1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode for pixel 11 /// shaders, and whole wavefront mode for all programs. 12 /// 13 /// Whole quad mode is required for derivative computations, but it interferes 14 /// with shader side effects (stores and atomics). This pass is run on the 15 /// scheduled machine IR but before register coalescing, so that machine SSA is 16 /// available for analysis. It ensures that WQM is enabled when necessary, but 17 /// disabled around stores and atomics. 18 /// 19 /// When necessary, this pass creates a function prolog 20 /// 21 /// S_MOV_B64 LiveMask, EXEC 22 /// S_WQM_B64 EXEC, EXEC 23 /// 24 /// to enter WQM at the top of the function and surrounds blocks of Exact 25 /// instructions by 26 /// 27 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 28 /// ... 29 /// S_MOV_B64 EXEC, Tmp 30 /// 31 /// We also compute when a sequence of instructions requires Whole Wavefront 32 /// Mode (WWM) and insert instructions to save and restore it: 33 /// 34 /// S_OR_SAVEEXEC_B64 Tmp, -1 35 /// ... 36 /// S_MOV_B64 EXEC, Tmp 37 /// 38 /// In order to avoid excessive switching during sequences of Exact 39 /// instructions, the pass first analyzes which instructions must be run in WQM 40 /// (aka which instructions produce values that lead to derivative 41 /// computations). 42 /// 43 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 44 /// 45 /// There is room for improvement given better control flow analysis: 46 /// 47 /// (1) at the top level (outside of control flow statements, and as long as 48 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 49 /// the LiveMask (this is implemented for the entry block). 50 /// 51 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 52 /// consist of exact and don't-care instructions, the switch only has to 53 /// be done at the entry and exit points rather than potentially in each 54 /// block of the region. 55 /// 56 //===----------------------------------------------------------------------===// 57 58 #include "AMDGPU.h" 59 #include "AMDGPUSubtarget.h" 60 #include "SIInstrInfo.h" 61 #include "SIMachineFunctionInfo.h" 62 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/CodeGen/LiveInterval.h" 68 #include "llvm/CodeGen/LiveIntervals.h" 69 #include "llvm/CodeGen/MachineBasicBlock.h" 70 #include "llvm/CodeGen/MachineFunction.h" 71 #include "llvm/CodeGen/MachineFunctionPass.h" 72 #include "llvm/CodeGen/MachineInstr.h" 73 #include "llvm/CodeGen/MachineInstrBuilder.h" 74 #include "llvm/CodeGen/MachineOperand.h" 75 #include "llvm/CodeGen/MachineRegisterInfo.h" 76 #include "llvm/CodeGen/SlotIndexes.h" 77 #include "llvm/CodeGen/TargetRegisterInfo.h" 78 #include "llvm/IR/CallingConv.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/MC/MCRegisterInfo.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include <cassert> 85 #include <vector> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "si-wqm" 90 91 namespace { 92 93 enum { 94 StateWQM = 0x1, 95 StateWWM = 0x2, 96 StateExact = 0x4, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 if (PS.State & StateWQM) 109 OS << "WQM"; 110 if (PS.State & StateWWM) { 111 if (PS.State & StateWQM) 112 OS << '|'; 113 OS << "WWM"; 114 } 115 if (PS.State & StateExact) { 116 if (PS.State & (StateWQM | StateWWM)) 117 OS << '|'; 118 OS << "Exact"; 119 } 120 121 return OS; 122 } 123 #endif 124 125 struct InstrInfo { 126 char Needs = 0; 127 char Disabled = 0; 128 char OutNeeds = 0; 129 }; 130 131 struct BlockInfo { 132 char Needs = 0; 133 char InNeeds = 0; 134 char OutNeeds = 0; 135 }; 136 137 struct WorkItem { 138 MachineBasicBlock *MBB = nullptr; 139 MachineInstr *MI = nullptr; 140 141 WorkItem() = default; 142 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 143 WorkItem(MachineInstr *MI) : MI(MI) {} 144 }; 145 146 class SIWholeQuadMode : public MachineFunctionPass { 147 private: 148 CallingConv::ID CallingConv; 149 const SIInstrInfo *TII; 150 const SIRegisterInfo *TRI; 151 const GCNSubtarget *ST; 152 MachineRegisterInfo *MRI; 153 LiveIntervals *LIS; 154 155 DenseMap<const MachineInstr *, InstrInfo> Instructions; 156 DenseMap<MachineBasicBlock *, BlockInfo> Blocks; 157 SmallVector<MachineInstr *, 1> LiveMaskQueries; 158 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 159 160 void printInfo(); 161 162 void markInstruction(MachineInstr &MI, char Flag, 163 std::vector<WorkItem> &Worklist); 164 void markInstructionUses(const MachineInstr &MI, char Flag, 165 std::vector<WorkItem> &Worklist); 166 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 167 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 168 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 169 char analyzeFunction(MachineFunction &MF); 170 171 bool requiresCorrectState(const MachineInstr &MI) const; 172 173 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 174 MachineBasicBlock::iterator Before); 175 MachineBasicBlock::iterator 176 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 177 MachineBasicBlock::iterator Last, bool PreferLast, 178 bool SaveSCC); 179 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 180 unsigned SaveWQM, unsigned LiveMaskReg); 181 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 182 unsigned SavedWQM); 183 void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 184 unsigned SaveOrig); 185 void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 186 unsigned SavedOrig); 187 void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); 188 189 void lowerLiveMaskQueries(unsigned LiveMaskReg); 190 void lowerCopyInstrs(); 191 192 public: 193 static char ID; 194 195 SIWholeQuadMode() : 196 MachineFunctionPass(ID) { } 197 198 bool runOnMachineFunction(MachineFunction &MF) override; 199 200 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 201 202 void getAnalysisUsage(AnalysisUsage &AU) const override { 203 AU.addRequired<LiveIntervals>(); 204 AU.addPreserved<SlotIndexes>(); 205 AU.addPreserved<LiveIntervals>(); 206 AU.setPreservesCFG(); 207 MachineFunctionPass::getAnalysisUsage(AU); 208 } 209 }; 210 211 } // end anonymous namespace 212 213 char SIWholeQuadMode::ID = 0; 214 215 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 216 false) 217 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 218 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 219 false) 220 221 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 222 223 FunctionPass *llvm::createSIWholeQuadModePass() { 224 return new SIWholeQuadMode; 225 } 226 227 #ifndef NDEBUG 228 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 229 for (const auto &BII : Blocks) { 230 dbgs() << "\n" 231 << printMBBReference(*BII.first) << ":\n" 232 << " InNeeds = " << PrintState(BII.second.InNeeds) 233 << ", Needs = " << PrintState(BII.second.Needs) 234 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 235 236 for (const MachineInstr &MI : *BII.first) { 237 auto III = Instructions.find(&MI); 238 if (III == Instructions.end()) 239 continue; 240 241 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 242 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 243 } 244 } 245 } 246 #endif 247 248 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 249 std::vector<WorkItem> &Worklist) { 250 InstrInfo &II = Instructions[&MI]; 251 252 assert(!(Flag & StateExact) && Flag != 0); 253 254 // Remove any disabled states from the flag. The user that required it gets 255 // an undefined value in the helper lanes. For example, this can happen if 256 // the result of an atomic is used by instruction that requires WQM, where 257 // ignoring the request for WQM is correct as per the relevant specs. 258 Flag &= ~II.Disabled; 259 260 // Ignore if the flag is already encompassed by the existing needs, or we 261 // just disabled everything. 