xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIOptimizeExecMaskingPreRA.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===-- SIOptimizeExecMaskingPreRA.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass performs exec mask handling peephole optimizations which needs
11 /// to be done before register allocation to reduce register pressure.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "GCNSubtarget.h"
17 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
18 #include "llvm/CodeGen/LiveIntervals.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/InitializePasses.h"
21 
22 using namespace llvm;
23 
24 #define DEBUG_TYPE "si-optimize-exec-masking-pre-ra"
25 
26 namespace {
27 
28 class SIOptimizeExecMaskingPreRA : public MachineFunctionPass {
29 private:
30   const SIRegisterInfo *TRI;
31   const SIInstrInfo *TII;
32   MachineRegisterInfo *MRI;
33   LiveIntervals *LIS;
34 
35   unsigned AndOpc;
36   unsigned Andn2Opc;
37   unsigned OrSaveExecOpc;
38   unsigned XorTermrOpc;
39   MCRegister CondReg;
40   MCRegister ExecReg;
41 
42   bool optimizeVcndVcmpPair(MachineBasicBlock &MBB);
43   bool optimizeElseBranch(MachineBasicBlock &MBB);
44 
45 public:
46   static char ID;
47 
48   SIOptimizeExecMaskingPreRA() : MachineFunctionPass(ID) {
49     initializeSIOptimizeExecMaskingPreRAPass(*PassRegistry::getPassRegistry());
50   }
51 
52   bool runOnMachineFunction(MachineFunction &MF) override;
53 
54   StringRef getPassName() const override {
55     return "SI optimize exec mask operations pre-RA";
56   }
57 
58   void getAnalysisUsage(AnalysisUsage &AU) const override {
59     AU.addRequired<LiveIntervals>();
60     AU.setPreservesAll();
61     MachineFunctionPass::getAnalysisUsage(AU);
62   }
63 };
64 
65 } // End anonymous namespace.
66 
67 INITIALIZE_PASS_BEGIN(SIOptimizeExecMaskingPreRA, DEBUG_TYPE,
68                       "SI optimize exec mask operations pre-RA", false, false)
69 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
70 INITIALIZE_PASS_END(SIOptimizeExecMaskingPreRA, DEBUG_TYPE,
71                     "SI optimize exec mask operations pre-RA", false, false)
72 
73 char SIOptimizeExecMaskingPreRA::ID = 0;
74 
75 char &llvm::SIOptimizeExecMaskingPreRAID = SIOptimizeExecMaskingPreRA::ID;
76 
77 FunctionPass *llvm::createSIOptimizeExecMaskingPreRAPass() {
78   return new SIOptimizeExecMaskingPreRA();
79 }
80 
81 // See if there is a def between \p AndIdx and \p SelIdx that needs to live
82 // beyond \p AndIdx.
83 static bool isDefBetween(const LiveRange &LR, SlotIndex AndIdx,
84                          SlotIndex SelIdx) {
85   LiveQueryResult AndLRQ = LR.Query(AndIdx);
86   return (!AndLRQ.isKill() && AndLRQ.valueIn() != LR.Query(SelIdx).valueOut());
87 }
88 
89 // FIXME: Why do we bother trying to handle physical registers here?
90 static bool isDefBetween(const SIRegisterInfo &TRI,
91                          LiveIntervals *LIS, Register Reg,
92                          const MachineInstr &Sel, const MachineInstr &And) {
93   SlotIndex AndIdx = LIS->getInstructionIndex(And).getRegSlot();
94   SlotIndex SelIdx = LIS->getInstructionIndex(Sel).getRegSlot();
95 
96   if (Reg.isVirtual())
97     return isDefBetween(LIS->getInterval(Reg), AndIdx, SelIdx);
98 
99   for (MCRegUnit Unit : TRI.regunits(Reg.asMCReg())) {
100     if (isDefBetween(LIS->getRegUnit(Unit), AndIdx, SelIdx))
101       return true;
102   }
103 
104   return false;
105 }
106 
107 // Optimize sequence
108 //    %sel = V_CNDMASK_B32_e64 0, 1, %cc
109 //    %cmp = V_CMP_NE_U32 1, %sel
110 //    $vcc = S_AND_B64 $exec, %cmp
111 //    S_CBRANCH_VCC[N]Z
112 // =>
113 //    $vcc = S_ANDN2_B64 $exec, %cc
114 //    S_CBRANCH_VCC[N]Z
115 //
116 // It is the negation pattern inserted by DAGCombiner::visitBRCOND() in the
117 // rebuildSetCC(). We start with S_CBRANCH to avoid exhaustive search, but
118 // only 3 first instructions are really needed. S_AND_B64 with exec is a
119 // required part of the pattern since V_CNDMASK_B32 writes zeroes for inactive
120 // lanes.
