xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   default:
103     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
104                        Twine(AmdhsaCodeObjectVersion));
105   }
106 }
107 
108 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
109   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
110     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
111   return false;
112 }
113 
114 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
115   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
116     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
117   return false;
118 }
119 
120 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
121   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
122     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
123   return false;
124 }
125 
126 bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
127   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
128 }
129 
130 #define GET_MIMGBaseOpcodesTable_IMPL
131 #define GET_MIMGDimInfoTable_IMPL
132 #define GET_MIMGInfoTable_IMPL
133 #define GET_MIMGLZMappingTable_IMPL
134 #define GET_MIMGMIPMappingTable_IMPL
135 #define GET_MIMGG16MappingTable_IMPL
136 #include "AMDGPUGenSearchableTables.inc"
137 
138 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
139                   unsigned VDataDwords, unsigned VAddrDwords) {
140   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
141                                              VDataDwords, VAddrDwords);
142   return Info ? Info->Opcode : -1;
143 }
144 
145 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
146   const MIMGInfo *Info = getMIMGInfo(Opc);
147   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
148 }
149 
150 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
151   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
152   const MIMGInfo *NewInfo =
153       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
154                           NewChannels, OrigInfo->VAddrDwords);
155   return NewInfo ? NewInfo->Opcode : -1;
156 }
157 
158 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
159                            const MIMGDimInfo *Dim, bool IsA16,
160                            bool IsG16Supported) {
161   unsigned AddrWords = BaseOpcode->NumExtraArgs;
162   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
163                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
164   if (IsA16)
165     AddrWords += divideCeil(AddrComponents, 2);
166   else
167     AddrWords += AddrComponents;
168 
169   // Note: For subtargets that support A16 but not G16, enabling A16 also
170   // enables 16 bit gradients.
171   // For subtargets that support A16 (operand) and G16 (done with a different
172   // instruction encoding), they are independent.
173 
174   if (BaseOpcode->Gradients) {
175     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
176       // There are two gradients per coordinate, we pack them separately.
177       // For the 3d case,
178       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
179       AddrWords += alignTo<2>(Dim->NumGradients / 2);
180     else
181       AddrWords += Dim->NumGradients;
182   }
183   return AddrWords;
184 }
185 
186 struct MUBUFInfo {
187   uint16_t Opcode;
188   uint16_t BaseOpcode;
189   uint8_t elements;
190   bool has_vaddr;
191   bool has_srsrc;
192   bool has_soffset;
193   bool IsBufferInv;
194 };
195 
196 struct MTBUFInfo {
197   uint16_t Opcode;
198   uint16_t BaseOpcode;
199   uint8_t elements;
200   bool has_vaddr;
201   bool has_srsrc;
202   bool has_soffset;
203 };
204 
205 struct SMInfo {
206   uint16_t Opcode;
207   bool IsBuffer;
208 };
209 
210 struct VOPInfo {
211   uint16_t Opcode;
212   bool IsSingle;
213 };
214 
215 #define GET_MTBUFInfoTable_DECL
216 #define GET_MTBUFInfoTable_IMPL
217 #define GET_MUBUFInfoTable_DECL
218 #define GET_MUBUFInfoTable_IMPL
219 #define GET_SMInfoTable_DECL
220 #define GET_SMInfoTable_IMPL
221 #define GET_VOP1InfoTable_DECL
222 #define GET_VOP1InfoTable_IMPL
223 #define GET_VOP2InfoTable_DECL
224 #define GET_VOP2InfoTable_IMPL
225 #define GET_VOP3InfoTable_DECL
226 #define GET_VOP3InfoTable_IMPL
227 #include "AMDGPUGenSearchableTables.inc"
228 
229 int getMTBUFBaseOpcode(unsigned Opc) {
230   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
231   return Info ? Info->BaseOpcode : -1;
232 }
233 
234 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
235   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
236   return Info ? Info->Opcode : -1;
237 }
238 
239 int getMTBUFElements(unsigned Opc) {
240   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
241   return Info ? Info->elements : 0;
242 }
243 
244 bool getMTBUFHasVAddr(unsigned Opc) {
245   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
246   return Info ? Info->has_vaddr : false;
247 }
248 
249 bool getMTBUFHasSrsrc(unsigned Opc) {
250   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
251   return Info ? Info->has_srsrc : false;
252 }
253 
254 bool getMTBUFHasSoffset(unsigned Opc) {
255   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
256   return Info ? Info->has_soffset : false;
257 }
258 
259 int getMUBUFBaseOpcode(unsigned Opc) {
260   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
261   return Info ? Info->BaseOpcode : -1;
262 }
263 
264 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
265   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
266   return Info ? Info->Opcode : -1;
267 }
268 
269 int getMUBUFElements(unsigned Opc) {
270   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
271   return Info ? Info->elements : 0;
272 }
273 
274 bool getMUBUFHasVAddr(unsigned Opc) {
275   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
276   return Info ? Info->has_vaddr : false;
277 }
278 
279 bool getMUBUFHasSrsrc(unsigned Opc) {
280   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
281   return Info ? Info->has_srsrc : false;
282 }
283 
284 bool getMUBUFHasSoffset(unsigned Opc) {
285   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
286   return Info ? Info->has_soffset : false;
287 }
288 
289 bool getMUBUFIsBufferInv(unsigned Opc) {
290   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
291   return Info ? Info->IsBufferInv : false;
292 }
293 
294 bool getSMEMIsBuffer(unsigned Opc) {
295   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
296   return Info ? Info->IsBuffer : false;
297 }
298 
299 bool getVOP1IsSingle(unsigned Opc) {
300   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
301   return Info ? Info->IsSingle : false;
302 }
303 
304 bool getVOP2IsSingle(unsigned Opc) {
305   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
306   return Info ? Info->IsSingle : false;
307 }
308 
309 bool getVOP3IsSingle(unsigned Opc) {
310   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
311   return Info ? Info->IsSingle : false;
312 }
313 
314 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
315 // header files, so we need to wrap it in a function that takes unsigned
316 // instead.
317 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
318   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
319 }
320 
321 namespace IsaInfo {
322 
323 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
324     : STI(STI), XnackSetting(TargetIDSetting::Any),
325       SramEccSetting(TargetIDSetting::Any) {
326   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
327     XnackSetting = TargetIDSetting::Unsupported;
328   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
329     SramEccSetting = TargetIDSetting::Unsupported;
330 }
331 
332 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
333   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
334   // absence of the target features we assume we must generate code that can run
335   // in any environment.
336   SubtargetFeatures Features(FS);
337   Optional<bool> XnackRequested;
338   Optional<bool> SramEccRequested;
339 
340   for (const std::string &Feature : Features.getFeatures()) {
341     if (Feature == "+xnack")
342       XnackRequested = true;
343     else if (Feature == "-xnack")
344       XnackRequested = false;
345     else if (Feature == "+sramecc")
346       SramEccRequested = true;
347     else if (Feature == "-sramecc")
348       SramEccRequested = false;
349   }
350 
351   bool XnackSupported = isXnackSupported();
352   bool SramEccSupported = isSramEccSupported();
353 
354   if (XnackRequested) {
355     if (XnackSupported) {
356       XnackSetting =
357           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
358     } else {
359       // If a specific xnack setting was requested and this GPU does not support
360       // xnack emit a warning. Setting will remain set to "Unsupported".
