1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode (strict or non-strict) 11 /// for pixel shaders, and strict whole wavefront mode for all programs. 12 /// 13 /// The "strict" prefix indicates that inactive lanes do not take part in 14 /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will 15 /// always be enabled irrespective of control flow decisions. Conversely in 16 /// non-strict WQM inactive lanes may control flow decisions. 17 /// 18 /// Whole quad mode is required for derivative computations, but it interferes 19 /// with shader side effects (stores and atomics). It ensures that WQM is 20 /// enabled when necessary, but disabled around stores and atomics. 21 /// 22 /// When necessary, this pass creates a function prolog 23 /// 24 /// S_MOV_B64 LiveMask, EXEC 25 /// S_WQM_B64 EXEC, EXEC 26 /// 27 /// to enter WQM at the top of the function and surrounds blocks of Exact 28 /// instructions by 29 /// 30 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 31 /// ... 32 /// S_MOV_B64 EXEC, Tmp 33 /// 34 /// We also compute when a sequence of instructions requires strict whole 35 /// wavefront mode (StrictWWM) and insert instructions to save and restore it: 36 /// 37 /// S_OR_SAVEEXEC_B64 Tmp, -1 38 /// ... 39 /// S_MOV_B64 EXEC, Tmp 40 /// 41 /// When a sequence of instructions requires strict whole quad mode (StrictWQM) 42 /// we use a similar save and restore mechanism and force whole quad mode for 43 /// those instructions: 44 /// 45 /// S_MOV_B64 Tmp, EXEC 46 /// S_WQM_B64 EXEC, EXEC 47 /// ... 48 /// S_MOV_B64 EXEC, Tmp 49 /// 50 /// In order to avoid excessive switching during sequences of Exact 51 /// instructions, the pass first analyzes which instructions must be run in WQM 52 /// (aka which instructions produce values that lead to derivative 53 /// computations). 54 /// 55 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 56 /// 57 /// There is room for improvement given better control flow analysis: 58 /// 59 /// (1) at the top level (outside of control flow statements, and as long as 60 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 61 /// the LiveMask (this is implemented for the entry block). 62 /// 63 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 64 /// consist of exact and don't-care instructions, the switch only has to 65 /// be done at the entry and exit points rather than potentially in each 66 /// block of the region. 67 /// 68 //===----------------------------------------------------------------------===// 69 70 #include "AMDGPU.h" 71 #include "GCNSubtarget.h" 72 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 73 #include "llvm/ADT/MapVector.h" 74 #include "llvm/ADT/PostOrderIterator.h" 75 #include "llvm/CodeGen/LiveIntervals.h" 76 #include "llvm/CodeGen/MachineBasicBlock.h" 77 #include "llvm/CodeGen/MachineDominators.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineInstr.h" 80 #include "llvm/CodeGen/MachinePostDominators.h" 81 #include "llvm/IR/CallingConv.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/Support/raw_ostream.h" 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "si-wqm" 88 89 namespace { 90 91 enum { 92 StateWQM = 0x1, 93 StateStrictWWM = 0x2, 94 StateStrictWQM = 0x4, 95 StateExact = 0x8, 96 StateStrict = StateStrictWWM | StateStrictWQM, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 109 static const std::pair<char, const char *> Mapping[] = { 110 std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"), 111 std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")}; 112 char State = PS.State; 113 for (auto M : Mapping) { 114 if (State & M.first) { 115 OS << M.second; 116 State &= ~M.first; 117 118 if (State) 119 OS << '|'; 120 } 121 } 122 assert(State == 0); 123 return OS; 124 } 125 #endif 126 127 struct InstrInfo { 128 char Needs = 0; 129 char Disabled = 0; 130 char OutNeeds = 0; 131 }; 132 133 struct BlockInfo { 134 char Needs = 0; 135 char InNeeds = 0; 136 char OutNeeds = 0; 137 char InitialState = 0; 138 bool NeedsLowering = false; 139 }; 140 141 struct WorkItem { 142 MachineBasicBlock *MBB = nullptr; 143 MachineInstr *MI = nullptr; 144 145 WorkItem() = default; 146 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 147 WorkItem(MachineInstr *MI) : MI(MI) {} 148 }; 149 150 class SIWholeQuadMode : public MachineFunctionPass { 151 private: 152 const SIInstrInfo *TII; 153 const SIRegisterInfo *TRI; 154 const GCNSubtarget *ST; 155 MachineRegisterInfo *MRI; 156 LiveIntervals *LIS; 157 MachineDominatorTree *MDT; 158 MachinePostDominatorTree *PDT; 159 160 unsigned AndOpc; 161 unsigned AndTermOpc; 162 unsigned AndN2Opc; 163 unsigned XorOpc; 164 unsigned AndSaveExecOpc; 165 unsigned AndSaveExecTermOpc; 166 unsigned WQMOpc; 167 Register Exec; 168 Register LiveMaskReg; 169 170 DenseMap<const MachineInstr *, InstrInfo> Instructions; 171 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 172 173 // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction 174 DenseMap<const MachineInstr *, char> StateTransition; 175 176 SmallVector<MachineInstr *, 2> LiveMaskQueries; 177 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 178 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 179 SmallVector<MachineInstr *, 4> KillInstrs; 180 181 void printInfo(); 182 183 void markInstruction(MachineInstr &MI, char Flag, 184 std::vector<WorkItem> &Worklist); 185 void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, 186 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist); 187 void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, 188 std::vector<WorkItem> &Worklist); 189 void markInstructionUses(const MachineInstr &MI, char Flag, 190 std::vector<WorkItem> &Worklist); 191 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 192 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 193 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 194 char analyzeFunction(MachineFunction &MF); 195 196 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 197 MachineBasicBlock::iterator Before); 198 MachineBasicBlock::iterator 199 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 200 MachineBasicBlock::iterator Last, bool PreferLast, 201 bool SaveSCC); 202 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 203 Register SaveWQM); 204 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 205 Register SavedWQM); 206 void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 207 Register SaveOrig, char StrictStateNeeded); 208 void fromStrictMode(MachineBasicBlock &MBB, 209 MachineBasicBlock::iterator Before, Register SavedOrig, 210 char NonStrictState, char CurrentStrictState); 211 212 MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI); 213 214 MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI, 215 bool IsWQM); 216 MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI); 217 void lowerPseudoStrictMode(MachineBasicBlock &MBB, MachineInstr *Entry, 218 MachineInstr *Exit); 219 220 void lowerBlock(MachineBasicBlock &MBB); 221 void processBlock(MachineBasicBlock &MBB, bool IsEntry); 222 223 void lowerLiveMaskQueries(); 224 void lowerCopyInstrs(); 225 void lowerKillInstrs(bool IsWQM); 226 227 public: 228 static char ID; 229 230 SIWholeQuadMode() : 231 MachineFunctionPass(ID) { } 232 233 bool runOnMachineFunction(MachineFunction &MF) override; 234 235 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 236 237 void getAnalysisUsage(AnalysisUsage &AU) const override { 238 AU.addRequired<LiveIntervals>(); 239 AU.addPreserved<SlotIndexes>(); 240 AU.addPreserved<LiveIntervals>(); 241 AU.addPreserved<MachineDominatorTree>(); 242 AU.addPreserved<MachinePostDominatorTree>(); 243 MachineFunctionPass::getAnalysisUsage(AU); 244 } 245 246 MachineFunctionProperties getClearedProperties() const override { 247 return MachineFunctionProperties().set( 248 MachineFunctionProperties::Property::IsSSA); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 char SIWholeQuadMode::ID = 0; 255 256 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 257 false) 258 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 259 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 260 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 261 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 262 false) 263 264 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 265 266 FunctionPass *llvm::createSIWholeQuadModePass() { 267 return new SIWholeQuadMode; 268 } 269 270 #ifndef NDEBUG 271 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 272 for (const auto &BII : Blocks) { 273 dbgs() << "\n" 274 << printMBBReference(*BII.first) << ":\n" 275 << " InNeeds = " << PrintState(BII.second.InNeeds) 276 << ", Needs = " << PrintState(BII.second.Needs) 277 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 278 279 for (const MachineInstr &MI : *BII.first) { 280 auto III = Instructions.find(&MI); 281 if (III == Instructions.end()) 282 continue; 283 284 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 285 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 286 } 287 } 288 } 289 #endif 290 291 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 292 std::vector<WorkItem> &Worklist) { 293 InstrInfo &II = Instructions[&MI]; 294 295 assert(!(Flag & StateExact) && Flag != 0); 296 297 // Remove any disabled states from the flag. The user that required it gets 298 // an undefined value in the helper lanes. For example, this can happen if 299 // the result of an atomic is used by instruction that requires WQM, where 300 // ignoring the request for WQM is correct as per the relevant specs. 301 Flag &= ~II.Disabled; 302 303 // Ignore if the flag is already encompassed by the existing needs, or we 304 // just disabled everything. 305 if ((II.Needs & Flag) == Flag) 306 return; 307 308 LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); 309 II.Needs |= Flag; 310 Worklist.push_back(&MI); 311 } 312 313 /// Mark all relevant definitions of register \p Reg in usage \p UseMI. 314 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, 315 Register Reg, unsigned SubReg, char Flag, 316 std::vector<WorkItem> &Worklist) { 317 LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); 318 319 LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); 320 const VNInfo *Value = UseLRQ.valueIn(); 321 if (!Value) 322 return; 323 324 // Note: this code assumes that lane masks on AMDGPU completely 325 // cover registers. 326 const LaneBitmask UseLanes = 327 SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 328 : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg) 329 : LaneBitmask::getNone()); 330 331 // Perform a depth-first iteration of the LiveRange graph marking defs. 332 // Stop processing of a given branch when all use lanes have been defined. 333 // The first definition stops processing for a physical register. 334 struct PhiEntry { 335 const VNInfo *Phi; 336 unsigned PredIdx; 337 LaneBitmask DefinedLanes; 338 339 PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes) 340 : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {} 341 }; 342 using VisitKey = std::pair<const VNInfo *, LaneBitmask>; 343 SmallVector<PhiEntry, 2> PhiStack; 344 SmallSet<VisitKey, 4> Visited; 345 LaneBitmask DefinedLanes; 346 unsigned NextPredIdx = 0; // Only used for processing phi nodes 347 do { 348 const VNInfo *NextValue = nullptr; 349 const VisitKey Key(Value, DefinedLanes); 350 351 if (Visited.insert(Key).second) { 352 // On first visit to a phi then start processing first predecessor 353 NextPredIdx = 0; 354 } 355 356 if (Value->isPHIDef()) { 357 // Each predecessor node in the phi must be processed as a subgraph 358 const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); 359 assert(MBB && "Phi-def has no defining MBB"); 360 361 // Find next predecessor to process 362 unsigned Idx = NextPredIdx; 363 auto PI = MBB->pred_begin() + Idx; 364 auto PE = MBB->pred_end(); 365 for (; PI != PE && !NextValue; ++PI, ++Idx) { 366 if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { 367 if (!Visited.count(VisitKey(VN, DefinedLanes))) 368 NextValue = VN; 369 } 370 } 371 372 // If there are more predecessors to process; add phi to stack 373 if (PI != PE) 374 PhiStack.emplace_back(Value, Idx, DefinedLanes); 375 } else { 376 MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); 377 assert(MI && "Def has no defining instruction"); 378 379 if (Reg.isVirtual()) { 380 // Iterate over all operands to find relevant definitions 381 bool HasDef = false; 382 for (const MachineOperand &Op : MI->all_defs()) { 383 if (Op.getReg() != Reg) 384 continue; 385 386 // Compute lanes defined and overlap with use 387 LaneBitmask OpLanes = 388 Op.isUndef() ? LaneBitmask::getAll() 389 : TRI->getSubRegIndexLaneMask(Op.getSubReg()); 390 LaneBitmask Overlap = (UseLanes & OpLanes); 391 392 // Record if this instruction defined any of use 393 HasDef |= Overlap.any(); 394 395 // Mark any lanes defined 396 DefinedLanes |= OpLanes; 397 } 398 399 // Check if all lanes of use have been defined 400 if ((DefinedLanes & UseLanes) != UseLanes) { 401 // Definition not complete; need to process input value 402 LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); 403 if (const VNInfo *VN = LRQ.valueIn()) { 404 if (!Visited.count(VisitKey(VN, DefinedLanes))) 405 NextValue = VN; 406 } 407 } 408 409 // Only mark the instruction if it defines some part of the use 410 if (HasDef) 411 markInstruction(*MI, Flag, Worklist); 412 } else { 413 // For physical registers simply mark the defining instruction 414 markInstruction(*MI, Flag, Worklist); 415 } 416 } 417 418 if (!NextValue && !PhiStack.empty()) { 419 // Reach end of chain; revert to processing last phi 420 PhiEntry &Entry = PhiStack.back(); 421 NextValue = Entry.Phi; 422 NextPredIdx = Entry.PredIdx; 423 DefinedLanes = Entry.DefinedLanes; 424 PhiStack.pop_back(); 425 } 426 427 Value = NextValue; 428 } while (Value); 429 } 430 431 void SIWholeQuadMode::markOperand(const MachineInstr &MI, 432 const MachineOperand &Op, char Flag, 433 std::vector<WorkItem> &Worklist) { 434 assert(Op.isReg()); 435 Register Reg = Op.getReg(); 436 437 // Ignore some hardware registers 438 switch (Reg) { 439 case AMDGPU::EXEC: 440 case AMDGPU::EXEC_LO: 441 return; 442 default: 443 break; 444 } 445 446 LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op 447 << " for " << MI); 448 if (Reg.isVirtual()) { 449 LiveRange &LR = LIS->getInterval(Reg); 450 markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist); 451 } else { 452 // Handle physical registers that we need to track; this is mostly relevant 453 // for VCC, which can appear as the (implicit) input of a uniform branch, 454 // e.g. when a loop counter is stored in a VGPR. 455 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 456 LiveRange &LR = LIS->getRegUnit(Unit); 457 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 458 if (!Value) 459 continue; 460 461 markDefs(MI, LR, Unit, AMDGPU::NoSubRegister, Flag, Worklist); 462 } 463 } 464 } 465 466 /// Mark all instructions defining the uses in \p MI with \p Flag. 467 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 468 std::vector<WorkItem> &Worklist) { 469 LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " 470 << MI); 471 472 for (const MachineOperand &Use : MI.all_uses()) 473 markOperand(MI, Use, Flag, Worklist); 474 } 475 476 // Scan instructions to determine which ones require an Exact execmask and 477 // which ones seed WQM requirements. 478 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 479 std::vector<WorkItem> &Worklist) { 480 char GlobalFlags = 0; 481 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 482 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 483 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 484 bool HasImplicitDerivatives = 485 MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS; 486 487 // We need to visit the basic blocks in reverse post-order so that we visit 488 // defs before uses, in particular so that we don't accidentally mark an 489 // instruction as needing e.g. WQM before visiting it and realizing it needs 490 // WQM disabled. 491 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 492 for (MachineBasicBlock *MBB : RPOT) { 493 BlockInfo &BBI = Blocks[MBB]; 494 495 for (MachineInstr &MI : *MBB) { 496 InstrInfo &III = Instructions[&MI]; 497 unsigned Opcode = MI.getOpcode(); 498 char Flags = 0; 499 500 if (TII->isWQM(Opcode)) { 501 // If LOD is not supported WQM is not needed. 502 if (!ST->hasExtendedImageInsts()) 503 continue; 504 // Only generate implicit WQM if implicit derivatives are required. 505 // This avoids inserting unintended WQM if a shader type without 506 // implicit derivatives uses an image sampling instruction. 507 if (!HasImplicitDerivatives) 508 continue; 509 // Sampling instructions don't need to produce results for all pixels 510 // in a quad, they just require all inputs of a quad to have been 511 // computed for derivatives. 512 markInstructionUses(MI, StateWQM, Worklist); 513 GlobalFlags |= StateWQM; 514 continue; 515 } else if (Opcode == AMDGPU::WQM) { 516 // The WQM intrinsic requires its output to have all the helper lanes 517 // correct, so we need it to be in WQM. 518 Flags = StateWQM; 519 LowerToCopyInstrs.push_back(&MI); 520 } else if (Opcode == AMDGPU::SOFT_WQM) { 521 LowerToCopyInstrs.push_back(&MI); 522 SoftWQMInstrs.push_back(&MI); 523 continue; 524 } else if (Opcode == AMDGPU::STRICT_WWM) { 525 // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus 526 // it needs to be executed in WQM or Exact so that its copy doesn't 527 // clobber inactive lanes. 528 markInstructionUses(MI, StateStrictWWM, Worklist); 529 GlobalFlags |= StateStrictWWM; 530 LowerToMovInstrs.push_back(&MI); 531 continue; 532 } else if (Opcode == AMDGPU::STRICT_WQM || 533 TII->isDualSourceBlendEXP(MI)) { 534 // STRICT_WQM is similar to STRICTWWM, but instead of enabling all 535 // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in 536 // quads that have at least one active thread. 537 markInstructionUses(MI, StateStrictWQM, Worklist); 538 GlobalFlags |= StateStrictWQM; 539 540 if (Opcode == AMDGPU::STRICT_WQM) { 541 LowerToMovInstrs.push_back(&MI); 542 } else { 543 // Dual source blend export acts as implicit strict-wqm, its sources 544 // need to be shuffled in strict wqm, but the export itself needs to 545 // run in exact mode. 546 BBI.Needs |= StateExact; 547 if (!(BBI.InNeeds & StateExact)) { 548 BBI.InNeeds |= StateExact; 549 Worklist.push_back(MBB); 550 } 551 GlobalFlags |= StateExact; 552 III.Disabled = StateWQM | StateStrict; 553 } 554 continue; 555 } else if (Opcode == AMDGPU::LDS_PARAM_LOAD || 556 Opcode == AMDGPU::DS_PARAM_LOAD || 557 Opcode == AMDGPU::LDS_DIRECT_LOAD || 558 Opcode == AMDGPU::DS_DIRECT_LOAD) { 559 // Mark these STRICTWQM, but only for the instruction, not its operands. 560 // This avoid unnecessarily marking M0 as requiring WQM. 561 InstrInfo &II = Instructions[&MI]; 562 II.Needs |= StateStrictWQM; 563 GlobalFlags |= StateStrictWQM; 564 continue; 565 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 566 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 567 III.Disabled = StateStrict; 568 MachineOperand &Inactive = MI.getOperand(2); 569 if (Inactive.isReg()) { 570 if (Inactive.isUndef()) { 571 LowerToCopyInstrs.push_back(&MI); 572 } else { 573 markOperand(MI, Inactive, StateStrictWWM, Worklist); 574 } 575 } 576 SetInactiveInstrs.push_back(&MI); 577 continue; 578 } else if (TII->isDisableWQM(MI)) { 579 BBI.Needs |= StateExact; 580 if (!(BBI.InNeeds & StateExact)) { 581 BBI.InNeeds |= StateExact; 582 Worklist.push_back(MBB); 583 } 584 GlobalFlags |= StateExact; 585 III.Disabled = StateWQM | StateStrict; 586 continue; 587 } else { 588 if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) { 589 LiveMaskQueries.push_back(&MI); 590 } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR || 591 Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR || 592 Opcode == AMDGPU::SI_DEMOTE_I1) { 593 KillInstrs.push_back(&MI); 594 BBI.NeedsLowering = true; 595 } else if (WQMOutputs) { 596 // The function is in machine SSA form, which means that physical 597 // VGPRs correspond to shader inputs and outputs. Inputs are 598 // only used, outputs are only defined. 599 // FIXME: is this still valid? 