xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp (revision 370e009188ba90c3290b1479aa06ec98b66e140a)
1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass adds instructions to enable whole quad mode (strict or non-strict)
11 /// for pixel shaders, and strict whole wavefront mode for all programs.
12 ///
13 /// The "strict" prefix indicates that inactive lanes do not take part in
14 /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will
15 /// always be enabled irrespective of control flow decisions. Conversely in
16 /// non-strict WQM inactive lanes may control flow decisions.
17 ///
18 /// Whole quad mode is required for derivative computations, but it interferes
19 /// with shader side effects (stores and atomics). It ensures that WQM is
20 /// enabled when necessary, but disabled around stores and atomics.
21 ///
22 /// When necessary, this pass creates a function prolog
23 ///
24 ///   S_MOV_B64 LiveMask, EXEC
25 ///   S_WQM_B64 EXEC, EXEC
26 ///
27 /// to enter WQM at the top of the function and surrounds blocks of Exact
28 /// instructions by
29 ///
30 ///   S_AND_SAVEEXEC_B64 Tmp, LiveMask
31 ///   ...
32 ///   S_MOV_B64 EXEC, Tmp
33 ///
34 /// We also compute when a sequence of instructions requires strict whole
35 /// wavefront mode (StrictWWM) and insert instructions to save and restore it:
36 ///
37 ///   S_OR_SAVEEXEC_B64 Tmp, -1
38 ///   ...
39 ///   S_MOV_B64 EXEC, Tmp
40 ///
41 /// When a sequence of instructions requires strict whole quad mode (StrictWQM)
42 /// we use a similar save and restore mechanism and force whole quad mode for
43 /// those instructions:
44 ///
45 ///  S_MOV_B64 Tmp, EXEC
46 ///  S_WQM_B64 EXEC, EXEC
47 ///  ...
48 ///  S_MOV_B64 EXEC, Tmp
49 ///
50 /// In order to avoid excessive switching during sequences of Exact
51 /// instructions, the pass first analyzes which instructions must be run in WQM
52 /// (aka which instructions produce values that lead to derivative
53 /// computations).
54 ///
55 /// Basic blocks are always exited in WQM as long as some successor needs WQM.
56 ///
57 /// There is room for improvement given better control flow analysis:
58 ///
59 ///  (1) at the top level (outside of control flow statements, and as long as
60 ///      kill hasn't been used), one SGPR can be saved by recovering WQM from
61 ///      the LiveMask (this is implemented for the entry block).
62 ///
63 ///  (2) when entire regions (e.g. if-else blocks or entire loops) only
64 ///      consist of exact and don't-care instructions, the switch only has to
65 ///      be done at the entry and exit points rather than potentially in each
66 ///      block of the region.
67 ///
68 //===----------------------------------------------------------------------===//
69 
70 #include "AMDGPU.h"
71 #include "GCNSubtarget.h"
72 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
73 #include "llvm/ADT/MapVector.h"
74 #include "llvm/ADT/PostOrderIterator.h"
75 #include "llvm/CodeGen/LiveIntervals.h"
76 #include "llvm/CodeGen/MachineBasicBlock.h"
77 #include "llvm/CodeGen/MachineDominators.h"
78 #include "llvm/CodeGen/MachineFunctionPass.h"
79 #include "llvm/CodeGen/MachineInstr.h"
80 #include "llvm/CodeGen/MachinePostDominators.h"
81 #include "llvm/IR/CallingConv.h"
82 #include "llvm/InitializePasses.h"
83 #include "llvm/Support/raw_ostream.h"
84 
85 using namespace llvm;
86 
87 #define DEBUG_TYPE "si-wqm"
88 
89 namespace {
90 
91 enum {
92   StateWQM = 0x1,
93   StateStrictWWM = 0x2,
94   StateStrictWQM = 0x4,
95   StateExact = 0x8,
96   StateStrict = StateStrictWWM | StateStrictWQM,
97 };
98 
99 struct PrintState {
100 public:
101   int State;
102 
103   explicit PrintState(int State) : State(State) {}
104 };
105 
106 #ifndef NDEBUG
107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
108 
109   static const std::pair<char, const char *> Mapping[] = {
110       std::make_pair(StateWQM, "WQM"),
111       std::make_pair(StateStrictWWM, "StrictWWM"),
112       std::make_pair(StateStrictWQM, "StrictWQM"),
113       std::make_pair(StateExact, "Exact")};
114   char State = PS.State;
115   for (auto M : Mapping) {
116     if (State & M.first) {
117       OS << M.second;
118       State &= ~M.first;
119 
120       if (State)
121         OS << '|';
122     }
123   }
124   assert(State == 0);
125   return OS;
126 }
127 #endif
128 
129 struct InstrInfo {
130   char Needs = 0;
131   char Disabled = 0;
132   char OutNeeds = 0;
133 };
134 
135 struct BlockInfo {
136   char Needs = 0;
137   char InNeeds = 0;
138   char OutNeeds = 0;
139   char InitialState = 0;
140   bool NeedsLowering = false;
141 };
142 
143 struct WorkItem {
144   MachineBasicBlock *MBB = nullptr;
145   MachineInstr *MI = nullptr;
146 
147   WorkItem() = default;
148   WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
149   WorkItem(MachineInstr *MI) : MI(MI) {}
150 };
151 
152 class SIWholeQuadMode : public MachineFunctionPass {
153 private:
154   const SIInstrInfo *TII;
155   const SIRegisterInfo *TRI;
156   const GCNSubtarget *ST;
157   MachineRegisterInfo *MRI;
158   LiveIntervals *LIS;
159   MachineDominatorTree *MDT;
160   MachinePostDominatorTree *PDT;
161 
162   unsigned AndOpc;
163   unsigned AndN2Opc;
164   unsigned XorOpc;
165   unsigned AndSaveExecOpc;
166   unsigned OrSaveExecOpc;
167   unsigned WQMOpc;
168   Register Exec;
169   Register LiveMaskReg;
170 
171   DenseMap<const MachineInstr *, InstrInfo> Instructions;
172   MapVector<MachineBasicBlock *, BlockInfo> Blocks;
173 
174   // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction
175   DenseMap<const MachineInstr *, char> StateTransition;
176 
177   SmallVector<MachineInstr *, 2> LiveMaskQueries;
178   SmallVector<MachineInstr *, 4> LowerToMovInstrs;
179   SmallVector<MachineInstr *, 4> LowerToCopyInstrs;
180   SmallVector<MachineInstr *, 4> KillInstrs;
181 
182   void printInfo();
183 
184   void markInstruction(MachineInstr &MI, char Flag,
185                        std::vector<WorkItem> &Worklist);
186   void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg,
187                 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist);
188   void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag,
189                    std::vector<WorkItem> &Worklist);
190   void markInstructionUses(const MachineInstr &MI, char Flag,
191                            std::vector<WorkItem> &Worklist);
192   char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
193   void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
194   void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
195   char analyzeFunction(MachineFunction &MF);
196 
197   MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
198                                       MachineBasicBlock::iterator Before);
199   MachineBasicBlock::iterator
200   prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
201                    MachineBasicBlock::iterator Last, bool PreferLast,
202                    bool SaveSCC);
203   void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
204                Register SaveWQM);
205   void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
206              Register SavedWQM);
207   void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
208                     Register SaveOrig, char StrictStateNeeded);
209   void fromStrictMode(MachineBasicBlock &MBB,
210                       MachineBasicBlock::iterator Before, Register SavedOrig,
211                       char NonStrictState, char CurrentStrictState);
212 
213   MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI);
214 
215   MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI,
216                             bool IsWQM);
217   MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI);
218 
219   void lowerBlock(MachineBasicBlock &MBB);
220   void processBlock(MachineBasicBlock &MBB, bool IsEntry);
221 
222   void lowerLiveMaskQueries();
223   void lowerCopyInstrs();
224   void lowerKillInstrs(bool IsWQM);
225 
226 public:
227   static char ID;
228 
229   SIWholeQuadMode() :
230     MachineFunctionPass(ID) { }
231 
232   bool runOnMachineFunction(MachineFunction &MF) override;
233 
234   StringRef getPassName() const override { return "SI Whole Quad Mode"; }
235 
236   void getAnalysisUsage(AnalysisUsage &AU) const override {
237     AU.addRequired<LiveIntervals>();
238     AU.addPreserved<SlotIndexes>();
