xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SISchedule.td (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1//===-- SISchedule.td - SI Scheduling definitions -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// MachineModel definitions for Southern Islands (SI)
10//
11//===----------------------------------------------------------------------===//
12
13def : PredicateProlog<[{
14  const SIInstrInfo *TII =
15    static_cast<const SIInstrInfo*>(SchedModel->getInstrInfo());
16  (void)TII;
17}]>;
18
19def WriteBranch : SchedWrite;
20def WriteExport : SchedWrite;
21def WriteLDS    : SchedWrite;
22def WriteSALU   : SchedWrite;
23def WriteSMEM   : SchedWrite;
24def WriteVMEM   : SchedWrite;
25def WriteBarrier : SchedWrite;
26
27def MIVGPRRead  : SchedRead;
28def MIMFMARead  : SchedRead;
29
30// Normal 16 or 32 bit VALU instructions
31def Write32Bit         : SchedWrite;
32// Conversion to or from F32 (but not converting F64 to or from F32)
33def WriteFloatCvt      : SchedWrite;
34// F16 or F32 transcendental instructions (these are quarter rate)
35def WriteTrans32       : SchedWrite;
36// Other quarter rate VALU instructions
37def WriteQuarterRate32 : SchedWrite;
38
39def WriteFloatFMA   : SchedWrite;
40
41// Slow quarter rate f64 instruction.
42def WriteDouble : SchedWrite;
43
44// half rate f64 instruction (same as v_add_f64)
45def WriteDoubleAdd  : SchedWrite;
46
47// Conversion to or from f64 instruction
48def WriteDoubleCvt  : SchedWrite;
49
50// F64 "transcendental" (actually only reciprocal and/or square root)
51// instructions
52def WriteTrans64    : SchedWrite;
53
54// Half rate 64-bit instructions.
55def Write64Bit : SchedWrite;
56
57// Integer multiplications.
58def WriteIntMul : SchedWrite;
59
60// mAI multipass instructions.
61def Write2PassMAI  : SchedWrite;
62def Write8PassMAI  : SchedWrite;
63def Write16PassMAI : SchedWrite;
64def Write4PassDGEMM : SchedWrite;
65def Write8PassDGEMM : SchedWrite;
66
67// FIXME: Should there be a class for instructions which are VALU
68// instructions and have VALU rates, but write to the SALU (i.e. VOPC
69// instructions)
70
71class SISchedMachineModel : SchedMachineModel {
72  let CompleteModel = 1;
73  // MicroOpBufferSize = 1 means that instructions will always be added
74  // the ready queue when they become available.  This exposes them
75  // to the register pressure analysis.
76  let MicroOpBufferSize = 1;
77  let IssueWidth = 1;
78  let PostRAScheduler = 1;
79
80  // FIXME:Approximate 2 * branch cost.  Try to hack around bad
81  // early-ifcvt heuristics. These need improvement to avoid the OOE
82  // heuristics.
83  int MispredictPenalty = 20;
84}
85
86def SIFullSpeedModel : SISchedMachineModel;
87def SIQuarterSpeedModel : SISchedMachineModel;
88def SIDPFullSpeedModel : SISchedMachineModel;
89def GFX10SpeedModel : SISchedMachineModel;
90
91// XXX: Are the resource counts correct?
92def HWBranch : ProcResource<1> {
93  let BufferSize = 1;
94}
95def HWExport : ProcResource<1> {
96  let BufferSize = 1;
97}
98def HWLGKM   : ProcResource<1> {
99  let BufferSize = 1;
100}
101def HWSALU   : ProcResource<1> {
102  let BufferSize = 1;
103}
104def HWVMEM   : ProcResource<1> {
105  let BufferSize = 1;
106}
107def HWVALU   : ProcResource<1> {
108  let BufferSize = 1;
109}
110def HWTransVALU : ProcResource<1> { // Transcendental VALU
111  let BufferSize = 1;
112}
113def HWRC   : ProcResource<1> { // Register destination cache
114  let BufferSize = 1;
115}
116def HWXDL   : ProcResource<1> { // MFMA CU
117  let BufferSize = 0;
118}
119
120class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources,
121                 int latency> : WriteRes<write, resources> {
122  let Latency = latency;
123}
124
125class HWVALUWriteRes<SchedWrite write, int latency> :
126  HWWriteRes<write, [HWVALU], latency>;
127
128def PredMIReadVGPR : SchedPredicate<[{TII->hasVGPRUses(*MI)}]>;
129
130def MIReadVGPR : SchedReadVariant<[
131      SchedVar<PredMIReadVGPR, [MIVGPRRead]>,
132      SchedVar<NoSchedPred, [ReadDefault]>]>;
133
134// The latency numbers are taken from AMD Accelerated Parallel Processing
135// guide. They may not be accurate.