361       if (*XnackRequested) {
362         errs() << "warning: xnack 'On' was requested for a processor that does "
363                   "not support it!\n";
364       } else {
365         errs() << "warning: xnack 'Off' was requested for a processor that "
366                   "does not support it!\n";
367       }
368     }
369   }
370 
371   if (SramEccRequested) {
372     if (SramEccSupported) {
373       SramEccSetting =
374           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
375     } else {
376       // If a specific sramecc setting was requested and this GPU does not
377       // support sramecc emit a warning. Setting will remain set to
378       // "Unsupported".
379       if (*SramEccRequested) {
380         errs() << "warning: sramecc 'On' was requested for a processor that "
381                   "does not support it!\n";
382       } else {
383         errs() << "warning: sramecc 'Off' was requested for a processor that "
384                   "does not support it!\n";
385       }
386     }
387   }
388 }
389 
390 static TargetIDSetting
391 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
392   if (FeatureString.endswith("-"))
393     return TargetIDSetting::Off;
394   if (FeatureString.endswith("+"))
395     return TargetIDSetting::On;
396 
397   llvm_unreachable("Malformed feature string");
398 }
399 
400 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
401   SmallVector<StringRef, 3> TargetIDSplit;
402   TargetID.split(TargetIDSplit, ':');
403 
404   for (const auto &FeatureString : TargetIDSplit) {
405     if (FeatureString.startswith("xnack"))
406       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
407     if (FeatureString.startswith("sramecc"))
408       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
409   }
410 }
411 
412 std::string AMDGPUTargetID::toString() const {
413   std::string StringRep = "";
414   raw_string_ostream StreamRep(StringRep);
415 
416   auto TargetTriple = STI.getTargetTriple();
417   auto Version = getIsaVersion(STI.getCPU());
418 
419   StreamRep << TargetTriple.getArchName() << '-'
420             << TargetTriple.getVendorName() << '-'
421             << TargetTriple.getOSName() << '-'
422             << TargetTriple.getEnvironmentName() << '-';
423 
424   std::string Processor = "";
425   // TODO: Following else statement is present here because we used various
426   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
427   // Remove once all aliases are removed from GCNProcessors.td.
428   if (Version.Major >= 9)
429     Processor = STI.getCPU().str();
430   else
431     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
432                  Twine(Version.Stepping))
433                     .str();
434 
435   std::string Features = "";
436   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
437     switch (*HsaAbiVersion) {
438     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
439       // Code object V2 only supported specific processors and had fixed
440       // settings for the XNACK.
441       if (Processor == "gfx600") {
442       } else if (Processor == "gfx601") {
443       } else if (Processor == "gfx602") {
444       } else if (Processor == "gfx700") {
445       } else if (Processor == "gfx701") {
446       } else if (Processor == "gfx702") {
447       } else if (Processor == "gfx703") {
448       } else if (Processor == "gfx704") {
449       } else if (Processor == "gfx705") {
450       } else if (Processor == "gfx801") {
451         if (!isXnackOnOrAny())
452           report_fatal_error(
453               "AMD GPU code object V2 does not support processor " +
454               Twine(Processor) + " without XNACK");
455       } else if (Processor == "gfx802") {
456       } else if (Processor == "gfx803") {
457       } else if (Processor == "gfx805") {
458       } else if (Processor == "gfx810") {
459         if (!isXnackOnOrAny())
460           report_fatal_error(
461               "AMD GPU code object V2 does not support processor " +
462               Twine(Processor) + " without XNACK");
463       } else if (Processor == "gfx900") {
464         if (isXnackOnOrAny())
465           Processor = "gfx901";
466       } else if (Processor == "gfx902") {
467         if (isXnackOnOrAny())
468           Processor = "gfx903";
469       } else if (Processor == "gfx904") {
470         if (isXnackOnOrAny())
471           Processor = "gfx905";
472       } else if (Processor == "gfx906") {
473         if (isXnackOnOrAny())
474           Processor = "gfx907";
475       } else if (Processor == "gfx90c") {
476         if (isXnackOnOrAny())
477           report_fatal_error(
478               "AMD GPU code object V2 does not support processor " +
479               Twine(Processor) + " with XNACK being ON or ANY");
480       } else {
481         report_fatal_error(
482             "AMD GPU code object V2 does not support processor " +
483             Twine(Processor));
484       }
485       break;
486     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
487       // xnack.
488       if (isXnackOnOrAny())
489         Features += "+xnack";
490       // In code object v2 and v3, "sramecc" feature was spelled with a
491       // hyphen ("sram-ecc").
492       if (isSramEccOnOrAny())
493         Features += "+sram-ecc";
494       break;
495     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
496       // sramecc.
497       if (getSramEccSetting() == TargetIDSetting::Off)
498         Features += ":sramecc-";
499       else if (getSramEccSetting() == TargetIDSetting::On)
500         Features += ":sramecc+";
501       // xnack.
502       if (getXnackSetting() == TargetIDSetting::Off)
503         Features += ":xnack-";
504       else if (getXnackSetting() == TargetIDSetting::On)
505         Features += ":xnack+";
506       break;
507     default:
508       break;
509     }
510   }
511 
512   StreamRep << Processor << Features;
513 
514   StreamRep.flush();
515   return StringRep;
516 }
517 
518 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
519   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
520     return 16;
521   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
522     return 32;
523 
524   return 64;
525 }
526 
527 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
528   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
529     return 32768;
530   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
531     return 65536;
532 
533   return 0;
534 }
535 
536 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
537   // "Per CU" really means "per whatever functional block the waves of a
538   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
539   // two SIMDs.
540   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
541     return 2;
542   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
543   // two CUs, so a total of four SIMDs.
544   return 4;
545 }
546 
547 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
548                                unsigned FlatWorkGroupSize) {
549   assert(FlatWorkGroupSize != 0);
550   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
551     return 8;
552   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
553   if (N == 1)
554     return 40;
555   N = 40 / N;
556   return std::min(N, 16u);
557 }
558 
559 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
560   return 1;
561 }
562 
563 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
564   // FIXME: Need to take scratch memory into account.
565   if (isGFX90A(*STI))
566     return 8;
567   if (!isGFX10Plus(*STI))
568     return 10;
569   return hasGFX10_3Insts(*STI) ? 16 : 20;
570 }
571 
572 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
573                                    unsigned FlatWorkGroupSize) {
574   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
575                     getEUsPerCU(STI));
576 }
577 
578 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
579   return 1;
580 }
581 
582 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
583   // Some subtargets allow encoding 2048, but this isn't tested or supported.
