xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// SI Machine Scheduler interface
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIMachineScheduler.h"
15 #include "SIInstrInfo.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "machine-scheduler"
23 
24 // This scheduler implements a different scheduling algorithm than
25 // GenericScheduler.
26 //
27 // There are several specific architecture behaviours that can't be modelled
28 // for GenericScheduler:
29 // . When accessing the result of an SGPR load instruction, you have to wait
30 // for all the SGPR load instructions before your current instruction to
31 // have finished.
32 // . When accessing the result of an VGPR load instruction, you have to wait
33 // for all the VGPR load instructions previous to the VGPR load instruction
34 // you are interested in to finish.
35 // . The less the register pressure, the best load latencies are hidden
36 //
37 // Moreover some specifities (like the fact a lot of instructions in the shader
38 // have few dependencies) makes the generic scheduler have some unpredictable
39 // behaviours. For example when register pressure becomes high, it can either
40 // manage to prevent register pressure from going too high, or it can
41 // increase register pressure even more than if it hadn't taken register
42 // pressure into account.
43 //
44 // Also some other bad behaviours are generated, like loading at the beginning
45 // of the shader a constant in VGPR you won't need until the end of the shader.
46 //
47 // The scheduling problem for SI can distinguish three main parts:
48 // . Hiding high latencies (texture sampling, etc)
49 // . Hiding low latencies (SGPR constant loading, etc)
50 // . Keeping register usage low for better latency hiding and general
51 //   performance
52 //
53 // Some other things can also affect performance, but are hard to predict
54 // (cache usage, the fact the HW can issue several instructions from different
55 // wavefronts if different types, etc)
56 //
57 // This scheduler tries to solve the scheduling problem by dividing it into
58 // simpler sub-problems. It divides the instructions into blocks, schedules
59 // locally inside the blocks where it takes care of low latencies, and then
60 // chooses the order of the blocks by taking care of high latencies.
61 // Dividing the instructions into blocks helps control keeping register
62 // usage low.
63 //
64 // First the instructions are put into blocks.
65 //   We want the blocks help control register usage and hide high latencies
66 //   later. To help control register usage, we typically want all local
67 //   computations, when for example you create a result that can be comsummed
68 //   right away, to be contained in a block. Block inputs and outputs would
69 //   typically be important results that are needed in several locations of
70 //   the shader. Since we do want blocks to help hide high latencies, we want
71 //   the instructions inside the block to have a minimal set of dependencies
72 //   on high latencies. It will make it easy to pick blocks to hide specific
73 //   high latencies.
74 //   The block creation algorithm is divided into several steps, and several
75 //   variants can be tried during the scheduling process.
76 //
77 // Second the order of the instructions inside the blocks is chosen.
78 //   At that step we do take into account only register usage and hiding
79 //   low latency instructions
80 //
81 // Third the block order is chosen, there we try to hide high latencies
82 // and keep register usage low.
83 //
84 // After the third step, a pass is done to improve the hiding of low
85 // latencies.
86 //
87 // Actually when talking about 'low latency' or 'high latency' it includes
88 // both the latency to get the cache (or global mem) data go to the register,
89 // and the bandwidth limitations.
90 // Increasing the number of active wavefronts helps hide the former, but it
91 // doesn't solve the latter, thus why even if wavefront count is high, we have
92 // to try have as many instructions hiding high latencies as possible.
93 // The OpenCL doc says for example latency of 400 cycles for a global mem access,
94 // which is hidden by 10 instructions if the wavefront count is 10.
95 
96 // Some figures taken from AMD docs:
97 // Both texture and constant L1 caches are 4-way associative with 64 bytes
98 // lines.
99 // Constant cache is shared with 4 CUs.
100 // For texture sampling, the address generation unit receives 4 texture
101 // addresses per cycle, thus we could expect texture sampling latency to be
102 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
103 // instructions in a wavefront group are executed every 4 cycles),
104 // or 16 instructions if the other wavefronts associated to the 3 other VALUs
105 // of the CU do texture sampling too. (Don't take these figures too seriously,
106 // as I'm not 100% sure of the computation)
107 // Data exports should get similar latency.
108 // For constant loading, the cache is shader with 4 CUs.
109 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
110 // I guess if the other CU don't read the cache, it can go up to 64B/cycle.
111 // It means a simple s_buffer_load should take one instruction to hide, as
112 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
113 // cache line.
114 //
115 // As of today the driver doesn't preload the constants in cache, thus the
116 // first loads get extra latency. The doc says global memory access can be
117 // 300-600 cycles. We do not specially take that into account when scheduling
118 // As we expect the driver to be able to preload the constants soon.
