1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode for pixel 11 /// shaders, and whole wavefront mode for all programs. 12 /// 13 /// Whole quad mode is required for derivative computations, but it interferes 14 /// with shader side effects (stores and atomics). This pass is run on the 15 /// scheduled machine IR but before register coalescing, so that machine SSA is 16 /// available for analysis. It ensures that WQM is enabled when necessary, but 17 /// disabled around stores and atomics. 18 /// 19 /// When necessary, this pass creates a function prolog 20 /// 21 /// S_MOV_B64 LiveMask, EXEC 22 /// S_WQM_B64 EXEC, EXEC 23 /// 24 /// to enter WQM at the top of the function and surrounds blocks of Exact 25 /// instructions by 26 /// 27 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 28 /// ... 29 /// S_MOV_B64 EXEC, Tmp 30 /// 31 /// We also compute when a sequence of instructions requires Whole Wavefront 32 /// Mode (WWM) and insert instructions to save and restore it: 33 /// 34 /// S_OR_SAVEEXEC_B64 Tmp, -1 35 /// ... 36 /// S_MOV_B64 EXEC, Tmp 37 /// 38 /// In order to avoid excessive switching during sequences of Exact 39 /// instructions, the pass first analyzes which instructions must be run in WQM 40 /// (aka which instructions produce values that lead to derivative 41 /// computations). 42 /// 43 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 44 /// 45 /// There is room for improvement given better control flow analysis: 46 /// 47 /// (1) at the top level (outside of control flow statements, and as long as 48 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 49 /// the LiveMask (this is implemented for the entry block). 50 /// 51 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 52 /// consist of exact and don't-care instructions, the switch only has to 53 /// be done at the entry and exit points rather than potentially in each 54 /// block of the region. 55 /// 56 //===----------------------------------------------------------------------===// 57 58 #include "AMDGPU.h" 59 #include "AMDGPUSubtarget.h" 60 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 61 #include "SIInstrInfo.h" 62 #include "SIMachineFunctionInfo.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/CodeGen/LiveInterval.h" 68 #include "llvm/CodeGen/LiveIntervals.h" 69 #include "llvm/CodeGen/MachineBasicBlock.h" 70 #include "llvm/CodeGen/MachineFunction.h" 71 #include "llvm/CodeGen/MachineFunctionPass.h" 72 #include "llvm/CodeGen/MachineInstr.h" 73 #include "llvm/CodeGen/MachineInstrBuilder.h" 74 #include "llvm/CodeGen/MachineOperand.h" 75 #include "llvm/CodeGen/MachineRegisterInfo.h" 76 #include "llvm/CodeGen/SlotIndexes.h" 77 #include "llvm/CodeGen/TargetRegisterInfo.h" 78 #include "llvm/IR/CallingConv.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/InitializePasses.h" 81 #include "llvm/MC/MCRegisterInfo.h" 82 #include "llvm/Pass.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include <cassert> 86 #include <vector> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "si-wqm" 91 92 namespace { 93 94 enum { 95 StateWQM = 0x1, 96 StateWWM = 0x2, 97 StateExact = 0x4, 98 }; 99 100 struct PrintState { 101 public: 102 int State; 103 104 explicit PrintState(int State) : State(State) {} 105 }; 106 107 #ifndef NDEBUG 108 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 109 if (PS.State & StateWQM) 110 OS << "WQM"; 111 if (PS.State & StateWWM) { 112 if (PS.State & StateWQM) 113 OS << '|'; 114 OS << "WWM"; 115 } 116 if (PS.State & StateExact) { 117 if (PS.State & (StateWQM | StateWWM)) 118 OS << '|'; 119 OS << "Exact"; 120 } 121 122 return OS; 123 } 124 #endif 125 126 struct InstrInfo { 127 char Needs = 0; 128 char Disabled = 0; 129 char OutNeeds = 0; 130 }; 131 132 struct BlockInfo { 133 char Needs = 0; 134 char InNeeds = 0; 135 char OutNeeds = 0; 136 }; 137 138 struct WorkItem { 139 MachineBasicBlock *MBB = nullptr; 140 MachineInstr *MI = nullptr; 141 142 WorkItem() = default; 143 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 144 WorkItem(MachineInstr *MI) : MI(MI) {} 145 }; 146 147 class SIWholeQuadMode : public MachineFunctionPass { 148 private: 149 CallingConv::ID CallingConv; 150 const SIInstrInfo *TII; 151 const