600 for (const MachineOperand &MO : MI.defs()) { 601 if (!MO.isReg()) 602 continue; 603 604 Register Reg = MO.getReg(); 605 606 if (!Reg.isVirtual() && 607 TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) { 608 Flags = StateWQM; 609 break; 610 } 611 } 612 } 613 614 if (!Flags) 615 continue; 616 } 617 618 markInstruction(MI, Flags, Worklist); 619 GlobalFlags |= Flags; 620 } 621 } 622 623 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 624 // ever used anywhere in the function. This implements the corresponding 625 // semantics of @llvm.amdgcn.set.inactive. 626 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 627 if (GlobalFlags & StateWQM) { 628 for (MachineInstr *MI : SetInactiveInstrs) 629 markInstruction(*MI, StateWQM, Worklist); 630 for (MachineInstr *MI : SoftWQMInstrs) 631 markInstruction(*MI, StateWQM, Worklist); 632 } 633 634 return GlobalFlags; 635 } 636 637 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 638 std::vector<WorkItem>& Worklist) { 639 MachineBasicBlock *MBB = MI.getParent(); 640 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 641 BlockInfo &BI = Blocks[MBB]; 642 643 // Control flow-type instructions and stores to temporary memory that are 644 // followed by WQM computations must themselves be in WQM. 645 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 646 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 647 Instructions[&MI].Needs = StateWQM; 648 II.Needs = StateWQM; 649 } 650 651 // Propagate to block level 652 if (II.Needs & StateWQM) { 653 BI.Needs |= StateWQM; 654 if (!(BI.InNeeds & StateWQM)) { 655 BI.InNeeds |= StateWQM; 656 Worklist.push_back(MBB); 657 } 658 } 659 660 // Propagate backwards within block 661 if (MachineInstr *PrevMI = MI.getPrevNode()) { 662 char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds; 663 if (!PrevMI->isPHI()) { 664 InstrInfo &PrevII = Instructions[PrevMI]; 665 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 666 PrevII.OutNeeds |= InNeeds; 667 Worklist.push_back(PrevMI); 668 } 669 } 670 } 671 672 // Propagate WQM flag to instruction inputs 673 assert(!(II.Needs & StateExact)); 674 675 if (II.Needs != 0) 676 markInstructionUses(MI, II.Needs, Worklist); 677 678 // Ensure we process a block containing StrictWWM/StrictWQM, even if it does 679 // not require any WQM transitions. 680 if (II.Needs & StateStrictWWM) 681 BI.Needs |= StateStrictWWM; 682 if (II.Needs & StateStrictWQM) 683 BI.Needs |= StateStrictWQM; 684 } 685 686 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 687 std::vector<WorkItem>& Worklist) { 688 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 689 690 // Propagate through instructions 691 if (!MBB.empty()) { 692 MachineInstr *LastMI = &*MBB.rbegin(); 693 InstrInfo &LastII = Instructions[LastMI]; 694 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 695 LastII.OutNeeds |= BI.OutNeeds; 696 Worklist.push_back(LastMI); 697 } 698 } 699 700 // Predecessor blocks must provide for our WQM/Exact needs. 701 for (MachineBasicBlock *Pred : MBB.predecessors()) { 702 BlockInfo &PredBI = Blocks[Pred]; 703 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 704 continue; 705 706 PredBI.OutNeeds |= BI.InNeeds; 707 PredBI.InNeeds |= BI.InNeeds; 708 Worklist.push_back(Pred); 709 } 710 711 // All successors must be prepared to accept the same set of WQM/Exact data. 712 for (MachineBasicBlock *Succ : MBB.successors()) { 713 BlockInfo &SuccBI = Blocks[Succ]; 714 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 715 continue; 716 717 SuccBI.InNeeds |= BI.OutNeeds; 718 Worklist.push_back(Succ); 719 } 720 } 721 722 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 723 std::vector<WorkItem> Worklist; 724 char GlobalFlags = scanInstructions(MF, Worklist); 725 726 while (!Worklist.empty()) { 727 WorkItem WI = Worklist.back(); 728 Worklist.pop_back(); 729 730 if (WI.MI) 731 propagateInstruction(*WI.MI, Worklist); 732 else 733 propagateBlock(*WI.MBB, Worklist); 734 } 735 736 return GlobalFlags; 737 } 738 739 MachineBasicBlock::iterator 740 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 741 MachineBasicBlock::iterator Before) { 742 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 743 744 MachineInstr *Save = 745 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 746 .addReg(AMDGPU::SCC); 747 MachineInstr *Restore = 748 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 749 .addReg(SaveReg); 750 751 LIS->InsertMachineInstrInMaps(*Save); 752 LIS->InsertMachineInstrInMaps(*Restore); 753 LIS->createAndComputeVirtRegInterval(SaveReg); 754 755 return Restore; 756 } 757 758 MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB, 759 MachineInstr *TermMI) { 760 LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ " 761 << *TermMI << "\n"); 762 763 MachineBasicBlock *SplitBB = 764 BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS); 765 766 // Convert last instruction in block to a terminator. 767 // Note: this only covers the expected patterns 768 unsigned NewOpcode = 0; 769 switch (TermMI->getOpcode()) { 770 case AMDGPU::S_AND_B32: 771 NewOpcode = AMDGPU::S_AND_B32_term; 772 break; 773 case AMDGPU::S_AND_B64: 774 NewOpcode = AMDGPU::S_AND_B64_term; 775 break; 776 case AMDGPU::S_MOV_B32: 777 NewOpcode = AMDGPU::S_MOV_B32_term; 778 break; 779 case AMDGPU::S_MOV_B64: 780 NewOpcode = AMDGPU::S_MOV_B64_term; 781 break; 782 default: 783 break; 784 } 785 if (NewOpcode) 786 TermMI->setDesc(TII->get(NewOpcode)); 787 788 if (SplitBB != BB) { 789 // Update dominator trees 790 using DomTreeT = DomTreeBase<MachineBasicBlock>; 791 SmallVector<DomTreeT::UpdateType, 16> DTUpdates; 792 for (MachineBasicBlock *Succ : SplitBB->successors()) { 793 DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ}); 794 DTUpdates.push_back({DomTreeT::Delete, BB, Succ}); 795 } 796 DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB}); 797 if (MDT) 798 MDT->getBase().applyUpdates(DTUpdates); 799 if (PDT) 800 PDT->getBase().applyUpdates(DTUpdates); 801 802 // Link blocks 803 MachineInstr *MI = 804 BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH)) 805 .addMBB(SplitBB); 806 LIS->InsertMachineInstrInMaps(*MI); 807 } 808 809 return SplitBB; 810 } 811 812 MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB, 813 MachineInstr &MI) { 814 const DebugLoc &DL = MI.getDebugLoc(); 815 unsigned Opcode = 0; 816 817 assert(MI.getOperand(0).isReg()); 818 819 // Comparison is for live lanes; however here we compute the inverse 820 // (killed lanes). This is because VCMP will always generate 0 bits 821 // for inactive lanes so a mask of live lanes would not be correct 822 // inside control flow. 823 // Invert the comparison by swapping the operands and adjusting 824 // the comparison codes. 