1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode for pixel 11 /// shaders, and whole wavefront mode for all programs. 12 /// 13 /// Whole quad mode is required for derivative computations, but it interferes 14 /// with shader side effects (stores and atomics). This pass is run on the 15 /// scheduled machine IR but before register coalescing, so that machine SSA is 16 /// available for analysis. It ensures that WQM is enabled when necessary, but 17 /// disabled around stores and atomics. 18 /// 19 /// When necessary, this pass creates a function prolog 20 /// 21 /// S_MOV_B64 LiveMask, EXEC 22 /// S_WQM_B64 EXEC, EXEC 23 /// 24 /// to enter WQM at the top of the function and surrounds blocks of Exact 25 /// instructions by 26 /// 27 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 28 /// ... 29 /// S_MOV_B64 EXEC, Tmp 30 /// 31 /// We also compute when a sequence of instructions requires Whole Wavefront 32 /// Mode (WWM) and insert instructions to save and restore it: 33 /// 34 /// S_OR_SAVEEXEC_B64 Tmp, -1 35 /// ... 36 /// S_MOV_B64 EXEC, Tmp 37 /// 38 /// In order to avoid excessive switching during sequences of Exact 39 /// instructions, the pass first analyzes which instructions must be run in WQM 40 /// (aka which instructions produce values that lead to derivative 41 /// computations). 42 /// 43 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 44 /// 45 /// There is room for improvement given better control flow analysis: 46 /// 47 /// (1) at the top level (outside of control flow statements, and as long as 48 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 49 /// the LiveMask (this is implemented for the entry block). 50 /// 51 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 52 /// consist of exact and don't-care instructions, the switch only has to 53 /// be done at the entry and exit points rather than potentially in each 54 /// block of the region. 55 /// 56 //===----------------------------------------------------------------------===// 57 58 #include "AMDGPU.h" 59 #include "AMDGPUSubtarget.h" 60 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 61 #include "SIInstrInfo.h" 62 #include "SIMachineFunctionInfo.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PostOrderIterator.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/CodeGen/LiveInterval.h" 69 #include "llvm/CodeGen/LiveIntervals.h" 70 #include "llvm/CodeGen/MachineBasicBlock.h" 71 #include "llvm/CodeGen/MachineFunction.h" 72 #include "llvm/CodeGen/MachineFunctionPass.h" 73 #include "llvm/CodeGen/MachineInstr.h" 74 #include "llvm/CodeGen/MachineInstrBuilder.h" 75 #include "llvm/CodeGen/MachineOperand.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/CodeGen/SlotIndexes.h" 78 #include "llvm/CodeGen/TargetRegisterInfo.h" 79 #include "llvm/IR/CallingConv.h" 80 #include "llvm/IR/DebugLoc.h" 81 #include "llvm/InitializePasses.h" 82 #include "llvm/MC/MCRegisterInfo.h" 83 #include "llvm/Pass.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include <cassert> 87 #include <vector> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "si-wqm" 92 93 namespace { 94 95 enum { 96 StateWQM = 0x1, 97 StateWWM = 0x2, 98 StateExact = 0x4, 99 }; 100 101 struct PrintState { 102 public: 103 int State; 104 105 explicit PrintState(int State) : State(State) {} 106 }; 107 108 #ifndef NDEBUG 109 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 110 if (PS.State & StateWQM) 111 OS << "WQM"; 112 if (PS.State & StateWWM) { 113 if (PS.State & StateWQM) 114 OS << '|'; 115 OS << "WWM"; 116 } 117 if (PS.State & StateExact) { 118 if (PS.State & (StateWQM | StateWWM)) 119 OS << '|'; 120 OS << "Exact"; 121 } 122 123 return OS; 124 } 125 #endif 126 127 struct InstrInfo { 128 char Needs = 0; 129 char Disabled = 0; 130 char OutNeeds = 0; 131 }; 132 133 struct BlockInfo { 134 char Needs = 0; 135 char InNeeds = 0; 136 char OutNeeds = 0; 137 }; 138 139 struct WorkItem { 140 MachineBasicBlock *MBB = nullptr; 141 MachineInstr *MI = nullptr; 142 143 WorkItem() = default; 144 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 145 WorkItem(MachineInstr *MI) : MI(MI) {} 146 }; 147 148 class SIWholeQuadMode : public MachineFunctionPass { 149 private: 150 CallingConv::ID CallingConv; 151 const SIInstrInfo *TII; 152 const SIRegisterInfo *TRI; 153 const GCNSubtarget *ST; 154 MachineRegisterInfo *MRI; 155 LiveIntervals *LIS; 156 157 DenseMap<const MachineInstr *, InstrInfo> Instructions; 158 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 159 SmallVector<MachineInstr *, 1> LiveMaskQueries; 160 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 161 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 162 163 void printInfo(); 164 165 void markInstruction(MachineInstr &MI, char Flag, 166 std::vector<WorkItem> &Worklist); 167 void markInstructionUses(const MachineInstr &MI, char Flag, 168 std::vector<WorkItem> &Worklist); 169 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 170 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 171 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 172 char analyzeFunction(MachineFunction &MF); 173 174 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 175 MachineBasicBlock::iterator Before); 176 MachineBasicBlock::iterator 177 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 178 MachineBasicBlock::iterator Last, bool PreferLast, 179 bool SaveSCC); 180 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 181 unsigned SaveWQM, unsigned LiveMaskReg); 182 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 183 unsigned SavedWQM); 184 void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 185 unsigned SaveOrig); 186 void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 187 unsigned SavedOrig); 188 void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); 189 190 void lowerLiveMaskQueries(unsigned LiveMaskReg); 191 void lowerCopyInstrs(); 192 193 public: 194 static char ID; 195 196 SIWholeQuadMode() : 197 MachineFunctionPass(ID) { } 198 199 bool runOnMachineFunction(MachineFunction &MF) override; 200 201 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 202 203 void getAnalysisUsage(AnalysisUsage &AU) const override { 204 AU.addRequired<LiveIntervals>(); 205 AU.addPreserved<SlotIndexes>(); 206 AU.addPreserved<LiveIntervals>(); 207 AU.setPreservesCFG(); 208 MachineFunctionPass::getAnalysisUsage(AU); 209 } 210 }; 211 212 } // end anonymous namespace 213 214 char SIWholeQuadMode::ID = 0; 215 216 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 217 false) 218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 219 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 220 false) 221 222 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 223 224 FunctionPass *llvm::createSIWholeQuadModePass() { 225 return new SIWholeQuadMode; 226 } 227 228 #ifndef NDEBUG 229 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 230 for (const auto &BII : Blocks) { 231 dbgs() << "\n" 232 << printMBBReference(*BII.first) << ":\n" 233 << " InNeeds = " << PrintState(BII.second.InNeeds) 234 << ", Needs = " << PrintState(BII.second.Needs) 235 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 236 237 for (const MachineInstr &MI : *BII.first) { 238 auto III = Instructions.find(&MI); 239 if (III == Instructions.end()) 240 continue; 241 242 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 243 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 244 } 245 } 246 } 247 #endif 248 249 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 250 std::vector<WorkItem> &Worklist) { 251 InstrInfo &II = Instructions[&MI]; 252 253 assert(!(Flag & StateExact) && Flag != 0); 254 255 // Remove any disabled states from the flag. The user that required it gets 256 // an undefined value in the helper lanes. For example, this can happen if 257 // the result of an atomic is used by instruction that requires WQM, where 258 // ignoring the request for WQM is correct as per the relevant specs. 259 Flag &= ~II.Disabled; 260 261 // Ignore if the flag is already encompassed by the existing needs, or we 262 // just disabled everything. 