262 if ((II.Needs & Flag) == Flag) 263 return; 264 265 II.Needs |= Flag; 266 Worklist.push_back(&MI); 267 } 268 269 /// Mark all instructions defining the uses in \p MI with \p Flag. 270 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 271 std::vector<WorkItem> &Worklist) { 272 for (const MachineOperand &Use : MI.uses()) { 273 if (!Use.isReg() || !Use.isUse()) 274 continue; 275 276 Register Reg = Use.getReg(); 277 278 // Handle physical registers that we need to track; this is mostly relevant 279 // for VCC, which can appear as the (implicit) input of a uniform branch, 280 // e.g. when a loop counter is stored in a VGPR. 281 if (!Register::isVirtualRegister(Reg)) { 282 if (Reg == AMDGPU::EXEC || Reg == AMDGPU::EXEC_LO) 283 continue; 284 285 for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) { 286 LiveRange &LR = LIS->getRegUnit(*RegUnit); 287 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 288 if (!Value) 289 continue; 290 291 // Since we're in machine SSA, we do not need to track physical 292 // registers across basic blocks. 293 if (Value->isPHIDef()) 294 continue; 295 296 markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag, 297 Worklist); 298 } 299 300 continue; 301 } 302 303 for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) 304 markInstruction(DefMI, Flag, Worklist); 305 } 306 } 307 308 // Scan instructions to determine which ones require an Exact execmask and 309 // which ones seed WQM requirements. 310 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 311 std::vector<WorkItem> &Worklist) { 312 char GlobalFlags = 0; 313 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 314 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 315 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 316 317 // We need to visit the basic blocks in reverse post-order so that we visit 318 // defs before uses, in particular so that we don't accidentally mark an 319 // instruction as needing e.g. WQM before visiting it and realizing it needs 320 // WQM disabled. 321 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 322 for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { 323 MachineBasicBlock &MBB = **BI; 324 BlockInfo &BBI = Blocks[&MBB]; 325 326 for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { 327 MachineInstr &MI = *II; 328 InstrInfo &III = Instructions[&MI]; 329 unsigned Opcode = MI.getOpcode(); 330 char Flags = 0; 331 332 if (TII->isWQM(Opcode)) { 333 // Sampling instructions don't need to produce results for all pixels 334 // in a quad, they just require all inputs of a quad to have been 335 // computed for derivatives. 336 markInstructionUses(MI, StateWQM, Worklist); 337 GlobalFlags |= StateWQM; 338 continue; 339 } else if (Opcode == AMDGPU::WQM) { 340 // The WQM intrinsic requires its output to have all the helper lanes 341 // correct, so we need it to be in WQM. 342 Flags = StateWQM; 343 LowerToCopyInstrs.push_back(&MI); 344 } else if (Opcode == AMDGPU::SOFT_WQM) { 345 LowerToCopyInstrs.push_back(&MI); 346 SoftWQMInstrs.push_back(&MI); 347 continue; 348 } else if (Opcode == AMDGPU::WWM) { 349 // The WWM intrinsic doesn't make the same guarantee, and plus it needs 350 // to be executed in WQM or Exact so that its copy doesn't clobber 351 // inactive lanes. 352 markInstructionUses(MI, StateWWM, Worklist); 353 GlobalFlags |= StateWWM; 354 LowerToCopyInstrs.push_back(&MI); 355 continue; 356 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 357 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 358 III.Disabled = StateWWM; 359 MachineOperand &Inactive = MI.getOperand(2); 360 if (Inactive.isReg()) { 361 if (Inactive.isUndef()) { 362 LowerToCopyInstrs.push_back(&MI); 363 } else { 364 Register Reg = Inactive.getReg(); 365 if (Register::isVirtualRegister(Reg)) { 366 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) 367 markInstruction(DefMI, StateWWM, Worklist); 368 } 369 } 370 } 371 SetInactiveInstrs.push_back(&MI); 372 continue; 373 } else if (TII->isDisableWQM(MI)) { 374 BBI.Needs |= StateExact; 375 if (!(BBI.InNeeds & StateExact)) { 376 BBI.InNeeds |= StateExact; 377 Worklist.push_back(&MBB); 378 } 379 GlobalFlags |= StateExact; 380 III.Disabled = StateWQM | StateWWM; 381 continue; 382 } else { 383 if (Opcode == AMDGPU::SI_PS_LIVE) { 384 LiveMaskQueries.push_back(&MI); 385 } else if (WQMOutputs) { 386 // The function is in machine SSA form, which means that physical 387 // VGPRs correspond to shader inputs and outputs. Inputs are 388 // only used, outputs are only defined. 