121 //
122 // Returns true on success.
123 bool SIOptimizeExecMaskingPreRA::optimizeVcndVcmpPair(MachineBasicBlock &MBB) {
124   auto I = llvm::find_if(MBB.terminators(), [](const MachineInstr &MI) {
125                            unsigned Opc = MI.getOpcode();
126                            return Opc == AMDGPU::S_CBRANCH_VCCZ ||
127                                   Opc == AMDGPU::S_CBRANCH_VCCNZ; });
128   if (I == MBB.terminators().end())
129     return false;
130 
131   auto *And =
132       TRI->findReachingDef(CondReg, AMDGPU::NoSubRegister, *I, *MRI, LIS);
133   if (!And || And->getOpcode() != AndOpc ||
134       !And->getOperand(1).isReg() || !And->getOperand(2).isReg())
135     return false;
136 
137   MachineOperand *AndCC = &And->getOperand(1);
138   Register CmpReg = AndCC->getReg();
139   unsigned CmpSubReg = AndCC->getSubReg();
140   if (CmpReg == Register(ExecReg)) {
141     AndCC = &And->getOperand(2);
142     CmpReg = AndCC->getReg();
143     CmpSubReg = AndCC->getSubReg();
144   } else if (And->getOperand(2).getReg() != Register(ExecReg)) {
145     return false;
146   }
147 
148   auto *Cmp = TRI->findReachingDef(CmpReg, CmpSubReg, *And, *MRI, LIS);
149   if (!Cmp || !(Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e32 ||
150                 Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e64) ||
151       Cmp->getParent() != And->getParent())
152     return false;
153 
154   MachineOperand *Op1 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src0);
155   MachineOperand *Op2 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src1);
156   if (Op1->isImm() && Op2->isReg())
157     std::swap(Op1, Op2);
158   if (!Op1->isReg() || !Op2->isImm() || Op2->getImm() != 1)
159     return false;
160 
161   Register SelReg = Op1->getReg();
162   if (SelReg.isPhysical())
163     return false;
164 
165   auto *Sel = TRI->findReachingDef(SelReg, Op1->getSubReg(), *Cmp, *MRI, LIS);
166   if (!Sel || Sel->getOpcode() != AMDGPU::V_CNDMASK_B32_e64)
167     return false;
168 
169   if (TII->hasModifiersSet(*Sel, AMDGPU::OpName::src0_modifiers) ||
170       TII->hasModifiersSet(*Sel, AMDGPU::OpName::src1_modifiers))
171     return false;
172 
173   Op1 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src0);
174   Op2 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src1);
175   MachineOperand *CC = TII->getNamedOperand(*Sel, AMDGPU::OpName::src2);
176   if (!Op1->isImm() || !Op2->isImm() || !CC->isReg() ||
177       Op1->getImm() != 0 || Op2->getImm() != 1)
178     return false;
179 
180   Register CCReg = CC->getReg();
181 
182   // If there was a def between the select and the and, we would need to move it
183   // to fold this.
184   if (isDefBetween(*TRI, LIS, CCReg, *Sel, *And))
185     return false;
186 
187   // Cannot safely mirror live intervals with PHI nodes, so check for these
188   // before optimization.
189   SlotIndex SelIdx = LIS->getInstructionIndex(*Sel);
190   LiveInterval *SelLI = &LIS->getInterval(SelReg);
191   if (llvm::any_of(SelLI->vnis(),
192                     [](const VNInfo *VNI) {
193                       return VNI->isPHIDef();
194                     }))
195     return false;
196 
197   // TODO: Guard against implicit def operands?
