xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SISchedule.td (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1//===-- SISchedule.td - SI Scheduling definitons -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// MachineModel definitions for Southern Islands (SI)
10//
11//===----------------------------------------------------------------------===//
12
13def : PredicateProlog<[{
14  const SIInstrInfo *TII =
15    static_cast<const SIInstrInfo*>(SchedModel->getInstrInfo());
16  (void)TII;
17}]>;
18
19def WriteBranch : SchedWrite;
20def WriteExport : SchedWrite;
21def WriteLDS    : SchedWrite;
22def WriteSALU   : SchedWrite;
23def WriteSMEM   : SchedWrite;
24def WriteVMEM   : SchedWrite;
25def WriteBarrier : SchedWrite;
26
27def MIVGPRRead  : SchedRead;
28def MIMFMARead  : SchedRead;
29
30// Vector ALU instructions
31def Write32Bit         : SchedWrite;
32def WriteQuarterRate32 : SchedWrite;
33def WriteFullOrQuarterRate32 : SchedWrite;
34
35def WriteFloatFMA   : SchedWrite;
36
37// Slow quarter rate f64 instruction.
38def WriteDouble : SchedWrite;
39
40// half rate f64 instruction (same as v_add_f64)
41def WriteDoubleAdd  : SchedWrite;
42
43// Conversion to or from f64 instruction
44def WriteDoubleCvt  : SchedWrite;
45
46// Half rate 64-bit instructions.
47def Write64Bit : SchedWrite;
48
49// mAI multipass instructions.
50def Write2PassMAI  : SchedWrite;
51def Write8PassMAI  : SchedWrite;
52def Write16PassMAI : SchedWrite;
53
54// FIXME: Should there be a class for instructions which are VALU
55// instructions and have VALU rates, but write to the SALU (i.e. VOPC
56// instructions)
57
58class SISchedMachineModel : SchedMachineModel {
59  let CompleteModel = 0;
60  // MicroOpBufferSize = 1 means that instructions will always be added
61  // the ready queue when they become available.  This exposes them
62  // to the register pressure analysis.
63  let MicroOpBufferSize = 1;
64  let IssueWidth = 1;
65  let PostRAScheduler = 1;
66
67  // FIXME:Approximate 2 * branch cost.  Try to hack around bad
68  // early-ifcvt heuristics. These need improvement to avoid the OOE
69  // heuristics.
70  int MispredictPenalty = 20;
71}
72
73def SIFullSpeedModel : SISchedMachineModel;
74def SIQuarterSpeedModel : SISchedMachineModel;
75def GFX10SpeedModel : SISchedMachineModel;
76
77// XXX: Are the resource counts correct?
78def HWBranch : ProcResource<1> {
79  let BufferSize = 1;
80}
81def HWExport : ProcResource<1> {
82  let BufferSize = 7; // Taken from S_WAITCNT
83}
84def HWLGKM   : ProcResource<1> {
85  let BufferSize = 31;  // Taken from S_WAITCNT
86}
87def HWSALU   : ProcResource<1> {
88  let BufferSize = 1;
89}
90def HWVMEM   : ProcResource<1> {
91  let BufferSize = 15;  // Taken from S_WAITCNT
92}
93def HWVALU   : ProcResource<1> {
94  let BufferSize = 1;
95}
96def HWRC   : ProcResource<1> { // Register destination cache
97  let BufferSize = 1;
98}
99
100class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources,
101                 int latency> : WriteRes<write, resources> {
102  let Latency = latency;
103}
104
105class HWVALUWriteRes<SchedWrite write, int latency> :
106  HWWriteRes<write, [HWVALU], latency>;
107
108def PredMIReadVGPR : SchedPredicate<[{TII->hasVGPRUses(*MI)}]>;
109
110def MIReadVGPR : SchedReadVariant<[
111      SchedVar<PredMIReadVGPR, [MIVGPRRead]>,
112      SchedVar<NoSchedPred, [ReadDefault]>]>;
113
114// The latency numbers are taken from AMD Accelerated Parallel Processing
115// guide. They may not be accurate.
116
117// The latency values are 1 / (operations / cycle) / 4.
118multiclass SICommonWriteRes {
119
120  def : HWWriteRes<WriteBranch,  [HWBranch], 8>;
121  def : HWWriteRes<WriteExport,  [HWExport], 4>;
122  def : HWWriteRes<WriteLDS,     [HWLGKM],   5>; // Can be between 2 and 64
123  def : HWWriteRes<WriteSALU,    [HWSALU],   1>;
124  def : HWWriteRes<WriteSMEM,    [HWLGKM],   5>;
125  def : HWWriteRes<WriteVMEM,    [HWVMEM],   80>;
126  def : HWWriteRes<WriteBarrier, [HWBranch], 500>; // XXX: Guessed ???