389 for (const MachineOperand &MO : MI.defs()) { 390 if (!MO.isReg()) 391 continue; 392 393 Register Reg = MO.getReg(); 394 395 if (!Register::isVirtualRegister(Reg) && 396 TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) { 397 Flags = StateWQM; 398 break; 399 } 400 } 401 } 402 403 if (!Flags) 404 continue; 405 } 406 407 markInstruction(MI, Flags, Worklist); 408 GlobalFlags |= Flags; 409 } 410 } 411 412 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 413 // ever used anywhere in the function. This implements the corresponding 414 // semantics of @llvm.amdgcn.set.inactive. 415 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 416 if (GlobalFlags & StateWQM) { 417 for (MachineInstr *MI : SetInactiveInstrs) 418 markInstruction(*MI, StateWQM, Worklist); 419 for (MachineInstr *MI : SoftWQMInstrs) 420 markInstruction(*MI, StateWQM, Worklist); 421 } 422 423 return GlobalFlags; 424 } 425 426 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 427 std::vector<WorkItem>& Worklist) { 428 MachineBasicBlock *MBB = MI.getParent(); 429 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 430 BlockInfo &BI = Blocks[MBB]; 431 432 // Control flow-type instructions and stores to temporary memory that are 433 // followed by WQM computations must themselves be in WQM. 434 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 435 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 436 Instructions[&MI].Needs = StateWQM; 437 II.Needs = StateWQM; 438 } 439 440 // Propagate to block level 441 if (II.Needs & StateWQM) { 442 BI.Needs |= StateWQM; 443 if (!(BI.InNeeds & StateWQM)) { 444 BI.InNeeds |= StateWQM; 445 Worklist.push_back(MBB); 446 } 447 } 448 449 // Propagate backwards within block 450 if (MachineInstr *PrevMI = MI.getPrevNode()) { 451 char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds; 452 if (!PrevMI->isPHI()) { 453 InstrInfo &PrevII = Instructions[PrevMI]; 454 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 455 PrevII.OutNeeds |= InNeeds; 456 Worklist.push_back(PrevMI); 457 } 458 } 459 } 460 461 // Propagate WQM flag to instruction inputs 462 assert(!(II.Needs & StateExact)); 463 464 if (II.Needs != 0) 465 markInstructionUses(MI, II.Needs, Worklist); 466 467 // Ensure we process a block containing WWM, even if it does not require any 468 // WQM transitions. 469 if (II.Needs & StateWWM) 470 BI.Needs |= StateWWM; 471 } 472 473 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 474 std::vector<WorkItem>& Worklist) { 475 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 476 477 // Propagate through instructions 478 if (!MBB.empty()) { 479 MachineInstr *LastMI = &*MBB.rbegin(); 480 InstrInfo &LastII = Instructions[LastMI]; 481 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 482 LastII.OutNeeds |= BI.OutNeeds; 483 Worklist.push_back(LastMI); 484 } 485 } 486 487 // Predecessor blocks must provide for our WQM/Exact needs. 488 for (MachineBasicBlock *Pred : MBB.predecessors()) { 489 BlockInfo &PredBI = Blocks[Pred]; 490 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 491 continue; 492 493 PredBI.OutNeeds |= BI.InNeeds; 494 PredBI.InNeeds |= BI.InNeeds; 495 Worklist.push_back(Pred); 496 } 497 498 // All successors must be prepared to accept the same set of WQM/Exact data. 499 for (MachineBasicBlock *Succ : MBB.successors()) { 500 BlockInfo &SuccBI = Blocks[Succ]; 501 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 502 continue; 503 504 SuccBI.InNeeds |= BI.OutNeeds; 505 Worklist.push_back(Succ); 506 } 507 } 508 509 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 510 std::vector<WorkItem> Worklist; 511 char GlobalFlags = scanInstructions(MF, Worklist); 512 513 while (!Worklist.empty()) { 514 WorkItem WI = Worklist.back(); 515 Worklist.pop_back(); 516 517 if (WI.MI) 518 propagateInstruction(*WI.MI, Worklist); 519 else 520 propagateBlock(*WI.MBB, Worklist); 521 } 522 523 return GlobalFlags; 524 } 525 526 /// Whether \p MI really requires the exec state computed during analysis. 