263 if ((II.Needs & Flag) == Flag) 264 return; 265 266 II.Needs |= Flag; 267 Worklist.push_back(&MI); 268 } 269 270 /// Mark all instructions defining the uses in \p MI with \p Flag. 271 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 272 std::vector<WorkItem> &Worklist) { 273 for (const MachineOperand &Use : MI.uses()) { 274 if (!Use.isReg() || !Use.isUse()) 275 continue; 276 277 Register Reg = Use.getReg(); 278 279 // Handle physical registers that we need to track; this is mostly relevant 280 // for VCC, which can appear as the (implicit) input of a uniform branch, 281 // e.g. when a loop counter is stored in a VGPR. 282 if (!Register::isVirtualRegister(Reg)) { 283 if (Reg == AMDGPU::EXEC || Reg == AMDGPU::EXEC_LO) 284 continue; 285 286 for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) { 287 LiveRange &LR = LIS->getRegUnit(*RegUnit); 288 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 289 if (!Value) 290 continue; 291 292 // Since we're in machine SSA, we do not need to track physical 293 // registers across basic blocks. 294 if (Value->isPHIDef()) 295 continue; 296 297 markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag, 298 Worklist); 299 } 300 301 continue; 302 } 303 304 for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) 305 markInstruction(DefMI, Flag, Worklist); 306 } 307 } 308 309 // Scan instructions to determine which ones require an Exact execmask and 310 // which ones seed WQM requirements. 311 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 312 std::vector<WorkItem> &Worklist) { 313 char GlobalFlags = 0; 314 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 315 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 316 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 317 318 // We need to visit the basic blocks in reverse post-order so that we visit 319 // defs before uses, in particular so that we don't accidentally mark an 320 // instruction as needing e.g. WQM before visiting it and realizing it needs 321 // WQM disabled. 322 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 323 for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { 324 MachineBasicBlock &MBB = **BI; 325 BlockInfo &BBI = Blocks[&MBB]; 326 327 for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { 328 MachineInstr &MI = *II; 329 InstrInfo &III = Instructions[&MI]; 330 unsigned Opcode = MI.getOpcode(); 331 char Flags = 0; 332 333 if (TII->isWQM(Opcode)) { 334 // Sampling instructions don't need to produce results for all pixels 335 // in a quad, they just require all inputs of a quad to have been 336 // computed for derivatives. 337 markInstructionUses(MI, StateWQM, Worklist); 338 GlobalFlags |= StateWQM; 339 continue; 340 } else if (Opcode == AMDGPU::WQM) { 341 // The WQM intrinsic requires its output to have all the helper lanes 342 // correct, so we need it to be in WQM. 343 Flags = StateWQM; 344 LowerToCopyInstrs.push_back(&MI); 345 } else if (Opcode == AMDGPU::SOFT_WQM) { 346 LowerToCopyInstrs.push_back(&MI); 347 SoftWQMInstrs.push_back(&MI); 348 continue; 349 } else if (Opcode == AMDGPU::WWM) { 350 // The WWM intrinsic doesn't make the same guarantee, and plus it needs 351 // to be executed in WQM or Exact so that its copy doesn't clobber 352 // inactive lanes. 353 markInstructionUses(MI, StateWWM, Worklist); 354 GlobalFlags |= StateWWM; 355 LowerToMovInstrs.push_back(&MI); 356 continue; 357 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 358 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 359 III.Disabled = StateWWM; 360 MachineOperand &Inactive = MI.getOperand(2); 361 if (Inactive.isReg()) { 362 if (Inactive.isUndef()) { 363 LowerToCopyInstrs.push_back(&MI); 364 } else { 365 Register Reg = Inactive.getReg(); 366 if (Register::isVirtualRegister(Reg)) { 367 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) 368 markInstruction(DefMI, StateWWM, Worklist); 369 } 370 } 371 } 372 SetInactiveInstrs.push_back(&MI); 373 continue; 374 } else if (TII->isDisableWQM(MI)) { 375 BBI.Needs |= StateExact; 376 if (!(BBI.InNeeds & StateExact)) { 377 BBI.InNeeds |= StateExact; 378 Worklist.push_back(&MBB); 379 } 380 GlobalFlags |= StateExact; 381 III.Disabled = StateWQM | StateWWM; 382 continue; 383 } else { 384 if (Opcode == AMDGPU::SI_PS_LIVE) { 385 LiveMaskQueries.push_back(&MI); 386 } else if (WQMOutputs) { 387 // The function is in machine SSA form, which means that physical 388 // VGPRs correspond to shader inputs and outputs. Inputs are 389 // only used, outputs are only defined. 