xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3));
34 
35 namespace {
36 
37 /// \returns Bit mask for given bit \p Shift and bit \p Width.
38 unsigned getBitMask(unsigned Shift, unsigned Width) {
39   return ((1 << Width) - 1) << Shift;
40 }
41 
42 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
43 ///
44 /// \returns Packed \p Dst.
45 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
46   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
47   Dst |= (Src << Shift) & getBitMask(Shift, Width);
48   return Dst;
49 }
50 
51 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
52 ///
53 /// \returns Unpacked bits.
54 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
55   return (Src & getBitMask(Shift, Width)) >> Shift;
56 }
57 
58 /// \returns Vmcnt bit shift (lower bits).
59 unsigned getVmcntBitShiftLo() { return 0; }
60 
61 /// \returns Vmcnt bit width (lower bits).
62 unsigned getVmcntBitWidthLo() { return 4; }
63 
64 /// \returns Expcnt bit shift.
65 unsigned getExpcntBitShift() { return 4; }
66 
67 /// \returns Expcnt bit width.
68 unsigned getExpcntBitWidth() { return 3; }
69 
70 /// \returns Lgkmcnt bit shift.
71 unsigned getLgkmcntBitShift() { return 8; }
72 
73 /// \returns Lgkmcnt bit width.
74 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
75   return (VersionMajor >= 10) ? 6 : 4;
76 }
77 
78 /// \returns Vmcnt bit shift (higher bits).
79 unsigned getVmcntBitShiftHi() { return 14; }
80 
81 /// \returns Vmcnt bit width (higher bits).
82 unsigned getVmcntBitWidthHi() { return 2; }
83 
84 } // end namespace anonymous
85 
86 namespace llvm {
87 
88 namespace AMDGPU {
89 
90 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
91   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
92     return None;
93 
94   switch (AmdhsaCodeObjectVersion) {
95   case 2:
96     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
97   case 3:
98     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
99   default:
100     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
101   }
102 }
103 
104 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
105   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
106     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
107   return false;
108 }
109 
110 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
111   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
112     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
113   return false;
114 }
115 
116 #define GET_MIMGBaseOpcodesTable_IMPL
117 #define GET_MIMGDimInfoTable_IMPL
118 #define GET_MIMGInfoTable_IMPL
119 #define GET_MIMGLZMappingTable_IMPL
120 #define GET_MIMGMIPMappingTable_IMPL
121 #define GET_MIMGG16MappingTable_IMPL
122 #include "AMDGPUGenSearchableTables.inc"
123 
124 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
125                   unsigned VDataDwords, unsigned VAddrDwords) {
126   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
127                                              VDataDwords, VAddrDwords);
128   return Info ? Info->Opcode : -1;
129 }
130 
131 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
132   const MIMGInfo *Info = getMIMGInfo(Opc);
133   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
134 }
135 
136 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
137   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
138   const MIMGInfo *NewInfo =
139       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
140                           NewChannels, OrigInfo->VAddrDwords);
141   return NewInfo ? NewInfo->Opcode : -1;
142 }
143 
144 struct MUBUFInfo {
145   uint16_t Opcode;
146   uint16_t BaseOpcode;
147   uint8_t elements;
148   bool has_vaddr;
149   bool has_srsrc;
150   bool has_soffset;
151 };
152 
153 struct MTBUFInfo {
154   uint16_t Opcode;
155   uint16_t BaseOpcode;
156   uint8_t elements;
157   bool has_vaddr;
158   bool has_srsrc;
159   bool has_soffset;
160 };
161 
162 struct SMInfo {
163   uint16_t Opcode;
164   bool IsBuffer;
165 };
166 
167 #define GET_MTBUFInfoTable_DECL
168 #define GET_MTBUFInfoTable_IMPL
169 #define GET_MUBUFInfoTable_DECL
170 #define GET_MUBUFInfoTable_IMPL
171 #define GET_SMInfoTable_DECL
172 #define GET_SMInfoTable_IMPL
173 #include "AMDGPUGenSearchableTables.inc"
174 
175 int getMTBUFBaseOpcode(unsigned Opc) {
176   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
177   return Info ? Info->BaseOpcode : -1;
178 }
179 
180 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
181   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
182   return Info ? Info->Opcode : -1;
183 }
184 
185 int getMTBUFElements(unsigned Opc) {
186   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
187   return Info ? Info->elements : 0;
188 }
189 
190 bool getMTBUFHasVAddr(unsigned Opc) {
191   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
192   return Info ? Info->has_vaddr : false;
193 }
194 
195 bool getMTBUFHasSrsrc(unsigned Opc) {
196   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
197   return Info ? Info->has_srsrc : false;
198 }
199 
200 bool getMTBUFHasSoffset(unsigned Opc) {
201   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
202   return Info ? Info->has_soffset : false;
203 }
204 
205 int getMUBUFBaseOpcode(unsigned Opc) {
206   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
207   return Info ? Info->BaseOpcode : -1;
208 }
209 
210 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
211   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
212   return Info ? Info->Opcode : -1;
213 }
214 
215 int getMUBUFElements(unsigned Opc) {
216   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
217   return Info ? Info->elements : 0;
218 }
219 
220 bool getMUBUFHasVAddr(unsigned Opc) {
221   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
222   return Info ? Info->has_vaddr : false;
223 }
224 
225 bool getMUBUFHasSrsrc(unsigned Opc) {
226   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
227   return Info ? Info->has_srsrc : false;
228 }
229 
230 bool getMUBUFHasSoffset(unsigned Opc) {
231   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
232   return Info ? Info->has_soffset : false;
233 }
234 
235 bool getSMEMIsBuffer(unsigned Opc) {
236   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
237   return Info ? Info->IsBuffer : false;
238 }
239 
240 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
241 // header files, so we need to wrap it in a function that takes unsigned
242 // instead.
243 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
244   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
245 }
246 
247 namespace IsaInfo {
248 
249 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
250     : XnackSetting(TargetIDSetting::Any), SramEccSetting(TargetIDSetting::Any) {
251   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
252     XnackSetting = TargetIDSetting::Unsupported;
253   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
254     SramEccSetting = TargetIDSetting::Unsupported;
255 }
256 
257 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
258   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
259   // absence of the target features we assume we must generate code that can run
260   // in any environment.