136
137// The latency values are 1 / (operations / cycle) / 4.
138multiclass SICommonWriteRes {
139
140  let RetireOOO = 1 in { // llvm-mca specific flag
141  def : HWWriteRes<WriteBranch,  [HWBranch], 8>;
142  def : HWWriteRes<WriteExport,  [HWExport], 4>;
143  def : HWWriteRes<WriteLDS,     [HWLGKM],   5>; // Can be between 2 and 64
144  def : HWWriteRes<WriteSALU,    [HWSALU],   1>;
145  def : HWWriteRes<WriteSMEM,    [HWLGKM],   5>;
146  def : HWWriteRes<WriteVMEM,    [HWVMEM],   80>;
147  def : HWWriteRes<WriteBarrier, [HWBranch], 500>; // XXX: Guessed ???
148
149  def : HWVALUWriteRes<Write32Bit,         1>;
150  def : HWVALUWriteRes<WriteFloatCvt,      4>;
151  def : HWVALUWriteRes<WriteTrans32,       4>;
152  def : HWVALUWriteRes<WriteQuarterRate32, 4>;
153
154  def : HWVALUWriteRes<Write4PassDGEMM,    4>;
155  def : HWVALUWriteRes<Write8PassDGEMM,   16>;
156
157  let ResourceCycles = [2] in
158  def : HWWriteRes<Write2PassMAI,  [HWXDL], 2>;
159  let ResourceCycles = [8] in
160  def : HWWriteRes<Write8PassMAI,  [HWXDL], 8>;
161  let ResourceCycles = [16] in
162  def : HWWriteRes<Write16PassMAI, [HWXDL], 16>;
163  } // End RetireOOO = 1
164
165  def : ReadAdvance<MIVGPRRead, -2>;
166
167  // Technically mfma reads can be from 0 to 4 cycles but that does not make
168  // sense to model because its register setup is huge. In particular if we
169  // properly model read advance as -2 for a vgpr read it will result in a
170  // bad scheduling of acc writes before that mfma. To avoid it we would
171  // need to consume 2 or 4 more vgprs to be initialized before the acc
172  // write sequence. Just assume worst case here.
173  def : ReadAdvance<MIMFMARead, -4>;
174}
175
176def PredIsVGPR32Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) <= 32}]>;
177def PredIsVGPR64Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) > 32}]>;
178def WriteCopy : SchedWriteVariant<[
179    SchedVar<PredIsVGPR32Copy, [Write32Bit]>,
180    SchedVar<PredIsVGPR64Copy, [Write64Bit]>,
181    SchedVar<NoSchedPred, [WriteSALU]>]>;
182
183let SchedModel = SIFullSpeedModel in {
184
185defm : SICommonWriteRes;
186
187let RetireOOO = 1 in { // llvm-mca specific flag
188def : HWVALUWriteRes<Write64Bit,       2>;
189def : HWVALUWriteRes<WriteIntMul,      4>;
190def : HWVALUWriteRes<WriteFloatFMA,    1>;
191def : HWVALUWriteRes<WriteDouble,      4>;
192def : HWVALUWriteRes<WriteDoubleAdd,   2>;
193def : HWVALUWriteRes<WriteDoubleCvt,   4>;
194def : HWVALUWriteRes<WriteTrans64,     4>;
195} // End RetireOOO = 1
196
197def : InstRW<[WriteCopy], (instrs COPY)>;
198
199} // End SchedModel = SIFullSpeedModel
200
201let SchedModel = SIQuarterSpeedModel in {
202
203defm : SICommonWriteRes;
204
205let RetireOOO = 1 in { // llvm-mca specific flag
206def : HWVALUWriteRes<Write64Bit,       2>;
207def : HWVALUWriteRes<WriteIntMul,      4>;
208def : HWVALUWriteRes<WriteFloatFMA,    16>;
209def : HWVALUWriteRes<WriteDouble,      16>;
210def : HWVALUWriteRes<WriteDoubleAdd,    8>;
211def : HWVALUWriteRes<WriteDoubleCvt,    4>;