119 
120 // common code //
121 
122 #ifndef NDEBUG
123 
124 static const char *getReasonStr(SIScheduleCandReason Reason) {
125   switch (Reason) {
126   case NoCand:         return "NOCAND";
127   case RegUsage:       return "REGUSAGE";
128   case Latency:        return "LATENCY";
129   case Successor:      return "SUCCESSOR";
130   case Depth:          return "DEPTH";
131   case NodeOrder:      return "ORDER";
132   }
133   llvm_unreachable("Unknown reason!");
134 }
135 
136 #endif
137 
138 namespace llvm {
139 namespace SISched {
140 static bool tryLess(int TryVal, int CandVal,
141                     SISchedulerCandidate &TryCand,
142                     SISchedulerCandidate &Cand,
143                     SIScheduleCandReason Reason) {
144   if (TryVal < CandVal) {
145     TryCand.Reason = Reason;
146     return true;
147   }
148   if (TryVal > CandVal) {
149     if (Cand.Reason > Reason)
150       Cand.Reason = Reason;
151     return true;
152   }
153   Cand.setRepeat(Reason);
154   return false;
155 }
156 
157 static bool tryGreater(int TryVal, int CandVal,
158                        SISchedulerCandidate &TryCand,
159                        SISchedulerCandidate &Cand,
160                        SIScheduleCandReason Reason) {
161   if (TryVal > CandVal) {
162     TryCand.Reason = Reason;
163     return true;
164   }
165   if (TryVal < CandVal) {
166     if (Cand.Reason > Reason)
167       Cand.Reason = Reason;
168     return true;
169   }
170   Cand.setRepeat(Reason);
171   return false;
172 }
173 } // end namespace SISched
174 } // end namespace llvm
175 
176 // SIScheduleBlock //
177 
178 void SIScheduleBlock::addUnit(SUnit *SU) {
179   NodeNum2Index[SU->NodeNum] = SUnits.size();
180   SUnits.push_back(SU);
181 }
182 
183 #ifndef NDEBUG
184 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
185 
186   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
187   dbgs() << '\n';
188 }
189 #endif
190 
191 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
192                                           SISchedCandidate &TryCand) {
193   // Initialize the candidate if needed.
194   if (!Cand.isValid()) {
195     TryCand.Reason = NodeOrder;
196     return;
197   }
198 
199   if (Cand.SGPRUsage > 60 &&
200       SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
201                        TryCand, Cand, RegUsage))
202     return;
203 
204   // Schedule low latency instructions as top as possible.
205   // Order of priority is:
206   // . Low latency instructions which do not depend on other low latency
207   //   instructions we haven't waited for
208   // . Other instructions which do not depend on low latency instructions
209   //   we haven't waited for
210   // . Low latencies
211   // . All other instructions
212   // Goal is to get: low latency instructions - independent instructions
213   //     - (eventually some more low latency instructions)
214   //     - instructions that depend on the first low latency instructions.
215   // If in the block there is a lot of constant loads, the SGPR usage
216   // could go quite high, thus above the arbitrary limit of 60 will encourage
217   // use the already loaded constants (in order to release some SGPRs) before
218   // loading more.
219   if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
220                        Cand.HasLowLatencyNonWaitedParent,
221                        TryCand, Cand, SIScheduleCandReason::Depth))
222     return;
223 
224   if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
225                           TryCand, Cand, SIScheduleCandReason::Depth))
226     return;
227 
228   if (TryCand.IsLowLatency &&
229       SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
230                        TryCand, Cand, SIScheduleCandReason::Depth))
231     return;
232 
233   if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
234                        TryCand, Cand, RegUsage))
235     return;
236 
237   // Fall through to original instruction order.
238   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
239     TryCand.Reason = NodeOrder;
240   }
241 }
242 
243 SUnit* SIScheduleBlock::pickNode() {
244   SISchedCandidate TopCand;
245 
246   for (SUnit* SU : TopReadySUs) {
247     SISchedCandidate TryCand;
248     std::vector<unsigned> pressure;
249     std::vector<unsigned> MaxPressure;
250     // Predict register usage after this instruction.
251     TryCand.SU = SU;
252     TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
253     TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
254     TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
255     TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
256     TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
257     TryCand.HasLowLatencyNonWaitedParent =
258       HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
259     tryCandidateTopDown(TopCand, TryCand);
260     if (TryCand.Reason != NoCand)
261       TopCand.setBest(TryCand);
262   }
263 
264   return TopCand.SU;
265 }
266 
267 
268 // Schedule something valid.
269 void SIScheduleBlock::fastSchedule() {
270   TopReadySUs.clear();
271   if (Scheduled)
272     undoSchedule();
273 
274   for (SUnit* SU : SUnits) {
275     if (!SU->NumPredsLeft)
276       TopReadySUs.push_back(SU);
277   }
278 
279   while (!TopReadySUs.empty()) {
280     SUnit *SU = TopReadySUs[0];
281     ScheduledSUnits.push_back(SU);
282     nodeScheduled(SU);
283   }
284 
285   Scheduled = true;
286 }
287 
288 // Returns if the register was set between first and last.