239     AU.addPreserved<LiveIntervals>();
240     AU.addRequired<MachineDominatorTree>();
241     AU.addPreserved<MachineDominatorTree>();
242     AU.addRequired<MachinePostDominatorTree>();
243     AU.addPreserved<MachinePostDominatorTree>();
244     MachineFunctionPass::getAnalysisUsage(AU);
245   }
246 
247   MachineFunctionProperties getClearedProperties() const override {
248     return MachineFunctionProperties().set(
249         MachineFunctionProperties::Property::IsSSA);
250   }
251 };
252 
253 } // end anonymous namespace
254 
255 char SIWholeQuadMode::ID = 0;
256 
257 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
258                       false)
259 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
261 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
262 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
263                     false)
264 
265 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
266 
267 FunctionPass *llvm::createSIWholeQuadModePass() {
268   return new SIWholeQuadMode;
269 }
270 
271 #ifndef NDEBUG
272 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
273   for (const auto &BII : Blocks) {
274     dbgs() << "\n"
275            << printMBBReference(*BII.first) << ":\n"
276            << "  InNeeds = " << PrintState(BII.second.InNeeds)
277            << ", Needs = " << PrintState(BII.second.Needs)
278            << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";
279 
280     for (const MachineInstr &MI : *BII.first) {
281       auto III = Instructions.find(&MI);
282       if (III == Instructions.end())
283         continue;
284 
285       dbgs() << "  " << MI << "    Needs = " << PrintState(III->second.Needs)
286              << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
287     }
288   }
289 }
290 #endif
291 
292 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
293                                       std::vector<WorkItem> &Worklist) {
294   InstrInfo &II = Instructions[&MI];
295 
296   assert(!(Flag & StateExact) && Flag != 0);
297 
298   // Remove any disabled states from the flag. The user that required it gets
299   // an undefined value in the helper lanes. For example, this can happen if
300   // the result of an atomic is used by instruction that requires WQM, where
301   // ignoring the request for WQM is correct as per the relevant specs.
302   Flag &= ~II.Disabled;
303 
304   // Ignore if the flag is already encompassed by the existing needs, or we
305   // just disabled everything.
306   if ((II.Needs & Flag) == Flag)
307     return;
308 
309   LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI);
310   II.Needs |= Flag;
311   Worklist.push_back(&MI);
312 }
313 
314 /// Mark all relevant definitions of register \p Reg in usage \p UseMI.
315 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR,
316                                Register Reg, unsigned SubReg, char Flag,
317                                std::vector<WorkItem> &Worklist) {
318   LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI);
319 
320   LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI));
321   const VNInfo *Value = UseLRQ.valueIn();
322   if (!Value)
323     return;
324 
325   // Note: this code assumes that lane masks on AMDGPU completely
326   // cover registers.
327   const LaneBitmask UseLanes =
328       SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
329              : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg)
330                                 : LaneBitmask::getNone());
331 
332   // Perform a depth-first iteration of the LiveRange graph marking defs.
333   // Stop processing of a given branch when all use lanes have been defined.
334   // The first definition stops processing for a physical register.
335   struct PhiEntry {
336     const VNInfo *Phi;
337     unsigned PredIdx;
338     LaneBitmask DefinedLanes;
339 
340     PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes)
341         : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {}
342   };
343   using VisitKey = std::pair<const VNInfo *, LaneBitmask>;
344   SmallVector<PhiEntry, 2> PhiStack;
345   SmallSet<VisitKey, 4> Visited;
346   LaneBitmask DefinedLanes;
347   unsigned NextPredIdx = 0; // Only used for processing phi nodes
348   do {
349     const VNInfo *NextValue = nullptr;
350     const VisitKey Key(Value, DefinedLanes);
351 
352     if (Visited.insert(Key).second) {
353       // On first visit to a phi then start processing first predecessor
354       NextPredIdx = 0;
355     }
356 
357     if (Value->isPHIDef()) {
358       // Each predecessor node in the phi must be processed as a subgraph
359       const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def);
360       assert(MBB && "Phi-def has no defining MBB");
361 
362       // Find next predecessor to process
363       unsigned Idx = NextPredIdx;
364       auto PI = MBB->pred_begin() + Idx;
365       auto PE = MBB->pred_end();
366       for (; PI != PE && !NextValue; ++PI, ++Idx) {
367         if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) {
368           if (!Visited.count(VisitKey(VN, DefinedLanes)))
369             NextValue = VN;
370         }
371       }
372 
373       // If there are more predecessors to process; add phi to stack
374       if (PI != PE)
375         PhiStack.emplace_back(Value, Idx, DefinedLanes);
376     } else {
377       MachineInstr *MI = LIS->getInstructionFromIndex(Value->def);
378       assert(MI && "Def has no defining instruction");
379 
380       if (Reg.isVirtual()) {
381         // Iterate over all operands to find relevant definitions
382         bool HasDef = false;
383         for (const MachineOperand &Op : MI->operands()) {
384           if (!(Op.isReg() && Op.isDef() && Op.getReg() == Reg))
385             continue;
386 
387           // Compute lanes defined and overlap with use
388           LaneBitmask OpLanes =
389               Op.isUndef() ? LaneBitmask::getAll()
390                            : TRI->getSubRegIndexLaneMask(Op.getSubReg());
391           LaneBitmask Overlap = (UseLanes & OpLanes);
392 
393           // Record if this instruction defined any of use
394           HasDef |= Overlap.any();
395 
396           // Mark any lanes defined
397           DefinedLanes |= OpLanes;
398         }
399 
400         // Check if all lanes of use have been defined
401         if ((DefinedLanes & UseLanes) != UseLanes) {
402           // Definition not complete; need to process input value
403           LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI));
404           if (const VNInfo *VN = LRQ.valueIn()) {
405             if (!Visited.count(VisitKey(VN, DefinedLanes)))
406               NextValue = VN;
407           }
408         }
409 
410         // Only mark the instruction if it defines some part of the use
411         if (HasDef)
412           markInstruction(*MI, Flag, Worklist);
413       } else {
414         // For physical registers simply mark the defining instruction
415         markInstruction(*MI, Flag, Worklist);
416       }
417     }
418 
419     if (!NextValue && !PhiStack.empty()) {
420       // Reach end of chain; revert to processing last phi
421       PhiEntry &Entry = PhiStack.back();
422       NextValue = Entry.Phi;
423       NextPredIdx = Entry.PredIdx;
424       DefinedLanes = Entry.DefinedLanes;
425       PhiStack.pop_back();
426     }
427 
428     Value = NextValue;
429   } while (Value);
430 }
431 
432 void SIWholeQuadMode::markOperand(const MachineInstr &MI,
433                                   const MachineOperand &Op, char Flag,
434                                   std::vector<WorkItem> &Worklist) {
435   assert(Op.isReg());
436   Register Reg = Op.getReg();
437 
438   // Ignore some hardware registers
439   switch (Reg) {
440   case AMDGPU::EXEC:
441   case AMDGPU::EXEC_LO:
442     return;
443   default:
444     break;
445   }
446 
447   LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op
448                     << " for " << MI);
449   if (Reg.isVirtual()) {
450     LiveRange &LR = LIS->getInterval(Reg);
451     markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist);
452   } else {
453     // Handle physical registers that we need to track; this is mostly relevant
454     // for VCC, which can appear as the (implicit) input of a uniform branch,
455     // e.g. when a loop counter is stored in a VGPR.