584   return 1024;
585 }
586 
587 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
588                               unsigned FlatWorkGroupSize) {
589   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
590 }
591 
592 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
593   IsaVersion Version = getIsaVersion(STI->getCPU());
594   if (Version.Major >= 10)
595     return getAddressableNumSGPRs(STI);
596   if (Version.Major >= 8)
597     return 16;
598   return 8;
599 }
600 
601 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
602   return 8;
603 }
604 
605 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
606   IsaVersion Version = getIsaVersion(STI->getCPU());
607   if (Version.Major >= 8)
608     return 800;
609   return 512;
610 }
611 
612 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
613   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
614     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
615 
616   IsaVersion Version = getIsaVersion(STI->getCPU());
617   if (Version.Major >= 10)
618     return 106;
619   if (Version.Major >= 8)
620     return 102;
621   return 104;
622 }
623 
624 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
625   assert(WavesPerEU != 0);
626 
627   IsaVersion Version = getIsaVersion(STI->getCPU());
628   if (Version.Major >= 10)
629     return 0;
630 
631   if (WavesPerEU >= getMaxWavesPerEU(STI))
632     return 0;
633 
634   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
635   if (STI->getFeatureBits().test(FeatureTrapHandler))
636     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
637   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
638   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
639 }
640 
641 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
642                         bool Addressable) {
643   assert(WavesPerEU != 0);
644 
645   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
646   IsaVersion Version = getIsaVersion(STI->getCPU());
647   if (Version.Major >= 10)
648     return Addressable ? AddressableNumSGPRs : 108;
649   if (Version.Major >= 8 && !Addressable)
650     AddressableNumSGPRs = 112;
651   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
652   if (STI->getFeatureBits().test(FeatureTrapHandler))
653     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
654   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
655   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
656 }
657 
658 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
659                           bool FlatScrUsed, bool XNACKUsed) {
660   unsigned ExtraSGPRs = 0;
661   if (VCCUsed)
662     ExtraSGPRs = 2;
663 
664   IsaVersion Version = getIsaVersion(STI->getCPU());
665   if (Version.Major >= 10)
666     return ExtraSGPRs;
667 
668   if (Version.Major < 8) {
669     if (FlatScrUsed)
670       ExtraSGPRs = 4;
671   } else {
672     if (XNACKUsed)
673       ExtraSGPRs = 4;
674 
675     if (FlatScrUsed ||
676         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
677       ExtraSGPRs = 6;
678   }
679 
680   return ExtraSGPRs;
681 }
682 
683 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
684                           bool FlatScrUsed) {
685   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
686                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
687 }
688 
689 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
690   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
691   // SGPRBlocks is actual number of SGPR blocks minus 1.
692   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
693 }
694 
695 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
696                              Optional<bool> EnableWavefrontSize32) {
697   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
698     return 8;
699 
700   bool IsWave32 = EnableWavefrontSize32 ?
701       *EnableWavefrontSize32 :
702       STI->getFeatureBits().test(FeatureWavefrontSize32);
703 
704   if (hasGFX10_3Insts(*STI))
705     return IsWave32 ? 16 : 8;
706 
707   return IsWave32 ? 8 : 4;
708 }
709 
710 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
711                                 Optional<bool> EnableWavefrontSize32) {
712   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
713     return 8;
714 
715   bool IsWave32 = EnableWavefrontSize32 ?
716       *EnableWavefrontSize32 :
717       STI->getFeatureBits().test(FeatureWavefrontSize32);
718 
719   return IsWave32 ? 8 : 4;
720 }
721 
722 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
723   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
724     return 512;
725   if (!isGFX10Plus(*STI))
726     return 256;
727   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
728 }
729 
730 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
731   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
732     return 512;
733   return 256;
734 }
735 
736 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
737   assert(WavesPerEU != 0);
738 
739   if (WavesPerEU >= getMaxWavesPerEU(STI))
740     return 0;
741   unsigned MinNumVGPRs =
742       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
743                 getVGPRAllocGranule(STI)) + 1;
744   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
745 }
746 
747 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
748   assert(WavesPerEU != 0);
749 
750   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
751                                    getVGPRAllocGranule(STI));
752   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
753   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
754 }
755 
756 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
757                           Optional<bool> EnableWavefrontSize32) {
758   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
759                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
760   // VGPRBlocks is actual number of VGPR blocks minus 1.
761   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
762 }
763 
764 } // end namespace IsaInfo
765 
766 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
767                                const MCSubtargetInfo *STI) {
768   IsaVersion Version = getIsaVersion(STI->getCPU());
769 
770   memset(&Header, 0, sizeof(Header));
771 
772   Header.amd_kernel_code_version_major = 1;
773   Header.amd_kernel_code_version_minor = 2;
774   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
775   Header.amd_machine_version_major = Version.Major;
776   Header.amd_machine_version_minor = Version.Minor;
777   Header.amd_machine_version_stepping = Version.Stepping;
778   Header.kernel_code_entry_byte_offset = sizeof(Header);
779   Header.wavefront_size = 6;
780 
781   // If the code object does not support indirect functions, then the value must
782   // be 0xffffffff.
783   Header.call_convention = -1;
784 
785   // These alignment values are specified in powers of two, so alignment =
786   // 2^n.  The minimum alignment is 2^4 = 16.
