xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// SI Machine Scheduler interface
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIMachineScheduler.h"
15 #include "AMDGPU.h"
16 #include "SIInstrInfo.h"
17 #include "SIRegisterInfo.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/MachineScheduler.h"
26 #include "llvm/CodeGen/RegisterPressure.h"
27 #include "llvm/CodeGen/SlotIndexes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <map>
35 #include <set>
36 #include <utility>
37 #include <vector>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "machine-scheduler"
42 
43 // This scheduler implements a different scheduling algorithm than
44 // GenericScheduler.
45 //
46 // There are several specific architecture behaviours that can't be modelled
47 // for GenericScheduler:
48 // . When accessing the result of an SGPR load instruction, you have to wait
49 // for all the SGPR load instructions before your current instruction to
50 // have finished.
51 // . When accessing the result of an VGPR load instruction, you have to wait
52 // for all the VGPR load instructions previous to the VGPR load instruction
53 // you are interested in to finish.
54 // . The less the register pressure, the best load latencies are hidden
55 //
56 // Moreover some specifities (like the fact a lot of instructions in the shader
57 // have few dependencies) makes the generic scheduler have some unpredictable
58 // behaviours. For example when register pressure becomes high, it can either
59 // manage to prevent register pressure from going too high, or it can
60 // increase register pressure even more than if it hadn't taken register
61 // pressure into account.
62 //
63 // Also some other bad behaviours are generated, like loading at the beginning
64 // of the shader a constant in VGPR you won't need until the end of the shader.
65 //
66 // The scheduling problem for SI can distinguish three main parts:
67 // . Hiding high latencies (texture sampling, etc)
68 // . Hiding low latencies (SGPR constant loading, etc)
69 // . Keeping register usage low for better latency hiding and general
70 //   performance
71 //
72 // Some other things can also affect performance, but are hard to predict
73 // (cache usage, the fact the HW can issue several instructions from different
74 // wavefronts if different types, etc)
75 //
76 // This scheduler tries to solve the scheduling problem by dividing it into
77 // simpler sub-problems. It divides the instructions into blocks, schedules
78 // locally inside the blocks where it takes care of low latencies, and then
79 // chooses the order of the blocks by taking care of high latencies.
80 // Dividing the instructions into blocks helps control keeping register
81 // usage low.
82 //
83 // First the instructions are put into blocks.
84 //   We want the blocks help control register usage and hide high latencies
85 //   later. To help control register usage, we typically want all local
86 //   computations, when for example you create a result that can be comsummed
87 //   right away, to be contained in a block. Block inputs and outputs would
88 //   typically be important results that are needed in several locations of
89 //   the shader. Since we do want blocks to help hide high latencies, we want
90 //   the instructions inside the block to have a minimal set of dependencies
91 //   on high latencies. It will make it easy to pick blocks to hide specific
92 //   high latencies.
93 //   The block creation algorithm is divided into several steps, and several
94 //   variants can be tried during the scheduling process.
95 //
96 // Second the order of the instructions inside the blocks is chosen.
97 //   At that step we do take into account only register usage and hiding
98 //   low latency instructions
99 //
100 // Third the block order is chosen, there we try to hide high latencies
101 // and keep register usage low.
102 //
103 // After the third step, a pass is done to improve the hiding of low
104 // latencies.
105 //
106 // Actually when talking about 'low latency' or 'high latency' it includes
107 // both the latency to get the cache (or global mem) data go to the register,
108 // and the bandwidth limitations.
109 // Increasing the number of active wavefronts helps hide the former, but it
110 // doesn't solve the latter, thus why even if wavefront count is high, we have
111 // to try have as many instructions hiding high latencies as possible.
112 // The OpenCL doc says for example latency of 400 cycles for a global mem access,
113 // which is hidden by 10 instructions if the wavefront count is 10.
114 
115 // Some figures taken from AMD docs:
116 // Both texture and constant L1 caches are 4-way associative with 64 bytes
117 // lines.
118 // Constant cache is shared with 4 CUs.
119 // For texture sampling, the address generation unit receives 4 texture
120 // addresses per cycle, thus we could expect texture sampling latency to be
121 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
122 // instructions in a wavefront group are executed every 4 cycles),
123 // or 16 instructions if the other wavefronts associated to the 3 other VALUs
124 // of the CU do texture sampling too. (Don't take these figures too seriously,
125 // as I'm not 100% sure of the computation)
126 // Data exports should get similar latency.
127 // For constant loading, the cache is shader with 4 CUs.
128 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
129 // I guess if the other CU don't read the cache, it can go up to 64B/cycle.
130 // It means a simple s_buffer_load should take one instruction to hide, as
131 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
132 // cache line.
133 //
134 // As of today the driver doesn't preload the constants in cache, thus the
135 // first loads get extra latency. The doc says global memory access can be
136 // 300-600 cycles. We do not specially take that into account when scheduling
137 // As we expect the driver to be able to preload the constants soon.
138 
139 // common code //
140 
141 #ifndef NDEBUG
142 
143 static const char *getReasonStr(SIScheduleCandReason Reason) {
144   switch (Reason) {
145   case NoCand:         return "NOCAND";
146   case RegUsage:       return "REGUSAGE";
147   case Latency:        return "LATENCY";
148   case Successor:      return "SUCCESSOR";
149   case Depth:          return "DEPTH";
150   case NodeOrder:      return "ORDER";
151   }
152   llvm_unreachable("Unknown reason!");
153 }
154 
155 #endif
156 
157 namespace llvm {
158 namespace SISched {
159 static bool tryLess(int TryVal, int CandVal,
160                     SISchedulerCandidate &TryCand,
161                     SISchedulerCandidate &Cand,
162                     SIScheduleCandReason Reason) {
163   if (TryVal < CandVal) {
164     TryCand.Reason = Reason;
165     return true;
166   }
167   if (TryVal > CandVal) {
168     if (Cand.Reason > Reason)
169       Cand.Reason = Reason;
170     return true;
171   }
172   Cand.setRepeat(Reason);
173   return false;
174 }
175 
176 static bool tryGreater(int TryVal, int CandVal,
177                        SISchedulerCandidate &TryCand,
178                        SISchedulerCandidate &Cand,
179                        SIScheduleCandReason Reason) {
180   if (TryVal > CandVal) {
181     TryCand.Reason = Reason;
182     return true;
183   }
184   if (TryVal < CandVal) {
185     if (Cand.Reason > Reason)
186       Cand.Reason = Reason;
187     return true;
188   }
189   Cand.setRepeat(Reason);
190   return false;
191 }
192 } // end namespace SISched
193 } // end namespace llvm
194 
195 // SIScheduleBlock //
196 
197 void SIScheduleBlock::addUnit(SUnit *SU) {
198   NodeNum2Index[SU->NodeNum] = SUnits.size();
199   SUnits.push_back(SU);
200 }
201 
202 #ifndef NDEBUG
203 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
204 
205   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
206   dbgs() << '\n';
207 }
208 #endif
209 
210 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
211                                           SISchedCandidate &TryCand) {
212   // Initialize the candidate if needed.
213   if (!Cand.isValid()) {
214     TryCand.Reason = NodeOrder;
215     return;
216   }
217 
218   if (Cand.SGPRUsage > 60 &&
219       SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
220                        TryCand, Cand, RegUsage))
221     return;
222 
223   // Schedule low latency instructions as top as possible.
224   // Order of priority is:
225   // . Low latency instructions which do not depend on other low latency
226   //   instructions we haven't waited for
227   // . Other instructions which do not depend on low latency instructions
228   //   we haven't waited for
229   // . Low latencies
230   // . All other instructions
231   // Goal is to get: low latency instructions - independent instructions
232   //     - (eventually some more low latency instructions)
233   //     - instructions that depend on the first low latency instructions.
234   // If in the block there is a lot of constant loads, the SGPR usage
235   // could go quite high, thus above the arbitrary limit of 60 will encourage
236   // use the already loaded constants (in order to release some SGPRs) before
237   // loading more.
238   if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
239                        Cand.HasLowLatencyNonWaitedParent,
240                        TryCand, Cand, SIScheduleCandReason::Depth))
241     return;
242 
243   if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
244                           TryCand, Cand, SIScheduleCandReason::Depth))
245     return;
246 
247   if (TryCand.IsLowLatency &&
248       SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
249                        TryCand, Cand, SIScheduleCandReason::Depth))
250     return;
251 
252   if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
253                        TryCand, Cand, RegUsage))
254     return;
255 
256   // Fall through to original instruction order.