456     for (MCRegUnitIterator RegUnit(Reg.asMCReg(), TRI); RegUnit.isValid();
457          ++RegUnit) {
458       LiveRange &LR = LIS->getRegUnit(*RegUnit);
459       const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
460       if (!Value)
461         continue;
462 
463       markDefs(MI, LR, *RegUnit, AMDGPU::NoSubRegister, Flag, Worklist);
464     }
465   }
466 }
467 
468 /// Mark all instructions defining the uses in \p MI with \p Flag.
469 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
470                                           std::vector<WorkItem> &Worklist) {
471   LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": "
472                     << MI);
473 
474   for (const MachineOperand &Use : MI.uses()) {
475     if (!Use.isReg() || !Use.isUse())
476       continue;
477     markOperand(MI, Use, Flag, Worklist);
478   }
479 }
480 
481 // Scan instructions to determine which ones require an Exact execmask and
482 // which ones seed WQM requirements.
483 char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
484                                        std::vector<WorkItem> &Worklist) {
485   char GlobalFlags = 0;
486   bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
487   SmallVector<MachineInstr *, 4> SetInactiveInstrs;
488   SmallVector<MachineInstr *, 4> SoftWQMInstrs;
489   bool HasImplicitDerivatives =
490       MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS;
491 
492   // We need to visit the basic blocks in reverse post-order so that we visit
493   // defs before uses, in particular so that we don't accidentally mark an
494   // instruction as needing e.g. WQM before visiting it and realizing it needs
495   // WQM disabled.
496   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
497   for (MachineBasicBlock *MBB : RPOT) {
498     BlockInfo &BBI = Blocks[MBB];
499 
500     for (MachineInstr &MI : *MBB) {
501       InstrInfo &III = Instructions[&MI];
502       unsigned Opcode = MI.getOpcode();
503       char Flags = 0;
504 
505       if (TII->isWQM(Opcode)) {
506         // If LOD is not supported WQM is not needed.
507         if (!ST->hasExtendedImageInsts())
508           continue;
509         // Only generate implicit WQM if implicit derivatives are required.
510         // This avoids inserting unintended WQM if a shader type without
511         // implicit derivatives uses an image sampling instruction.
512         if (!HasImplicitDerivatives)
513           continue;
514         // Sampling instructions don't need to produce results for all pixels
515         // in a quad, they just require all inputs of a quad to have been
516         // computed for derivatives.
517         markInstructionUses(MI, StateWQM, Worklist);
518         GlobalFlags |= StateWQM;
519         continue;
520       } else if (Opcode == AMDGPU::WQM) {
521         // The WQM intrinsic requires its output to have all the helper lanes
522         // correct, so we need it to be in WQM.
523         Flags = StateWQM;
524         LowerToCopyInstrs.push_back(&MI);
525       } else if (Opcode == AMDGPU::SOFT_WQM) {
526         LowerToCopyInstrs.push_back(&MI);
527         SoftWQMInstrs.push_back(&MI);
528         continue;
529       } else if (Opcode == AMDGPU::STRICT_WWM) {
530         // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus
531         // it needs to be executed in WQM or Exact so that its copy doesn't
532         // clobber inactive lanes.
533         markInstructionUses(MI, StateStrictWWM, Worklist);
534         GlobalFlags |= StateStrictWWM;
535         LowerToMovInstrs.push_back(&MI);
536         continue;
537       } else if (Opcode == AMDGPU::STRICT_WQM ||
538                  TII->isDualSourceBlendEXP(MI)) {
539         // STRICT_WQM is similar to STRICTWWM, but instead of enabling all
540         // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in
541         // quads that have at least one active thread.
542         markInstructionUses(MI, StateStrictWQM, Worklist);
543         GlobalFlags |= StateStrictWQM;
544 
545         if (Opcode == AMDGPU::STRICT_WQM) {
546           LowerToMovInstrs.push_back(&MI);
547         } else {
548           // Dual source blend export acts as implicit strict-wqm, its sources
549           // need to be shuffled in strict wqm, but the export itself needs to
550           // run in exact mode.
551           BBI.Needs |= StateExact;
552           if (!(BBI.InNeeds & StateExact)) {
553             BBI.InNeeds |= StateExact;
554             Worklist.push_back(MBB);
555           }
556           GlobalFlags |= StateExact;
557           III.Disabled = StateWQM | StateStrict;
558         }
559         continue;
560       } else if (Opcode == AMDGPU::LDS_PARAM_LOAD ||
561                  Opcode == AMDGPU::LDS_DIRECT_LOAD) {
562         // Mark these STRICTWQM, but only for the instruction, not its operands.
563         // This avoid unnecessarily marking M0 as requiring WQM.
564         InstrInfo &II = Instructions[&MI];
565         II.Needs |= StateStrictWQM;
566         GlobalFlags |= StateStrictWQM;
567         continue;
568       } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
569                  Opcode == AMDGPU::V_SET_INACTIVE_B64) {
570         III.Disabled = StateStrict;
571         MachineOperand &Inactive = MI.getOperand(2);
572         if (Inactive.isReg()) {
573           if (Inactive.isUndef()) {
574             LowerToCopyInstrs.push_back(&MI);
575           } else {
576             markOperand(MI, Inactive, StateStrictWWM, Worklist);
577           }
578         }
579         SetInactiveInstrs.push_back(&MI);
580         continue;
581       } else if (TII->isDisableWQM(MI)) {
582         BBI.Needs |= StateExact;
583         if (!(BBI.InNeeds & StateExact)) {
584           BBI.InNeeds |= StateExact;
585           Worklist.push_back(MBB);
586         }
587         GlobalFlags |= StateExact;
588         III.Disabled = StateWQM | StateStrict;
589         continue;
590       } else {
591         if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) {
592           LiveMaskQueries.push_back(&MI);
593         } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR ||
594                    Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR ||
595                    Opcode == AMDGPU::SI_DEMOTE_I1) {
596           KillInstrs.push_back(&MI);
597           BBI.NeedsLowering = true;
598         } else if (WQMOutputs) {
599           // The function is in machine SSA form, which means that physical
600           // VGPRs correspond to shader inputs and outputs. Inputs are
601           // only used, outputs are only defined.