787   Header.kernarg_segment_alignment = 4;
788   Header.group_segment_alignment = 4;
789   Header.private_segment_alignment = 4;
790 
791   if (Version.Major >= 10) {
792     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
793       Header.wavefront_size = 5;
794       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
795     }
796     Header.compute_pgm_resource_registers |=
797       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
798       S_00B848_MEM_ORDERED(1);
799   }
800 }
801 
802 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
803     const MCSubtargetInfo *STI) {
804   IsaVersion Version = getIsaVersion(STI->getCPU());
805 
806   amdhsa::kernel_descriptor_t KD;
807   memset(&KD, 0, sizeof(KD));
808 
809   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
810                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
811                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
812   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
813                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
814   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
815                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
816   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
817                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
818   if (Version.Major >= 10) {
819     AMDHSA_BITS_SET(KD.kernel_code_properties,
820                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
821                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
822     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
823                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
824                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
825     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
826                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
827   }
828   if (AMDGPU::isGFX90A(*STI)) {
829     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
830                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
831                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
832   }
833   return KD;
834 }
835 
836 bool isGroupSegment(const GlobalValue *GV) {
837   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
838 }
839 
840 bool isGlobalSegment(const GlobalValue *GV) {
841   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
842 }
843 
844 bool isReadOnlySegment(const GlobalValue *GV) {
845   unsigned AS = GV->getAddressSpace();
846   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
847          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
848 }
849 
850 bool shouldEmitConstantsToTextSection(const Triple &TT) {
851   return TT.getArch() == Triple::r600;
852 }
853 
854 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
855   Attribute A = F.getFnAttribute(Name);
856   int Result = Default;
857 
858   if (A.isStringAttribute()) {
859     StringRef Str = A.getValueAsString();
860     if (Str.getAsInteger(0, Result)) {
861       LLVMContext &Ctx = F.getContext();
862       Ctx.emitError("can't parse integer attribute " + Name);
863     }
864   }
865 
866   return Result;
867 }
868 
869 std::pair<int, int> getIntegerPairAttribute(const Function &F,
870                                             StringRef Name,
871                                             std::pair<int, int> Default,
872                                             bool OnlyFirstRequired) {
873   Attribute A = F.getFnAttribute(Name);
874   if (!A.isStringAttribute())
875     return Default;
876 
877   LLVMContext &Ctx = F.getContext();
878   std::pair<int, int> Ints = Default;
879   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
880   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
881     Ctx.emitError("can't parse first integer attribute " + Name);
882     return Default;
883   }
884   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
885     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
886       Ctx.emitError("can't parse second integer attribute " + Name);
887       return Default;
888     }
889   }
890 
891   return Ints;
892 }
893 
894 unsigned getVmcntBitMask(const IsaVersion &Version) {
895   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
896   if (Version.Major < 9)
897     return VmcntLo;
898 
899   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
900   return VmcntLo | VmcntHi;
901 }
902 
903 unsigned getExpcntBitMask(const IsaVersion &Version) {
904   return (1 << getExpcntBitWidth()) - 1;
905 }
906 
907 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
908   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
909 }
910 
911 unsigned getWaitcntBitMask(const IsaVersion &Version) {
912   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
913   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
914   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
915                                 getLgkmcntBitWidth(Version.Major));
916   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
917   if (Version.Major < 9)
918     return Waitcnt;
919 
920   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
921   return Waitcnt | VmcntHi;
922 }
923 
924 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
925   unsigned VmcntLo =
926       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
927   if (Version.Major < 9)
928     return VmcntLo;
929 
930   unsigned VmcntHi =
931       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
932   VmcntHi <<= getVmcntBitWidthLo();
933   return VmcntLo | VmcntHi;
934 }
935 
936 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
937   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
938 }
939 
940 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
941   return unpackBits(Waitcnt, getLgkmcntBitShift(),
942                     getLgkmcntBitWidth(Version.Major));
943 }
944 
945 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
946                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
947   Vmcnt = decodeVmcnt(Version, Waitcnt);
948   Expcnt = decodeExpcnt(Version, Waitcnt);
949   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
950 }
951 
952 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
953   Waitcnt Decoded;
954   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
955   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
956   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
957   return Decoded;
958 }
959 
960 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
961                      unsigned Vmcnt) {
962   Waitcnt =
963       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
964   if (Version.Major < 9)
965     return Waitcnt;
966 
967   Vmcnt >>= getVmcntBitWidthLo();
968   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
969 }
970 
971 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
972                       unsigned Expcnt) {
973   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
974 }
975 
976 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
977                        unsigned Lgkmcnt) {
978   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
979                                     getLgkmcntBitWidth(Version.Major));
980 }
981 
982 unsigned encodeWaitcnt(const IsaVersion &Version,
983                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
984   unsigned Waitcnt = getWaitcntBitMask(Version);
985   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
986   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
987   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
988   return Waitcnt;
989 }
990 
991 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
992   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
993 }
994 
995 //===----------------------------------------------------------------------===//
996 // hwreg
997 //===----------------------------------------------------------------------===//
998 
999 namespace Hwreg {
1000 
1001 int64_t getHwregId(const StringRef Name) {
1002   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1003     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1004       return Id;
1005   }
1006   return ID_UNKNOWN_;
1007 }
1008 
1009 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1010   if (isSI(STI) || isCI(STI) || isVI(STI))
1011     return ID_SYMBOLIC_FIRST_GFX9_;
1012   else if (isGFX9(STI))
1013     return ID_SYMBOLIC_FIRST_GFX10_;
1014   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1015     return ID_SYMBOLIC_FIRST_GFX1030_;
1016   else
1017     return ID_SYMBOLIC_LAST_;
1018 }
1019 
1020 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1021   return
1022     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1023     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
1024 }
1025 
1026 bool isValidHwreg(int64_t Id) {
1027   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1028 }
1029 
1030 bool isValidHwregOffset(int64_t Offset) {
1031   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1032 }
1033 
1034 bool isValidHwregWidth(int64_t Width) {
1035   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1036 }
1037 
1038 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1039   return (Id << ID_SHIFT_) |
1040          (Offset << OFFSET_SHIFT_) |
1041          ((Width - 1) << WIDTH_M1_SHIFT_);
1042 }
1043 
1044 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1045   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1046 }