261   SubtargetFeatures Features(FS);
262   Optional<bool> XnackRequested;
263   Optional<bool> SramEccRequested;
264 
265   for (const std::string &Feature : Features.getFeatures()) {
266     if (Feature == "+xnack")
267       XnackRequested = true;
268     else if (Feature == "-xnack")
269       XnackRequested = false;
270     else if (Feature == "+sramecc")
271       SramEccRequested = true;
272     else if (Feature == "-sramecc")
273       SramEccRequested = false;
274   }
275 
276   bool XnackSupported = isXnackSupported();
277   bool SramEccSupported = isSramEccSupported();
278 
279   if (XnackRequested) {
280     if (XnackSupported) {
281       XnackSetting =
282           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
283     } else {
284       // If a specific xnack setting was requested and this GPU does not support
285       // xnack emit a warning. Setting will remain set to "Unsupported".
286       if (*XnackRequested) {
287         errs() << "warning: xnack 'On' was requested for a processor that does "
288                   "not support it!\n";
289       } else {
290         errs() << "warning: xnack 'Off' was requested for a processor that "
291                   "does not support it!\n";
292       }
293     }
294   }
295 
296   if (SramEccRequested) {
297     if (SramEccSupported) {
298       SramEccSetting =
299           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
300     } else {
301       // If a specific sramecc setting was requested and this GPU does not
302       // support sramecc emit a warning. Setting will remain set to
303       // "Unsupported".
304       if (*SramEccRequested) {
305         errs() << "warning: sramecc 'On' was requested for a processor that "
306                   "does not support it!\n";
307       } else {
308         errs() << "warning: sramecc 'Off' was requested for a processor that "
309                   "does not support it!\n";
310       }
311     }
312   }
313 }
314 
315 static TargetIDSetting
316 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
317   if (FeatureString.endswith("-"))
318     return TargetIDSetting::Off;
319   if (FeatureString.endswith("+"))
320     return TargetIDSetting::On;
321 
322   llvm_unreachable("Malformed feature string");
323 }
324 
325 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
326   SmallVector<StringRef, 3> TargetIDSplit;
327   TargetID.split(TargetIDSplit, ':');
328 
329   for (const auto &FeatureString : TargetIDSplit) {
330     if (FeatureString.startswith("xnack"))
331       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
332     if (FeatureString.startswith("sramecc"))
333       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
334   }
335 }
336 
337 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
338   auto TargetTriple = STI->getTargetTriple();
339   auto Version = getIsaVersion(STI->getCPU());
340 
341   Stream << TargetTriple.getArchName() << '-'
342          << TargetTriple.getVendorName() << '-'
343          << TargetTriple.getOSName() << '-'
344          << TargetTriple.getEnvironmentName() << '-'
345          << "gfx"
346          << Version.Major
347          << Version.Minor
348          << Version.Stepping;
349 
350   if (hasXNACK(*STI))
351     Stream << "+xnack";
352   if (hasSRAMECC(*STI))
353     Stream << "+sramecc";
354 
355   Stream.flush();
356 }
357 
358 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
359   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
360     return 16;
361   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
362     return 32;
363 
364   return 64;
365 }
366 
367 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
368   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
369     return 32768;
370   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
371     return 65536;
372 
373   return 0;
374 }
375 
376 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
377   // "Per CU" really means "per whatever functional block the waves of a
378   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
379   // two SIMDs.
380   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
381     return 2;
382   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
383   // two CUs, so a total of four SIMDs.
384   return 4;
385 }
386 
387 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
388                                unsigned FlatWorkGroupSize) {
389   assert(FlatWorkGroupSize != 0);
390   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
391     return 8;
392   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
393   if (N == 1)
394     return 40;
395   N = 40 / N;
396   return std::min(N, 16u);
397 }
398 
399 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
400   return 1;
401 }
402 
403 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
404   // FIXME: Need to take scratch memory into account.
405   if (!isGFX10Plus(*STI))
406     return 10;
407   return hasGFX10_3Insts(*STI) ? 16 : 20;
408 }
409 
410 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
411                                    unsigned FlatWorkGroupSize) {
412   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
413                     getEUsPerCU(STI));
414 }
415 
416 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
417   return 1;
418 }
419 
420 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
421   // Some subtargets allow encoding 2048, but this isn't tested or supported.
422   return 1024;
423 }
424 
425 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
426                               unsigned FlatWorkGroupSize) {
427   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
428 }
429 
430 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
431   IsaVersion Version = getIsaVersion(STI->getCPU());
432   if (Version.Major >= 10)
433     return getAddressableNumSGPRs(STI);
434   if (Version.Major >= 8)
435     return 16;
436   return 8;
437 }
438 
439 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
440   return 8;
441 }
442 
443 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
444   IsaVersion Version = getIsaVersion(STI->getCPU());
445   if (Version.Major >= 8)
446     return 800;
447   return 512;
448 }
449 
450 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
451   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
452     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
453 
454   IsaVersion Version = getIsaVersion(STI->getCPU());
455   if (Version.Major >= 10)
456     return 106;
457   if (Version.Major >= 8)
458     return 102;
459   return 104;
460 }
461 
462 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
463   assert(WavesPerEU != 0);
464 
465   IsaVersion Version = getIsaVersion(STI->getCPU());
466   if (Version.Major >= 10)
467     return 0;
468 
469   if (WavesPerEU >= getMaxWavesPerEU(STI))
470     return 0;
471 
472   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
473   if (STI->getFeatureBits().test(FeatureTrapHandler))
474     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
475   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
476   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
477 }
478 
479 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
480                         bool Addressable) {
481   assert(WavesPerEU != 0);
482 
483   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
484   IsaVersion Version = getIsaVersion(STI->getCPU());
485   if (Version.Major >= 10)
486     return Addressable ? AddressableNumSGPRs : 108;
487   if (Version.Major >= 8 && !Addressable)
488     AddressableNumSGPRs = 112;
489   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
490   if (STI->getFeatureBits().test(FeatureTrapHandler))
491     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
492   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
493   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
494 }
495 
496 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
497                           bool FlatScrUsed, bool XNACKUsed) {
498   unsigned ExtraSGPRs = 0;
499   if (VCCUsed)
500     ExtraSGPRs = 2;
501 
502   IsaVersion Version = getIsaVersion(STI->getCPU());
503   if (Version.Major >= 10)
504     return ExtraSGPRs;
505 
506   if (Version.Major < 8) {
507     if (FlatScrUsed)
508       ExtraSGPRs = 4;
509   } else {
510     if (XNACKUsed)
511       ExtraSGPRs = 4;
512 
513     if (FlatScrUsed)
514       ExtraSGPRs = 6;
515   }
516 
517   return ExtraSGPRs;
518 }
519 
520 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
521                           bool FlatScrUsed) {
522   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
523                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
524 }
525 
526 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
527   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
528   // SGPRBlocks is actual number of SGPR blocks minus 1.