127
128  def : HWVALUWriteRes<Write32Bit,         1>;
129  def : HWVALUWriteRes<Write64Bit,         2>;
130  def : HWVALUWriteRes<WriteQuarterRate32, 4>;
131  def : HWVALUWriteRes<Write2PassMAI,      2>;
132  def : HWVALUWriteRes<Write8PassMAI,      8>;
133  def : HWVALUWriteRes<Write16PassMAI,    16>;
134
135  def : ReadAdvance<MIVGPRRead, -2>;
136  def : InstRW<[Write64Bit, MIReadVGPR], (instregex "^V_ACCVGPR_WRITE_B32$")>;
137
138  // Technicaly mfma reads can be from 0 to 4 cycles but that does not make
139  // sense to model because its register setup is huge. In particular if we
140  // properly model read advanice as -2 for a vgpr read it will result in a
141  // bad scheduling of acc writes before that mfma. To avoid it we would
142  // need to consume 2 or 4 more vgprs to be initialized before the acc
143  // write sequence. Just assume worst case here.
144  def : ReadAdvance<MIMFMARead, -4>;
145
146  def : InstRW<[Write2PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._4X4X")>;
147  def : InstRW<[Write8PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._16X16X")>;
148  def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_..._32X32X")>;
149}
150
151def PredIsVGPR32Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) <= 32}]>;
152def PredIsVGPR64Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) > 32}]>;
153def WriteCopy : SchedWriteVariant<[
154    SchedVar<PredIsVGPR32Copy, [Write32Bit]>,
155    SchedVar<PredIsVGPR64Copy, [Write64Bit]>,
156    SchedVar<NoSchedPred, [WriteSALU]>]>;
157
158let SchedModel = SIFullSpeedModel in {
159
160defm : SICommonWriteRes;
161
162def : HWVALUWriteRes<WriteFloatFMA,   1>;
163def : HWVALUWriteRes<WriteDouble,     4>;
164def : HWVALUWriteRes<WriteDoubleAdd,  2>;
165def : HWVALUWriteRes<WriteDoubleCvt,  4>;
166
167def : InstRW<[WriteCopy], (instrs COPY)>;
168
169} // End SchedModel = SIFullSpeedModel
170
171let SchedModel = SIQuarterSpeedModel in {
172
173defm : SICommonWriteRes;
174
175def : HWVALUWriteRes<WriteFloatFMA, 16>;
176def : HWVALUWriteRes<WriteDouble,   16>;
177def : HWVALUWriteRes<WriteDoubleAdd, 8>;
178def : HWVALUWriteRes<WriteDoubleCvt, 4>;
179
180def : InstRW<[WriteCopy], (instrs COPY)>;
181
182}  // End SchedModel = SIQuarterSpeedModel
183
184let SchedModel = GFX10SpeedModel in {
185
186// The latency values are 1 / (operations / cycle).
187// Add 1 stall cycle for VGPR read.
188def : HWWriteRes<Write32Bit,         [HWVALU, HWRC],   5>;
189def : HWWriteRes<Write64Bit,         [HWVALU, HWRC],   9>;
190def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC],   17>;
191def : HWWriteRes<WriteFloatFMA,      [HWVALU, HWRC],   5>;
192def : HWWriteRes<WriteDouble,        [HWVALU, HWRC],   17>;
193def : HWWriteRes<WriteDoubleAdd,     [HWVALU, HWRC],   17>;
194def : HWWriteRes<WriteDoubleCvt,     [HWVALU, HWRC],   17>;
195
196def : HWWriteRes<WriteBranch,        [HWBranch],       32>;
197def : HWWriteRes<WriteExport,        [HWExport, HWRC], 16>;
198def : HWWriteRes<WriteLDS,           [HWLGKM,   HWRC], 20>;
199def : HWWriteRes<WriteSALU,          [HWSALU,   HWRC], 5>;
200def : HWWriteRes<WriteSMEM,          [HWLGKM,   HWRC], 20>;
201def : HWWriteRes<WriteVMEM,          [HWVMEM,   HWRC], 320>;
202def : HWWriteRes<WriteBarrier,       [HWBranch],       2000>;
203
204def : InstRW<[WriteCopy], (instrs COPY)>;
205
206}  // End SchedModel = GFX10SpeedModel
207