257   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
258     TryCand.Reason = NodeOrder;
259   }
260 }
261 
262 SUnit* SIScheduleBlock::pickNode() {
263   SISchedCandidate TopCand;
264 
265   for (SUnit* SU : TopReadySUs) {
266     SISchedCandidate TryCand;
267     std::vector<unsigned> pressure;
268     std::vector<unsigned> MaxPressure;
269     // Predict register usage after this instruction.
270     TryCand.SU = SU;
271     TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
272     TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
273     TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
274     TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
275     TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
276     TryCand.HasLowLatencyNonWaitedParent =
277       HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
278     tryCandidateTopDown(TopCand, TryCand);
279     if (TryCand.Reason != NoCand)
280       TopCand.setBest(TryCand);
281   }
282 
283   return TopCand.SU;
284 }
285 
286 
287 // Schedule something valid.
288 void SIScheduleBlock::fastSchedule() {
289   TopReadySUs.clear();
290   if (Scheduled)
291     undoSchedule();
292 
293   for (SUnit* SU : SUnits) {
294     if (!SU->NumPredsLeft)
295       TopReadySUs.push_back(SU);
296   }
297 
298   while (!TopReadySUs.empty()) {
299     SUnit *SU = TopReadySUs[0];
300     ScheduledSUnits.push_back(SU);
301     nodeScheduled(SU);
302   }
303 
304   Scheduled = true;
305 }
306 
307 // Returns if the register was set between first and last.
308 static bool isDefBetween(unsigned Reg,
309                            SlotIndex First, SlotIndex Last,
310                            const MachineRegisterInfo *MRI,
311                            const LiveIntervals *LIS) {
312   for (MachineRegisterInfo::def_instr_iterator
313        UI = MRI->def_instr_begin(Reg),
314        UE = MRI->def_instr_end(); UI != UE; ++UI) {
315     const MachineInstr* MI = &*UI;
316     if (MI->isDebugValue())
317       continue;
318     SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
319     if (InstSlot >= First && InstSlot <= Last)
320       return true;
321   }
322   return false;
323 }
324 
325 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
326                                       MachineBasicBlock::iterator EndBlock) {
327   IntervalPressure Pressure, BotPressure;
328   RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
329   LiveIntervals *LIS = DAG->getLIS();
330   MachineRegisterInfo *MRI = DAG->getMRI();
331   DAG->initRPTracker(TopRPTracker);
332   DAG->initRPTracker(BotRPTracker);
333   DAG->initRPTracker(RPTracker);
334 
335   // Goes though all SU. RPTracker captures what had to be alive for the SUs
336   // to execute, and what is still alive at the end.
337   for (SUnit* SU : ScheduledSUnits) {
338     RPTracker.setPos(SU->getInstr());
339     RPTracker.advance();
340   }
341 
342   // Close the RPTracker to finalize live ins/outs.
343   RPTracker.closeRegion();
344 
345   // Initialize the live ins and live outs.
346   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
347   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
348 
349   // Do not Track Physical Registers, because it messes up.
350   for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
351     if (Register::isVirtualRegister(RegMaskPair.RegUnit))
352       LiveInRegs.insert(RegMaskPair.RegUnit);
353   }
354   LiveOutRegs.clear();
355   // There is several possibilities to distinguish:
356   // 1) Reg is not input to any instruction in the block, but is output of one
357   // 2) 1) + read in the block and not needed after it
358   // 3) 1) + read in the block but needed in another block
359   // 4) Reg is input of an instruction but another block will read it too
360   // 5) Reg is input of an instruction and then rewritten in the block.
361   //    result is not read in the block (implies used in another block)
362   // 6) Reg is input of an instruction and then rewritten in the block.
363   //    result is read in the block and not needed in another block
364   // 7) Reg is input of an instruction and then rewritten in the block.
365   //    result is read in the block but also needed in another block
366   // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
367   // We want LiveOutRegs to contain only Regs whose content will be read after
368   // in another block, and whose content was written in the current block,
369   // that is we want it to get 1, 3, 5, 7
370   // Since we made the MIs of a block to be packed all together before
371   // scheduling, then the LiveIntervals were correct, and the RPTracker was
372   // able to correctly handle 5 vs 6, 2 vs 3.
373   // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
374   // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
375   // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
376   // The use of findDefBetween removes the case 4.
377   for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
378     unsigned Reg = RegMaskPair.RegUnit;
379     if (Register::isVirtualRegister(Reg) &&
380         isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
381                      LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
382                      LIS)) {
383       LiveOutRegs.insert(Reg);
384     }
385   }
386 
387   // Pressure = sum_alive_registers register size
388   // Internally llvm will represent some registers as big 128 bits registers
389   // for example, but they actually correspond to 4 actual 32 bits registers.
390   // Thus Pressure is not equal to num_alive_registers * constant.
391   LiveInPressure = TopPressure.MaxSetPressure;
392   LiveOutPressure = BotPressure.MaxSetPressure;
393 
394   // Prepares TopRPTracker for top down scheduling.
395   TopRPTracker.closeTop();
396 }
397 
398 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
399                                MachineBasicBlock::iterator EndBlock) {
400   if (!Scheduled)
401     fastSchedule();
402 
403   // PreScheduling phase to set LiveIn and LiveOut.
404   initRegPressure(BeginBlock, EndBlock);
405   undoSchedule();
406 
407   // Schedule for real now.
408 
409   TopReadySUs.clear();
410 
411   for (SUnit* SU : SUnits) {
412     if (!SU->NumPredsLeft)
413       TopReadySUs.push_back(SU);
414   }
415 
416   while (!TopReadySUs.empty()) {
417     SUnit *SU = pickNode();
418     ScheduledSUnits.push_back(SU);
419     TopRPTracker.setPos(SU->getInstr());
420     TopRPTracker.advance();
421     nodeScheduled(SU);
422   }
423 
424   // TODO: compute InternalAdditionnalPressure.
425   InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
426 
427   // Check everything is right.
428 #ifndef NDEBUG
429   assert(SUnits.size() == ScheduledSUnits.size() &&
430             TopReadySUs.empty());
431   for (SUnit* SU : SUnits) {
432     assert(SU->isScheduled &&
433               SU->NumPredsLeft == 0);
434   }
435 #endif
436 
437   Scheduled = true;
438 }
439 
440 void SIScheduleBlock::undoSchedule() {
441   for (SUnit* SU : SUnits) {
442     SU->isScheduled = false;
443     for (SDep& Succ : SU->Succs) {
444       if (BC->isSUInBlock(Succ.getSUnit(), ID))
445         undoReleaseSucc(SU, &Succ);
446     }
447   }
448   HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
449   ScheduledSUnits.clear();
450   Scheduled = false;
451 }
452 
453 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
454   SUnit *SuccSU = SuccEdge->getSUnit();
455 
456   if (SuccEdge->isWeak()) {
457     ++SuccSU->WeakPredsLeft;
458     return;
459   }
460   ++SuccSU->NumPredsLeft;
461 }
462 
463 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
464   SUnit *SuccSU = SuccEdge->getSUnit();
465 
466   if (SuccEdge->isWeak()) {
467     --SuccSU->WeakPredsLeft;
468     return;
469   }
470 #ifndef NDEBUG
471   if (SuccSU->NumPredsLeft == 0) {
472     dbgs() << "*** Scheduling failed! ***\n";
473     DAG->dumpNode(*SuccSU);
474     dbgs() << " has been released too many times!\n";
475     llvm_unreachable(nullptr);
476   }
477 #endif
478 
479   --SuccSU->NumPredsLeft;
480 }
481 
482 /// Release Successors of the SU that are in the block or not.
483 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
484   for (SDep& Succ : SU->Succs) {
485     SUnit *SuccSU = Succ.getSUnit();
486 
487     if (SuccSU->NodeNum >= DAG->SUnits.size())
488         continue;
489 
490     if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
491       continue;
492 
493     releaseSucc(SU, &Succ);
494     if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
495       TopReadySUs.push_back(SuccSU);
496   }
497 }
498 
499 void SIScheduleBlock::nodeScheduled(SUnit *SU) {
500   // Is in TopReadySUs
501   assert (!SU->NumPredsLeft);
502   std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
503   if (I == TopReadySUs.end()) {
504     dbgs() << "Data Structure Bug in SI Scheduler\n";
505     llvm_unreachable(nullptr);
506   }
507   TopReadySUs.erase(I);
508 
509   releaseSuccessors(SU, true);
510   // Scheduling this node will trigger a wait,
511   // thus propagate to other instructions that they do not need to wait either.