390 for (const MachineOperand &MO : MI.defs()) { 391 if (!MO.isReg()) 392 continue; 393 394 Register Reg = MO.getReg(); 395 396 if (!Register::isVirtualRegister(Reg) && 397 TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) { 398 Flags = StateWQM; 399 break; 400 } 401 } 402 } 403 404 if (!Flags) 405 continue; 406 } 407 408 markInstruction(MI, Flags, Worklist); 409 GlobalFlags |= Flags; 410 } 411 } 412 413 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 414 // ever used anywhere in the function. This implements the corresponding 415 // semantics of @llvm.amdgcn.set.inactive. 416 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 417 if (GlobalFlags & StateWQM) { 418 for (MachineInstr *MI : SetInactiveInstrs) 419 markInstruction(*MI, StateWQM, Worklist); 420 for (MachineInstr *MI : SoftWQMInstrs) 421 markInstruction(*MI, StateWQM, Worklist); 422 } 423 424 return GlobalFlags; 425 } 426 427 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 428 std::vector<WorkItem>& Worklist) { 429 MachineBasicBlock *MBB = MI.getParent(); 430 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 431 BlockInfo &BI = Blocks[MBB]; 432 433 // Control flow-type instructions and stores to temporary memory that are 434 // followed by WQM computations must themselves be in WQM. 435 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 436 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 437 Instructions[&MI].Needs = StateWQM; 438 II.Needs = StateWQM; 439 } 440 441 // Propagate to block level 442 if (II.Needs & StateWQM) { 443 BI.Needs |= StateWQM; 444 if (!(BI.InNeeds & StateWQM)) { 445 BI.InNeeds |= StateWQM; 446 Worklist.push_back(MBB); 447 } 448 } 449 450 // Propagate backwards within block 451 if (MachineInstr *PrevMI = MI.getPrevNode()) { 452 char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds; 453 if (!PrevMI->isPHI()) { 454 InstrInfo &PrevII = Instructions[PrevMI]; 455 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 456 PrevII.OutNeeds |= InNeeds; 457 Worklist.push_back(PrevMI); 458 } 459 } 460 } 461 462 // Propagate WQM flag to instruction inputs 463 assert(!(II.Needs & StateExact)); 464 465 if (II.Needs != 0) 466 markInstructionUses(MI, II.Needs, Worklist); 467 468 // Ensure we process a block containing WWM, even if it does not require any 469 // WQM transitions. 470 if (II.Needs & StateWWM) 471 BI.Needs |= StateWWM; 472 } 473 474 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 475 std::vector<WorkItem>& Worklist) { 476 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 477 478 // Propagate through instructions 479 if (!MBB.empty()) { 480 MachineInstr *LastMI = &*MBB.rbegin(); 481 InstrInfo &LastII = Instructions[LastMI]; 482 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 483 LastII.OutNeeds |= BI.OutNeeds; 484 Worklist.push_back(LastMI); 485 } 486 } 487 488 // Predecessor blocks must provide for our WQM/Exact needs. 489 for (MachineBasicBlock *Pred : MBB.predecessors()) { 490 BlockInfo &PredBI = Blocks[Pred]; 491 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 492 continue; 493 494 PredBI.OutNeeds |= BI.InNeeds; 495 PredBI.InNeeds |= BI.InNeeds; 496 Worklist.push_back(Pred); 497 } 498 499 // All successors must be prepared to accept the same set of WQM/Exact data. 500 for (MachineBasicBlock *Succ : MBB.successors()) { 501 BlockInfo &SuccBI = Blocks[Succ]; 502 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 503 continue; 504 505 SuccBI.InNeeds |= BI.OutNeeds; 506 Worklist.push_back(Succ); 507 } 508 } 509 510 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 511 std::vector<WorkItem> Worklist; 512 char GlobalFlags = scanInstructions(MF, Worklist); 513 514 while (!Worklist.empty()) { 515 WorkItem WI = Worklist.back(); 516 Worklist.pop_back(); 517 518 if (WI.MI) 519 propagateInstruction(*WI.MI, Worklist); 520 else 521 propagateBlock(*WI.MBB, Worklist); 522 } 523 524 return GlobalFlags; 