1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDGPUTargetTransformInfo.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/IntrinsicsR600.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCSubtargetInfo.h" 33 #include "llvm/MC/SubtargetFeature.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <cstring> 41 #include <utility> 42 43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 44 45 #define GET_INSTRINFO_NAMED_OPS 46 #define GET_INSTRMAP_INFO 47 #include "AMDGPUGenInstrInfo.inc" 48 #undef GET_INSTRMAP_INFO 49 #undef GET_INSTRINFO_NAMED_OPS 50 51 namespace { 52 53 /// \returns Bit mask for given bit \p Shift and bit \p Width. 54 unsigned getBitMask(unsigned Shift, unsigned Width) { 55 return ((1 << Width) - 1) << Shift; 56 } 57 58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 59 /// 60 /// \returns Packed \p Dst. 61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 62 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 63 Dst |= (Src << Shift) & getBitMask(Shift, Width); 64 return Dst; 65 } 66 67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 68 /// 69 /// \returns Unpacked bits. 70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 71 return (Src & getBitMask(Shift, Width)) >> Shift; 72 } 73 74 /// \returns Vmcnt bit shift (lower bits). 75 unsigned getVmcntBitShiftLo() { return 0; } 76 77 /// \returns Vmcnt bit width (lower bits). 78 unsigned getVmcntBitWidthLo() { return 4; } 79 80 /// \returns Expcnt bit shift. 81 unsigned getExpcntBitShift() { return 4; } 82 83 /// \returns Expcnt bit width. 84 unsigned getExpcntBitWidth() { return 3; } 85 86 /// \returns Lgkmcnt bit shift. 87 unsigned getLgkmcntBitShift() { return 8; } 88 89 /// \returns Lgkmcnt bit width. 90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 91 return (VersionMajor >= 10) ? 6 : 4; 92 } 93 94 /// \returns Vmcnt bit shift (higher bits). 95 unsigned getVmcntBitShiftHi() { return 14; } 96 97 /// \returns Vmcnt bit width (higher bits). 98 unsigned getVmcntBitWidthHi() { return 2; } 99 100 } // end namespace anonymous 101 102 namespace llvm { 103 104 namespace AMDGPU { 105 106 #define GET_MIMGBaseOpcodesTable_IMPL 107 #define GET_MIMGDimInfoTable_IMPL 108 #define GET_MIMGInfoTable_IMPL 109 #define GET_MIMGLZMappingTable_IMPL 110 #define GET_MIMGMIPMappingTable_IMPL 111 #define GET_MIMGG16MappingTable_IMPL 112 #include "AMDGPUGenSearchableTables.inc" 113 114 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 115 unsigned VDataDwords, unsigned VAddrDwords) { 116 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 117 VDataDwords, VAddrDwords); 118 return Info ? Info->Opcode : -1; 119 } 120 121 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 122 const MIMGInfo *Info = getMIMGInfo(Opc); 123 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 124 } 125 126 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 127 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 128 const MIMGInfo *NewInfo = 129 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 130 NewChannels, OrigInfo->VAddrDwords); 131 return NewInfo ? NewInfo->Opcode : -1; 132 } 133 134 struct MUBUFInfo { 135 uint16_t Opcode; 136 uint16_t BaseOpcode; 137 uint8_t elements; 138 bool has_vaddr; 139 bool has_srsrc; 140 bool has_soffset; 141 }; 142 143 struct MTBUFInfo { 144 uint16_t Opcode; 145 uint16_t BaseOpcode; 146 uint8_t elements; 147 bool has_vaddr; 148 bool has_srsrc; 149 bool has_soffset; 150 }; 151 152 struct SMInfo { 153 uint16_t Opcode; 154 bool IsBuffer; 155 }; 156 157 #define GET_MTBUFInfoTable_DECL 158 #define GET_MTBUFInfoTable_IMPL 159 #define GET_MUBUFInfoTable_DECL 160 #define GET_MUBUFInfoTable_IMPL 161 #define GET_SMInfoTable_DECL 162 #define GET_SMInfoTable_IMPL 163 #include "AMDGPUGenSearchableTables.inc" 164 165 int getMTBUFBaseOpcode(unsigned Opc) { 166 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 167 return Info ? Info->BaseOpcode : -1; 168 } 169 170 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 171 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 172 return Info ? Info->Opcode : -1; 173 } 174 175 int getMTBUFElements(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 177 return Info ? Info->elements : 0; 178 } 179 180 bool getMTBUFHasVAddr(unsigned Opc) { 181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 182 return Info ? Info->has_vaddr : false; 183 } 184 185 bool getMTBUFHasSrsrc(unsigned Opc) { 186 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 187 return Info ? Info->has_srsrc : false; 188 } 189 190 bool getMTBUFHasSoffset(unsigned Opc) { 191 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 192 return Info ? Info->has_soffset : false; 193 } 194 195 int getMUBUFBaseOpcode(unsigned Opc) { 196 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 197 return Info ? Info->BaseOpcode : -1; 198 } 199 200 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 201 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 202 return Info ? Info->Opcode : -1; 203 } 204 205 int getMUBUFElements(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 207 return Info ? Info->elements : 0; 208 } 209 210 bool getMUBUFHasVAddr(unsigned Opc) { 211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 212 return Info ? Info->has_vaddr : false; 213 } 214 215 bool getMUBUFHasSrsrc(unsigned Opc) { 216 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 217 return Info ? Info->has_srsrc : false; 218 } 219 220 bool getMUBUFHasSoffset(unsigned Opc) { 221 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 222 return Info ? Info->has_soffset : false; 223 } 224 225 bool getSMEMIsBuffer(unsigned Opc) { 226 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 227 return Info ? Info->IsBuffer : false; 228 } 229 230 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 231 // header files, so we need to wrap it in a function that takes unsigned 232 // instead. 