1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode (strict or non-strict) 11 /// for pixel shaders, and strict whole wavefront mode for all programs. 12 /// 13 /// The "strict" prefix indicates that inactive lanes do not take part in 14 /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will 15 /// always be enabled irrespective of control flow decisions. Conversely in 16 /// non-strict WQM inactive lanes may control flow decisions. 17 /// 18 /// Whole quad mode is required for derivative computations, but it interferes 19 /// with shader side effects (stores and atomics). It ensures that WQM is 20 /// enabled when necessary, but disabled around stores and atomics. 21 /// 22 /// When necessary, this pass creates a function prolog 23 /// 24 /// S_MOV_B64 LiveMask, EXEC 25 /// S_WQM_B64 EXEC, EXEC 26 /// 27 /// to enter WQM at the top of the function and surrounds blocks of Exact 28 /// instructions by 29 /// 30 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 31 /// ... 32 /// S_MOV_B64 EXEC, Tmp 33 /// 34 /// We also compute when a sequence of instructions requires strict whole 35 /// wavefront mode (StrictWWM) and insert instructions to save and restore it: 36 /// 37 /// S_OR_SAVEEXEC_B64 Tmp, -1 38 /// ... 39 /// S_MOV_B64 EXEC, Tmp 40 /// 41 /// When a sequence of instructions requires strict whole quad mode (StrictWQM) 42 /// we use a similar save and restore mechanism and force whole quad mode for 43 /// those instructions: 44 /// 45 /// S_MOV_B64 Tmp, EXEC 46 /// S_WQM_B64 EXEC, EXEC 47 /// ... 48 /// S_MOV_B64 EXEC, Tmp 49 /// 50 /// In order to avoid excessive switching during sequences of Exact 51 /// instructions, the pass first analyzes which instructions must be run in WQM 52 /// (aka which instructions produce values that lead to derivative 53 /// computations). 54 /// 55 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 56 /// 57 /// There is room for improvement given better control flow analysis: 58 /// 59 /// (1) at the top level (outside of control flow statements, and as long as 60 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 61 /// the LiveMask (this is implemented for the entry block). 62 /// 63 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 64 /// consist of exact and don't-care instructions, the switch only has to 65 /// be done at the entry and exit points rather than potentially in each 66 /// block of the region. 67 /// 68 //===----------------------------------------------------------------------===// 69 70 #include "AMDGPU.h" 71 #include "GCNSubtarget.h" 72 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 73 #include "llvm/ADT/MapVector.h" 74 #include "llvm/ADT/PostOrderIterator.h" 75 #include "llvm/CodeGen/LiveIntervals.h" 76 #include "llvm/CodeGen/MachineBasicBlock.h" 77 #include "llvm/CodeGen/MachineDominators.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineInstr.h" 80 #include "llvm/CodeGen/MachinePostDominators.h" 81 #include "llvm/IR/CallingConv.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/Support/raw_ostream.h" 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "si-wqm" 88 89 namespace { 90 91 enum { 92 StateWQM = 0x1, 93 StateStrictWWM = 0x2, 94 StateStrictWQM = 0x4, 95 StateExact = 0x8, 96 StateStrict = StateStrictWWM | StateStrictWQM, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 109 static const std::pair<char, const char *> Mapping[] = { 110 std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"), 111 std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")}; 112 char State = PS.State; 113 for (auto M : Mapping) { 114 if (State & M.first) { 115 OS << M.second; 116 State &= ~M.first; 117 118 if (State) 119 OS << '|'; 120 } 121 } 122 assert(State == 0); 123 return OS; 124 } 125 #endif 126 127 struct InstrInfo { 128 char Needs = 0; 129 char Disabled = 0; 130 char OutNeeds = 0; 131 }; 132 133 struct BlockInfo { 134 char Needs = 0; 135 char InNeeds = 0; 136 char OutNeeds = 0; 137 char InitialState = 0; 138 bool NeedsLowering = false; 139 }; 140 141 struct WorkItem { 142 MachineBasicBlock *MBB = nullptr; 143 MachineInstr *MI = nullptr; 144 145 WorkItem() = default; 146 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 147 WorkItem(MachineInstr *MI) : MI(MI) {} 148 }; 149 150 class SIWholeQuadMode : public MachineFunctionPass { 151 private: 152 const SIInstrInfo *TII; 153 const SIRegisterInfo *TRI; 154 const GCNSubtarget *ST; 155 MachineRegisterInfo *MRI; 156 LiveIntervals *LIS; 157 MachineDominatorTree *MDT; 158 MachinePostDominatorTree *PDT; 159 160 unsigned AndOpc; 161 unsigned AndTermOpc; 162 unsigned AndN2Opc; 163 unsigned XorOpc; 164 unsigned AndSaveExecOpc; 165 unsigned AndSaveExecTermOpc; 166 unsigned WQMOpc; 167 Register Exec; 168 Register LiveMaskReg; 169 170 DenseMap<const MachineInstr *, InstrInfo> Instructions; 171 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 172 173 // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction 174 DenseMap<const MachineInstr *, char> StateTransition; 175 176 SmallVector<MachineInstr *, 2> LiveMaskQueries; 177 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 178 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 179 SmallVector<MachineInstr *, 4> KillInstrs; 180 SmallVector<MachineInstr *, 4> InitExecInstrs; 181 182 void printInfo(); 183 184 void markInstruction(MachineInstr &MI, char Flag, 185 std::vector<WorkItem> &Worklist); 186 void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, 187 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist); 188 void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, 189 std::vector<WorkItem> &Worklist); 190 void markInstructionUses(const MachineInstr &MI, char Flag, 191 std::vector<WorkItem> &Worklist); 192 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 193 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 194 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 195 char analyzeFunction(MachineFunction &MF); 196 197 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 198 MachineBasicBlock::iterator Before); 199 MachineBasicBlock::iterator 200 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 201 MachineBasicBlock::iterator Last, bool PreferLast, 202 bool SaveSCC); 203 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 204 Register SaveWQM); 205 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 206 Register SavedWQM); 207 void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 208 Register SaveOrig, char StrictStateNeeded); 209 void fromStrictMode(MachineBasicBlock &MBB, 210 MachineBasicBlock::iterator Before, Register SavedOrig, 211 char NonStrictState, char CurrentStrictState); 212 213 MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI); 214 215 MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI, 216 bool IsWQM); 217 MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI); 218 219 void lowerBlock(MachineBasicBlock &MBB); 220 void processBlock(MachineBasicBlock &MBB, bool IsEntry); 221 222 bool lowerLiveMaskQueries(); 223 bool lowerCopyInstrs(); 224 bool lowerKillInstrs(bool IsWQM); 225 void lowerInitExec(MachineInstr &MI); 226 MachineBasicBlock::iterator lowerInitExecInstrs(MachineBasicBlock &Entry, 227 bool &Changed); 228 229 public: 230 static char ID; 231 232 SIWholeQuadMode() : 233 MachineFunctionPass(ID) { } 234 235 bool runOnMachineFunction(MachineFunction &MF) override; 236 237 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 238 239 void getAnalysisUsage(AnalysisUsage &AU) const override { 240 AU.addRequired<LiveIntervalsWrapperPass>(); 241 AU.addPreserved<SlotIndexesWrapperPass>(); 242 AU.addPreserved<LiveIntervalsWrapperPass>(); 243 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 244 AU.addPreserved<MachinePostDominatorTreeWrapperPass>(); 245 MachineFunctionPass::getAnalysisUsage(AU); 246 } 247 248 MachineFunctionProperties getClearedProperties() const override { 249 return MachineFunctionProperties().set( 250 MachineFunctionProperties::Property::IsSSA); 251 } 252 }; 253 254 } // end anonymous namespace 255 256 char SIWholeQuadMode::ID = 0; 257 258 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 259 false) 260 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 262 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 263 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 264 false) 265 266 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 267 268 FunctionPass *llvm::createSIWholeQuadModePass() { 269 return new SIWholeQuadMode; 270 } 271 272 #ifndef NDEBUG 273 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 274 for (const auto &BII : Blocks) { 275 dbgs() << "\n" 276 << printMBBReference(*BII.first) << ":\n" 277 << " InNeeds = " << PrintState(BII.second.InNeeds) 278 << ", Needs = " << PrintState(BII.second.Needs) 279 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 280 281 for (const MachineInstr &MI : *BII.first) { 282 auto III = Instructions.find(&MI); 283 if (III != Instructions.end()) { 284 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 285 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 286 } 287 } 288 } 289 } 290 #endif 291 292 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 293 std::vector<WorkItem> &Worklist) { 294 InstrInfo &II = Instructions[&MI]; 295 296 assert(!(Flag & StateExact) && Flag != 0); 297 298 // Remove any disabled states from the flag. The user that required it gets 299 // an undefined value in the helper lanes. For example, this can happen if 300 // the result of an atomic is used by instruction that requires WQM, where 301 // ignoring the request for WQM is correct as per the relevant specs. 302 Flag &= ~II.Disabled; 303 304 // Ignore if the flag is already encompassed by the existing needs, or we 305 // just disabled everything. 306 if ((II.Needs & Flag) == Flag) 307 return; 308 309 LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); 310 II.Needs |= Flag; 311 Worklist.emplace_back(&MI); 312 } 313 314 /// Mark all relevant definitions of register \p Reg in usage \p UseMI. 315 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, 316 Register Reg, unsigned SubReg, char Flag, 317 std::vector<WorkItem> &Worklist) { 318 LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); 319 320 LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); 321 const VNInfo *Value = UseLRQ.valueIn(); 322 if (!Value) 323 return; 324 325 // Note: this code assumes that lane masks on AMDGPU completely 326 // cover registers. 327 const LaneBitmask UseLanes = 328 SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 329 : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg) 330 : LaneBitmask::getNone()); 331 332 // Perform a depth-first iteration of the LiveRange graph marking defs. 333 // Stop processing of a given branch when all use lanes have been defined. 334 // The first definition stops processing for a physical register. 335 struct PhiEntry { 336 const VNInfo *Phi; 337 unsigned PredIdx; 338 LaneBitmask DefinedLanes; 339 340 PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes) 341 : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {} 342 }; 343 using VisitKey = std::pair<const VNInfo *, LaneBitmask>; 344 SmallVector<PhiEntry, 2> PhiStack; 345 SmallSet<VisitKey, 4> Visited; 346 LaneBitmask DefinedLanes; 347 unsigned NextPredIdx = 0; // Only used for processing phi nodes 348 do { 349 const VNInfo *NextValue = nullptr; 350 const VisitKey Key(Value, DefinedLanes); 351 352 if (Visited.insert(Key).second) { 353 // On first visit to a phi then start processing first predecessor 354 NextPredIdx = 0; 355 } 356 357 if (Value->isPHIDef()) { 358 // Each predecessor node in the phi must be processed as a subgraph 359 const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); 360 assert(MBB && "Phi-def has no defining MBB"); 361 362 // Find next predecessor to process 363 unsigned Idx = NextPredIdx; 364 auto PI = MBB->pred_begin() + Idx; 365 auto PE = MBB->pred_end(); 366 for (; PI != PE && !NextValue; ++PI, ++Idx) { 367 if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { 368 if (!Visited.count(VisitKey(VN, DefinedLanes))) 369 NextValue = VN; 370 } 371 } 372 373 // If there are more predecessors to process; add phi to stack 374 if (PI != PE) 375 PhiStack.emplace_back(Value, Idx, DefinedLanes); 376 } else { 377 MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); 378 assert(MI && "Def has no defining instruction"); 379 380 if (Reg.isVirtual()) { 381 // Iterate over all operands to find relevant definitions 382 bool HasDef = false; 383 for (const MachineOperand &Op : MI->all_defs()) { 384 if (Op.getReg() != Reg) 385 continue; 386 387 // Compute lanes defined and overlap with use 388 LaneBitmask OpLanes = 389 Op.isUndef() ? LaneBitmask::getAll() 390 : TRI->getSubRegIndexLaneMask(Op.getSubReg()); 391 LaneBitmask Overlap = (UseLanes & OpLanes); 392 393 // Record if this instruction defined any of use 394 HasDef |= Overlap.any(); 395 396 // Mark any lanes defined 397 DefinedLanes |= OpLanes; 398 } 399 400 // Check if all lanes of use have been defined 401 if ((DefinedLanes & UseLanes) != UseLanes) { 402 // Definition not complete; need to process input value 403 LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); 404 if (const VNInfo *VN = LRQ.valueIn()) { 405 if (!Visited.count(VisitKey(VN, DefinedLanes))) 406 NextValue = VN; 407 } 408 } 409 410 // Only mark the instruction if it defines some part of the use 411 if (HasDef) 412 markInstruction(*MI, Flag, Worklist); 413 } else { 414 // For physical registers simply mark the defining instruction 415 markInstruction(*MI, Flag, Worklist); 416 } 417 } 418 419 if (!NextValue && !PhiStack.empty()) { 420 // Reach end of chain; revert to processing last phi 421 PhiEntry &Entry = PhiStack.back(); 422 NextValue = Entry.Phi; 423 NextPredIdx = Entry.PredIdx; 424 DefinedLanes = Entry.DefinedLanes; 425 PhiStack.pop_back(); 426 } 427 428 Value = NextValue; 429 } while (Value); 430 } 431 432 void SIWholeQuadMode::markOperand(const MachineInstr &MI, 433 const MachineOperand &Op, char Flag, 434 std::vector<WorkItem> &Worklist) { 435 assert(Op.isReg()); 436 Register Reg = Op.getReg(); 437 438 // Ignore some hardware registers 439 switch (Reg) { 440 case AMDGPU::EXEC: 441 case