xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// The pass tries to use the 32-bit encoding for instructions when possible.
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Target/TargetMachine.h"
25 
26 #define DEBUG_TYPE "si-shrink-instructions"
27 
28 STATISTIC(NumInstructionsShrunk,
29           "Number of 64-bit instruction reduced to 32-bit.");
30 STATISTIC(NumLiteralConstantsFolded,
31           "Number of literal constants folded into 32-bit instructions.");
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 class SIShrinkInstructions : public MachineFunctionPass {
38 public:
39   static char ID;
40 
41   void shrinkMIMG(MachineInstr &MI);
42 
43 public:
44   SIShrinkInstructions() : MachineFunctionPass(ID) {
45   }
46 
47   bool runOnMachineFunction(MachineFunction &MF) override;
48 
49   StringRef getPassName() const override { return "SI Shrink Instructions"; }
50 
51   void getAnalysisUsage(AnalysisUsage &AU) const override {
52     AU.setPreservesCFG();
53     MachineFunctionPass::getAnalysisUsage(AU);
54   }
55 };
56 
57 } // End anonymous namespace.
58 
59 INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
60                 "SI Shrink Instructions", false, false)
61 
62 char SIShrinkInstructions::ID = 0;
63 
64 FunctionPass *llvm::createSIShrinkInstructionsPass() {
65   return new SIShrinkInstructions();
66 }
67 
68 /// This function checks \p MI for operands defined by a move immediate
69 /// instruction and then folds the literal constant into the instruction if it
70 /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
71 static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
72                            MachineRegisterInfo &MRI, bool TryToCommute = true) {
73   assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
74 
75   int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
76 
77   // Try to fold Src0
78   MachineOperand &Src0 = MI.getOperand(Src0Idx);
79   if (Src0.isReg()) {
80     Register Reg = Src0.getReg();
81     if (Register::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) {
82       MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
83       if (Def && Def->isMoveImmediate()) {
84         MachineOperand &MovSrc = Def->getOperand(1);
85         bool ConstantFolded = false;
86 
87         if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
88                                isUInt<32>(MovSrc.getImm()))) {
89           // It's possible to have only one component of a super-reg defined by
90           // a single mov, so we need to clear any subregister flag.
91           Src0.setSubReg(0);
92           Src0.ChangeToImmediate(MovSrc.getImm());
93           ConstantFolded = true;
94         } else if (MovSrc.isFI()) {
95           Src0.setSubReg(0);
96           Src0.ChangeToFrameIndex(MovSrc.getIndex());
97           ConstantFolded = true;
98         } else if (MovSrc.isGlobal()) {
99           Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(),
100                           MovSrc.getTargetFlags());
101           ConstantFolded = true;
102         }
103 
104         if (ConstantFolded) {
105           assert(MRI.use_empty(Reg));
106           Def->eraseFromParent();
107           ++NumLiteralConstantsFolded;
108           return true;
109         }
110       }
111     }
112   }
113 
114   // We have failed to fold src0, so commute the instruction and try again.
115   if (TryToCommute && MI.isCommutable()) {
116     if (TII->commuteInstruction(MI)) {
117       if (foldImmediates(MI, TII, MRI, false))
118         return true;
119 
120       // Commute back.
121       TII->commuteInstruction(MI);
122     }
123   }
124 
125   return false;
126 }
127 
128 static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
129   return isInt<16>(Src.getImm()) &&
130     !TII->isInlineConstant(*Src.getParent(),
131                            Src.getParent()->getOperandNo(&Src));
132 }
133 
134 static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
135   return isUInt<16>(Src.getImm()) &&
136     !TII->isInlineConstant(*Src.getParent(),
137                            Src.getParent()->getOperandNo(&Src));
138 }
139 
140 static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
141                                  const MachineOperand &Src,
142                                  bool &IsUnsigned) {
143   if (isInt<16>(Src.getImm())) {
144     IsUnsigned = false;
145     return !TII->isInlineConstant(Src);
146   }
147 
148   if (isUInt<16>(Src.getImm())) {
149     IsUnsigned = true;
150     return !TII->isInlineConstant(Src);
151   }
152 
153   return false;
154 }
155 
156 /// \returns true if the constant in \p Src should be replaced with a bitreverse
157 /// of an inline immediate.