233 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 234 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 235 } 236 237 namespace IsaInfo { 238 239 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 240 auto TargetTriple = STI->getTargetTriple(); 241 auto Version = getIsaVersion(STI->getCPU()); 242 243 Stream << TargetTriple.getArchName() << '-' 244 << TargetTriple.getVendorName() << '-' 245 << TargetTriple.getOSName() << '-' 246 << TargetTriple.getEnvironmentName() << '-' 247 << "gfx" 248 << Version.Major 249 << Version.Minor 250 << Version.Stepping; 251 252 if (hasXNACK(*STI)) 253 Stream << "+xnack"; 254 if (hasSRAMECC(*STI)) 255 Stream << "+sram-ecc"; 256 257 Stream.flush(); 258 } 259 260 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 261 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 262 STI->getFeatureBits().test(FeatureCodeObjectV3); 263 } 264 265 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 266 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 267 return 16; 268 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 269 return 32; 270 271 return 64; 272 } 273 274 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 275 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 276 return 32768; 277 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 278 return 65536; 279 280 return 0; 281 } 282 283 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 284 // "Per CU" really means "per whatever functional block the waves of a 285 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 286 // two SIMDs. 287 if (isGFX10(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 288 return 2; 289 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 290 // two CUs, so a total of four SIMDs. 291 return 4; 292 } 293 294 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 295 unsigned FlatWorkGroupSize) { 296 assert(FlatWorkGroupSize != 0); 297 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 298 return 8; 299 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 300 if (N == 1) 301 return 40; 302 N = 40 / N; 303 return std::min(N, 16u); 304 } 305 306 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 307 return 1; 308 } 309 310 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 311 // FIXME: Need to take scratch memory into account. 312 if (!isGFX10(*STI)) 313 return 10; 314 return hasGFX10_3Insts(*STI) ? 16 : 20; 315 } 316 317 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 318 unsigned FlatWorkGroupSize) { 319 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 320 getEUsPerCU(STI)); 321 } 322 323 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 324 return 1; 325 } 326 327 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 328 // Some subtargets allow encoding 2048, but this isn't tested or supported. 329 return 1024; 330 } 331 332 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 333 unsigned FlatWorkGroupSize) { 334 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 335 } 336 337 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 338 IsaVersion Version = getIsaVersion(STI->getCPU()); 339 if (Version.Major >= 10) 340 return getAddressableNumSGPRs(STI); 341 if (Version.Major >= 8) 342 return 16; 343 return 8; 344 } 345 346 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 347 return 8; 348 } 349 350 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 351 IsaVersion Version = getIsaVersion(STI->getCPU()); 352 if (Version.Major >= 8) 353 return 800; 354 return 512; 355 } 356 357 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 358 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 359 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 360 361 IsaVersion Version = getIsaVersion(STI->getCPU()); 362 if (Version.Major >= 10) 363 return 106; 364 if (Version.Major >= 8) 365 return 102; 366 return 104; 367 } 368 369 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 370 assert(WavesPerEU != 0); 371 372 IsaVersion Version = getIsaVersion(STI->getCPU()); 373 if (Version.Major >= 10) 374 return 0; 375 376 if (WavesPerEU >= getMaxWavesPerEU(STI)) 377 return 0; 378 379 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 380 if (STI->getFeatureBits().test(FeatureTrapHandler)) 381 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 382 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 383 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 384 } 385 386 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 387 bool Addressable) { 388 assert(WavesPerEU != 0); 389 390 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 391 IsaVersion Version = getIsaVersion(STI->getCPU()); 392 if (Version.Major >= 10) 393 return Addressable ? AddressableNumSGPRs : 108; 394 if (Version.Major >= 8 && !Addressable) 395 AddressableNumSGPRs = 112; 396 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 397 if (STI->getFeatureBits().test(FeatureTrapHandler)) 398 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 399 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 400 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 401 } 402 403 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 404 bool FlatScrUsed, bool XNACKUsed) { 405 unsigned ExtraSGPRs = 0; 406 if (VCCUsed) 407 ExtraSGPRs = 2; 408 409 IsaVersion Version = getIsaVersion(STI->getCPU()); 410 if (Version.Major >= 10) 411 return ExtraSGPRs; 412 413 if (Version.Major < 8) { 414 if (FlatScrUsed) 415 ExtraSGPRs = 4; 416 } else { 417 if (XNACKUsed) 418 ExtraSGPRs = 4; 419 420 if (FlatScrUsed) 421 ExtraSGPRs = 6; 422 } 423 424 return ExtraSGPRs; 425 } 426 427 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 428 bool FlatScrUsed) { 429 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 430 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 431 } 432 433 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 434 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 435 // SGPRBlocks is actual number of SGPR blocks minus 1. 