AMDGPU::EXEC_LO: 442 return; 443 default: 444 break; 445 } 446 447 LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op 448 << " for " << MI); 449 if (Reg.isVirtual()) { 450 LiveRange &LR = LIS->getInterval(Reg); 451 markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist); 452 } else { 453 // Handle physical registers that we need to track; this is mostly relevant 454 // for VCC, which can appear as the (implicit) input of a uniform branch, 455 // e.g. when a loop counter is stored in a VGPR. 456 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 457 LiveRange &LR = LIS->getRegUnit(Unit); 458 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 459 if (Value) 460 markDefs(MI, LR, Unit, AMDGPU::NoSubRegister, Flag, Worklist); 461 } 462 } 463 } 464 465 /// Mark all instructions defining the uses in \p MI with \p Flag. 466 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 467 std::vector<WorkItem> &Worklist) { 468 LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " 469 << MI); 470 471 for (const MachineOperand &Use : MI.all_uses()) 472 markOperand(MI, Use, Flag, Worklist); 473 } 474 475 // Scan instructions to determine which ones require an Exact execmask and 476 // which ones seed WQM requirements. 477 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 478 std::vector<WorkItem> &Worklist) { 479 char GlobalFlags = 0; 480 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 481 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 482 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 483 bool HasImplicitDerivatives = 484 MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS; 485 486 // We need to visit the basic blocks in reverse post-order so that we visit 487 // defs before uses, in particular so that we don't accidentally mark an 488 // instruction as needing e.g. WQM before visiting it and realizing it needs 489 // WQM disabled. 490 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 491 for (MachineBasicBlock *MBB : RPOT) { 492 BlockInfo &BBI = Blocks[MBB]; 493 494 for (MachineInstr &MI : *MBB) { 495 InstrInfo &III = Instructions[&MI]; 496 unsigned Opcode = MI.getOpcode(); 497 char Flags = 0; 498 499 if (TII->isWQM(Opcode)) { 500 // If LOD is not supported WQM is not needed. 501 // Only generate implicit WQM if implicit derivatives are required. 502 // This avoids inserting unintended WQM if a shader type without 503 // implicit derivatives uses an image sampling instruction. 504 if (ST->hasExtendedImageInsts() && HasImplicitDerivatives) { 505 // Sampling instructions don't need to produce results for all pixels 506 // in a quad, they just require all inputs of a quad to have been 507 // computed for derivatives. 508 markInstructionUses(MI, StateWQM, Worklist); 509 GlobalFlags |= StateWQM; 510 } 511 } else if (Opcode == AMDGPU::WQM) { 512 // The WQM intrinsic requires its output to have all the helper lanes 513 // correct, so we need it to be in WQM. 514 Flags = StateWQM; 515 LowerToCopyInstrs.push_back(&MI); 516 } else if (Opcode == AMDGPU::SOFT_WQM) { 517 LowerToCopyInstrs.push_back(&MI); 518 SoftWQMInstrs.push_back(&MI); 519 } else if (Opcode == AMDGPU::STRICT_WWM) { 520 // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus 521 // it needs to be executed in WQM or Exact so that its copy doesn't 522 // clobber inactive lanes. 523 markInstructionUses(MI, StateStrictWWM, Worklist); 524 GlobalFlags |= StateStrictWWM; 525 LowerToMovInstrs.push_back(&MI); 526 } else if (Opcode == AMDGPU::STRICT_WQM || 527 TII->isDualSourceBlendEXP(MI)) { 528 // STRICT_WQM is similar to STRICTWWM, but instead of enabling all 529 // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in 530 // quads that have at least one active thread. 531 markInstructionUses(MI, StateStrictWQM, Worklist); 532 GlobalFlags |= StateStrictWQM; 533 534 if (Opcode == AMDGPU::STRICT_WQM) { 535 LowerToMovInstrs.push_back(&MI); 536 } else { 537 // Dual source blend export acts as implicit strict-wqm, its sources 538 // need to be shuffled in strict wqm, but the export itself needs to 539 // run in exact mode. 540 BBI.Needs |= StateExact; 541 if (!(BBI.InNeeds & StateExact)) { 542 BBI.InNeeds |= StateExact; 543 Worklist.emplace_back(MBB); 544 } 545 GlobalFlags |= StateExact; 546 III.Disabled = StateWQM | StateStrict; 547 } 548 } else if (Opcode == AMDGPU::LDS_PARAM_LOAD || 549 Opcode == AMDGPU::DS_PARAM_LOAD || 550 Opcode == AMDGPU::LDS_DIRECT_LOAD || 551 Opcode == AMDGPU::DS_DIRECT_LOAD) { 552 // Mark these STRICTWQM, but only for the instruction, not its operands. 553 // This avoid unnecessarily marking M0 as requiring WQM. 554 III.Needs |= StateStrictWQM; 555 GlobalFlags |= StateStrictWQM; 556 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 557 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 558 III.Disabled = StateStrict; 559 MachineOperand &Inactive = MI.getOperand(2); 560 if (Inactive.isReg()) { 561 if (Inactive.isUndef()) { 562 LowerToCopyInstrs.push_back(&MI); 563 } else { 564 markOperand(MI, Inactive, StateStrictWWM, Worklist); 565 } 566 } 567 SetInactiveInstrs.push_back(&MI); 568 } else if (TII->isDisableWQM(MI)) { 569 BBI.Needs |= StateExact; 570 if (!(BBI.InNeeds & StateExact)) { 571 BBI.InNeeds |= StateExact; 572 Worklist.emplace_back(MBB); 573 } 574 GlobalFlags |= StateExact; 575 III.Disabled = StateWQM | StateStrict; 576 } else if (Opcode == AMDGPU::SI_PS_LIVE || 577 Opcode == AMDGPU::SI_LIVE_MASK) { 578 LiveMaskQueries.push_back(&MI); 579 } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR || 580 Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR || 581 Opcode == AMDGPU::SI_DEMOTE_I1) { 582 KillInstrs.push_back(&MI); 583 BBI.NeedsLowering = true; 584 } else if (Opcode == AMDGPU::SI_INIT_EXEC || 585 Opcode == AMDGPU::SI_INIT_EXEC_FROM_INPUT) { 586 InitExecInstrs.push_back(&MI); 587 } else if (WQMOutputs) { 588 // The function is in machine SSA form, which means that physical 589 // VGPRs correspond to shader inputs and outputs. Inputs are 590 // only used, outputs are only defined. 591 // FIXME: is this still valid? 592 for (const MachineOperand &MO : MI.defs()) { 593 Register Reg = MO.getReg(); 594 if (Reg.isPhysical() && 595 TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) { 596 Flags = StateWQM; 597 break; 598 } 599 } 600 } 601 602 if (Flags) { 603 markInstruction(MI, Flags, Worklist); 604 GlobalFlags |= Flags; 605 } 606 } 607 } 608 609 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 610 // ever used anywhere in the function. This implements the corresponding 611 // semantics of @llvm.amdgcn.set.inactive. 612 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 613 if (GlobalFlags & StateWQM) { 614 for (MachineInstr *MI : SetInactiveInstrs) 615 markInstruction(*MI, StateWQM, Worklist); 616 for (MachineInstr *MI : SoftWQMInstrs) 617 markInstruction(*MI, StateWQM, Worklist); 618 } 619 620 return GlobalFlags; 621 } 622 623 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 624 std::vector<WorkItem>& Worklist) { 625 MachineBasicBlock *MBB = MI.getParent(); 626 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 627 BlockInfo &BI = Blocks[MBB]; 628 629 // Control flow-type instructions and stores to temporary memory that are 630 // followed by WQM computations must themselves be in WQM. 631 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 632 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 633 Instructions[&MI].Needs = StateWQM; 634 II.Needs = StateWQM; 635 } 636 637 // Propagate to block level 638 if (II.Needs & StateWQM) { 639 BI.Needs |= StateWQM; 640 if (!