1 //===- SIMemoryLegalizer.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Memory legalizer - implements memory model. More information can be 11 /// found here: 12 /// http://llvm.org/docs/AMDGPUUsage.html#memory-model 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "AMDGPUMachineModuleInfo.h" 18 #include "GCNSubtarget.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "llvm/ADT/BitmaskEnum.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/Support/AtomicOrdering.h" 25 #include "llvm/Support/TargetParser.h" 26 27 using namespace llvm; 28 using namespace llvm::AMDGPU; 29 30 #define DEBUG_TYPE "si-memory-legalizer" 31 #define PASS_NAME "SI Memory Legalizer" 32 33 static cl::opt<bool> AmdgcnSkipCacheInvalidations( 34 "amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden, 35 cl::desc("Use this to skip inserting cache invalidating instructions.")); 36 37 namespace { 38 39 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 40 41 /// Memory operation flags. Can be ORed together. 42 enum class SIMemOp { 43 NONE = 0u, 44 LOAD = 1u << 0, 45 STORE = 1u << 1, 46 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE) 47 }; 48 49 /// Position to insert a new instruction relative to an existing 50 /// instruction. 51 enum class Position { 52 BEFORE, 53 AFTER 54 }; 55 56 /// The atomic synchronization scopes supported by the AMDGPU target. 57 enum class SIAtomicScope { 58 NONE, 59 SINGLETHREAD, 60 WAVEFRONT, 61 WORKGROUP, 62 AGENT, 63 SYSTEM 64 }; 65 66 /// The distinct address spaces supported by the AMDGPU target for 67 /// atomic memory operation. Can be ORed together. 68 enum class SIAtomicAddrSpace { 69 NONE = 0u, 70 GLOBAL = 1u << 0, 71 LDS = 1u << 1, 72 SCRATCH = 1u << 2, 73 GDS = 1u << 3, 74 OTHER = 1u << 4, 75 76 /// The address spaces that can be accessed by a FLAT instruction. 77 FLAT = GLOBAL | LDS | SCRATCH, 78 79 /// The address spaces that support atomic instructions. 80 ATOMIC = GLOBAL | LDS | SCRATCH | GDS, 81 82 /// All address spaces. 83 ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER, 84 85 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) 86 }; 87 88 class SIMemOpInfo final { 89 private: 90 91 friend class SIMemOpAccess; 92 93 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 94 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 95 SIAtomicScope Scope = SIAtomicScope::SYSTEM; 96 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; 97 SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; 98 bool IsCrossAddressSpaceOrdering = false; 99 bool IsVolatile = false; 100 bool IsNonTemporal = false; 101 102 SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent, 103 SIAtomicScope Scope = SIAtomicScope::SYSTEM, 104 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC, 105 SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL, 106 bool IsCrossAddressSpaceOrdering = true, 107 AtomicOrdering FailureOrdering = 108 AtomicOrdering::SequentiallyConsistent, 109 bool IsVolatile = false, 110 bool IsNonTemporal = false) 111 : Ordering(Ordering), FailureOrdering(FailureOrdering), 112 Scope(Scope), OrderingAddrSpace(OrderingAddrSpace), 113 InstrAddrSpace(InstrAddrSpace), 114 IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering), 115 IsVolatile(IsVolatile), 116 IsNonTemporal(IsNonTemporal) { 117 118 if (Ordering == AtomicOrdering::NotAtomic) { 119 assert(Scope == SIAtomicScope::NONE && 120 OrderingAddrSpace == SIAtomicAddrSpace::NONE && 121 !IsCrossAddressSpaceOrdering && 122 FailureOrdering == AtomicOrdering::NotAtomic); 123 return; 124 } 125 126 assert(Scope != SIAtomicScope::NONE && 127 (OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != 128 SIAtomicAddrSpace::NONE && 129 (InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) != 130 SIAtomicAddrSpace::NONE); 131 132 // There is also no cross address space ordering if the ordering 133 // address space is the same as the instruction address space and 134 // only contains a single address space. 135 if ((OrderingAddrSpace == InstrAddrSpace) && 136 isPowerOf2_32(uint32_t(InstrAddrSpace))) 137 this->IsCrossAddressSpaceOrdering = false; 138 139 // Limit the scope to the maximum supported by the instruction's address 140 // spaces. 141 if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) == 142 SIAtomicAddrSpace::NONE) { 143 this->Scope = std::min(Scope, SIAtomicScope::SINGLETHREAD); 144 } else if ((InstrAddrSpace & 145 ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) == 146 SIAtomicAddrSpace::NONE) { 147 this->Scope = std::min(Scope, SIAtomicScope::WORKGROUP); 148 } else if ((InstrAddrSpace & 149 ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS | 150 SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) { 151 this->Scope = std::min(Scope, SIAtomicScope::AGENT); 152 } 153 } 154 155 public: 156 /// \returns Atomic synchronization scope of the machine instruction used to 157 /// create this SIMemOpInfo. 158 SIAtomicScope getScope() const { 159 return Scope; 160 } 161 162 /// \returns Ordering constraint of the machine instruction used to 163 /// create this SIMemOpInfo. 164 AtomicOrdering getOrdering() const { 165 return Ordering; 166 } 167 168 /// \returns Failure ordering constraint of the machine instruction used to 169 /// create this SIMemOpInfo. 170 AtomicOrdering getFailureOrdering() const { 171 return FailureOrdering; 172 } 173 174 /// \returns The address spaces be accessed by the machine 175 /// instruction used to create this SiMemOpInfo. 176 SIAtomicAddrSpace getInstrAddrSpace() const { 177 return InstrAddrSpace; 178 } 179 180 /// \returns The address spaces that must be ordered by the machine 181 /// instruction used to create this SiMemOpInfo. 182 SIAtomicAddrSpace getOrderingAddrSpace() const { 183 return OrderingAddrSpace; 184 } 185 186 /// \returns Return true iff memory ordering of operations on 187 /// different address spaces is required. 188 bool getIsCrossAddressSpaceOrdering() const { 189 return IsCrossAddressSpaceOrdering; 190 } 191 192 /// \returns True if memory access of the machine instruction used to 193 /// create this SIMemOpInfo is volatile, false otherwise. 194 bool isVolatile() const { 195 return IsVolatile; 196 } 197 198 /// \returns True if memory access of the machine instruction used to 199 /// create this SIMemOpInfo is nontemporal, false otherwise. 200 bool isNonTemporal() const { 201 return IsNonTemporal; 202 } 203 204 /// \returns True if ordering constraint of the machine instruction used to 205 /// create this SIMemOpInfo is unordered or higher, false otherwise. 206 bool isAtomic() const { 207 return Ordering != AtomicOrdering::NotAtomic; 208 } 209 210 }; 211 212 class SIMemOpAccess final { 213 private: 214 AMDGPUMachineModuleInfo *MMI = nullptr; 215 216 /// Reports unsupported message \p Msg for \p MI to LLVM context. 217 void reportUnsupported(const MachineBasicBlock::iterator &MI, 218 const char *Msg) const; 219 220 /// Inspects the target synchronization scope \p SSID and determines 221 /// the SI atomic scope it corresponds to, the address spaces it 222 /// covers, and whether the memory ordering applies between address 223 /// spaces. 224 Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> 225 toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const; 226 227 /// \return Return a bit set of the address spaces accessed by \p AS. 228 SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const; 229 230 /// \returns Info constructed from \p MI, which has at least machine memory 231 /// operand. 232 Optional<SIMemOpInfo> constructFromMIWithMMO( 233 const MachineBasicBlock::iterator &MI) const; 234 235 public: 236 /// Construct class to support accessing the machine memory operands 237 /// of instructions in the machine function \p MF. 238 SIMemOpAccess(MachineFunction &MF); 239 240 /// \returns Load info if \p MI is a load operation, "None" otherwise. 241 Optional<SIMemOpInfo> getLoadInfo( 242 const MachineBasicBlock::iterator &MI) const; 243 244 /// \returns Store info if \p MI is a store operation, "None" otherwise. 245 Optional<SIMemOpInfo> getStoreInfo( 246 const MachineBasicBlock::iterator &MI) const; 247 248 /// \returns Atomic fence info if \p MI is an atomic fence operation, 249 /// "None" otherwise. 250 Optional<SIMemOpInfo> getAtomicFenceInfo( 251 const MachineBasicBlock::iterator &MI) const; 252 253 /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or 254 /// rmw operation, "None" otherwise. 255 Optional<SIMemOpInfo> getAtomicCmpxchgOrRmwInfo( 256 const MachineBasicBlock::iterator &MI) const; 257 }; 258 259 class SICacheControl { 260 protected: 261 262 /// AMDGPU subtarget info. 263 const GCNSubtarget &ST; 264 265 /// Instruction info. 266 const SIInstrInfo *TII = nullptr; 267 268 IsaVersion IV; 269 270 /// Whether to insert cache invalidating instructions. 271 bool InsertCacheInv; 272 273 SICacheControl(const GCNSubtarget &ST); 274 275 /// Sets named bit \p BitName to "true" if present in instruction \p MI. 276 /// \returns Returns true if \p MI is modified, false otherwise. 277 bool enableNamedBit(const MachineBasicBlock::iterator MI, 278 AMDGPU::CPol::CPol Bit) const; 279 280 public: 281 282 /// Create a cache control for the subtarget \p ST. 283 static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST); 284 285 /// Update \p MI memory load instruction to bypass any caches up to 286 /// the \p Scope memory scope for address spaces \p 287 /// AddrSpace. Return true iff the instruction was modified. 288 virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 289 SIAtomicScope Scope, 290 SIAtomicAddrSpace AddrSpace) const = 0; 291 292 /// Update \p MI memory store instruction to bypass any caches up to 293 /// the \p Scope memory scope for address spaces \p 294 /// AddrSpace. Return true iff the instruction was modified. 295 virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 296 SIAtomicScope Scope, 297 SIAtomicAddrSpace AddrSpace) const = 0; 298 299 /// Update \p MI memory read-modify-write instruction to bypass any caches up 300 /// to the \p Scope memory scope for address spaces \p AddrSpace. Return true 301 /// iff the instruction was modified. 302 virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 303 SIAtomicScope Scope, 304 SIAtomicAddrSpace AddrSpace) const = 0; 305 306 /// Update \p MI memory instruction of kind \p Op associated with address 307 /// spaces \p AddrSpace to indicate it is volatile and/or nontemporal. Return 308 /// true iff the instruction was modified. 