SIRegisterInfo *TRI; 152 const GCNSubtarget *ST; 153 MachineRegisterInfo *MRI; 154 LiveIntervals *LIS; 155 156 DenseMap<const MachineInstr *, InstrInfo> Instructions; 157 DenseMap<MachineBasicBlock *, BlockInfo> Blocks; 158 SmallVector<MachineInstr *, 1> LiveMaskQueries; 159 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 160 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 161 162 void printInfo(); 163 164 void markInstruction(MachineInstr &MI, char Flag, 165 std::vector<WorkItem> &Worklist); 166 void markInstructionUses(const MachineInstr &MI, char Flag, 167 std::vector<WorkItem> &Worklist); 168 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 169 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 170 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 171 char analyzeFunction(MachineFunction &MF); 172 173 bool requiresCorrectState(const MachineInstr &MI) const; 174 175 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 176 MachineBasicBlock::iterator Before); 177 MachineBasicBlock::iterator 178 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 179 MachineBasicBlock::iterator Last, bool PreferLast, 180 bool SaveSCC); 181 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 182 unsigned SaveWQM, unsigned LiveMaskReg); 183 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 184 unsigned SavedWQM); 185 void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 186 unsigned SaveOrig); 187 void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 188 unsigned SavedOrig); 189 void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); 190 191 void lowerLiveMaskQueries(unsigned LiveMaskReg); 192 void lowerCopyInstrs(); 193 194 public: 195 static char ID; 196 197 SIWholeQuadMode() : 198 MachineFunctionPass(ID) { } 199 200 bool runOnMachineFunction(MachineFunction &MF) override; 201 202 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 203 204 void getAnalysisUsage(AnalysisUsage &AU) const override { 205 AU.addRequired<LiveIntervals>(); 206 AU.addPreserved<SlotIndexes>(); 207 AU.addPreserved<LiveIntervals>(); 208 AU.setPreservesCFG(); 209 MachineFunctionPass::getAnalysisUsage(AU); 210 } 211 }; 212 213 } // end anonymous namespace 214 215 char SIWholeQuadMode::ID = 0; 216 217 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 218 false) 219 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 220 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 221 false) 222 223 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 224 225 FunctionPass *llvm::createSIWholeQuadModePass() { 226 return new SIWholeQuadMode; 227 } 228 229 #ifndef NDEBUG 230 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 231 for (const auto &BII : Blocks) { 232 dbgs() << "\n" 233 << printMBBReference(*BII.first) << ":\n" 234 << " InNeeds = " << PrintState(BII.second.InNeeds) 235 << ", Needs = " << PrintState(BII.second.Needs) 236 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 237 238 for (const MachineInstr &MI : *BII.first) { 239 auto III = Instructions.find(&MI); 240 if (III == Instructions.end()) 241 continue; 242 243 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 244 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 245 } 246 } 247 } 248 #endif 249 250 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 251 std::vector<WorkItem> &Worklist) { 252 InstrInfo &II = Instructions[&MI]; 253 254 assert(!(Flag & StateExact) && Flag != 0); 255 256 // Remove any disabled states from the flag. The user that required it gets 257 // an undefined value in the helper lanes. For example, this can happen if 258 // the result of an atomic is used by instruction that requires WQM, where 259 // ignoring the request for WQM is correct as per the relevant specs. 260 Flag &= ~II.Disabled; 261 262 // Ignore if the flag is already encompassed by the existing needs, or we 263 // just disabled everything. 