289 static bool isDefBetween(unsigned Reg,
290                            SlotIndex First, SlotIndex Last,
291                            const MachineRegisterInfo *MRI,
292                            const LiveIntervals *LIS) {
293   for (MachineRegisterInfo::def_instr_iterator
294        UI = MRI->def_instr_begin(Reg),
295        UE = MRI->def_instr_end(); UI != UE; ++UI) {
296     const MachineInstr* MI = &*UI;
297     if (MI->isDebugValue())
298       continue;
299     SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
300     if (InstSlot >= First && InstSlot <= Last)
301       return true;
302   }
303   return false;
304 }
305 
306 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
307                                       MachineBasicBlock::iterator EndBlock) {
308   IntervalPressure Pressure, BotPressure;
309   RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
310   LiveIntervals *LIS = DAG->getLIS();
311   MachineRegisterInfo *MRI = DAG->getMRI();
312   DAG->initRPTracker(TopRPTracker);
313   DAG->initRPTracker(BotRPTracker);
314   DAG->initRPTracker(RPTracker);
315 
316   // Goes though all SU. RPTracker captures what had to be alive for the SUs
317   // to execute, and what is still alive at the end.
318   for (SUnit* SU : ScheduledSUnits) {
319     RPTracker.setPos(SU->getInstr());
320     RPTracker.advance();
321   }
322 
323   // Close the RPTracker to finalize live ins/outs.
324   RPTracker.closeRegion();
325 
326   // Initialize the live ins and live outs.
327   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
328   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
329 
330   // Do not Track Physical Registers, because it messes up.
331   for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
332     if (Register::isVirtualRegister(RegMaskPair.RegUnit))
333       LiveInRegs.insert(RegMaskPair.RegUnit);
334   }
335   LiveOutRegs.clear();
336   // There is several possibilities to distinguish:
337   // 1) Reg is not input to any instruction in the block, but is output of one
338   // 2) 1) + read in the block and not needed after it
339   // 3) 1) + read in the block but needed in another block
340   // 4) Reg is input of an instruction but another block will read it too
341   // 5) Reg is input of an instruction and then rewritten in the block.
342   //    result is not read in the block (implies used in another block)
343   // 6) Reg is input of an instruction and then rewritten in the block.
344   //    result is read in the block and not needed in another block
345   // 7) Reg is input of an instruction and then rewritten in the block.
346   //    result is read in the block but also needed in another block
347   // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
348   // We want LiveOutRegs to contain only Regs whose content will be read after
349   // in another block, and whose content was written in the current block,
350   // that is we want it to get 1, 3, 5, 7
351   // Since we made the MIs of a block to be packed all together before
352   // scheduling, then the LiveIntervals were correct, and the RPTracker was
353   // able to correctly handle 5 vs 6, 2 vs 3.
354   // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
355   // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
356   // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
357   // The use of findDefBetween removes the case 4.
358   for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
359     Register Reg = RegMaskPair.RegUnit;
360     if (Reg.isVirtual() &&
361         isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
362                      LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
363                      LIS)) {
364       LiveOutRegs.insert(Reg);
365     }
366   }
367 
368   // Pressure = sum_alive_registers register size
369   // Internally llvm will represent some registers as big 128 bits registers
370   // for example, but they actually correspond to 4 actual 32 bits registers.
371   // Thus Pressure is not equal to num_alive_registers * constant.
372   LiveInPressure = TopPressure.MaxSetPressure;
373   LiveOutPressure = BotPressure.MaxSetPressure;
374 
375   // Prepares TopRPTracker for top down scheduling.
376   TopRPTracker.closeTop();
377 }
378 
379 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
380                                MachineBasicBlock::iterator EndBlock) {
381   if (!Scheduled)
382     fastSchedule();
383 
384   // PreScheduling phase to set LiveIn and LiveOut.
385   initRegPressure(BeginBlock, EndBlock);
386   undoSchedule();
387 
388   // Schedule for real now.
389 
390   TopReadySUs.clear();
391 
392   for (SUnit* SU : SUnits) {
393     if (!SU->NumPredsLeft)
394       TopReadySUs.push_back(SU);
395   }
396 
397   while (!TopReadySUs.empty()) {
398     SUnit *SU = pickNode();
399     ScheduledSUnits.push_back(SU);
400     TopRPTracker.setPos(SU->getInstr());
401     TopRPTracker.advance();
402     nodeScheduled(SU);
403   }
404 
405   // TODO: compute InternalAdditionnalPressure.
406   InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
407 
408   // Check everything is right.