158 static bool isReverseInlineImm(const SIInstrInfo *TII,
159                                const MachineOperand &Src,
160                                int32_t &ReverseImm) {
161   if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
162     return false;
163 
164   ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
165   return ReverseImm >= -16 && ReverseImm <= 64;
166 }
167 
168 /// Copy implicit register operands from specified instruction to this
169 /// instruction that are not part of the instruction definition.
170 static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
171                                  const MachineInstr &MI) {
172   for (unsigned i = MI.getDesc().getNumOperands() +
173          MI.getDesc().getNumImplicitUses() +
174          MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
175        i != e; ++i) {
176     const MachineOperand &MO = MI.getOperand(i);
177     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
178       NewMI.addOperand(MF, MO);
179   }
180 }
181 
182 static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
183   // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
184   // get constants on the RHS.
185   if (!MI.getOperand(0).isReg())
186     TII->commuteInstruction(MI, false, 0, 1);
187 
188   const MachineOperand &Src1 = MI.getOperand(1);
189   if (!Src1.isImm())
190     return;
191 
192   int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
193   if (SOPKOpc == -1)
194     return;
195 
196   // eq/ne is special because the imm16 can be treated as signed or unsigned,
197   // and initially selectd to the unsigned versions.
198   if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
199     bool HasUImm;
200     if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
201       if (!HasUImm) {
202         SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
203           AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
204       }
205 
206       MI.setDesc(TII->get(SOPKOpc));
207     }
208 
209     return;
210   }
211 
212   const MCInstrDesc &NewDesc = TII->get(SOPKOpc);
213 
214   if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
215       (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
216     MI.setDesc(NewDesc);
217   }
218 }
219 
220 // Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding.
221 void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) {
222   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
223   if (Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA)
224     return;
225 
226   MachineFunction *MF = MI.getParent()->getParent();
227   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
228   const SIInstrInfo *TII = ST.getInstrInfo();
229   const SIRegisterInfo &TRI = TII->getRegisterInfo();
230   int VAddr0Idx =
231       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
232   unsigned NewAddrDwords = Info->VAddrDwords;
233   const TargetRegisterClass *RC;
234 
235   if (Info->VAddrDwords == 2) {
236     RC = &AMDGPU::VReg_64RegClass;
237   } else if (Info->VAddrDwords == 3) {
238     RC = &AMDGPU::VReg_96RegClass;
239   } else if (Info->VAddrDwords == 4) {
240     RC = &AMDGPU::VReg_128RegClass;
241   } else if (Info->VAddrDwords <= 8) {
242     RC = &AMDGPU::VReg_256RegClass;
243     NewAddrDwords = 8;
244   } else {
245     RC = &AMDGPU::VReg_512RegClass;
246     NewAddrDwords = 16;
247   }
248 
249   unsigned VgprBase = 0;
250   bool IsUndef = true;
251   bool IsKill = NewAddrDwords == Info->VAddrDwords;
252   for (unsigned i = 0; i < Info->VAddrDwords; ++i) {
253     const MachineOperand &Op = MI.getOperand(VAddr0Idx + i);
254     unsigned Vgpr = TRI.getHWRegIndex(Op.getReg());
255 
256     if (i == 0) {
257       VgprBase = Vgpr;
258     } else if (VgprBase + i != Vgpr)
259       return;
260 
261     if (!Op.isUndef())
262       IsUndef = false;
263     if (!Op.isKill())
264       IsKill = false;
265   }
266 
267   if (VgprBase + NewAddrDwords > 256)
268     return;
269 
270   // Further check for implicit tied operands - this may be present if TFE is
271   // enabled
272   int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
273   int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe);
274   unsigned TFEVal = MI.getOperand(TFEIdx).getImm();
275   unsigned LWEVal = MI.getOperand(LWEIdx).getImm();
276   int ToUntie = -1;
277   if (TFEVal || LWEVal) {
278     // TFE/LWE is enabled so we need to deal with an implicit tied operand
279     for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) {
280       if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() &&
281           MI.getOperand(i).isImplicit()) {
282         // This is the tied operand
283         assert(
284             ToUntie == -1 &&
285             "found more than one tied implicit operand when expecting only 1");
286         ToUntie = i;
287         MI.untieRegOperand(ToUntie);
288       }
289     }
290   }
291 
292   unsigned NewOpcode =
293       AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default,
294                             Info->VDataDwords, NewAddrDwords);
295   MI.setDesc(TII->get(NewOpcode));
296   MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase));
297   MI.getOperand(VAddr0Idx).setIsUndef(IsUndef);
298   MI.getOperand(VAddr0Idx).setIsKill(IsKill);
299 
300   for (unsigned i = 1; i < Info->VAddrDwords; ++i)
301     MI.RemoveOperand(VAddr0Idx + 1);
302 
303   if (ToUntie >= 0) {
304     MI.tieOperands(
305         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata),
306         ToUntie - (Info->VAddrDwords - 1));
307   }
308 }
309 
310 /// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals.