264 if ((II.Needs & Flag) == Flag) 265 return; 266 267 II.Needs |= Flag; 268 Worklist.push_back(&MI); 269 } 270 271 /// Mark all instructions defining the uses in \p MI with \p Flag. 272 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 273 std::vector<WorkItem> &Worklist) { 274 for (const MachineOperand &Use : MI.uses()) { 275 if (!Use.isReg() || !Use.isUse()) 276 continue; 277 278 Register Reg = Use.getReg(); 279 280 // Handle physical registers that we need to track; this is mostly relevant 281 // for VCC, which can appear as the (implicit) input of a uniform branch, 282 // e.g. when a loop counter is stored in a VGPR. 283 if (!Register::isVirtualRegister(Reg)) { 284 if (Reg == AMDGPU::EXEC || Reg == AMDGPU::EXEC_LO) 285 continue; 286 287 for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) { 288 LiveRange &LR = LIS->getRegUnit(*RegUnit); 289 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 290 if (!Value) 291 continue; 292 293 // Since we're in machine SSA, we do not need to track physical 294 // registers across basic blocks. 295 if (Value->isPHIDef()) 296 continue; 297 298 markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag, 299 Worklist); 300 } 301 302 continue; 303 } 304 305 for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) 306 markInstruction(DefMI, Flag, Worklist); 307 } 308 } 309 310 // Scan instructions to determine which ones require an Exact execmask and 311 // which ones seed WQM requirements. 312 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 313 std::vector<WorkItem> &Worklist) { 314 char GlobalFlags = 0; 315 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 316 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 317 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 318 319 // We need to visit the basic blocks in reverse post-order so that we visit 320 // defs before uses, in particular so that we don't accidentally mark an 321 // instruction as needing e.g. WQM before visiting it and realizing it needs 322 // WQM disabled. 323 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 324 for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { 325 MachineBasicBlock &MBB = **BI; 326 BlockInfo &BBI = Blocks[&MBB]; 327 328 for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { 329 MachineInstr &MI = *II; 330 InstrInfo &III = Instructions[&MI]; 331 unsigned Opcode = MI.getOpcode(); 332 char Flags = 0; 333 334 if (TII->isWQM(Opcode)) { 335 // Sampling instructions don't need to produce results for all pixels 336 // in a quad, they just require all inputs of a quad to have been 337 // computed for derivatives. 338 markInstructionUses(MI, StateWQM, Worklist); 339 GlobalFlags |= StateWQM; 340 continue; 341 } else if (Opcode == AMDGPU::WQM) { 342 // The WQM intrinsic requires its output to have all the helper lanes 343 // correct, so we need it to be in WQM. 344 Flags = StateWQM; 345 LowerToCopyInstrs.push_back(&MI); 346 } else if (Opcode == AMDGPU::SOFT_WQM) { 347 LowerToCopyInstrs.push_back(&MI); 348 SoftWQMInstrs.push_back(&MI); 349 continue; 350 } else if (Opcode == AMDGPU::WWM) { 351 // The WWM intrinsic doesn't make the same guarantee, and plus it needs 352 // to be executed in WQM or Exact so that its copy doesn't clobber 353 // inactive lanes. 354 markInstructionUses(MI, StateWWM, Worklist); 355 GlobalFlags |= StateWWM; 356 LowerToMovInstrs.push_back(&MI); 357 continue; 358 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 359 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 360 III.Disabled = StateWWM; 361 MachineOperand &Inactive = MI.getOperand(2); 362 if (Inactive.isReg()) { 363 if (Inactive.isUndef()) { 364 LowerToCopyInstrs.push_back(&MI); 365 } else { 366 Register Reg = Inactive.getReg(); 367 if (Register::isVirtualRegister(Reg)) { 368 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) 369 markInstruction(DefMI, StateWWM, Worklist); 370 } 371 } 372 } 373 SetInactiveInstrs.push_back(&MI); 374 continue; 375 } else if (TII->isDisableWQM(MI)) { 376 BBI.Needs |= StateExact; 377 if (!(BBI.InNeeds & StateExact)) { 378 BBI.InNeeds |= StateExact; 379 Worklist.push_back(&MBB); 380 } 381 GlobalFlags |= StateExact; 382 III.Disabled = StateWQM | StateWWM; 383 continue; 384 } else { 385 if (Opcode == AMDGPU::SI_PS_LIVE) { 386 LiveMaskQueries.push_back(&MI); 387 } else if (WQMOutputs) { 388 // The function is in machine SSA form, which means that physical 389 // VGPRs correspond to shader inputs and outputs. Inputs are 390 // only used, outputs are only defined. 