527 /// 528 /// Scalar instructions must occasionally be marked WQM for correct propagation 529 /// (e.g. thread masks leading up to branches), but when it comes to actual 530 /// execution, they don't care about EXEC. 531 bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const { 532 if (MI.isTerminator()) 533 return true; 534 535 // Skip instructions that are not affected by EXEC 536 if (TII->isScalarUnit(MI)) 537 return false; 538 539 // Generic instructions such as COPY will either disappear by register 540 // coalescing or be lowered to SALU or VALU instructions. 541 if (MI.isTransient()) { 542 if (MI.getNumExplicitOperands() >= 1) { 543 const MachineOperand &Op = MI.getOperand(0); 544 if (Op.isReg()) { 545 if (TRI->isSGPRReg(*MRI, Op.getReg())) { 546 // SGPR instructions are not affected by EXEC 547 return false; 548 } 549 } 550 } 551 } 552 553 return true; 554 } 555 556 MachineBasicBlock::iterator 557 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 558 MachineBasicBlock::iterator Before) { 559 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 560 561 MachineInstr *Save = 562 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 563 .addReg(AMDGPU::SCC); 564 MachineInstr *Restore = 565 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 566 .addReg(SaveReg); 567 568 LIS->InsertMachineInstrInMaps(*Save); 569 LIS->InsertMachineInstrInMaps(*Restore); 570 LIS->createAndComputeVirtRegInterval(SaveReg); 571 572 return Restore; 573 } 574 575 // Return an iterator in the (inclusive) range [First, Last] at which 576 // instructions can be safely inserted, keeping in mind that some of the 577 // instructions we want to add necessarily clobber SCC. 578 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 579 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 580 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 581 if (!SaveSCC) 582 return PreferLast ? Last : First; 583 584 LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 585 auto MBBE = MBB.end(); 586 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 587 : LIS->getMBBEndIdx(&MBB); 588 SlotIndex LastIdx = 589 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 590 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 591 const LiveRange::Segment *S; 592 593 for (;;) { 594 S = LR.getSegmentContaining(Idx); 595 if (!S) 596 break; 597 598 if (PreferLast) { 599 SlotIndex Next = S->start.getBaseIndex(); 600 if (Next < FirstIdx) 601 break; 602 Idx = Next; 603 } else { 604 SlotIndex Next = S->end.getNextIndex().getBaseIndex(); 605 if (Next > LastIdx) 606 break; 607 Idx = Next; 608 } 609 } 610 611 MachineBasicBlock::iterator MBBI; 612 613 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 614 MBBI = MI; 615 else { 616 assert(Idx == LIS->getMBBEndIdx(&MBB)); 617 MBBI = MBB.end(); 618 } 619 620 if (S) 621 MBBI = saveSCC(MBB, MBBI); 622 623 return MBBI; 624 } 625 626 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 627 MachineBasicBlock::iterator Before, 628 unsigned SaveWQM, unsigned LiveMaskReg) { 629 MachineInstr *MI; 630 631 if (SaveWQM) { 632 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 633 AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64), 634 SaveWQM) 635 .addReg(LiveMaskReg); 636 } else { 637 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 638 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 639 AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64), 640 Exec) 641 .addReg(Exec) 642 .addReg(LiveMaskReg); 643 } 644 645 LIS->InsertMachineInstrInMaps(*MI); 646 } 647 648 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 649 MachineBasicBlock::iterator Before, 650 unsigned SavedWQM) { 651 MachineInstr *MI; 652 653 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 654 if (SavedWQM) { 655 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 656 .addReg(SavedWQM); 657 } else { 658 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 659 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64), 660 Exec) 661 .addReg(Exec); 662 } 663 664 LIS->InsertMachineInstrInMaps(*MI); 665 } 666 667 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB, 