602           // FIXME: is this still valid?
603           for (const MachineOperand &MO : MI.defs()) {
604             if (!MO.isReg())
605               continue;
606 
607             Register Reg = MO.getReg();
608 
609             if (!Reg.isVirtual() &&
610                 TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) {
611               Flags = StateWQM;
612               break;
613             }
614           }
615         }
616 
617         if (!Flags)
618           continue;
619       }
620 
621       markInstruction(MI, Flags, Worklist);
622       GlobalFlags |= Flags;
623     }
624   }
625 
626   // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
627   // ever used anywhere in the function. This implements the corresponding
628   // semantics of @llvm.amdgcn.set.inactive.
629   // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm.
630   if (GlobalFlags & StateWQM) {
631     for (MachineInstr *MI : SetInactiveInstrs)
632       markInstruction(*MI, StateWQM, Worklist);
633     for (MachineInstr *MI : SoftWQMInstrs)
634       markInstruction(*MI, StateWQM, Worklist);
635   }
636 
637   return GlobalFlags;
638 }
639 
640 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
641                                            std::vector<WorkItem>& Worklist) {
642   MachineBasicBlock *MBB = MI.getParent();
643   InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
644   BlockInfo &BI = Blocks[MBB];
645 
646   // Control flow-type instructions and stores to temporary memory that are
647   // followed by WQM computations must themselves be in WQM.
648   if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
649       (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
650     Instructions[&MI].Needs = StateWQM;
651     II.Needs = StateWQM;
652   }
653 
654   // Propagate to block level
655   if (II.Needs & StateWQM) {
656     BI.Needs |= StateWQM;
657     if (!(BI.InNeeds & StateWQM)) {
658       BI.InNeeds |= StateWQM;
659       Worklist.push_back(MBB);
660     }
661   }
662 
663   // Propagate backwards within block
664   if (MachineInstr *PrevMI = MI.getPrevNode()) {
665     char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds;
666     if (!PrevMI->isPHI()) {
667       InstrInfo &PrevII = Instructions[PrevMI];
668       if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
669         PrevII.OutNeeds |= InNeeds;
670         Worklist.push_back(PrevMI);
671       }
672     }
673   }
674 
675   // Propagate WQM flag to instruction inputs
676   assert(!(II.Needs & StateExact));
677 
678   if (II.Needs != 0)
679     markInstructionUses(MI, II.Needs, Worklist);
680 
681   // Ensure we process a block containing StrictWWM/StrictWQM, even if it does
682   // not require any WQM transitions.
683   if (II.Needs & StateStrictWWM)
684     BI.Needs |= StateStrictWWM;
685   if (II.Needs & StateStrictWQM)
686     BI.Needs |= StateStrictWQM;
687 }
688 
689 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
690                                      std::vector<WorkItem>& Worklist) {
691   BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
692 
693   // Propagate through instructions
694   if (!MBB.empty()) {
695     MachineInstr *LastMI = &*MBB.rbegin();
696     InstrInfo &LastII = Instructions[LastMI];
697     if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
698       LastII.OutNeeds |= BI.OutNeeds;
699       Worklist.push_back(LastMI);
700     }
701   }
702 
703   // Predecessor blocks must provide for our WQM/Exact needs.
704   for (MachineBasicBlock *Pred : MBB.predecessors()) {
705     BlockInfo &PredBI = Blocks[Pred];
706     if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
707       continue;
708 
709     PredBI.OutNeeds |= BI.InNeeds;
710     PredBI.InNeeds |= BI.InNeeds;
711     Worklist.push_back(Pred);
712   }
713 
714   // All successors must be prepared to accept the same set of WQM/Exact data.
715   for (MachineBasicBlock *Succ : MBB.successors()) {
716     BlockInfo &SuccBI = Blocks[Succ];
717     if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
718       continue;
719 
720     SuccBI.InNeeds |= BI.OutNeeds;
721     Worklist.push_back(Succ);
722   }
723 }
724 
725 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
726   std::vector<WorkItem> Worklist;
727   char GlobalFlags = scanInstructions(MF, Worklist);
728 
729   while (!Worklist.empty()) {
730     WorkItem WI = Worklist.back();
731     Worklist.pop_back();
732 
733     if (WI.MI)
734       propagateInstruction(*WI.MI, Worklist);
735     else
736       propagateBlock(*WI.MBB, Worklist);
737   }
738 
739   return GlobalFlags;
740 }
741 
742 MachineBasicBlock::iterator
743 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
744                          MachineBasicBlock::iterator Before) {
745   Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
746 
747   MachineInstr *Save =
748       BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
749           .addReg(AMDGPU::SCC);
750   MachineInstr *Restore =
751       BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
752           .addReg(SaveReg);
753 
754   LIS->InsertMachineInstrInMaps(*Save);
755   LIS->InsertMachineInstrInMaps(*Restore);
756   LIS->createAndComputeVirtRegInterval(SaveReg);
757 
758   return Restore;
759 }
760 
761 MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB,
762                                                MachineInstr *TermMI) {
763   LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ "
764                     << *TermMI << "\n");
765 
766   MachineBasicBlock *SplitBB =
767       BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS);
768 
769   // Convert last instruction in block to a terminator.
770   // Note: this only covers the expected patterns
771   unsigned NewOpcode = 0;
772   switch (TermMI->getOpcode()) {
773   case AMDGPU::S_AND_B32:
774     NewOpcode = AMDGPU::S_AND_B32_term;
775     break;
776   case AMDGPU::S_AND_B64:
777     NewOpcode = AMDGPU::S_AND_B64_term;
778     break;
779   case AMDGPU::S_MOV_B32:
780     NewOpcode = AMDGPU::S_MOV_B32_term;
781     break;
782   case AMDGPU::S_MOV_B64:
783     NewOpcode = AMDGPU::S_MOV_B64_term;
784     break;
785   default:
786     break;
787   }
788   if (NewOpcode)
789     TermMI->setDesc(TII->get(NewOpcode));
790 
791   if (SplitBB != BB) {
792     // Update dominator trees
793     using DomTreeT = DomTreeBase<MachineBasicBlock>;
794     SmallVector<DomTreeT::UpdateType, 16> DTUpdates;
795     for (MachineBasicBlock *Succ : SplitBB->successors()) {
796       DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ});
797       DTUpdates.push_back({DomTreeT::Delete, BB, Succ});
798     }
799     DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB});
800     if (MDT)
801       MDT->getBase().applyUpdates(DTUpdates);
802     if (PDT)
803       PDT->getBase().applyUpdates(DTUpdates);
804 
805     // Link blocks
806     MachineInstr *MI =
807         BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH))
808             .addMBB(SplitBB);
809     LIS->InsertMachineInstrInMaps(*MI);
810   }
811 
812   return SplitBB;
813 }
814 
815 MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB,
816                                             MachineInstr &MI) {
817   const DebugLoc &DL = MI.getDebugLoc();
818   unsigned Opcode = 0;
819 
820   assert(MI.getOperand(0).isReg());
821 
822   // Comparison is for live lanes; however here we compute the inverse
823   // (killed lanes).  This is because VCMP will always generate 0 bits
824   // for inactive lanes so a mask of live lanes would not be correct
825   // inside control flow.