391 for (const MachineOperand &MO : MI.defs()) { 392 if (!MO.isReg()) 393 continue; 394 395 Register Reg = MO.getReg(); 396 397 if (!Register::isVirtualRegister(Reg) && 398 TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) { 399 Flags = StateWQM; 400 break; 401 } 402 } 403 } 404 405 if (!Flags) 406 continue; 407 } 408 409 markInstruction(MI, Flags, Worklist); 410 GlobalFlags |= Flags; 411 } 412 } 413 414 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 415 // ever used anywhere in the function. This implements the corresponding 416 // semantics of @llvm.amdgcn.set.inactive. 417 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 418 if (GlobalFlags & StateWQM) { 419 for (MachineInstr *MI : SetInactiveInstrs) 420 markInstruction(*MI, StateWQM, Worklist); 421 for (MachineInstr *MI : SoftWQMInstrs) 422 markInstruction(*MI, StateWQM, Worklist); 423 } 424 425 return GlobalFlags; 426 } 427 428 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 429 std::vector<WorkItem>& Worklist) { 430 MachineBasicBlock *MBB = MI.getParent(); 431 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 432 BlockInfo &BI = Blocks[MBB]; 433 434 // Control flow-type instructions and stores to temporary memory that are 435 // followed by WQM computations must themselves be in WQM. 436 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 437 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 438 Instructions[&MI].Needs = StateWQM; 439 II.Needs = StateWQM; 440 } 441 442 // Propagate to block level 443 if (II.Needs & StateWQM) { 444 BI.Needs |= StateWQM; 445 if (!(BI.InNeeds & StateWQM)) { 446 BI.InNeeds |= StateWQM; 447 Worklist.push_back(MBB); 448 } 449 } 450 451 // Propagate backwards within block 452 if (MachineInstr *PrevMI = MI.getPrevNode()) { 453 char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds; 454 if (!PrevMI->isPHI()) { 455 InstrInfo &PrevII = Instructions[PrevMI]; 456 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 457 PrevII.OutNeeds |= InNeeds; 458 Worklist.push_back(PrevMI); 459 } 460 } 461 } 462 463 // Propagate WQM flag to instruction inputs 464 assert(!(II.Needs & StateExact)); 465 466 if (II.Needs != 0) 467 markInstructionUses(MI, II.Needs, Worklist); 468 469 // Ensure we process a block containing WWM, even if it does not require any 470 // WQM transitions. 471 if (II.Needs & StateWWM) 472 BI.Needs |= StateWWM; 473 } 474 475 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 476 std::vector<WorkItem>& Worklist) { 477 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 478 479 // Propagate through instructions 480 if (!MBB.empty()) { 481 MachineInstr *LastMI = &*MBB.rbegin(); 482 InstrInfo &LastII = Instructions[LastMI]; 483 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 484 LastII.OutNeeds |= BI.OutNeeds; 485 Worklist.push_back(LastMI); 486 } 487 } 488 489 // Predecessor blocks must provide for our WQM/Exact needs. 490 for (MachineBasicBlock *Pred : MBB.predecessors()) { 491 BlockInfo &PredBI = Blocks[Pred]; 492 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 493 continue; 494 495 PredBI.OutNeeds |= BI.InNeeds; 496 PredBI.InNeeds |= BI.InNeeds; 497 Worklist.push_back(Pred); 498 } 499 500 // All successors must be prepared to accept the same set of WQM/Exact data. 501 for (MachineBasicBlock *Succ : MBB.successors()) { 502 BlockInfo &SuccBI = Blocks[Succ]; 503 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 504 continue; 505 506 SuccBI.InNeeds |= BI.OutNeeds; 507 Worklist.push_back(Succ); 508 } 509 } 510 511 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 512 std::vector<WorkItem> Worklist; 513 char GlobalFlags = scanInstructions(MF, Worklist); 514 515 while (!Worklist.empty()) { 516 WorkItem WI = Worklist.back(); 517 Worklist.pop_back(); 518 519 if (WI.MI) 520 propagateInstruction(*WI.MI, Worklist); 521 else 522 propagateBlock(*WI.MBB, Worklist); 523 } 524 525 return GlobalFlags; 526 } 527 528 /// Whether \p MI really requires the exec state computed during analysis. 