198   LLVM_DEBUG(dbgs() << "Folding sequence:\n\t" << *Sel << '\t' << *Cmp << '\t'
199                     << *And);
200 
201   MachineInstr *Andn2 =
202       BuildMI(MBB, *And, And->getDebugLoc(), TII->get(Andn2Opc),
203               And->getOperand(0).getReg())
204           .addReg(ExecReg)
205           .addReg(CCReg, getUndefRegState(CC->isUndef()), CC->getSubReg());
206   MachineOperand &AndSCC = And->getOperand(3);
207   assert(AndSCC.getReg() == AMDGPU::SCC);
208   MachineOperand &Andn2SCC = Andn2->getOperand(3);
209   assert(Andn2SCC.getReg() == AMDGPU::SCC);
210   Andn2SCC.setIsDead(AndSCC.isDead());
211 
212   SlotIndex AndIdx = LIS->ReplaceMachineInstrInMaps(*And, *Andn2);
213   And->eraseFromParent();
214 
215   LLVM_DEBUG(dbgs() << "=>\n\t" << *Andn2 << '\n');
216 
217   // Update live intervals for CCReg before potentially removing CmpReg/SelReg,
218   // and their associated liveness information.
219   SlotIndex CmpIdx = LIS->getInstructionIndex(*Cmp);
220   if (CCReg.isVirtual()) {
221     LiveInterval &CCLI = LIS->getInterval(CCReg);
222     auto CCQ = CCLI.Query(SelIdx.getRegSlot());
223     if (CCQ.valueIn()) {
224       LIS->removeInterval(CCReg);
225       LIS->createAndComputeVirtRegInterval(CCReg);
226     }
227   } else
228     LIS->removeAllRegUnitsForPhysReg(CCReg);
229 
230   // Try to remove compare. Cmp value should not used in between of cmp
231   // and s_and_b64 if VCC or just unused if any other register.
232   LiveInterval *CmpLI = CmpReg.isVirtual() ? &LIS->getInterval(CmpReg) : nullptr;
233   if ((CmpLI && CmpLI->Query(AndIdx.getRegSlot()).isKill()) ||
234       (CmpReg == Register(CondReg) &&
235        std::none_of(std::next(Cmp->getIterator()), Andn2->getIterator(),
236                     [&](const MachineInstr &MI) {
237                       return MI.readsRegister(CondReg, TRI);
238                     }))) {
239     LLVM_DEBUG(dbgs() << "Erasing: " << *Cmp << '\n');
240     if (CmpLI)
241       LIS->removeVRegDefAt(*CmpLI, CmpIdx.getRegSlot());
242     LIS->RemoveMachineInstrFromMaps(*Cmp);
243     Cmp->eraseFromParent();
244 
245     // Try to remove v_cndmask_b32.
246     // Kill status must be checked before shrinking the live range.
247     bool IsKill = SelLI->Query(CmpIdx.getRegSlot()).isKill();
248     LIS->shrinkToUses(SelLI);
249     bool IsDead = SelLI->Query(SelIdx.getRegSlot()).isDeadDef();
250     if (MRI->use_nodbg_empty(SelReg) && (IsKill || IsDead)) {
251       LLVM_DEBUG(dbgs() << "Erasing: " << *Sel << '\n');
252 
253       LIS->removeVRegDefAt(*SelLI, SelIdx.getRegSlot());
254       LIS->RemoveMachineInstrFromMaps(*Sel);
255       bool ShrinkSel = Sel->getOperand(0).readsReg();
256       Sel->eraseFromParent();
257       if (ShrinkSel) {
258         // The result of the V_CNDMASK was a subreg def which counted as a read
259         // from the other parts of the reg. Shrink their live ranges.
260         LIS->shrinkToUses(SelLI);
261       }
262     }
263   }
264 
265   return true;
266 }
267 
268 // Optimize sequence
269 //    %dst = S_OR_SAVEEXEC %src
270 //    ... instructions not modifying exec ...
271 //    %tmp = S_AND $exec, %dst
272 //    $exec = S_XOR_term $exec, %tmp
273 // =>
274 //    %dst = S_OR_SAVEEXEC %src
275 //    ... instructions not modifying exec ...