311 /// For AND or OR, try using S_BITSET{0,1} to clear or set bits.
312 /// If the inverse of the immediate is legal, use ANDN2, ORN2 or
313 /// XNOR (as a ^ b == ~(a ^ ~b)).
314 /// \returns true if the caller should continue the machine function iterator
315 static bool shrinkScalarLogicOp(const GCNSubtarget &ST,
316                                 MachineRegisterInfo &MRI,
317                                 const SIInstrInfo *TII,
318                                 MachineInstr &MI) {
319   unsigned Opc = MI.getOpcode();
320   const MachineOperand *Dest = &MI.getOperand(0);
321   MachineOperand *Src0 = &MI.getOperand(1);
322   MachineOperand *Src1 = &MI.getOperand(2);
323   MachineOperand *SrcReg = Src0;
324   MachineOperand *SrcImm = Src1;
325 
326   if (SrcImm->isImm() &&
327       !AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm())) {
328     uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm());
329     uint32_t NewImm = 0;
330 
331     if (Opc == AMDGPU::S_AND_B32) {
332       if (isPowerOf2_32(~Imm)) {
333         NewImm = countTrailingOnes(Imm);
334         Opc = AMDGPU::S_BITSET0_B32;
335       } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
336         NewImm = ~Imm;
337         Opc = AMDGPU::S_ANDN2_B32;
338       }
339     } else if (Opc == AMDGPU::S_OR_B32) {
340       if (isPowerOf2_32(Imm)) {
341         NewImm = countTrailingZeros(Imm);
342         Opc = AMDGPU::S_BITSET1_B32;
343       } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
344         NewImm = ~Imm;
345         Opc = AMDGPU::S_ORN2_B32;
346       }
347     } else if (Opc == AMDGPU::S_XOR_B32) {
348       if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
349         NewImm = ~Imm;
350         Opc = AMDGPU::S_XNOR_B32;
351       }
352     } else {
353       llvm_unreachable("unexpected opcode");
354     }
355 
356     if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) &&
357         SrcImm == Src0) {
358       if (!TII->commuteInstruction(MI, false, 1, 2))
359         NewImm = 0;
360     }
361 
362     if (NewImm != 0) {
363       if (Register::isVirtualRegister(Dest->getReg()) && SrcReg->isReg()) {
364         MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg());
365         MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg());
366         return true;
367       }
368 
369       if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) {
370         MI.setDesc(TII->get(Opc));
371         if (Opc == AMDGPU::S_BITSET0_B32 ||
372             Opc == AMDGPU::S_BITSET1_B32) {
373           Src0->ChangeToImmediate(NewImm);
374           // Remove the immediate and add the tied input.
375           MI.getOperand(2).ChangeToRegister(Dest->getReg(), false);
376           MI.tieOperands(0, 2);
377         } else {
378           SrcImm->setImm(NewImm);
379         }
380       }
381     }
382   }
383 
384   return false;
385 }
386 
387 // This is the same as MachineInstr::readsRegister/modifiesRegister except
388 // it takes subregs into account.