309 virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 310 SIAtomicAddrSpace AddrSpace, 311 SIMemOp Op, bool IsVolatile, 312 bool IsNonTemporal) const = 0; 313 314 /// Inserts any necessary instructions at position \p Pos relative 315 /// to instruction \p MI to ensure memory instructions before \p Pos of kind 316 /// \p Op associated with address spaces \p AddrSpace have completed. Used 317 /// between memory instructions to enforce the order they become visible as 318 /// observed by other memory instructions executing in memory scope \p Scope. 319 /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between 320 /// address spaces. Returns true iff any instructions inserted. 321 virtual bool insertWait(MachineBasicBlock::iterator &MI, 322 SIAtomicScope Scope, 323 SIAtomicAddrSpace AddrSpace, 324 SIMemOp Op, 325 bool IsCrossAddrSpaceOrdering, 326 Position Pos) const = 0; 327 328 /// Inserts any necessary instructions at position \p Pos relative to 329 /// instruction \p MI to ensure any subsequent memory instructions of this 330 /// thread with address spaces \p AddrSpace will observe the previous memory 331 /// operations by any thread for memory scopes up to memory scope \p Scope . 332 /// Returns true iff any instructions inserted. 333 virtual bool insertAcquire(MachineBasicBlock::iterator &MI, 334 SIAtomicScope Scope, 335 SIAtomicAddrSpace AddrSpace, 336 Position Pos) const = 0; 337 338 /// Inserts any necessary instructions at position \p Pos relative to 339 /// instruction \p MI to ensure previous memory instructions by this thread 340 /// with address spaces \p AddrSpace have completed and can be observed by 341 /// subsequent memory instructions by any thread executing in memory scope \p 342 /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is 343 /// between address spaces. Returns true iff any instructions inserted. 344 virtual bool insertRelease(MachineBasicBlock::iterator &MI, 345 SIAtomicScope Scope, 346 SIAtomicAddrSpace AddrSpace, 347 bool IsCrossAddrSpaceOrdering, 348 Position Pos) const = 0; 349 350 /// Virtual destructor to allow derivations to be deleted. 351 virtual ~SICacheControl() = default; 352 353 }; 354 355 class SIGfx6CacheControl : public SICacheControl { 356 protected: 357 358 /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI 359 /// is modified, false otherwise. 360 bool enableGLCBit(const MachineBasicBlock::iterator &MI) const { 361 return enableNamedBit(MI, AMDGPU::CPol::GLC); 362 } 363 364 /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI 365 /// is modified, false otherwise. 366 bool enableSLCBit(const MachineBasicBlock::iterator &MI) const { 367 return enableNamedBit(MI, AMDGPU::CPol::SLC); 368 } 369 370 public: 371 372 SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {} 373 374 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 375 SIAtomicScope Scope, 376 SIAtomicAddrSpace AddrSpace) const override; 377 378 bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 379 SIAtomicScope Scope, 380 SIAtomicAddrSpace AddrSpace) const override; 381 382 bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 383 SIAtomicScope Scope, 384 SIAtomicAddrSpace AddrSpace) const override; 385 386 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 387 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 388 bool IsVolatile, 389 bool IsNonTemporal) const override; 390 391 bool insertWait(MachineBasicBlock::iterator &MI, 392 SIAtomicScope Scope, 393 SIAtomicAddrSpace AddrSpace, 394 SIMemOp Op, 395 bool IsCrossAddrSpaceOrdering, 396 Position Pos) const override; 397 398 bool insertAcquire(MachineBasicBlock::iterator &MI, 399 SIAtomicScope Scope, 400 SIAtomicAddrSpace AddrSpace, 401 Position Pos) const override; 402 403 bool insertRelease(MachineBasicBlock::iterator &MI, 404 SIAtomicScope Scope, 405 SIAtomicAddrSpace AddrSpace, 406 bool IsCrossAddrSpaceOrdering, 407 Position Pos) const override; 408 }; 409 410 class SIGfx7CacheControl : public SIGfx6CacheControl { 411 public: 412 413 SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {} 414 415 bool insertAcquire(MachineBasicBlock::iterator &MI, 416 SIAtomicScope Scope, 417 SIAtomicAddrSpace AddrSpace, 418 Position Pos) const override; 419 420 }; 421 422 class SIGfx90ACacheControl : public SIGfx7CacheControl { 423 public: 424 425 SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} 426 427 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 428 SIAtomicScope Scope, 429 SIAtomicAddrSpace AddrSpace) const override; 430 431 bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 432 SIAtomicScope Scope, 433 SIAtomicAddrSpace AddrSpace) const override; 434 435 bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 436 SIAtomicScope Scope, 437 SIAtomicAddrSpace AddrSpace) const override; 438 439 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 440 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 441 bool IsVolatile, 442 bool IsNonTemporal) const override; 443 444 bool insertWait(MachineBasicBlock::iterator &MI, 445 SIAtomicScope Scope, 446 SIAtomicAddrSpace AddrSpace, 447 SIMemOp Op, 448 bool IsCrossAddrSpaceOrdering, 449 Position Pos) const override; 450 451 bool insertAcquire(MachineBasicBlock::iterator &MI, 452 SIAtomicScope Scope, 453 SIAtomicAddrSpace AddrSpace, 454 Position Pos) const override; 455 456 bool insertRelease(MachineBasicBlock::iterator &MI, 457 SIAtomicScope Scope, 458 SIAtomicAddrSpace AddrSpace, 459 bool IsCrossAddrSpaceOrdering, 460 Position Pos) const override; 461 }; 462 463 class SIGfx940CacheControl : public SIGfx90ACacheControl { 464 protected: 465 466 /// Sets SC0 bit to "true" if present in \p MI. Returns true if \p MI 467 /// is modified, false otherwise. 468 bool enableSC0Bit(const MachineBasicBlock::iterator &MI) const { 469 return enableNamedBit(MI, AMDGPU::CPol::SC0); 470 } 471 472 /// Sets SC1 bit to "true" if present in \p MI. Returns true if \p MI 473 /// is modified, false otherwise. 474 bool enableSC1Bit(const MachineBasicBlock::iterator &MI) const { 475 return enableNamedBit(MI, AMDGPU::CPol::SC1); 476 } 477 478 /// Sets NT bit to "true" if present in \p MI. Returns true if \p MI 479 /// is modified, false otherwise. 480 bool enableNTBit(const MachineBasicBlock::iterator &MI) const { 481 return enableNamedBit(MI, AMDGPU::CPol::NT); 482 } 483 484 public: 485 486 SIGfx940CacheControl(const GCNSubtarget &ST) : SIGfx90ACacheControl(ST) {}; 487 488 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 489 SIAtomicScope Scope, 490 SIAtomicAddrSpace AddrSpace) const override; 491 492 bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 493 SIAtomicScope Scope, 494 SIAtomicAddrSpace AddrSpace) const override; 495 496 bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 497 SIAtomicScope Scope, 498 SIAtomicAddrSpace AddrSpace) const override; 499 500 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 501 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 502 bool IsVolatile, 503 bool IsNonTemporal) const override; 504 505 bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 506 SIAtomicAddrSpace AddrSpace, Position Pos) const override; 507 508 bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 509 SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, 510 Position Pos) const override; 511 }; 512 513 class SIGfx10CacheControl : public SIGfx7CacheControl { 514 protected: 515 516 /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI 517 /// is modified, false otherwise. 518 bool enableDLCBit(const MachineBasicBlock::iterator &MI) const { 519 return enableNamedBit(MI, AMDGPU::CPol::DLC); 520 } 521 522 public: 523 524 SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} 525 526 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 527 SIAtomicScope Scope, 528 SIAtomicAddrSpace AddrSpace) const override; 529 530 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 531 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 532 bool IsVolatile, 533 bool IsNonTemporal) const override; 534 535 bool insertWait(MachineBasicBlock::iterator &MI, 536 SIAtomicScope Scope, 537 SIAtomicAddrSpace AddrSpace, 538 SIMemOp Op, 539 bool IsCrossAddrSpaceOrdering, 540 Position Pos) const override; 541 542 bool insertAcquire(MachineBasicBlock::iterator &MI, 543 SIAtomicScope Scope, 544 SIAtomicAddrSpace AddrSpace, 545 Position Pos) const override; 546 }; 547 548 class SIGfx11CacheControl : public SIGfx10CacheControl { 549 public: 550 SIGfx11CacheControl(const GCNSubtarget &ST) : SIGfx10CacheControl(ST) {} 551 552 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 553 SIAtomicScope Scope, 554 SIAtomicAddrSpace AddrSpace) const override; 555 556 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 557 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 558 bool IsVolatile, 559 bool IsNonTemporal) const override; 560 }; 561 562 class SIMemoryLegalizer final : public MachineFunctionPass { 563 private: 564 565 /// Cache Control. 566 std::unique_ptr<SICacheControl> CC = nullptr; 567 568 /// List of atomic pseudo instructions. 569 std::list<MachineBasicBlock::iterator> AtomicPseudoMIs; 570 571 /// Return true iff instruction \p MI is a atomic instruction that 572 /// returns a result. 573 bool isAtomicRet(const MachineInstr &MI) const { 574 return SIInstrInfo::isAtomicRet(MI); 575 } 576 577 /// Removes all processed atomic pseudo instructions from the current 578 /// function. Returns true if current function is modified, false otherwise. 579 bool removeAtomicPseudoMIs(); 580 581 /// Expands load operation \p MI. Returns true if instructions are 582 /// added/deleted or \p MI is modified, false otherwise. 583 bool expandLoad(const SIMemOpInfo &MOI, 584 MachineBasicBlock::iterator &MI); 585 /// Expands store operation \p MI. Returns true if instructions are 586 /// added/deleted or \p MI is modified, false otherwise. 587 bool expandStore(const SIMemOpInfo &MOI, 588 MachineBasicBlock::iterator &MI); 589 /// Expands atomic fence operation \p MI. Returns true if 590 /// instructions are added/deleted or \p MI is modified, false otherwise. 591 bool expandAtomicFence(const SIMemOpInfo &MOI, 592 MachineBasicBlock::iterator &MI); 593 /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if 594 /// instructions are added/deleted or \p MI is modified, false otherwise. 