConv::AMDGPU_HS:
1697   case CallingConv::AMDGPU_LS:
1698     return true;
1699   default:
1700     return false;
1701   }
1702 }
1703 
1704 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1705   switch (CC) {
1706   case CallingConv::AMDGPU_Gfx:
1707     return true;
1708   default:
1709     return isEntryFunctionCC(CC);
1710   }
1711 }
1712 
1713 bool isKernelCC(const Function *Func) {
1714   return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
1715 }
1716 
1717 bool hasXNACK(const MCSubtargetInfo &STI) {
1718   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1719 }
1720 
1721 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1722   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1723 }
1724 
1725 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1726   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1727 }
1728 
1729 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1730   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1731 }
1732 
1733 bool hasG16(const MCSubtargetInfo &STI) {
1734   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1735 }
1736 
1737 bool hasPackedD16(const MCSubtargetInfo &STI) {
1738   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem] && !isCI(STI) &&
1739          !isSI(STI);
1740 }
1741 
1742 bool isSI(const MCSubtargetInfo &STI) {
1743   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1744 }
1745 
1746 bool isCI(const MCSubtargetInfo &STI) {
1747   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1748 }
1749 
1750 bool isVI(const MCSubtargetInfo &STI) {
1751   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1752 }
1753 
1754 bool isGFX9(const MCSubtargetInfo &STI) {
1755   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1756 }
1757 
1758 bool isGFX9_GFX10(const MCSubtargetInfo &STI) {
1759   return isGFX9(STI) || isGFX10(STI);
1760 }
1761 
1762 bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI) {
1763   return isVI(STI) || isGFX9(STI) || isGFX10(STI);
1764 }
1765 
1766 bool isGFX8Plus(const MCSubtargetInfo &STI) {
1767   return isVI(STI) || isGFX9Plus(STI);
1768 }
1769 
1770 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1771   return isGFX9(STI) || isGFX10Plus(STI);
1772 }
1773 
1774 bool isGFX10(const MCSubtargetInfo &STI) {
1775   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1776 }
1777 
1778 bool isGFX10Plus(const MCSubtargetInfo &STI) {
1779   return isGFX10(STI) || isGFX11Plus(STI);
1780 }
1781 
1782 bool isGFX11(const MCSubtargetInfo &STI) {
1783   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1784 }
1785 
1786 bool isGFX11Plus(const MCSubtargetInfo &STI) {
1787   return isGFX11(STI);
1788 }
1789 
1790 bool isNotGFX11Plus(const MCSubtargetInfo &STI) {
1791   return !isGFX11Plus(STI);
1792 }
1793 
1794 bool isNotGFX10Plus(const MCSubtargetInfo &STI) {
1795   return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1796 }
1797 
1798 bool isGFX10Before1030(const MCSubtargetInfo &STI) {
1799   return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1800 }
1801 
1802 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1803   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1804 }
1805 
1806 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1807   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1808 }
1809 
1810 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1811   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1812 }
1813 
1814 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1815   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1816 }
1817 
1818 bool isGFX90A(const MCSubtargetInfo &STI) {
1819   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1820 }
1821 
1822 bool isGFX940(const MCSubtargetInfo &STI) {
1823   return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts];
1824 }
1825 
1826 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1827   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1828 }
1829 
1830 bool hasMAIInsts(const MCSubtargetInfo &STI) {
1831   return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts];
1832 }
1833 
1834 bool hasVOPD(const MCSubtargetInfo &STI) {
1835   return STI.getFeatureBits()[AMDGPU::FeatureVOPD];
1836 }
1837 
1838 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
1839                          int32_t ArgNumVGPR) {
1840   if (has90AInsts && ArgNumAGPR)
1841     return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
1842   return std::max(ArgNumVGPR, ArgNumAGPR);
1843 }
1844 
1845 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1846   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1847   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1848   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1849     Reg == AMDGPU::SCC;
1850 }
1851 
1852 #define MAP_REG2REG \
1853   using namespace AMDGPU; \
1854   switch(Reg) { \
1855   default: return Reg; \
1856   CASE_CI_VI(FLAT_SCR) \
1857   CASE_CI_VI(FLAT_SCR_LO) \
1858   CASE_CI_VI(FLAT_SCR_HI) \
1859   CASE_VI_GFX9PLUS(TTMP0) \
1860   CASE_VI_GFX9PLUS(TTMP1) \
