1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode for pixel 11 /// shaders, and whole wavefront mode for all programs. 12 /// 13 /// Whole quad mode is required for derivative computations, but it interferes 14 /// with shader side effects (stores and atomics). This pass is run on the 15 /// scheduled machine IR but before register coalescing, so that machine SSA is 16 /// available for analysis. It ensures that WQM is enabled when necessary, but 17 /// disabled around stores and atomics. 18 /// 19 /// When necessary, this pass creates a function prolog 20 /// 21 /// S_MOV_B64 LiveMask, EXEC 22 /// S_WQM_B64 EXEC, EXEC 23 /// 24 /// to enter WQM at the top of the function and surrounds blocks of Exact 25 /// instructions by 26 /// 27 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 28 /// ... 29 /// S_MOV_B64 EXEC, Tmp 30 /// 31 /// We also compute when a sequence of instructions requires Whole Wavefront 32 /// Mode (WWM) and insert instructions to save and restore it: 33 /// 34 /// S_OR_SAVEEXEC_B64 Tmp, -1 35 /// ... 36 /// S_MOV_B64 EXEC, Tmp 37 /// 38 /// In order to avoid excessive switching during sequences of Exact 39 /// instructions, the pass first analyzes which instructions must be run in WQM 40 /// (aka which instructions produce values that lead to derivative 41 /// computations). 42 /// 43 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 44 /// 45 /// There is room for improvement given better control flow analysis: 46 /// 47 /// (1) at the top level (outside of control flow statements, and as long as 48 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 49 /// the LiveMask (this is implemented for the entry block). 50 /// 51 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 52 /// consist of exact and don't-care instructions, the switch only has to 53 /// be done at the entry and exit points rather than potentially in each 54 /// block of the region. 55 /// 56 //===----------------------------------------------------------------------===// 57 58 #include "AMDGPU.h" 59 #include "GCNSubtarget.h" 60 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 61 #include "llvm/ADT/MapVector.h" 62 #include "llvm/ADT/PostOrderIterator.h" 63 #include "llvm/CodeGen/LiveIntervals.h" 64 #include "llvm/CodeGen/MachineBasicBlock.h" 65 #include "llvm/CodeGen/MachineFunctionPass.h" 66 #include "llvm/CodeGen/MachineInstr.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Support/raw_ostream.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "si-wqm" 74 75 namespace { 76 77 enum { 78 StateWQM = 0x1, 79 StateWWM = 0x2, 80 StateExact = 0x4, 81 }; 82 83 struct PrintState { 84 public: 85 int State; 86 87 explicit PrintState(int State) : State(State) {} 88 }; 89 90 #ifndef NDEBUG 91 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 92 if (PS.State & StateWQM) 93 OS << "WQM"; 94 if (PS.State & StateWWM) { 95 if (PS.State & StateWQM) 96 OS << '|'; 97 OS << "WWM"; 98 } 99 if (PS.State & StateExact) { 100 if (PS.State & (StateWQM | StateWWM)) 101 OS << '|'; 102 OS << "Exact"; 103 } 104 105 return OS; 106 } 107 #endif 108 109 struct InstrInfo { 110 char Needs = 0; 111 char Disabled = 0; 112 char OutNeeds = 0; 113 }; 114 115 struct BlockInfo { 116 char Needs = 0; 117 char InNeeds = 0; 118 char OutNeeds = 0; 119 }; 120 121 struct WorkItem { 122 MachineBasicBlock *MBB = nullptr; 123 MachineInstr *MI = nullptr; 124 125 WorkItem() = default; 126 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 127 WorkItem(MachineInstr *MI) : MI(MI) {} 128 }; 129 130 class SIWholeQuadMode : public MachineFunctionPass { 131 private: 132 CallingConv::ID CallingConv; 133 const SIInstrInfo *TII; 134 const SIRegisterInfo *TRI; 135 const GCNSubtarget *ST; 136 MachineRegisterInfo *MRI; 137 LiveIntervals *LIS; 138 139 unsigned AndOpc; 140 unsigned XorTermrOpc; 141 unsigned OrSaveExecOpc; 142 unsigned Exec; 143 144 DenseMap<const MachineInstr *, InstrInfo> Instructions; 145 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 146 SmallVector<MachineInstr *, 1> LiveMaskQueries; 147 