826   // Invert the comparison by swapping the operands and adjusting
827   // the comparison codes.
828 
829   switch (MI.getOperand(2).getImm()) {
830   case ISD::SETUEQ:
831     Opcode = AMDGPU::V_CMP_LG_F32_e64;
832     break;
833   case ISD::SETUGT:
834     Opcode = AMDGPU::V_CMP_GE_F32_e64;
835     break;
836   case ISD::SETUGE:
837     Opcode = AMDGPU::V_CMP_GT_F32_e64;
838     break;
839   case ISD::SETULT:
840     Opcode = AMDGPU::V_CMP_LE_F32_e64;
841     break;
842   case ISD::SETULE:
843     Opcode = AMDGPU::V_CMP_LT_F32_e64;
844     break;
845   case ISD::SETUNE:
846     Opcode = AMDGPU::V_CMP_EQ_F32_e64;
847     break;
848   case ISD::SETO:
849     Opcode = AMDGPU::V_CMP_O_F32_e64;
850     break;
851   case ISD::SETUO:
852     Opcode = AMDGPU::V_CMP_U_F32_e64;
853     break;
854   case ISD::SETOEQ:
855   case ISD::SETEQ:
856     Opcode = AMDGPU::V_CMP_NEQ_F32_e64;
857     break;
858   case ISD::SETOGT:
859   case ISD::SETGT:
860     Opcode = AMDGPU::V_CMP_NLT_F32_e64;
861     break;
862   case ISD::SETOGE:
863   case ISD::SETGE:
864     Opcode = AMDGPU::V_CMP_NLE_F32_e64;
865     break;
866   case ISD::SETOLT:
867   case ISD::SETLT:
868     Opcode = AMDGPU::V_CMP_NGT_F32_e64;
869     break;
870   case ISD::SETOLE:
871   case ISD::SETLE:
872     Opcode = AMDGPU::V_CMP_NGE_F32_e64;
873     break;
874   case ISD::SETONE:
875   case ISD::SETNE:
876     Opcode = AMDGPU::V_CMP_NLG_F32_e64;
877     break;
878   default:
879     llvm_unreachable("invalid ISD:SET cond code");
880   }
881 
882   // Pick opcode based on comparison type.
883   MachineInstr *VcmpMI;
884   const MachineOperand &Op0 = MI.getOperand(0);
885   const MachineOperand &Op1 = MI.getOperand(1);
886 
887   // VCC represents lanes killed.
888   Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;
889 
890   if (TRI->isVGPR(*MRI, Op0.getReg())) {
891     Opcode = AMDGPU::getVOPe32(Opcode);
892     VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0);
893   } else {
894     VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode))
895                  .addReg(VCC, RegState::Define)
896                  .addImm(0) // src0 modifiers
897                  .add(Op1)
898                  .addImm(0) // src1 modifiers
899                  .add(Op0)
900                  .addImm(0); // omod
901   }
902 
903   MachineInstr *MaskUpdateMI =
904       BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
905           .addReg(LiveMaskReg)
906           .addReg(VCC);
907 
908   // State of SCC represents whether any lanes are live in mask,
909   // if SCC is 0 then no lanes will be alive anymore.
910   MachineInstr *EarlyTermMI =
911       BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));
912 
913   MachineInstr *ExecMaskMI =
914       BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC);
915 
916   assert(MBB.succ_size() == 1);
917   MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
918                               .addMBB(*MBB.succ_begin());
919 
920   // Update live intervals
921   LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI);
922   MBB.remove(&MI);
923 
924   LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
925   LIS->InsertMachineInstrInMaps(*ExecMaskMI);
926   LIS->InsertMachineInstrInMaps(*EarlyTermMI);
927   LIS->InsertMachineInstrInMaps(*NewTerm);
928 
929   return NewTerm;
930 }
931 
932 MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB,
933                                            MachineInstr &MI, bool IsWQM) {
934   const DebugLoc &DL = MI.getDebugLoc();
935   MachineInstr *MaskUpdateMI = nullptr;
936 
937   const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1);
938   const MachineOperand &Op = MI.getOperand(0);
939   int64_t KillVal = MI.getOperand(1).getImm();
940   MachineInstr *ComputeKilledMaskMI = nullptr;
941   Register CndReg = !Op.isImm() ? Op.getReg() : Register();
942   Register TmpReg;
943 
944   // Is this a static or dynamic kill?
945   if (Op.isImm()) {
946     if (Op.getImm() == KillVal) {
947       // Static: all active lanes are killed
948       MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
949                          .addReg(LiveMaskReg)
950                          .addReg(Exec);
951     } else {
952       // Static: kill does nothing
953       MachineInstr *NewTerm = nullptr;
954       if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) {
955         LIS->RemoveMachineInstrFromMaps(MI);
956       } else {
957         assert(MBB.succ_size() == 1);
958         NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
959                       .addMBB(*MBB.succ_begin());
960         LIS->ReplaceMachineInstrInMaps(MI, *NewTerm);
961       }
962       MBB.remove(&MI);
963       return NewTerm;
964     }
965   } else {
966     if (!KillVal) {
967       // Op represents live lanes after kill,
968       // so exec mask needs to be factored in.
969       TmpReg = MRI->createVirtualRegister(TRI->getBoolRC());
970       ComputeKilledMaskMI =
971           BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec);
972       MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
973                          .addReg(LiveMaskReg)
974                          .addReg(TmpReg);
975     } else {
976       // Op represents lanes to kill
977       MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
978                          .addReg(LiveMaskReg)
979                          .add(Op);
980     }
981   }
982 
983   // State of SCC represents whether any lanes are live in mask,
984   // if SCC is 0 then no lanes will be alive anymore.
985   MachineInstr *EarlyTermMI =
986       BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));
987 
988   // In the case we got this far some lanes are still live,
989   // update EXEC to deactivate lanes as appropriate.