1861   CASE_VI_GFX9PLUS(TTMP2) \
1862   CASE_VI_GFX9PLUS(TTMP3) \
1863   CASE_VI_GFX9PLUS(TTMP4) \
1864   CASE_VI_GFX9PLUS(TTMP5) \
1865   CASE_VI_GFX9PLUS(TTMP6) \
1866   CASE_VI_GFX9PLUS(TTMP7) \
1867   CASE_VI_GFX9PLUS(TTMP8) \
1868   CASE_VI_GFX9PLUS(TTMP9) \
1869   CASE_VI_GFX9PLUS(TTMP10) \
1870   CASE_VI_GFX9PLUS(TTMP11) \
1871   CASE_VI_GFX9PLUS(TTMP12) \
1872   CASE_VI_GFX9PLUS(TTMP13) \
1873   CASE_VI_GFX9PLUS(TTMP14) \
1874   CASE_VI_GFX9PLUS(TTMP15) \
1875   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1876   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1877   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1878   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1879   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1880   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1881   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1882   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1883   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1884   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1885   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1886   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1887   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1888   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1889   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1890   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1891   CASE_GFXPRE11_GFX11PLUS(M0) \
1892   CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
1893   CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
1894   }
1895 
1896 #define CASE_CI_VI(node) \
1897   assert(!isSI(STI)); \
1898   case node: return isCI(STI) ? node##_ci : node##_vi;
1899 
1900 #define CASE_VI_GFX9PLUS(node) \
1901   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1902 
1903 #define CASE_GFXPRE11_GFX11PLUS(node) \
1904   case node: return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
1905 
1906 #define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
1907   case node: return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
1908 
1909 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1910   if (STI.getTargetTriple().getArch() == Triple::r600)
1911     return Reg;
1912   MAP_REG2REG
1913 }
1914 
1915 #undef CASE_CI_VI
1916 #undef CASE_VI_GFX9PLUS
1917 #undef CASE_GFXPRE11_GFX11PLUS
1918 #undef CASE_GFXPRE11_GFX11PLUS_TO
1919 
1920 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1921 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1922 #define CASE_GFXPRE11_GFX11PLUS(node) case node##_gfx11plus: case node##_gfxpre11: return node;
1923 #define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
1924 
1925 unsigned mc2PseudoReg(unsigned Reg) {
1926   MAP_REG2REG
1927 }
1928 
1929 #undef CASE_CI_VI
1930 #undef CASE_VI_GFX9PLUS
1931 #undef CASE_GFXPRE11_GFX11PLUS
1932 #undef CASE_GFXPRE11_GFX11PLUS_TO
1933 #undef MAP_REG2REG
1934 
1935 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1936   assert(OpNo < Desc.NumOperands);
1937   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1938   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1939          OpType <= AMDGPU::OPERAND_SRC_LAST;
1940 }
1941 
1942 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1943   assert(OpNo < Desc.NumOperands);
1944   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1945   switch (OpType) {
1946   case AMDGPU::OPERAND_REG_IMM_FP32:
1947   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1948   case AMDGPU::OPERAND_REG_IMM_FP64:
1949   case AMDGPU::OPERAND_REG_IMM_FP16:
1950   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1951   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1952   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1953   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1954   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1955   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1956   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1957   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1958   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1959   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1960   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1961   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1962   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1963   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1964   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1965     return true;
1966   default:
1967     return false;
1968   }
1969 }
1970 
1971 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1972   assert(OpNo < Desc.NumOperands);
1973   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1974   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1975          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1976 }
1977 
1978 // Avoid using MCRegisterClass::getSize, since that function will go away
1979 // (move from MC* level to Target* level). Return size in bits.