(BI.InNeeds & StateWQM)) { 641 BI.InNeeds |= StateWQM; 642 Worklist.emplace_back(MBB); 643 } 644 } 645 646 // Propagate backwards within block 647 if (MachineInstr *PrevMI = MI.getPrevNode()) { 648 char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds; 649 if (!PrevMI->isPHI()) { 650 InstrInfo &PrevII = Instructions[PrevMI]; 651 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 652 PrevII.OutNeeds |= InNeeds; 653 Worklist.emplace_back(PrevMI); 654 } 655 } 656 } 657 658 // Propagate WQM flag to instruction inputs 659 assert(!(II.Needs & StateExact)); 660 661 if (II.Needs != 0) 662 markInstructionUses(MI, II.Needs, Worklist); 663 664 // Ensure we process a block containing StrictWWM/StrictWQM, even if it does 665 // not require any WQM transitions. 666 if (II.Needs & StateStrictWWM) 667 BI.Needs |= StateStrictWWM; 668 if (II.Needs & StateStrictWQM) 669 BI.Needs |= StateStrictWQM; 670 } 671 672 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 673 std::vector<WorkItem>& Worklist) { 674 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 675 676 // Propagate through instructions 677 if (!MBB.empty()) { 678 MachineInstr *LastMI = &*MBB.rbegin(); 679 InstrInfo &LastII = Instructions[LastMI]; 680 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 681 LastII.OutNeeds |= BI.OutNeeds; 682 Worklist.emplace_back(LastMI); 683 } 684 } 685 686 // Predecessor blocks must provide for our WQM/Exact needs. 687 for (MachineBasicBlock *Pred : MBB.predecessors()) { 688 BlockInfo &PredBI = Blocks[Pred]; 689 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 690 continue; 691 692 PredBI.OutNeeds |= BI.InNeeds; 693 PredBI.InNeeds |= BI.InNeeds; 694 Worklist.emplace_back(Pred); 695 } 696 697 // All successors must be prepared to accept the same set of WQM/Exact data. 698 for (MachineBasicBlock *Succ : MBB.successors()) { 699 BlockInfo &SuccBI = Blocks[Succ]; 700 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 701 continue; 702 703 SuccBI.InNeeds |= BI.OutNeeds; 704 Worklist.emplace_back(Succ); 705 } 706 } 707 708 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 709 std::vector<WorkItem> Worklist; 710 char GlobalFlags = scanInstructions(MF, Worklist); 711 712 while (!Worklist.empty()) { 713 WorkItem WI = Worklist.back(); 714 Worklist.pop_back(); 715 716 if (WI.MI) 717 propagateInstruction(*WI.MI, Worklist); 718 else 719 propagateBlock(*WI.MBB, Worklist); 720 } 721 722 return GlobalFlags; 723 } 724 725 MachineBasicBlock::iterator 726 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 727 MachineBasicBlock::iterator Before) { 728 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 729 730 MachineInstr *Save = 731 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 732 .addReg(AMDGPU::SCC); 733 MachineInstr *Restore = 734 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 735 .addReg(SaveReg); 736 737 LIS->InsertMachineInstrInMaps(*Save); 738 LIS->InsertMachineInstrInMaps(*Restore); 739 LIS->createAndComputeVirtRegInterval(SaveReg); 740 741 return Restore; 742 } 743 744 MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB, 745 MachineInstr *TermMI) { 746 LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ " 747 << *TermMI << "\n"); 748 749 MachineBasicBlock *SplitBB = 750 BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS); 751 752 // Convert last instruction in block to a terminator. 753 // Note: this only covers the expected patterns 754 unsigned NewOpcode = 0; 755 switch (TermMI->getOpcode()) { 756 case AMDGPU::S_AND_B32: 757 NewOpcode = AMDGPU::S_AND_B32_term; 758 break; 759 case AMDGPU::S_AND_B64: 760 NewOpcode = AMDGPU::S_AND_B64_term; 761 break; 762 case AMDGPU::S_MOV_B32: 763 NewOpcode = AMDGPU::S_MOV_B32_term; 764 break; 765 case AMDGPU::S_MOV_B64: 766 NewOpcode = AMDGPU::S_MOV_B64_term; 767 break; 768 default: 769 break; 770 } 771 if (NewOpcode) 772 TermMI->setDesc(TII->get(NewOpcode)); 773 774 if (SplitBB != BB) { 775 // Update dominator trees 776 using DomTreeT = DomTreeBase<MachineBasicBlock>; 777 SmallVector<DomTreeT::UpdateType, 16> DTUpdates; 778 for (MachineBasicBlock *Succ : SplitBB->successors()) { 779 DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ}); 780 DTUpdates.push_back({DomTreeT::Delete, BB, Succ}); 781 } 782 DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB}); 783 if (MDT) 784 MDT->getBase().applyUpdates(DTUpdates); 785 if (PDT) 786 PDT->applyUpdates(DTUpdates); 787 788 // Link blocks 789 MachineInstr *MI = 790 BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH)) 791 .addMBB(SplitBB); 792 LIS->InsertMachineInstrInMaps(*MI); 793 } 794 795 return SplitBB; 796 } 797 798 MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB, 799 MachineInstr &MI) { 800 assert(LiveMaskReg.isVirtual()); 801 802 const DebugLoc &DL = MI.getDebugLoc(); 803 unsigned Opcode = 0; 804 805 assert(MI.getOperand(0).isReg()); 806 807 // Comparison is for live lanes; however here we compute the inverse 808 // (killed lanes). This is because VCMP will always generate 0 bits 809 // for inactive lanes so a mask of live lanes would not be correct 810 // inside control flow. 811 // Invert the comparison by swapping the operands and adjusting 812 // the comparison codes. 813 814 switch (MI.getOperand(2).getImm()) { 815 case ISD::SETUEQ: 816 Opcode = AMDGPU::V_CMP_LG_F32_e64; 817 break; 818 case ISD::SETUGT: 819 Opcode = AMDGPU::V_CMP_GE_F32_e64; 820 break; 821 case ISD::SETUGE: 822 Opcode = AMDGPU::V_CMP_GT_F32_e64; 823 break; 824 case ISD::SETULT: 825 Opcode = AMDGPU::V_CMP_LE_F32_e64; 826 break; 827 case ISD::SETULE: 828 Opcode = AMDGPU::V_CMP_LT_F32_e64; 829 break; 830 case ISD::SETUNE: 831 Opcode = AMDGPU::V_CMP_EQ_F32_e64; 832 break; 833 case ISD::SETO: 834 Opcode = AMDGPU::V_CMP_O_F32_e64; 835 break; 836 case ISD::SETUO: 837 Opcode = AMDGPU::V_CMP_U_F32_e64; 838 break; 839 case ISD::SETOEQ: 840 case ISD::SETEQ: 841 Opcode = AMDGPU::V_CMP_NEQ_F32_e64; 842 break; 843 case ISD::SETOGT: 844 case ISD::SETGT: 845 Opcode = AMDGPU::V_CMP_NLT_F32_e64; 846 break; 847 case ISD::SETOGE: 848 case ISD::SETGE: 849 Opcode = AMDGPU::V_CMP_NLE_F32_e64; 850 break; 851 case ISD::SETOLT: 852 case ISD::SETLT: 853 Opcode = AMDGPU::V_CMP_NGT_F32_e64; 854 break; 855 case ISD::SETOLE: 856 case ISD::SETLE: 857 Opcode = AMDGPU::V_CMP_NGE_F32_e64; 858 break; 859 case ISD::SETONE: 860 case ISD::SETNE: 861 Opcode = AMDGPU::V_CMP_NLG_F32_e64; 862 break; 863 default: 864 llvm_unreachable("invalid ISD:SET cond code"); 865 } 866 867 // Pick opcode based on comparison type. 868 MachineInstr *VcmpMI; 869 const MachineOperand &Op0 = MI.getOperand(0); 870 const MachineOperand &Op1 = MI.getOperand(1); 871 872 // VCC represents lanes killed. 