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 148 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 149 150 void printInfo(); 151 152 void markInstruction(MachineInstr &MI, char Flag, 153 std::vector<WorkItem> &Worklist); 154 void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, 155 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist); 156 void markInstructionUses(const MachineInstr &MI, char Flag, 157 std::vector<WorkItem> &Worklist); 158 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 159 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 160 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 161 char analyzeFunction(MachineFunction &MF); 162 163 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 164 MachineBasicBlock::iterator Before); 165 MachineBasicBlock::iterator 166 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 167 MachineBasicBlock::iterator Last, bool PreferLast, 168 bool SaveSCC); 169 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 170 unsigned SaveWQM, unsigned LiveMaskReg); 171 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 172 unsigned SavedWQM); 173 void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 174 unsigned SaveOrig); 175 void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 176 unsigned SavedOrig); 177 void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); 178 179 void lowerLiveMaskQueries(unsigned LiveMaskReg); 180 void lowerCopyInstrs(); 181 182 public: 183 static char ID; 184 185 SIWholeQuadMode() : 186 MachineFunctionPass(ID) { } 187 188 bool runOnMachineFunction(MachineFunction &MF) override; 189 190 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 191 192 void getAnalysisUsage(AnalysisUsage &AU) const override { 193 AU.addRequired<LiveIntervals>(); 194 AU.addPreserved<SlotIndexes>(); 195 AU.addPreserved<LiveIntervals>(); 196 AU.setPreservesCFG(); 197 MachineFunctionPass::getAnalysisUsage(AU); 198 } 199 }; 200 201 } // end anonymous namespace 202 203 char SIWholeQuadMode::ID = 0; 204 205 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 206 false) 207 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 208 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 209 false) 210 211 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 212 213 FunctionPass *llvm::createSIWholeQuadModePass() { 214 return new SIWholeQuadMode; 215 } 216 217 #ifndef NDEBUG 218 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 219 for (const auto &BII : Blocks) { 220 dbgs() << "\n" 221 << printMBBReference(*BII.first) << ":\n" 222 << " InNeeds = " << PrintState(BII.second.InNeeds) 223 << ", Needs = " << PrintState(BII.second.Needs) 224 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 225 226 for (const MachineInstr &MI : *BII.first) { 227 auto III = Instructions.find(&MI); 228 if (III == Instructions.end()) 229 continue; 230 231 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 232 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 233 } 234 } 235 } 236 #endif 237 238 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 239 std::vector<WorkItem> &Worklist) { 240 InstrInfo &II = Instructions[&MI]; 241 242 assert(!(Flag & StateExact) && Flag != 0); 243 244 LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); 245 246 // Remove any disabled states from the flag. The user that required it gets 247 // an undefined value in the helper lanes. For example, this can happen if 248 // the result of an atomic is used by instruction that requires WQM, where 249 // ignoring the request for WQM is correct as per the relevant specs. 250 Flag &= ~II.Disabled; 251 252 // Ignore if the flag is already encompassed by the existing needs, or we 253 // just disabled everything. 254 if ((II.Needs & Flag) == Flag) 255 return; 256 257 II.Needs |= Flag; 258 Worklist.push_back(&MI); 259 } 260 261 /// Mark all relevant definitions of register \p Reg in usage \p UseMI. 