1980 unsigned getRegBitWidth(unsigned RCID) {
1981   switch (RCID) {
1982   case AMDGPU::VGPR_LO16RegClassID:
1983   case AMDGPU::VGPR_HI16RegClassID:
1984   case AMDGPU::SGPR_LO16RegClassID:
1985   case AMDGPU::AGPR_LO16RegClassID:
1986     return 16;
1987   case AMDGPU::SGPR_32RegClassID:
1988   case AMDGPU::VGPR_32RegClassID:
1989   case AMDGPU::VRegOrLds_32RegClassID:
1990   case AMDGPU::AGPR_32RegClassID:
1991   case AMDGPU::VS_32RegClassID:
1992   case AMDGPU::AV_32RegClassID:
1993   case AMDGPU::SReg_32RegClassID:
1994   case AMDGPU::SReg_32_XM0RegClassID:
1995   case AMDGPU::SRegOrLds_32RegClassID:
1996     return 32;
1997   case AMDGPU::SGPR_64RegClassID:
1998   case AMDGPU::VS_64RegClassID:
1999   case AMDGPU::SReg_64RegClassID:
2000   case AMDGPU::VReg_64RegClassID:
2001   case AMDGPU::AReg_64RegClassID:
2002   case AMDGPU::SReg_64_XEXECRegClassID:
2003   case AMDGPU::VReg_64_Align2RegClassID:
2004   case AMDGPU::AReg_64_Align2RegClassID:
2005   case AMDGPU::AV_64RegClassID:
2006   case AMDGPU::AV_64_Align2RegClassID:
2007     return 64;
2008   case AMDGPU::SGPR_96RegClassID:
2009   case AMDGPU::SReg_96RegClassID:
2010   case AMDGPU::VReg_96RegClassID:
2011   case AMDGPU::AReg_96RegClassID:
2012   case AMDGPU::VReg_96_Align2RegClassID:
2013   case AMDGPU::AReg_96_Align2RegClassID:
2014   case AMDGPU::AV_96RegClassID:
2015   case AMDGPU::AV_96_Align2RegClassID:
2016     return 96;
2017   case AMDGPU::SGPR_128RegClassID:
2018   case AMDGPU::SReg_128RegClassID:
2019   case AMDGPU::VReg_128RegClassID:
2020   case AMDGPU::AReg_128RegClassID:
2021   case AMDGPU::VReg_128_Align2RegClassID:
2022   case AMDGPU::AReg_128_Align2RegClassID:
2023   case AMDGPU::AV_128RegClassID:
2024   case AMDGPU::AV_128_Align2RegClassID:
2025     return 128;
2026   case AMDGPU::SGPR_160RegClassID:
2027   case AMDGPU::SReg_160RegClassID:
2028   case AMDGPU::VReg_160RegClassID:
2029   case AMDGPU::AReg_160RegClassID:
2030   case AMDGPU::VReg_160_Align2RegClassID:
2031   case AMDGPU::AReg_160_Align2RegClassID:
2032   case AMDGPU::AV_160RegClassID:
2033   case AMDGPU::AV_160_Align2RegClassID:
2034     return 160;
2035   case AMDGPU::SGPR_192RegClassID:
2036   case AMDGPU::SReg_192RegClassID:
2037   case AMDGPU::VReg_192RegClassID:
2038   case AMDGPU::AReg_192RegClassID:
2039   case AMDGPU::VReg_192_Align2RegClassID:
2040   case AMDGPU::AReg_192_Align2RegClassID:
2041   case AMDGPU::AV_192RegClassID:
2042   case AMDGPU::AV_192_Align2RegClassID:
2043     return 192;
2044   case AMDGPU::SGPR_224RegClassID:
2045   case AMDGPU::SReg_224RegClassID:
2046   case AMDGPU::VReg_224RegClassID:
2047   case AMDGPU::AReg_224RegClassID:
2048   case AMDGPU::VReg_224_Align2RegClassID:
2049   case AMDGPU::AReg_224_Align2RegClassID:
2050   case AMDGPU::AV_224RegClassID:
2051   case AMDGPU::AV_224_Align2RegClassID:
2052     return 224;
2053   case AMDGPU::SGPR_256RegClassID:
2054   case AMDGPU::SReg_256RegClassID:
2055   case AMDGPU::VReg_256RegClassID:
2056   case AMDGPU::AReg_256RegClassID:
2057   case AMDGPU::VReg_256_Align2RegClassID:
2058   case AMDGPU::AReg_256_Align2RegClassID:
2059   case AMDGPU::AV_256RegClassID:
2060   case AMDGPU::AV_256_Align2RegClassID:
2061     return 256;
2062   case AMDGPU::SGPR_512RegClassID:
2063   case AMDGPU::SReg_512RegClassID:
2064   case AMDGPU::VReg_512RegClassID:
2065   case AMDGPU::AReg_512RegClassID:
2066   case AMDGPU::VReg_512_Align2RegClassID:
2067   case AMDGPU::AReg_512_Align2RegClassID:
2068   case AMDGPU::AV_512RegClassID:
2069   case AMDGPU::AV_512_Align2RegClassID:
2070     return 512;
2071   case AMDGPU::SGPR_1024RegClassID:
2072   case AMDGPU::SReg_1024RegClassID:
2073   case AMDGPU::VReg_1024RegClassID:
2074   case AMDGPU::AReg_1024RegClassID:
2075   case AMDGPU::VReg_1024_Align2RegClassID:
2076   case AMDGPU::AReg_1024_Align2RegClassID:
2077   case AMDGPU::AV_1024RegClassID:
2078   case AMDGPU::AV_1024_Align2RegClassID:
2079     return 1024;
2080   default:
2081     llvm_unreachable("Unexpected register class");
2082   }
2083 }
2084 
2085 unsigned getRegBitWidth(const MCRegisterClass &RC) {
2086   return getRegBitWidth(RC.getID());
2087 }
2088 