873 Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; 874 875 if (TRI->isVGPR(*MRI, Op0.getReg())) { 876 Opcode = AMDGPU::getVOPe32(Opcode); 877 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0); 878 } else { 879 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)) 880 .addReg(VCC, RegState::Define) 881 .addImm(0) // src0 modifiers 882 .add(Op1) 883 .addImm(0) // src1 modifiers 884 .add(Op0) 885 .addImm(0); // omod 886 } 887 888 MachineInstr *MaskUpdateMI = 889 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 890 .addReg(LiveMaskReg) 891 .addReg(VCC); 892 893 // State of SCC represents whether any lanes are live in mask, 894 // if SCC is 0 then no lanes will be alive anymore. 895 MachineInstr *EarlyTermMI = 896 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 897 898 MachineInstr *ExecMaskMI = 899 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC); 900 901 assert(MBB.succ_size() == 1); 902 MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 903 .addMBB(*MBB.succ_begin()); 904 905 // Update live intervals 906 LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI); 907 MBB.remove(&MI); 908 909 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 910 LIS->InsertMachineInstrInMaps(*ExecMaskMI); 911 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 912 LIS->InsertMachineInstrInMaps(*NewTerm); 913 914 return NewTerm; 915 } 916 917 MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB, 918 MachineInstr &MI, bool IsWQM) { 919 assert(LiveMaskReg.isVirtual()); 920 921 const DebugLoc &DL = MI.getDebugLoc(); 922 MachineInstr *MaskUpdateMI = nullptr; 923 924 const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1); 925 const MachineOperand &Op = MI.getOperand(0); 926 int64_t KillVal = MI.getOperand(1).getImm(); 927 MachineInstr *ComputeKilledMaskMI = nullptr; 928 Register CndReg = !Op.isImm() ? Op.getReg() : Register(); 929 Register TmpReg; 930 931 // Is this a static or dynamic kill? 932 if (Op.isImm()) { 933 if (Op.getImm() == KillVal) { 934 // Static: all active lanes are killed 935 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 936 .addReg(LiveMaskReg) 937 .addReg(Exec); 938 } else { 939 // Static: kill does nothing 940 MachineInstr *NewTerm = nullptr; 941 if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { 942 LIS->RemoveMachineInstrFromMaps(MI); 943 } else { 944 assert(MBB.succ_size() == 1); 945 NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 946 .addMBB(*MBB.succ_begin()); 947 LIS->ReplaceMachineInstrInMaps(MI, *NewTerm); 948 } 949 MBB.remove(&MI); 950 return NewTerm; 951 } 952 } else { 953 if (!KillVal) { 954 // Op represents live lanes after kill, 955 // so exec mask needs to be factored in. 956 TmpReg = MRI->createVirtualRegister(TRI->getBoolRC()); 957 ComputeKilledMaskMI = 958 BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec); 959 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 960 .addReg(LiveMaskReg) 961 .addReg(TmpReg); 962 } else { 963 // Op represents lanes to kill 964 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 965 .addReg(LiveMaskReg) 966 .add(Op); 967 } 968 } 969 970 // State of SCC represents whether any lanes are live in mask, 971 // if SCC is 0 then no lanes will be alive anymore. 972 MachineInstr *EarlyTermMI = 973 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 974 975 // In the case we got this far some lanes are still live, 976 // update EXEC to deactivate lanes as appropriate. 977 MachineInstr *NewTerm; 978 MachineInstr *WQMMaskMI = nullptr; 979 Register LiveMaskWQM; 980 if (IsDemote) { 981 // Demote - deactivate quads with only helper lanes 982 LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC()); 983 WQMMaskMI = 984 BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg); 985 NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec) 986 .addReg(Exec) 987 .addReg(LiveMaskWQM); 988 } else { 989 // Kill - deactivate lanes no longer in live mask 990 if (Op.isImm()) { 991 unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 992 NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0); 993 } else if (!IsWQM) { 994 NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec) 995 .addReg(Exec) 996 .addReg(LiveMaskReg); 997 } else { 998 unsigned Opcode = KillVal ? AndN2Opc : AndOpc; 999 NewTerm = 1000 BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op); 1001 } 1002 } 1003 1004 // Update live intervals 1005 LIS->RemoveMachineInstrFromMaps(MI); 1006 MBB.remove(&MI); 1007 assert(EarlyTermMI); 1008 assert(MaskUpdateMI); 1009 assert(NewTerm); 1010 if (ComputeKilledMaskMI) 1011 LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI); 1012 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 1013 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 1014 if (WQMMaskMI) 1015 LIS->InsertMachineInstrInMaps(*WQMMaskMI); 1016 LIS->InsertMachineInstrInMaps(*NewTerm); 1017 1018 if (CndReg) { 1019 LIS->removeInterval(CndReg); 1020 LIS->createAndComputeVirtRegInterval(CndReg); 1021 } 1022 if (TmpReg) 1023 LIS->createAndComputeVirtRegInterval(TmpReg); 1024 if (LiveMaskWQM) 1025 LIS->createAndComputeVirtRegInterval(LiveMaskWQM); 1026 1027 return NewTerm; 1028 } 1029 1030 // Replace (or supplement) instructions accessing live mask. 1031 // This can only happen once all the live mask registers have been created 1032 // and the execute state (WQM/StrictWWM/Exact) of instructions is known. 1033 void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) { 1034 auto BII = Blocks.find(&MBB); 1035 if (BII == Blocks.end()) 1036 return; 1037 1038 const BlockInfo &BI = BII->second; 1039 if (!BI.NeedsLowering) 1040 return; 1041 1042 LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n"); 1043 1044 SmallVector<MachineInstr *, 4> SplitPoints; 1045 char State = BI.InitialState; 1046 1047 for (MachineInstr &MI : llvm::make_early_inc_range( 1048 llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) { 1049 if (StateTransition.count(&MI)) 1050 State = StateTransition[&MI]; 1051 1052 MachineInstr *SplitPoint = nullptr; 1053 switch (MI.getOpcode()) { 1054 case AMDGPU::SI_DEMOTE_I1: 1055 case AMDGPU::SI_KILL_I1_TERMINATOR: 1056 SplitPoint = lowerKillI1(MBB, MI, State == StateWQM); 1057 break; 1058 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1059 SplitPoint = lowerKillF32(MBB, MI); 1060 break; 1061 default: 1062 break; 1063 } 1064 if (SplitPoint) 1065 SplitPoints.push_back(SplitPoint); 1066 } 1067 1068 // Perform splitting after instruction scan to simplify iteration. 