825 826 switch (MI.getOperand(2).getImm()) { 827 case ISD::SETUEQ: 828 Opcode = AMDGPU::V_CMP_LG_F32_e64; 829 break; 830 case ISD::SETUGT: 831 Opcode = AMDGPU::V_CMP_GE_F32_e64; 832 break; 833 case ISD::SETUGE: 834 Opcode = AMDGPU::V_CMP_GT_F32_e64; 835 break; 836 case ISD::SETULT: 837 Opcode = AMDGPU::V_CMP_LE_F32_e64; 838 break; 839 case ISD::SETULE: 840 Opcode = AMDGPU::V_CMP_LT_F32_e64; 841 break; 842 case ISD::SETUNE: 843 Opcode = AMDGPU::V_CMP_EQ_F32_e64; 844 break; 845 case ISD::SETO: 846 Opcode = AMDGPU::V_CMP_O_F32_e64; 847 break; 848 case ISD::SETUO: 849 Opcode = AMDGPU::V_CMP_U_F32_e64; 850 break; 851 case ISD::SETOEQ: 852 case ISD::SETEQ: 853 Opcode = AMDGPU::V_CMP_NEQ_F32_e64; 854 break; 855 case ISD::SETOGT: 856 case ISD::SETGT: 857 Opcode = AMDGPU::V_CMP_NLT_F32_e64; 858 break; 859 case ISD::SETOGE: 860 case ISD::SETGE: 861 Opcode = AMDGPU::V_CMP_NLE_F32_e64; 862 break; 863 case ISD::SETOLT: 864 case ISD::SETLT: 865 Opcode = AMDGPU::V_CMP_NGT_F32_e64; 866 break; 867 case ISD::SETOLE: 868 case ISD::SETLE: 869 Opcode = AMDGPU::V_CMP_NGE_F32_e64; 870 break; 871 case ISD::SETONE: 872 case ISD::SETNE: 873 Opcode = AMDGPU::V_CMP_NLG_F32_e64; 874 break; 875 default: 876 llvm_unreachable("invalid ISD:SET cond code"); 877 } 878 879 // Pick opcode based on comparison type. 880 MachineInstr *VcmpMI; 881 const MachineOperand &Op0 = MI.getOperand(0); 882 const MachineOperand &Op1 = MI.getOperand(1); 883 884 // VCC represents lanes killed. 885 Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; 886 887 if (TRI->isVGPR(*MRI, Op0.getReg())) { 888 Opcode = AMDGPU::getVOPe32(Opcode); 889 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0); 890 } else { 891 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)) 892 .addReg(VCC, RegState::Define) 893 .addImm(0) // src0 modifiers 894 .add(Op1) 895 .addImm(0) // src1 modifiers 896 .add(Op0) 897 .addImm(0); // omod 898 } 899 900 MachineInstr *MaskUpdateMI = 901 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 902 .addReg(LiveMaskReg) 903 .addReg(VCC); 904 905 // State of SCC represents whether any lanes are live in mask, 906 // if SCC is 0 then no lanes will be alive anymore. 907 MachineInstr *EarlyTermMI = 908 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 909 910 MachineInstr *ExecMaskMI = 911 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC); 912 913 assert(MBB.succ_size() == 1); 914 MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 915 .addMBB(*MBB.succ_begin()); 916 917 // Update live intervals 918 LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI); 919 MBB.remove(&MI); 920 921 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 922 LIS->InsertMachineInstrInMaps(*ExecMaskMI); 923 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 924 LIS->InsertMachineInstrInMaps(*NewTerm); 925 926 return NewTerm; 927 } 928 929 MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB, 930 MachineInstr &MI, bool IsWQM) { 931 const DebugLoc &DL = MI.getDebugLoc(); 932 MachineInstr *MaskUpdateMI = nullptr; 933 934 const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1); 935 const MachineOperand &Op = MI.getOperand(0); 936 int64_t KillVal = MI.getOperand(1).getImm(); 937 MachineInstr *ComputeKilledMaskMI = nullptr; 938 Register CndReg = !Op.isImm() ? Op.getReg() : Register(); 939 Register TmpReg; 940 941 // Is this a static or dynamic kill? 942 if (Op.isImm()) { 943 if (Op.getImm() == KillVal) { 944 // Static: all active lanes are killed 945 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 946 .addReg(LiveMaskReg) 947 .addReg(Exec); 948 } else { 949 // Static: kill does nothing 950 MachineInstr *NewTerm = nullptr; 951 if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { 952 LIS->RemoveMachineInstrFromMaps(MI); 953 } else { 954 assert(MBB.succ_size() == 1); 955 NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 956 .addMBB(*MBB.succ_begin()); 957 LIS->ReplaceMachineInstrInMaps(MI, *NewTerm); 958 } 959 MBB.remove(&MI); 960 return NewTerm; 961 } 962 } else { 963 if (!KillVal) { 964 // Op represents live lanes after kill, 965 // so exec mask needs to be factored in. 966 TmpReg = MRI->createVirtualRegister(TRI->getBoolRC()); 967 ComputeKilledMaskMI = 968 BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec); 969 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 970 .addReg(LiveMaskReg) 971 .addReg(TmpReg); 972 } else { 973 // Op represents lanes to kill 974 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 975 .addReg(LiveMaskReg) 976 .add(Op); 977 } 978 } 979 980 // State of SCC represents whether any lanes are live in mask, 981 // if SCC is 0 then no lanes will be alive anymore. 982 MachineInstr *EarlyTermMI = 983 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 984 985 // In the case we got this far some lanes are still live, 986 // update EXEC to deactivate lanes as appropriate. 987 MachineInstr *NewTerm; 988 MachineInstr *WQMMaskMI = nullptr; 989 Register LiveMaskWQM; 990 if (IsDemote) { 991 // Demote - deactivate quads with only helper lanes 992 LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC()); 993 WQMMaskMI = 994 BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg); 995 NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec) 996 .addReg(Exec) 997 .addReg(LiveMaskWQM); 998 } else { 999 // Kill - deactivate lanes no longer in live mask 1000 if (Op.isImm()) { 1001 unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 1002 NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0); 1003 } else if (!IsWQM) { 1004 NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec) 1005 .addReg(Exec) 1006 .addReg(LiveMaskReg); 1007 } else { 1008 unsigned Opcode = KillVal ? AndN2Opc : AndOpc; 1009 NewTerm = 1010 BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op); 1011 } 1012 } 1013 1014 // Update live intervals 1015 LIS->RemoveMachineInstrFromMaps(MI); 1016 MBB.remove(&MI); 1017 assert(EarlyTermMI); 1018 assert(MaskUpdateMI); 1019 assert(NewTerm); 1020 if (ComputeKilledMaskMI) 1021 LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI); 1022 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 1023 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 1024 if (WQMMaskMI) 1025 LIS->InsertMachineInstrInMaps(*WQMMaskMI); 1026 LIS->InsertMachineInstrInMaps(*NewTerm); 1027 1028 if (CndReg) { 1029 LIS->removeInterval(CndReg); 1030 LIS->createAndComputeVirtRegInterval(CndReg); 1031 } 1032 if (TmpReg) 1033 LIS->createAndComputeVirtRegInterval(TmpReg); 1034 if (LiveMaskWQM) 1035 LIS->createAndComputeVirtRegInterval(LiveMaskWQM); 1036 1037 return NewTerm; 1038 } 1039 1040 // Convert a strict mode transition to a pseudo transition. 1041 // This still pre-allocates registers to prevent clobbering, 1042 // but avoids any EXEC mask changes. 