409 #ifndef NDEBUG
410   assert(SUnits.size() == ScheduledSUnits.size() &&
411             TopReadySUs.empty());
412   for (SUnit* SU : SUnits) {
413     assert(SU->isScheduled &&
414               SU->NumPredsLeft == 0);
415   }
416 #endif
417 
418   Scheduled = true;
419 }
420 
421 void SIScheduleBlock::undoSchedule() {
422   for (SUnit* SU : SUnits) {
423     SU->isScheduled = false;
424     for (SDep& Succ : SU->Succs) {
425       if (BC->isSUInBlock(Succ.getSUnit(), ID))
426         undoReleaseSucc(SU, &Succ);
427     }
428   }
429   HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
430   ScheduledSUnits.clear();
431   Scheduled = false;
432 }
433 
434 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
435   SUnit *SuccSU = SuccEdge->getSUnit();
436 
437   if (SuccEdge->isWeak()) {
438     ++SuccSU->WeakPredsLeft;
439     return;
440   }
441   ++SuccSU->NumPredsLeft;
442 }
443 
444 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
445   SUnit *SuccSU = SuccEdge->getSUnit();
446 
447   if (SuccEdge->isWeak()) {
448     --SuccSU->WeakPredsLeft;
449     return;
450   }
451 #ifndef NDEBUG
452   if (SuccSU->NumPredsLeft == 0) {
453     dbgs() << "*** Scheduling failed! ***\n";
454     DAG->dumpNode(*SuccSU);
455     dbgs() << " has been released too many times!\n";
456     llvm_unreachable(nullptr);
457   }
458 #endif
459 
460   --SuccSU->NumPredsLeft;
461 }
462 
463 /// Release Successors of the SU that are in the block or not.
464 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
465   for (SDep& Succ : SU->Succs) {
466     SUnit *SuccSU = Succ.getSUnit();
467 
468     if (SuccSU->NodeNum >= DAG->SUnits.size())
469         continue;
470 
471     if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
472       continue;
473 
474     releaseSucc(SU, &Succ);
475     if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
476       TopReadySUs.push_back(SuccSU);
477   }
478 }
479 
480 void SIScheduleBlock::nodeScheduled(SUnit *SU) {
481   // Is in TopReadySUs
482   assert (!SU->NumPredsLeft);
483   std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
484   if (I == TopReadySUs.end()) {
485     dbgs() << "Data Structure Bug in SI Scheduler\n";
486     llvm_unreachable(nullptr);
487   }
488   TopReadySUs.erase(I);
489 
490   releaseSuccessors(SU, true);
491   // Scheduling this node will trigger a wait,
492   // thus propagate to other instructions that they do not need to wait either.
493   if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
494     HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
495 
496   if (DAG->IsLowLatencySU[SU->NodeNum]) {
497      for (SDep& Succ : SU->Succs) {
498       std::map<unsigned, unsigned>::iterator I =
499         NodeNum2Index.find(Succ.getSUnit()->NodeNum);
500       if (I != NodeNum2Index.end())
501         HasLowLatencyNonWaitedParent[I->second] = 1;
502     }
503   }
504   SU->isScheduled = true;
505 }
506 
507 void SIScheduleBlock::finalizeUnits() {
508   // We remove links from outside blocks to enable scheduling inside the block.
509   for (SUnit* SU : SUnits) {
510     releaseSuccessors(SU, false);
511     if (DAG->IsHighLatencySU[SU->NodeNum])
512       HighLatencyBlock = true;
513   }
514   HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
515 }
516 
517 // we maintain ascending order of IDs
518 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
519   unsigned PredID = Pred->getID();
520 
521   // Check if not already predecessor.
522   for (SIScheduleBlock* P : Preds) {
523     if (PredID == P->getID())
524       return;
525   }
526   Preds.push_back(Pred);
527 
528   assert(none_of(Succs,
529                  [=](std::pair<SIScheduleBlock*,
530                      SIScheduleBlockLinkKind> S) {
531                    return PredID == S.first->getID();
532                     }) &&
533          "Loop in the Block Graph!");
534 }
535 
536 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
537                               SIScheduleBlockLinkKind Kind) {
538   unsigned SuccID = Succ->getID();
539 
540   // Check if not already predecessor.