990   MachineInstr *NewTerm;
991   MachineInstr *WQMMaskMI = nullptr;
992   Register LiveMaskWQM;
993   if (IsDemote) {
994     // Demote - deactivate quads with only helper lanes
995     LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC());
996     WQMMaskMI =
997         BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg);
998     NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec)
999                   .addReg(Exec)
1000                   .addReg(LiveMaskWQM);
1001   } else {
1002     // Kill - deactivate lanes no longer in live mask
1003     if (Op.isImm()) {
1004       unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
1005       NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0);
1006     } else if (!IsWQM) {
1007       NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec)
1008                     .addReg(Exec)
1009                     .addReg(LiveMaskReg);
1010     } else {
1011       unsigned Opcode = KillVal ? AndN2Opc : AndOpc;
1012       NewTerm =
1013           BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op);
1014     }
1015   }
1016 
1017   // Update live intervals
1018   LIS->RemoveMachineInstrFromMaps(MI);
1019   MBB.remove(&MI);
1020   assert(EarlyTermMI);
1021   assert(MaskUpdateMI);
1022   assert(NewTerm);
1023   if (ComputeKilledMaskMI)
1024     LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI);
1025   LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
1026   LIS->InsertMachineInstrInMaps(*EarlyTermMI);
1027   if (WQMMaskMI)
1028     LIS->InsertMachineInstrInMaps(*WQMMaskMI);
1029   LIS->InsertMachineInstrInMaps(*NewTerm);
1030 
1031   if (CndReg) {
1032     LIS->removeInterval(CndReg);
1033     LIS->createAndComputeVirtRegInterval(CndReg);
1034   }
1035   if (TmpReg)
1036     LIS->createAndComputeVirtRegInterval(TmpReg);
1037   if (LiveMaskWQM)
1038     LIS->createAndComputeVirtRegInterval(LiveMaskWQM);
1039 
1040   return NewTerm;
1041 }
1042 
1043 // Replace (or supplement) instructions accessing live mask.
1044 // This can only happen once all the live mask registers have been created
1045 // and the execute state (WQM/StrictWWM/Exact) of instructions is known.
1046 void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) {
1047   auto BII = Blocks.find(&MBB);
1048   if (BII == Blocks.end())
1049     return;
1050 
1051   const BlockInfo &BI = BII->second;
1052   if (!BI.NeedsLowering)
1053     return;
1054 
1055   LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n");
1056 
1057   SmallVector<MachineInstr *, 4> SplitPoints;
1058   char State = BI.InitialState;
1059 
1060   for (MachineInstr &MI : llvm::make_early_inc_range(
1061            llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) {
1062     if (StateTransition.count(&MI))
1063       State = StateTransition[&MI];
1064 
1065     MachineInstr *SplitPoint = nullptr;
1066     switch (MI.getOpcode()) {
1067     case AMDGPU::SI_DEMOTE_I1:
1068     case AMDGPU::SI_KILL_I1_TERMINATOR:
1069       SplitPoint = lowerKillI1(MBB, MI, State == StateWQM);
1070       break;
1071     case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
1072       SplitPoint = lowerKillF32(MBB, MI);
1073       break;
1074     default:
1075       break;
1076     }
1077     if (SplitPoint)
1078       SplitPoints.push_back(SplitPoint);
1079   }
1080 
1081   // Perform splitting after instruction scan to simplify iteration.
1082   if (!SplitPoints.empty()) {
1083     MachineBasicBlock *BB = &MBB;
1084     for (MachineInstr *MI : SplitPoints) {
1085       BB = splitBlock(BB, MI);
1086     }
1087   }
1088 }
1089 
1090 // Return an iterator in the (inclusive) range [First, Last] at which
1091 // instructions can be safely inserted, keeping in mind that some of the
1092 // instructions we want to add necessarily clobber SCC.
1093 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
1094     MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
1095     MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
1096   if (!SaveSCC)
1097     return PreferLast ? Last : First;
1098 
1099   LiveRange &LR =
1100       LIS->getRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI));
1101   auto MBBE = MBB.end();
1102   SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
1103                                      : LIS->getMBBEndIdx(&MBB);
1104   SlotIndex LastIdx =
1105       Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
1106   SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
1107   const LiveRange::Segment *S;
1108 
1109   for (;;) {
1110     S = LR.getSegmentContaining(Idx);
1111     if (!S)
1112       break;
1113 
1114     if (PreferLast) {
1115       SlotIndex Next = S->start.getBaseIndex();
1116       if (Next < FirstIdx)
1117         break;
1118       Idx = Next;
1119     } else {
1120       MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex());
1121       assert(EndMI && "Segment does not end on valid instruction");
1122       auto NextI = std::next(EndMI->getIterator());
1123       if (NextI == MBB.end())
1124         break;
1125       SlotIndex Next = LIS->getInstructionIndex(*NextI);
1126       if (Next > LastIdx)
1127         break;
1128       Idx = Next;
1129     }
1130   }
1131 
1132   MachineBasicBlock::iterator MBBI;
1133 
1134   if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
1135     MBBI = MI;
1136   else {
1137     assert(Idx == LIS->getMBBEndIdx(&MBB));
1138     MBBI = MBB.end();
1139   }
1140 
1141   // Move insertion point past any operations modifying EXEC.
1142   // This assumes that the value of SCC defined by any of these operations
1143   // does not need to be preserved.
1144   while (MBBI != Last) {
1145     bool IsExecDef = false;
1146     for (const MachineOperand &MO : MBBI->operands()) {
1147       if (MO.isReg() && MO.isDef()) {
1148         IsExecDef |=
1149             MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC;
1150       }
1151     }
1152     if (!IsExecDef)
1153       break;
1154     MBBI++;
1155     S = nullptr;
1156   }
1157 
1158   if (S)
1159     MBBI = saveSCC(MBB, MBBI);
1160 
1161   return MBBI;
1162 }
1163 
1164 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
1165                               MachineBasicBlock::iterator Before,
1166                               Register SaveWQM) {
1167   MachineInstr *MI;
1168 
1169   if (SaveWQM) {
1170     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AndSaveExecOpc), SaveWQM)
1171              .addReg(LiveMaskReg);
1172   } else {
1173     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AndOpc), Exec)
1174              .addReg(Exec)
1175              .addReg(LiveMaskReg);
1176   }
1177 
1178   LIS->InsertMachineInstrInMaps(*MI);
1179   StateTransition[MI] = StateExact;
1180 }
1181 
1182 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
1183                             MachineBasicBlock::iterator Before,
1184                             Register SavedWQM) {
1185   MachineInstr *MI;
1186 
1187   if (SavedWQM) {
1188     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec)
1189              .addReg(SavedWQM);
1190   } else {
1191     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec);
1192   }
1193 
1194   LIS->InsertMachineInstrInMaps(*MI);
1195   StateTransition[MI] = StateWQM;
1196 }
1197 
1198 void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB,
1199                                    MachineBasicBlock::iterator Before,
1200                                    Register SaveOrig, char StrictStateNeeded) {
1201   MachineInstr *MI;
1202   assert(SaveOrig);
1203   assert(StrictStateNeeded == StateStrictWWM ||
1204          StrictStateNeeded == StateStrictWQM);
1205 
1206   if (StrictStateNeeded == StateStrictWWM) {
1207     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM),
1208                  SaveOrig)
1209              .addImm(-1);
1210   } else {
1211     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM),
1212                  SaveOrig)
1213              .addImm(-1);
1214   }
1215   LIS->InsertMachineInstrInMaps(*MI);
1216   StateTransition[MI] = StateStrictWWM;
1217 }
1218 
1219 void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB,
1220                                      MachineBasicBlock::iterator Before,
1221                                      Register SavedOrig, char NonStrictState,
1222                                      char CurrentStrictState) {
1223   MachineInstr *MI;
1224 
1225   assert(SavedOrig);
1226   assert(CurrentStrictState == StateStrictWWM ||
1227          CurrentStrictState == StateStrictWQM);
1228 
1229   if (CurrentStrictState == StateStrictWWM) {
1230     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM),
1231                  Exec)
1232              .addReg(SavedOrig);
1233   } else {
1234     MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM),
1235                  Exec)
1236              .addReg(SavedOrig);
1237   }
1238   LIS->InsertMachineInstrInMaps(*MI);
1239   StateTransition[MI] = NonStrictState;
1240 }
1241 
1242 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) {
1243   auto BII = Blocks.find(&MBB);
1244   if (BII == Blocks.end())
1245     return;
1246 
1247   BlockInfo &BI = BII->second;
1248 
1249   // This is a non-entry block that is WQM throughout, so no need to do
1250   // anything.