1043 void SIWholeQuadMode::lowerPseudoStrictMode(MachineBasicBlock &MBB, 1044 MachineInstr *Entry, 1045 MachineInstr *Exit) { 1046 assert(Entry->getOpcode() == AMDGPU::ENTER_STRICT_WQM); 1047 assert(Exit->getOpcode() == AMDGPU::EXIT_STRICT_WQM); 1048 1049 Register SaveOrig = Entry->getOperand(0).getReg(); 1050 1051 MachineInstr *NewEntry = 1052 BuildMI(MBB, Entry, DebugLoc(), TII->get(AMDGPU::ENTER_PSEUDO_WM)); 1053 MachineInstr *NewExit = 1054 BuildMI(MBB, Exit, DebugLoc(), TII->get(AMDGPU::EXIT_PSEUDO_WM)); 1055 1056 LIS->ReplaceMachineInstrInMaps(*Exit, *NewExit); 1057 Exit->eraseFromParent(); 1058 1059 LIS->ReplaceMachineInstrInMaps(*Entry, *NewEntry); 1060 Entry->eraseFromParent(); 1061 1062 LIS->removeInterval(SaveOrig); 1063 } 1064 1065 // Replace (or supplement) instructions accessing live mask. 1066 // This can only happen once all the live mask registers have been created 1067 // and the execute state (WQM/StrictWWM/Exact) of instructions is known. 1068 void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) { 1069 auto BII = Blocks.find(&MBB); 1070 if (BII == Blocks.end()) 1071 return; 1072 1073 const BlockInfo &BI = BII->second; 1074 if (!BI.NeedsLowering) 1075 return; 1076 1077 LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n"); 1078 1079 SmallVector<MachineInstr *, 4> SplitPoints; 1080 char State = BI.InitialState; 1081 MachineInstr *StrictEntry = nullptr; 1082 1083 for (MachineInstr &MI : llvm::make_early_inc_range( 1084 llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) { 1085 char PreviousState = State; 1086 1087 if (StateTransition.count(&MI)) 1088 State = StateTransition[&MI]; 1089 1090 MachineInstr *SplitPoint = nullptr; 1091 switch (MI.getOpcode()) { 1092 case AMDGPU::SI_DEMOTE_I1: 1093 case AMDGPU::SI_KILL_I1_TERMINATOR: 1094 SplitPoint = lowerKillI1(MBB, MI, State == StateWQM); 1095 break; 1096 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1097 SplitPoint = lowerKillF32(MBB, MI); 1098 break; 1099 case AMDGPU::ENTER_STRICT_WQM: 1100 StrictEntry = PreviousState == StateWQM ? &MI : nullptr; 1101 break; 1102 case AMDGPU::EXIT_STRICT_WQM: 1103 if (State == StateWQM && StrictEntry) { 1104 // Transition WQM -> StrictWQM -> WQM detected. 1105 lowerPseudoStrictMode(MBB, StrictEntry, &MI); 1106 } 1107 StrictEntry = nullptr; 1108 break; 1109 case AMDGPU::ENTER_STRICT_WWM: 1110 case AMDGPU::EXIT_STRICT_WWM: 1111 StrictEntry = nullptr; 1112 break; 1113 default: 1114 break; 1115 } 1116 if (SplitPoint) 1117 SplitPoints.push_back(SplitPoint); 1118 } 1119 1120 // Perform splitting after instruction scan to simplify iteration. 1121 if (!SplitPoints.empty()) { 1122 MachineBasicBlock *BB = &MBB; 1123 for (MachineInstr *MI : SplitPoints) { 1124 BB = splitBlock(BB, MI); 1125 } 1126 } 1127 } 1128 1129 // Return an iterator in the (inclusive) range [First, Last] at which 1130 // instructions can be safely inserted, keeping in mind that some of the 1131 // instructions we want to add necessarily clobber SCC. 1132 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 1133 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 1134 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 1135 if (!SaveSCC) 1136 return PreferLast ? Last : First; 1137 1138 LiveRange &LR = 1139 LIS->getRegUnit(*TRI->regunits(MCRegister::from(AMDGPU::SCC)).begin()); 1140 auto MBBE = MBB.end(); 1141 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 1142 : LIS->getMBBEndIdx(&MBB); 1143 SlotIndex LastIdx = 1144 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 1145 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 1146 const LiveRange::Segment *S; 1147 1148 for (;;) { 1149 S = LR.getSegmentContaining(Idx); 1150 if (!S) 1151 break; 1152 1153 if (PreferLast) { 1154 SlotIndex Next = S->start.getBaseIndex(); 1155 if (Next < FirstIdx) 1156 break; 1157 Idx = Next; 1158 } else { 1159 MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); 1160 assert(EndMI && "Segment does not end on valid instruction"); 1161 auto NextI = std::next(EndMI->getIterator()); 1162 if (NextI == MBB.end()) 1163 break; 1164 SlotIndex Next = LIS->getInstructionIndex(*NextI); 1165 if (Next > LastIdx) 1166 break; 1167 Idx = Next; 1168 } 1169 } 1170 1171 MachineBasicBlock::iterator MBBI; 1172 1173 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 1174 MBBI = MI; 1175 else { 1176 assert(Idx == LIS->getMBBEndIdx(&MBB)); 1177 MBBI = MBB.end(); 1178 } 1179 1180 // Move insertion point past any operations modifying EXEC. 1181 // This assumes that the value of SCC defined by any of these operations 1182 // does not need to be preserved. 1183 while (MBBI != Last) { 1184 bool IsExecDef = false; 1185 for (const MachineOperand &MO : MBBI->all_defs()) { 1186 IsExecDef |= 1187 MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; 1188 } 1189 if (!IsExecDef) 1190 break; 1191 MBBI++; 1192 S = nullptr; 1193 } 1194 1195 if (S) 1196 MBBI = saveSCC(MBB, MBBI); 1197 1198 return MBBI; 1199 } 1200 1201 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 1202 MachineBasicBlock::iterator Before, 1203 Register SaveWQM) { 1204 bool IsTerminator = Before == MBB.end(); 1205 if (!IsTerminator) { 1206 auto FirstTerm = MBB.getFirstTerminator(); 1207 if (FirstTerm != MBB.end()) { 1208 SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm); 1209 SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before); 1210 IsTerminator = BeforeIdx > FirstTermIdx; 1211 } 1212 } 1213 1214 MachineInstr *MI; 1215 1216 if (SaveWQM) { 1217 unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc; 1218 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM) 1219 .addReg(LiveMaskReg); 1220 } else { 1221 unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc; 1222 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec) 1223 .addReg(Exec) 1224 .addReg(LiveMaskReg); 1225 } 1226 1227 LIS->InsertMachineInstrInMaps(*MI); 1228 StateTransition[MI] = StateExact; 1229 } 1230 1231 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 1232 MachineBasicBlock::iterator Before, 1233 Register SavedWQM) { 1234 MachineInstr *MI; 1235 1236 if (SavedWQM) { 1237 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 1238 .addReg(SavedWQM); 1239 } else { 1240 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec); 1241 } 1242 1243 LIS->InsertMachineInstrInMaps(*MI); 1244 StateTransition[MI] = StateWQM; 1245 } 1246 1247 void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB, 1248 MachineBasicBlock::iterator Before, 1249 Register SaveOrig, char StrictStateNeeded) { 1250 MachineInstr *MI; 1251 assert(SaveOrig); 1252 assert(StrictStateNeeded == StateStrictWWM || 1253 StrictStateNeeded == StateStrictWQM); 1254 1255 if (StrictStateNeeded == StateStrictWWM) { 1256 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM), 1257 SaveOrig) 1258 .addImm(-1); 1259 } else { 1260 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM), 1261 SaveOrig) 1262 .addImm(-1); 1263 } 1264 LIS->InsertMachineInstrInMaps(*MI); 1265 StateTransition[MI] = StrictStateNeeded; 1266 1267 // Mark block as needing lower so it will be checked for unnecessary transitions. 