541   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
542     if (SuccID == S.first->getID()) {
543       if (S.second == SIScheduleBlockLinkKind::NoData &&
544           Kind == SIScheduleBlockLinkKind::Data)
545         S.second = Kind;
546       return;
547     }
548   }
549   if (Succ->isHighLatencyBlock())
550     ++NumHighLatencySuccessors;
551   Succs.push_back(std::make_pair(Succ, Kind));
552 
553   assert(none_of(Preds,
554                  [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
555          "Loop in the Block Graph!");
556 }
557 
558 #ifndef NDEBUG
559 void SIScheduleBlock::printDebug(bool full) {
560   dbgs() << "Block (" << ID << ")\n";
561   if (!full)
562     return;
563 
564   dbgs() << "\nContains High Latency Instruction: "
565          << HighLatencyBlock << '\n';
566   dbgs() << "\nDepends On:\n";
567   for (SIScheduleBlock* P : Preds) {
568     P->printDebug(false);
569   }
570 
571   dbgs() << "\nSuccessors:\n";
572   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
573     if (S.second == SIScheduleBlockLinkKind::Data)
574       dbgs() << "(Data Dep) ";
575     S.first->printDebug(false);
576   }
577 
578   if (Scheduled) {
579     dbgs() << "LiveInPressure "
580            << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
581            << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
582     dbgs() << "LiveOutPressure "
583            << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
584            << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
585     dbgs() << "LiveIns:\n";
586     for (unsigned Reg : LiveInRegs)
587       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
588 
589     dbgs() << "\nLiveOuts:\n";
590     for (unsigned Reg : LiveOutRegs)
591       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
592   }
593 
594   dbgs() << "\nInstructions:\n";
595   for (const SUnit* SU : SUnits)
596       DAG->dumpNode(*SU);
597 
598   dbgs() << "///////////////////////\n";
599 }
600 #endif
601 
602 // SIScheduleBlockCreator //
603 
604 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
605     : DAG(DAG) {}
606 
607 SIScheduleBlocks
608 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
609   std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
610     Blocks.find(BlockVariant);
611   if (B == Blocks.end()) {
612     SIScheduleBlocks Res;
613     createBlocksForVariant(BlockVariant);
614     topologicalSort();
615     scheduleInsideBlocks();
616     fillStats();
617     Res.Blocks = CurrentBlocks;
618     Res.TopDownIndex2Block = TopDownIndex2Block;
619     Res.TopDownBlock2Index = TopDownBlock2Index;
620     Blocks[BlockVariant] = Res;
621     return Res;
622   } else {
623     return B->second;
624   }
625 }
626 
627 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
628   if (SU->NodeNum >= DAG->SUnits.size())
629     return false;
630   return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
631 }
632 
633 void SIScheduleBlockCreator::colorHighLatenciesAlone() {
634   unsigned DAGSize = DAG->SUnits.size();
635 
636   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
637     SUnit *SU = &DAG->SUnits[i];
638     if (DAG->IsHighLatencySU[SU->NodeNum]) {
639       CurrentColoring[SU->NodeNum] = NextReservedID++;
640     }
641   }
642 }
643 
644 static bool
645 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
646   for (const auto &PredDep : SU.Preds) {
647     if (PredDep.getSUnit() == &FromSU &&
648         PredDep.getKind() == llvm::SDep::Data)
649       return true;
650   }
651   return false;
652 }
653 
654 void SIScheduleBlockCreator::colorHighLatenciesGroups() {
655   unsigned DAGSize = DAG->SUnits.size();
656   unsigned NumHighLatencies = 0;
657   unsigned GroupSize;
658   int Color = NextReservedID;
659   unsigned Count = 0;
660   std::set<unsigned> FormingGroup;
661 
662   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
663     SUnit *SU = &DAG->SUnits[i];
664     if (DAG->IsHighLatencySU[SU->NodeNum])
665       ++NumHighLatencies;
666   }
667 
668   if (NumHighLatencies == 0)
669     return;
670 
671   if (NumHighLatencies <= 6)
672     GroupSize = 2;
673   else if (NumHighLatencies <= 12)
674     GroupSize = 3;
675   else
676     GroupSize = 4;
677 
678   for (unsigned SUNum : DAG->TopDownIndex2SU) {
679     const SUnit &SU = DAG->SUnits[SUNum];
680     if (DAG->IsHighLatencySU[SU.NodeNum]) {
681       unsigned CompatibleGroup = true;
682       int ProposedColor = Color;
683       std::vector<int> AdditionalElements;
684 
685       // We don't want to put in the same block
686       // two high latency instructions that depend
687       // on each other.
688       // One way would be to check canAddEdge
689       // in both directions, but that currently is not
690       // enough because there the high latency order is
691       // enforced (via links).
692       // Instead, look at the dependencies between the
693       // high latency instructions and deduce if it is
694       // a data dependency or not.
695       for (unsigned j : FormingGroup) {
696         bool HasSubGraph;
697         std::vector<int> SubGraph;
698         // By construction (topological order), if SU and
699         // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
700         // in the parent graph of SU.
701 #ifndef NDEBUG
702         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
703                                                HasSubGraph);
704         assert(!HasSubGraph);
705 #endif
706         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
707                                                HasSubGraph);
708         if (!HasSubGraph)
709           continue; // No dependencies between each other
710         else if (SubGraph.size() > 5) {
711           // Too many elements would be required to be added to the block.