1251   if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) {
1252     BI.InitialState = StateWQM;
1253     return;
1254   }
1255 
1256   LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
1257                     << ":\n");
1258 
1259   Register SavedWQMReg;
1260   Register SavedNonStrictReg;
1261   bool WQMFromExec = IsEntry;
1262   char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
1263   char NonStrictState = 0;
1264   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
1265 
1266   auto II = MBB.getFirstNonPHI(), IE = MBB.end();
1267   if (IsEntry) {
1268     // Skip the instruction that saves LiveMask
1269     if (II != IE && II->getOpcode() == AMDGPU::COPY)
1270       ++II;
1271   }
1272 
1273   // This stores the first instruction where it's safe to switch from WQM to
1274   // Exact or vice versa.
1275   MachineBasicBlock::iterator FirstWQM = IE;
1276 
1277   // This stores the first instruction where it's safe to switch from Strict
1278   // mode to Exact/WQM or to switch to Strict mode. It must always be the same
1279   // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must
1280   // be safe to switch to/from WQM as well.
1281   MachineBasicBlock::iterator FirstStrict = IE;
1282 
1283   // Record initial state is block information.
1284   BI.InitialState = State;
1285 
1286   for (;;) {
1287     MachineBasicBlock::iterator Next = II;
1288     char Needs = StateExact | StateWQM; // Strict mode is disabled by default.
1289     char OutNeeds = 0;
1290 
1291     if (FirstWQM == IE)
1292       FirstWQM = II;
1293 
1294     if (FirstStrict == IE)
1295       FirstStrict = II;
1296 
1297     // First, figure out the allowed states (Needs) based on the propagated
1298     // flags.
1299     if (II != IE) {
1300       MachineInstr &MI = *II;
1301 
1302       if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) {
1303         auto III = Instructions.find(&MI);
1304         if (III != Instructions.end()) {
1305           if (III->second.Needs & StateStrictWWM)
1306             Needs = StateStrictWWM;
1307           else if (III->second.Needs & StateStrictWQM)
1308             Needs = StateStrictWQM;
1309           else if (III->second.Needs & StateWQM)
1310             Needs = StateWQM;
1311           else
1312             Needs &= ~III->second.Disabled;
1313           OutNeeds = III->second.OutNeeds;
1314         }
1315       } else {
1316         // If the instruction doesn't actually need a correct EXEC, then we can
1317         // safely leave Strict mode enabled.
1318         Needs = StateExact | StateWQM | StateStrict;
1319       }
1320 
1321       if (MI.isTerminator() && OutNeeds == StateExact)
1322         Needs = StateExact;
1323 
1324       ++Next;
1325     } else {
1326       // End of basic block
1327       if (BI.OutNeeds & StateWQM)
1328         Needs = StateWQM;
1329       else if (BI.OutNeeds == StateExact)
1330         Needs = StateExact;
1331       else
1332         Needs = StateWQM | StateExact;
1333     }
1334 
1335     // Now, transition if necessary.
1336     if (!(Needs & State)) {
1337       MachineBasicBlock::iterator First;
1338       if (State == StateStrictWWM || Needs == StateStrictWWM ||
1339           State == StateStrictWQM || Needs == StateStrictWQM) {
1340         // We must switch to or from Strict mode.
1341         First = FirstStrict;
1342       } else {
1343         // We only need to switch to/from WQM, so we can use FirstWQM.
1344         First = FirstWQM;
1345       }
1346 
1347       // Whether we need to save SCC depends on start and end states.
1348       bool SaveSCC = false;
1349       switch (State) {
1350       case StateExact:
1351       case StateStrictWWM:
1352       case StateStrictWQM:
1353         // Exact/Strict -> Strict: save SCC
1354         // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec
1355         // Exact/Strict -> Exact: no save
1356         SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec);
1357         break;
1358       case StateWQM:
1359         // WQM -> Exact/Strict: save SCC
1360         SaveSCC = !(Needs & StateWQM);
1361         break;
1362       default:
1363         llvm_unreachable("Unknown state");
1364         break;
1365       }
1366       MachineBasicBlock::iterator Before =
1367           prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC);
1368 
1369       if (State & StateStrict) {
1370         assert(State == StateStrictWWM || State == StateStrictWQM);
1371         assert(SavedNonStrictReg);
1372         fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State);
1373 
1374         LIS->createAndComputeVirtRegInterval(SavedNonStrictReg);
1375         SavedNonStrictReg = 0;
1376         State = NonStrictState;
1377       }
1378 
1379       if (Needs & StateStrict) {
1380         NonStrictState = State;
1381         assert(Needs == StateStrictWWM || Needs == StateStrictWQM);
1382         assert(!SavedNonStrictReg);
1383         SavedNonStrictReg = MRI->createVirtualRegister(BoolRC);
1384 
1385         toStrictMode(MBB, Before, SavedNonStrictReg, Needs);
1386         State = Needs;
1387 
1388       } else {
1389         if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
1390           if (!WQMFromExec && (OutNeeds & StateWQM)) {
1391             assert(!SavedWQMReg);
1392             SavedWQMReg = MRI->createVirtualRegister(BoolRC);
1393           }
1394 
1395           toExact(MBB, Before, SavedWQMReg);
1396           State = StateExact;
1397         } else if (State == StateExact && (Needs & StateWQM) &&
1398                    !(Needs & StateExact)) {
1399           assert(WQMFromExec == (SavedWQMReg == 0));
1400 
1401           toWQM(MBB, Before, SavedWQMReg);
1402 
1403           if (SavedWQMReg) {
1404             LIS->createAndComputeVirtRegInterval(SavedWQMReg);
1405             SavedWQMReg = 0;
1406           }
1407           State = StateWQM;
1408         } else {
1409           // We can get here if we transitioned from StrictWWM to a
1410           // non-StrictWWM state that already matches our needs, but we
1411           // shouldn't need to do anything.