512   if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
513     HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
514 
515   if (DAG->IsLowLatencySU[SU->NodeNum]) {
516      for (SDep& Succ : SU->Succs) {
517       std::map<unsigned, unsigned>::iterator I =
518         NodeNum2Index.find(Succ.getSUnit()->NodeNum);
519       if (I != NodeNum2Index.end())
520         HasLowLatencyNonWaitedParent[I->second] = 1;
521     }
522   }
523   SU->isScheduled = true;
524 }
525 
526 void SIScheduleBlock::finalizeUnits() {
527   // We remove links from outside blocks to enable scheduling inside the block.
528   for (SUnit* SU : SUnits) {
529     releaseSuccessors(SU, false);
530     if (DAG->IsHighLatencySU[SU->NodeNum])
531       HighLatencyBlock = true;
532   }
533   HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
534 }
535 
536 // we maintain ascending order of IDs
537 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
538   unsigned PredID = Pred->getID();
539 
540   // Check if not already predecessor.
541   for (SIScheduleBlock* P : Preds) {
542     if (PredID == P->getID())
543       return;
544   }
545   Preds.push_back(Pred);
546 
547   assert(none_of(Succs,
548                  [=](std::pair<SIScheduleBlock*,
549                      SIScheduleBlockLinkKind> S) {
550                    return PredID == S.first->getID();
551                     }) &&
552          "Loop in the Block Graph!");
553 }
554 
555 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
556                               SIScheduleBlockLinkKind Kind) {
557   unsigned SuccID = Succ->getID();
558 
559   // Check if not already predecessor.
560   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
561     if (SuccID == S.first->getID()) {
562       if (S.second == SIScheduleBlockLinkKind::NoData &&
563           Kind == SIScheduleBlockLinkKind::Data)
564         S.second = Kind;
565       return;
566     }
567   }
568   if (Succ->isHighLatencyBlock())
569     ++NumHighLatencySuccessors;
570   Succs.push_back(std::make_pair(Succ, Kind));
571 
572   assert(none_of(Preds,
573                  [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
574          "Loop in the Block Graph!");
575 }
576 
577 #ifndef NDEBUG
578 void SIScheduleBlock::printDebug(bool full) {
579   dbgs() << "Block (" << ID << ")\n";
580   if (!full)
581     return;
582 
583   dbgs() << "\nContains High Latency Instruction: "
584          << HighLatencyBlock << '\n';
585   dbgs() << "\nDepends On:\n";
586   for (SIScheduleBlock* P : Preds) {
587     P->printDebug(false);
588   }
589 
590   dbgs() << "\nSuccessors:\n";
591   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
592     if (S.second == SIScheduleBlockLinkKind::Data)
593       dbgs() << "(Data Dep) ";
594     S.first->printDebug(false);
595   }
596 
597   if (Scheduled) {
598     dbgs() << "LiveInPressure "
599            << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
600            << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
601     dbgs() << "LiveOutPressure "
602            << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
603            << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
604     dbgs() << "LiveIns:\n";
605     for (unsigned Reg : LiveInRegs)
606       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
607 
608     dbgs() << "\nLiveOuts:\n";
609     for (unsigned Reg : LiveOutRegs)
610       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
611   }
612 
613   dbgs() << "\nInstructions:\n";
614   for (const SUnit* SU : SUnits)
615       DAG->dumpNode(*SU);
616 
617   dbgs() << "///////////////////////\n";
618 }
619 #endif
620 
621 // SIScheduleBlockCreator //
622 
623 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
624     : DAG(DAG) {}
625 
626 SIScheduleBlocks
627 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
628   std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
629     Blocks.find(BlockVariant);
630   if (B == Blocks.end()) {
631     SIScheduleBlocks Res;
632     createBlocksForVariant(BlockVariant);
633     topologicalSort();
634     scheduleInsideBlocks();
635     fillStats();
636     Res.Blocks = CurrentBlocks;
637     Res.TopDownIndex2Block = TopDownIndex2Block;
638     Res.TopDownBlock2Index = TopDownBlock2Index;
639     Blocks[BlockVariant] = Res;
640     return Res;
641   } else {
642     return B->second;
643   }
644 }
645 
646 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
647   if (SU->NodeNum >= DAG->SUnits.size())
648     return false;
649   return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
650 }
651 
652 void SIScheduleBlockCreator::colorHighLatenciesAlone() {
653   unsigned DAGSize = DAG->SUnits.size();
654 
655   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
656     SUnit *SU = &DAG->SUnits[i];
657     if (DAG->IsHighLatencySU[SU->NodeNum]) {
658       CurrentColoring[SU->NodeNum] = NextReservedID++;
659     }
660   }
661 }
662 
663 static bool
664 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
665   for (const auto &PredDep : SU.Preds) {
666     if (PredDep.getSUnit() == &FromSU &&
667         PredDep.getKind() == llvm::SDep::Data)
668       return true;
669   }
670   return false;
671 }
672 
673 void SIScheduleBlockCreator::colorHighLatenciesGroups() {
674   unsigned DAGSize = DAG->SUnits.size();
675   unsigned NumHighLatencies = 0;
676   unsigned GroupSize;
677   int Color = NextReservedID;
678   unsigned Count = 0;
679   std::set<unsigned> FormingGroup;
680 
681   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
682     SUnit *SU = &DAG->SUnits[i];
683     if (DAG->IsHighLatencySU[SU->NodeNum])
684       ++NumHighLatencies;
685   }
686 
687   if (NumHighLatencies == 0)
688     return;
689 
690   if (NumHighLatencies <= 6)
691     GroupSize = 2;
692   else if (NumHighLatencies <= 12)
693     GroupSize = 3;
694   else
695     GroupSize = 4;
696 
697   for (unsigned SUNum : DAG->TopDownIndex2SU) {
698     const SUnit &SU = DAG->SUnits[SUNum];
699     if (DAG->IsHighLatencySU[SU.NodeNum]) {
700       unsigned CompatibleGroup = true;
701       int ProposedColor = Color;
702       std::vector<int> AdditionalElements;
703 
704       // We don't want to put in the same block
705       // two high latency instructions that depend
706       // on each other.
707       // One way would be to check canAddEdge
708       // in both directions, but that currently is not
709       // enough because there the high latency order is
710       // enforced (via links).
711       // Instead, look at the dependencies between the
712       // high latency instructions and deduce if it is
713       // a data dependency or not.
714       for (unsigned j : FormingGroup) {
715         bool HasSubGraph;
716         std::vector<int> SubGraph;
717         // By construction (topological order), if SU and
718         // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
719         // in the parent graph of SU.
720 #ifndef NDEBUG
721         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
722                                                HasSubGraph);
723         assert(!HasSubGraph);
724 #endif
725         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
726                                                HasSubGraph);
727         if (!HasSubGraph)
728           continue; // No dependencies between each other
729         else if (SubGraph.size() > 5) {
730           // Too many elements would be required to be added to the block.
731           CompatibleGroup = false;
732           break;
733         }
734         else {
735           // Check the type of dependency
736           for (unsigned k : SubGraph) {
737             // If in the path to join the two instructions,
738             // there is another high latency instruction,
739             // or instructions colored for another block
740             // abort the merge.
741             if (DAG->IsHighLatencySU[k] ||
742                 (CurrentColoring[k] != ProposedColor &&
743                  CurrentColoring[k] != 0)) {
744               CompatibleGroup = false;
745               break;
746             }
747             // If one of the SU in the subgraph depends on the result of SU j,
748             // there'll be a data dependency.
749             if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
750               CompatibleGroup = false;
751               break;
752             }
753           }
754           if (!CompatibleGroup)
755             break;
756           // Same check for the SU
757           if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
758             CompatibleGroup = false;
759             break;
760           }
761           // Add all the required instructions to the block
762           // These cannot live in another block (because they
763           // depend (order dependency) on one of the
764           // instruction in the block, and are required for the
765           // high latency instruction we add.
766           AdditionalElements.insert(AdditionalElements.end(),
767                                     SubGraph.begin(), SubGraph.end());
768         }
769       }
770       if (CompatibleGroup) {
771         FormingGroup.insert(SU.NodeNum);
772         for (unsigned j : AdditionalElements)
773           CurrentColoring[j] = ProposedColor;
774         CurrentColoring[SU.NodeNum] = ProposedColor;
775         ++Count;
776       }
777       // Found one incompatible instruction,
778       // or has filled a big enough group.