525 } 526 527 MachineBasicBlock::iterator 528 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 529 MachineBasicBlock::iterator Before) { 530 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 531 532 MachineInstr *Save = 533 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 534 .addReg(AMDGPU::SCC); 535 MachineInstr *Restore = 536 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 537 .addReg(SaveReg); 538 539 LIS->InsertMachineInstrInMaps(*Save); 540 LIS->InsertMachineInstrInMaps(*Restore); 541 LIS->createAndComputeVirtRegInterval(SaveReg); 542 543 return Restore; 544 } 545 546 // Return an iterator in the (inclusive) range [First, Last] at which 547 // instructions can be safely inserted, keeping in mind that some of the 548 // instructions we want to add necessarily clobber SCC. 549 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 550 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 551 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 552 if (!SaveSCC) 553 return PreferLast ? Last : First; 554 555 LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 556 auto MBBE = MBB.end(); 557 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 558 : LIS->getMBBEndIdx(&MBB); 559 SlotIndex LastIdx = 560 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 561 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 562 const LiveRange::Segment *S; 563 564 for (;;) { 565 S = LR.getSegmentContaining(Idx); 566 if (!S) 567 break; 568 569 if (PreferLast) { 570 SlotIndex Next = S->start.getBaseIndex(); 571 if (Next < FirstIdx) 572 break; 573 Idx = Next; 574 } else { 575 SlotIndex Next = S->end.getNextIndex().getBaseIndex(); 576 if (Next > LastIdx) 577 break; 578 Idx = Next; 579 } 580 } 581 582 MachineBasicBlock::iterator MBBI; 583 584 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 585 MBBI = MI; 586 else { 587 assert(Idx == LIS->getMBBEndIdx(&MBB)); 588 MBBI = MBB.end(); 589 } 590 591 if (S) 592 MBBI = saveSCC(MBB, MBBI); 593 594 return MBBI; 595 } 596 597 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 598 MachineBasicBlock::iterator Before, 599 unsigned SaveWQM, unsigned LiveMaskReg) { 600 MachineInstr *MI; 601 602 if (SaveWQM) { 603 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 604 AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64), 605 SaveWQM) 606 .addReg(LiveMaskReg); 607 } else { 608 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 609 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 610 AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64), 611 Exec) 612 .addReg(Exec) 613 .addReg(LiveMaskReg); 614 } 615 616 LIS->InsertMachineInstrInMaps(*MI); 617 } 618 619 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 620 MachineBasicBlock::iterator Before, 621 unsigned SavedWQM) { 622 MachineInstr *MI; 623 624 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 625 if (SavedWQM) { 626 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 627 .addReg(SavedWQM); 628 } else { 629 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 630 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64), 631 Exec) 632 .addReg(Exec); 633 } 634 635 LIS->InsertMachineInstrInMaps(*MI); 636 } 637 638 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB, 639 MachineBasicBlock::iterator Before, 640 unsigned SaveOrig) { 641 MachineInstr *MI; 642 643 assert(SaveOrig); 644 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig) 645 .addImm(-1); 646 LIS->InsertMachineInstrInMaps(*MI); 647 } 648 649 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB, 650 MachineBasicBlock::iterator Before, 651 unsigned SavedOrig) { 652 MachineInstr *MI; 653 654 assert(SavedOrig); 655 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), 656 ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) 657 .addReg(SavedOrig); 658 LIS->InsertMachineInstrInMaps(*MI); 659 } 660 661 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, 662 bool isEntry) { 663 auto BII = Blocks.find(&MBB); 664 if (BII == Blocks.end()) 665 return; 666 667 const BlockInfo &BI = BII->second; 668 669 // This is a non-entry block that is WQM throughout, so no need to do 670 // anything. 