595 bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, 596 MachineBasicBlock::iterator &MI); 597 598 public: 599 static char ID; 600 601 SIMemoryLegalizer() : MachineFunctionPass(ID) {} 602 603 void getAnalysisUsage(AnalysisUsage &AU) const override { 604 AU.setPreservesCFG(); 605 MachineFunctionPass::getAnalysisUsage(AU); 606 } 607 608 StringRef getPassName() const override { 609 return PASS_NAME; 610 } 611 612 bool runOnMachineFunction(MachineFunction &MF) override; 613 }; 614 615 } // end namespace anonymous 616 617 void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI, 618 const char *Msg) const { 619 const Function &Func = MI->getParent()->getParent()->getFunction(); 620 DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc()); 621 Func.getContext().diagnose(Diag); 622 } 623 624 Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> 625 SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID, 626 SIAtomicAddrSpace InstrAddrSpace) const { 627 if (SSID == SyncScope::System) 628 return std::make_tuple(SIAtomicScope::SYSTEM, 629 SIAtomicAddrSpace::ATOMIC, 630 true); 631 if (SSID == MMI->getAgentSSID()) 632 return std::make_tuple(SIAtomicScope::AGENT, 633 SIAtomicAddrSpace::ATOMIC, 634 true); 635 if (SSID == MMI->getWorkgroupSSID()) 636 return std::make_tuple(SIAtomicScope::WORKGROUP, 637 SIAtomicAddrSpace::ATOMIC, 638 true); 639 if (SSID == MMI->getWavefrontSSID()) 640 return std::make_tuple(SIAtomicScope::WAVEFRONT, 641 SIAtomicAddrSpace::ATOMIC, 642 true); 643 if (SSID == SyncScope::SingleThread) 644 return std::make_tuple(SIAtomicScope::SINGLETHREAD, 645 SIAtomicAddrSpace::ATOMIC, 646 true); 647 if (SSID == MMI->getSystemOneAddressSpaceSSID()) 648 return std::make_tuple(SIAtomicScope::SYSTEM, 649 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, 650 false); 651 if (SSID == MMI->getAgentOneAddressSpaceSSID()) 652 return std::make_tuple(SIAtomicScope::AGENT, 653 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, 654 false); 655 if (SSID == MMI->getWorkgroupOneAddressSpaceSSID()) 656 return std::make_tuple(SIAtomicScope::WORKGROUP, 657 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, 658 false); 659 if (SSID == MMI->getWavefrontOneAddressSpaceSSID()) 660 return std::make_tuple(SIAtomicScope::WAVEFRONT, 661 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, 662 false); 663 if (SSID == MMI->getSingleThreadOneAddressSpaceSSID()) 664 return std::make_tuple(SIAtomicScope::SINGLETHREAD, 665 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, 666 false); 667 return None; 668 } 669 670 SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const { 671 if (AS == AMDGPUAS::FLAT_ADDRESS) 672 return SIAtomicAddrSpace::FLAT; 673 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 674 return SIAtomicAddrSpace::GLOBAL; 675 if (AS == AMDGPUAS::LOCAL_ADDRESS) 676 return SIAtomicAddrSpace::LDS; 677 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 678 return SIAtomicAddrSpace::SCRATCH; 679 if (AS == AMDGPUAS::REGION_ADDRESS) 680 return SIAtomicAddrSpace::GDS; 681 682 return SIAtomicAddrSpace::OTHER; 683 } 684 685 SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) { 686 MMI = &MF.getMMI().getObjFileInfo<AMDGPUMachineModuleInfo>(); 687 } 688 689 Optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO( 690 const MachineBasicBlock::iterator &MI) const { 691 assert(MI->getNumMemOperands() > 0); 692 693 SyncScope::ID SSID = SyncScope::SingleThread; 694 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 695 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 696 SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; 697 bool IsNonTemporal = true; 698 bool IsVolatile = false; 699 700 // Validator should check whether or not MMOs cover the entire set of 701 // locations accessed by the memory instruction. 702 for (const auto &MMO : MI->memoperands()) { 703 IsNonTemporal &= MMO->isNonTemporal(); 704 IsVolatile |= MMO->isVolatile(); 705 InstrAddrSpace |= 706 toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace()); 707 AtomicOrdering OpOrdering = MMO->getSuccessOrdering(); 708 if (OpOrdering != AtomicOrdering::NotAtomic) { 709 const auto &IsSyncScopeInclusion = 710 MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID()); 711 if (!IsSyncScopeInclusion) { 712 reportUnsupported(MI, 713 "Unsupported non-inclusive atomic synchronization scope"); 714 return None; 715 } 716 717 SSID = *IsSyncScopeInclusion ? SSID : MMO->getSyncScopeID(); 718 Ordering = getMergedAtomicOrdering(Ordering, OpOrdering); 719 assert(MMO->getFailureOrdering() != AtomicOrdering::Release && 720 MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease); 721 FailureOrdering = 722 getMergedAtomicOrdering(FailureOrdering, MMO->getFailureOrdering()); 723 } 724 } 725 726 SIAtomicScope Scope = SIAtomicScope::NONE; 727 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; 728 bool IsCrossAddressSpaceOrdering = false; 729 if (Ordering != AtomicOrdering::NotAtomic) { 730 auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace); 731 if (!ScopeOrNone) { 732 reportUnsupported(MI, "Unsupported atomic synchronization scope"); 733 return None; 734 } 735 std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = 736 *ScopeOrNone; 737 if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || 738 ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) || 739 ((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) { 740 reportUnsupported(MI, "Unsupported atomic address space"); 741 return None; 742 } 743 } 744 return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace, 745 IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile, 746 IsNonTemporal); 747 } 748 749 Optional<SIMemOpInfo> SIMemOpAccess::getLoadInfo( 750 const MachineBasicBlock::iterator &MI) const { 751 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 752 753 if (!(MI->mayLoad() && !MI->mayStore())) 754 return None; 755 756 // Be conservative if there are no memory operands. 757 if (MI->getNumMemOperands() == 0) 758 return SIMemOpInfo(); 759 760 return constructFromMIWithMMO(MI); 761 } 762 763 Optional<SIMemOpInfo> SIMemOpAccess::getStoreInfo( 764 const MachineBasicBlock::iterator &MI) const { 765 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 766 767 if (!(!MI->mayLoad() && MI->mayStore())) 768 return None; 769 770 // Be conservative if there are no memory operands. 771 if (MI->getNumMemOperands() == 0) 772 return SIMemOpInfo(); 773 774 return constructFromMIWithMMO(MI); 775 } 776 777 Optional<SIMemOpInfo> SIMemOpAccess::getAtomicFenceInfo( 778 const MachineBasicBlock::iterator &MI) const { 779 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 780 781 if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE) 782 return None; 783 784 AtomicOrdering Ordering = 785 static_cast<AtomicOrdering>(MI->getOperand(0).getImm()); 786 787 SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(1).getImm()); 788 auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC); 789 if (!ScopeOrNone) { 790 reportUnsupported(MI, "Unsupported atomic synchronization scope"); 791 return None; 792 } 793 794 SIAtomicScope Scope = SIAtomicScope::NONE; 795 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; 796 bool IsCrossAddressSpaceOrdering = false; 797 std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = 798 *ScopeOrNone; 799 800 if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || 801 ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { 802 reportUnsupported(MI, "Unsupported atomic address space"); 803 return None; 804 } 805 806 return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC, 807 IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic); 808 } 809 810 Optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo( 811 const MachineBasicBlock::iterator &MI) const { 812 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 813 814 if (!(MI->mayLoad() && MI->mayStore())) 815 return None; 816 817 // Be conservative if there are no memory operands. 818 if (MI->getNumMemOperands() == 0) 819 return SIMemOpInfo(); 820 821 return constructFromMIWithMMO(MI); 822 } 823 824 SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) { 825 TII = ST.getInstrInfo(); 826 IV = getIsaVersion(ST.getCPU()); 827 InsertCacheInv = !AmdgcnSkipCacheInvalidations; 828 } 829 830 bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI, 831 AMDGPU::CPol::CPol Bit) const { 832 MachineOperand *CPol = TII->getNamedOperand(*MI, AMDGPU::OpName::cpol); 833 if (!CPol) 834 return false; 835 836 CPol->setImm(CPol->getImm() | Bit); 837 return true; 838 } 839 840 /* static */ 841 std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) { 842 GCNSubtarget::Generation Generation = ST.getGeneration(); 843 if (ST.hasGFX940Insts()) 844 return std::make_unique<SIGfx940CacheControl>(ST); 845 if (ST.hasGFX90AInsts()) 846 return std::make_unique<SIGfx90ACacheControl>(ST); 847 if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS) 848 return std::make_unique<SIGfx6CacheControl>(ST); 849 if (Generation < AMDGPUSubtarget::GFX10) 850 return std::make_unique<SIGfx7CacheControl>(ST); 851 if (Generation < AMDGPUSubtarget::GFX11) 852 return std::make_unique<SIGfx10CacheControl>(ST); 853 return std::make_unique<SIGfx11CacheControl>(ST); 854 } 855 856 bool SIGfx6CacheControl::enableLoadCacheBypass( 857 const MachineBasicBlock::iterator &MI, 858 SIAtomicScope Scope, 859 SIAtomicAddrSpace AddrSpace) const { 860 assert(MI->mayLoad() && !MI->mayStore()); 861 bool Changed = false; 862 863 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 864 switch (Scope) { 865 case SIAtomicScope::SYSTEM: 866 case SIAtomicScope::AGENT: 867 // Set L1 cache policy to MISS_EVICT. 868 // Note: there is no L2 cache bypass policy at the ISA level. 869 Changed |= enableGLCBit(MI); 870 break; 871 case SIAtomicScope::WORKGROUP: 872 case SIAtomicScope::WAVEFRONT: 873 case SIAtomicScope::SINGLETHREAD: 874 // No cache to bypass. 875 break; 876 default: 877 llvm_unreachable("Unsupported synchronization scope"); 878 } 879 } 880 881 /// The scratch address space does not need the global memory caches 882 /// to be bypassed as all memory operations by the same thread are 883 /// sequentially consistent, and no other thread can access scratch 884 /// memory. 885 886 /// Other address spaces do not have a cache. 