276 //    $exec = S_XOR_term $exec, %dst
277 //
278 // Clean up potentially unnecessary code added for safety during
279 // control flow lowering.
280 //
281 // Return whether any changes were made to MBB.
282 bool SIOptimizeExecMaskingPreRA::optimizeElseBranch(MachineBasicBlock &MBB) {
283   if (MBB.empty())
284     return false;
285 
286   // Check this is an else block.
287   auto First = MBB.begin();
288   MachineInstr &SaveExecMI = *First;
289   if (SaveExecMI.getOpcode() != OrSaveExecOpc)
290     return false;
291 
292   auto I = llvm::find_if(MBB.terminators(), [this](const MachineInstr &MI) {
293     return MI.getOpcode() == XorTermrOpc;
294   });
295   if (I == MBB.terminators().end())
296     return false;
297 
298   MachineInstr &XorTermMI = *I;
299   if (XorTermMI.getOperand(1).getReg() != Register(ExecReg))
300     return false;
301 
302   Register SavedExecReg = SaveExecMI.getOperand(0).getReg();
303   Register DstReg = XorTermMI.getOperand(2).getReg();
304 
305   // Find potentially unnecessary S_AND
306   MachineInstr *AndExecMI = nullptr;
307   I--;
308   while (I != First && !AndExecMI) {
309     if (I->getOpcode() == AndOpc && I->getOperand(0).getReg() == DstReg &&
310         I->getOperand(1).getReg() == Register(ExecReg))
311       AndExecMI = &*I;
312     I--;
313   }
314   if (!AndExecMI)
315     return false;
316 
317   // Check for exec modifying instructions.
318   // Note: exec defs do not create live ranges beyond the
319   // instruction so isDefBetween cannot be used.
320   // Instead just check that the def segments are adjacent.
321   SlotIndex StartIdx = LIS->getInstructionIndex(SaveExecMI);
322   SlotIndex EndIdx = LIS->getInstructionIndex(*AndExecMI);
323   for (MCRegUnit Unit : TRI->regunits(ExecReg)) {
324     LiveRange &RegUnit = LIS->getRegUnit(Unit);
325     if (RegUnit.find(StartIdx) != std::prev(RegUnit.find(EndIdx)))
326       return false;
327   }
328 
329   // Remove unnecessary S_AND
330   LIS->removeInterval(SavedExecReg);
331   LIS->removeInterval(DstReg);
332 
333   SaveExecMI.getOperand(0).setReg(DstReg);
334 
335   LIS->RemoveMachineInstrFromMaps(*AndExecMI);
336   AndExecMI->eraseFromParent();
337 
338   LIS->createAndComputeVirtRegInterval(DstReg);
339 
340   return true;
341 }
342 
343 bool SIOptimizeExecMaskingPreRA::runOnMachineFunction(MachineFunction &MF) {
344   if (skipFunction(MF.getFunction()))
345     return false;
346 
347   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
348   TRI = ST.getRegisterInfo();
349   TII = ST.getInstrInfo();
350   MRI = &MF.getRegInfo();
351   LIS = &getAnalysis<LiveIntervals>();
352 
353   const bool Wave32 = ST.isWave32();
354   AndOpc = Wave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
355   Andn2Opc = Wave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64;
356   OrSaveExecOpc =
357       Wave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64;
358   XorTermrOpc = Wave32 ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term;
359   CondReg = MCRegister::from(Wave32 ? AMDGPU::VCC_LO : AMDGPU::VCC);
360   ExecReg = MCRegister::from(Wave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC);
361 
362   DenseSet<Register> RecalcRegs({AMDGPU::EXEC_LO, AMDGPU::EXEC_HI});
363   bool Changed = false;
364 
365   for (MachineBasicBlock &MBB : MF) {
366 
367     if (optimizeElseBranch(MBB)) {
368       RecalcRegs.insert(AMDGPU::SCC);
369       Changed = true;
370     }
371 
372     if (optimizeVcndVcmpPair(MBB)) {
373       RecalcRegs.insert(AMDGPU::VCC_LO);
374       RecalcRegs.insert(AMDGPU::VCC_HI);
375       RecalcRegs.insert(AMDGPU::SCC);
376       Changed = true;
377     }
378 
379     // Try to remove unneeded instructions before s_endpgm.