262 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, 263 Register Reg, unsigned SubReg, char Flag, 264 std::vector<WorkItem> &Worklist) { 265 assert(!MRI->isSSA()); 266 267 LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); 268 269 LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); 270 if (!UseLRQ.valueIn()) 271 return; 272 273 SmallPtrSet<const VNInfo *, 4> Visited; 274 SmallVector<const VNInfo *, 4> ToProcess; 275 ToProcess.push_back(UseLRQ.valueIn()); 276 do { 277 const VNInfo *Value = ToProcess.pop_back_val(); 278 Visited.insert(Value); 279 280 if (Value->isPHIDef()) { 281 // Need to mark all defs used in the PHI node 282 const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); 283 assert(MBB && "Phi-def has no defining MBB"); 284 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 285 PE = MBB->pred_end(); 286 PI != PE; ++PI) { 287 if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { 288 if (!Visited.count(VN)) 289 ToProcess.push_back(VN); 290 } 291 } 292 } else { 293 MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); 294 assert(MI && "Def has no defining instruction"); 295 markInstruction(*MI, Flag, Worklist); 296 297 // Iterate over all operands to find relevant definitions 298 for (const MachineOperand &Op : MI->operands()) { 299 if (!(Op.isReg() && Op.getReg() == Reg)) 300 continue; 301 302 // Does this def cover whole register? 303 bool DefinesFullReg = 304 Op.isUndef() || !Op.getSubReg() || Op.getSubReg() == SubReg; 305 if (!DefinesFullReg) { 306 // Partial definition; need to follow and mark input value 307 LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); 308 if (const VNInfo *VN = LRQ.valueIn()) { 309 if (!Visited.count(VN)) 310 ToProcess.push_back(VN); 311 } 312 } 313 } 314 } 315 } while (!ToProcess.empty()); 316 } 317 318 /// Mark all instructions defining the uses in \p MI with \p Flag. 319 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 320 std::vector<WorkItem> &Worklist) { 321 322 LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " 323 << MI); 324 325 for (const MachineOperand &Use : MI.uses()) { 326 if (!Use.isReg() || !Use.isUse()) 327 continue; 328 329 Register Reg = Use.getReg(); 330 331 // Handle physical registers that we need to track; this is mostly relevant 332 // for VCC, which can appear as the (implicit) input of a uniform branch, 333 // e.g. when a loop counter is stored in a VGPR. 334 if (!Reg.isVirtual()) { 335 if (Reg == AMDGPU::EXEC || Reg == AMDGPU::EXEC_LO) 336 continue; 337 338 for (MCRegUnitIterator RegUnit(Reg.asMCReg(), TRI); RegUnit.isValid(); 339 ++RegUnit) { 340 LiveRange &LR = LIS->getRegUnit(*RegUnit); 341 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 342 if (!Value) 343 continue; 344 345 if (MRI->isSSA()) { 346 // Since we're in machine SSA, we do not need to track physical 347 // registers across basic blocks. 348 if (Value->isPHIDef()) 349 continue; 350 markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag, 351 Worklist); 352 } else { 353 markDefs(MI, LR, *RegUnit, AMDGPU::NoSubRegister, Flag, Worklist); 354 } 355 } 356 357 continue; 358 } 359 360 if (MRI->isSSA()) { 361 for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) 362 markInstruction(DefMI, Flag, Worklist); 363 } else { 364 LiveRange &LR = LIS->getInterval(Reg); 365 markDefs(MI, LR, Reg, Use.getSubReg(), Flag, Worklist); 366 } 367 } 368 } 369 370 // Scan instructions to determine which ones require an Exact execmask and 371 // which ones seed WQM requirements. 372 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 373 std::vector<WorkItem> &Worklist) { 374 char GlobalFlags = 0; 375 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 376 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 377 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 378 379 // We need to visit the basic blocks in reverse post-order so that we visit 380 // defs before uses, in particular so that we don't accidentally mark an 381 // instruction as needing e.g. WQM before visiting it and realizing it needs 382 // WQM disabled. 