1069 if (!SplitPoints.empty()) { 1070 MachineBasicBlock *BB = &MBB; 1071 for (MachineInstr *MI : SplitPoints) { 1072 BB = splitBlock(BB, MI); 1073 } 1074 } 1075 } 1076 1077 // Return an iterator in the (inclusive) range [First, Last] at which 1078 // instructions can be safely inserted, keeping in mind that some of the 1079 // instructions we want to add necessarily clobber SCC. 1080 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 1081 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 1082 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 1083 if (!SaveSCC) 1084 return PreferLast ? Last : First; 1085 1086 LiveRange &LR = 1087 LIS->getRegUnit(*TRI->regunits(MCRegister::from(AMDGPU::SCC)).begin()); 1088 auto MBBE = MBB.end(); 1089 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 1090 : LIS->getMBBEndIdx(&MBB); 1091 SlotIndex LastIdx = 1092 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 1093 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 1094 const LiveRange::Segment *S; 1095 1096 for (;;) { 1097 S = LR.getSegmentContaining(Idx); 1098 if (!S) 1099 break; 1100 1101 if (PreferLast) { 1102 SlotIndex Next = S->start.getBaseIndex(); 1103 if (Next < FirstIdx) 1104 break; 1105 Idx = Next; 1106 } else { 1107 MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); 1108 assert(EndMI && "Segment does not end on valid instruction"); 1109 auto NextI = std::next(EndMI->getIterator()); 1110 if (NextI == MBB.end()) 1111 break; 1112 SlotIndex Next = LIS->getInstructionIndex(*NextI); 1113 if (Next > LastIdx) 1114 break; 1115 Idx = Next; 1116 } 1117 } 1118 1119 MachineBasicBlock::iterator MBBI; 1120 1121 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 1122 MBBI = MI; 1123 else { 1124 assert(Idx == LIS->getMBBEndIdx(&MBB)); 1125 MBBI = MBB.end(); 1126 } 1127 1128 // Move insertion point past any operations modifying EXEC. 1129 // This assumes that the value of SCC defined by any of these operations 1130 // does not need to be preserved. 1131 while (MBBI != Last) { 1132 bool IsExecDef = false; 1133 for (const MachineOperand &MO : MBBI->all_defs()) { 1134 IsExecDef |= 1135 MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; 1136 } 1137 if (!IsExecDef) 1138 break; 1139 MBBI++; 1140 S = nullptr; 1141 } 1142 1143 if (S) 1144 MBBI = saveSCC(MBB, MBBI); 1145 1146 return MBBI; 1147 } 1148 1149 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 1150 MachineBasicBlock::iterator Before, 1151 Register SaveWQM) { 1152 assert(LiveMaskReg.isVirtual()); 1153 1154 bool IsTerminator = Before == MBB.end(); 1155 if (!IsTerminator) { 1156 auto FirstTerm = MBB.getFirstTerminator(); 1157 if (FirstTerm != MBB.end()) { 1158 SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm); 1159 SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before); 1160 IsTerminator = BeforeIdx > FirstTermIdx; 1161 } 1162 } 1163 1164 MachineInstr *MI; 1165 1166 if (SaveWQM) { 1167 unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc; 1168 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM) 1169 .addReg(LiveMaskReg); 1170 } else { 1171 unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc; 1172 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec) 1173 .addReg(Exec) 1174 .addReg(LiveMaskReg); 1175 } 1176 1177 LIS->InsertMachineInstrInMaps(*MI); 1178 StateTransition[MI] = StateExact; 1179 } 1180 1181 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 1182 MachineBasicBlock::iterator Before, 1183 Register SavedWQM) { 1184 MachineInstr *MI; 1185 1186 if (SavedWQM) { 1187 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 1188 .addReg(SavedWQM); 1189 } else { 1190 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec); 1191 } 1192 1193 LIS->InsertMachineInstrInMaps(*MI); 1194 StateTransition[MI] = StateWQM; 1195 } 1196 1197 void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB, 1198 MachineBasicBlock::iterator Before, 1199 Register SaveOrig, char StrictStateNeeded) { 1200 MachineInstr *MI; 1201 assert(SaveOrig); 1202 assert(StrictStateNeeded == StateStrictWWM || 1203 StrictStateNeeded == StateStrictWQM); 1204 1205 if (StrictStateNeeded == StateStrictWWM) { 1206 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM), 1207 SaveOrig) 1208 .addImm(-1); 1209 } else { 1210 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM), 1211 SaveOrig) 1212 .addImm(-1); 1213 } 1214 LIS->InsertMachineInstrInMaps(*MI); 1215 StateTransition[MI] = StrictStateNeeded; 1216 } 1217 1218 void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB, 1219 MachineBasicBlock::iterator Before, 1220 Register SavedOrig, char NonStrictState, 1221 char CurrentStrictState) { 1222 MachineInstr *MI; 1223 1224 assert(SavedOrig); 1225 assert(CurrentStrictState == StateStrictWWM || 1226 CurrentStrictState == StateStrictWQM); 1227 1228 if (CurrentStrictState == StateStrictWWM) { 1229 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM), 1230 Exec) 1231 .addReg(SavedOrig); 1232 } else { 1233 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM), 1234 Exec) 1235 .addReg(SavedOrig); 1236 } 1237 LIS->InsertMachineInstrInMaps(*MI); 1238 StateTransition[MI] = NonStrictState; 1239 } 1240 1241 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) { 1242 auto BII = Blocks.find(&MBB); 1243 if (BII == Blocks.end()) 1244 return; 1245 1246 BlockInfo &BI = BII->second; 1247 1248 // This is a non-entry block that is WQM throughout, so no need to do 1249 // anything. 1250 if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) { 1251 BI.InitialState = StateWQM; 1252 return; 1253 } 1254 1255 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 1256 << ":\n"); 1257 1258 Register SavedWQMReg; 1259 Register SavedNonStrictReg; 1260 bool WQMFromExec = IsEntry; 1261 char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 1262 char NonStrictState = 0; 1263 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 1264 1265 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 1266 if (IsEntry) { 1267 // Skip the instruction that saves LiveMask 1268 if (II != IE && II->getOpcode() == AMDGPU::COPY && 1269 II->getOperand(1).getReg() == TRI->getExec()) 1270 ++II; 1271 } 1272 1273 // This stores the first instruction where it's safe to switch from WQM to 1274 // Exact or vice versa. 1275 MachineBasicBlock::iterator FirstWQM = IE; 1276 1277 // This stores the first instruction where it's safe to switch from Strict 1278 // mode to Exact/WQM or to switch to Strict mode. It must always be the same 1279 // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must 1280 // be safe to switch to/from WQM as well. 1281 MachineBasicBlock::iterator FirstStrict = IE; 1282 1283 // Record initial state is block information. 1284 BI.InitialState = State; 1285 1286 for (;;) { 1287 MachineBasicBlock::iterator Next = II; 1288 char Needs = StateExact | StateWQM; // Strict mode is disabled by default. 1289 char OutNeeds = 0; 1290 1291 if (FirstWQM == IE) 1292 FirstWQM = II; 1293 1294 if (FirstStrict == IE) 1295 FirstStrict = II; 1296 1297 // First, figure out the allowed states (Needs) based on the propagated 1298 // flags. 1299 if (II != IE) { 1300 MachineInstr &MI = *II; 1301 1302 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 1303 auto III = Instructions.find(&MI); 1304 if (III != Instructions.end()) { 1305 if (III->second.Needs & StateStrictWWM) 1306 Needs = StateStrictWWM; 1307 else if (III->second.Needs & StateStrictWQM) 1308 Needs = StateStrictWQM; 1309 else if (III->second.Needs & StateWQM) 1310 Needs = StateWQM; 1311 else 1312 Needs &= ~III->second.Disabled; 1313 OutNeeds = III->second.OutNeeds; 1314 } 1315 } else { 1316 // If the instruction doesn't actually need a correct EXEC, then we can 1317 // safely leave Strict mode enabled. 