671 if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) 672 return; 673 674 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 675 << ":\n"); 676 677 unsigned SavedWQMReg = 0; 678 unsigned SavedNonWWMReg = 0; 679 bool WQMFromExec = isEntry; 680 char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 681 char NonWWMState = 0; 682 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 683 684 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 685 if (isEntry) 686 ++II; // Skip the instruction that saves LiveMask 687 688 // This stores the first instruction where it's safe to switch from WQM to 689 // Exact or vice versa. 690 MachineBasicBlock::iterator FirstWQM = IE; 691 692 // This stores the first instruction where it's safe to switch from WWM to 693 // Exact/WQM or to switch to WWM. It must always be the same as, or after, 694 // FirstWQM since if it's safe to switch to/from WWM, it must be safe to 695 // switch to/from WQM as well. 696 MachineBasicBlock::iterator FirstWWM = IE; 697 for (;;) { 698 MachineBasicBlock::iterator Next = II; 699 char Needs = StateExact | StateWQM; // WWM is disabled by default 700 char OutNeeds = 0; 701 702 if (FirstWQM == IE) 703 FirstWQM = II; 704 705 if (FirstWWM == IE) 706 FirstWWM = II; 707 708 // First, figure out the allowed states (Needs) based on the propagated 709 // flags. 710 if (II != IE) { 711 MachineInstr &MI = *II; 712 713 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 714 auto III = Instructions.find(&MI); 715 if (III != Instructions.end()) { 716 if (III->second.Needs & StateWWM) 717 Needs = StateWWM; 718 else if (III->second.Needs & StateWQM) 719 Needs = StateWQM; 720 else 721 Needs &= ~III->second.Disabled; 722 OutNeeds = III->second.OutNeeds; 723 } 724 } else { 725 // If the instruction doesn't actually need a correct EXEC, then we can 726 // safely leave WWM enabled. 727 Needs = StateExact | StateWQM | StateWWM; 728 } 729 730 if (MI.isTerminator() && OutNeeds == StateExact) 731 Needs = StateExact; 732 733 if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact) 734 MI.getOperand(3).setImm(1); 735 736 ++Next; 737 } else { 738 // End of basic block 739 if (BI.OutNeeds & StateWQM) 740 Needs = StateWQM; 741 else if (BI.OutNeeds == StateExact) 742 Needs = StateExact; 743 else 744 Needs = StateWQM | StateExact; 745 } 746 747 // Now, transition if necessary. 748 if (!(Needs & State)) { 749 MachineBasicBlock::iterator First; 750 if (State == StateWWM || Needs == StateWWM) { 751 // We must switch to or from WWM 752 First = FirstWWM; 753 } else { 754 // We only need to switch to/from WQM, so we can use FirstWQM 755 First = FirstWQM; 756 } 757 758 MachineBasicBlock::iterator Before = 759 prepareInsertion(MBB, First, II, Needs == StateWQM, 760 Needs == StateExact || WQMFromExec); 761 762 if (State == StateWWM) { 763 assert(SavedNonWWMReg); 764 fromWWM(MBB, Before, SavedNonWWMReg); 765 LIS->createAndComputeVirtRegInterval(SavedNonWWMReg); 766 SavedNonWWMReg = 0; 767 State = NonWWMState; 768 } 769 770 if (Needs == StateWWM) { 771 NonWWMState = State; 772 assert(!SavedNonWWMReg); 773 SavedNonWWMReg = MRI->createVirtualRegister(BoolRC); 774 toWWM(MBB, Before, SavedNonWWMReg); 775 State = StateWWM; 776 } else { 777 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 778 if (!WQMFromExec && (OutNeeds & StateWQM)) { 779 assert(!SavedWQMReg); 780 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 781 } 782 783 toExact(MBB, Before, SavedWQMReg, LiveMaskReg); 784 State = StateExact; 785 } else if (State == StateExact && (Needs & StateWQM) && 786 !(Needs & StateExact)) { 787 assert(WQMFromExec == (SavedWQMReg == 0)); 788 789 toWQM(MBB, Before, SavedWQMReg); 790 791 if (SavedWQMReg) { 792 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 793 SavedWQMReg = 0; 794 } 795 State = StateWQM; 796 } else { 797 // We can get here if we transitioned from WWM to a non-WWM state that 798 // already matches our needs, but we shouldn't need to do anything. 