779       // -> start a new one.
780       if (!CompatibleGroup) {
781         FormingGroup.clear();
782         Color = ++NextReservedID;
783         ProposedColor = Color;
784         FormingGroup.insert(SU.NodeNum);
785         CurrentColoring[SU.NodeNum] = ProposedColor;
786         Count = 0;
787       } else if (Count == GroupSize) {
788         FormingGroup.clear();
789         Color = ++NextReservedID;
790         ProposedColor = Color;
791         Count = 0;
792       }
793     }
794   }
795 }
796 
797 void SIScheduleBlockCreator::colorComputeReservedDependencies() {
798   unsigned DAGSize = DAG->SUnits.size();
799   std::map<std::set<unsigned>, unsigned> ColorCombinations;
800 
801   CurrentTopDownReservedDependencyColoring.clear();
802   CurrentBottomUpReservedDependencyColoring.clear();
803 
804   CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
805   CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
806 
807   // Traverse TopDown, and give different colors to SUs depending
808   // on which combination of High Latencies they depend on.
809 
810   for (unsigned SUNum : DAG->TopDownIndex2SU) {
811     SUnit *SU = &DAG->SUnits[SUNum];
812     std::set<unsigned> SUColors;
813 
814     // Already given.
815     if (CurrentColoring[SU->NodeNum]) {
816       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
817         CurrentColoring[SU->NodeNum];
818       continue;
819     }
820 
821    for (SDep& PredDep : SU->Preds) {
822       SUnit *Pred = PredDep.getSUnit();
823       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
824         continue;
825       if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
826         SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
827     }
828     // Color 0 by default.
829     if (SUColors.empty())
830       continue;
831     // Same color than parents.
832     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
833       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
834         *SUColors.begin();
835     else {
836       std::map<std::set<unsigned>, unsigned>::iterator Pos =
837         ColorCombinations.find(SUColors);
838       if (Pos != ColorCombinations.end()) {
839           CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
840       } else {
841         CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
842           NextNonReservedID;
843         ColorCombinations[SUColors] = NextNonReservedID++;
844       }
845     }
846   }
847 
848   ColorCombinations.clear();
849 
850   // Same as before, but BottomUp.
851 
852   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
853     SUnit *SU = &DAG->SUnits[SUNum];
854     std::set<unsigned> SUColors;
855 
856     // Already given.
857     if (CurrentColoring[SU->NodeNum]) {
858       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
859         CurrentColoring[SU->NodeNum];
860       continue;
861     }
862 
863     for (SDep& SuccDep : SU->Succs) {
864       SUnit *Succ = SuccDep.getSUnit();
865       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
866         continue;
867       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
868         SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
869     }
870     // Keep color 0.
871     if (SUColors.empty())
872       continue;
873     // Same color than parents.
874     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
875       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
876         *SUColors.begin();
877     else {
878       std::map<std::set<unsigned>, unsigned>::iterator Pos =
879         ColorCombinations.find(SUColors);
880       if (Pos != ColorCombinations.end()) {
881         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
882       } else {
883         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
884           NextNonReservedID;
885         ColorCombinations[SUColors] = NextNonReservedID++;
886       }
887     }
888   }
889 }
890 
891 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
892   unsigned DAGSize = DAG->SUnits.size();
893   std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
894 
895   // Every combination of colors given by the top down
896   // and bottom up Reserved node dependency
897 
898   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
899     SUnit *SU = &DAG->SUnits[i];
900     std::pair<unsigned, unsigned> SUColors;
901 
902     // High latency instructions: already given.
903     if (CurrentColoring[SU->NodeNum])
904       continue;
905 
906     SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
907     SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
908 
909     std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
910       ColorCombinations.find(SUColors);
911     if (Pos != ColorCombinations.end()) {
912       CurrentColoring[SU->NodeNum] = Pos->second;
913     } else {
914       CurrentColoring[SU->NodeNum] = NextNonReservedID;
915       ColorCombinations[SUColors] = NextNonReservedID++;
916     }
917   }
918 }
919 
920 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
921   unsigned DAGSize = DAG->SUnits.size();
922   std::vector<int> PendingColoring = CurrentColoring;
923 
924   assert(DAGSize >= 1 &&
925          CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
926          CurrentTopDownReservedDependencyColoring.size() == DAGSize);
927   // If there is no reserved block at all, do nothing. We don't want
928   // everything in one block.
929   if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
930                         CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
931       *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
932                         CurrentTopDownReservedDependencyColoring.end()) == 0)
933     return;
934 
935   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
936     SUnit *SU = &DAG->SUnits[SUNum];
937     std::set<unsigned> SUColors;
938     std::set<unsigned> SUColorsPending;
939 
940     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
941       continue;
942 
943     if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
944         CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
945       continue;
946 
947     for (SDep& SuccDep : SU->Succs) {
948       SUnit *Succ = SuccDep.getSUnit();
949       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
950         continue;
951       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
952           CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
953         SUColors.insert(CurrentColoring[Succ->NodeNum]);
954       SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
955     }
956     // If there is only one child/parent block, and that block
957     // is not among the ones we are removing in this path, then
958     // merge the instruction to that block
959     if (SUColors.size() == 1 && SUColorsPending.size() == 1)
960       PendingColoring[SU->NodeNum] = *SUColors.begin();
961     else // TODO: Attribute new colors depending on color
962          // combination of children.
963       PendingColoring[SU->NodeNum] = NextNonReservedID++;
964   }
965   CurrentColoring = PendingColoring;
966 }
967 
968 
969 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
970   unsigned DAGSize = DAG->SUnits.size();
971   unsigned PreviousColor;
972   std::set<unsigned> SeenColors;
973 
974   if (DAGSize <= 1)
975     return;
976 
977   PreviousColor = CurrentColoring[0];
978 
979   for (unsigned i = 1, e = DAGSize; i != e; ++i) {
980     SUnit *SU = &DAG->SUnits[i];
981     unsigned CurrentColor = CurrentColoring[i];
982     unsigned PreviousColorSave = PreviousColor;
983     assert(i == SU->NodeNum);
984 
985     if (CurrentColor != PreviousColor)
986       SeenColors.insert(PreviousColor);
987     PreviousColor = CurrentColor;
988 
989     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
990       continue;
991 
992     if (SeenColors.find(CurrentColor) == SeenColors.end())
993       continue;
994 
995     if (PreviousColorSave != CurrentColor)
996       CurrentColoring[i] = NextNonReservedID++;
997     else
998       CurrentColoring[i] = CurrentColoring[i-1];
999   }
1000 }
1001 
1002 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
1003   unsigned DAGSize = DAG->SUnits.size();
1004 
1005   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1006     SUnit *SU = &DAG->SUnits[SUNum];
1007     std::set<unsigned> SUColors;
1008 
1009     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1010       continue;
1011 
1012     // No predecessor: Vgpr constant loading.