668 MachineBasicBlock::iterator Before, 669 unsigned SaveOrig) { 670 MachineInstr *MI; 671 672 assert(SaveOrig); 673 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig) 674 .addImm(-1); 675 LIS->InsertMachineInstrInMaps(*MI); 676 } 677 678 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB, 679 MachineBasicBlock::iterator Before, 680 unsigned SavedOrig) { 681 MachineInstr *MI; 682 683 assert(SavedOrig); 684 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), 685 ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) 686 .addReg(SavedOrig); 687 LIS->InsertMachineInstrInMaps(*MI); 688 } 689 690 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, 691 bool isEntry) { 692 auto BII = Blocks.find(&MBB); 693 if (BII == Blocks.end()) 694 return; 695 696 const BlockInfo &BI = BII->second; 697 698 // This is a non-entry block that is WQM throughout, so no need to do 699 // anything. 700 if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) 701 return; 702 703 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 704 << ":\n"); 705 706 unsigned SavedWQMReg = 0; 707 unsigned SavedNonWWMReg = 0; 708 bool WQMFromExec = isEntry; 709 char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 710 char NonWWMState = 0; 711 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 712 713 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 714 if (isEntry) 715 ++II; // Skip the instruction that saves LiveMask 716 717 // This stores the first instruction where it's safe to switch from WQM to 718 // Exact or vice versa. 719 MachineBasicBlock::iterator FirstWQM = IE; 720 721 // This stores the first instruction where it's safe to switch from WWM to 722 // Exact/WQM or to switch to WWM. It must always be the same as, or after, 723 // FirstWQM since if it's safe to switch to/from WWM, it must be safe to 724 // switch to/from WQM as well. 725 MachineBasicBlock::iterator FirstWWM = IE; 726 for (;;) { 727 MachineBasicBlock::iterator Next = II; 728 char Needs = StateExact | StateWQM; // WWM is disabled by default 729 char OutNeeds = 0; 730 731 if (FirstWQM == IE) 732 FirstWQM = II; 733 734 if (FirstWWM == IE) 735 FirstWWM = II; 736 737 // First, figure out the allowed states (Needs) based on the propagated 738 // flags. 739 if (II != IE) { 740 MachineInstr &MI = *II; 741 742 if (requiresCorrectState(MI)) { 743 auto III = Instructions.find(&MI); 744 if (III != Instructions.end()) { 745 if (III->second.Needs & StateWWM) 746 Needs = StateWWM; 747 else if (III->second.Needs & StateWQM) 748 Needs = StateWQM; 749 else 750 Needs &= ~III->second.Disabled; 751 OutNeeds = III->second.OutNeeds; 752 } 753 } else { 754 // If the instruction doesn't actually need a correct EXEC, then we can 755 // safely leave WWM enabled. 756 Needs = StateExact | StateWQM | StateWWM; 757 } 758 759 if (MI.isTerminator() && OutNeeds == StateExact) 760 Needs = StateExact; 761 762 if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact) 763 MI.getOperand(3).setImm(1); 764 765 ++Next; 766 } else { 767 // End of basic block 768 if (BI.OutNeeds & StateWQM) 769 Needs = StateWQM; 770 else if (BI.OutNeeds == StateExact) 771 Needs = StateExact; 772 else 773 Needs = StateWQM | StateExact; 774 } 775 776 // Now, transition if necessary. 777 if (!(Needs & State)) { 778 MachineBasicBlock::iterator First; 779 if (State == StateWWM || Needs == StateWWM) { 780 // We must switch to or from WWM 781 First = FirstWWM; 782 } else { 783 // We only need to switch to/from WQM, so we can use FirstWQM 784 First = FirstWQM; 785 } 786 787 MachineBasicBlock::iterator Before = 788 prepareInsertion(MBB, First, II, Needs == StateWQM, 789 Needs == StateExact || WQMFromExec); 790 791 if (State == StateWWM) { 792 assert(SavedNonWWMReg); 793 fromWWM(MBB, Before, SavedNonWWMReg); 794 State = NonWWMState; 795 } 796 797 if (Needs == StateWWM) { 798 NonWWMState = State; 799 SavedNonWWMReg = MRI->createVirtualRegister(BoolRC); 800 toWWM(MBB, Before, SavedNonWWMReg); 801 State = StateWWM; 802 } else { 803 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 804 if (!WQMFromExec && (OutNeeds & StateWQM)) 805 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 806 807 toExact(MBB, Before, SavedWQMReg, LiveMaskReg); 808 State = StateExact; 809 } else if (State == StateExact && (Needs & StateWQM) && 810 !