383 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 384 for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { 385 MachineBasicBlock &MBB = **BI; 386 BlockInfo &BBI = Blocks[&MBB]; 387 388 for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { 389 MachineInstr &MI = *II; 390 InstrInfo &III = Instructions[&MI]; 391 unsigned Opcode = MI.getOpcode(); 392 char Flags = 0; 393 394 if (TII->isWQM(Opcode)) { 395 // Sampling instructions don't need to produce results for all pixels 396 // in a quad, they just require all inputs of a quad to have been 397 // computed for derivatives. 398 markInstructionUses(MI, StateWQM, Worklist); 399 GlobalFlags |= StateWQM; 400 continue; 401 } else if (Opcode == AMDGPU::WQM) { 402 // The WQM intrinsic requires its output to have all the helper lanes 403 // correct, so we need it to be in WQM. 404 Flags = StateWQM; 405 LowerToCopyInstrs.push_back(&MI); 406 } else if (Opcode == AMDGPU::SOFT_WQM) { 407 LowerToCopyInstrs.push_back(&MI); 408 SoftWQMInstrs.push_back(&MI); 409 continue; 410 } else if (Opcode == AMDGPU::WWM) { 411 // The WWM intrinsic doesn't make the same guarantee, and plus it needs 412 // to be executed in WQM or Exact so that its copy doesn't clobber 413 // inactive lanes. 414 markInstructionUses(MI, StateWWM, Worklist); 415 GlobalFlags |= StateWWM; 416 LowerToMovInstrs.push_back(&MI); 417 continue; 418 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 419 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 420 III.Disabled = StateWWM; 421 MachineOperand &Inactive = MI.getOperand(2); 422 if (Inactive.isReg()) { 423 if (Inactive.isUndef()) { 424 LowerToCopyInstrs.push_back(&MI); 425 } else { 426 Register Reg = Inactive.getReg(); 427 if (Reg.isVirtual()) { 428 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) 429 markInstruction(DefMI, StateWWM, Worklist); 430 } 431 } 432 } 433 SetInactiveInstrs.push_back(&MI); 434 continue; 435 } else if (TII->isDisableWQM(MI)) { 436 BBI.Needs |= StateExact; 437 if (!(BBI.InNeeds & StateExact)) { 438 BBI.InNeeds |= StateExact; 439 Worklist.push_back(&MBB); 440 } 441 GlobalFlags |= StateExact; 442 III.Disabled = StateWQM | StateWWM; 443 continue; 444 } else { 445 if (Opcode == AMDGPU::SI_PS_LIVE) { 446 LiveMaskQueries.push_back(&MI); 447 } else if (WQMOutputs) { 448 // The function is in machine SSA form, which means that physical 449 // VGPRs correspond to shader inputs and outputs. Inputs are 450 // only used, outputs are only defined. 451 for (const MachineOperand &MO : MI.defs()) { 452 if (!MO.isReg()) 453 continue; 454 455 Register Reg = MO.getReg(); 456 457 if (!Reg.isVirtual() && 458 TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) { 459 Flags = StateWQM; 460 break; 461 } 462 } 463 } 464 465 if (!Flags) 466 continue; 467 } 468 469 markInstruction(MI, Flags, Worklist); 470 GlobalFlags |= Flags; 471 } 472 } 473 474 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 475 // ever used anywhere in the function. This implements the corresponding 476 // semantics of @llvm.amdgcn.set.inactive. 477 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 478 if (GlobalFlags & StateWQM) { 479 for (MachineInstr *MI : SetInactiveInstrs) 480 markInstruction(*MI, StateWQM, Worklist); 481 for (MachineInstr *MI : SoftWQMInstrs) 482 markInstruction(*MI, StateWQM, Worklist); 483 } 484 485 return GlobalFlags; 486 } 487 488 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 489 std::vector<WorkItem>& Worklist) { 490 MachineBasicBlock *MBB = MI.getParent(); 491 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 492 BlockInfo &BI = Blocks[MBB]; 493 494 // Control flow-type instructions and stores to temporary memory that are 495 // followed by WQM computations must themselves be in WQM. 496 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 497 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 498 Instructions[&MI].Needs = StateWQM; 499 II.Needs = StateWQM; 500 } 501 502 // Propagate to block level 503 if (II.Needs & StateWQM) { 504 BI.Needs |= StateWQM; 505 if (!