529   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
530 }
531 
532 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
533                              Optional<bool> EnableWavefrontSize32) {
534   bool IsWave32 = EnableWavefrontSize32 ?
535       *EnableWavefrontSize32 :
536       STI->getFeatureBits().test(FeatureWavefrontSize32);
537 
538   if (hasGFX10_3Insts(*STI))
539     return IsWave32 ? 16 : 8;
540 
541   return IsWave32 ? 8 : 4;
542 }
543 
544 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
545                                 Optional<bool> EnableWavefrontSize32) {
546 
547   bool IsWave32 = EnableWavefrontSize32 ?
548       *EnableWavefrontSize32 :
549       STI->getFeatureBits().test(FeatureWavefrontSize32);
550 
551   return IsWave32 ? 8 : 4;
552 }
553 
554 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
555   if (!isGFX10Plus(*STI))
556     return 256;
557   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
558 }
559 
560 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
561   return 256;
562 }
563 
564 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
565   assert(WavesPerEU != 0);
566 
567   if (WavesPerEU >= getMaxWavesPerEU(STI))
568     return 0;
569   unsigned MinNumVGPRs =
570       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
571                 getVGPRAllocGranule(STI)) + 1;
572   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
573 }
574 
575 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
576   assert(WavesPerEU != 0);
577 
578   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
579                                    getVGPRAllocGranule(STI));
580   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
581   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
582 }
583 
584 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
585                           Optional<bool> EnableWavefrontSize32) {
586   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
587                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
588   // VGPRBlocks is actual number of VGPR blocks minus 1.
589   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
590 }
591 
592 } // end namespace IsaInfo
593 
594 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
595                                const MCSubtargetInfo *STI) {
596   IsaVersion Version = getIsaVersion(STI->getCPU());
597 
598   memset(&Header, 0, sizeof(Header));
599 
600   Header.amd_kernel_code_version_major = 1;
601   Header.amd_kernel_code_version_minor = 2;
602   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
603   Header.amd_machine_version_major = Version.Major;
604   Header.amd_machine_version_minor = Version.Minor;
605   Header.amd_machine_version_stepping = Version.Stepping;
606   Header.kernel_code_entry_byte_offset = sizeof(Header);
607   Header.wavefront_size = 6;
608 
609   // If the code object does not support indirect functions, then the value must
610   // be 0xffffffff.
611   Header.call_convention = -1;
612 
613   // These alignment values are specified in powers of two, so alignment =
614   // 2^n.  The minimum alignment is 2^4 = 16.
615   Header.kernarg_segment_alignment = 4;
616   Header.group_segment_alignment = 4;
617   Header.private_segment_alignment = 4;
618 
619   if (Version.Major >= 10) {
620     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
621       Header.wavefront_size = 5;
622       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
623     }
624     Header.compute_pgm_resource_registers |=
625       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
626       S_00B848_MEM_ORDERED(1);
627   }
628 }
629 
630 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
631     const MCSubtargetInfo *STI) {
632   IsaVersion Version = getIsaVersion(STI->getCPU());
633 
634   amdhsa::kernel_descriptor_t KD;
635   memset(&KD, 0, sizeof(KD));
636 
637   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
638                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
639                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
640   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
641                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
642   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
643                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
644   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
645                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
646   if (Version.Major >= 10) {
647     AMDHSA_BITS_SET(KD.kernel_code_properties,
648                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
649                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
650     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
651                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
652                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
653     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
654                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
655   }
656   return KD;
657 }
658 
659 bool isGroupSegment(const GlobalValue *GV) {
660   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
661 }
662 
663 bool isGlobalSegment(const GlobalValue *GV) {
664   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
665 }
666 
667 bool isReadOnlySegment(const GlobalValue *GV) {
668   unsigned AS = GV->getAddressSpace();
669   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
670          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
671 }
672 
673 bool shouldEmitConstantsToTextSection(const Triple &TT) {
674   return TT.getArch() == Triple::r600;
675 }
676 
677 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
678   Attribute A = F.getFnAttribute(Name);
679   int Result = Default;
680 
681   if (A.isStringAttribute()) {
682     StringRef Str = A.getValueAsString();
683     if (Str.getAsInteger(0, Result)) {
684       LLVMContext &Ctx = F.getContext();
685       Ctx.emitError("can't parse integer attribute " + Name);
686     }
687   }
688 
689   return Result;
690 }
691 
692 std::pair<int, int> getIntegerPairAttribute(const Function &F,
693                                             StringRef Name,
694                                             std::pair<int, int> Default,
695                                             bool OnlyFirstRequired) {
696   Attribute A = F.getFnAttribute(Name);
697   if (!A.isStringAttribute())
698     return Default;
699 
700   LLVMContext &Ctx = F.getContext();
701   std::pair<int, int> Ints = Default;
702   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
703   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
704     Ctx.emitError("can't parse first integer attribute " + Name);
705     return Default;
706   }
707   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
708     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
709       Ctx.emitError("can't parse second integer attribute " + Name);
710       return Default;
711     }
712   }
713 
714   return Ints;
715 }
716 
717 unsigned getVmcntBitMask(const IsaVersion &Version) {
718   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
719   if (Version.Major < 9)
720     return VmcntLo;
721 