380     if (MBB.succ_empty()) {
381       if (MBB.empty())
382         continue;
383 
384       // Skip this if the endpgm has any implicit uses, otherwise we would need
385       // to be careful to update / remove them.
386       // S_ENDPGM always has a single imm operand that is not used other than to
387       // end up in the encoding
388       MachineInstr &Term = MBB.back();
389       if (Term.getOpcode() != AMDGPU::S_ENDPGM || Term.getNumOperands() != 1)
390         continue;
391 
392       SmallVector<MachineBasicBlock*, 4> Blocks({&MBB});
393 
394       while (!Blocks.empty()) {
395         auto CurBB = Blocks.pop_back_val();
396         auto I = CurBB->rbegin(), E = CurBB->rend();
397         if (I != E) {
398           if (I->isUnconditionalBranch() || I->getOpcode() == AMDGPU::S_ENDPGM)
399             ++I;
400           else if (I->isBranch())
401             continue;
402         }
403 
404         while (I != E) {
405           if (I->isDebugInstr()) {
406             I = std::next(I);
407             continue;
408           }
409 
410           if (I->mayStore() || I->isBarrier() || I->isCall() ||
411               I->hasUnmodeledSideEffects() || I->hasOrderedMemoryRef())
412             break;
413 
414           LLVM_DEBUG(dbgs()
415                      << "Removing no effect instruction: " << *I << '\n');
416 
417           for (auto &Op : I->operands()) {
418             if (Op.isReg())
419               RecalcRegs.insert(Op.getReg());
420           }
421 
422           auto Next = std::next(I);
423           LIS->RemoveMachineInstrFromMaps(*I);
424           I->eraseFromParent();
425           I = Next;
426 
427           Changed = true;
428         }
429 
430         if (I != E)
431           continue;
432 
433         // Try to ascend predecessors.
434         for (auto *Pred : CurBB->predecessors()) {
435           if (Pred->succ_size() == 1)
436             Blocks.push_back(Pred);
437         }
438       }
439       continue;
440     }
441 
442     // If the only user of a logical operation is move to exec, fold it now
443     // to prevent forming of saveexec. I.e.:
444     //
445     //    %0:sreg_64 = COPY $exec
446     //    %1:sreg_64 = S_AND_B64 %0:sreg_64, %2:sreg_64
447     // =>
448     //    %1 = S_AND_B64 $exec, %2:sreg_64
449     unsigned ScanThreshold = 10;
450     for (auto I = MBB.rbegin(), E = MBB.rend(); I != E
451          && ScanThreshold--; ++I) {
452       // Continue scanning if this is not a full exec copy
453       if (!(I->isFullCopy() && I->getOperand(1).getReg() == Register(ExecReg)))
454         continue;
455 
456       Register SavedExec = I->getOperand(0).getReg();
457       if (SavedExec.isVirtual() && MRI->hasOneNonDBGUse(SavedExec)) {
458         MachineInstr *SingleExecUser = &*MRI->use_instr_nodbg_begin(SavedExec);
459         int Idx = SingleExecUser->findRegisterUseOperandIdx(SavedExec);
460         assert(Idx != -1);
461         if (SingleExecUser->getParent() == I->getParent() &&
462             !SingleExecUser->getOperand(Idx).isImplicit() &&
463             TII->isOperandLegal(*SingleExecUser, Idx, &I->getOperand(1))) {
464           LLVM_DEBUG(dbgs() << "Redundant EXEC COPY: " << *I << '\n');
465           LIS->RemoveMachineInstrFromMaps(*I);
466           I->eraseFromParent();
467           MRI->replaceRegWith(SavedExec, ExecReg);
468           LIS->removeInterval(SavedExec);
469           Changed = true;
470         }
471       }
472       break;
473     }
474   }
475 
476   if (Changed) {
477     for (auto Reg : RecalcRegs) {
478       if (Reg.isVirtual()) {
479         LIS->removeInterval(Reg);
480         if (!MRI->reg_empty(Reg))
481           LIS->createAndComputeVirtRegInterval(Reg);
482       } else {
483         LIS->removeAllRegUnitsForPhysReg(Reg);
484       }
485     }
486   }
487 
488   return Changed;
489 }
490