212def : HWVALUWriteRes<WriteTrans64,     16>;
213} // End RetireOOO = 1
214
215def : InstRW<[WriteCopy], (instrs COPY)>;
216def : InstRW<[Write64Bit, MIReadVGPR], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
217def : InstRW<[Write2PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._4X4X")>;
218def : InstRW<[Write8PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._16X16X")>;
219def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_..._32X32X")>;
220
221}  // End SchedModel = SIQuarterSpeedModel
222
223let SchedModel = SIDPFullSpeedModel in {
224
225defm : SICommonWriteRes;
226
227let RetireOOO = 1 in { // llvm-mca specific flag
228def : HWVALUWriteRes<WriteFloatFMA,    1>;
229def : HWVALUWriteRes<WriteDouble,      1>;
230def : HWVALUWriteRes<WriteDoubleAdd,   1>;
231def : HWVALUWriteRes<WriteDoubleCvt,   1>;
232def : HWVALUWriteRes<WriteTrans64,     4>;
233def : HWVALUWriteRes<WriteIntMul,      1>;
234def : HWVALUWriteRes<Write64Bit,       1>;
235} // End RetireOOO = 1
236
237def : InstRW<[WriteCopy], (instrs COPY)>;
238def : InstRW<[Write64Bit], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
239def : InstRW<[Write2PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_4X4X")>;
240def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X")>;
241def : InstRW<[Write16PassMAI,  MIMFMARead], (instregex "^V_MFMA_.32_32X32X")>;
242def : InstRW<[Write4PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_4X4X")>;
243def : InstRW<[Write8PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_16X16X")>;
244
245} // End SchedModel = SIDPFullSpeedModel
246
247let SchedModel = GFX10SpeedModel in {
248
249// The latency values are 1 / (operations / cycle).
250// Add 1 stall cycle for VGPR read.
251let RetireOOO = 1 in { // llvm-mca specific flag
252def : HWWriteRes<Write32Bit,         [HWVALU, HWRC],   5>;
253def : HWWriteRes<WriteFloatCvt,      [HWVALU, HWRC],   5>;
254def : HWWriteRes<Write64Bit,         [HWVALU, HWRC],   6>;
255def : HWWriteRes<WriteTrans32,       [HWTransVALU, HWRC], 10>;
256def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC],   8>;
257def : HWWriteRes<WriteFloatFMA,      [HWVALU, HWRC],   5>;
258def : HWWriteRes<WriteDouble,        [HWVALU, HWRC],   22>;
259def : HWWriteRes<WriteDoubleAdd,     [HWVALU, HWRC],   22>;
260def : HWWriteRes<WriteDoubleCvt,     [HWVALU, HWRC],   22>;
261def : HWWriteRes<WriteIntMul,        [HWVALU, HWRC],   8>;
262def : HWWriteRes<WriteTrans64,       [HWVALU, HWTransVALU, HWRC], 24>;
263
264def : HWWriteRes<WriteBranch,        [HWBranch],       32>;
265def : HWWriteRes<WriteExport,        [HWExport, HWRC], 16>;
266def : HWWriteRes<WriteLDS,           [HWLGKM,   HWRC], 20>;
267def : HWWriteRes<WriteSALU,          [HWSALU,   HWRC], 2>;
268def : HWWriteRes<WriteSMEM,          [HWLGKM,   HWRC], 20>;
269def : HWWriteRes<WriteVMEM,          [HWVMEM,   HWRC], 320>;
270def : HWWriteRes<WriteBarrier,       [HWBranch],       2000>;
271} // End RetireOOO = 1
272
273def : InstRW<[WriteCopy], (instrs COPY)>;
274
275}  // End SchedModel = GFX10SpeedModel
276