(BI.InNeeds & StateWQM)) { 506 BI.InNeeds |= StateWQM; 507 Worklist.push_back(MBB); 508 } 509 } 510 511 // Propagate backwards within block 512 if (MachineInstr *PrevMI = MI.getPrevNode()) { 513 char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds; 514 if (!PrevMI->isPHI()) { 515 InstrInfo &PrevII = Instructions[PrevMI]; 516 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 517 PrevII.OutNeeds |= InNeeds; 518 Worklist.push_back(PrevMI); 519 } 520 } 521 } 522 523 // Propagate WQM flag to instruction inputs 524 assert(!(II.Needs & StateExact)); 525 526 if (II.Needs != 0) 527 markInstructionUses(MI, II.Needs, Worklist); 528 529 // Ensure we process a block containing WWM, even if it does not require any 530 // WQM transitions. 531 if (II.Needs & StateWWM) 532 BI.Needs |= StateWWM; 533 } 534 535 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 536 std::vector<WorkItem>& Worklist) { 537 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 538 539 // Propagate through instructions 540 if (!MBB.empty()) { 541 MachineInstr *LastMI = &*MBB.rbegin(); 542 InstrInfo &LastII = Instructions[LastMI]; 543 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 544 LastII.OutNeeds |= BI.OutNeeds; 545 Worklist.push_back(LastMI); 546 } 547 } 548 549 // Predecessor blocks must provide for our WQM/Exact needs. 550 for (MachineBasicBlock *Pred : MBB.predecessors()) { 551 BlockInfo &PredBI = Blocks[Pred]; 552 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 553 continue; 554 555 PredBI.OutNeeds |= BI.InNeeds; 556 PredBI.InNeeds |= BI.InNeeds; 557 Worklist.push_back(Pred); 558 } 559 560 // All successors must be prepared to accept the same set of WQM/Exact data. 561 for (MachineBasicBlock *Succ : MBB.successors()) { 562 BlockInfo &SuccBI = Blocks[Succ]; 563 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 564 continue; 565 566 SuccBI.InNeeds |= BI.OutNeeds; 567 Worklist.push_back(Succ); 568 } 569 } 570 571 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 572 std::vector<WorkItem> Worklist; 573 char GlobalFlags = scanInstructions(MF, Worklist); 574 575 while (!Worklist.empty()) { 576 WorkItem WI = Worklist.back(); 577 Worklist.pop_back(); 578 579 if (WI.MI) 580 propagateInstruction(*WI.MI, Worklist); 581 else 582 propagateBlock(*WI.MBB, Worklist); 583 } 584 585 return GlobalFlags; 586 } 587 588 MachineBasicBlock::iterator 589 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 590 MachineBasicBlock::iterator Before) { 591 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 592 593 MachineInstr *Save = 594 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 595 .addReg(AMDGPU::SCC); 596 MachineInstr *Restore = 597 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 598 .addReg(SaveReg); 599 600 LIS->InsertMachineInstrInMaps(*Save); 601 LIS->InsertMachineInstrInMaps(*Restore); 602 LIS->createAndComputeVirtRegInterval(SaveReg); 603 604 return Restore; 605 } 606 607 // Return an iterator in the (inclusive) range [First, Last] at which 608 // instructions can be safely inserted, keeping in mind that some of the 609 // instructions we want to add necessarily clobber SCC. 610 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 611 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 612 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 613 if (!SaveSCC) 614 return PreferLast ? Last : First; 615 616 LiveRange &LR = 617 LIS->getRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI)); 618 auto MBBE = MBB.end(); 619 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 620 : LIS->getMBBEndIdx(&MBB); 621 SlotIndex LastIdx = 622 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 623 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 624 const LiveRange::Segment *S; 625 626 for (;;) { 627 S = LR.getSegmentContaining(Idx); 628 if (!S) 629 break; 630 631 if (PreferLast) { 632 SlotIndex Next = S->start.getBaseIndex(); 633 if (Next < FirstIdx) 634 break; 635 Idx = Next; 636 } else { 637 MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); 638 assert(EndMI && "Segment does not end on valid instruction"); 639 auto NextI = std::next(EndMI->getIterator()); 640 if (NextI == MBB.end()) 641 break; 642 SlotIndex Next = LIS->getInstructionIndex(*NextI); 643 if (Next > LastIdx) 644 break; 645 Idx = Next; 646 } 647 } 648 649 MachineBasicBlock::iterator MBBI; 650 651 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 652 MBBI = MI; 653 else { 654 assert(Idx == LIS->getMBBEndIdx(&MBB)); 655 MBBI = MBB.end(); 656 } 657 658 // Move insertion point past any operations modifying EXEC. 659 // This assumes that the value of SCC defined by any of these operations 660 // does not need to be preserved. 