529 /// 530 /// Scalar instructions must occasionally be marked WQM for correct propagation 531 /// (e.g. thread masks leading up to branches), but when it comes to actual 532 /// execution, they don't care about EXEC. 533 bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const { 534 if (MI.isTerminator()) 535 return true; 536 537 // Skip instructions that are not affected by EXEC 538 if (TII->isScalarUnit(MI)) 539 return false; 540 541 // Generic instructions such as COPY will either disappear by register 542 // coalescing or be lowered to SALU or VALU instructions. 543 if (MI.isTransient()) { 544 if (MI.getNumExplicitOperands() >= 1) { 545 const MachineOperand &Op = MI.getOperand(0); 546 if (Op.isReg()) { 547 if (TRI->isSGPRReg(*MRI, Op.getReg())) { 548 // SGPR instructions are not affected by EXEC 549 return false; 550 } 551 } 552 } 553 } 554 555 return true; 556 } 557 558 MachineBasicBlock::iterator 559 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 560 MachineBasicBlock::iterator Before) { 561 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 562 563 MachineInstr *Save = 564 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 565 .addReg(AMDGPU::SCC); 566 MachineInstr *Restore = 567 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 568 .addReg(SaveReg); 569 570 LIS->InsertMachineInstrInMaps(*Save); 571 LIS->InsertMachineInstrInMaps(*Restore); 572 LIS->createAndComputeVirtRegInterval(SaveReg); 573 574 return Restore; 575 } 576 577 // Return an iterator in the (inclusive) range [First, Last] at which 578 // instructions can be safely inserted, keeping in mind that some of the 579 // instructions we want to add necessarily clobber SCC. 580 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 581 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 582 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 583 if (!SaveSCC) 584 return PreferLast ? Last : First; 585 586 LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 587 auto MBBE = MBB.end(); 588 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 589 : LIS->getMBBEndIdx(&MBB); 590 SlotIndex LastIdx = 591 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 592 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 593 const LiveRange::Segment *S; 594 595 for (;;) { 596 S = LR.getSegmentContaining(Idx); 597 if (!S) 598 break; 599 600 if (PreferLast) { 601 SlotIndex Next = S->start.getBaseIndex(); 602 if (Next < FirstIdx) 603 break; 604 Idx = Next; 605 } else { 606 SlotIndex Next = S->end.getNextIndex().getBaseIndex(); 607 if (Next > LastIdx) 608 break; 609 Idx = Next; 610 } 611 } 612 613 MachineBasicBlock::iterator MBBI; 614 615 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 616 MBBI = MI; 617 else { 618 assert(Idx == LIS->getMBBEndIdx(&MBB)); 619 MBBI = MBB.end(); 620 } 621 622 if (S) 623 MBBI = saveSCC(MBB, MBBI); 624 625 return MBBI; 626 } 627 628 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 629 MachineBasicBlock::iterator Before, 630 unsigned SaveWQM, unsigned LiveMaskReg) { 631 MachineInstr *MI; 632 633 if (SaveWQM) { 634 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 635 AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64), 636 SaveWQM) 637 .addReg(LiveMaskReg); 638 } else { 639 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 640 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 641 AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64), 642 Exec) 643 .addReg(Exec) 644 .addReg(LiveMaskReg); 645 } 646 647 LIS->InsertMachineInstrInMaps(*MI); 648 } 649 650 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 651 MachineBasicBlock::iterator Before, 652 unsigned SavedWQM) { 653 MachineInstr *MI; 654 655 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 656 if (SavedWQM) { 657 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 658 .addReg(SavedWQM); 659 } else { 660 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 661 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64), 662 Exec) 663 .addReg(Exec); 664 } 665 666 LIS->InsertMachineInstrInMaps(*MI); 667 } 668 669 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB, 670 MachineBasicBlock::iterator Before, 671 unsigned SaveOrig) { 672 MachineInstr *MI; 673 674 assert(SaveOrig); 675 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig) 676 .addImm(-1); 677 LIS->InsertMachineInstrInMaps(*MI); 678 } 679 680 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB, 681 MachineBasicBlock::iterator Before, 682 unsigned SavedOrig) { 683 MachineInstr *MI; 684 685 assert(SavedOrig); 686 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), 687 ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) 688 .addReg(SavedOrig); 689 LIS->InsertMachineInstrInMaps(*MI); 690 } 691 692 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, 693 bool isEntry) { 694 auto BII = Blocks.find(&MBB); 695 if (BII == Blocks.end()) 696 return; 697 698 const BlockInfo &BI = BII->second; 699 700 // This is a non-entry block that is WQM throughout, so no need to do 701 // anything. 