887 888 return Changed; 889 } 890 891 bool SIGfx6CacheControl::enableStoreCacheBypass( 892 const MachineBasicBlock::iterator &MI, 893 SIAtomicScope Scope, 894 SIAtomicAddrSpace AddrSpace) const { 895 assert(!MI->mayLoad() && MI->mayStore()); 896 bool Changed = false; 897 898 /// The L1 cache is write through so does not need to be bypassed. There is no 899 /// bypass control for the L2 cache at the isa level. 900 901 return Changed; 902 } 903 904 bool SIGfx6CacheControl::enableRMWCacheBypass( 905 const MachineBasicBlock::iterator &MI, 906 SIAtomicScope Scope, 907 SIAtomicAddrSpace AddrSpace) const { 908 assert(MI->mayLoad() && MI->mayStore()); 909 bool Changed = false; 910 911 /// Do not set GLC for RMW atomic operations as L0/L1 cache is automatically 912 /// bypassed, and the GLC bit is instead used to indicate if they are 913 /// return or no-return. 914 /// Note: there is no L2 cache coherent bypass control at the ISA level. 915 916 return Changed; 917 } 918 919 bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal( 920 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 921 bool IsVolatile, bool IsNonTemporal) const { 922 // Only handle load and store, not atomic read-modify-write insructions. The 923 // latter use glc to indicate if the atomic returns a result and so must not 924 // be used for cache control. 925 assert(MI->mayLoad() ^ MI->mayStore()); 926 927 // Only update load and store, not LLVM IR atomic read-modify-write 928 // instructions. The latter are always marked as volatile so cannot sensibly 929 // handle it as do not want to pessimize all atomics. Also they do not support 930 // the nontemporal attribute. 931 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 932 933 bool Changed = false; 934 935 if (IsVolatile) { 936 // Set L1 cache policy to be MISS_EVICT for load instructions 937 // and MISS_LRU for store instructions. 938 // Note: there is no L2 cache bypass policy at the ISA level. 939 if (Op == SIMemOp::LOAD) 940 Changed |= enableGLCBit(MI); 941 942 // Ensure operation has completed at system scope to cause all volatile 943 // operations to be visible outside the program in a global order. Do not 944 // request cross address space as only the global address space can be 945 // observable outside the program, so no need to cause a waitcnt for LDS 946 // address space operations. 947 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 948 Position::AFTER); 949 950 return Changed; 951 } 952 953 if (IsNonTemporal) { 954 // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT 955 // for both loads and stores, and the L2 cache policy to STREAM. 956 Changed |= enableGLCBit(MI); 957 Changed |= enableSLCBit(MI); 958 return Changed; 959 } 960 961 return Changed; 962 } 963 964 bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI, 965 SIAtomicScope Scope, 966 SIAtomicAddrSpace AddrSpace, 967 SIMemOp Op, 968 bool IsCrossAddrSpaceOrdering, 969 Position Pos) const { 970 bool Changed = false; 971 972 MachineBasicBlock &MBB = *MI->getParent(); 973 DebugLoc DL = MI->getDebugLoc(); 974 975 if (Pos == Position::AFTER) 976 ++MI; 977 978 bool VMCnt = false; 979 bool LGKMCnt = false; 980 981 if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != 982 SIAtomicAddrSpace::NONE) { 983 switch (Scope) { 984 case SIAtomicScope::SYSTEM: 985 case SIAtomicScope::AGENT: 986 VMCnt |= true; 987 break; 988 case SIAtomicScope::WORKGROUP: 989 case SIAtomicScope::WAVEFRONT: 990 case SIAtomicScope::SINGLETHREAD: 991 // The L1 cache keeps all memory operations in order for 992 // wavefronts in the same work-group. 993 break; 994 default: 995 llvm_unreachable("Unsupported synchronization scope"); 996 } 997 } 998 999 if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { 1000 switch (Scope) { 1001 case SIAtomicScope::SYSTEM: 1002 case SIAtomicScope::AGENT: 1003 case SIAtomicScope::WORKGROUP: 1004 // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is 1005 // not needed as LDS operations for all waves are executed in a total 1006 // global ordering as observed by all waves. Required if also 1007 // synchronizing with global/GDS memory as LDS operations could be 1008 // reordered with respect to later global/GDS memory operations of the 1009 // same wave. 1010 LGKMCnt |= IsCrossAddrSpaceOrdering; 1011 break; 1012 case SIAtomicScope::WAVEFRONT: 1013 case SIAtomicScope::SINGLETHREAD: 1014 // The LDS keeps all memory operations in order for 1015 // the same wavefront. 1016 break; 1017 default: 1018 llvm_unreachable("Unsupported synchronization scope"); 1019 } 1020 } 1021 1022 if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { 1023 switch (Scope) { 1024 case SIAtomicScope::SYSTEM: 1025 case SIAtomicScope::AGENT: 1026 // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" 1027 // is not needed as GDS operations for all waves are executed in a total 1028 // global ordering as observed by all waves. Required if also 1029 // synchronizing with global/LDS memory as GDS operations could be 1030 // reordered with respect to later global/LDS memory operations of the 1031 // same wave. 1032 LGKMCnt |= IsCrossAddrSpaceOrdering; 1033 break; 1034 case SIAtomicScope::WORKGROUP: 1035 case SIAtomicScope::WAVEFRONT: 1036 case SIAtomicScope::SINGLETHREAD: 1037 // The GDS keeps all memory operations in order for 1038 // the same work-group. 1039 break; 1040 default: 1041 llvm_unreachable("Unsupported synchronization scope"); 1042 } 1043 } 1044 1045 if (VMCnt || LGKMCnt) { 1046 unsigned WaitCntImmediate = 1047 AMDGPU::encodeWaitcnt(IV, 1048 VMCnt ? 0 : getVmcntBitMask(IV), 1049 getExpcntBitMask(IV), 1050 LGKMCnt ? 0 : getLgkmcntBitMask(IV)); 1051 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); 1052 Changed = true; 1053 } 1054 1055 if (Pos == Position::AFTER) 1056 --MI; 1057 1058 return Changed; 1059 } 1060 1061 bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1062 SIAtomicScope Scope, 1063 SIAtomicAddrSpace AddrSpace, 1064 Position Pos) const { 1065 if (!InsertCacheInv) 1066 return false; 1067 1068 bool Changed = false; 1069 1070 MachineBasicBlock &MBB = *MI->getParent(); 1071 DebugLoc DL = MI->getDebugLoc(); 1072 1073 if (Pos == Position::AFTER) 1074 ++MI; 1075 1076 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1077 switch (Scope) { 1078 case SIAtomicScope::SYSTEM: 1079 case SIAtomicScope::AGENT: 1080 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1)); 1081 Changed = true; 1082 break; 1083 case SIAtomicScope::WORKGROUP: 1084 case SIAtomicScope::WAVEFRONT: 1085 case SIAtomicScope::SINGLETHREAD: 1086 // No cache to invalidate. 1087 break; 1088 default: 1089 llvm_unreachable("Unsupported synchronization scope"); 1090 } 1091 } 1092 1093 /// The scratch address space does not need the global memory cache 1094 /// to be flushed as all memory operations by the same thread are 1095 /// sequentially consistent, and no other thread can access scratch 1096 /// memory. 1097 1098 /// Other address spaces do not have a cache. 1099 1100 if (Pos == Position::AFTER) 1101 --MI; 1102 1103 return Changed; 1104 } 1105 1106 bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI, 1107 SIAtomicScope Scope, 1108 SIAtomicAddrSpace AddrSpace, 1109 bool IsCrossAddrSpaceOrdering, 1110 Position Pos) const { 1111 return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, 1112 IsCrossAddrSpaceOrdering, Pos); 1113 } 1114 1115 bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1116 SIAtomicScope Scope, 1117 SIAtomicAddrSpace AddrSpace, 1118 Position Pos) const { 1119 if (!InsertCacheInv) 1120 return false; 1121 1122 bool Changed = false; 1123 1124 MachineBasicBlock &MBB = *MI->getParent(); 1125 DebugLoc DL = MI->getDebugLoc(); 1126 1127 const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>(); 1128 1129 const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS() 1130 ? AMDGPU::BUFFER_WBINVL1 1131 : AMDGPU::BUFFER_WBINVL1_VOL; 1132 1133 if (Pos == Position::AFTER) 1134 ++MI; 1135 1136 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1137 switch (Scope) { 1138 case SIAtomicScope::SYSTEM: 1139 case SIAtomicScope::AGENT: 1140 BuildMI(MBB, MI, DL, TII->get(InvalidateL1)); 1141 Changed = true; 1142 break; 1143 case SIAtomicScope::WORKGROUP: 1144 case SIAtomicScope::WAVEFRONT: 1145 case SIAtomicScope::SINGLETHREAD: 1146 // No cache to invalidate. 1147 break; 1148 default: 1149 llvm_unreachable("Unsupported synchronization scope"); 1150 } 1151 } 1152 1153 /// The scratch address space does not need the global memory cache 1154 /// to be flushed as all memory operations by the same thread are 1155 /// sequentially consistent, and no other thread can access scratch 1156 /// memory. 1157 1158 /// Other address spaces do not have a cache. 1159 1160 if (Pos == Position::AFTER) 1161 --MI; 1162 1163 return Changed; 1164 } 1165 1166 bool SIGfx90ACacheControl::enableLoadCacheBypass( 1167 const MachineBasicBlock::iterator &MI, 1168 SIAtomicScope Scope, 1169 SIAtomicAddrSpace AddrSpace) const { 1170 assert(MI->mayLoad() && !MI->mayStore()); 1171 bool Changed = false; 1172 1173 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1174 switch (Scope) { 1175 case SIAtomicScope::SYSTEM: 1176 case SIAtomicScope::AGENT: 1177 // Set the L1 cache policy to MISS_LRU. 1178 // Note: there is no L2 cache bypass policy at the ISA level. 1179 Changed |= enableGLCBit(MI); 1180 break; 1181 case SIAtomicScope::WORKGROUP: 1182 // In threadgroup split mode the waves of a work-group can be executing on 1183 // different CUs. Therefore need to bypass the L1 which is per CU. 1184 // Otherwise in non-threadgroup split mode all waves of a work-group are 1185 // on the same CU, and so the L1 does not need to be bypassed. 1186 if (ST.isTgSplitEnabled()) 1187 Changed |= enableGLCBit(MI); 1188 break; 1189 case SIAtomicScope::WAVEFRONT: 1190 case SIAtomicScope::SINGLETHREAD: 1191 // No cache to bypass. 1192 break; 1193 default: 1194 llvm_unreachable("Unsupported synchronization scope"); 1195 } 1196 } 1197 1198 /// The scratch address space does not need the global memory caches 1199 /// to be bypassed as all memory operations by the same thread are 1200 /// sequentially consistent, and no other thread can access scratch 1201 /// memory. 1202 1203 /// Other address spaces do not have a cache. 