1047 
1048 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1049   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1050   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1051   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1052 }
1053 
1054 } // namespace Hwreg
1055 
1056 //===----------------------------------------------------------------------===//
1057 // exp tgt
1058 //===----------------------------------------------------------------------===//
1059 
1060 namespace Exp {
1061 
1062 struct ExpTgt {
1063   StringLiteral Name;
1064   unsigned Tgt;
1065   unsigned MaxIndex;
1066 };
1067 
1068 static constexpr ExpTgt ExpTgtInfo[] = {
1069   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1070   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1071   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1072   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1073   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1074   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1075 };
1076 
1077 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1078   for (const ExpTgt &Val : ExpTgtInfo) {
1079     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1080       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1081       Name = Val.Name;
1082       return true;
1083     }
1084   }
1085   return false;
1086 }
1087 
1088 unsigned getTgtId(const StringRef Name) {
1089 
1090   for (const ExpTgt &Val : ExpTgtInfo) {
1091     if (Val.MaxIndex == 0 && Name == Val.Name)
1092       return Val.Tgt;
1093 
1094     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1095       StringRef Suffix = Name.drop_front(Val.Name.size());
1096 
1097       unsigned Id;
1098       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1099         return ET_INVALID;
1100 
1101       // Disable leading zeroes
1102       if (Suffix.size() > 1 && Suffix[0] == '0')
1103         return ET_INVALID;
1104 
1105       return Val.Tgt + Id;
1106     }
1107   }
1108   return ET_INVALID;
1109 }
1110 
1111 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1112   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1113 }
1114 
1115 } // namespace Exp
1116 
1117 //===----------------------------------------------------------------------===//
1118 // MTBUF Format
1119 //===----------------------------------------------------------------------===//
1120 
1121 namespace MTBUFFormat {
1122 
1123 int64_t getDfmt(const StringRef Name) {
1124   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1125     if (Name == DfmtSymbolic[Id])
1126       return Id;
1127   }
1128   return DFMT_UNDEF;
1129 }
1130 
1131 StringRef getDfmtName(unsigned Id) {
1132   assert(Id <= DFMT_MAX);
1133   return DfmtSymbolic[Id];
1134 }
1135 
1136 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1137   if (isSI(STI) || isCI(STI))
1138     return NfmtSymbolicSICI;
1139   if (isVI(STI) || isGFX9(STI))
1140     return NfmtSymbolicVI;
1141   return NfmtSymbolicGFX10;
1142 }
1143 
1144 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1145   auto lookupTable = getNfmtLookupTable(STI);
1146   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1147     if (Name == lookupTable[Id])
1148       return Id;
1149   }
1150   return NFMT_UNDEF;
1151 }
1152 
1153 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1154   assert(Id <= NFMT_MAX);
1155   return getNfmtLookupTable(STI)[Id];
1156 }
1157 
1158 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1159   unsigned Dfmt;
1160   unsigned Nfmt;
1161   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1162   return isValidNfmt(Nfmt, STI);
1163 }
1164 
1165 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1166   return !getNfmtName(Id, STI).empty();
1167 }
1168 
1169 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1170   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1171 }
1172 
1173 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1174   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1175   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1176 }
1177 
1178 int64_t getUnifiedFormat(const StringRef Name) {
1179   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1180     if (Name == UfmtSymbolic[Id])
1181       return Id;
1182   }
1183   return UFMT_UNDEF;
1184 }
1185 
1186 StringRef getUnifiedFormatName(unsigned Id) {
1187   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1188 }
1189 
1190 bool isValidUnifiedFormat(unsigned Id) {
1191   return Id <= UFMT_LAST;
1192 }
1193 
1194 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1195   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1196   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1197     if (Fmt == DfmtNfmt2UFmt[Id])
1198       return Id;
1199   }
1200   return UFMT_UNDEF;
1201 }
1202 
1203 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1204   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1205 }
1206 
1207 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1208   if (isGFX10Plus(STI))
1209     return UFMT_DEFAULT;
1210   return DFMT_NFMT_DEFAULT;
1211 }
1212 
1213 } // namespace MTBUFFormat
1214 
1215 //===----------------------------------------------------------------------===//
1216 // SendMsg
1217 //===----------------------------------------------------------------------===//
1218 
1219 namespace SendMsg {
1220 
1221 int64_t getMsgId(const StringRef Name) {
1222   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1223     if (IdSymbolic[i] && Name == IdSymbolic[i])
1224       return i;
1225   }
1226   return ID_UNKNOWN_;
1227 }
1228 
1229 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1230   if (Strict) {
1231     switch (MsgId) {
1232     case ID_SAVEWAVE:
1233       return isVI(STI) || isGFX9Plus(STI);
1234     case ID_STALL_WAVE_GEN:
1235     case ID_HALT_WAVES:
1236     case ID_ORDERED_PS_DONE:
1237     case ID_GS_ALLOC_REQ:
1238     case ID_GET_DOORBELL:
1239       return isGFX9Plus(STI);
1240     case ID_EARLY_PRIM_DEALLOC:
1241       return isGFX9(STI);
1242     case ID_GET_DDID:
1243       return isGFX10Plus(STI);
1244     default:
1245       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1246     }
1247   } else {
1248     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1249   }
1250 }
1251 
1252 StringRef getMsgName(int64_t MsgId) {
1253   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1254   return IdSymbolic[MsgId];
1255 }
1256 
1257 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1258   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1259   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1260   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1261   for (int i = F; i < L; ++i) {
1262     if (Name == S[i]) {
1263       return i;
1264     }
1265   }
1266   return OP_UNKNOWN_;
1267 }
1268 
1269 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1270                   bool Strict) {
1271   assert(isValidMsgId(MsgId, STI, Strict));
1272 
1273   if (!Strict)
1274     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1275 
1276   switch(MsgId)
1277   {
1278   case ID_GS:
1279     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1280   case ID_GS_DONE:
1281     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1282   case ID_SYSMSG:
1283     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1284   default:
1285     return OpId == OP_NONE_;
1286   }
1287 }
1288 
1289 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1290   assert(msgRequiresOp(MsgId));
1291   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1292 }
1293 
1294 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1295                       const MCSubtargetInfo &STI, bool Strict) {
1296   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1297 
1298   if (!Strict)
1299     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1300 
1301   switch(MsgId)
1302   {
1303   case ID_GS:
1304     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1305   case ID_GS_DONE:
1306     return (OpId == OP_GS_NOP)?
1307            (StreamId == STREAM_ID_NONE_) :
1308            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1309   default:
1310     return StreamId == STREAM_ID_NONE_;
1311   }
1312 }
1313 
1314 bool msgRequiresOp(int64_t MsgId) {
1315   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1316 }
1317 
1318 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1319   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1320 }
1321 
1322 void decodeMsg(unsigned Val,
1323                uint16_t &MsgId,
1324                uint16_t &OpId,
1325                uint16_t &StreamId) {
1326   MsgId = Val & ID_MASK_;
1327   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1328   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1329 }
1330 
1331 uint64_t encodeMsg(uint64_t MsgId,
1332                    uint64_t OpId,
1333                    uint64_t StreamId) {
1334   return (MsgId << ID_SHIFT_) |
1335          (OpId << OP_SHIFT_) |
1336          (StreamId << STREAM_ID_SHIFT_);
1337 }
1338 
1339 } // namespace SendMsg
1340 
1341 //===----------------------------------------------------------------------===//
1342 //
1343 //===----------------------------------------------------------------------===//
1344 
1345 unsigned getInitialPSInputAddr(const Function &F) {
1346   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1347 }
1348 
1349 bool getHasColorExport(const Function &F) {
1350   // As a safe default always respond as if PS has color exports.