661 while (MBBI != Last) { 662 bool IsExecDef = false; 663 for (const MachineOperand &MO : MBBI->operands()) { 664 if (MO.isReg() && MO.isDef()) { 665 IsExecDef |= 666 MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; 667 } 668 } 669 if (!IsExecDef) 670 break; 671 MBBI++; 672 S = nullptr; 673 } 674 675 if (S) 676 MBBI = saveSCC(MBB, MBBI); 677 678 return MBBI; 679 } 680 681 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 682 MachineBasicBlock::iterator Before, 683 unsigned SaveWQM, unsigned LiveMaskReg) { 684 MachineInstr *MI; 685 686 if (SaveWQM) { 687 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 688 AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64), 689 SaveWQM) 690 .addReg(LiveMaskReg); 691 } else { 692 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 693 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 694 AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64), 695 Exec) 696 .addReg(Exec) 697 .addReg(LiveMaskReg); 698 } 699 700 LIS->InsertMachineInstrInMaps(*MI); 701 } 702 703 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 704 MachineBasicBlock::iterator Before, 705 unsigned SavedWQM) { 706 MachineInstr *MI; 707 708 unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 709 if (SavedWQM) { 710 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 711 .addReg(SavedWQM); 712 } else { 713 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ? 714 AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64), 715 Exec) 716 .addReg(Exec); 717 } 718 719 LIS->InsertMachineInstrInMaps(*MI); 720 } 721 722 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB, 723 MachineBasicBlock::iterator Before, 724 unsigned SaveOrig) { 725 MachineInstr *MI; 726 727 assert(SaveOrig); 728 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig) 729 .addImm(-1); 730 LIS->InsertMachineInstrInMaps(*MI); 731 } 732 733 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB, 734 MachineBasicBlock::iterator Before, 735 unsigned SavedOrig) { 736 MachineInstr *MI; 737 738 assert(SavedOrig); 739 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), 740 ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) 741 .addReg(SavedOrig); 742 LIS->InsertMachineInstrInMaps(*MI); 743 } 744 745 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, 746 bool isEntry) { 747 auto BII = Blocks.find(&MBB); 748 if (BII == Blocks.end()) 749 return; 750 751 const BlockInfo &BI = BII->second; 752 753 // This is a non-entry block that is WQM throughout, so no need to do 754 // anything. 755 if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) 756 return; 757 758 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 759 << ":\n"); 760 761 unsigned SavedWQMReg = 0; 762 unsigned SavedNonWWMReg = 0; 763 bool WQMFromExec = isEntry; 764 char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 765 char NonWWMState = 0; 766 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 767 768 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 769 if (isEntry) { 770 // Skip the instruction that saves LiveMask 771 if (II != IE && II->getOpcode() == AMDGPU::COPY) 772 ++II; 773 } 774 775 // This stores the first instruction where it's safe to switch from WQM to 776 // Exact or vice versa. 777 MachineBasicBlock::iterator FirstWQM = IE; 778 779 // This stores the first instruction where it's safe to switch from WWM to 780 // Exact/WQM or to switch to WWM. It must always be the same as, or after, 781 // FirstWQM since if it's safe to switch to/from WWM, it must be safe to 782 // switch to/from WQM as well. 783 MachineBasicBlock::iterator FirstWWM = IE; 784 785 for (;;) { 786 MachineBasicBlock::iterator Next = II; 787 char Needs = StateExact | StateWQM; // WWM is disabled by default 788 char OutNeeds = 0; 789 790 if (FirstWQM == IE) 791 FirstWQM = II; 792 793 if (FirstWWM == IE) 794 FirstWWM = II; 795 796 // First, figure out the allowed states (Needs) based on the propagated 797 // flags. 