1013     // Low latency instructions usually have a predecessor (the address)
1014     if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
1015       continue;
1016 
1017     for (SDep& SuccDep : SU->Succs) {
1018       SUnit *Succ = SuccDep.getSUnit();
1019       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1020         continue;
1021       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1022     }
1023     if (SUColors.size() == 1)
1024       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1025   }
1026 }
1027 
1028 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
1029   unsigned DAGSize = DAG->SUnits.size();
1030 
1031   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1032     SUnit *SU = &DAG->SUnits[SUNum];
1033     std::set<unsigned> SUColors;
1034 
1035     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1036       continue;
1037 
1038     for (SDep& SuccDep : SU->Succs) {
1039        SUnit *Succ = SuccDep.getSUnit();
1040       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1041         continue;
1042       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1043     }
1044     if (SUColors.size() == 1)
1045       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1046   }
1047 }
1048 
1049 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
1050   unsigned DAGSize = DAG->SUnits.size();
1051 
1052   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1053     SUnit *SU = &DAG->SUnits[SUNum];
1054     std::set<unsigned> SUColors;
1055 
1056     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1057       continue;
1058 
1059     for (SDep& SuccDep : SU->Succs) {
1060        SUnit *Succ = SuccDep.getSUnit();
1061       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1062         continue;
1063       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1064     }
1065     if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
1066       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1067   }
1068 }
1069 
1070 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
1071   unsigned DAGSize = DAG->SUnits.size();
1072   std::map<unsigned, unsigned> ColorCount;
1073 
1074   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1075     SUnit *SU = &DAG->SUnits[SUNum];
1076     unsigned color = CurrentColoring[SU->NodeNum];
1077      ++ColorCount[color];
1078   }
1079 
1080   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1081     SUnit *SU = &DAG->SUnits[SUNum];
1082     unsigned color = CurrentColoring[SU->NodeNum];
1083     std::set<unsigned> SUColors;
1084 
1085     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1086       continue;
1087 
1088     if (ColorCount[color] > 1)
1089       continue;
1090 
1091     for (SDep& SuccDep : SU->Succs) {
1092        SUnit *Succ = SuccDep.getSUnit();
1093       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1094         continue;
1095       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1096     }
1097     if (SUColors.size() == 1 && *SUColors.begin() != color) {
1098       --ColorCount[color];
1099       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1100       ++ColorCount[*SUColors.begin()];
1101     }
1102   }
1103 }
1104 
1105 void SIScheduleBlockCreator::cutHugeBlocks() {
1106   // TODO
1107 }
1108 
1109 void SIScheduleBlockCreator::regroupNoUserInstructions() {
1110   unsigned DAGSize = DAG->SUnits.size();
1111   int GroupID = NextNonReservedID++;
1112 
1113   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1114     SUnit *SU = &DAG->SUnits[SUNum];
1115     bool hasSuccessor = false;
1116 
1117     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1118       continue;
1119 
1120     for (SDep& SuccDep : SU->Succs) {
1121        SUnit *Succ = SuccDep.getSUnit();
1122       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1123         continue;
1124       hasSuccessor = true;
1125     }
1126     if (!hasSuccessor)
1127       CurrentColoring[SU->NodeNum] = GroupID;
1128   }
1129 }
1130 
1131 void SIScheduleBlockCreator::colorExports() {
1132   unsigned ExportColor = NextNonReservedID++;
1133   SmallVector<unsigned, 8> ExpGroup;
1134 
1135   // Put all exports together in a block.
1136   // The block will naturally end up being scheduled last,
1137   // thus putting exports at the end of the schedule, which
1138   // is better for performance.
1139   // However we must ensure, for safety, the exports can be put
1140   // together in the same block without any other instruction.
1141   // This could happen, for example, when scheduling after regalloc
1142   // if reloading a spilled register from memory using the same
1143   // register than used in a previous export.
1144   // If that happens, do not regroup the exports.
1145   for (unsigned SUNum : DAG->TopDownIndex2SU) {
1146     const SUnit &SU = DAG->SUnits[SUNum];
1147     if (SIInstrInfo::isEXP(*SU.getInstr())) {
1148       // Check the EXP can be added to the group safely,
1149       // ie without needing any other instruction.
1150       // The EXP is allowed to depend on other EXP
1151       // (they will be in the same group).
1152       for (unsigned j : ExpGroup) {
1153         bool HasSubGraph;
1154         std::vector<int> SubGraph;
1155         // By construction (topological order), if SU and
1156         // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
1157         // in the parent graph of SU.
1158 #ifndef NDEBUG
1159         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
1160                                                HasSubGraph);
1161         assert(!HasSubGraph);
1162 #endif
1163         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
1164                                                HasSubGraph);
1165         if (!HasSubGraph)
1166           continue; // No dependencies between each other
1167 
1168         // SubGraph contains all the instructions required
1169         // between EXP SUnits[j] and EXP SU.
1170         for (unsigned k : SubGraph) {
1171           if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
1172             // Other instructions than EXP would be required in the group.
1173             // Abort the groupping.
1174             return;
1175         }
1176       }
1177 
1178       ExpGroup.push_back(SUNum);
1179     }
1180   }
1181 
1182   // The group can be formed. Give the color.
1183   for (unsigned j : ExpGroup)
1184     CurrentColoring[j] = ExportColor;
1185 }
1186 
1187 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
1188   unsigned DAGSize = DAG->SUnits.size();
1189   std::map<unsigned,unsigned> RealID;
1190 
1191   CurrentBlocks.clear();
1192   CurrentColoring.clear();
1193   CurrentColoring.resize(DAGSize, 0);
1194   Node2CurrentBlock.clear();
1195 
1196   // Restore links previous scheduling variant has overridden.
1197   DAG->restoreSULinksLeft();
1198 
1199   NextReservedID = 1;
1200   NextNonReservedID = DAGSize + 1;
1201 
1202   LLVM_DEBUG(dbgs() << "Coloring the graph\n");
1203 
1204   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
1205     colorHighLatenciesGroups();
1206   else
1207     colorHighLatenciesAlone();
1208   colorComputeReservedDependencies();
1209   colorAccordingToReservedDependencies();
1210   colorEndsAccordingToDependencies();
1211   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
1212     colorForceConsecutiveOrderInGroup();
1213   regroupNoUserInstructions();
1214   colorMergeConstantLoadsNextGroup();
1215   colorMergeIfPossibleNextGroupOnlyForReserved();
1216   colorExports();
1217 
1218   // Put SUs of same color into same block
1219   Node2CurrentBlock.resize(DAGSize, -1);
1220   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1221     SUnit *SU = &DAG->SUnits[i];
1222     unsigned Color = CurrentColoring[SU->NodeNum];
1223     if (RealID.find(Color) == RealID.end()) {
1224       int ID = CurrentBlocks.size();
1225       BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
1226       CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
1227       RealID[Color] = ID;
1228     }
1229     CurrentBlocks[RealID[Color]]->addUnit(SU);
1230     Node2CurrentBlock[SU->NodeNum] = RealID[Color];
1231   }
1232 
1233   // Build dependencies between blocks.
1234   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1235     SUnit *SU = &DAG->SUnits[i];
1236     int SUID = Node2CurrentBlock[i];
1237      for (SDep& SuccDep : SU->Succs) {
1238        SUnit *Succ = SuccDep.getSUnit();
1239       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1240         continue;
1241       if (Node2CurrentBlock[Succ->NodeNum] != SUID)
1242         CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
1243                                      SuccDep.isCtrl() ? NoData : Data);
1244     }
1245     for (SDep& PredDep : SU->Preds) {
1246       SUnit *Pred = PredDep.getSUnit();
1247       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
1248         continue;
1249       if (Node2CurrentBlock[Pred->NodeNum] != SUID)
1250         CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
1251     }
1252   }
1253 
1254   // Free root and leafs of all blocks to enable scheduling inside them.
1255   for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1256     SIScheduleBlock *Block = CurrentBlocks[i];
1257     Block->finalizeUnits();
1258   }
1259   LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
1260              for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1261                SIScheduleBlock *Block = CurrentBlocks[i];
1262                Block->printDebug(true);
1263              });
1264 }
1265 
1266 // Two functions taken from Codegen/MachineScheduler.cpp
1267 
1268 /// Non-const version.
1269 static MachineBasicBlock::iterator
1270 nextIfDebug(MachineBasicBlock::iterator I,
1271             MachineBasicBlock::const_iterator End) {
1272   for (; I != End; ++I) {
1273     if (!I->isDebugInstr())
1274       break;
1275   }
1276   return I;
1277 }
1278 
1279 void SIScheduleBlockCreator::topologicalSort() {
1280   unsigned DAGSize = CurrentBlocks.size();
1281   std::vector<int> WorkList;
1282 
1283   LLVM_DEBUG(dbgs() << "Topological Sort\n");
1284 
1285   WorkList.reserve(DAGSize);
1286   TopDownIndex2Block.resize(DAGSize);
1287   TopDownBlock2Index.resize(DAGSize);
1288   BottomUpIndex2Block.resize(DAGSize);
1289 
1290   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1291     SIScheduleBlock *Block = CurrentBlocks[i];
1292     unsigned Degree = Block->getSuccs().size();
1293     TopDownBlock2Index[i] = Degree;
1294     if (Degree == 0) {
1295       WorkList.push_back(i);
1296     }
1297   }
1298 
1299   int Id = DAGSize;
1300   while (!WorkList.empty()) {
1301     int i = WorkList.back();
1302     SIScheduleBlock *Block = CurrentBlocks[i];
1303     WorkList.pop_back();
1304     TopDownBlock2Index[i] = --Id;
1305     TopDownIndex2Block[Id] = i;
1306     for (SIScheduleBlock* Pred : Block->getPreds()) {
1307       if (!--TopDownBlock2Index[Pred->getID()])
1308         WorkList.push_back(Pred->getID());
1309     }
1310   }
1311 
1312 #ifndef NDEBUG
1313   // Check correctness of the ordering.