389 static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R,
390                           unsigned Reg, unsigned SubReg,
391                           const SIRegisterInfo &TRI) {
392   for (const MachineOperand &MO : R) {
393     if (!MO.isReg())
394       continue;
395 
396     if (Register::isPhysicalRegister(Reg) &&
397         Register::isPhysicalRegister(MO.getReg())) {
398       if (TRI.regsOverlap(Reg, MO.getReg()))
399         return true;
400     } else if (MO.getReg() == Reg && Register::isVirtualRegister(Reg)) {
401       LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) &
402                             TRI.getSubRegIndexLaneMask(MO.getSubReg());
403       if (Overlap.any())
404         return true;
405     }
406   }
407   return false;
408 }
409 
410 static bool instReadsReg(const MachineInstr *MI,
411                          unsigned Reg, unsigned SubReg,
412                          const SIRegisterInfo &TRI) {
413   return instAccessReg(MI->uses(), Reg, SubReg, TRI);
414 }
415 
416 static bool instModifiesReg(const MachineInstr *MI,
417                             unsigned Reg, unsigned SubReg,
418                             const SIRegisterInfo &TRI) {
419   return instAccessReg(MI->defs(), Reg, SubReg, TRI);
420 }
421 
422 static TargetInstrInfo::RegSubRegPair
423 getSubRegForIndex(unsigned Reg, unsigned Sub, unsigned I,
424                   const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) {
425   if (TRI.getRegSizeInBits(Reg, MRI) != 32) {
426     if (Register::isPhysicalRegister(Reg)) {
427       Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I));
428     } else {
429       LaneBitmask LM = TRI.getSubRegIndexLaneMask(Sub);
430       Sub = TRI.getSubRegFromChannel(I + countTrailingZeros(LM.getAsInteger()));
431     }
432   }
433   return TargetInstrInfo::RegSubRegPair(Reg, Sub);
434 }
435 
436 // Match:
437 // mov t, x
438 // mov x, y
439 // mov y, t
440 //
441 // =>
442 //
443 // mov t, x (t is potentially dead and move eliminated)
444 // v_swap_b32 x, y
445 //
446 // Returns next valid instruction pointer if was able to create v_swap_b32.
447 //
448 // This shall not be done too early not to prevent possible folding which may
449 // remove matched moves, and this should prefereably be done before RA to
450 // release saved registers and also possibly after RA which can insert copies
451 // too.
452 //
453 // This is really just a generic peephole that is not a canocical shrinking,
454 // although requirements match the pass placement and it reduces code size too.
455 static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI,
456                                const SIInstrInfo *TII) {
457   assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
458          MovT.getOpcode() == AMDGPU::COPY);
459 
460   Register T = MovT.getOperand(0).getReg();
461   unsigned Tsub = MovT.getOperand(0).getSubReg();
462   MachineOperand &Xop = MovT.getOperand(1);
463 
464   if (!Xop.isReg())
465     return nullptr;
466   Register X = Xop.getReg();
467   unsigned Xsub = Xop.getSubReg();
468 
469   unsigned Size = TII->getOpSize(MovT, 0) / 4;
470 
471   const SIRegisterInfo &TRI = TII->getRegisterInfo();
472   if (!TRI.isVGPR(MRI, X))
473     return nullptr;
474 
475   for (MachineOperand &YTop : MRI.use_nodbg_operands(T)) {
476     if (YTop.getSubReg() != Tsub)
477       continue;
478 
479     MachineInstr &MovY = *YTop.getParent();
480     if ((MovY.getOpcode() != AMDGPU::V_MOV_B32_e32 &&
481          MovY.getOpcode() != AMDGPU::COPY) ||
482         MovY.getOperand(1).getSubReg() != Tsub)
483       continue;
484 
485     Register Y = MovY.getOperand(0).getReg();
486     unsigned Ysub = MovY.getOperand(0).getSubReg();
487 
488     if (!TRI.isVGPR(MRI, Y) || MovT.getParent() != MovY.getParent())
489       continue;
490 
491     MachineInstr *MovX = nullptr;
492     auto I = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end();
493     for (auto IY = MovY.getIterator(); I != E && I != IY; ++I) {
494       if (instReadsReg(&*I, X, Xsub, TRI) ||
495           instModifiesReg(&*I, Y, Ysub, TRI) ||
496           instModifiesReg(&*I, T, Tsub, TRI) ||
497           (MovX && instModifiesReg(&*I, X, Xsub, TRI))) {
498         MovX = nullptr;
499         break;
500       }
501       if (!instReadsReg(&*I, Y, Ysub, TRI)) {
502         if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) {
503           MovX = nullptr;
504           break;
505         }
506         continue;
507       }
508       if (MovX ||
509           (I->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
510            I->getOpcode() != AMDGPU::COPY) ||
511           I->getOperand(0).getReg() != X ||
512           I->getOperand(0).getSubReg() != Xsub) {
513         MovX = nullptr;
514         break;
515       }
516       MovX = &*I;
517     }
518 
519     if (!MovX || I == E)
520       continue;
521 
522     LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY);
523 