722   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
723   return VmcntLo | VmcntHi;
724 }
725 
726 unsigned getExpcntBitMask(const IsaVersion &Version) {
727   return (1 << getExpcntBitWidth()) - 1;
728 }
729 
730 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
731   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
732 }
733 
734 unsigned getWaitcntBitMask(const IsaVersion &Version) {
735   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
736   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
737   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
738                                 getLgkmcntBitWidth(Version.Major));
739   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
740   if (Version.Major < 9)
741     return Waitcnt;
742 
743   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
744   return Waitcnt | VmcntHi;
745 }
746 
747 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
748   unsigned VmcntLo =
749       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
750   if (Version.Major < 9)
751     return VmcntLo;
752 
753   unsigned VmcntHi =
754       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
755   VmcntHi <<= getVmcntBitWidthLo();
756   return VmcntLo | VmcntHi;
757 }
758 
759 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
760   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
761 }
762 
763 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
764   return unpackBits(Waitcnt, getLgkmcntBitShift(),
765                     getLgkmcntBitWidth(Version.Major));
766 }
767 
768 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
769                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
770   Vmcnt = decodeVmcnt(Version, Waitcnt);
771   Expcnt = decodeExpcnt(Version, Waitcnt);
772   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
773 }
774 
775 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
776   Waitcnt Decoded;
777   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
778   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
779   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
780   return Decoded;
781 }
782 
783 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
784                      unsigned Vmcnt) {
785   Waitcnt =
786       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
787   if (Version.Major < 9)
788     return Waitcnt;
789 
790   Vmcnt >>= getVmcntBitWidthLo();
791   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
792 }
793 
794 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
795                       unsigned Expcnt) {
796   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
797 }
798 
799 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
800                        unsigned Lgkmcnt) {
801   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
802                                     getLgkmcntBitWidth(Version.Major));
803 }
804 
805 unsigned encodeWaitcnt(const IsaVersion &Version,
806                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
807   unsigned Waitcnt = getWaitcntBitMask(Version);
808   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
809   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
810   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
811   return Waitcnt;
812 }
813 
814 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
815   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
816 }
817 
818 //===----------------------------------------------------------------------===//
819 // hwreg
820 //===----------------------------------------------------------------------===//
821 
822 namespace Hwreg {
823 
824 int64_t getHwregId(const StringRef Name) {
825   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
826     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
827       return Id;
828   }
829   return ID_UNKNOWN_;
830 }
831 
832 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
833   if (isSI(STI) || isCI(STI) || isVI(STI))
834     return ID_SYMBOLIC_FIRST_GFX9_;
835   else if (isGFX9(STI))
836     return ID_SYMBOLIC_FIRST_GFX10_;
837   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
838     return ID_SYMBOLIC_FIRST_GFX1030_;
839   else
840     return ID_SYMBOLIC_LAST_;
841 }
842 
843 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
844   return
845     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
846     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
847 }
848 
849 bool isValidHwreg(int64_t Id) {
850   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
851 }
852 
853 bool isValidHwregOffset(int64_t Offset) {
854   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
855 }
856 
857 bool isValidHwregWidth(int64_t Width) {
858   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
859 }
860 
861 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
862   return (Id << ID_SHIFT_) |
863          (Offset << OFFSET_SHIFT_) |
864          ((Width - 1) << WIDTH_M1_SHIFT_);
865 }
866 
867 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
868   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
869 }
870 
871 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
872   Id = (Val & ID_MASK_) >> ID_SHIFT_;
873   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
874   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
875 }
876 
877 } // namespace Hwreg
878 
879 //===----------------------------------------------------------------------===//
880 // exp tgt
881 //===----------------------------------------------------------------------===//
882 
883 namespace Exp {
884 
885 struct ExpTgt {
886   StringLiteral Name;
887   unsigned Tgt;
888   unsigned MaxIndex;
889 };
890 
891 static constexpr ExpTgt ExpTgtInfo[] = {
892   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
893   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
894   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
895   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
896   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
897   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
898 };
899 
900 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
901   for (const ExpTgt &Val : ExpTgtInfo) {
902     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
903       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
904       Name = Val.Name;
905       return true;
906     }
907   }
908   return false;
909 }
910 
911 unsigned getTgtId(const StringRef Name) {
912 
913   for (const ExpTgt &Val : ExpTgtInfo) {
914     if (Val.MaxIndex == 0 && Name == Val.Name)
915       return Val.Tgt;
916 
917     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
918       StringRef Suffix = Name.drop_front(Val.Name.size());
919 
920       unsigned Id;
921       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
922         return ET_INVALID;
923 
924       // Disable leading zeroes
925       if (Suffix.size() > 1 && Suffix[0] == '0')
926         return ET_INVALID;
927 
928       return Val.Tgt + Id;
929     }
930   }
931   return ET_INVALID;
932 }
933 
934 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
935   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
936 }
937 
938 } // namespace Exp
939 
940 //===----------------------------------------------------------------------===//