712           CompatibleGroup = false;
713           break;
714         }
715         else {
716           // Check the type of dependency
717           for (unsigned k : SubGraph) {
718             // If in the path to join the two instructions,
719             // there is another high latency instruction,
720             // or instructions colored for another block
721             // abort the merge.
722             if (DAG->IsHighLatencySU[k] ||
723                 (CurrentColoring[k] != ProposedColor &&
724                  CurrentColoring[k] != 0)) {
725               CompatibleGroup = false;
726               break;
727             }
728             // If one of the SU in the subgraph depends on the result of SU j,
729             // there'll be a data dependency.
730             if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
731               CompatibleGroup = false;
732               break;
733             }
734           }
735           if (!CompatibleGroup)
736             break;
737           // Same check for the SU
738           if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
739             CompatibleGroup = false;
740             break;
741           }
742           // Add all the required instructions to the block
743           // These cannot live in another block (because they
744           // depend (order dependency) on one of the
745           // instruction in the block, and are required for the
746           // high latency instruction we add.
747           llvm::append_range(AdditionalElements, SubGraph);
748         }
749       }
750       if (CompatibleGroup) {
751         FormingGroup.insert(SU.NodeNum);
752         for (unsigned j : AdditionalElements)
753           CurrentColoring[j] = ProposedColor;
754         CurrentColoring[SU.NodeNum] = ProposedColor;
755         ++Count;
756       }
757       // Found one incompatible instruction,
758       // or has filled a big enough group.
759       // -> start a new one.
760       if (!CompatibleGroup) {
761         FormingGroup.clear();
762         Color = ++NextReservedID;
763         ProposedColor = Color;
764         FormingGroup.insert(SU.NodeNum);
765         CurrentColoring[SU.NodeNum] = ProposedColor;
766         Count = 0;
767       } else if (Count == GroupSize) {
768         FormingGroup.clear();
769         Color = ++NextReservedID;
770         ProposedColor = Color;
771         Count = 0;
772       }
773     }
774   }
775 }
776 
777 void SIScheduleBlockCreator::colorComputeReservedDependencies() {
778   unsigned DAGSize = DAG->SUnits.size();
779   std::map<std::set<unsigned>, unsigned> ColorCombinations;
780 
781   CurrentTopDownReservedDependencyColoring.clear();
782   CurrentBottomUpReservedDependencyColoring.clear();
783 
784   CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
785   CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
786 
787   // Traverse TopDown, and give different colors to SUs depending
788   // on which combination of High Latencies they depend on.
789 
790   for (unsigned SUNum : DAG->TopDownIndex2SU) {
791     SUnit *SU = &DAG->SUnits[SUNum];
792     std::set<unsigned> SUColors;
793 
794     // Already given.
795     if (CurrentColoring[SU->NodeNum]) {
796       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
797         CurrentColoring[SU->NodeNum];
798       continue;
799     }
800 
801    for (SDep& PredDep : SU->Preds) {
802       SUnit *Pred = PredDep.getSUnit();
803       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
804         continue;
805       if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
806         SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
807     }
808     // Color 0 by default.
809     if (SUColors.empty())
810       continue;
811     // Same color than parents.
812     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
813       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
814         *SUColors.begin();
815     else {
816       std::map<std::set<unsigned>, unsigned>::iterator Pos =
817         ColorCombinations.find(SUColors);
818       if (Pos != ColorCombinations.end()) {
819           CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
820       } else {
821         CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
822           NextNonReservedID;
823         ColorCombinations[SUColors] = NextNonReservedID++;
824       }
825     }
826   }
827 
828   ColorCombinations.clear();
829 
830   // Same as before, but BottomUp.
831 
832   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
833     SUnit *SU = &DAG->SUnits[SUNum];
834     std::set<unsigned> SUColors;
835 
836     // Already given.
837     if (CurrentColoring[SU->NodeNum]) {
838       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
839         CurrentColoring[SU->NodeNum];
840       continue;
841     }
842 
843     for (SDep& SuccDep : SU->Succs) {
844       SUnit *Succ = SuccDep.getSUnit();
845       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
846         continue;
847       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
848         SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
849     }
850     // Keep color 0.
851     if (SUColors.empty())
852       continue;
853     // Same color than parents.
854     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
855       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
856         *SUColors.begin();
857     else {
858       std::map<std::set<unsigned>, unsigned>::iterator Pos =
859         ColorCombinations.find(SUColors);
860       if (Pos != ColorCombinations.end()) {
861         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
862       } else {
863         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
864           NextNonReservedID;
865         ColorCombinations[SUColors] = NextNonReservedID++;
866       }
867     }
868   }
869 }
870 
871 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
872   unsigned DAGSize = DAG->SUnits.size();
873   std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
874 
875   // Every combination of colors given by the top down
876   // and bottom up Reserved node dependency
877 
878   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
879     SUnit *SU = &DAG->SUnits[i];
880     std::pair<unsigned, unsigned> SUColors;
881 
882     // High latency instructions: already given.