1314   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1315     SIScheduleBlock *Block = CurrentBlocks[i];
1316     for (SIScheduleBlock* Pred : Block->getPreds()) {
1317       assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
1318       "Wrong Top Down topological sorting");
1319     }
1320   }
1321 #endif
1322 
1323   BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
1324                                          TopDownIndex2Block.rend());
1325 }
1326 
1327 void SIScheduleBlockCreator::scheduleInsideBlocks() {
1328   unsigned DAGSize = CurrentBlocks.size();
1329 
1330   LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
1331 
1332   // We do schedule a valid scheduling such that a Block corresponds
1333   // to a range of instructions.
1334   LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
1335   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1336     SIScheduleBlock *Block = CurrentBlocks[i];
1337     Block->fastSchedule();
1338   }
1339 
1340   // Note: the following code, and the part restoring previous position
1341   // is by far the most expensive operation of the Scheduler.
1342 
1343   // Do not update CurrentTop.
1344   MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
1345   std::vector<MachineBasicBlock::iterator> PosOld;
1346   std::vector<MachineBasicBlock::iterator> PosNew;
1347   PosOld.reserve(DAG->SUnits.size());
1348   PosNew.reserve(DAG->SUnits.size());
1349 
1350   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1351     int BlockIndice = TopDownIndex2Block[i];
1352     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1353     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1354 
1355     for (SUnit* SU : SUs) {
1356       MachineInstr *MI = SU->getInstr();
1357       MachineBasicBlock::iterator Pos = MI;
1358       PosOld.push_back(Pos);
1359       if (&*CurrentTopFastSched == MI) {
1360         PosNew.push_back(Pos);
1361         CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
1362                                           DAG->getCurrentBottom());
1363       } else {
1364         // Update the instruction stream.
1365         DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
1366 
1367         // Update LiveIntervals.
1368         // Note: Moving all instructions and calling handleMove every time
1369         // is the most cpu intensive operation of the scheduler.
1370         // It would gain a lot if there was a way to recompute the
1371         // LiveIntervals for the entire scheduling region.
1372         DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
1373         PosNew.push_back(CurrentTopFastSched);
1374       }
1375     }
1376   }
1377 
1378   // Now we have Block of SUs == Block of MI.
1379   // We do the final schedule for the instructions inside the block.
1380   // The property that all the SUs of the Block are grouped together as MI
1381   // is used for correct reg usage tracking.
1382   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1383     SIScheduleBlock *Block = CurrentBlocks[i];
1384     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1385     Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
1386   }
1387 
1388   LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
1389   // Restore old ordering (which prevents a LIS->handleMove bug).
1390   for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
1391     MachineBasicBlock::iterator POld = PosOld[i-1];
1392     MachineBasicBlock::iterator PNew = PosNew[i-1];
1393     if (PNew != POld) {
1394       // Update the instruction stream.
1395       DAG->getBB()->splice(POld, DAG->getBB(), PNew);
1396 
1397       // Update LiveIntervals.
1398       DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
1399     }
1400   }
1401 
1402   LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1403     SIScheduleBlock *Block = CurrentBlocks[i];
1404     Block->printDebug(true);
1405   });
1406 }
1407 
1408 void SIScheduleBlockCreator::fillStats() {
1409   unsigned DAGSize = CurrentBlocks.size();
1410 
1411   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1412     int BlockIndice = TopDownIndex2Block[i];
1413     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1414     if (Block->getPreds().empty())
1415       Block->Depth = 0;
1416     else {
1417       unsigned Depth = 0;
1418       for (SIScheduleBlock *Pred : Block->getPreds()) {
1419         if (Depth < Pred->Depth + Pred->getCost())
1420           Depth = Pred->Depth + Pred->getCost();
1421       }
1422       Block->Depth = Depth;
1423     }
1424   }
1425 
1426   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1427     int BlockIndice = BottomUpIndex2Block[i];
1428     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1429     if (Block->getSuccs().empty())
1430       Block->Height = 0;
1431     else {
1432       unsigned Height = 0;
1433       for (const auto &Succ : Block->getSuccs())
1434         Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
1435       Block->Height = Height;
1436     }
1437   }
1438 }
1439 
1440 // SIScheduleBlockScheduler //
1441 
1442 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
1443                                                    SISchedulerBlockSchedulerVariant Variant,
1444                                                    SIScheduleBlocks  BlocksStruct) :
1445   DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
1446   LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
1447   SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
1448 
1449   // Fill the usage of every output
1450   // Warning: while by construction we always have a link between two blocks
1451   // when one needs a result from the other, the number of users of an output
1452   // is not the sum of child blocks having as input the same virtual register.
1453   // Here is an example. A produces x and y. B eats x and produces x'.
1454   // C eats x' and y. The register coalescer may have attributed the same
1455   // virtual register to x and x'.
1456   // To count accurately, we do a topological sort. In case the register is
1457   // found for several parents, we increment the usage of the one with the
1458   // highest topological index.
1459   LiveOutRegsNumUsages.resize(Blocks.size());
1460   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1461     SIScheduleBlock *Block = Blocks[i];
1462     for (unsigned Reg : Block->getInRegs()) {
1463       bool Found = false;
1464       int topoInd = -1;
1465       for (SIScheduleBlock* Pred: Block->getPreds()) {
1466         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1467         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1468 
1469         if (RegPos != PredOutRegs.end()) {
1470           Found = true;
1471           if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
1472             topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
1473           }
1474         }
1475       }
1476 
1477       if (!Found)
1478         continue;
1479 
1480       int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
1481       ++LiveOutRegsNumUsages[PredID][Reg];
1482     }
1483   }
1484 
1485   LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
1486   BlockNumPredsLeft.resize(Blocks.size());
1487   BlockNumSuccsLeft.resize(Blocks.size());
1488 
1489   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1490     SIScheduleBlock *Block = Blocks[i];
1491     BlockNumPredsLeft[i] = Block->getPreds().size();
1492     BlockNumSuccsLeft[i] = Block->getSuccs().size();
1493   }
1494 
1495 #ifndef NDEBUG
1496   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1497     SIScheduleBlock *Block = Blocks[i];
1498     assert(Block->getID() == i);
1499   }
1500 #endif
1501 
1502   std::set<unsigned> InRegs = DAG->getInRegs();
1503   addLiveRegs(InRegs);
1504 
1505   // Increase LiveOutRegsNumUsages for blocks
1506   // producing registers consumed in another
1507   // scheduling region.
1508   for (unsigned Reg : DAG->getOutRegs()) {
1509     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1510       // Do reverse traversal
1511       int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
1512       SIScheduleBlock *Block = Blocks[ID];
1513       const std::set<unsigned> &OutRegs = Block->getOutRegs();
1514 
1515       if (OutRegs.find(Reg) == OutRegs.end())
1516         continue;
1517 
1518       ++LiveOutRegsNumUsages[ID][Reg];
1519       break;
1520     }
1521   }
1522 
1523   // Fill LiveRegsConsumers for regs that were already
1524   // defined before scheduling.
1525   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1526     SIScheduleBlock *Block = Blocks[i];
1527     for (unsigned Reg : Block->getInRegs()) {
1528       bool Found = false;
1529       for (SIScheduleBlock* Pred: Block->getPreds()) {
1530         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1531         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1532 
1533         if (RegPos != PredOutRegs.end()) {
1534           Found = true;
1535           break;
1536         }
1537       }
1538 
1539       if (!Found)
1540         ++LiveRegsConsumers[Reg];
1541     }
1542   }
1543 
1544   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1545     SIScheduleBlock *Block = Blocks[i];
1546     if (BlockNumPredsLeft[i] == 0) {
1547       ReadyBlocks.push_back(Block);
1548     }
1549   }
1550 
1551   while (SIScheduleBlock *Block = pickBlock()) {
1552     BlocksScheduled.push_back(Block);
1553     blockScheduled(Block);
1554   }
1555 
1556   LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
1557                                             : BlocksScheduled) {
1558     dbgs() << ' ' << Block->getID();
1559   } dbgs() << '\n';);
1560 }
1561 
1562 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
1563                                                    SIBlockSchedCandidate &TryCand) {
1564   if (!Cand.isValid()) {
1565     TryCand.Reason = NodeOrder;
1566     return true;
1567   }
1568 
1569   // Try to hide high latencies.