941 // MTBUF Format
942 //===----------------------------------------------------------------------===//
943 
944 namespace MTBUFFormat {
945 
946 int64_t getDfmt(const StringRef Name) {
947   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
948     if (Name == DfmtSymbolic[Id])
949       return Id;
950   }
951   return DFMT_UNDEF;
952 }
953 
954 StringRef getDfmtName(unsigned Id) {
955   assert(Id <= DFMT_MAX);
956   return DfmtSymbolic[Id];
957 }
958 
959 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
960   if (isSI(STI) || isCI(STI))
961     return NfmtSymbolicSICI;
962   if (isVI(STI) || isGFX9(STI))
963     return NfmtSymbolicVI;
964   return NfmtSymbolicGFX10;
965 }
966 
967 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
968   auto lookupTable = getNfmtLookupTable(STI);
969   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
970     if (Name == lookupTable[Id])
971       return Id;
972   }
973   return NFMT_UNDEF;
974 }
975 
976 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
977   assert(Id <= NFMT_MAX);
978   return getNfmtLookupTable(STI)[Id];
979 }
980 
981 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
982   unsigned Dfmt;
983   unsigned Nfmt;
984   decodeDfmtNfmt(Id, Dfmt, Nfmt);
985   return isValidNfmt(Nfmt, STI);
986 }
987 
988 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
989   return !getNfmtName(Id, STI).empty();
990 }
991 
992 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
993   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
994 }
995 
996 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
997   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
998   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
999 }
1000 
1001 int64_t getUnifiedFormat(const StringRef Name) {
1002   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1003     if (Name == UfmtSymbolic[Id])
1004       return Id;
1005   }
1006   return UFMT_UNDEF;
1007 }
1008 
1009 StringRef getUnifiedFormatName(unsigned Id) {
1010   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1011 }
1012 
1013 bool isValidUnifiedFormat(unsigned Id) {
1014   return Id <= UFMT_LAST;
1015 }
1016 
1017 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1018   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1019   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1020     if (Fmt == DfmtNfmt2UFmt[Id])
1021       return Id;
1022   }
1023   return UFMT_UNDEF;
1024 }
1025 
1026 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1027   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1028 }
1029 
1030 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1031   if (isGFX10Plus(STI))
1032     return UFMT_DEFAULT;
1033   return DFMT_NFMT_DEFAULT;
1034 }
1035 
1036 } // namespace MTBUFFormat
1037 
1038 //===----------------------------------------------------------------------===//
1039 // SendMsg
1040 //===----------------------------------------------------------------------===//
1041 
1042 namespace SendMsg {
1043 
1044 int64_t getMsgId(const StringRef Name) {
1045   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1046     if (IdSymbolic[i] && Name == IdSymbolic[i])
1047       return i;
1048   }
1049   return ID_UNKNOWN_;
1050 }
1051 
1052 static bool isValidMsgId(int64_t MsgId) {
1053   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
1054 }
1055 
1056 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1057   if (Strict) {
1058     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
1059       return isGFX9Plus(STI);
1060     else
1061       return isValidMsgId(MsgId);
1062   } else {
1063     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1064   }
1065 }
1066 
1067 StringRef getMsgName(int64_t MsgId) {
1068   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
1069 }
1070 
1071 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1072   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1073   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1074   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1075   for (int i = F; i < L; ++i) {
1076     if (Name == S[i]) {
1077       return i;
1078     }
1079   }
1080   return OP_UNKNOWN_;
1081 }
1082 
1083 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
1084 
1085   if (!Strict)
1086     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1087 
1088   switch(MsgId)
1089   {
1090   case ID_GS:
1091     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1092   case ID_GS_DONE:
1093     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1094   case ID_SYSMSG:
1095     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1096   default:
1097     return OpId == OP_NONE_;
1098   }
1099 }
1100 
1101 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1102   assert(msgRequiresOp(MsgId));
1103   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1104 }
1105 
1106 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
1107 
1108   if (!Strict)
1109     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1110 
1111   switch(MsgId)
1112   {
1113   case ID_GS:
1114     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1115   case ID_GS_DONE:
1116     return (OpId == OP_GS_NOP)?
1117            (StreamId == STREAM_ID_NONE_) :
1118            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1119   default:
1120     return StreamId == STREAM_ID_NONE_;
1121   }
1122 }
1123 
1124 bool msgRequiresOp(int64_t MsgId) {
1125   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1126 }
1127 
1128 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1129   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1130 }
1131 
1132 void decodeMsg(unsigned Val,
1133                uint16_t &MsgId,
1134                uint16_t &OpId,
1135                uint16_t &StreamId) {
1136   MsgId = Val & ID_MASK_;
1137   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1138   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1139 }
1140 
1141 uint64_t encodeMsg(uint64_t MsgId,
1142                    uint64_t OpId,
1143                    uint64_t StreamId) {
1144   return (MsgId << ID_SHIFT_) |
1145          (OpId << OP_SHIFT_) |
1146          (StreamId << STREAM_ID_SHIFT_);
1147 }
1148 
1149 } // namespace SendMsg
1150 
1151 //===----------------------------------------------------------------------===//
1152 //
1153 //===----------------------------------------------------------------------===//
1154 
1155 unsigned getInitialPSInputAddr(const Function &F) {
1156   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1157 }
1158 
1159 bool isShader(CallingConv::ID cc) {
1160   switch(cc) {
1161     case CallingConv::AMDGPU_VS:
1162     case CallingConv::AMDGPU_LS:
1163     case CallingConv::AMDGPU_HS:
1164     case CallingConv::AMDGPU_ES:
1165     case CallingConv::AMDGPU_GS:
1166     case CallingConv::AMDGPU_PS:
1167     case CallingConv::AMDGPU_CS:
1168       return true;
1169     default:
1170       return false;
1171   }
1172 }
1173 
1174 bool isGraphics(CallingConv::ID cc) {
1175   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1176 }
1177 
1178 bool isCompute(CallingConv::ID cc) {
1179   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1180 }
1181 
1182 bool isEntryFunctionCC(CallingConv::ID CC) {