883     if (CurrentColoring[SU->NodeNum])
884       continue;
885 
886     SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
887     SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
888 
889     std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
890       ColorCombinations.find(SUColors);
891     if (Pos != ColorCombinations.end()) {
892       CurrentColoring[SU->NodeNum] = Pos->second;
893     } else {
894       CurrentColoring[SU->NodeNum] = NextNonReservedID;
895       ColorCombinations[SUColors] = NextNonReservedID++;
896     }
897   }
898 }
899 
900 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
901   unsigned DAGSize = DAG->SUnits.size();
902   std::vector<int> PendingColoring = CurrentColoring;
903 
904   assert(DAGSize >= 1 &&
905          CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
906          CurrentTopDownReservedDependencyColoring.size() == DAGSize);
907   // If there is no reserved block at all, do nothing. We don't want
908   // everything in one block.
909   if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
910                         CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
911       *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
912                         CurrentTopDownReservedDependencyColoring.end()) == 0)
913     return;
914 
915   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
916     SUnit *SU = &DAG->SUnits[SUNum];
917     std::set<unsigned> SUColors;
918     std::set<unsigned> SUColorsPending;
919 
920     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
921       continue;
922 
923     if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
924         CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
925       continue;
926 
927     for (SDep& SuccDep : SU->Succs) {
928       SUnit *Succ = SuccDep.getSUnit();
929       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
930         continue;
931       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
932           CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
933         SUColors.insert(CurrentColoring[Succ->NodeNum]);
934       SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
935     }
936     // If there is only one child/parent block, and that block
937     // is not among the ones we are removing in this path, then
938     // merge the instruction to that block
939     if (SUColors.size() == 1 && SUColorsPending.size() == 1)
940       PendingColoring[SU->NodeNum] = *SUColors.begin();
941     else // TODO: Attribute new colors depending on color
942          // combination of children.
943       PendingColoring[SU->NodeNum] = NextNonReservedID++;
944   }
945   CurrentColoring = PendingColoring;
946 }
947 
948 
949 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
950   unsigned DAGSize = DAG->SUnits.size();
951   unsigned PreviousColor;
952   std::set<unsigned> SeenColors;
953 
954   if (DAGSize <= 1)
955     return;
956 
957   PreviousColor = CurrentColoring[0];
958 
959   for (unsigned i = 1, e = DAGSize; i != e; ++i) {
960     SUnit *SU = &DAG->SUnits[i];
961     unsigned CurrentColor = CurrentColoring[i];
962     unsigned PreviousColorSave = PreviousColor;
963     assert(i == SU->NodeNum);
964 
965     if (CurrentColor != PreviousColor)
966       SeenColors.insert(PreviousColor);
967     PreviousColor = CurrentColor;
968 
969     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
970       continue;
971 
972     if (SeenColors.find(CurrentColor) == SeenColors.end())
973       continue;
974 
975     if (PreviousColorSave != CurrentColor)
976       CurrentColoring[i] = NextNonReservedID++;
977     else
978       CurrentColoring[i] = CurrentColoring[i-1];
979   }
980 }
981 
982 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
983   unsigned DAGSize = DAG->SUnits.size();
984 
985   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
986     SUnit *SU = &DAG->SUnits[SUNum];
987     std::set<unsigned> SUColors;
988 
989     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
990       continue;
991 
992     // No predecessor: Vgpr constant loading.