1351   return getIntegerAttribute(
1352              F, "amdgpu-color-export",
1353              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1354 }
1355 
1356 bool getHasDepthExport(const Function &F) {
1357   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1358 }
1359 
1360 bool isShader(CallingConv::ID cc) {
1361   switch(cc) {
1362     case CallingConv::AMDGPU_VS:
1363     case CallingConv::AMDGPU_LS:
1364     case CallingConv::AMDGPU_HS:
1365     case CallingConv::AMDGPU_ES:
1366     case CallingConv::AMDGPU_GS:
1367     case CallingConv::AMDGPU_PS:
1368     case CallingConv::AMDGPU_CS:
1369       return true;
1370     default:
1371       return false;
1372   }
1373 }
1374 
1375 bool isGraphics(CallingConv::ID cc) {
1376   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1377 }
1378 
1379 bool isCompute(CallingConv::ID cc) {
1380   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1381 }
1382 
1383 bool isEntryFunctionCC(CallingConv::ID CC) {
1384   switch (CC) {
1385   case CallingConv::AMDGPU_KERNEL:
1386   case CallingConv::SPIR_KERNEL:
1387   case CallingConv::AMDGPU_VS:
1388   case CallingConv::AMDGPU_GS:
1389   case CallingConv::AMDGPU_PS:
1390   case CallingConv::AMDGPU_CS:
1391   case CallingConv::AMDGPU_ES:
1392   case CallingConv::AMDGPU_HS:
1393   case CallingConv::AMDGPU_LS:
1394     return true;
1395   default:
1396     return false;
1397   }
1398 }
1399 
1400 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1401   switch (CC) {
1402   case CallingConv::AMDGPU_Gfx:
1403     return true;
1404   default:
1405     return isEntryFunctionCC(CC);
1406   }
1407 }
1408 
1409 bool hasXNACK(const MCSubtargetInfo &STI) {
1410   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1411 }
1412 
1413 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1414   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1415 }
1416 
1417 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1418   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1419 }
1420 
1421 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1422   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1423 }
1424 
1425 bool hasG16(const MCSubtargetInfo &STI) {
1426   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1427 }
1428 
1429 bool hasPackedD16(const MCSubtargetInfo &STI) {
1430   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1431 }
1432 
1433 bool isSI(const MCSubtargetInfo &STI) {
1434   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1435 }
1436 
1437 bool isCI(const MCSubtargetInfo &STI) {
1438   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1439 }
1440 
1441 bool isVI(const MCSubtargetInfo &STI) {
1442   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1443 }
1444 
1445 bool isGFX9(const MCSubtargetInfo &STI) {
1446   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1447 }
1448 
1449 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1450   return isGFX9(STI) || isGFX10Plus(STI);
1451 }
1452 
1453 bool isGFX10(const MCSubtargetInfo &STI) {
1454   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1455 }
1456 
1457 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1458 
1459 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1460   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1461 }
1462 
1463 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1464   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1465 }
1466 
1467 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1468   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1469 }
1470 
1471 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1472   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1473 }
1474 
1475 bool isGFX90A(const MCSubtargetInfo &STI) {
1476   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1477 }
1478 
1479 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1480   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1481 }
1482 
1483 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1484   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1485   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1486   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1487     Reg == AMDGPU::SCC;
1488 }
1489 
1490 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1491   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1492     if (*R == Reg1) return true;
1493   }
1494   return false;
1495 }
1496 
1497 #define MAP_REG2REG \
1498   using namespace AMDGPU; \
1499   switch(Reg) { \
1500   default: return Reg; \
1501   CASE_CI_VI(FLAT_SCR) \
1502   CASE_CI_VI(FLAT_SCR_LO) \
1503   CASE_CI_VI(FLAT_SCR_HI) \
1504   CASE_VI_GFX9PLUS(TTMP0) \
1505   CASE_VI_GFX9PLUS(TTMP1) \
1506   CASE_VI_GFX9PLUS(TTMP2) \
1507   CASE_VI_GFX9PLUS(TTMP3) \
1508   CASE_VI_GFX9PLUS(TTMP4) \
1509   CASE_VI_GFX9PLUS(TTMP5) \
1510   CASE_VI_GFX9PLUS(TTMP6) \
1511   CASE_VI_GFX9PLUS(TTMP7) \
1512   CASE_VI_GFX9PLUS(TTMP8) \
1513   CASE_VI_GFX9PLUS(TTMP9) \
1514   CASE_VI_GFX9PLUS(TTMP10) \
1515   CASE_VI_GFX9PLUS(TTMP11) \
1516   CASE_VI_GFX9PLUS(TTMP12) \
1517   CASE_VI_GFX9PLUS(TTMP13) \
1518   CASE_VI_GFX9PLUS(TTMP14) \
1519   CASE_VI_GFX9PLUS(TTMP15) \
1520   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1521   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1522   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1523   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1524   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1525   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1526   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1527   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1528   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1529   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1530   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1531   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1532   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1533   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1534   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1535   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1536   }
1537 
1538 #define CASE_CI_VI(node) \
1539   assert(!isSI(STI)); \
1540   case node: return isCI(STI) ? node##_ci : node##_vi;
1541 
1542 #define CASE_VI_GFX9PLUS(node) \
1543   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1544 
1545 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1546   if (STI.getTargetTriple().getArch() == Triple::r600)
1547     return Reg;
1548   MAP_REG2REG
1549 }
1550 
1551 #undef CASE_CI_VI
1552 #undef CASE_VI_GFX9PLUS
1553 
1554 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1555 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1556 
1557 unsigned mc2PseudoReg(unsigned Reg) {
1558   MAP_REG2REG
1559 }
1560 
1561 #undef CASE_CI_VI
1562 #undef CASE_VI_GFX9PLUS
1563 #undef MAP_REG2REG
1564 
1565 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1566   assert(OpNo < Desc.NumOperands);
1567   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1568   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1569          OpType <= AMDGPU::OPERAND_SRC_LAST;
1570 }
1571 
1572 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1573   assert(OpNo < Desc.NumOperands);
1574   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1575   switch (OpType) {
1576   case AMDGPU::OPERAND_REG_IMM_FP32:
1577   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1578   case AMDGPU::OPERAND_REG_IMM_FP64:
1579   case AMDGPU::OPERAND_REG_IMM_FP16:
1580   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1581   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1582   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1583   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1584   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1585   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1586   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1587   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1588   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1589   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1590   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1591   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1592   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1593   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1594   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1595     return true;
1596   default:
1597     return false;
1598   }
1599 }
1600 
1601 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1602   assert(OpNo < Desc.NumOperands);
1603   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1604   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1605          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1606 }
1607 
1608 // Avoid using MCRegisterClass::getSize, since that function will go away
1609 // (move from MC* level to Target* level). Return size in bits.