1183   switch (CC) {
1184   case CallingConv::AMDGPU_KERNEL:
1185   case CallingConv::SPIR_KERNEL:
1186   case CallingConv::AMDGPU_VS:
1187   case CallingConv::AMDGPU_GS:
1188   case CallingConv::AMDGPU_PS:
1189   case CallingConv::AMDGPU_CS:
1190   case CallingConv::AMDGPU_ES:
1191   case CallingConv::AMDGPU_HS:
1192   case CallingConv::AMDGPU_LS:
1193     return true;
1194   default:
1195     return false;
1196   }
1197 }
1198 
1199 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1200   switch (CC) {
1201   case CallingConv::AMDGPU_Gfx:
1202     return true;
1203   default:
1204     return isEntryFunctionCC(CC);
1205   }
1206 }
1207 
1208 bool hasXNACK(const MCSubtargetInfo &STI) {
1209   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1210 }
1211 
1212 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1213   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1214 }
1215 
1216 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1217   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1218 }
1219 
1220 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1221   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1222 }
1223 
1224 bool hasG16(const MCSubtargetInfo &STI) {
1225   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1226 }
1227 
1228 bool hasPackedD16(const MCSubtargetInfo &STI) {
1229   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1230 }
1231 
1232 bool isSI(const MCSubtargetInfo &STI) {
1233   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1234 }
1235 
1236 bool isCI(const MCSubtargetInfo &STI) {
1237   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1238 }
1239 
1240 bool isVI(const MCSubtargetInfo &STI) {
1241   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1242 }
1243 
1244 bool isGFX9(const MCSubtargetInfo &STI) {
1245   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1246 }
1247 
1248 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1249   return isGFX9(STI) || isGFX10Plus(STI);
1250 }
1251 
1252 bool isGFX10(const MCSubtargetInfo &STI) {
1253   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1254 }
1255 
1256 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1257 
1258 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1259   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1260 }
1261 
1262 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1263   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1264 }
1265 
1266 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1267   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1268 }
1269 
1270 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1271   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1272   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1273   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1274     Reg == AMDGPU::SCC;
1275 }
1276 
1277 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1278   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1279     if (*R == Reg1) return true;
1280   }
1281   return false;
1282 }
1283 
1284 #define MAP_REG2REG \
1285   using namespace AMDGPU; \
1286   switch(Reg) { \
1287   default: return Reg; \
1288   CASE_CI_VI(FLAT_SCR) \
1289   CASE_CI_VI(FLAT_SCR_LO) \
1290   CASE_CI_VI(FLAT_SCR_HI) \
1291   CASE_VI_GFX9PLUS(TTMP0) \
1292   CASE_VI_GFX9PLUS(TTMP1) \
1293   CASE_VI_GFX9PLUS(TTMP2) \
1294   CASE_VI_GFX9PLUS(TTMP3) \
1295   CASE_VI_GFX9PLUS(TTMP4) \
1296   CASE_VI_GFX9PLUS(TTMP5) \
1297   CASE_VI_GFX9PLUS(TTMP6) \
1298   CASE_VI_GFX9PLUS(TTMP7) \
1299   CASE_VI_GFX9PLUS(TTMP8) \
1300   CASE_VI_GFX9PLUS(TTMP9) \
1301   CASE_VI_GFX9PLUS(TTMP10) \
1302   CASE_VI_GFX9PLUS(TTMP11) \
1303   CASE_VI_GFX9PLUS(TTMP12) \
1304   CASE_VI_GFX9PLUS(TTMP13) \
1305   CASE_VI_GFX9PLUS(TTMP14) \
1306   CASE_VI_GFX9PLUS(TTMP15) \
1307   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1308   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1309   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1310   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1311   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1312   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1313   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1314   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1315   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1316   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1317   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1318   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1319   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1320   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1321   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1322   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1323   }
1324 
1325 #define CASE_CI_VI(node) \
1326   assert(!isSI(STI)); \
1327   case node: return isCI(STI) ? node##_ci : node##_vi;
1328 
1329 #define CASE_VI_GFX9PLUS(node) \
1330   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1331 
1332 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1333   if (STI.getTargetTriple().getArch() == Triple::r600)
1334     return Reg;
1335   MAP_REG2REG
1336 }
1337 
1338 #undef CASE_CI_VI
1339 #undef CASE_VI_GFX9PLUS
1340 
1341 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1342 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1343 
1344 unsigned mc2PseudoReg(unsigned Reg) {
1345   MAP_REG2REG
1346 }
1347 
1348 #undef CASE_CI_VI
1349 #undef CASE_VI_GFX9PLUS
1350 #undef MAP_REG2REG
1351 
1352 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1353   assert(OpNo < Desc.NumOperands);
1354   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1355   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1356          OpType <= AMDGPU::OPERAND_SRC_LAST;
1357 }
1358 
1359 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1360   assert(OpNo < Desc.NumOperands);
1361   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1362   switch (OpType) {
1363   case AMDGPU::OPERAND_REG_IMM_FP32:
1364   case AMDGPU::OPERAND_REG_IMM_FP64:
1365   case AMDGPU::OPERAND_REG_IMM_FP16:
1366   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1367   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1368   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1369   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1370   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1371   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1372   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1373   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1374   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1375   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1376   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1377     return true;
1378   default:
1379     return false;
1380   }
1381 }
1382 
1383 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1384   assert(OpNo < Desc.NumOperands);
1385   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1386   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1387          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1388 }
1389 
1390 // Avoid using MCRegisterClass::getSize, since that function will go away
1391 // (move from MC* level to Target* level). Return size in bits.