1570   if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
1571                  Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
1572     return true;
1573   // Schedule high latencies early so you can hide them better.
1574   if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
1575                           TryCand, Cand, Latency))
1576     return true;
1577   if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
1578                                                    TryCand, Cand, Depth))
1579     return true;
1580   if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
1581                           Cand.NumHighLatencySuccessors,
1582                           TryCand, Cand, Successor))
1583     return true;
1584   return false;
1585 }
1586 
1587 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
1588                                                     SIBlockSchedCandidate &TryCand) {
1589   if (!Cand.isValid()) {
1590     TryCand.Reason = NodeOrder;
1591     return true;
1592   }
1593 
1594   if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
1595                        TryCand, Cand, RegUsage))
1596     return true;
1597   if (SISched::tryGreater(TryCand.NumSuccessors > 0,
1598                           Cand.NumSuccessors > 0,
1599                           TryCand, Cand, Successor))
1600     return true;
1601   if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
1602     return true;
1603   if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
1604                        TryCand, Cand, RegUsage))
1605     return true;
1606   return false;
1607 }
1608 
1609 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
1610   SIBlockSchedCandidate Cand;
1611   std::vector<SIScheduleBlock*>::iterator Best;
1612   SIScheduleBlock *Block;
1613   if (ReadyBlocks.empty())
1614     return nullptr;
1615 
1616   DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
1617                         VregCurrentUsage, SregCurrentUsage);
1618   if (VregCurrentUsage > maxVregUsage)
1619     maxVregUsage = VregCurrentUsage;
1620   if (SregCurrentUsage > maxSregUsage)
1621     maxSregUsage = SregCurrentUsage;
1622   LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
1623              for (SIScheduleBlock *Block
1624                   : ReadyBlocks) dbgs()
1625              << Block->getID() << ' ';
1626              dbgs() << "\nCurrent Live:\n";
1627              for (unsigned Reg
1628                   : LiveRegs) dbgs()
1629              << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
1630              dbgs() << '\n';
1631              dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
1632              dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
1633 
1634   Cand.Block = nullptr;
1635   for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
1636        E = ReadyBlocks.end(); I != E; ++I) {
1637     SIBlockSchedCandidate TryCand;
1638     TryCand.Block = *I;
1639     TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
1640     TryCand.VGPRUsageDiff =
1641       checkRegUsageImpact(TryCand.Block->getInRegs(),
1642           TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
1643     TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
1644     TryCand.NumHighLatencySuccessors =
1645       TryCand.Block->getNumHighLatencySuccessors();
1646     TryCand.LastPosHighLatParentScheduled =
1647       (unsigned int) std::max<int> (0,
1648          LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
1649            LastPosWaitedHighLatency);
1650     TryCand.Height = TryCand.Block->Height;
1651     // Try not to increase VGPR usage too much, else we may spill.
1652     if (VregCurrentUsage > 120 ||
1653         Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
1654       if (!tryCandidateRegUsage(Cand, TryCand) &&
1655           Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
1656         tryCandidateLatency(Cand, TryCand);
1657     } else {
1658       if (!tryCandidateLatency(Cand, TryCand))
1659         tryCandidateRegUsage(Cand, TryCand);
1660     }
1661     if (TryCand.Reason != NoCand) {
1662       Cand.setBest(TryCand);
1663       Best = I;
1664       LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
1665                         << getReasonStr(Cand.Reason) << '\n');
1666     }
1667   }
1668 
1669   LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
1670              dbgs() << "Is a block with high latency instruction: "
1671                     << (Cand.IsHighLatency ? "yes\n" : "no\n");
1672              dbgs() << "Position of last high latency dependency: "
1673                     << Cand.LastPosHighLatParentScheduled << '\n';
1674              dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
1675              dbgs() << '\n';);
1676 
1677   Block = Cand.Block;
1678   ReadyBlocks.erase(Best);
1679   return Block;
1680 }
1681 
1682 // Tracking of currently alive registers to determine VGPR Usage.
1683 
1684 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
1685   for (unsigned Reg : Regs) {
1686     // For now only track virtual registers.
1687     if (!Register::isVirtualRegister(Reg))
1688       continue;
1689     // If not already in the live set, then add it.
1690     (void) LiveRegs.insert(Reg);
1691   }
1692 }
1693 
1694 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
1695                                        std::set<unsigned> &Regs) {
1696   for (unsigned Reg : Regs) {
1697     // For now only track virtual registers.
1698     std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
1699     assert (Pos != LiveRegs.end() && // Reg must be live.
1700                LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
1701                LiveRegsConsumers[Reg] >= 1);
1702     --LiveRegsConsumers[Reg];
1703     if (LiveRegsConsumers[Reg] == 0)
1704       LiveRegs.erase(Pos);
1705   }
1706 }
1707 
1708 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
1709   for (const auto &Block : Parent->getSuccs()) {
1710     if (--BlockNumPredsLeft[Block.first->getID()] == 0)
1711       ReadyBlocks.push_back(Block.first);
1712 
1713     if (Parent->isHighLatencyBlock() &&
1714         Block.second == SIScheduleBlockLinkKind::Data)
1715       LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
1716   }
1717 }
1718 
1719 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
1720   decreaseLiveRegs(Block, Block->getInRegs());
1721   addLiveRegs(Block->getOutRegs());
1722   releaseBlockSuccs(Block);
1723   for (std::map<unsigned, unsigned>::iterator RegI =
1724        LiveOutRegsNumUsages[Block->getID()].begin(),
1725        E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
1726     std::pair<unsigned, unsigned> RegP = *RegI;
1727     // We produce this register, thus it must not be previously alive.
1728     assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
1729            LiveRegsConsumers[RegP.first] == 0);
1730     LiveRegsConsumers[RegP.first] += RegP.second;
1731   }
1732   if (LastPosHighLatencyParentScheduled[Block->getID()] >
1733         (unsigned)LastPosWaitedHighLatency)
1734     LastPosWaitedHighLatency =
1735       LastPosHighLatencyParentScheduled[Block->getID()];
1736   ++NumBlockScheduled;
1737 }
1738 
1739 std::vector<int>
1740 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
1741                                      std::set<unsigned> &OutRegs) {
1742   std::vector<int> DiffSetPressure;
1743   DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
1744 
1745   for (unsigned Reg : InRegs) {
1746     // For now only track virtual registers.
1747     if (!Register::isVirtualRegister(Reg))
1748       continue;
1749     if (LiveRegsConsumers[Reg] > 1)
1750       continue;
1751     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1752     for (; PSetI.isValid(); ++PSetI) {
1753       DiffSetPressure[*PSetI] -= PSetI.getWeight();
1754     }
1755   }
1756 
1757   for (unsigned Reg : OutRegs) {
1758     // For now only track virtual registers.
1759     if (!Register::isVirtualRegister(Reg))
1760       continue;
1761     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1762     for (; PSetI.isValid(); ++PSetI) {
1763       DiffSetPressure[*PSetI] += PSetI.getWeight();
1764     }
1765   }
1766 
1767   return DiffSetPressure;
1768 }
1769 
1770 // SIScheduler //
1771 
1772 struct SIScheduleBlockResult
1773 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
1774                              SISchedulerBlockSchedulerVariant ScheduleVariant) {
1775   SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
1776   SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
1777   std::vector<SIScheduleBlock*> ScheduledBlocks;
1778   struct SIScheduleBlockResult Res;
1779 
1780   ScheduledBlocks = Scheduler.getBlocks();
1781 
1782   for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
1783     SIScheduleBlock *Block = ScheduledBlocks[b];
1784     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1785 
1786     for (SUnit* SU : SUs)
1787       Res.SUs.push_back(SU->NodeNum);
1788   }
1789 
1790   Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
1791   Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
1792   return Res;
1793 }
1794 
1795 // SIScheduleDAGMI //
1796 
1797 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
1798   ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
1799   SITII = static_cast<const SIInstrInfo*>(TII);
1800   SITRI = static_cast<const SIRegisterInfo*>(TRI);
1801 }
1802 
1803 SIScheduleDAGMI::~SIScheduleDAGMI() = default;
1804 
1805 // Code adapted from scheduleDAG.cpp
1806 // Does a topological sort over the SUs.