1412           assert(Needs & State);
1413         }
1414       }
1415     }
1416 
1417     if (Needs != (StateExact | StateWQM | StateStrict)) {
1418       if (Needs != (StateExact | StateWQM))
1419         FirstWQM = IE;
1420       FirstStrict = IE;
1421     }
1422 
1423     if (II == IE)
1424       break;
1425 
1426     II = Next;
1427   }
1428   assert(!SavedWQMReg);
1429   assert(!SavedNonStrictReg);
1430 }
1431 
1432 void SIWholeQuadMode::lowerLiveMaskQueries() {
1433   for (MachineInstr *MI : LiveMaskQueries) {
1434     const DebugLoc &DL = MI->getDebugLoc();
1435     Register Dest = MI->getOperand(0).getReg();
1436 
1437     MachineInstr *Copy =
1438         BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
1439             .addReg(LiveMaskReg);
1440 
1441     LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
1442     MI->eraseFromParent();
1443   }
1444 }
1445 
1446 void SIWholeQuadMode::lowerCopyInstrs() {
1447   for (MachineInstr *MI : LowerToMovInstrs) {
1448     assert(MI->getNumExplicitOperands() == 2);
1449 
1450     const Register Reg = MI->getOperand(0).getReg();
1451     const unsigned SubReg = MI->getOperand(0).getSubReg();
1452 
1453     if (TRI->isVGPR(*MRI, Reg)) {
1454       const TargetRegisterClass *regClass =
1455           Reg.isVirtual() ? MRI->getRegClass(Reg) : TRI->getPhysRegClass(Reg);
1456       if (SubReg)
1457         regClass = TRI->getSubRegClass(regClass, SubReg);
1458 
1459       const unsigned MovOp = TII->getMovOpcode(regClass);
1460       MI->setDesc(TII->get(MovOp));
1461 
1462       // Check that it already implicitly depends on exec (like all VALU movs
1463       // should do).
1464       assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) {
1465         return MO.isUse() && MO.getReg() == AMDGPU::EXEC;
1466       }));
1467     } else {
1468       // Remove early-clobber and exec dependency from simple SGPR copies.
1469       // This allows some to be eliminated during/post RA.
1470       LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI);
1471       if (MI->getOperand(0).isEarlyClobber()) {
1472         LIS->removeInterval(Reg);
1473         MI->getOperand(0).setIsEarlyClobber(false);
1474         LIS->createAndComputeVirtRegInterval(Reg);
1475       }
1476       int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
1477       while (Index >= 0) {
1478         MI->removeOperand(Index);
1479         Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
1480       }
1481       MI->setDesc(TII->get(AMDGPU::COPY));
1482       LLVM_DEBUG(dbgs() << "  -> " << *MI);
1483     }
1484   }
1485   for (MachineInstr *MI : LowerToCopyInstrs) {
1486     if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 ||
1487         MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) {
1488       assert(MI->getNumExplicitOperands() == 3);
1489       // the only reason we should be here is V_SET_INACTIVE has
1490       // an undef input so it is being replaced by a simple copy.
1491       // There should be a second undef source that we should remove.
1492       assert(MI->getOperand(2).isUndef());
1493       MI->removeOperand(2);
1494       MI->untieRegOperand(1);
1495     } else {
1496       assert(MI->getNumExplicitOperands() == 2);
1497     }
1498 
1499     MI->setDesc(TII->get(AMDGPU::COPY));
1500   }
1501 }
1502 
1503 void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) {
1504   for (MachineInstr *MI : KillInstrs) {
1505     MachineBasicBlock *MBB = MI->getParent();
1506     MachineInstr *SplitPoint = nullptr;
1507     switch (MI->getOpcode()) {
1508     case AMDGPU::SI_DEMOTE_I1:
1509     case AMDGPU::SI_KILL_I1_TERMINATOR:
1510       SplitPoint = lowerKillI1(*MBB, *MI, IsWQM);
1511       break;
1512     case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
1513       SplitPoint = lowerKillF32(*MBB, *MI);
1514       break;
1515     default:
1516       continue;
1517     }
1518     if (SplitPoint)
1519       splitBlock(MBB, SplitPoint);
1520   }
1521 }
1522 
1523 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
1524   LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName()
1525                     << " ------------- \n");
1526   LLVM_DEBUG(MF.dump(););
1527 
1528   Instructions.clear();
1529   Blocks.clear();
1530   LiveMaskQueries.clear();
1531   LowerToCopyInstrs.clear();
1532   LowerToMovInstrs.clear();
1533   KillInstrs.clear();
1534   StateTransition.clear();
1535 
1536   ST = &MF.getSubtarget<GCNSubtarget>();
1537 
1538   TII = ST->getInstrInfo();
1539   TRI = &TII->getRegisterInfo();
1540   MRI = &MF.getRegInfo();
1541   LIS = &getAnalysis<LiveIntervals>();
1542   MDT = &getAnalysis<MachineDominatorTree>();
1543   PDT = &getAnalysis<MachinePostDominatorTree>();
1544 
1545   if (ST->isWave32()) {
1546     AndOpc = AMDGPU::S_AND_B32;
1547     AndN2Opc = AMDGPU::S_ANDN2_B32;
1548     XorOpc = AMDGPU::S_XOR_B32;
1549     AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32;
1550     OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B32;
1551     WQMOpc = AMDGPU::S_WQM_B32;
1552     Exec = AMDGPU::EXEC_LO;
1553   } else {
1554     AndOpc = AMDGPU::S_AND_B64;
1555     AndN2Opc = AMDGPU::S_ANDN2_B64;
1556     XorOpc = AMDGPU::S_XOR_B64;
1557     AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64;
1558     OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B64;
1559     WQMOpc = AMDGPU::S_WQM_B64;
1560     Exec = AMDGPU::EXEC;
1561   }
1562 
1563   const char GlobalFlags = analyzeFunction(MF);
1564   const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty());
1565 
1566   LiveMaskReg = Exec;
1567 
1568   // Shader is simple does not need any state changes or any complex lowering
1569   if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() &&
1570       LowerToMovInstrs.empty() && KillInstrs.empty()) {
1571     lowerLiveMaskQueries();
1572     return !LiveMaskQueries.empty();
1573   }
1574 
1575   MachineBasicBlock &Entry = MF.front();
1576   MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();
1577 
1578   // Store a copy of the original live mask when required
1579   if (NeedsLiveMask || (GlobalFlags & StateWQM)) {
1580     LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC());
1581     MachineInstr *MI =
1582         BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg)
1583             .addReg(Exec);
1584     LIS->InsertMachineInstrInMaps(*MI);
1585   }
1586 
1587   LLVM_DEBUG(printInfo());
1588 
1589   lowerLiveMaskQueries();
1590   lowerCopyInstrs();
1591 
1592   // Shader only needs WQM
1593   if (GlobalFlags == StateWQM) {
1594     auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec)
1595                   .addReg(Exec);
1596     LIS->InsertMachineInstrInMaps(*MI);
1597     lowerKillInstrs(true);
1598   } else {
1599     for (auto BII : Blocks)
1600       processBlock(*BII.first, BII.first == &Entry);
1601     // Lowering blocks causes block splitting so perform as a second pass.
1602     for (auto BII : Blocks)
1603       lowerBlock(*BII.first);
1604   }
1605 
1606   // Compute live range for live mask
1607   if (LiveMaskReg != Exec)
1608     LIS->createAndComputeVirtRegInterval(LiveMaskReg);
1609 
1610   // Physical registers like SCC aren't tracked by default anyway, so just
1611   // removing the ranges we computed is the simplest option for maintaining
1612   // the analysis results.
1613   LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC);
1614 
1615   // If we performed any kills then recompute EXEC
1616   if (!KillInstrs.empty())
1617     LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC);
1618 
1619   return true;
1620 }
1621