1392 unsigned getRegBitWidth(unsigned RCID) {
1393   switch (RCID) {
1394   case AMDGPU::VGPR_LO16RegClassID:
1395   case AMDGPU::VGPR_HI16RegClassID:
1396   case AMDGPU::SGPR_LO16RegClassID:
1397   case AMDGPU::AGPR_LO16RegClassID:
1398     return 16;
1399   case AMDGPU::SGPR_32RegClassID:
1400   case AMDGPU::VGPR_32RegClassID:
1401   case AMDGPU::VRegOrLds_32RegClassID:
1402   case AMDGPU::AGPR_32RegClassID:
1403   case AMDGPU::VS_32RegClassID:
1404   case AMDGPU::AV_32RegClassID:
1405   case AMDGPU::SReg_32RegClassID:
1406   case AMDGPU::SReg_32_XM0RegClassID:
1407   case AMDGPU::SRegOrLds_32RegClassID:
1408     return 32;
1409   case AMDGPU::SGPR_64RegClassID:
1410   case AMDGPU::VS_64RegClassID:
1411   case AMDGPU::AV_64RegClassID:
1412   case AMDGPU::SReg_64RegClassID:
1413   case AMDGPU::VReg_64RegClassID:
1414   case AMDGPU::AReg_64RegClassID:
1415   case AMDGPU::SReg_64_XEXECRegClassID:
1416     return 64;
1417   case AMDGPU::SGPR_96RegClassID:
1418   case AMDGPU::SReg_96RegClassID:
1419   case AMDGPU::VReg_96RegClassID:
1420   case AMDGPU::AReg_96RegClassID:
1421     return 96;
1422   case AMDGPU::SGPR_128RegClassID:
1423   case AMDGPU::SReg_128RegClassID:
1424   case AMDGPU::VReg_128RegClassID:
1425   case AMDGPU::AReg_128RegClassID:
1426     return 128;
1427   case AMDGPU::SGPR_160RegClassID:
1428   case AMDGPU::SReg_160RegClassID:
1429   case AMDGPU::VReg_160RegClassID:
1430   case AMDGPU::AReg_160RegClassID:
1431     return 160;
1432   case AMDGPU::SGPR_192RegClassID:
1433   case AMDGPU::SReg_192RegClassID:
1434   case AMDGPU::VReg_192RegClassID:
1435   case AMDGPU::AReg_192RegClassID:
1436     return 192;
1437   case AMDGPU::SGPR_256RegClassID:
1438   case AMDGPU::SReg_256RegClassID:
1439   case AMDGPU::VReg_256RegClassID:
1440   case AMDGPU::AReg_256RegClassID:
1441     return 256;
1442   case AMDGPU::SGPR_512RegClassID:
1443   case AMDGPU::SReg_512RegClassID:
1444   case AMDGPU::VReg_512RegClassID:
1445   case AMDGPU::AReg_512RegClassID:
1446     return 512;
1447   case AMDGPU::SGPR_1024RegClassID:
1448   case AMDGPU::SReg_1024RegClassID:
1449   case AMDGPU::VReg_1024RegClassID:
1450   case AMDGPU::AReg_1024RegClassID:
1451     return 1024;
1452   default:
1453     llvm_unreachable("Unexpected register class");
1454   }
1455 }
1456 
1457 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1458   return getRegBitWidth(RC.getID());
1459 }
1460 
1461 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1462                            unsigned OpNo) {
1463   assert(OpNo < Desc.NumOperands);
1464   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1465   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1466 }
1467 
1468 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1469   if (isInlinableIntLiteral(Literal))
1470     return true;
1471 
1472   uint64_t Val = static_cast<uint64_t>(Literal);
1473   return (Val == DoubleToBits(0.0)) ||
1474          (Val == DoubleToBits(1.0)) ||
1475          (Val == DoubleToBits(-1.0)) ||
1476          (Val == DoubleToBits(0.5)) ||
1477          (Val == DoubleToBits(-0.5)) ||
1478          (Val == DoubleToBits(2.0)) ||
1479          (Val == DoubleToBits(-2.0)) ||
1480          (Val == DoubleToBits(4.0)) ||
1481          (Val == DoubleToBits(-4.0)) ||
1482          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1483 }
1484 
1485 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1486   if (isInlinableIntLiteral(Literal))
1487     return true;
1488 
1489   // The actual type of the operand does not seem to matter as long
1490   // as the bits match one of the inline immediate values.  For example:
1491   //
1492   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1493   // so it is a legal inline immediate.
1494   //
1495   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1496   // floating-point, so it is a legal inline immediate.
1497 
1498   uint32_t Val = static_cast<uint32_t>(Literal);
1499   return (Val == FloatToBits(0.0f)) ||
1500          (Val == FloatToBits(1.0f)) ||
1501          (Val == FloatToBits(-1.0f)) ||
1502          (Val == FloatToBits(0.5f)) ||
1503          (Val == FloatToBits(-0.5f)) ||
1504          (Val == FloatToBits(2.0f)) ||
1505          (Val == FloatToBits(-2.0f)) ||
1506          (Val == FloatToBits(4.0f)) ||
1507          (Val == FloatToBits(-4.0f)) ||
1508          (Val == 0x3e22f983 && HasInv2Pi);
1509 }
1510 
1511 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1512   if (!HasInv2Pi)
1513     return false;
1514 
1515   if (isInlinableIntLiteral(Literal))
1516     return true;
1517 
1518   uint16_t Val = static_cast<uint16_t>(Literal);
1519   return Val == 0x3C00 || // 1.0
1520          Val == 0xBC00 || // -1.0
1521          Val == 0x3800 || // 0.5
1522          Val == 0xB800 || // -0.5
1523          Val == 0x4000 || // 2.0
1524          Val == 0xC000 || // -2.0
1525          Val == 0x4400 || // 4.0
1526          Val == 0xC400 || // -4.0
1527          Val == 0x3118;   // 1/2pi
1528 }
1529 
1530 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1531   assert(HasInv2Pi);
1532 
1533   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1534     int16_t Trunc = static_cast<int16_t>(Literal);
1535     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1536   }
1537   if (!(Literal & 0xffff))
1538     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1539 
1540   int16_t Lo16 = static_cast<int16_t>(Literal);
1541   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1542   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1543 }
1544 
1545 bool isInlinableIntLiteralV216(int32_t Literal) {
1546   int16_t Lo16 = static_cast<int16_t>(Literal);
1547   if (isInt<16>(Literal) || isUInt<16>(Literal))
1548     return isInlinableIntLiteral(Lo16);
1549 
1550   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1551   if (!(Literal & 0xffff))
1552     return isInlinableIntLiteral(Hi16);
1553   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1554 }
1555 
1556 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1557   assert(HasInv2Pi);
1558 
1559   int16_t Lo16 = static_cast<int16_t>(Literal);
1560   if (isInt<16>(Literal) || isUInt<16>(Literal))
1561     return true;
1562 
1563   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1564   if (!(Literal & 0xffff))
1565     return true;
1566   return Lo16 == Hi16;
1567 }
1568 
1569 bool isArgPassedInSGPR(const Argument *A) {
1570   const Function *F = A->getParent();
1571 
1572   // Arguments to compute shaders are never a source of divergence.
1573   CallingConv::ID CC = F->getCallingConv();
1574   switch (CC) {
1575   case CallingConv::AMDGPU_KERNEL:
1576   case CallingConv::SPIR_KERNEL:
1577     return true;
1578   case CallingConv::AMDGPU_VS:
1579   case CallingConv::AMDGPU_LS:
1580   case CallingConv::AMDGPU_HS:
1581   case CallingConv::AMDGPU_ES:
1582   case CallingConv::AMDGPU_GS:
1583   case CallingConv::AMDGPU_PS:
1584   case CallingConv::AMDGPU_CS:
1585   case CallingConv::AMDGPU_Gfx:
1586     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1587     // Everything else is in VGPRs.