524     for (unsigned I = 0; I < Size; ++I) {
525       TargetInstrInfo::RegSubRegPair X1, Y1;
526       X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI);
527       Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI);
528       BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(),
529                 TII->get(AMDGPU::V_SWAP_B32))
530         .addDef(X1.Reg, 0, X1.SubReg)
531         .addDef(Y1.Reg, 0, Y1.SubReg)
532         .addReg(Y1.Reg, 0, Y1.SubReg)
533         .addReg(X1.Reg, 0, X1.SubReg).getInstr();
534     }
535     MovX->eraseFromParent();
536     MovY.eraseFromParent();
537     MachineInstr *Next = &*std::next(MovT.getIterator());
538     if (MRI.use_nodbg_empty(T))
539       MovT.eraseFromParent();
540     else
541       Xop.setIsKill(false);
542 
543     return Next;
544   }
545 
546   return nullptr;
547 }
548 
549 bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
550   if (skipFunction(MF.getFunction()))
551     return false;
552 
553   MachineRegisterInfo &MRI = MF.getRegInfo();
554   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
555   const SIInstrInfo *TII = ST.getInstrInfo();
556   unsigned VCCReg = ST.isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;
557 
558   std::vector<unsigned> I1Defs;
559 
560   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
561                                                   BI != BE; ++BI) {
562 
563     MachineBasicBlock &MBB = *BI;
564     MachineBasicBlock::iterator I, Next;
565     for (I = MBB.begin(); I != MBB.end(); I = Next) {
566       Next = std::next(I);
567       MachineInstr &MI = *I;
568 
569       if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
570         // If this has a literal constant source that is the same as the
571         // reversed bits of an inline immediate, replace with a bitreverse of
572         // that constant. This saves 4 bytes in the common case of materializing
573         // sign bits.
574 
575         // Test if we are after regalloc. We only want to do this after any
576         // optimizations happen because this will confuse them.
577         // XXX - not exactly a check for post-regalloc run.
578         MachineOperand &Src = MI.getOperand(1);
579         if (Src.isImm() &&
580             Register::isPhysicalRegister(MI.getOperand(0).getReg())) {
581           int32_t ReverseImm;
582           if (isReverseInlineImm(TII, Src, ReverseImm)) {
583             MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
584             Src.setImm(ReverseImm);
585             continue;
586           }
587         }
588       }
589 
590       if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
591                            MI.getOpcode() == AMDGPU::COPY)) {
592         if (auto *NextMI = matchSwap(MI, MRI, TII)) {
593           Next = NextMI->getIterator();
594           continue;
595         }
596       }
597 
598       // Combine adjacent s_nops to use the immediate operand encoding how long
599       // to wait.
600       //
601       // s_nop N
602       // s_nop M
603       //  =>
604       // s_nop (N + M)
605       if (MI.getOpcode() == AMDGPU::S_NOP &&
606           MI.getNumOperands() == 1 && // Don't merge with implicit operands
607           Next != MBB.end() &&
608           (*Next).getOpcode() == AMDGPU::S_NOP &&
609           (*Next).getNumOperands() == 1) {
610 
611         MachineInstr &NextMI = *Next;
612         // The instruction encodes the amount to wait with an offset of 1,
613         // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
614         // after adding.
615         uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
616         uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;
617 
618         // Make sure we don't overflow the bounds.
619         if (Nop0 + Nop1 <= 8) {
620           NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
621           MI.eraseFromParent();
622         }
623 
624         continue;
625       }
626 
627       // FIXME: We also need to consider movs of constant operands since
628       // immediate operands are not folded if they have more than one use, and
629       // the operand folding pass is unaware if the immediate will be free since
630       // it won't know if the src == dest constraint will end up being
631       // satisfied.
632       if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
633           MI.getOpcode() == AMDGPU::S_MUL_I32) {
634         const MachineOperand *Dest = &MI.getOperand(0);
635         MachineOperand *Src0 = &MI.getOperand(1);
636         MachineOperand *Src1 = &MI.getOperand(2);
637 
638         if (!Src0->isReg() && Src1->isReg()) {
639           if (TII->commuteInstruction(MI, false, 1, 2))
640             std::swap(Src0, Src1);
641         }
642 
643         // FIXME: This could work better if hints worked with subregisters. If
644         // we have a vector add of a constant, we usually don't get the correct
645         // allocation due to the subregister usage.