436 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 437 } 438 439 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 440 Optional<bool> EnableWavefrontSize32) { 441 bool IsWave32 = EnableWavefrontSize32 ? 442 *EnableWavefrontSize32 : 443 STI->getFeatureBits().test(FeatureWavefrontSize32); 444 445 if (hasGFX10_3Insts(*STI)) 446 return IsWave32 ? 16 : 8; 447 448 return IsWave32 ? 8 : 4; 449 } 450 451 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 452 Optional<bool> EnableWavefrontSize32) { 453 454 bool IsWave32 = EnableWavefrontSize32 ? 455 *EnableWavefrontSize32 : 456 STI->getFeatureBits().test(FeatureWavefrontSize32); 457 458 return IsWave32 ? 8 : 4; 459 } 460 461 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 462 if (!isGFX10(*STI)) 463 return 256; 464 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 465 } 466 467 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 468 return 256; 469 } 470 471 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 472 assert(WavesPerEU != 0); 473 474 if (WavesPerEU >= getMaxWavesPerEU(STI)) 475 return 0; 476 unsigned MinNumVGPRs = 477 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 478 getVGPRAllocGranule(STI)) + 1; 479 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 480 } 481 482 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 483 assert(WavesPerEU != 0); 484 485 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 486 getVGPRAllocGranule(STI)); 487 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 488 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 489 } 490 491 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 492 Optional<bool> EnableWavefrontSize32) { 493 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 494 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 495 // VGPRBlocks is actual number of VGPR blocks minus 1. 496 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 497 } 498 499 } // end namespace IsaInfo 500 501 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 502 const MCSubtargetInfo *STI) { 503 IsaVersion Version = getIsaVersion(STI->getCPU()); 504 505 memset(&Header, 0, sizeof(Header)); 506 507 Header.amd_kernel_code_version_major = 1; 508 Header.amd_kernel_code_version_minor = 2; 509 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 510 Header.amd_machine_version_major = Version.Major; 511 Header.amd_machine_version_minor = Version.Minor; 512 Header.amd_machine_version_stepping = Version.Stepping; 513 Header.kernel_code_entry_byte_offset = sizeof(Header); 514 Header.wavefront_size = 6; 515 516 // If the code object does not support indirect functions, then the value must 517 // be 0xffffffff. 518 Header.call_convention = -1; 519 520 // These alignment values are specified in powers of two, so alignment = 521 // 2^n. The minimum alignment is 2^4 = 16. 522 Header.kernarg_segment_alignment = 4; 523 Header.group_segment_alignment = 4; 524 Header.private_segment_alignment = 4; 525 526 if (Version.Major >= 10) { 527 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 528 Header.wavefront_size = 5; 529 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 530 } 531 Header.compute_pgm_resource_registers |= 532 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 533 S_00B848_MEM_ORDERED(1); 534 } 535 } 536 537 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 538 const MCSubtargetInfo *STI) { 539 IsaVersion Version = getIsaVersion(STI->getCPU()); 540 541 amdhsa::kernel_descriptor_t KD; 542 memset(&KD, 0, sizeof(KD)); 543 544 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 545 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 546 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 547 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 548 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 549 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 550 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 551 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 552 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 553 if (Version.Major >= 10) { 554 AMDHSA_BITS_SET(KD.kernel_code_properties, 555 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 556 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 557 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 558 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 559 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 560 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 561 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 562 } 563 return KD; 564 } 565 566 bool isGroupSegment(const GlobalValue *GV) { 567 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 568 } 569 570 bool isGlobalSegment(const GlobalValue *GV) { 571 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 572 } 573 574 bool isReadOnlySegment(const GlobalValue *GV) { 575 unsigned AS = GV->getAddressSpace(); 576 return AS == AMDGPUAS::CONSTANT_ADDRESS || 577 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 578 } 579 580 bool shouldEmitConstantsToTextSection(const Triple &TT) { 581 return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600; 582 } 583 584 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 585 Attribute A = F.getFnAttribute(Name); 586 int Result = Default; 587 588 if (A.isStringAttribute()) { 589 StringRef Str = A.getValueAsString(); 590 if (Str.getAsInteger(0, Result)) { 591 