1204 1205 return Changed; 1206 } 1207 1208 bool SIGfx90ACacheControl::enableStoreCacheBypass( 1209 const MachineBasicBlock::iterator &MI, 1210 SIAtomicScope Scope, 1211 SIAtomicAddrSpace AddrSpace) const { 1212 assert(!MI->mayLoad() && MI->mayStore()); 1213 bool Changed = false; 1214 1215 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1216 switch (Scope) { 1217 case SIAtomicScope::SYSTEM: 1218 case SIAtomicScope::AGENT: 1219 /// Do not set glc for store atomic operations as they implicitly write 1220 /// through the L1 cache. 1221 break; 1222 case SIAtomicScope::WORKGROUP: 1223 case SIAtomicScope::WAVEFRONT: 1224 case SIAtomicScope::SINGLETHREAD: 1225 // No cache to bypass. Store atomics implicitly write through the L1 1226 // cache. 1227 break; 1228 default: 1229 llvm_unreachable("Unsupported synchronization scope"); 1230 } 1231 } 1232 1233 /// The scratch address space does not need the global memory caches 1234 /// to be bypassed as all memory operations by the same thread are 1235 /// sequentially consistent, and no other thread can access scratch 1236 /// memory. 1237 1238 /// Other address spaces do not have a cache. 1239 1240 return Changed; 1241 } 1242 1243 bool SIGfx90ACacheControl::enableRMWCacheBypass( 1244 const MachineBasicBlock::iterator &MI, 1245 SIAtomicScope Scope, 1246 SIAtomicAddrSpace AddrSpace) const { 1247 assert(MI->mayLoad() && MI->mayStore()); 1248 bool Changed = false; 1249 1250 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1251 switch (Scope) { 1252 case SIAtomicScope::SYSTEM: 1253 case SIAtomicScope::AGENT: 1254 /// Do not set glc for RMW atomic operations as they implicitly bypass 1255 /// the L1 cache, and the glc bit is instead used to indicate if they are 1256 /// return or no-return. 1257 break; 1258 case SIAtomicScope::WORKGROUP: 1259 case SIAtomicScope::WAVEFRONT: 1260 case SIAtomicScope::SINGLETHREAD: 1261 // No cache to bypass. RMW atomics implicitly bypass the L1 cache. 1262 break; 1263 default: 1264 llvm_unreachable("Unsupported synchronization scope"); 1265 } 1266 } 1267 1268 return Changed; 1269 } 1270 1271 bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal( 1272 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 1273 bool IsVolatile, bool IsNonTemporal) const { 1274 // Only handle load and store, not atomic read-modify-write insructions. The 1275 // latter use glc to indicate if the atomic returns a result and so must not 1276 // be used for cache control. 1277 assert(MI->mayLoad() ^ MI->mayStore()); 1278 1279 // Only update load and store, not LLVM IR atomic read-modify-write 1280 // instructions. The latter are always marked as volatile so cannot sensibly 1281 // handle it as do not want to pessimize all atomics. Also they do not support 1282 // the nontemporal attribute. 1283 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 1284 1285 bool Changed = false; 1286 1287 if (IsVolatile) { 1288 // Set L1 cache policy to be MISS_EVICT for load instructions 1289 // and MISS_LRU for store instructions. 1290 // Note: there is no L2 cache bypass policy at the ISA level. 1291 if (Op == SIMemOp::LOAD) 1292 Changed |= enableGLCBit(MI); 1293 1294 // Ensure operation has completed at system scope to cause all volatile 1295 // operations to be visible outside the program in a global order. Do not 1296 // request cross address space as only the global address space can be 1297 // observable outside the program, so no need to cause a waitcnt for LDS 1298 // address space operations. 1299 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1300 Position::AFTER); 1301 1302 return Changed; 1303 } 1304 1305 if (IsNonTemporal) { 1306 // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT 1307 // for both loads and stores, and the L2 cache policy to STREAM. 1308 Changed |= enableGLCBit(MI); 1309 Changed |= enableSLCBit(MI); 1310 return Changed; 1311 } 1312 1313 return Changed; 1314 } 1315 1316 bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI, 1317 SIAtomicScope Scope, 1318 SIAtomicAddrSpace AddrSpace, 1319 SIMemOp Op, 1320 bool IsCrossAddrSpaceOrdering, 1321 Position Pos) const { 1322 if (ST.isTgSplitEnabled()) { 1323 // In threadgroup split mode the waves of a work-group can be executing on 1324 // different CUs. Therefore need to wait for global or GDS memory operations 1325 // to complete to ensure they are visible to waves in the other CUs. 1326 // Otherwise in non-threadgroup split mode all waves of a work-group are on 1327 // the same CU, so no need to wait for global memory as all waves in the 1328 // work-group access the same the L1, nor wait for GDS as access are ordered 1329 // on a CU. 1330 if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH | 1331 SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) && 1332 (Scope == SIAtomicScope::WORKGROUP)) { 1333 // Same as GFX7 using agent scope. 1334 Scope = SIAtomicScope::AGENT; 1335 } 1336 // In threadgroup split mode LDS cannot be allocated so no need to wait for 1337 // LDS memory operations. 1338 AddrSpace &= ~SIAtomicAddrSpace::LDS; 1339 } 1340 return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op, 1341 IsCrossAddrSpaceOrdering, Pos); 1342 } 1343 1344 bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1345 SIAtomicScope Scope, 1346 SIAtomicAddrSpace AddrSpace, 1347 Position Pos) const { 1348 if (!InsertCacheInv) 1349 return false; 1350 1351 bool Changed = false; 1352 1353 MachineBasicBlock &MBB = *MI->getParent(); 1354 DebugLoc DL = MI->getDebugLoc(); 1355 1356 if (Pos == Position::AFTER) 1357 ++MI; 1358 1359 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1360 switch (Scope) { 1361 case SIAtomicScope::SYSTEM: 1362 // Ensures that following loads will not see stale remote VMEM data or 1363 // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and 1364 // CC will never be stale due to the local memory probes. 1365 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INVL2)); 1366 // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the 1367 // hardware does not reorder memory operations by the same wave with 1368 // respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to 1369 // remove any cache lines of earlier writes by the same wave and ensures 1370 // later reads by the same wave will refetch the cache lines. 1371 Changed = true; 1372 break; 1373 case SIAtomicScope::AGENT: 1374 // Same as GFX7. 1375 break; 1376 case SIAtomicScope::WORKGROUP: 1377 // In threadgroup split mode the waves of a work-group can be executing on 1378 // different CUs. Therefore need to invalidate the L1 which is per CU. 1379 // Otherwise in non-threadgroup split mode all waves of a work-group are 1380 // on the same CU, and so the L1 does not need to be invalidated. 1381 if (ST.isTgSplitEnabled()) { 1382 // Same as GFX7 using agent scope. 1383 Scope = SIAtomicScope::AGENT; 1384 } 1385 break; 1386 case SIAtomicScope::WAVEFRONT: 1387 case SIAtomicScope::SINGLETHREAD: 1388 // Same as GFX7. 1389 break; 1390 default: 1391 llvm_unreachable("Unsupported synchronization scope"); 1392 } 1393 } 1394 1395 /// The scratch address space does not need the global memory cache 1396 /// to be flushed as all memory operations by the same thread are 1397 /// sequentially consistent, and no other thread can access scratch 1398 /// memory. 1399 1400 /// Other address spaces do not have a cache. 1401 1402 if (Pos == Position::AFTER) 1403 --MI; 1404 1405 Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos); 1406 1407 return Changed; 1408 } 1409 1410 bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI, 1411 SIAtomicScope Scope, 1412 SIAtomicAddrSpace AddrSpace, 1413 bool IsCrossAddrSpaceOrdering, 1414 Position Pos) const { 1415 bool Changed = false; 1416 1417 MachineBasicBlock &MBB = *MI->getParent(); 1418 DebugLoc DL = MI->getDebugLoc(); 1419 1420 if (Pos == Position::AFTER) 1421 ++MI; 1422 1423 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1424 switch (Scope) { 1425 case SIAtomicScope::SYSTEM: 1426 // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the 1427 // hardware does not reorder memory operations by the same wave with 1428 // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed 1429 // to initiate writeback of any dirty cache lines of earlier writes by the 1430 // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the 1431 // writeback has completed. 1432 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) 1433 // Set SC bits to indicate system scope. 1434 .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); 1435 // Followed by same as GFX7, which will ensure the necessary "S_WAITCNT 1436 // vmcnt(0)" needed by the "BUFFER_WBL2". 1437 Changed = true; 1438 break; 1439 case SIAtomicScope::AGENT: 1440 case SIAtomicScope::WORKGROUP: 1441 case SIAtomicScope::WAVEFRONT: 1442 case SIAtomicScope::SINGLETHREAD: 1443 // Same as GFX7. 1444 break; 1445 default: 1446 llvm_unreachable("Unsupported synchronization scope"); 1447 } 1448 } 1449 1450 if (Pos == Position::AFTER) 1451 --MI; 1452 1453 Changed |= 1454 SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace, 1455 IsCrossAddrSpaceOrdering, Pos); 1456 1457 return Changed; 1458 } 1459 1460 bool SIGfx940CacheControl::enableLoadCacheBypass( 1461 const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 1462 SIAtomicAddrSpace AddrSpace) const { 1463 assert(MI->mayLoad() && !MI->mayStore()); 1464 bool Changed = false; 1465 1466 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1467 switch (Scope) { 1468 case SIAtomicScope::SYSTEM: 1469 // Set SC bits to indicate system scope. 1470 Changed |= enableSC0Bit(MI); 1471 Changed |= enableSC1Bit(MI); 1472 break; 1473 case SIAtomicScope::AGENT: 1474 // Set SC bits to indicate agent scope. 1475 Changed |= enableSC1Bit(MI); 1476 break; 1477 case SIAtomicScope::WORKGROUP: 1478 // In threadgroup split mode the waves of a work-group can be executing on 1479 // different CUs. Therefore need to bypass the L1 which is per CU. 1480 // Otherwise in non-threadgroup split mode all waves of a work-group are 1481 // on the same CU, and so the L1 does not need to be bypassed. Setting SC 1482 // bits to indicate work-group scope will do this automatically. 1483 Changed |= enableSC0Bit(MI); 1484 break; 1485 case SIAtomicScope::WAVEFRONT: 1486 case SIAtomicScope::SINGLETHREAD: 1487 // Leave SC bits unset to indicate wavefront scope. 