2089 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
2090                            unsigned OpNo) {
2091   assert(OpNo < Desc.NumOperands);
2092   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
2093   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
2094 }
2095 
2096 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
2097   if (isInlinableIntLiteral(Literal))
2098     return true;
2099 
2100   uint64_t Val = static_cast<uint64_t>(Literal);
2101   return (Val == DoubleToBits(0.0)) ||
2102          (Val == DoubleToBits(1.0)) ||
2103          (Val == DoubleToBits(-1.0)) ||
2104          (Val == DoubleToBits(0.5)) ||
2105          (Val == DoubleToBits(-0.5)) ||
2106          (Val == DoubleToBits(2.0)) ||
2107          (Val == DoubleToBits(-2.0)) ||
2108          (Val == DoubleToBits(4.0)) ||
2109          (Val == DoubleToBits(-4.0)) ||
2110          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
2111 }
2112 
2113 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
2114   if (isInlinableIntLiteral(Literal))
2115     return true;
2116 
2117   // The actual type of the operand does not seem to matter as long
2118   // as the bits match one of the inline immediate values.  For example:
2119   //
2120   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
2121   // so it is a legal inline immediate.
2122   //
2123   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
2124   // floating-point, so it is a legal inline immediate.
2125 
2126   uint32_t Val = static_cast<uint32_t>(Literal);
2127   return (Val == FloatToBits(0.0f)) ||
2128          (Val == FloatToBits(1.0f)) ||
2129          (Val == FloatToBits(-1.0f)) ||
2130          (Val == FloatToBits(0.5f)) ||
2131          (Val == FloatToBits(-0.5f)) ||
2132          (Val == FloatToBits(2.0f)) ||
2133          (Val == FloatToBits(-2.0f)) ||
2134          (Val == FloatToBits(4.0f)) ||
2135          (Val == FloatToBits(-4.0f)) ||
2136          (Val == 0x3e22f983 && HasInv2Pi);
2137 }
2138 
2139 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
2140   if (!HasInv2Pi)
2141     return false;
2142 
2143   if (isInlinableIntLiteral(Literal))
2144     return true;
2145 
2146   uint16_t Val = static_cast<uint16_t>(Literal);
2147   return Val == 0x3C00 || // 1.0
2148          Val == 0xBC00 || // -1.0
2149          Val == 0x3800 || // 0.5
2150          Val == 0xB800 || // -0.5
2151          Val == 0x4000 || // 2.0
2152          Val == 0xC000 || // -2.0
2153          Val == 0x4400 || // 4.0
2154          Val == 0xC400 || // -4.0
2155          Val == 0x3118;   // 1/2pi
2156 }
2157 
2158 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
2159   assert(HasInv2Pi);
2160 
2161   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
2162     int16_t Trunc = static_cast<int16_t>(Literal);
2163     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
2164   }
2165   if (!(Literal & 0xffff))
2166     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
2167 
2168   int16_t Lo16 = static_cast<int16_t>(Literal);
2169   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
2170   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
2171 }
2172 
2173 bool isInlinableIntLiteralV216(int32_t Literal) {
2174   int16_t Lo16 = static_cast<int16_t>(Literal);
2175   if (isInt<16>(Literal) || isUInt<16>(Literal))
2176     return isInlinableIntLiteral(Lo16);
2177 
2178   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
2179   if (!(Literal & 0xffff))
2180     return isInlinableIntLiteral(Hi16);
2181   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
2182 }
2183 
2184 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
2185   assert(HasInv2Pi);
2186 
2187   int16_t Lo16 = static_cast<int16_t>(Literal);
2188   if (isInt<16>(Literal) || isUInt<16>(Literal))
2189     return true;
2190 
2191   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
2192   if (!(Literal & 0xffff))
2193     return true;
2194   return Lo16 == Hi16;
2195 }
2196 
2197 bool isArgPassedInSGPR(const Argument *A) {
2198   const Function *F = A->getParent();
2199 
2200   // Arguments to compute shaders are never a source of divergence.