798 if (II != IE) { 799 MachineInstr &MI = *II; 800 801 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 802 auto III = Instructions.find(&MI); 803 if (III != Instructions.end()) { 804 if (III->second.Needs & StateWWM) 805 Needs = StateWWM; 806 else if (III->second.Needs & StateWQM) 807 Needs = StateWQM; 808 else 809 Needs &= ~III->second.Disabled; 810 OutNeeds = III->second.OutNeeds; 811 } 812 } else { 813 // If the instruction doesn't actually need a correct EXEC, then we can 814 // safely leave WWM enabled. 815 Needs = StateExact | StateWQM | StateWWM; 816 } 817 818 if (MI.isTerminator() && OutNeeds == StateExact) 819 Needs = StateExact; 820 821 ++Next; 822 } else { 823 // End of basic block 824 if (BI.OutNeeds & StateWQM) 825 Needs = StateWQM; 826 else if (BI.OutNeeds == StateExact) 827 Needs = StateExact; 828 else 829 Needs = StateWQM | StateExact; 830 } 831 832 // Now, transition if necessary. 833 if (!(Needs & State)) { 834 MachineBasicBlock::iterator First; 835 if (State == StateWWM || Needs == StateWWM) { 836 // We must switch to or from WWM 837 First = FirstWWM; 838 } else { 839 // We only need to switch to/from WQM, so we can use FirstWQM 840 First = FirstWQM; 841 } 842 843 MachineBasicBlock::iterator Before = 844 prepareInsertion(MBB, First, II, Needs == StateWQM, 845 Needs == StateExact || WQMFromExec); 846 847 if (State == StateWWM) { 848 assert(SavedNonWWMReg); 849 fromWWM(MBB, Before, SavedNonWWMReg); 850 LIS->createAndComputeVirtRegInterval(SavedNonWWMReg); 851 SavedNonWWMReg = 0; 852 State = NonWWMState; 853 } 854 855 if (Needs == StateWWM) { 856 NonWWMState = State; 857 assert(!SavedNonWWMReg); 858 SavedNonWWMReg = MRI->createVirtualRegister(BoolRC); 859 toWWM(MBB, Before, SavedNonWWMReg); 860 State = StateWWM; 861 } else { 862 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 863 if (!WQMFromExec && (OutNeeds & StateWQM)) { 864 assert(!SavedWQMReg); 865 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 866 } 867 868 toExact(MBB, Before, SavedWQMReg, LiveMaskReg); 869 State = StateExact; 870 } else if (State == StateExact && (Needs & StateWQM) && 871 !(Needs & StateExact)) { 872 assert(WQMFromExec == (SavedWQMReg == 0)); 873 874 toWQM(MBB, Before, SavedWQMReg); 875 876 if (SavedWQMReg) { 877 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 878 SavedWQMReg = 0; 879 } 880 State = StateWQM; 881 } else { 882 // We can get here if we transitioned from WWM to a non-WWM state that 883 // already matches our needs, but we shouldn't need to do anything. 884 assert(Needs & State); 885 } 886 } 887 } 888 889 if (Needs != (StateExact | StateWQM | StateWWM)) { 890 if (Needs != (StateExact | StateWQM)) 891 FirstWQM = IE; 892 FirstWWM = IE; 893 } 894 895 if (II == IE) 896 break; 897 898 II = Next; 899 } 900 assert(!SavedWQMReg); 901 assert(!SavedNonWWMReg); 902 } 903 904 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { 905 for (MachineInstr *MI : LiveMaskQueries) { 906 const DebugLoc &DL = MI->getDebugLoc(); 907 Register Dest = MI->getOperand(0).getReg(); 908 909 MachineInstr *Copy = 910 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 911 .addReg(LiveMaskReg); 912 913 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 914 MI->eraseFromParent(); 915 } 916 } 917 918 void SIWholeQuadMode::lowerCopyInstrs() { 919 for (MachineInstr *MI : LowerToMovInstrs) { 920 assert(MI->getNumExplicitOperands() == 2); 921 922 const Register Reg = MI->getOperand(0).getReg(); 923 const unsigned SubReg = MI->getOperand(0).getSubReg(); 924 925 if (TRI->isVGPR(*MRI, Reg)) { 926 const TargetRegisterClass *regClass = 927 Reg.isVirtual() ? MRI->getRegClass(Reg) : TRI->getPhysRegClass(Reg); 928 if (SubReg) 929 regClass = TRI->getSubRegClass(regClass, SubReg); 930 931 const unsigned MovOp = TII->getMovOpcode(regClass); 932 MI->setDesc(TII->get(MovOp)); 933 934 // And make it implicitly depend on exec (like all VALU movs should do). 