1488 break; 1489 default: 1490 llvm_unreachable("Unsupported synchronization scope"); 1491 } 1492 } 1493 1494 /// The scratch address space does not need the global memory caches 1495 /// to be bypassed as all memory operations by the same thread are 1496 /// sequentially consistent, and no other thread can access scratch 1497 /// memory. 1498 1499 /// Other address spaces do not have a cache. 1500 1501 return Changed; 1502 } 1503 1504 bool SIGfx940CacheControl::enableStoreCacheBypass( 1505 const MachineBasicBlock::iterator &MI, 1506 SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { 1507 assert(!MI->mayLoad() && MI->mayStore()); 1508 bool Changed = false; 1509 1510 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1511 switch (Scope) { 1512 case SIAtomicScope::SYSTEM: 1513 // Set SC bits to indicate system scope. 1514 Changed |= enableSC0Bit(MI); 1515 Changed |= enableSC1Bit(MI); 1516 break; 1517 case SIAtomicScope::AGENT: 1518 // Set SC bits to indicate agent scope. 1519 Changed |= enableSC1Bit(MI); 1520 break; 1521 case SIAtomicScope::WORKGROUP: 1522 // Set SC bits to indicate workgroup scope. 1523 Changed |= enableSC0Bit(MI); 1524 break; 1525 case SIAtomicScope::WAVEFRONT: 1526 case SIAtomicScope::SINGLETHREAD: 1527 // Leave SC bits unset to indicate wavefront scope. 1528 break; 1529 default: 1530 llvm_unreachable("Unsupported synchronization scope"); 1531 } 1532 } 1533 1534 /// The scratch address space does not need the global memory caches 1535 /// to be bypassed as all memory operations by the same thread are 1536 /// sequentially consistent, and no other thread can access scratch 1537 /// memory. 1538 1539 /// Other address spaces do not have a cache. 1540 1541 return Changed; 1542 } 1543 1544 bool SIGfx940CacheControl::enableRMWCacheBypass( 1545 const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 1546 SIAtomicAddrSpace AddrSpace) const { 1547 assert(MI->mayLoad() && MI->mayStore()); 1548 bool Changed = false; 1549 1550 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1551 switch (Scope) { 1552 case SIAtomicScope::SYSTEM: 1553 // Set SC1 bit to indicate system scope. 1554 Changed |= enableSC1Bit(MI); 1555 break; 1556 case SIAtomicScope::AGENT: 1557 case SIAtomicScope::WORKGROUP: 1558 case SIAtomicScope::WAVEFRONT: 1559 case SIAtomicScope::SINGLETHREAD: 1560 // RMW atomic operations implicitly bypass the L1 cache and only use SC1 1561 // to indicate system or agent scope. The SC0 bit is used to indicate if 1562 // they are return or no-return. Leave SC1 bit unset to indicate agent 1563 // scope. 1564 break; 1565 default: 1566 llvm_unreachable("Unsupported synchronization scope"); 1567 } 1568 } 1569 1570 return Changed; 1571 } 1572 1573 bool SIGfx940CacheControl::enableVolatileAndOrNonTemporal( 1574 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 1575 bool IsVolatile, bool IsNonTemporal) const { 1576 // Only handle load and store, not atomic read-modify-write insructions. The 1577 // latter use glc to indicate if the atomic returns a result and so must not 1578 // be used for cache control. 1579 assert(MI->mayLoad() ^ MI->mayStore()); 1580 1581 // Only update load and store, not LLVM IR atomic read-modify-write 1582 // instructions. The latter are always marked as volatile so cannot sensibly 1583 // handle it as do not want to pessimize all atomics. Also they do not support 1584 // the nontemporal attribute. 1585 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 1586 1587 bool Changed = false; 1588 1589 if (IsVolatile) { 1590 // Set SC bits to indicate system scope. 1591 Changed |= enableSC0Bit(MI); 1592 Changed |= enableSC1Bit(MI); 1593 1594 // Ensure operation has completed at system scope to cause all volatile 1595 // operations to be visible outside the program in a global order. Do not 1596 // request cross address space as only the global address space can be 1597 // observable outside the program, so no need to cause a waitcnt for LDS 1598 // address space operations. 1599 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1600 Position::AFTER); 1601 1602 return Changed; 1603 } 1604 1605 if (IsNonTemporal) { 1606 Changed |= enableNTBit(MI); 1607 return Changed; 1608 } 1609 1610 return Changed; 1611 } 1612 1613 bool SIGfx940CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1614 SIAtomicScope Scope, 1615 SIAtomicAddrSpace AddrSpace, 1616 Position Pos) const { 1617 if (!InsertCacheInv) 1618 return false; 1619 1620 bool Changed = false; 1621 1622 MachineBasicBlock &MBB = *MI->getParent(); 1623 DebugLoc DL = MI->getDebugLoc(); 1624 1625 if (Pos == Position::AFTER) 1626 ++MI; 1627 1628 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1629 switch (Scope) { 1630 case SIAtomicScope::SYSTEM: 1631 // Ensures that following loads will not see stale remote VMEM data or 1632 // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and 1633 // CC will never be stale due to the local memory probes. 1634 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) 1635 // Set SC bits to indicate system scope. 1636 .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); 1637 // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the 1638 // hardware does not reorder memory operations by the same wave with 1639 // respect to a preceding "BUFFER_INV". The invalidate is guaranteed to 1640 // remove any cache lines of earlier writes by the same wave and ensures 1641 // later reads by the same wave will refetch the cache lines. 1642 Changed = true; 1643 break; 1644 case SIAtomicScope::AGENT: 1645 // Ensures that following loads will not see stale remote date or local 1646 // MTYPE NC global data. Local MTYPE RW and CC memory will never be stale 1647 // due to the memory probes. 1648 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) 1649 // Set SC bits to indicate agent scope. 1650 .addImm(AMDGPU::CPol::SC1); 1651 // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware 1652 // does not reorder memory operations with respect to preceeding buffer 1653 // invalidate. The invalidate is guaranteed to remove any cache lines of 1654 // earlier writes and ensures later writes will refetch the cache lines. 1655 Changed = true; 1656 break; 1657 case SIAtomicScope::WORKGROUP: 1658 // In threadgroup split mode the waves of a work-group can be executing on 1659 // different CUs. Therefore need to invalidate the L1 which is per CU. 1660 // Otherwise in non-threadgroup split mode all waves of a work-group are 1661 // on the same CU, and so the L1 does not need to be invalidated. 1662 if (ST.isTgSplitEnabled()) { 1663 // Ensures L1 is invalidated if in threadgroup split mode. In 1664 // non-threadgroup split mode it is a NOP, but no point generating it in 1665 // that case if know not in that mode. 1666 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) 1667 // Set SC bits to indicate work-group scope. 1668 .addImm(AMDGPU::CPol::SC0); 1669 // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware 1670 // does not reorder memory operations with respect to preceeding buffer 1671 // invalidate. The invalidate is guaranteed to remove any cache lines of 1672 // earlier writes and ensures later writes will refetch the cache lines. 1673 Changed = true; 1674 } 1675 break; 1676 case SIAtomicScope::WAVEFRONT: 1677 case SIAtomicScope::SINGLETHREAD: 1678 // Could generate "BUFFER_INV" but it would do nothing as there are no 1679 // caches to invalidate. 1680 break; 1681 default: 1682 llvm_unreachable("Unsupported synchronization scope"); 1683 } 1684 } 1685 1686 /// The scratch address space does not need the global memory cache 1687 /// to be flushed as all memory operations by the same thread are 1688 /// sequentially consistent, and no other thread can access scratch 1689 /// memory. 1690 1691 /// Other address spaces do not have a cache. 1692 1693 if (Pos == Position::AFTER) 1694 --MI; 1695 1696 return Changed; 1697 } 1698 1699 bool SIGfx940CacheControl::insertRelease(MachineBasicBlock::iterator &MI, 1700 SIAtomicScope Scope, 1701 SIAtomicAddrSpace AddrSpace, 1702 bool IsCrossAddrSpaceOrdering, 1703 Position Pos) const { 1704 bool Changed = false; 1705 1706 MachineBasicBlock &MBB = *MI->getParent(); 1707 DebugLoc DL = MI->getDebugLoc(); 1708 1709 if (Pos == Position::AFTER) 1710 ++MI; 1711 1712 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1713 switch (Scope) { 1714 case SIAtomicScope::SYSTEM: 1715 // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the 1716 // hardware does not reorder memory operations by the same wave with 1717 // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed 1718 // to initiate writeback of any dirty cache lines of earlier writes by the 1719 // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the 1720 // writeback has completed. 1721 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) 1722 // Set SC bits to indicate system scope. 1723 .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); 1724 // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is 1725 // SIAtomicScope::SYSTEM, the following insertWait will generate the 1726 // required "S_WAITCNT vmcnt(0)" needed by the "BUFFER_WBL2". 1727 Changed = true; 1728 break; 1729 case SIAtomicScope::AGENT: 1730 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) 1731 // Set SC bits to indicate agent scope. 1732 .addImm(AMDGPU::CPol::SC1); 1733 1734 // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is 1735 // SIAtomicScope::AGENT, the following insertWait will generate the 1736 // required "S_WAITCNT vmcnt(0)". 1737 Changed = true; 1738 break; 1739 case SIAtomicScope::WORKGROUP: 1740 case SIAtomicScope::WAVEFRONT: 1741 case SIAtomicScope::SINGLETHREAD: 1742 // Do not generate "BUFFER_WBL2" as there are no caches it would 1743 // writeback, and would require an otherwise unnecessary 1744 // "S_WAITCNT vmcnt(0)". 1745 break; 1746 default: 1747 llvm_unreachable("Unsupported synchronization scope"); 1748 } 1749 } 1750 1751 if (Pos == Position::AFTER) 1752 --MI; 1753 1754 // Ensure the necessary S_WAITCNT needed by any "BUFFER_WBL2" as well as other 1755 // S_WAITCNT needed. 1756 Changed |= insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, 1757 IsCrossAddrSpaceOrdering, Pos); 1758 1759 return Changed; 1760 } 1761 1762 bool SIGfx10CacheControl::enableLoadCacheBypass( 1763 const MachineBasicBlock::iterator &MI, 1764 SIAtomicScope Scope, 1765 SIAtomicAddrSpace AddrSpace) const { 1766 assert(MI->mayLoad() && !MI->mayStore()); 1767 bool Changed = false; 1768 1769 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1770 switch (Scope) { 1771 case SIAtomicScope::SYSTEM: 1772 case SIAtomicScope::AGENT: 1773 // Set the L0 and L1 cache policies to MISS_EVICT. 