LLVMContext &Ctx = F.getContext(); 592 Ctx.emitError("can't parse integer attribute " + Name); 593 } 594 } 595 596 return Result; 597 } 598 599 std::pair<int, int> getIntegerPairAttribute(const Function &F, 600 StringRef Name, 601 std::pair<int, int> Default, 602 bool OnlyFirstRequired) { 603 Attribute A = F.getFnAttribute(Name); 604 if (!A.isStringAttribute()) 605 return Default; 606 607 LLVMContext &Ctx = F.getContext(); 608 std::pair<int, int> Ints = Default; 609 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 610 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 611 Ctx.emitError("can't parse first integer attribute " + Name); 612 return Default; 613 } 614 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 615 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 616 Ctx.emitError("can't parse second integer attribute " + Name); 617 return Default; 618 } 619 } 620 621 return Ints; 622 } 623 624 unsigned getVmcntBitMask(const IsaVersion &Version) { 625 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 626 if (Version.Major < 9) 627 return VmcntLo; 628 629 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 630 return VmcntLo | VmcntHi; 631 } 632 633 unsigned getExpcntBitMask(const IsaVersion &Version) { 634 return (1 << getExpcntBitWidth()) - 1; 635 } 636 637 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 638 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 639 } 640 641 unsigned getWaitcntBitMask(const IsaVersion &Version) { 642 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 643 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 644 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 645 getLgkmcntBitWidth(Version.Major)); 646 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 647 if (Version.Major < 9) 648 return Waitcnt; 649 650 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 651 return Waitcnt | VmcntHi; 652 } 653 654 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 655 unsigned VmcntLo = 656 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 657 if (Version.Major < 9) 658 return VmcntLo; 659 660 unsigned VmcntHi = 661 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 662 VmcntHi <<= getVmcntBitWidthLo(); 663 return VmcntLo | VmcntHi; 664 } 665 666 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 667 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 668 } 669 670 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 671 return unpackBits(Waitcnt, getLgkmcntBitShift(), 672 getLgkmcntBitWidth(Version.Major)); 673 } 674 675 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 676 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 677 Vmcnt = decodeVmcnt(Version, Waitcnt); 678 Expcnt = decodeExpcnt(Version, Waitcnt); 679 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 680 } 681 682 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 683 Waitcnt Decoded; 684 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 685 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 686 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 687 return Decoded; 688 } 689 690 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 691 unsigned Vmcnt) { 692 Waitcnt = 693 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 694 if (Version.Major < 9) 695 return Waitcnt; 696 697 Vmcnt >>= getVmcntBitWidthLo(); 698 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 699 } 700 701 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 702 unsigned Expcnt) { 703 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 704 } 705 706 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 707 unsigned Lgkmcnt) { 708 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 709 getLgkmcntBitWidth(Version.Major)); 710 } 711 712 unsigned encodeWaitcnt(const IsaVersion &Version, 713 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 714 unsigned Waitcnt = getWaitcntBitMask(Version); 715 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 716 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 717 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 718 return Waitcnt; 719 } 720 721 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 722 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 723 } 724 725 //===----------------------------------------------------------------------===// 726 // hwreg 727 //===----------------------------------------------------------------------===// 728 729 namespace Hwreg { 730 731 int64_t getHwregId(const StringRef Name) { 732 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 733 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 734 return Id; 735 } 736 return ID_UNKNOWN_; 737 } 738 739 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 740 if (isSI(STI) || isCI(STI) || isVI(STI)) 741 return ID_SYMBOLIC_FIRST_GFX9_; 742 else if (isGFX9(STI)) 743 return ID_SYMBOLIC_FIRST_GFX10_; 744 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 745 return ID_SYMBOLIC_FIRST_GFX1030_; 746 else 747 return ID_SYMBOLIC_LAST_; 748 } 749 750 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 751 return 752 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 753 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 754 } 755 756 bool isValidHwreg(int64_t Id) { 757 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 758 } 759 760 bool isValidHwregOffset(int64_t Offset) { 761 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 762 } 763 764 bool isValidHwregWidth(int64_t Width) { 765 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 766 } 767 768 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 769 return (Id << ID_SHIFT_) | 770 (Offset << OFFSET_SHIFT_) | 771 ((Width - 1) << WIDTH_M1_SHIFT_); 772 } 773 774 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 