935 MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); 936 } else if (!MRI->isSSA()) { 937 // Remove early-clobber and exec dependency from simple SGPR copies. 938 // This allows some to be eliminated during/post RA. 939 LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); 940 if (MI->getOperand(0).isEarlyClobber()) { 941 LIS->removeInterval(Reg); 942 MI->getOperand(0).setIsEarlyClobber(false); 943 LIS->createAndComputeVirtRegInterval(Reg); 944 } 945 int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); 946 while (Index >= 0) { 947 MI->RemoveOperand(Index); 948 Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); 949 } 950 MI->setDesc(TII->get(AMDGPU::COPY)); 951 LLVM_DEBUG(dbgs() << " -> " << *MI); 952 } 953 } 954 for (MachineInstr *MI : LowerToCopyInstrs) { 955 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 956 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 957 assert(MI->getNumExplicitOperands() == 3); 958 // the only reason we should be here is V_SET_INACTIVE has 959 // an undef input so it is being replaced by a simple copy. 960 // There should be a second undef source that we should remove. 961 assert(MI->getOperand(2).isUndef()); 962 MI->RemoveOperand(2); 963 MI->untieRegOperand(1); 964 } else { 965 assert(MI->getNumExplicitOperands() == 2); 966 } 967 968 MI->setDesc(TII->get(AMDGPU::COPY)); 969 } 970 } 971 972 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 973 Instructions.clear(); 974 Blocks.clear(); 975 LiveMaskQueries.clear(); 976 LowerToCopyInstrs.clear(); 977 LowerToMovInstrs.clear(); 978 CallingConv = MF.getFunction().getCallingConv(); 979 980 ST = &MF.getSubtarget<GCNSubtarget>(); 981 982 TII = ST->getInstrInfo(); 983 TRI = &TII->getRegisterInfo(); 984 MRI = &MF.getRegInfo(); 985 LIS = &getAnalysis<LiveIntervals>(); 986 987 if (ST->isWave32()) { 988 AndOpc = AMDGPU::S_AND_B32; 989 XorTermrOpc = AMDGPU::S_XOR_B32_term; 990 OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B32; 991 Exec = AMDGPU::EXEC_LO; 992 } else { 993 AndOpc = AMDGPU::S_AND_B64; 994 XorTermrOpc = AMDGPU::S_XOR_B64_term; 995 OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B64; 996 Exec = AMDGPU::EXEC; 997 } 998 999 char GlobalFlags = analyzeFunction(MF); 1000 unsigned LiveMaskReg = 0; 1001 if (!(GlobalFlags & StateWQM)) { 1002 lowerLiveMaskQueries(Exec); 1003 if (!(GlobalFlags & StateWWM) && LowerToCopyInstrs.empty() && LowerToMovInstrs.empty()) 1004 return !LiveMaskQueries.empty(); 1005 } else { 1006 // Store a copy of the original live mask when required 1007 MachineBasicBlock &Entry = MF.front(); 1008 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 1009 1010 if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { 1011 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 1012 MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), 1013 TII->get(AMDGPU::COPY), LiveMaskReg) 1014 .addReg(Exec); 1015 LIS->InsertMachineInstrInMaps(*MI); 1016 } 1017 1018 lowerLiveMaskQueries(LiveMaskReg); 1019 1020 if (GlobalFlags == StateWQM) { 1021 // For a shader that needs only WQM, we can just set it once. 1022 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), 1023 TII->get(ST->isWave32() ? AMDGPU::S_WQM_B32 1024 : AMDGPU::S_WQM_B64), 1025 Exec) 1026 .addReg(Exec); 1027 LIS->InsertMachineInstrInMaps(*MI); 1028 1029 lowerCopyInstrs(); 1030 // EntryMI may become invalid here 1031 return true; 1032 } 1033 } 1034 1035 LLVM_DEBUG(printInfo()); 1036 1037 lowerCopyInstrs(); 1038 1039 // Handle the general case 1040 for (auto BII : Blocks) 1041 processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); 1042 1043 if (LiveMaskReg) 1044 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 1045 1046 // Physical registers like SCC aren't tracked by default anyway, so just 1047 // removing the ranges we computed is the simplest option for maintaining 1048 // the analysis results. 1049 LIS->removeRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI)); 1050 1051 return true; 1052 } 1053