1610 unsigned getRegBitWidth(unsigned RCID) {
1611   switch (RCID) {
1612   case AMDGPU::VGPR_LO16RegClassID:
1613   case AMDGPU::VGPR_HI16RegClassID:
1614   case AMDGPU::SGPR_LO16RegClassID:
1615   case AMDGPU::AGPR_LO16RegClassID:
1616     return 16;
1617   case AMDGPU::SGPR_32RegClassID:
1618   case AMDGPU::VGPR_32RegClassID:
1619   case AMDGPU::VRegOrLds_32RegClassID:
1620   case AMDGPU::AGPR_32RegClassID:
1621   case AMDGPU::VS_32RegClassID:
1622   case AMDGPU::AV_32RegClassID:
1623   case AMDGPU::SReg_32RegClassID:
1624   case AMDGPU::SReg_32_XM0RegClassID:
1625   case AMDGPU::SRegOrLds_32RegClassID:
1626     return 32;
1627   case AMDGPU::SGPR_64RegClassID:
1628   case AMDGPU::VS_64RegClassID:
1629   case AMDGPU::SReg_64RegClassID:
1630   case AMDGPU::VReg_64RegClassID:
1631   case AMDGPU::AReg_64RegClassID:
1632   case AMDGPU::SReg_64_XEXECRegClassID:
1633   case AMDGPU::VReg_64_Align2RegClassID:
1634   case AMDGPU::AReg_64_Align2RegClassID:
1635   case AMDGPU::AV_64RegClassID:
1636   case AMDGPU::AV_64_Align2RegClassID:
1637     return 64;
1638   case AMDGPU::SGPR_96RegClassID:
1639   case AMDGPU::SReg_96RegClassID:
1640   case AMDGPU::VReg_96RegClassID:
1641   case AMDGPU::AReg_96RegClassID:
1642   case AMDGPU::VReg_96_Align2RegClassID:
1643   case AMDGPU::AReg_96_Align2RegClassID:
1644   case AMDGPU::AV_96RegClassID:
1645   case AMDGPU::AV_96_Align2RegClassID:
1646     return 96;
1647   case AMDGPU::SGPR_128RegClassID:
1648   case AMDGPU::SReg_128RegClassID:
1649   case AMDGPU::VReg_128RegClassID:
1650   case AMDGPU::AReg_128RegClassID:
1651   case AMDGPU::VReg_128_Align2RegClassID:
1652   case AMDGPU::AReg_128_Align2RegClassID:
1653   case AMDGPU::AV_128RegClassID:
1654   case AMDGPU::AV_128_Align2RegClassID:
1655     return 128;
1656   case AMDGPU::SGPR_160RegClassID:
1657   case AMDGPU::SReg_160RegClassID:
1658   case AMDGPU::VReg_160RegClassID:
1659   case AMDGPU::AReg_160RegClassID:
1660   case AMDGPU::VReg_160_Align2RegClassID:
1661   case AMDGPU::AReg_160_Align2RegClassID:
1662   case AMDGPU::AV_160RegClassID:
1663   case AMDGPU::AV_160_Align2RegClassID:
1664     return 160;
1665   case AMDGPU::SGPR_192RegClassID:
1666   case AMDGPU::SReg_192RegClassID:
1667   case AMDGPU::VReg_192RegClassID:
1668   case AMDGPU::AReg_192RegClassID:
1669   case AMDGPU::VReg_192_Align2RegClassID:
1670   case AMDGPU::AReg_192_Align2RegClassID:
1671   case AMDGPU::AV_192RegClassID:
1672   case AMDGPU::AV_192_Align2RegClassID:
1673     return 192;
1674   case AMDGPU::SGPR_224RegClassID:
1675   case AMDGPU::SReg_224RegClassID:
1676   case AMDGPU::VReg_224RegClassID:
1677   case AMDGPU::AReg_224RegClassID:
1678   case AMDGPU::VReg_224_Align2RegClassID:
1679   case AMDGPU::AReg_224_Align2RegClassID:
1680   case AMDGPU::AV_224RegClassID:
1681   case AMDGPU::AV_224_Align2RegClassID:
1682     return 224;
1683   case AMDGPU::SGPR_256RegClassID:
1684   case AMDGPU::SReg_256RegClassID:
1685   case AMDGPU::VReg_256RegClassID:
1686   case AMDGPU::AReg_256RegClassID:
1687   case AMDGPU::VReg_256_Align2RegClassID:
1688   case AMDGPU::AReg_256_Align2RegClassID:
1689   case AMDGPU::AV_256RegClassID:
1690   case AMDGPU::AV_256_Align2RegClassID:
1691     return 256;
1692   case AMDGPU::SGPR_512RegClassID:
1693   case AMDGPU::SReg_512RegClassID:
1694   case AMDGPU::VReg_512RegClassID:
1695   case AMDGPU::AReg_512RegClassID:
1696   case AMDGPU::VReg_512_Align2RegClassID:
1697   case AMDGPU::AReg_512_Align2RegClassID:
1698   case AMDGPU::AV_512RegClassID:
1699   case AMDGPU::AV_512_Align2RegClassID:
1700     return 512;
1701   case AMDGPU::SGPR_1024RegClassID:
1702   case AMDGPU::SReg_1024RegClassID:
1703   case AMDGPU::VReg_1024RegClassID:
1704   case AMDGPU::AReg_1024RegClassID:
1705   case AMDGPU::VReg_1024_Align2RegClassID:
1706   case AMDGPU::AReg_1024_Align2RegClassID:
1707   case AMDGPU::AV_1024RegClassID:
1708   case AMDGPU::AV_1024_Align2RegClassID:
1709     return 1024;
1710   default:
1711     llvm_unreachable("Unexpected register class");
1712   }
1713 }
1714 
1715 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1716   return getRegBitWidth(RC.getID());
1717 }
1718 
1719 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1720                            unsigned OpNo) {
1721   assert(OpNo < Desc.NumOperands);
1722   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1723   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1724 }
1725 
1726 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1727   if (isInlinableIntLiteral(Literal))
1728     return true;
1729 
1730   uint64_t Val = static_cast<uint64_t>(Literal);
1731   return (Val == DoubleToBits(0.0)) ||
1732          (Val == DoubleToBits(1.0)) ||
1733          (Val == DoubleToBits(-1.0)) ||
1734          (Val == DoubleToBits(0.5)) ||
1735          (Val == DoubleToBits(-0.5)) ||
1736          (Val == DoubleToBits(2.0)) ||
1737          (Val == DoubleToBits(-2.0)) ||
1738          (Val == DoubleToBits(4.0)) ||
1739          (Val == DoubleToBits(-4.0)) ||
1740          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1741 }
1742 
1743 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1744   if (isInlinableIntLiteral(Literal))
1745     return true;
1746 
1747   // The actual type of the operand does not seem to matter as long
1748   // as the bits match one of the inline immediate values.  For example:
1749   //
1750   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1751   // so it is a legal inline immediate.
1752   //
1753   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1754   // floating-point, so it is a legal inline immediate.
1755 
1756   uint32_t Val = static_cast<uint32_t>(Literal);
1757   return (Val == FloatToBits(0.0f)) ||
1758          (Val == FloatToBits(1.0f)) ||
1759          (Val == FloatToBits(-1.0f)) ||
1760          (Val == FloatToBits(0.5f)) ||
1761          (Val == FloatToBits(-0.5f)) ||
1762          (Val == FloatToBits(2.0f)) ||
1763          (Val == FloatToBits(-2.0f)) ||
1764          (Val == FloatToBits(4.0f)) ||
1765          (Val == FloatToBits(-4.0f)) ||
1766          (Val == 0x3e22f983 && HasInv2Pi);
1767 }
1768 
1769 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1770   if (!HasInv2Pi)
1771     return false;
1772 
1773   if (isInlinableIntLiteral(Literal))
1774     return true;
1775 
1776   uint16_t Val = static_cast<uint16_t>(Literal);
1777   return Val == 0x3C00 || // 1.0
1778          Val == 0xBC00 || // -1.0
1779          Val == 0x3800 || // 0.5
1780          Val == 0xB800 || // -0.5
1781          Val == 0x4000 || // 2.0
1782          Val == 0xC000 || // -2.0
1783          Val == 0x4400 || // 4.0
1784          Val == 0xC400 || // -4.0
1785          Val == 0x3118;   // 1/2pi
1786 }
1787 
1788 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1789   assert(HasInv2Pi);
1790 
1791   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1792     int16_t Trunc = static_cast<int16_t>(Literal);
1793     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1794   }
1795   if (!(Literal & 0xffff))
1796     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1797 
1798   int16_t Lo16 = static_cast<int16_t>(Literal);
1799   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1800   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1801 }
1802 
1803 bool isInlinableIntLiteralV216(int32_t Literal) {
1804   int16_t Lo16 = static_cast<int16_t>(Literal);
1805   if (isInt<16>(Literal) || isUInt<16>(Literal))
1806     return isInlinableIntLiteral(Lo16);
1807 
1808   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1809   if (!(Literal & 0xffff))
1810     return isInlinableIntLiteral(Hi16);
1811   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1812 }
1813 
1814 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1815   assert(HasInv2Pi);
1816 
1817   int16_t Lo16 = static_cast<int16_t>(Literal);
1818   if (isInt<16>(Literal) || isUInt<16>(Literal))
1819     return true;
1820 
1821   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1822   if (!(Literal & 0xffff))
1823     return true;
1824   return Lo16 == Hi16;
1825 }
1826 
1827 bool isArgPassedInSGPR(const Argument *A) {
1828   const Function *F = A->getParent();
1829 
1830   // Arguments to compute shaders are never a source of divergence.