1774 // Note: there is no L2 cache coherent bypass control at the ISA level. 1775 Changed |= enableGLCBit(MI); 1776 Changed |= enableDLCBit(MI); 1777 break; 1778 case SIAtomicScope::WORKGROUP: 1779 // In WGP mode the waves of a work-group can be executing on either CU of 1780 // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in 1781 // CU mode all waves of a work-group are on the same CU, and so the L0 1782 // does not need to be bypassed. 1783 if (!ST.isCuModeEnabled()) 1784 Changed |= enableGLCBit(MI); 1785 break; 1786 case SIAtomicScope::WAVEFRONT: 1787 case SIAtomicScope::SINGLETHREAD: 1788 // No cache to bypass. 1789 break; 1790 default: 1791 llvm_unreachable("Unsupported synchronization scope"); 1792 } 1793 } 1794 1795 /// The scratch address space does not need the global memory caches 1796 /// to be bypassed as all memory operations by the same thread are 1797 /// sequentially consistent, and no other thread can access scratch 1798 /// memory. 1799 1800 /// Other address spaces do not have a cache. 1801 1802 return Changed; 1803 } 1804 1805 bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal( 1806 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 1807 bool IsVolatile, bool IsNonTemporal) const { 1808 1809 // Only handle load and store, not atomic read-modify-write insructions. The 1810 // latter use glc to indicate if the atomic returns a result and so must not 1811 // be used for cache control. 1812 assert(MI->mayLoad() ^ MI->mayStore()); 1813 1814 // Only update load and store, not LLVM IR atomic read-modify-write 1815 // instructions. The latter are always marked as volatile so cannot sensibly 1816 // handle it as do not want to pessimize all atomics. Also they do not support 1817 // the nontemporal attribute. 1818 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 1819 1820 bool Changed = false; 1821 1822 if (IsVolatile) { 1823 // Set L0 and L1 cache policy to be MISS_EVICT for load instructions 1824 // and MISS_LRU for store instructions. 1825 // Note: there is no L2 cache coherent bypass control at the ISA level. 1826 if (Op == SIMemOp::LOAD) { 1827 Changed |= enableGLCBit(MI); 1828 Changed |= enableDLCBit(MI); 1829 } 1830 1831 // Ensure operation has completed at system scope to cause all volatile 1832 // operations to be visible outside the program in a global order. Do not 1833 // request cross address space as only the global address space can be 1834 // observable outside the program, so no need to cause a waitcnt for LDS 1835 // address space operations. 1836 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1837 Position::AFTER); 1838 return Changed; 1839 } 1840 1841 if (IsNonTemporal) { 1842 // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT 1843 // and L2 cache policy to STREAM. 1844 // For stores setting both GLC and SLC configures L0 and L1 cache policy 1845 // to MISS_EVICT and the L2 cache policy to STREAM. 1846 if (Op == SIMemOp::STORE) 1847 Changed |= enableGLCBit(MI); 1848 Changed |= enableSLCBit(MI); 1849 1850 return Changed; 1851 } 1852 1853 return Changed; 1854 } 1855 1856 bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI, 1857 SIAtomicScope Scope, 1858 SIAtomicAddrSpace AddrSpace, 1859 SIMemOp Op, 1860 bool IsCrossAddrSpaceOrdering, 1861 Position Pos) const { 1862 bool Changed = false; 1863 1864 MachineBasicBlock &MBB = *MI->getParent(); 1865 DebugLoc DL = MI->getDebugLoc(); 1866 1867 if (Pos == Position::AFTER) 1868 ++MI; 1869 1870 bool VMCnt = false; 1871 bool VSCnt = false; 1872 bool LGKMCnt = false; 1873 1874 if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != 1875 SIAtomicAddrSpace::NONE) { 1876 switch (Scope) { 1877 case SIAtomicScope::SYSTEM: 1878 case SIAtomicScope::AGENT: 1879 if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) 1880 VMCnt |= true; 1881 if ((Op & SIMemOp::STORE) != SIMemOp::NONE) 1882 VSCnt |= true; 1883 break; 1884 case SIAtomicScope::WORKGROUP: 1885 // In WGP mode the waves of a work-group can be executing on either CU of 1886 // the WGP. Therefore need to wait for operations to complete to ensure 1887 // they are visible to waves in the other CU as the L0 is per CU. 1888 // Otherwise in CU mode and all waves of a work-group are on the same CU 1889 // which shares the same L0. 1890 if (!ST.isCuModeEnabled()) { 1891 if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) 1892 VMCnt |= true; 1893 if ((Op & SIMemOp::STORE) != SIMemOp::NONE) 1894 VSCnt |= true; 1895 } 1896 break; 1897 case SIAtomicScope::WAVEFRONT: 1898 case SIAtomicScope::SINGLETHREAD: 1899 // The L0 cache keeps all memory operations in order for 1900 // work-items in the same wavefront. 1901 break; 1902 default: 1903 llvm_unreachable("Unsupported synchronization scope"); 1904 } 1905 } 1906 1907 if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { 1908 switch (Scope) { 1909 case SIAtomicScope::SYSTEM: 1910 case SIAtomicScope::AGENT: 1911 case SIAtomicScope::WORKGROUP: 1912 // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is 1913 // not needed as LDS operations for all waves are executed in a total 1914 // global ordering as observed by all waves. Required if also 1915 // synchronizing with global/GDS memory as LDS operations could be 1916 // reordered with respect to later global/GDS memory operations of the 1917 // same wave. 1918 LGKMCnt |= IsCrossAddrSpaceOrdering; 1919 break; 1920 case SIAtomicScope::WAVEFRONT: 1921 case SIAtomicScope::SINGLETHREAD: 1922 // The LDS keeps all memory operations in order for 1923 // the same wavefront. 1924 break; 1925 default: 1926 llvm_unreachable("Unsupported synchronization scope"); 1927 } 1928 } 1929 1930 if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { 1931 switch (Scope) { 1932 case SIAtomicScope::SYSTEM: 1933 case SIAtomicScope::AGENT: 1934 // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" 1935 // is not needed as GDS operations for all waves are executed in a total 1936 // global ordering as observed by all waves. Required if also 1937 // synchronizing with global/LDS memory as GDS operations could be 1938 // reordered with respect to later global/LDS memory operations of the 1939 // same wave. 1940 LGKMCnt |= IsCrossAddrSpaceOrdering; 1941 break; 1942 case SIAtomicScope::WORKGROUP: 1943 case SIAtomicScope::WAVEFRONT: 1944 case SIAtomicScope::SINGLETHREAD: 1945 // The GDS keeps all memory operations in order for 1946 // the same work-group. 1947 break; 1948 default: 1949 llvm_unreachable("Unsupported synchronization scope"); 1950 } 1951 } 1952 1953 if (VMCnt || LGKMCnt) { 1954 unsigned WaitCntImmediate = 1955 AMDGPU::encodeWaitcnt(IV, 1956 VMCnt ? 0 : getVmcntBitMask(IV), 1957 getExpcntBitMask(IV), 1958 LGKMCnt ? 0 : getLgkmcntBitMask(IV)); 1959 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); 1960 Changed = true; 1961 } 1962 1963 if (VSCnt) { 1964 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1965 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1966 .addImm(0); 1967 Changed = true; 1968 } 1969 1970 if (Pos == Position::AFTER) 1971 --MI; 1972 1973 return Changed; 1974 } 1975 1976 bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1977 SIAtomicScope Scope, 1978 SIAtomicAddrSpace AddrSpace, 1979 Position Pos) const { 1980 if (!InsertCacheInv) 1981 return false; 1982 1983 bool Changed = false; 1984 1985 MachineBasicBlock &MBB = *MI->getParent(); 1986 DebugLoc DL = MI->getDebugLoc(); 1987 1988 if (Pos == Position::AFTER) 1989 ++MI; 1990 1991 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1992 switch (Scope) { 1993 case SIAtomicScope::SYSTEM: 1994 case SIAtomicScope::AGENT: 1995 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); 1996 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV)); 1997 Changed = true; 1998 break; 1999 case SIAtomicScope::WORKGROUP: 2000 // In WGP mode the waves of a work-group can be executing on either CU of 2001 // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise 2002 // in CU mode and all waves of a work-group are on the same CU, and so the 2003 // L0 does not need to be invalidated. 2004 if (!ST.isCuModeEnabled()) { 2005 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); 2006 Changed = true; 2007 } 2008 break; 2009 case SIAtomicScope::WAVEFRONT: 2010 case SIAtomicScope::SINGLETHREAD: 2011 // No cache to invalidate. 2012 break; 2013 default: 2014 llvm_unreachable("Unsupported synchronization scope"); 2015 } 2016 } 2017 2018 /// The scratch address space does not need the global memory cache 2019 /// to be flushed as all memory operations by the same thread are 2020 /// sequentially consistent, and no other thread can access scratch 2021 /// memory. 2022 2023 /// Other address spaces do not have a cache. 2024 2025 if (Pos == Position::AFTER) 2026 --MI; 2027 2028 return Changed; 2029 } 2030 2031 bool SIGfx11CacheControl::enableLoadCacheBypass( 2032 const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 2033 SIAtomicAddrSpace AddrSpace) const { 2034 assert(MI->mayLoad() && !MI->mayStore()); 2035 bool Changed = false; 2036 2037 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 2038 switch (Scope) { 2039 case SIAtomicScope::SYSTEM: 2040 case SIAtomicScope::AGENT: 2041 // Set the L0 and L1 cache policies to MISS_EVICT. 2042 // Note: there is no L2 cache coherent bypass control at the ISA level. 2043 Changed |= enableGLCBit(MI); 2044 break; 2045 case SIAtomicScope::WORKGROUP: 2046 // In WGP mode the waves of a work-group can be executing on either CU of 2047 // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in 2048 // CU mode all waves of a work-group are on the same CU, and so the L0 2049 // does not need to be bypassed. 2050 if (!ST.isCuModeEnabled()) 2051 Changed |= enableGLCBit(MI); 2052 break; 2053 case SIAtomicScope::WAVEFRONT: 2054 case SIAtomicScope::SINGLETHREAD: 2055 // No cache to bypass. 2056 break; 2057 default: 2058 llvm_unreachable("Unsupported synchronization scope"); 2059 } 2060 } 2061 2062 /// The scratch address space does not need the global memory caches 2063 /// to be bypassed as all memory operations by the same thread are 2064 /// sequentially consistent, and no other thread can access scratch 2065 /// memory. 