775 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 776 } 777 778 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 779 Id = (Val & ID_MASK_) >> ID_SHIFT_; 780 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 781 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 782 } 783 784 } // namespace Hwreg 785 786 //===----------------------------------------------------------------------===// 787 // SendMsg 788 //===----------------------------------------------------------------------===// 789 790 namespace SendMsg { 791 792 int64_t getMsgId(const StringRef Name) { 793 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 794 if (IdSymbolic[i] && Name == IdSymbolic[i]) 795 return i; 796 } 797 return ID_UNKNOWN_; 798 } 799 800 static bool isValidMsgId(int64_t MsgId) { 801 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 802 } 803 804 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 805 if (Strict) { 806 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 807 return isGFX9(STI) || isGFX10(STI); 808 else 809 return isValidMsgId(MsgId); 810 } else { 811 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 812 } 813 } 814 815 StringRef getMsgName(int64_t MsgId) { 816 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 817 } 818 819 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 820 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 821 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 822 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 823 for (int i = F; i < L; ++i) { 824 if (Name == S[i]) { 825 return i; 826 } 827 } 828 return OP_UNKNOWN_; 829 } 830 831 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 832 833 if (!Strict) 834 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 835 836 switch(MsgId) 837 { 838 case ID_GS: 839 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 840 case ID_GS_DONE: 841 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 842 case ID_SYSMSG: 843 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 844 default: 845 return OpId == OP_NONE_; 846 } 847 } 848 849 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 850 assert(msgRequiresOp(MsgId)); 851 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 852 } 853 854 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 855 856 if (!Strict) 857 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 858 859 switch(MsgId) 860 { 861 case ID_GS: 862 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 863 case ID_GS_DONE: 864 return (OpId == OP_GS_NOP)? 865 (StreamId == STREAM_ID_NONE_) : 866 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 867 default: 868 return StreamId == STREAM_ID_NONE_; 869 } 870 } 871 872 bool msgRequiresOp(int64_t MsgId) { 873 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 874 } 875 876 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 877 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 878 } 879 880 void decodeMsg(unsigned Val, 881 uint16_t &MsgId, 882 uint16_t &OpId, 883 uint16_t &StreamId) { 884 MsgId = Val & ID_MASK_; 885 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 886 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 887 } 888 889 uint64_t encodeMsg(uint64_t MsgId, 890 uint64_t OpId, 891 uint64_t StreamId) { 892 return (MsgId << ID_SHIFT_) | 893 (OpId << OP_SHIFT_) | 894 (StreamId << STREAM_ID_SHIFT_); 895 } 896 897 } // namespace SendMsg 898 899 //===----------------------------------------------------------------------===// 900 // 901 //===----------------------------------------------------------------------===// 902 903 unsigned getInitialPSInputAddr(const Function &F) { 904 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 905 } 906 907 bool isShader(CallingConv::ID cc) { 908 switch(cc) { 909 case CallingConv::AMDGPU_VS: 910 case CallingConv::AMDGPU_LS: 911 case CallingConv::AMDGPU_HS: 912 case CallingConv::AMDGPU_ES: 913 case CallingConv::AMDGPU_GS: 914 case CallingConv::AMDGPU_PS: 915 case CallingConv::AMDGPU_CS: 916 return true; 917 default: 918 return false; 919 } 920 } 921 922 bool isCompute(CallingConv::ID cc) { 923 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 924 } 925 926 bool isEntryFunctionCC(CallingConv::ID CC) { 927 switch (CC) { 928 case CallingConv::AMDGPU_KERNEL: 929 case CallingConv::SPIR_KERNEL: 930 case CallingConv::AMDGPU_VS: 931 case CallingConv::AMDGPU_GS: 932 case CallingConv::AMDGPU_PS: 933 case CallingConv::AMDGPU_CS: 934 case CallingConv::AMDGPU_ES: 935 case CallingConv::AMDGPU_HS: 936 case CallingConv::AMDGPU_LS: 937 return true; 938 default: 939 return false; 940 } 941 } 942 943 bool hasXNACK(const MCSubtargetInfo &STI) { 944 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 945 } 946 947 bool hasSRAMECC(const MCSubtargetInfo &STI) { 948 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 949 } 950 951 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 952 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 953 } 954 955 bool hasGFX10A16(const MCSubtargetInfo &STI) { 956 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 957 } 958 959 bool hasG16(const MCSubtargetInfo &STI) { 960 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 961 } 962 963 bool hasPackedD16(const MCSubtargetInfo &STI) { 964 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 965 } 966 967 bool isSI(const MCSubtargetInfo &STI) { 968 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 969 } 970 971 bool isCI(const MCSubtargetInfo &STI) { 972 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 973 } 974 975 bool isVI(const MCSubtargetInfo &STI) { 976 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 977 } 978 979 bool isGFX9(const MCSubtargetInfo &STI) { 980 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 