1318 Needs = StateExact | StateWQM | StateStrict; 1319 } 1320 1321 // Exact mode exit can occur in terminators, but must be before branches. 1322 if (MI.isBranch() && OutNeeds == StateExact) 1323 Needs = StateExact; 1324 1325 ++Next; 1326 } else { 1327 // End of basic block 1328 if (BI.OutNeeds & StateWQM) 1329 Needs = StateWQM; 1330 else if (BI.OutNeeds == StateExact) 1331 Needs = StateExact; 1332 else 1333 Needs = StateWQM | StateExact; 1334 } 1335 1336 // Now, transition if necessary. 1337 if (!(Needs & State)) { 1338 MachineBasicBlock::iterator First; 1339 if (State == StateStrictWWM || Needs == StateStrictWWM || 1340 State == StateStrictWQM || Needs == StateStrictWQM) { 1341 // We must switch to or from Strict mode. 1342 First = FirstStrict; 1343 } else { 1344 // We only need to switch to/from WQM, so we can use FirstWQM. 1345 First = FirstWQM; 1346 } 1347 1348 // Whether we need to save SCC depends on start and end states. 1349 bool SaveSCC = false; 1350 switch (State) { 1351 case StateExact: 1352 case StateStrictWWM: 1353 case StateStrictWQM: 1354 // Exact/Strict -> Strict: save SCC 1355 // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec 1356 // Exact/Strict -> Exact: no save 1357 SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec); 1358 break; 1359 case StateWQM: 1360 // WQM -> Exact/Strict: save SCC 1361 SaveSCC = !(Needs & StateWQM); 1362 break; 1363 default: 1364 llvm_unreachable("Unknown state"); 1365 break; 1366 } 1367 MachineBasicBlock::iterator Before = 1368 prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC); 1369 1370 if (State & StateStrict) { 1371 assert(State == StateStrictWWM || State == StateStrictWQM); 1372 assert(SavedNonStrictReg); 1373 fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State); 1374 1375 LIS->createAndComputeVirtRegInterval(SavedNonStrictReg); 1376 SavedNonStrictReg = 0; 1377 State = NonStrictState; 1378 } 1379 1380 if (Needs & StateStrict) { 1381 NonStrictState = State; 1382 assert(Needs == StateStrictWWM || Needs == StateStrictWQM); 1383 assert(!SavedNonStrictReg); 1384 SavedNonStrictReg = MRI->createVirtualRegister(BoolRC); 1385 1386 toStrictMode(MBB, Before, SavedNonStrictReg, Needs); 1387 State = Needs; 1388 1389 } else { 1390 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 1391 if (!WQMFromExec && (OutNeeds & StateWQM)) { 1392 assert(!SavedWQMReg); 1393 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 1394 } 1395 1396 toExact(MBB, Before, SavedWQMReg); 1397 State = StateExact; 1398 } else if (State == StateExact && (Needs & StateWQM) && 1399 !(Needs & StateExact)) { 1400 assert(WQMFromExec == (SavedWQMReg == 0)); 1401 1402 toWQM(MBB, Before, SavedWQMReg); 1403 1404 if (SavedWQMReg) { 1405 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 1406 SavedWQMReg = 0; 1407 } 1408 State = StateWQM; 1409 } else { 1410 // We can get here if we transitioned from StrictWWM to a 1411 // non-StrictWWM state that already matches our needs, but we 1412 // shouldn't need to do anything. 1413 assert(Needs & State); 1414 } 1415 } 1416 } 1417 1418 if (Needs != (StateExact | StateWQM | StateStrict)) { 1419 if (Needs != (StateExact | StateWQM)) 1420 FirstWQM = IE; 1421 FirstStrict = IE; 1422 } 1423 1424 if (II == IE) 1425 break; 1426 1427 II = Next; 1428 } 1429 assert(!SavedWQMReg); 1430 assert(!SavedNonStrictReg); 1431 } 1432 1433 bool SIWholeQuadMode::lowerLiveMaskQueries() { 1434 for (MachineInstr *MI : LiveMaskQueries) { 1435 const DebugLoc &DL = MI->getDebugLoc(); 1436 Register Dest = MI->getOperand(0).getReg(); 1437 1438 MachineInstr *Copy = 1439 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 1440 .addReg(LiveMaskReg); 1441 1442 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 1443 MI->eraseFromParent(); 1444 } 1445 return !LiveMaskQueries.empty(); 1446 } 1447 1448 bool SIWholeQuadMode::lowerCopyInstrs() { 1449 for (MachineInstr *MI : LowerToMovInstrs) { 1450 assert(MI->getNumExplicitOperands() == 2); 1451 1452 const Register Reg = MI->getOperand(0).getReg(); 1453 1454 const TargetRegisterClass *regClass = 1455 TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0)); 1456 if (TRI->isVGPRClass(regClass)) { 1457 const unsigned MovOp = TII->getMovOpcode(regClass); 1458 MI->setDesc(TII->get(MovOp)); 1459 1460 // Check that it already implicitly depends on exec (like all VALU movs 1461 // should do). 1462 assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) { 1463 return MO.isUse() && MO.getReg() == AMDGPU::EXEC; 1464 })); 1465 } else { 1466 // Remove early-clobber and exec dependency from simple SGPR copies. 1467 // This allows some to be eliminated during/post RA. 1468 LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); 1469 if (MI->getOperand(0).isEarlyClobber()) { 1470 LIS->removeInterval(Reg); 1471 MI->getOperand(0).setIsEarlyClobber(false); 1472 LIS->createAndComputeVirtRegInterval(Reg); 1473 } 1474 int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC, /*TRI=*/nullptr); 1475 while (Index >= 0) { 1476 MI->removeOperand(Index); 1477 Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC, /*TRI=*/nullptr); 1478 } 1479 MI->setDesc(TII->get(AMDGPU::COPY)); 1480 LLVM_DEBUG(dbgs() << " -> " << *MI); 1481 } 1482 } 1483 for (MachineInstr *MI : LowerToCopyInstrs) { 1484 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 1485 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 1486 assert(MI->getNumExplicitOperands() == 3); 1487 // the only reason we should be here is V_SET_INACTIVE has 1488 // an undef input so it is being replaced by a simple copy. 1489 // There should be a second undef source that we should remove. 1490 assert(MI->getOperand(2).isUndef()); 1491 MI->removeOperand(2); 1492 MI->untieRegOperand(1); 1493 } else { 1494 assert(MI->getNumExplicitOperands() == 2); 1495 } 1496 1497 unsigned CopyOp = MI->getOperand(1).isReg() 1498 ? (unsigned)AMDGPU::COPY 1499 : TII->getMovOpcode(TRI->getRegClassForOperandReg( 1500 *MRI, MI->getOperand(0))); 1501 MI->setDesc(TII->get(CopyOp)); 1502 } 1503 return !LowerToCopyInstrs.empty() || !LowerToMovInstrs.empty(); 1504 } 1505 1506 bool SIWholeQuadMode::lowerKillInstrs(bool IsWQM) { 1507 for (MachineInstr *MI : KillInstrs) { 1508 MachineBasicBlock *MBB = MI->getParent(); 1509 MachineInstr *SplitPoint = nullptr; 1510 switch (MI->getOpcode()) { 1511 case AMDGPU::SI_DEMOTE_I1: 1512 case AMDGPU::SI_KILL_I1_TERMINATOR: 1513 SplitPoint = lowerKillI1(*MBB, *MI, IsWQM); 1514 break; 1515 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1516 SplitPoint = lowerKillF32(*MBB, *MI); 1517 break; 1518 } 1519 if (SplitPoint) 1520 splitBlock(MBB, SplitPoint); 1521 } 1522 return !KillInstrs.empty(); 1523 } 1524 1525 void SIWholeQuadMode::lowerInitExec(MachineInstr &MI) { 1526 MachineBasicBlock *MBB = MI.getParent(); 1527 bool IsWave32 = ST->isWave32(); 1528 1529 if (MI.getOpcode() == AMDGPU::SI_INIT_EXEC) { 1530 // This should be before all vector instructions. 