(Needs & StateExact)) { 811 assert(WQMFromExec == (SavedWQMReg == 0)); 812 813 toWQM(MBB, Before, SavedWQMReg); 814 815 if (SavedWQMReg) { 816 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 817 SavedWQMReg = 0; 818 } 819 State = StateWQM; 820 } else { 821 // We can get here if we transitioned from WWM to a non-WWM state that 822 // already matches our needs, but we shouldn't need to do anything. 823 assert(Needs & State); 824 } 825 } 826 } 827 828 if (Needs != (StateExact | StateWQM | StateWWM)) { 829 if (Needs != (StateExact | StateWQM)) 830 FirstWQM = IE; 831 FirstWWM = IE; 832 } 833 834 if (II == IE) 835 break; 836 II = Next; 837 } 838 } 839 840 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { 841 for (MachineInstr *MI : LiveMaskQueries) { 842 const DebugLoc &DL = MI->getDebugLoc(); 843 Register Dest = MI->getOperand(0).getReg(); 844 MachineInstr *Copy = 845 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 846 .addReg(LiveMaskReg); 847 848 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 849 MI->eraseFromParent(); 850 } 851 } 852 853 void SIWholeQuadMode::lowerCopyInstrs() { 854 for (MachineInstr *MI : LowerToCopyInstrs) { 855 for (unsigned i = MI->getNumExplicitOperands() - 1; i > 1; i--) 856 MI->RemoveOperand(i); 857 858 const Register Reg = MI->getOperand(0).getReg(); 859 860 if (TRI->isVGPR(*MRI, Reg)) { 861 const TargetRegisterClass *regClass = Register::isVirtualRegister(Reg) 862 ? MRI->getRegClass(Reg) 863 : TRI->getPhysRegClass(Reg); 864 865 const unsigned MovOp = TII->getMovOpcode(regClass); 866 MI->setDesc(TII->get(MovOp)); 867 868 // And make it implicitly depend on exec (like all VALU movs should do). 869 MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); 870 } else { 871 MI->setDesc(TII->get(AMDGPU::COPY)); 872 } 873 } 874 } 875 876 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 877 Instructions.clear(); 878 Blocks.clear(); 879 LiveMaskQueries.clear(); 880 LowerToCopyInstrs.clear(); 881 CallingConv = MF.getFunction().getCallingConv(); 882 883 ST = &MF.getSubtarget<GCNSubtarget>(); 884 885 TII = ST->getInstrInfo(); 886 TRI = &TII->getRegisterInfo(); 887 MRI = &MF.getRegInfo(); 888 LIS = &getAnalysis<LiveIntervals>(); 889 890 char GlobalFlags = analyzeFunction(MF); 891 unsigned LiveMaskReg = 0; 892 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 893 if (!(GlobalFlags & StateWQM)) { 894 lowerLiveMaskQueries(Exec); 895 if (!(GlobalFlags & StateWWM) && LowerToCopyInstrs.empty()) 896 return !LiveMaskQueries.empty(); 897 } else { 898 // Store a copy of the original live mask when required 899 MachineBasicBlock &Entry = MF.front(); 900 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 901 902 if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { 903 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 904 MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), 905 TII->get(AMDGPU::COPY), LiveMaskReg) 906 .addReg(Exec); 907 LIS->InsertMachineInstrInMaps(*MI); 908 } 909 910 lowerLiveMaskQueries(LiveMaskReg); 911 912 if (GlobalFlags == StateWQM) { 913 // For a shader that needs only WQM, we can just set it once. 914 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(ST->isWave32() ? 915 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64), 916 Exec) 917 .addReg(Exec); 918 919 lowerCopyInstrs(); 920 // EntryMI may become invalid here 921 return true; 922 } 923 } 924 925 LLVM_DEBUG(printInfo()); 926 927 lowerCopyInstrs(); 928 929 // Handle the general case 930 for (auto BII : Blocks) 931 processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); 932 933 // Physical registers like SCC aren't tracked by default anyway, so just 934 // removing the ranges we computed is the simplest option for maintaining 935 // the analysis results. 936 LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 937 938 return true; 939 } 940