2066 2067 /// Other address spaces do not have a cache. 2068 2069 return Changed; 2070 } 2071 2072 bool SIGfx11CacheControl::enableVolatileAndOrNonTemporal( 2073 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 2074 bool IsVolatile, bool IsNonTemporal) const { 2075 2076 // Only handle load and store, not atomic read-modify-write insructions. The 2077 // latter use glc to indicate if the atomic returns a result and so must not 2078 // be used for cache control. 2079 assert(MI->mayLoad() ^ MI->mayStore()); 2080 2081 // Only update load and store, not LLVM IR atomic read-modify-write 2082 // instructions. The latter are always marked as volatile so cannot sensibly 2083 // handle it as do not want to pessimize all atomics. Also they do not support 2084 // the nontemporal attribute. 2085 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 2086 2087 bool Changed = false; 2088 2089 if (IsVolatile) { 2090 // Set L0 and L1 cache policy to be MISS_EVICT for load instructions 2091 // and MISS_LRU for store instructions. 2092 // Note: there is no L2 cache coherent bypass control at the ISA level. 2093 if (Op == SIMemOp::LOAD) 2094 Changed |= enableGLCBit(MI); 2095 2096 // Set MALL NOALLOC for load and store instructions. 2097 Changed |= enableDLCBit(MI); 2098 2099 // Ensure operation has completed at system scope to cause all volatile 2100 // operations to be visible outside the program in a global order. Do not 2101 // request cross address space as only the global address space can be 2102 // observable outside the program, so no need to cause a waitcnt for LDS 2103 // address space operations. 2104 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 2105 Position::AFTER); 2106 return Changed; 2107 } 2108 2109 if (IsNonTemporal) { 2110 // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT 2111 // and L2 cache policy to STREAM. 2112 // For stores setting both GLC and SLC configures L0 and L1 cache policy 2113 // to MISS_EVICT and the L2 cache policy to STREAM. 2114 if (Op == SIMemOp::STORE) 2115 Changed |= enableGLCBit(MI); 2116 Changed |= enableSLCBit(MI); 2117 2118 // Set MALL NOALLOC for load and store instructions. 2119 Changed |= enableDLCBit(MI); 2120 return Changed; 2121 } 2122 2123 return Changed; 2124 } 2125 2126 bool SIMemoryLegalizer::removeAtomicPseudoMIs() { 2127 if (AtomicPseudoMIs.empty()) 2128 return false; 2129 2130 for (auto &MI : AtomicPseudoMIs) 2131 MI->eraseFromParent(); 2132 2133 AtomicPseudoMIs.clear(); 2134 return true; 2135 } 2136 2137 bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI, 2138 MachineBasicBlock::iterator &MI) { 2139 assert(MI->mayLoad() && !MI->mayStore()); 2140 2141 bool Changed = false; 2142 2143 if (MOI.isAtomic()) { 2144 if (MOI.getOrdering() == AtomicOrdering::Monotonic || 2145 MOI.getOrdering() == AtomicOrdering::Acquire || 2146 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2147 Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(), 2148 MOI.getOrderingAddrSpace()); 2149 } 2150 2151 if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2152 Changed |= CC->insertWait(MI, MOI.getScope(), 2153 MOI.getOrderingAddrSpace(), 2154 SIMemOp::LOAD | SIMemOp::STORE, 2155 MOI.getIsCrossAddressSpaceOrdering(), 2156 Position::BEFORE); 2157 2158 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2159 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2160 Changed |= CC->insertWait(MI, MOI.getScope(), 2161 MOI.getInstrAddrSpace(), 2162 SIMemOp::LOAD, 2163 MOI.getIsCrossAddressSpaceOrdering(), 2164 Position::AFTER); 2165 Changed |= CC->insertAcquire(MI, MOI.getScope(), 2166 MOI.getOrderingAddrSpace(), 2167 Position::AFTER); 2168 } 2169 2170 return Changed; 2171 } 2172 2173 // Atomic instructions already bypass caches to the scope specified by the 2174 // SyncScope operand. Only non-atomic volatile and nontemporal instructions 2175 // need additional treatment. 2176 Changed |= CC->enableVolatileAndOrNonTemporal(MI, MOI.getInstrAddrSpace(), 2177 SIMemOp::LOAD, MOI.isVolatile(), 2178 MOI.isNonTemporal()); 2179 return Changed; 2180 } 2181 2182 bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI, 2183 MachineBasicBlock::iterator &MI) { 2184 assert(!MI->mayLoad() && MI->mayStore()); 2185 2186 bool Changed = false; 2187 2188 if (MOI.isAtomic()) { 2189 if (MOI.getOrdering() == AtomicOrdering::Monotonic || 2190 MOI.getOrdering() == AtomicOrdering::Release || 2191 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2192 Changed |= CC->enableStoreCacheBypass(MI, MOI.getScope(), 2193 MOI.getOrderingAddrSpace()); 2194 } 2195 2196 if (MOI.getOrdering() == AtomicOrdering::Release || 2197 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2198 Changed |= CC->insertRelease(MI, MOI.getScope(), 2199 MOI.getOrderingAddrSpace(), 2200 MOI.getIsCrossAddressSpaceOrdering(), 2201 Position::BEFORE); 2202 2203 return Changed; 2204 } 2205 2206 // Atomic instructions already bypass caches to the scope specified by the 2207 // SyncScope operand. Only non-atomic volatile and nontemporal instructions 2208 // need additional treatment. 2209 Changed |= CC->enableVolatileAndOrNonTemporal( 2210 MI, MOI.getInstrAddrSpace(), SIMemOp::STORE, MOI.isVolatile(), 2211 MOI.isNonTemporal()); 2212 return Changed; 2213 } 2214 2215 bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI, 2216 MachineBasicBlock::iterator &MI) { 2217 assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE); 2218 2219 AtomicPseudoMIs.push_back(MI); 2220 bool Changed = false; 2221 2222 if (MOI.isAtomic()) { 2223 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2224 MOI.getOrdering() == AtomicOrdering::Release || 2225 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2226 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2227 /// TODO: This relies on a barrier always generating a waitcnt 2228 /// for LDS to ensure it is not reordered with the completion of 2229 /// the proceeding LDS operations. If barrier had a memory 2230 /// ordering and memory scope, then library does not need to 2231 /// generate a fence. Could add support in this file for 2232 /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally 2233 /// adding S_WAITCNT before a S_BARRIER. 2234 Changed |= CC->insertRelease(MI, MOI.getScope(), 2235 MOI.getOrderingAddrSpace(), 2236 MOI.getIsCrossAddressSpaceOrdering(), 2237 Position::BEFORE); 2238 2239 // TODO: If both release and invalidate are happening they could be combined 2240 // to use the single "BUFFER_WBINV*" instruction. This could be done by 2241 // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to 2242 // track cache invalidate and write back instructions. 2243 2244 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2245 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2246 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2247 Changed |= CC->insertAcquire(MI, MOI.getScope(), 2248 MOI.getOrderingAddrSpace(), 2249 Position::BEFORE); 2250 2251 return Changed; 2252 } 2253 2254 return Changed; 2255 } 2256 2257 bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, 2258 MachineBasicBlock::iterator &MI) { 2259 assert(MI->mayLoad() && MI->mayStore()); 2260 2261 bool Changed = false; 2262 2263 if (MOI.isAtomic()) { 2264 if (MOI.getOrdering() == AtomicOrdering::Monotonic || 2265 MOI.getOrdering() == AtomicOrdering::Acquire || 2266 MOI.getOrdering() == AtomicOrdering::Release || 2267 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2268 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2269 Changed |= CC->enableRMWCacheBypass(MI, MOI.getScope(), 2270 MOI.getInstrAddrSpace()); 2271 } 2272 2273 if (MOI.getOrdering() == AtomicOrdering::Release || 2274 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2275 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || 2276 MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) 2277 Changed |= CC->insertRelease(MI, MOI.getScope(), 2278 MOI.getOrderingAddrSpace(), 2279 MOI.getIsCrossAddressSpaceOrdering(), 2280 Position::BEFORE); 2281 2282 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2283 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2284 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || 2285 MOI.getFailureOrdering() == AtomicOrdering::Acquire || 2286 MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) { 2287 Changed |= CC->insertWait(MI, MOI.getScope(), 2288 MOI.getInstrAddrSpace(), 2289 isAtomicRet(*MI) ? SIMemOp::LOAD : 2290 SIMemOp::STORE, 2291 MOI.getIsCrossAddressSpaceOrdering(), 2292 Position::AFTER); 2293 Changed |= CC->insertAcquire(MI, MOI.getScope(), 2294 MOI.getOrderingAddrSpace(), 2295 Position::AFTER); 2296 } 2297 2298 return Changed; 2299 } 2300 2301 return Changed; 2302 } 2303 2304 bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) { 2305 bool Changed = false; 2306 2307 SIMemOpAccess MOA(MF); 2308 CC = SICacheControl::create(MF.getSubtarget<GCNSubtarget>()); 2309 2310 for (auto &MBB : MF) { 2311 for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) { 2312 2313 // Unbundle instructions after the post-RA scheduler. 2314 if (MI->isBundle() && MI->mayLoadOrStore()) { 2315 MachineBasicBlock::instr_iterator II(MI->getIterator()); 2316 for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end(); 2317 I != E && I->isBundledWithPred(); ++I) { 2318 I->unbundleFromPred(); 2319 for (MachineOperand &MO : I->operands()) 2320 if (MO.isReg()) 2321 MO.setIsInternalRead(false); 2322 } 2323 2324 MI->eraseFromParent(); 2325 MI = II->getIterator(); 2326 } 2327 2328 if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic)) 2329 continue; 2330 2331 if (const auto &MOI = MOA.getLoadInfo(MI)) 2332 Changed |= expandLoad(MOI.value(), MI); 2333 else if (const auto &MOI = MOA.getStoreInfo(MI)) 2334 Changed |= expandStore(MOI.value(), MI); 2335 else if (const auto &MOI = MOA.getAtomicFenceInfo(MI)) 2336 Changed |= expandAtomicFence(MOI.value(), MI); 2337 else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI)) 2338 Changed |= expandAtomicCmpxchgOrRmw(MOI.value(), MI); 2339 } 2340 } 2341 2342 Changed |= removeAtomicPseudoMIs(); 2343 return Changed; 2344 } 2345 2346 INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false) 2347 2348 char SIMemoryLegalizer::ID = 0; 2349 char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID; 2350 2351 FunctionPass *llvm::createSIMemoryLegalizerPass() { 2352 return new SIMemoryLegalizer(); 2353 } 2354