1531 MachineInstr *InitMI = 1532 BuildMI(*MBB, MBB->begin(), MI.getDebugLoc(), 1533 TII->get(IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1534 Exec) 1535 .addImm(MI.getOperand(0).getImm()); 1536 if (LIS) { 1537 LIS->RemoveMachineInstrFromMaps(MI); 1538 LIS->InsertMachineInstrInMaps(*InitMI); 1539 } 1540 MI.eraseFromParent(); 1541 return; 1542 } 1543 1544 // Extract the thread count from an SGPR input and set EXEC accordingly. 1545 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 1546 // 1547 // S_BFE_U32 count, input, {shift, 7} 1548 // S_BFM_B64 exec, count, 0 1549 // S_CMP_EQ_U32 count, 64 1550 // S_CMOV_B64 exec, -1 1551 Register InputReg = MI.getOperand(0).getReg(); 1552 MachineInstr *FirstMI = &*MBB->begin(); 1553 if (InputReg.isVirtual()) { 1554 MachineInstr *DefInstr = MRI->getVRegDef(InputReg); 1555 assert(DefInstr && DefInstr->isCopy()); 1556 if (DefInstr->getParent() == MBB) { 1557 if (DefInstr != FirstMI) { 1558 // If the `InputReg` is defined in current block, we also need to 1559 // move that instruction to the beginning of the block. 1560 DefInstr->removeFromParent(); 1561 MBB->insert(FirstMI, DefInstr); 1562 if (LIS) 1563 LIS->handleMove(*DefInstr); 1564 } else { 1565 // If first instruction is definition then move pointer after it. 1566 FirstMI = &*std::next(FirstMI->getIterator()); 1567 } 1568 } 1569 } 1570 1571 // Insert instruction sequence at block beginning (before vector operations). 1572 const DebugLoc DL = MI.getDebugLoc(); 1573 const unsigned WavefrontSize = ST->getWavefrontSize(); 1574 const unsigned Mask = (WavefrontSize << 1) - 1; 1575 Register CountReg = MRI->createVirtualRegister(&AMDGPU::SGPR_32RegClass); 1576 auto BfeMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_BFE_U32), CountReg) 1577 .addReg(InputReg) 1578 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 1579 auto BfmMI = 1580 BuildMI(*MBB, FirstMI, DL, 1581 TII->get(IsWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), Exec) 1582 .addReg(CountReg) 1583 .addImm(0); 1584 auto CmpMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) 1585 .addReg(CountReg, RegState::Kill) 1586 .addImm(WavefrontSize); 1587 auto CmovMI = 1588 BuildMI(*MBB, FirstMI, DL, 1589 TII->get(IsWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 1590 Exec) 1591 .addImm(-1); 1592 1593 if (!LIS) { 1594 MI.eraseFromParent(); 1595 return; 1596 } 1597 1598 LIS->RemoveMachineInstrFromMaps(MI); 1599 MI.eraseFromParent(); 1600 1601 LIS->InsertMachineInstrInMaps(*BfeMI); 1602 LIS->InsertMachineInstrInMaps(*BfmMI); 1603 LIS->InsertMachineInstrInMaps(*CmpMI); 1604 LIS->InsertMachineInstrInMaps(*CmovMI); 1605 1606 LIS->removeInterval(InputReg); 1607 LIS->createAndComputeVirtRegInterval(InputReg); 1608 LIS->createAndComputeVirtRegInterval(CountReg); 1609 } 1610 1611 /// Lower INIT_EXEC instructions. Return a suitable insert point in \p Entry 1612 /// for instructions that depend on EXEC. 1613 MachineBasicBlock::iterator 1614 SIWholeQuadMode::lowerInitExecInstrs(MachineBasicBlock &Entry, bool &Changed) { 1615 MachineBasicBlock::iterator InsertPt = Entry.getFirstNonPHI(); 1616 1617 for (MachineInstr *MI : InitExecInstrs) { 1618 // Try to handle undefined cases gracefully: 1619 // - multiple INIT_EXEC instructions 1620 // - INIT_EXEC instructions not in the entry block 1621 if (MI->getParent() == &Entry) 1622 InsertPt = std::next(MI->getIterator()); 1623 1624 lowerInitExec(*MI); 1625 Changed = true; 1626 } 1627 1628 return InsertPt; 1629 } 1630 1631 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 1632 LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName() 1633 << " ------------- \n"); 1634 LLVM_DEBUG(MF.dump();); 1635 1636 Instructions.clear(); 1637 Blocks.clear(); 1638 LiveMaskQueries.clear(); 1639 LowerToCopyInstrs.clear(); 1640 LowerToMovInstrs.clear(); 1641 KillInstrs.clear(); 1642 InitExecInstrs.clear(); 1643 StateTransition.clear(); 1644 1645 ST = &MF.getSubtarget<GCNSubtarget>(); 1646 1647 TII = ST->getInstrInfo(); 1648 TRI = &TII->getRegisterInfo(); 1649 MRI = &MF.getRegInfo(); 1650 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 1651 auto *MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 1652 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 1653 auto *PDTWrapper = 1654 getAnalysisIfAvailable<MachinePostDominatorTreeWrapperPass>(); 1655 PDT = PDTWrapper ? &PDTWrapper->getPostDomTree() : nullptr; 1656 1657 if (ST->isWave32()) { 1658 AndOpc = AMDGPU::S_AND_B32; 1659 AndTermOpc = AMDGPU::S_AND_B32_term; 1660 AndN2Opc = AMDGPU::S_ANDN2_B32; 1661 XorOpc = AMDGPU::S_XOR_B32; 1662 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32; 1663 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term; 1664 WQMOpc = AMDGPU::S_WQM_B32; 1665 Exec = AMDGPU::EXEC_LO; 1666 } else { 1667 AndOpc = AMDGPU::S_AND_B64; 1668 AndTermOpc = AMDGPU::S_AND_B64_term; 1669 AndN2Opc = AMDGPU::S_ANDN2_B64; 1670 XorOpc = AMDGPU::S_XOR_B64; 1671 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64; 1672 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term; 1673 WQMOpc = AMDGPU::S_WQM_B64; 1674 Exec = AMDGPU::EXEC; 1675 } 1676 1677 const char GlobalFlags = analyzeFunction(MF); 1678 bool Changed = false; 1679 1680 LiveMaskReg = Exec; 1681 1682 MachineBasicBlock &Entry = MF.front(); 1683 MachineBasicBlock::iterator EntryMI = lowerInitExecInstrs(Entry, Changed); 1684 1685 // Store a copy of the original live mask when required 1686 const bool HasLiveMaskQueries = !LiveMaskQueries.empty(); 1687 const bool HasWaveModes = GlobalFlags & ~StateExact; 1688 const bool HasKills = !KillInstrs.empty(); 1689 const bool UsesWQM = GlobalFlags & StateWQM; 1690 if (HasKills || UsesWQM || (HasWaveModes && HasLiveMaskQueries)) { 1691 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 1692 MachineInstr *MI = 1693 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) 1694 .addReg(Exec); 1695 LIS->InsertMachineInstrInMaps(*MI); 1696 Changed = true; 1697 } 1698 1699 LLVM_DEBUG(printInfo()); 1700 1701 Changed |= lowerLiveMaskQueries(); 1702 Changed |= lowerCopyInstrs(); 1703 1704 if (!HasWaveModes) { 1705 // No wave mode execution 1706 Changed |= lowerKillInstrs(false); 1707 } else if (GlobalFlags == StateWQM) { 1708 // Shader only needs WQM 1709 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec) 1710 .addReg(Exec); 1711 LIS->InsertMachineInstrInMaps(*MI); 1712 lowerKillInstrs(true); 1713 Changed = true; 1714 } else { 1715 // Wave mode switching requires full lowering pass. 1716 for (auto BII : Blocks) 1717 processBlock(*BII.first, BII.first == &Entry); 1718 // Lowering blocks causes block splitting so perform as a second pass. 1719 for (auto BII : Blocks) 1720 lowerBlock(*BII.first); 1721 Changed = true; 1722 } 1723 1724 // Compute live range for live mask 1725 if (LiveMaskReg != Exec) 1726 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 1727 1728 // Physical registers like SCC aren't tracked by default anyway, so just 1729 // removing the ranges we computed is the simplest option for maintaining 1730 // the analysis results. 1731 LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC); 1732 1733 // If we performed any kills then recompute EXEC 1734 if (!KillInstrs.empty() || !InitExecInstrs.empty()) 1735 LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); 1736 1737 return Changed; 1738 } 1739