981 } 982 983 bool isGFX10(const MCSubtargetInfo &STI) { 984 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 985 } 986 987 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 988 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 989 } 990 991 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 992 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 993 } 994 995 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 996 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 997 } 998 999 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1000 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1001 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1002 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1003 Reg == AMDGPU::SCC; 1004 } 1005 1006 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1007 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1008 if (*R == Reg1) return true; 1009 } 1010 return false; 1011 } 1012 1013 #define MAP_REG2REG \ 1014 using namespace AMDGPU; \ 1015 switch(Reg) { \ 1016 default: return Reg; \ 1017 CASE_CI_VI(FLAT_SCR) \ 1018 CASE_CI_VI(FLAT_SCR_LO) \ 1019 CASE_CI_VI(FLAT_SCR_HI) \ 1020 CASE_VI_GFX9_GFX10(TTMP0) \ 1021 CASE_VI_GFX9_GFX10(TTMP1) \ 1022 CASE_VI_GFX9_GFX10(TTMP2) \ 1023 CASE_VI_GFX9_GFX10(TTMP3) \ 1024 CASE_VI_GFX9_GFX10(TTMP4) \ 1025 CASE_VI_GFX9_GFX10(TTMP5) \ 1026 CASE_VI_GFX9_GFX10(TTMP6) \ 1027 CASE_VI_GFX9_GFX10(TTMP7) \ 1028 CASE_VI_GFX9_GFX10(TTMP8) \ 1029 CASE_VI_GFX9_GFX10(TTMP9) \ 1030 CASE_VI_GFX9_GFX10(TTMP10) \ 1031 CASE_VI_GFX9_GFX10(TTMP11) \ 1032 CASE_VI_GFX9_GFX10(TTMP12) \ 1033 CASE_VI_GFX9_GFX10(TTMP13) \ 1034 CASE_VI_GFX9_GFX10(TTMP14) \ 1035 CASE_VI_GFX9_GFX10(TTMP15) \ 1036 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 1037 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 1038 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 1039 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 1040 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1041 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1042 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1043 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1044 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1045 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1046 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1047 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1048 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1049 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1050 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1051 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1052 } 1053 1054 #define CASE_CI_VI(node) \ 1055 assert(!isSI(STI)); \ 1056 case node: return isCI(STI) ? node##_ci : node##_vi; 1057 1058 #define CASE_VI_GFX9_GFX10(node) \ 1059 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1060 1061 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1062 if (STI.getTargetTriple().getArch() == Triple::r600) 1063 return Reg; 1064 MAP_REG2REG 1065 } 1066 1067 #undef CASE_CI_VI 1068 #undef CASE_VI_GFX9_GFX10 1069 1070 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1071 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1072 1073 unsigned mc2PseudoReg(unsigned Reg) { 1074 MAP_REG2REG 1075 } 1076 1077 #undef CASE_CI_VI 1078 #undef CASE_VI_GFX9_GFX10 1079 #undef MAP_REG2REG 1080 1081 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1082 assert(OpNo < Desc.NumOperands); 1083 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1084 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1085 OpType <= AMDGPU::OPERAND_SRC_LAST; 1086 } 1087 1088 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1089 assert(OpNo < Desc.NumOperands); 1090 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1091 switch (OpType) { 1092 case AMDGPU::OPERAND_REG_IMM_FP32: 1093 case AMDGPU::OPERAND_REG_IMM_FP64: 1094 case AMDGPU::OPERAND_REG_IMM_FP16: 1095 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1096 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1097 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1098 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1099 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1100 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1101 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1102 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1103 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1104 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1105 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1106 return true; 1107 default: 1108 return false; 1109 } 1110 } 1111 1112 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1113 assert(OpNo < Desc.NumOperands); 1114 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1115 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1116 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1117 } 1118 1119 // Avoid using MCRegisterClass::getSize, since that function will go away 1120 // (move from MC* level to Target* level). Return size in bits. 1121 unsigned getRegBitWidth(unsigned RCID) { 1122 switch (RCID) { 1123 case AMDGPU::VGPR_LO16RegClassID: 1124 case AMDGPU::VGPR_HI16RegClassID: 1125 case AMDGPU::SGPR_LO16RegClassID: 1126 case AMDGPU::AGPR_LO16RegClassID: 1127 return 16; 1128 case AMDGPU::SGPR_32RegClassID: 1129 case AMDGPU::VGPR_32RegClassID: 1130 case AMDGPU::VRegOrLds_32RegClassID: 1131 case AMDGPU::AGPR_32RegClassID: 1132 case AMDGPU::VS_32RegClassID: 1133 case AMDGPU::AV_32RegClassID: 1134 case AMDGPU::SReg_32RegClassID: 1135 case AMDGPU::SReg_32_XM0RegClassID: 1136 case AMDGPU::SRegOrLds_32RegClassID: 1137 return 32; 1138 case AMDGPU::SGPR_64RegClassID: 1139 case AMDGPU::VS_64RegClassID: 1140 