1831   CallingConv::ID CC = F->getCallingConv();
1832   switch (CC) {
1833   case CallingConv::AMDGPU_KERNEL:
1834   case CallingConv::SPIR_KERNEL:
1835     return true;
1836   case CallingConv::AMDGPU_VS:
1837   case CallingConv::AMDGPU_LS:
1838   case CallingConv::AMDGPU_HS:
1839   case CallingConv::AMDGPU_ES:
1840   case CallingConv::AMDGPU_GS:
1841   case CallingConv::AMDGPU_PS:
1842   case CallingConv::AMDGPU_CS:
1843   case CallingConv::AMDGPU_Gfx:
1844     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1845     // Everything else is in VGPRs.
1846     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1847            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1848   default:
1849     // TODO: Should calls support inreg for SGPR inputs?
1850     return false;
1851   }
1852 }
1853 
1854 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1855   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1856 }
1857 
1858 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1859   return isGFX9Plus(ST);
1860 }
1861 
1862 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1863                                       int64_t EncodedOffset) {
1864   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1865                                : isUInt<8>(EncodedOffset);
1866 }
1867 
1868 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1869                                     int64_t EncodedOffset,
1870                                     bool IsBuffer) {
1871   return !IsBuffer &&
1872          hasSMRDSignedImmOffset(ST) &&
1873          isInt<21>(EncodedOffset);
1874 }
1875 
1876 static bool isDwordAligned(uint64_t ByteOffset) {
1877   return (ByteOffset & 3) == 0;
1878 }
1879 
1880 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1881                                 uint64_t ByteOffset) {
1882   if (hasSMEMByteOffset(ST))
1883     return ByteOffset;
1884 
1885   assert(isDwordAligned(ByteOffset));
1886   return ByteOffset >> 2;
1887 }
1888 
1889 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1890                                        int64_t ByteOffset, bool IsBuffer) {
1891   // The signed version is always a byte offset.
1892   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1893     assert(hasSMEMByteOffset(ST));
1894     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1895   }
1896 
1897   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1898     return None;
1899 
1900   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1901   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1902              ? Optional<int64_t>(EncodedOffset)
1903              : None;
1904 }
1905 
1906 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1907                                                 int64_t ByteOffset) {
1908   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1909     return None;
1910 
1911   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1912   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1913 }
1914 
1915 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1916   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1917   if (AMDGPU::isGFX10(ST))
1918     return Signed ? 12 : 11;
1919 
1920   return Signed ? 13 : 12;
1921 }
1922 
1923 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1924 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1925 // hardware bug needing a workaround).
1926 //
1927 // The required alignment ensures that individual address components remain
1928 // aligned if they are aligned to begin with. It also ensures that additional
1929 // offsets within the given alignment can be added to the resulting ImmOffset.
1930 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1931                       const GCNSubtarget *Subtarget, Align Alignment) {
1932   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1933   uint32_t Overflow = 0;
1934 
1935   if (Imm > MaxImm) {
1936     if (Imm <= MaxImm + 64) {
1937       // Use an SOffset inline constant for 4..64
1938       Overflow = Imm - MaxImm;
1939       Imm = MaxImm;
1940     } else {
1941       // Try to keep the same value in SOffset for adjacent loads, so that
1942       // the corresponding register contents can be re-used.
1943       //
1944       // Load values with all low-bits (except for alignment bits) set into
1945       // SOffset, so that a larger range of values can be covered using
1946       // s_movk_i32.
1947       //
1948       // Atomic operations fail to work correctly when individual address
1949       // components are unaligned, even if their sum is aligned.
1950       uint32_t High = (Imm + Alignment.value()) & ~4095;
1951       uint32_t Low = (Imm + Alignment.value()) & 4095;
1952       Imm = Low;
1953       Overflow = High - Alignment.value();
1954     }
1955   }
1956 
1957   // There is a hardware bug in SI and CI which prevents address clamping in
1958   // MUBUF instructions from working correctly with SOffsets. The immediate
1959   // offset is unaffected.
1960   if (Overflow > 0 &&
1961       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1962     return false;
1963 
1964   ImmOffset = Imm;
1965   SOffset = Overflow;
1966   return true;
1967 }
1968 
1969 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1970   *this = getDefaultForCallingConv(F.getCallingConv());
1971 
1972   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1973   if (!IEEEAttr.empty())
1974     IEEE = IEEEAttr == "true";
1975 
1976   StringRef DX10ClampAttr
1977     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1978   if (!DX10ClampAttr.empty())
1979     DX10Clamp = DX10ClampAttr == "true";
1980 
1981   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1982   if (!DenormF32Attr.empty()) {
1983     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1984     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1985     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1986   }
1987 
1988   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1989   if (!DenormAttr.empty()) {
1990     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1991 
1992     if (DenormF32Attr.empty()) {
1993       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1994       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1995     }
1996 
1997     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1998     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1999   }
2000 }
2001 
2002 namespace {
2003 
2004 struct SourceOfDivergence {
2005   unsigned Intr;
2006 };
2007 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2008 
2009 #define GET_SourcesOfDivergence_IMPL
2010 #define GET_Gfx9BufferFormat_IMPL
2011 #define GET_Gfx10PlusBufferFormat_IMPL
2012 #include "AMDGPUGenSearchableTables.inc"
2013 
2014 } // end anonymous namespace
2015 
2016 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2017   return lookupSourceOfDivergence(IntrID);
2018 }
2019 
2020 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2021                                                   uint8_t NumComponents,
2022                                                   uint8_t NumFormat,
2023                                                   const MCSubtargetInfo &STI) {
2024   return isGFX10Plus(STI)
2025              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2026                                             NumFormat)
2027              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2028 }
2029 
2030 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2031                                                   const MCSubtargetInfo &STI) {
2032   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2033                           : getGfx9BufferFormatInfo(Format);
2034 }
2035 
2036 } // namespace AMDGPU
2037 
2038 raw_ostream &operator<<(raw_ostream &OS,
2039                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2040   switch (S) {
2041   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2042     OS << "Unsupported";
2043     break;
2044   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2045     OS << "Any";
2046     break;
2047   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2048     OS << "Off";
2049     break;
2050   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2051     OS << "On";
2052     break;
2053   }
2054   return OS;
2055 }
2056 
2057 } // namespace llvm
2058