2201   CallingConv::ID CC = F->getCallingConv();
2202   switch (CC) {
2203   case CallingConv::AMDGPU_KERNEL:
2204   case CallingConv::SPIR_KERNEL:
2205     return true;
2206   case CallingConv::AMDGPU_VS:
2207   case CallingConv::AMDGPU_LS:
2208   case CallingConv::AMDGPU_HS:
2209   case CallingConv::AMDGPU_ES:
2210   case CallingConv::AMDGPU_GS:
2211   case CallingConv::AMDGPU_PS:
2212   case CallingConv::AMDGPU_CS:
2213   case CallingConv::AMDGPU_Gfx:
2214     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
2215     // Everything else is in VGPRs.
2216     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
2217            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
2218   default:
2219     // TODO: Should calls support inreg for SGPR inputs?
2220     return false;
2221   }
2222 }
2223 
2224 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
2225   return isGCN3Encoding(ST) || isGFX10Plus(ST);
2226 }
2227 
2228 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
2229   return isGFX9Plus(ST);
2230 }
2231 
2232 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
2233                                       int64_t EncodedOffset) {
2234   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
2235                                : isUInt<8>(EncodedOffset);
2236 }
2237 
2238 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
2239                                     int64_t EncodedOffset,
2240                                     bool IsBuffer) {
2241   return !IsBuffer &&
2242          hasSMRDSignedImmOffset(ST) &&
2243          isInt<21>(EncodedOffset);
2244 }
2245 
2246 static bool isDwordAligned(uint64_t ByteOffset) {
2247   return (ByteOffset & 3) == 0;
2248 }
2249 
2250 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
2251                                 uint64_t ByteOffset) {
2252   if (hasSMEMByteOffset(ST))
2253     return ByteOffset;
2254 
2255   assert(isDwordAligned(ByteOffset));
2256   return ByteOffset >> 2;
2257 }
2258 
2259 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
2260                                        int64_t ByteOffset, bool IsBuffer) {
2261   // The signed version is always a byte offset.
2262   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
2263     assert(hasSMEMByteOffset(ST));
2264     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
2265   }
2266 
2267   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
2268     return None;
2269 
2270   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
2271   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
2272              ? Optional<int64_t>(EncodedOffset)
2273              : None;
2274 }
2275 
2276 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
2277                                                 int64_t ByteOffset) {
2278   if (!isCI(ST) || !isDwordAligned(ByteOffset))
2279     return None;
2280 
2281   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
2282   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
2283 }
2284 
2285 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
2286   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9 and GFX11+.
2287   if (AMDGPU::isGFX10(ST))
2288     return Signed ? 12 : 11;
2289 
2290   return Signed ? 13 : 12;
2291 }
2292 
2293 // Given Imm, split it into the values to put into the SOffset and ImmOffset
2294 // fields in an MUBUF instruction. Return false if it is not possible (due to a
2295 // hardware bug needing a workaround).