646         if (Register::isVirtualRegister(Dest->getReg()) && Src0->isReg()) {
647           MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
648           MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
649           continue;
650         }
651 
652         if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
653           if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
654             unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
655               AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
656 
657             MI.setDesc(TII->get(Opc));
658             MI.tieOperands(0, 1);
659           }
660         }
661       }
662 
663       // Try to use s_cmpk_*
664       if (MI.isCompare() && TII->isSOPC(MI)) {
665         shrinkScalarCompare(TII, MI);
666         continue;
667       }
668 
669       // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
670       if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
671         const MachineOperand &Dst = MI.getOperand(0);
672         MachineOperand &Src = MI.getOperand(1);
673 
674         if (Src.isImm() && Register::isPhysicalRegister(Dst.getReg())) {
675           int32_t ReverseImm;
676           if (isKImmOperand(TII, Src))
677             MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
678           else if (isReverseInlineImm(TII, Src, ReverseImm)) {
679             MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
680             Src.setImm(ReverseImm);
681           }
682         }
683 
684         continue;
685       }
686 
687       // Shrink scalar logic operations.
688       if (MI.getOpcode() == AMDGPU::S_AND_B32 ||
689           MI.getOpcode() == AMDGPU::S_OR_B32 ||
690           MI.getOpcode() == AMDGPU::S_XOR_B32) {
691         if (shrinkScalarLogicOp(ST, MRI, TII, MI))
692           continue;
693       }
694 
695       if (TII->isMIMG(MI.getOpcode()) &&
696           ST.getGeneration() >= AMDGPUSubtarget::GFX10 &&
697           MF.getProperties().hasProperty(
698               MachineFunctionProperties::Property::NoVRegs)) {
699         shrinkMIMG(MI);
700         continue;
701       }
702 
703       if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
704         continue;
705 
706       if (!TII->canShrink(MI, MRI)) {
707         // Try commuting the instruction and see if that enables us to shrink
708         // it.
709         if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
710             !TII->canShrink(MI, MRI))
711           continue;
712       }
713 
714       // getVOPe32 could be -1 here if we started with an instruction that had
715       // a 32-bit encoding and then commuted it to an instruction that did not.
716       if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
717         continue;
718 
719       int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
720 
721       if (TII->isVOPC(Op32)) {
722         Register DstReg = MI.getOperand(0).getReg();
723         if (Register::isVirtualRegister(DstReg)) {
724           // VOPC instructions can only write to the VCC register. We can't
725           // force them to use VCC here, because this is only one register and
726           // cannot deal with sequences which would require multiple copies of
727           // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
728           //
729           // So, instead of forcing the instruction to write to VCC, we provide
730           // a hint to the register allocator to use VCC and then we will run
731           // this pass again after RA and shrink it if it outputs to VCC.
732           MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, VCCReg);
733           continue;
734         }
735         if (DstReg != VCCReg)
736           continue;
737       }
738 
739       if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
740         // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
741         // instructions.
742         const MachineOperand *Src2 =
743             TII->getNamedOperand(MI, AMDGPU::OpName::src2);
744         if (!Src2->isReg())
745           continue;
746         Register SReg = Src2->getReg();
747         if (Register::isVirtualRegister(SReg)) {
748           MRI.setRegAllocationHint(SReg, 0, VCCReg);
749           continue;
750         }
751         if (SReg != VCCReg)
752           continue;
753       }
754 
755       // Check for the bool flag output for instructions like V_ADD_I32_e64.
756       const MachineOperand *SDst = TII->getNamedOperand(MI,
757                                                         AMDGPU::OpName::sdst);
758 
759       // Check the carry-in operand for v_addc_u32_e64.
760       const MachineOperand *Src2 = TII->getNamedOperand(MI,
761                                                         AMDGPU::OpName::src2);
762 
763       if (SDst) {
764         bool Next = false;
765 
766         if (SDst->getReg() != VCCReg) {
767           if (Register::isVirtualRegister(SDst->getReg()))
768             MRI.setRegAllocationHint(SDst->getReg(), 0, VCCReg);
769           Next = true;
770         }
771 
772         // All of the instructions with carry outs also have an SGPR input in
773         // src2.
774         if (Src2 && Src2->getReg() != VCCReg) {
775           if (Register::isVirtualRegister(Src2->getReg()))
776             MRI.setRegAllocationHint(Src2->getReg(), 0, VCCReg);
777           Next = true;
778         }
779 
780         if (Next)
781           continue;
782       }
783 
784       // We can shrink this instruction
785       LLVM_DEBUG(dbgs() << "Shrinking " << MI);
786 
787       MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32);
788       ++NumInstructionsShrunk;
789 
790       // Copy extra operands not present in the instruction definition.
791       copyExtraImplicitOps(*Inst32, MF, MI);
792 
793       MI.eraseFromParent();
794       foldImmediates(*Inst32, TII, MRI);
795 
796       LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
797     }
798   }
799   return false;
800 }
801