799 assert(Needs & State); 800 } 801 } 802 } 803 804 if (Needs != (StateExact | StateWQM | StateWWM)) { 805 if (Needs != (StateExact | StateWQM)) 806 FirstWQM = IE; 807 FirstWWM = IE; 808 } 809 810 if (II == IE) 811 break; 812 II = Next; 813 } 814 assert(!SavedWQMReg); 815 assert(!SavedNonWWMReg); 816 } 817 818 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { 819 for (MachineInstr *MI : LiveMaskQueries) { 820 const DebugLoc &DL = MI->getDebugLoc(); 821 Register Dest = MI->getOperand(0).getReg(); 822 MachineInstr *Copy = 823 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 824 .addReg(LiveMaskReg); 825 826 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 827 MI->eraseFromParent(); 828 } 829 } 830 831 void SIWholeQuadMode::lowerCopyInstrs() { 832 for (MachineInstr *MI : LowerToMovInstrs) { 833 assert(MI->getNumExplicitOperands() == 2); 834 835 const Register Reg = MI->getOperand(0).getReg(); 836 837 if (TRI->isVGPR(*MRI, Reg)) { 838 const TargetRegisterClass *regClass = Register::isVirtualRegister(Reg) 839 ? MRI->getRegClass(Reg) 840 : TRI->getPhysRegClass(Reg); 841 842 const unsigned MovOp = TII->getMovOpcode(regClass); 843 MI->setDesc(TII->get(MovOp)); 844 845 // And make it implicitly depend on exec (like all VALU movs should do). 846 MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); 847 } else { 848 MI->setDesc(TII->get(AMDGPU::COPY)); 849 } 850 } 851 for (MachineInstr *MI : LowerToCopyInstrs) { 852 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 853 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 854 assert(MI->getNumExplicitOperands() == 3); 855 // the only reason we should be here is V_SET_INACTIVE has 856 // an undef input so it is being replaced by a simple copy. 857 // There should be a second undef source that we should remove. 858 assert(MI->getOperand(2).isUndef()); 859 MI->RemoveOperand(2); 860 MI->untieRegOperand(1); 861 } else { 862 assert(MI->getNumExplicitOperands() == 2); 863 } 864 865 MI->setDesc(TII->get(AMDGPU::COPY)); 866 } 867 } 868 869 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 870 Instructions.clear(); 871 Blocks.clear(); 872 LiveMaskQueries.clear(); 873 LowerToCopyInstrs.clear(); 874 LowerToMovInstrs.clear(); 875 CallingConv = MF.getFunction().getCallingConv(); 876 877 ST = &MF.getSubtarget<GCNSubtarget>(); 878 879 TII = ST->getInstrInfo(); 880 TRI = &TII->getRegisterInfo(); 881 MRI = &MF.getRegInfo(); 882 LIS = &getAnalysis<LiveIntervals>(); 883 884 char GlobalFlags = analyzeFunction(MF); 885 unsigned LiveMaskReg = 0; 886 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 887 if (!(GlobalFlags & StateWQM)) { 888 lowerLiveMaskQueries(Exec); 889 if (!(GlobalFlags & StateWWM) && LowerToCopyInstrs.empty() && LowerToMovInstrs.empty()) 890 return !LiveMaskQueries.empty(); 891 } else { 892 // Store a copy of the original live mask when required 893 MachineBasicBlock &Entry = MF.front(); 894 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 895 896 if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { 897 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 898 MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), 899 TII->get(AMDGPU::COPY), LiveMaskReg) 900 .addReg(Exec); 901 LIS->InsertMachineInstrInMaps(*MI); 902 } 903 904 lowerLiveMaskQueries(LiveMaskReg); 905 906 if (GlobalFlags == StateWQM) { 907 // For a shader that needs only WQM, we can just set it once. 908 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), 909 TII->get(ST->isWave32() ? AMDGPU::S_WQM_B32 910 : AMDGPU::S_WQM_B64), 911 Exec) 912 .addReg(Exec); 913 LIS->InsertMachineInstrInMaps(*MI); 914 915 lowerCopyInstrs(); 916 // EntryMI may become invalid here 917 return true; 918 } 919 } 920 921 LLVM_DEBUG(printInfo()); 922 923 lowerCopyInstrs(); 924 925 // Handle the general case 926 for (auto BII : Blocks) 927 processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); 928 929 if (LiveMaskReg) 930 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 931 932 // Physical registers like SCC aren't tracked by default anyway, so just 933 // removing the ranges we computed is the simplest option for maintaining 934 // the analysis results. 935 LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 936 937 return true; 938 } 939