2296 //
2297 // The required alignment ensures that individual address components remain
2298 // aligned if they are aligned to begin with. It also ensures that additional
2299 // offsets within the given alignment can be added to the resulting ImmOffset.
2300 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
2301                       const GCNSubtarget *Subtarget, Align Alignment) {
2302   const uint32_t MaxImm = alignDown(4095, Alignment.value());
2303   uint32_t Overflow = 0;
2304 
2305   if (Imm > MaxImm) {
2306     if (Imm <= MaxImm + 64) {
2307       // Use an SOffset inline constant for 4..64
2308       Overflow = Imm - MaxImm;
2309       Imm = MaxImm;
2310     } else {
2311       // Try to keep the same value in SOffset for adjacent loads, so that
2312       // the corresponding register contents can be re-used.
2313       //
2314       // Load values with all low-bits (except for alignment bits) set into
2315       // SOffset, so that a larger range of values can be covered using
2316       // s_movk_i32.
2317       //
2318       // Atomic operations fail to work correctly when individual address
2319       // components are unaligned, even if their sum is aligned.
2320       uint32_t High = (Imm + Alignment.value()) & ~4095;
2321       uint32_t Low = (Imm + Alignment.value()) & 4095;
2322       Imm = Low;
2323       Overflow = High - Alignment.value();
2324     }
2325   }
2326 
2327   // There is a hardware bug in SI and CI which prevents address clamping in
2328   // MUBUF instructions from working correctly with SOffsets. The immediate
2329   // offset is unaffected.
2330   if (Overflow > 0 &&
2331       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
2332     return false;
2333 
2334   ImmOffset = Imm;
2335   SOffset = Overflow;
2336   return true;
2337 }
2338 
2339 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
2340   *this = getDefaultForCallingConv(F.getCallingConv());
2341 
2342   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
2343   if (!IEEEAttr.empty())
2344     IEEE = IEEEAttr == "true";
2345 
2346   StringRef DX10ClampAttr
2347     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
2348   if (!DX10ClampAttr.empty())
2349     DX10Clamp = DX10ClampAttr == "true";
2350 
2351   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2352   if (!DenormF32Attr.empty()) {
2353     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2354     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2355     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2356   }
2357 
2358   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2359   if (!DenormAttr.empty()) {
2360     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2361 
2362     if (DenormF32Attr.empty()) {
2363       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2364       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2365     }
2366 
2367     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2368     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2369   }
2370 }
2371 
2372 namespace {
2373 
2374 struct SourceOfDivergence {
2375   unsigned Intr;
2376 };
2377 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2378 
2379 #define GET_SourcesOfDivergence_IMPL
2380 #define GET_Gfx9BufferFormat_IMPL
2381 #define GET_Gfx10BufferFormat_IMPL
2382 #define GET_Gfx11PlusBufferFormat_IMPL
2383 #include "AMDGPUGenSearchableTables.inc"
2384 
2385 } // end anonymous namespace
2386 
2387 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2388   return lookupSourceOfDivergence(IntrID);
2389 }
2390 
2391 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2392                                                   uint8_t NumComponents,
2393                                                   uint8_t NumFormat,
2394                                                   const MCSubtargetInfo &STI) {
2395   return isGFX11Plus(STI)
2396              ? getGfx11PlusBufferFormatInfo(BitsPerComp, NumComponents,
2397                                             NumFormat)
2398              : isGFX10(STI) ? getGfx10BufferFormatInfo(BitsPerComp,
2399                                                        NumComponents, NumFormat)
2400                             : getGfx9BufferFormatInfo(BitsPerComp,
2401                                                       NumComponents, NumFormat);
2402 }
2403 
2404 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2405                                                   const MCSubtargetInfo &STI) {
2406   return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
2407                           : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
2408                                          : getGfx9BufferFormatInfo(Format);
2409 }
2410 
2411 } // namespace AMDGPU
2412 
2413 raw_ostream &operator<<(raw_ostream &OS,
2414                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2415   switch (S) {
2416   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2417     OS << "Unsupported";
2418     break;
2419   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2420     OS << "Any";
2421     break;
2422   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2423     OS << "Off";
2424     break;
2425   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2426     OS << "On";
2427     break;
2428   }
2429   return OS;
2430 }
2431 
2432 } // namespace llvm
2433