1807 // Both TopDown and BottomUp
1808 void SIScheduleDAGMI::topologicalSort() {
1809   Topo.InitDAGTopologicalSorting();
1810 
1811   TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
1812   BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
1813 }
1814 
1815 // Move low latencies further from their user without
1816 // increasing SGPR usage (in general)
1817 // This is to be replaced by a better pass that would
1818 // take into account SGPR usage (based on VGPR Usage
1819 // and the corresponding wavefront count), that would
1820 // try to merge groups of loads if it make sense, etc
1821 void SIScheduleDAGMI::moveLowLatencies() {
1822    unsigned DAGSize = SUnits.size();
1823    int LastLowLatencyUser = -1;
1824    int LastLowLatencyPos = -1;
1825 
1826    for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
1827     SUnit *SU = &SUnits[ScheduledSUnits[i]];
1828     bool IsLowLatencyUser = false;
1829     unsigned MinPos = 0;
1830 
1831     for (SDep& PredDep : SU->Preds) {
1832       SUnit *Pred = PredDep.getSUnit();
1833       if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
1834         IsLowLatencyUser = true;
1835       }
1836       if (Pred->NodeNum >= DAGSize)
1837         continue;
1838       unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
1839       if (PredPos >= MinPos)
1840         MinPos = PredPos + 1;
1841     }
1842 
1843     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1844       unsigned BestPos = LastLowLatencyUser + 1;
1845       if ((int)BestPos <= LastLowLatencyPos)
1846         BestPos = LastLowLatencyPos + 1;
1847       if (BestPos < MinPos)
1848         BestPos = MinPos;
1849       if (BestPos < i) {
1850         for (unsigned u = i; u > BestPos; --u) {
1851           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1852           ScheduledSUnits[u] = ScheduledSUnits[u-1];
1853         }
1854         ScheduledSUnits[BestPos] = SU->NodeNum;
1855         ScheduledSUnitsInv[SU->NodeNum] = BestPos;
1856       }
1857       LastLowLatencyPos = BestPos;
1858       if (IsLowLatencyUser)
1859         LastLowLatencyUser = BestPos;
1860     } else if (IsLowLatencyUser) {
1861       LastLowLatencyUser = i;
1862     // Moves COPY instructions on which depends
1863     // the low latency instructions too.
1864     } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
1865       bool CopyForLowLat = false;
1866       for (SDep& SuccDep : SU->Succs) {
1867         SUnit *Succ = SuccDep.getSUnit();
1868         if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1869           continue;
1870         if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
1871           CopyForLowLat = true;
1872         }
1873       }
1874       if (!CopyForLowLat)
1875         continue;
1876       if (MinPos < i) {
1877         for (unsigned u = i; u > MinPos; --u) {
1878           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1879           ScheduledSUnits[u] = ScheduledSUnits[u-1];
1880         }
1881         ScheduledSUnits[MinPos] = SU->NodeNum;
1882         ScheduledSUnitsInv[SU->NodeNum] = MinPos;
1883       }
1884     }
1885   }
1886 }
1887 
1888 void SIScheduleDAGMI::restoreSULinksLeft() {
1889   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1890     SUnits[i].isScheduled = false;
1891     SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
1892     SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
1893     SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
1894     SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
1895   }
1896 }
1897 
1898 // Return the Vgpr and Sgpr usage corresponding to some virtual registers.
1899 template<typename _Iterator> void
1900 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
1901                                   unsigned &VgprUsage, unsigned &SgprUsage) {
1902   VgprUsage = 0;
1903   SgprUsage = 0;
1904   for (_Iterator RegI = First; RegI != End; ++RegI) {
1905     unsigned Reg = *RegI;
1906     // For now only track virtual registers
1907     if (!Register::isVirtualRegister(Reg))
1908       continue;
1909     PSetIterator PSetI = MRI.getPressureSets(Reg);
1910     for (; PSetI.isValid(); ++PSetI) {
1911       if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
1912         VgprUsage += PSetI.getWeight();
1913       else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
1914         SgprUsage += PSetI.getWeight();
1915     }
1916   }
1917 }
1918 
1919 void SIScheduleDAGMI::schedule()
1920 {
1921   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1922   SIScheduleBlockResult Best, Temp;
1923   LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
1924 
1925   buildDAGWithRegPressure();
1926   LLVM_DEBUG(dump());
1927 
1928   topologicalSort();
1929   findRootsAndBiasEdges(TopRoots, BotRoots);
1930   // We reuse several ScheduleDAGMI and ScheduleDAGMILive
1931   // functions, but to make them happy we must initialize
1932   // the default Scheduler implementation (even if we do not
1933   // run it)
1934   SchedImpl->initialize(this);
1935   initQueues(TopRoots, BotRoots);
1936 
1937   // Fill some stats to help scheduling.
1938 
1939   SUnitsLinksBackup = SUnits;
1940   IsLowLatencySU.clear();
1941   LowLatencyOffset.clear();
1942   IsHighLatencySU.clear();
1943 
1944   IsLowLatencySU.resize(SUnits.size(), 0);
1945   LowLatencyOffset.resize(SUnits.size(), 0);
1946   IsHighLatencySU.resize(SUnits.size(), 0);
1947 
1948   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1949     SUnit *SU = &SUnits[i];
1950     const MachineOperand *BaseLatOp;
1951     int64_t OffLatReg;
1952     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1953       IsLowLatencySU[i] = 1;
1954       bool OffsetIsScalable;
1955       if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
1956                                          OffsetIsScalable, TRI))
1957         LowLatencyOffset[i] = OffLatReg;
1958     } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
1959       IsHighLatencySU[i] = 1;
1960   }
1961 
1962   SIScheduler Scheduler(this);
1963   Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
1964                                    SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
1965 
1966   // if VGPR usage is extremely high, try other good performing variants
1967   // which could lead to lower VGPR usage
1968   if (Best.MaxVGPRUsage > 180) {
1969     static const std::pair<SISchedulerBlockCreatorVariant,
1970                            SISchedulerBlockSchedulerVariant>
1971         Variants[] = {
1972       { LatenciesAlone, BlockRegUsageLatency },
1973 //      { LatenciesAlone, BlockRegUsage },
1974       { LatenciesGrouped, BlockLatencyRegUsage },
1975 //      { LatenciesGrouped, BlockRegUsageLatency },
1976 //      { LatenciesGrouped, BlockRegUsage },
1977       { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1978 //      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1979 //      { LatenciesAlonePlusConsecutive, BlockRegUsage }
1980     };
1981     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1982       Temp = Scheduler.scheduleVariant(v.first, v.second);
1983       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1984         Best = Temp;
1985     }
1986   }
1987   // if VGPR usage is still extremely high, we may spill. Try other variants
1988   // which are less performing, but that could lead to lower VGPR usage.
1989   if (Best.MaxVGPRUsage > 200) {
1990     static const std::pair<SISchedulerBlockCreatorVariant,
1991                            SISchedulerBlockSchedulerVariant>
1992         Variants[] = {
1993 //      { LatenciesAlone, BlockRegUsageLatency },
1994       { LatenciesAlone, BlockRegUsage },
1995 //      { LatenciesGrouped, BlockLatencyRegUsage },
1996       { LatenciesGrouped, BlockRegUsageLatency },
1997       { LatenciesGrouped, BlockRegUsage },
1998 //      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1999       { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
2000       { LatenciesAlonePlusConsecutive, BlockRegUsage }
2001     };
2002     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
2003       Temp = Scheduler.scheduleVariant(v.first, v.second);
2004       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
2005         Best = Temp;
2006     }
2007   }
2008 
2009   ScheduledSUnits = Best.SUs;
2010   ScheduledSUnitsInv.resize(SUnits.size());
2011 
2012   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
2013     ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
2014   }
2015 
2016   moveLowLatencies();
2017 
2018   // Tell the outside world about the result of the scheduling.
2019 
2020   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
2021   TopRPTracker.setPos(CurrentTop);
2022 
2023   for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
2024        E = ScheduledSUnits.end(); I != E; ++I) {
2025     SUnit *SU = &SUnits[*I];
2026 
2027     scheduleMI(SU, true);
2028 
2029     LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
2030                       << *SU->getInstr());
2031   }
2032 
2033   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
2034 
2035   placeDebugValues();
2036 
2037   LLVM_DEBUG({
2038     dbgs() << "*** Final schedule for "
2039            << printMBBReference(*begin()->getParent()) << " ***\n";
2040     dumpSchedule();
2041     dbgs() << '\n';
2042   });
2043 }
2044