702 if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) 703 return; 704 705 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 706 << ":\n"); 707 708 unsigned SavedWQMReg = 0; 709 unsigned SavedNonWWMReg = 0; 710 bool WQMFromExec = isEntry; 711 char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 712 char NonWWMState = 0; 713 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 714 715 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 716 if (isEntry) 717 ++II; // Skip the instruction that saves LiveMask 718 719 // This stores the first instruction where it's safe to switch from WQM to 720 // Exact or vice versa. 721 MachineBasicBlock::iterator FirstWQM = IE; 722 723 // This stores the first instruction where it's safe to switch from WWM to 724 // Exact/WQM or to switch to WWM. It must always be the same as, or after, 725 // FirstWQM since if it's safe to switch to/from WWM, it must be safe to 726 // switch to/from WQM as well. 727 MachineBasicBlock::iterator FirstWWM = IE; 728 for (;;) { 729 MachineBasicBlock::iterator Next = II; 730 char Needs = StateExact | StateWQM; // WWM is disabled by default 731 char OutNeeds = 0; 732 733 if (FirstWQM == IE) 734 FirstWQM = II; 735 736 if (FirstWWM == IE) 737 FirstWWM = II; 738 739 // First, figure out the allowed states (Needs) based on the propagated 740 // flags. 741 if (II != IE) { 742 MachineInstr &MI = *II; 743 744 if (requiresCorrectState(MI)) { 745 auto III = Instructions.find(&MI); 746 if (III != Instructions.end()) { 747 if (III->second.Needs & StateWWM) 748 Needs = StateWWM; 749 else if (III->second.Needs & StateWQM) 750 Needs = StateWQM; 751 else 752 Needs &= ~III->second.Disabled; 753 OutNeeds = III->second.OutNeeds; 754 } 755 } else { 756 // If the instruction doesn't actually need a correct EXEC, then we can 757 // safely leave WWM enabled. 758 Needs = StateExact | StateWQM | StateWWM; 759 } 760 761 if (MI.isTerminator() && OutNeeds == StateExact) 762 Needs = StateExact; 763 764 if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact) 765 MI.getOperand(3).setImm(1); 766 767 ++Next; 768 } else { 769 // End of basic block 770 if (BI.OutNeeds & StateWQM) 771 Needs = StateWQM; 772 else if (BI.OutNeeds == StateExact) 773 Needs = StateExact; 774 else 775 Needs = StateWQM | StateExact; 776 } 777 778 // Now, transition if necessary. 779 if (!(Needs & State)) { 780 MachineBasicBlock::iterator First; 781 if (State == StateWWM || Needs == StateWWM) { 782 // We must switch to or from WWM 783 First = FirstWWM; 784 } else { 785 // We only need to switch to/from WQM, so we can use FirstWQM 786 First = FirstWQM; 787 } 788 789 MachineBasicBlock::iterator Before = 790 prepareInsertion(MBB, First, II, Needs == StateWQM, 791 Needs == StateExact || WQMFromExec); 792 793 if (State == StateWWM) { 794 assert(SavedNonWWMReg); 795 fromWWM(MBB, Before, SavedNonWWMReg); 796 State = NonWWMState; 797 } 798 799 if (Needs == StateWWM) { 800 NonWWMState = State; 801 SavedNonWWMReg = MRI->createVirtualRegister(BoolRC); 802 toWWM(MBB, Before, SavedNonWWMReg); 803 State = StateWWM; 804 } else { 805 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 806 if (!WQMFromExec && (OutNeeds & StateWQM)) 807 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 808 809 toExact(MBB, Before, SavedWQMReg, LiveMaskReg); 810 State = StateExact; 811 } else if (State == StateExact && (Needs & StateWQM) && 812 !(Needs & StateExact)) { 813 assert(WQMFromExec == (SavedWQMReg == 0)); 814 815 toWQM(MBB, Before, SavedWQMReg); 816 817 if (SavedWQMReg) { 818 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 819 SavedWQMReg = 0; 820 } 821 State = StateWQM; 822 } else { 823 // We can get here if we transitioned from WWM to a non-WWM state that 824 // already matches our needs, but we shouldn't need to do anything. 