1268 auto BII = Blocks.find(&MBB); 1269 if (BII != Blocks.end()) 1270 BII->second.NeedsLowering = true; 1271 } 1272 1273 void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB, 1274 MachineBasicBlock::iterator Before, 1275 Register SavedOrig, char NonStrictState, 1276 char CurrentStrictState) { 1277 MachineInstr *MI; 1278 1279 assert(SavedOrig); 1280 assert(CurrentStrictState == StateStrictWWM || 1281 CurrentStrictState == StateStrictWQM); 1282 1283 if (CurrentStrictState == StateStrictWWM) { 1284 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM), 1285 Exec) 1286 .addReg(SavedOrig); 1287 } else { 1288 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM), 1289 Exec) 1290 .addReg(SavedOrig); 1291 } 1292 LIS->InsertMachineInstrInMaps(*MI); 1293 StateTransition[MI] = NonStrictState; 1294 } 1295 1296 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) { 1297 auto BII = Blocks.find(&MBB); 1298 if (BII == Blocks.end()) 1299 return; 1300 1301 BlockInfo &BI = BII->second; 1302 1303 // This is a non-entry block that is WQM throughout, so no need to do 1304 // anything. 1305 if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) { 1306 BI.InitialState = StateWQM; 1307 return; 1308 } 1309 1310 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 1311 << ":\n"); 1312 1313 Register SavedWQMReg; 1314 Register SavedNonStrictReg; 1315 bool WQMFromExec = IsEntry; 1316 char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 1317 char NonStrictState = 0; 1318 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 1319 1320 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 1321 if (IsEntry) { 1322 // Skip the instruction that saves LiveMask 1323 if (II != IE && II->getOpcode() == AMDGPU::COPY && 1324 II->getOperand(1).getReg() == TRI->getExec()) 1325 ++II; 1326 } 1327 1328 // This stores the first instruction where it's safe to switch from WQM to 1329 // Exact or vice versa. 1330 MachineBasicBlock::iterator FirstWQM = IE; 1331 1332 // This stores the first instruction where it's safe to switch from Strict 1333 // mode to Exact/WQM or to switch to Strict mode. It must always be the same 1334 // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must 1335 // be safe to switch to/from WQM as well. 1336 MachineBasicBlock::iterator FirstStrict = IE; 1337 1338 // Record initial state is block information. 1339 BI.InitialState = State; 1340 1341 for (;;) { 1342 MachineBasicBlock::iterator Next = II; 1343 char Needs = StateExact | StateWQM; // Strict mode is disabled by default. 1344 char OutNeeds = 0; 1345 1346 if (FirstWQM == IE) 1347 FirstWQM = II; 1348 1349 if (FirstStrict == IE) 1350 FirstStrict = II; 1351 1352 // First, figure out the allowed states (Needs) based on the propagated 1353 // flags. 1354 if (II != IE) { 1355 MachineInstr &MI = *II; 1356 1357 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 1358 auto III = Instructions.find(&MI); 1359 if (III != Instructions.end()) { 1360 if (III->second.Needs & StateStrictWWM) 1361 Needs = StateStrictWWM; 1362 else if (III->second.Needs & StateStrictWQM) 1363 Needs = StateStrictWQM; 1364 else if (III->second.Needs & StateWQM) 1365 Needs = StateWQM; 1366 else 1367 Needs &= ~III->second.Disabled; 1368 OutNeeds = III->second.OutNeeds; 1369 } 1370 } else { 1371 // If the instruction doesn't actually need a correct EXEC, then we can 1372 // safely leave Strict mode enabled. 1373 Needs = StateExact | StateWQM | StateStrict; 1374 } 1375 1376 // Exact mode exit can occur in terminators, but must be before branches. 1377 if (MI.isBranch() && OutNeeds == StateExact) 1378 Needs = StateExact; 1379 1380 ++Next; 1381 } else { 1382 // End of basic block 1383 if (BI.OutNeeds & StateWQM) 1384 Needs = StateWQM; 1385 else if (BI.OutNeeds == StateExact) 1386 Needs = StateExact; 1387 else 1388 Needs = StateWQM | StateExact; 1389 } 1390 1391 // Now, transition if necessary. 1392 if (!(Needs & State)) { 1393 MachineBasicBlock::iterator First; 1394 if (State == StateStrictWWM || Needs == StateStrictWWM || 1395 State == StateStrictWQM || Needs == StateStrictWQM) { 1396 // We must switch to or from Strict mode. 1397 First = FirstStrict; 1398 } else { 1399 // We only need to switch to/from WQM, so we can use FirstWQM. 1400 First = FirstWQM; 1401 } 1402 1403 // Whether we need to save SCC depends on start and end states. 1404 bool SaveSCC = false; 1405 switch (State) { 1406 case StateExact: 1407 case StateStrictWWM: 1408 case StateStrictWQM: 1409 // Exact/Strict -> Strict: save SCC 1410 // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec 1411 // Exact/Strict -> Exact: no save 1412 SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec); 1413 break; 1414 case StateWQM: 1415 // WQM -> Exact/Strict: save SCC 1416 SaveSCC = !(Needs & StateWQM); 1417 break; 1418 default: 1419 llvm_unreachable("Unknown state"); 1420 break; 1421 } 1422 MachineBasicBlock::iterator Before = 1423 prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC); 1424 1425 if (State & StateStrict) { 1426 assert(State == StateStrictWWM || State == StateStrictWQM); 1427 assert(SavedNonStrictReg); 1428 fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State); 1429 1430 LIS->createAndComputeVirtRegInterval(SavedNonStrictReg); 1431 SavedNonStrictReg = 0; 1432 State = NonStrictState; 1433 } 1434 1435 if (Needs & StateStrict) { 1436 NonStrictState = State; 1437 assert(Needs == StateStrictWWM || Needs == StateStrictWQM); 1438 assert(!SavedNonStrictReg); 1439 SavedNonStrictReg = MRI->createVirtualRegister(BoolRC); 1440 1441 toStrictMode(MBB, Before, SavedNonStrictReg, Needs); 1442 State = Needs; 1443 1444 } else { 1445 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 1446 if (!WQMFromExec && (OutNeeds & StateWQM)) { 1447 assert(!SavedWQMReg); 1448 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 1449 } 1450 1451 toExact(MBB, Before, SavedWQMReg); 1452 State = StateExact; 1453 } else if (State == StateExact && (Needs & StateWQM) && 1454 !(Needs & StateExact)) { 1455 assert(WQMFromExec == (SavedWQMReg == 0)); 1456 1457 toWQM(MBB, Before, SavedWQMReg); 1458 1459 if (SavedWQMReg) { 1460 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 1461 SavedWQMReg = 0; 1462 } 1463 State = StateWQM; 1464 } else { 1465 // We can get here if we transitioned from StrictWWM to a 1466 // non-StrictWWM state that already matches our needs, but we 1467 // shouldn't need to do anything. 