1588     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1589            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1590   default:
1591     // TODO: Should calls support inreg for SGPR inputs?
1592     return false;
1593   }
1594 }
1595 
1596 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1597   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1598 }
1599 
1600 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1601   return isGFX9Plus(ST);
1602 }
1603 
1604 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1605                                       int64_t EncodedOffset) {
1606   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1607                                : isUInt<8>(EncodedOffset);
1608 }
1609 
1610 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1611                                     int64_t EncodedOffset,
1612                                     bool IsBuffer) {
1613   return !IsBuffer &&
1614          hasSMRDSignedImmOffset(ST) &&
1615          isInt<21>(EncodedOffset);
1616 }
1617 
1618 static bool isDwordAligned(uint64_t ByteOffset) {
1619   return (ByteOffset & 3) == 0;
1620 }
1621 
1622 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1623                                 uint64_t ByteOffset) {
1624   if (hasSMEMByteOffset(ST))
1625     return ByteOffset;
1626 
1627   assert(isDwordAligned(ByteOffset));
1628   return ByteOffset >> 2;
1629 }
1630 
1631 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1632                                        int64_t ByteOffset, bool IsBuffer) {
1633   // The signed version is always a byte offset.
1634   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1635     assert(hasSMEMByteOffset(ST));
1636     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1637   }
1638 
1639   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1640     return None;
1641 
1642   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1643   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1644              ? Optional<int64_t>(EncodedOffset)
1645              : None;
1646 }
1647 
1648 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1649                                                 int64_t ByteOffset) {
1650   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1651     return None;
1652 
1653   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1654   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1655 }
1656 
1657 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1658   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1659   if (AMDGPU::isGFX10(ST))
1660     return Signed ? 12 : 11;
1661 
1662   return Signed ? 13 : 12;
1663 }
1664 
1665 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1666 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1667 // hardware bug needing a workaround).
1668 //
1669 // The required alignment ensures that individual address components remain
1670 // aligned if they are aligned to begin with. It also ensures that additional
1671 // offsets within the given alignment can be added to the resulting ImmOffset.
1672 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1673                       const GCNSubtarget *Subtarget, Align Alignment) {
1674   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1675   uint32_t Overflow = 0;
1676 
1677   if (Imm > MaxImm) {
1678     if (Imm <= MaxImm + 64) {
1679       // Use an SOffset inline constant for 4..64
1680       Overflow = Imm - MaxImm;
1681       Imm = MaxImm;
1682     } else {
1683       // Try to keep the same value in SOffset for adjacent loads, so that
1684       // the corresponding register contents can be re-used.
1685       //
1686       // Load values with all low-bits (except for alignment bits) set into
1687       // SOffset, so that a larger range of values can be covered using
1688       // s_movk_i32.
1689       //
1690       // Atomic operations fail to work correctly when individual address
1691       // components are unaligned, even if their sum is aligned.
1692       uint32_t High = (Imm + Alignment.value()) & ~4095;
1693       uint32_t Low = (Imm + Alignment.value()) & 4095;
1694       Imm = Low;
1695       Overflow = High - Alignment.value();
1696     }
1697   }
1698 
1699   // There is a hardware bug in SI and CI which prevents address clamping in
1700   // MUBUF instructions from working correctly with SOffsets. The immediate
1701   // offset is unaffected.
1702   if (Overflow > 0 &&
1703       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1704     return false;
1705 
1706   ImmOffset = Imm;
1707   SOffset = Overflow;
1708   return true;
1709 }
1710 
1711 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1712   *this = getDefaultForCallingConv(F.getCallingConv());
1713 
1714   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1715   if (!IEEEAttr.empty())
1716     IEEE = IEEEAttr == "true";
1717 
1718   StringRef DX10ClampAttr
1719     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1720   if (!DX10ClampAttr.empty())
1721     DX10Clamp = DX10ClampAttr == "true";
1722 
1723   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1724   if (!DenormF32Attr.empty()) {
1725     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1726     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1727     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1728   }
1729 
1730   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1731   if (!DenormAttr.empty()) {
1732     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1733 
1734     if (DenormF32Attr.empty()) {
1735       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1736       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1737     }
1738 
1739     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1740     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1741   }
1742 }
1743 
1744 namespace {
1745 
1746 struct SourceOfDivergence {
1747   unsigned Intr;
1748 };
1749 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1750 
1751 #define GET_SourcesOfDivergence_IMPL
1752 #define GET_Gfx9BufferFormat_IMPL
1753 #define GET_Gfx10PlusBufferFormat_IMPL
1754 #include "AMDGPUGenSearchableTables.inc"
1755 
1756 } // end anonymous namespace
1757 
1758 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1759   return lookupSourceOfDivergence(IntrID);
1760 }
1761 
1762 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1763                                                   uint8_t NumComponents,
1764                                                   uint8_t NumFormat,
1765                                                   const MCSubtargetInfo &STI) {
1766   return isGFX10Plus(STI)
1767              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1768                                             NumFormat)
1769              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1770 }
1771 
1772 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1773                                                   const MCSubtargetInfo &STI) {
1774   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1775                           : getGfx9BufferFormatInfo(Format);
1776 }
1777 
1778 } // namespace AMDGPU
1779 
1780 raw_ostream &operator<<(raw_ostream &OS,
1781                         const AMDGPU::IsaInfo::TargetIDSetting S) {
1782   switch (S) {
1783   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
1784     OS << "Unsupported";
1785     break;
1786   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
1787     OS << "Any";
1788     break;
1789   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
1790     OS << "Off";
1791     break;
1792   case (AMDGPU::IsaInfo::TargetIDSetting::On):
1793     OS << "On";
1794     break;
1795   }
1796   return OS;
1797 }
1798 
1799 } // namespace llvm
1800