825 assert(Needs & State); 826 } 827 } 828 } 829 830 if (Needs != (StateExact | StateWQM | StateWWM)) { 831 if (Needs != (StateExact | StateWQM)) 832 FirstWQM = IE; 833 FirstWWM = IE; 834 } 835 836 if (II == IE) 837 break; 838 II = Next; 839 } 840 } 841 842 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { 843 for (MachineInstr *MI : LiveMaskQueries) { 844 const DebugLoc &DL = MI->getDebugLoc(); 845 Register Dest = MI->getOperand(0).getReg(); 846 MachineInstr *Copy = 847 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 848 .addReg(LiveMaskReg); 849 850 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 851 MI->eraseFromParent(); 852 } 853 } 854 855 void SIWholeQuadMode::lowerCopyInstrs() { 856 for (MachineInstr *MI : LowerToMovInstrs) { 857 assert(MI->getNumExplicitOperands() == 2); 858 859 const Register Reg = MI->getOperand(0).getReg(); 860 861 if (TRI->isVGPR(*MRI, Reg)) { 862 const TargetRegisterClass *regClass = Register::isVirtualRegister(Reg) 863 ? MRI->getRegClass(Reg) 864 : TRI->getPhysRegClass(Reg); 865 866 const unsigned MovOp = TII->getMovOpcode(regClass); 867 MI->setDesc(TII->get(MovOp)); 868 869 // And make it implicitly depend on exec (like all VALU movs should do). 870 MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); 871 } else { 872 MI->setDesc(TII->get(AMDGPU::COPY)); 873 } 874 } 875 for (MachineInstr *MI : LowerToCopyInstrs) { 876 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 877 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 878 assert(MI->getNumExplicitOperands() == 3); 879 // the only reason we should be here is V_SET_INACTIVE has 880 // an undef input so it is being replaced by a simple copy. 881 // There should be a second undef source that we should remove. 882 assert(MI->getOperand(2).isUndef()); 883 MI->RemoveOperand(2); 884 MI->untieRegOperand(1); 885 } else { 886 assert(MI->getNumExplicitOperands() == 2); 887 } 888 889 MI->setDesc(TII->get(AMDGPU::COPY)); 890 } 891 } 892 893 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 894 Instructions.clear(); 895 Blocks.clear(); 896 LiveMaskQueries.clear(); 897 LowerToCopyInstrs.clear(); 898 LowerToMovInstrs.clear(); 899 CallingConv = MF.getFunction().getCallingConv(); 900 901 ST = &MF.getSubtarget<GCNSubtarget>(); 902 903 TII = ST->getInstrInfo(); 904 TRI = &TII->getRegisterInfo(); 905 MRI = &MF.getRegInfo(); 906 LIS = &getAnalysis<LiveIntervals>(); 907 908 char GlobalFlags = analyzeFunction(MF); 909 unsigned LiveMaskReg = 0; 910 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 911 if (!(GlobalFlags & StateWQM)) { 912 lowerLiveMaskQueries(Exec); 913 if (!(GlobalFlags & StateWWM) && LowerToCopyInstrs.empty() && LowerToMovInstrs.empty()) 914 return !LiveMaskQueries.empty(); 915 } else { 916 // Store a copy of the original live mask when required 917 MachineBasicBlock &Entry = MF.front(); 918 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 919 920 if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { 921 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 922 MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), 923 TII->get(AMDGPU::COPY), LiveMaskReg) 924 .addReg(Exec); 925 LIS->InsertMachineInstrInMaps(*MI); 926 } 927 928 lowerLiveMaskQueries(LiveMaskReg); 929 930 if (GlobalFlags == StateWQM) { 931 // For a shader that needs only WQM, we can just set it once. 932 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(ST->isWave32() ? 933 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64), 934 Exec) 935 .addReg(Exec); 936 937 lowerCopyInstrs(); 938 // EntryMI may become invalid here 939 return true; 940 } 941 } 942 943 LLVM_DEBUG(printInfo()); 944 945 lowerCopyInstrs(); 946 947 // Handle the general case 948 for (auto BII : Blocks) 949 processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); 950 951 // Physical registers like SCC aren't tracked by default anyway, so just 952 // removing the ranges we computed is the simplest option for maintaining 953 // the analysis results. 954 LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 955 956 return true; 957 } 958