1468 assert(Needs & State); 1469 } 1470 } 1471 } 1472 1473 if (Needs != (StateExact | StateWQM | StateStrict)) { 1474 if (Needs != (StateExact | StateWQM)) 1475 FirstWQM = IE; 1476 FirstStrict = IE; 1477 } 1478 1479 if (II == IE) 1480 break; 1481 1482 II = Next; 1483 } 1484 assert(!SavedWQMReg); 1485 assert(!SavedNonStrictReg); 1486 } 1487 1488 void SIWholeQuadMode::lowerLiveMaskQueries() { 1489 for (MachineInstr *MI : LiveMaskQueries) { 1490 const DebugLoc &DL = MI->getDebugLoc(); 1491 Register Dest = MI->getOperand(0).getReg(); 1492 1493 MachineInstr *Copy = 1494 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 1495 .addReg(LiveMaskReg); 1496 1497 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 1498 MI->eraseFromParent(); 1499 } 1500 } 1501 1502 void SIWholeQuadMode::lowerCopyInstrs() { 1503 for (MachineInstr *MI : LowerToMovInstrs) { 1504 assert(MI->getNumExplicitOperands() == 2); 1505 1506 const Register Reg = MI->getOperand(0).getReg(); 1507 1508 const TargetRegisterClass *regClass = 1509 TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0)); 1510 if (TRI->isVGPRClass(regClass)) { 1511 const unsigned MovOp = TII->getMovOpcode(regClass); 1512 MI->setDesc(TII->get(MovOp)); 1513 1514 // Check that it already implicitly depends on exec (like all VALU movs 1515 // should do). 1516 assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) { 1517 return MO.isUse() && MO.getReg() == AMDGPU::EXEC; 1518 })); 1519 } else { 1520 // Remove early-clobber and exec dependency from simple SGPR copies. 1521 // This allows some to be eliminated during/post RA. 1522 LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); 1523 if (MI->getOperand(0).isEarlyClobber()) { 1524 LIS->removeInterval(Reg); 1525 MI->getOperand(0).setIsEarlyClobber(false); 1526 LIS->createAndComputeVirtRegInterval(Reg); 1527 } 1528 int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); 1529 while (Index >= 0) { 1530 MI->removeOperand(Index); 1531 Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); 1532 } 1533 MI->setDesc(TII->get(AMDGPU::COPY)); 1534 LLVM_DEBUG(dbgs() << " -> " << *MI); 1535 } 1536 } 1537 for (MachineInstr *MI : LowerToCopyInstrs) { 1538 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 1539 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 1540 assert(MI->getNumExplicitOperands() == 3); 1541 // the only reason we should be here is V_SET_INACTIVE has 1542 // an undef input so it is being replaced by a simple copy. 1543 // There should be a second undef source that we should remove. 1544 assert(MI->getOperand(2).isUndef()); 1545 MI->removeOperand(2); 1546 MI->untieRegOperand(1); 1547 } else { 1548 assert(MI->getNumExplicitOperands() == 2); 1549 } 1550 1551 unsigned CopyOp = MI->getOperand(1).isReg() 1552 ? (unsigned)AMDGPU::COPY 1553 : TII->getMovOpcode(TRI->getRegClassForOperandReg( 1554 *MRI, MI->getOperand(0))); 1555 MI->setDesc(TII->get(CopyOp)); 1556 } 1557 } 1558 1559 void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) { 1560 for (MachineInstr *MI : KillInstrs) { 1561 MachineBasicBlock *MBB = MI->getParent(); 1562 MachineInstr *SplitPoint = nullptr; 1563 switch (MI->getOpcode()) { 1564 case AMDGPU::SI_DEMOTE_I1: 1565 case AMDGPU::SI_KILL_I1_TERMINATOR: 1566 SplitPoint = lowerKillI1(*MBB, *MI, IsWQM); 1567 break; 1568 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1569 SplitPoint = lowerKillF32(*MBB, *MI); 1570 break; 1571 default: 1572 continue; 1573 } 1574 if (SplitPoint) 1575 splitBlock(MBB, SplitPoint); 1576 } 1577 } 1578 1579 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 1580 LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName() 1581 << " ------------- \n"); 1582 LLVM_DEBUG(MF.dump();); 1583 1584 Instructions.clear(); 1585 Blocks.clear(); 1586 LiveMaskQueries.clear(); 1587 LowerToCopyInstrs.clear(); 1588 LowerToMovInstrs.clear(); 1589 KillInstrs.clear(); 1590 StateTransition.clear(); 1591 1592 ST = &MF.getSubtarget<GCNSubtarget>(); 1593 1594 TII = ST->getInstrInfo(); 1595 TRI = &TII->getRegisterInfo(); 1596 MRI = &MF.getRegInfo(); 1597 LIS = &getAnalysis<LiveIntervals>(); 1598 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1599 PDT = getAnalysisIfAvailable<MachinePostDominatorTree>(); 1600 1601 if (ST->isWave32()) { 1602 AndOpc = AMDGPU::S_AND_B32; 1603 AndTermOpc = AMDGPU::S_AND_B32_term; 1604 AndN2Opc = AMDGPU::S_ANDN2_B32; 1605 XorOpc = AMDGPU::S_XOR_B32; 1606 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32; 1607 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term; 1608 WQMOpc = AMDGPU::S_WQM_B32; 1609 Exec = AMDGPU::EXEC_LO; 1610 } else { 1611 AndOpc = AMDGPU::S_AND_B64; 1612 AndTermOpc = AMDGPU::S_AND_B64_term; 1613 AndN2Opc = AMDGPU::S_ANDN2_B64; 1614 XorOpc = AMDGPU::S_XOR_B64; 1615 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64; 1616 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term; 1617 WQMOpc = AMDGPU::S_WQM_B64; 1618 Exec = AMDGPU::EXEC; 1619 } 1620 1621 const char GlobalFlags = analyzeFunction(MF); 1622 const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty()); 1623 1624 LiveMaskReg = Exec; 1625 1626 // Shader is simple does not need any state changes or any complex lowering 1627 if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() && 1628 LowerToMovInstrs.empty() && KillInstrs.empty()) { 1629 lowerLiveMaskQueries(); 1630 return !LiveMaskQueries.empty(); 1631 } 1632 1633 MachineBasicBlock &Entry = MF.front(); 1634 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 1635 1636 // Store a copy of the original live mask when required 1637 if (NeedsLiveMask || (GlobalFlags & StateWQM)) { 1638 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 1639 MachineInstr *MI = 1640 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) 1641 .addReg(Exec); 1642 LIS->InsertMachineInstrInMaps(*MI); 1643 } 1644 1645 LLVM_DEBUG(printInfo()); 1646 1647 lowerLiveMaskQueries(); 1648 lowerCopyInstrs(); 1649 1650 // Shader only needs WQM 1651 if (GlobalFlags == StateWQM) { 1652 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec) 1653 .addReg(Exec); 1654 LIS->InsertMachineInstrInMaps(*MI); 1655 lowerKillInstrs(true); 1656 } else { 1657 for (auto BII : Blocks) 1658 processBlock(*BII.first, BII.first == &Entry); 1659 // Lowering blocks causes block splitting so perform as a second pass. 1660 for (auto BII : Blocks) 1661 lowerBlock(*BII.first); 1662 } 1663 1664 // Compute live range for live mask 1665 if (LiveMaskReg != Exec) 1666 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 1667 1668 // Physical registers like SCC aren't tracked by default anyway, so just 1669 // removing the ranges we computed is the simplest option for maintaining 1670 // the analysis results. 1671 LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC); 1672 1673 // If we performed any kills then recompute EXEC 1674 if (!KillInstrs.empty()) 1675 LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); 1676 1677 return true; 1678 } 1679