case AMDGPU::AV_64RegClassID: 1141 case AMDGPU::SReg_64RegClassID: 1142 case AMDGPU::VReg_64RegClassID: 1143 case AMDGPU::AReg_64RegClassID: 1144 case AMDGPU::SReg_64_XEXECRegClassID: 1145 return 64; 1146 case AMDGPU::SGPR_96RegClassID: 1147 case AMDGPU::SReg_96RegClassID: 1148 case AMDGPU::VReg_96RegClassID: 1149 case AMDGPU::AReg_96RegClassID: 1150 return 96; 1151 case AMDGPU::SGPR_128RegClassID: 1152 case AMDGPU::SReg_128RegClassID: 1153 case AMDGPU::VReg_128RegClassID: 1154 case AMDGPU::AReg_128RegClassID: 1155 return 128; 1156 case AMDGPU::SGPR_160RegClassID: 1157 case AMDGPU::SReg_160RegClassID: 1158 case AMDGPU::VReg_160RegClassID: 1159 case AMDGPU::AReg_160RegClassID: 1160 return 160; 1161 case AMDGPU::SGPR_192RegClassID: 1162 case AMDGPU::SReg_192RegClassID: 1163 case AMDGPU::VReg_192RegClassID: 1164 case AMDGPU::AReg_192RegClassID: 1165 return 192; 1166 case AMDGPU::SGPR_256RegClassID: 1167 case AMDGPU::SReg_256RegClassID: 1168 case AMDGPU::VReg_256RegClassID: 1169 case AMDGPU::AReg_256RegClassID: 1170 return 256; 1171 case AMDGPU::SGPR_512RegClassID: 1172 case AMDGPU::SReg_512RegClassID: 1173 case AMDGPU::VReg_512RegClassID: 1174 case AMDGPU::AReg_512RegClassID: 1175 return 512; 1176 case AMDGPU::SGPR_1024RegClassID: 1177 case AMDGPU::SReg_1024RegClassID: 1178 case AMDGPU::VReg_1024RegClassID: 1179 case AMDGPU::AReg_1024RegClassID: 1180 return 1024; 1181 default: 1182 llvm_unreachable("Unexpected register class"); 1183 } 1184 } 1185 1186 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1187 return getRegBitWidth(RC.getID()); 1188 } 1189 1190 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1191 unsigned OpNo) { 1192 assert(OpNo < Desc.NumOperands); 1193 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1194 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1195 } 1196 1197 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1198 if (isInlinableIntLiteral(Literal)) 1199 return true; 1200 1201 uint64_t Val = static_cast<uint64_t>(Literal); 1202 return (Val == DoubleToBits(0.0)) || 1203 (Val == DoubleToBits(1.0)) || 1204 (Val == DoubleToBits(-1.0)) || 1205 (Val == DoubleToBits(0.5)) || 1206 (Val == DoubleToBits(-0.5)) || 1207 (Val == DoubleToBits(2.0)) || 1208 (Val == DoubleToBits(-2.0)) || 1209 (Val == DoubleToBits(4.0)) || 1210 (Val == DoubleToBits(-4.0)) || 1211 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1212 } 1213 1214 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1215 if (isInlinableIntLiteral(Literal)) 1216 return true; 1217 1218 // The actual type of the operand does not seem to matter as long 1219 // as the bits match one of the inline immediate values. For example: 1220 // 1221 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1222 // so it is a legal inline immediate. 1223 // 1224 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1225 // floating-point, so it is a legal inline immediate. 1226 1227 uint32_t Val = static_cast<uint32_t>(Literal); 1228 return (Val == FloatToBits(0.0f)) || 1229 (Val == FloatToBits(1.0f)) || 1230 (Val == FloatToBits(-1.0f)) || 1231 (Val == FloatToBits(0.5f)) || 1232 (Val == FloatToBits(-0.5f)) || 1233 (Val == FloatToBits(2.0f)) || 1234 (Val == FloatToBits(-2.0f)) || 1235 (Val == FloatToBits(4.0f)) || 1236 (Val == FloatToBits(-4.0f)) || 1237 (Val == 0x3e22f983 && HasInv2Pi); 1238 } 1239 1240 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1241 if (!HasInv2Pi) 1242 return false; 1243 1244 if (isInlinableIntLiteral(Literal)) 1245 return true; 1246 1247 uint16_t Val = static_cast<uint16_t>(Literal); 1248 return Val == 0x3C00 || // 1.0 1249 Val == 0xBC00 || // -1.0 1250 Val == 0x3800 || // 0.5 1251 Val == 0xB800 || // -0.5 1252 Val == 0x4000 || // 2.0 1253 Val == 0xC000 || // -2.0 1254 Val == 0x4400 || // 4.0 1255 Val == 0xC400 || // -4.0 1256 Val == 0x3118; // 1/2pi 1257 } 1258 1259 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1260 assert(HasInv2Pi); 1261 1262 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1263 int16_t Trunc = static_cast<int16_t>(Literal); 1264 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1265 } 1266 if (!(Literal & 0xffff)) 1267 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1268 1269 int16_t Lo16 = static_cast<int16_t>(Literal); 1270 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1271 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1272 } 1273 1274 bool isInlinableIntLiteralV216(int32_t Literal) { 1275 int16_t Lo16 = static_cast<int16_t>(Literal); 1276 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1277 return isInlinableIntLiteral(Lo16); 1278 1279 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1280 if (!(Literal & 0xffff)) 1281 return isInlinableIntLiteral(Hi16); 1282 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1283 } 1284 1285 bool isArgPassedInSGPR(const Argument *A) { 1286 const Function *F = A->getParent(); 1287 1288 // Arguments to compute shaders are never a source of divergence. 1289 CallingConv::ID CC = F->getCallingConv(); 1290 switch (CC) { 1291 case CallingConv::AMDGPU_KERNEL: 1292 case CallingConv::SPIR_KERNEL: 1293 return true; 1294 case CallingConv::AMDGPU_VS: 1295 case CallingConv::AMDGPU_LS: 1296 case CallingConv::AMDGPU_HS: 1297 case CallingConv::AMDGPU_ES: 1298 case CallingConv::AMDGPU_GS: 1299 case CallingConv::AMDGPU_PS: 1300 case CallingConv::AMDGPU_CS: 1301 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1302 // Everything else is in VGPRs. 1303 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1304 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1305 default: 1306 // TODO: Should calls support inreg for SGPR inputs? 1307 return false; 1308 } 1309 } 1310 1311 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1312 return isGCN3Encoding(ST) || isGFX10(ST); 1313 } 1314 1315 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1316 return isGFX9(ST) || isGFX10(ST); 1317 } 1318 1319 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1320 int64_t EncodedOffset) { 1321 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1322 : isUInt<8>(EncodedOffset); 1323 } 1324 1325 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1326 int64_t EncodedOffset, 1327 bool IsBuffer) { 1328 return !IsBuffer && 1329 hasSMRDSignedImmOffset(ST) && 1330 isInt<21>(EncodedOffset); 1331 } 1332 1333 static bool isDwordAligned(uint64_t ByteOffset) { 1334 return (ByteOffset & 3) == 0; 1335 } 1336 1337 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1338 uint64_t ByteOffset) { 1339 if (hasSMEMByteOffset(ST)) 1340 return ByteOffset; 1341 1342 assert(isDwordAligned(ByteOffset)); 1343 return ByteOffset >> 2; 1344 } 1345 1346 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1347 int64_t ByteOffset, bool IsBuffer) { 1348 // The signed version is always a byte offset. 1349 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1350 assert(hasSMEMByteOffset(ST)); 1351 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1352 } 1353 1354 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1355 return None; 1356 1357 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1358 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1359 ? Optional<int64_t>(EncodedOffset) 1360 : None; 1361 } 1362 1363 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1364 int64_t ByteOffset) { 1365 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1366 return None; 1367 1368 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1369 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1370 } 1371 1372 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1373 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1374 // hardware bug needing a workaround). 1375 // 1376 // The required alignment ensures that individual address components remain 1377 // aligned if they are aligned to begin with. It also ensures that additional 1378 // offsets within the given alignment can be added to the resulting ImmOffset. 1379 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1380 const GCNSubtarget *Subtarget, Align Alignment) { 1381 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1382 uint32_t Overflow = 0; 1383 1384 if (Imm > MaxImm) { 1385 if (Imm <= MaxImm + 64) { 1386 // Use an SOffset inline constant for 4..64 1387 Overflow = Imm - MaxImm; 1388 Imm = MaxImm; 1389 } else { 1390 // Try to keep the same value in SOffset for adjacent loads, so that 1391 // the corresponding register contents can be re-used. 1392 // 1393 // Load values with all low-bits (except for alignment bits) set into 1394 // SOffset, so that a larger range of values can be covered using 1395 // s_movk_i32. 1396 // 1397 // Atomic operations fail to work correctly when individual address 1398 // components are unaligned, even if their sum is aligned. 1399 uint32_t High = (Imm + Alignment.value()) & ~4095; 1400 uint32_t Low = (Imm + Alignment.value()) & 4095; 1401 Imm = Low; 1402 Overflow = High - Alignment.value(); 1403 } 1404 } 1405 1406 // There is a hardware bug in SI and CI which prevents address clamping in 1407 // MUBUF instructions from working correctly with SOffsets. The immediate 1408 // offset is unaffected. 1409 if (Overflow > 0 && 1410 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1411 return false; 1412 1413 ImmOffset = Imm; 1414 SOffset = Overflow; 1415 return true; 1416 } 1417 1418 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1419 *this = getDefaultForCallingConv(F.getCallingConv()); 1420 1421 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1422 if (!IEEEAttr.empty()) 1423 IEEE = IEEEAttr == "true"; 1424 1425 StringRef DX10ClampAttr 1426 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1427 if (!DX10ClampAttr.empty()) 1428 DX10Clamp = DX10ClampAttr == "true"; 1429 1430 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1431 if (!DenormF32Attr.empty()) { 1432 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1433 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1434 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1435 } 1436 1437 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1438 if (!DenormAttr.empty()) { 1439 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1440 1441 if (DenormF32Attr.empty()) { 1442 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1443 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1444 } 1445 1446 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1447 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1448 } 1449 } 1450 1451 namespace { 1452 1453 struct SourceOfDivergence { 1454 unsigned Intr; 1455 }; 1456 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1457 1458 #define GET_SourcesOfDivergence_IMPL 1459 #define GET_Gfx9BufferFormat_IMPL 1460 #define GET_Gfx10PlusBufferFormat_IMPL 1461 #include "AMDGPUGenSearchableTables.inc" 1462 1463 } // end anonymous namespace 1464 1465 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1466 return lookupSourceOfDivergence(IntrID); 1467 } 1468 1469 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1470 uint8_t NumComponents, 1471 uint8_t NumFormat, 1472 const MCSubtargetInfo &STI) { 1473 return isGFX10(STI) 1474 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1475 NumFormat) 1476 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1477 } 1478 1479 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1480 const MCSubtargetInfo &STI) { 1481 return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format) 1482 : getGfx9BufferFormatInfo(Format); 1483 } 1484 1485 } // namespace AMDGPU 1486 } // namespace llvm 1487