993     // Low latency instructions usually have a predecessor (the address)
994     if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
995       continue;
996 
997     for (SDep& SuccDep : SU->Succs) {
998       SUnit *Succ = SuccDep.getSUnit();
999       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1000         continue;
1001       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1002     }
1003     if (SUColors.size() == 1)
1004       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1005   }
1006 }
1007 
1008 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
1009   unsigned DAGSize = DAG->SUnits.size();
1010 
1011   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1012     SUnit *SU = &DAG->SUnits[SUNum];
1013     std::set<unsigned> SUColors;
1014 
1015     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1016       continue;
1017 
1018     for (SDep& SuccDep : SU->Succs) {
1019        SUnit *Succ = SuccDep.getSUnit();
1020       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1021         continue;
1022       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1023     }
1024     if (SUColors.size() == 1)
1025       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1026   }
1027 }
1028 
1029 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
1030   unsigned DAGSize = DAG->SUnits.size();
1031 
1032   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1033     SUnit *SU = &DAG->SUnits[SUNum];
1034     std::set<unsigned> SUColors;
1035 
1036     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1037       continue;
1038 
1039     for (SDep& SuccDep : SU->Succs) {
1040        SUnit *Succ = SuccDep.getSUnit();
1041       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1042         continue;
1043       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1044     }
1045     if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
1046       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1047   }
1048 }
1049 
1050 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
1051   unsigned DAGSize = DAG->SUnits.size();
1052   std::map<unsigned, unsigned> ColorCount;
1053 
1054   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1055     SUnit *SU = &DAG->SUnits[SUNum];
1056     unsigned color = CurrentColoring[SU->NodeNum];
1057      ++ColorCount[color];
1058   }
1059 
1060   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1061     SUnit *SU = &DAG->SUnits[SUNum];
1062     unsigned color = CurrentColoring[SU->NodeNum];
1063     std::set<unsigned> SUColors;
1064 
1065     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1066       continue;
1067 
1068     if (ColorCount[color] > 1)
1069       continue;
1070 
1071     for (SDep& SuccDep : SU->Succs) {
1072        SUnit *Succ = SuccDep.getSUnit();
1073       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1074         continue;
1075       SUColors.insert(CurrentColoring[Succ->NodeNum]);
1076     }
1077     if (SUColors.size() == 1 && *SUColors.begin() != color) {
1078       --ColorCount[color];
1079       CurrentColoring[SU->NodeNum] = *SUColors.begin();
1080       ++ColorCount[*SUColors.begin()];
1081     }
1082   }
1083 }
1084 
1085 void SIScheduleBlockCreator::cutHugeBlocks() {
1086   // TODO
1087 }
1088 
1089 void SIScheduleBlockCreator::regroupNoUserInstructions() {
1090   unsigned DAGSize = DAG->SUnits.size();
1091   int GroupID = NextNonReservedID++;
1092 
1093   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1094     SUnit *SU = &DAG->SUnits[SUNum];
1095     bool hasSuccessor = false;
1096 
1097     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1098       continue;
1099 
1100     for (SDep& SuccDep : SU->Succs) {
1101        SUnit *Succ = SuccDep.getSUnit();
1102       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1103         continue;
1104       hasSuccessor = true;
1105     }
1106     if (!hasSuccessor)
1107       CurrentColoring[SU->NodeNum] = GroupID;
1108   }
1109 }
1110 
1111 void SIScheduleBlockCreator::colorExports() {
1112   unsigned ExportColor = NextNonReservedID++;
1113   SmallVector<unsigned, 8> ExpGroup;
1114 
1115   // Put all exports together in a block.
1116   // The block will naturally end up being scheduled last,
1117   // thus putting exports at the end of the schedule, which
1118   // is better for performance.
1119   // However we must ensure, for safety, the exports can be put
1120   // together in the same block without any other instruction.
1121   // This could happen, for example, when scheduling after regalloc
1122   // if reloading a spilled register from memory using the same
1123   // register than used in a previous export.
1124   // If that happens, do not regroup the exports.
1125   for (unsigned SUNum : DAG->TopDownIndex2SU) {
1126     const SUnit &SU = DAG->SUnits[SUNum];
1127     if (SIInstrInfo::isEXP(*SU.getInstr())) {
1128       // Check the EXP can be added to the group safely,
1129       // ie without needing any other instruction.
1130       // The EXP is allowed to depend on other EXP
1131       // (they will be in the same group).
1132       for (unsigned j : ExpGroup) {
1133         bool HasSubGraph;
1134         std::vector<int> SubGraph;
1135         // By construction (topological order), if SU and
1136         // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
1137         // in the parent graph of SU.
1138 #ifndef NDEBUG
1139         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
1140                                                HasSubGraph);
1141         assert(!HasSubGraph);
1142 #endif
1143         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
1144                                                HasSubGraph);
1145         if (!HasSubGraph)
1146           continue; // No dependencies between each other
1147 
1148         // SubGraph contains all the instructions required
1149         // between EXP SUnits[j] and EXP SU.
1150         for (unsigned k : SubGraph) {
1151           if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
1152             // Other instructions than EXP would be required in the group.
1153             // Abort the groupping.
1154             return;
1155         }
1156       }
1157 
1158       ExpGroup.push_back(SUNum);
1159     }
1160   }
1161 
1162   // The group can be formed. Give the color.
1163   for (unsigned j : ExpGroup)
1164     CurrentColoring[j] = ExportColor;
1165 }
1166 
1167 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
1168   unsigned DAGSize = DAG->SUnits.size();
1169   std::map<unsigned,unsigned> RealID;
1170 
1171   CurrentBlocks.clear();
1172   CurrentColoring.clear();
1173   CurrentColoring.resize(DAGSize, 0);
1174   Node2CurrentBlock.clear();
1175 
1176   // Restore links previous scheduling variant has overridden.
1177   DAG->restoreSULinksLeft();
1178 
1179   NextReservedID = 1;
1180   NextNonReservedID = DAGSize + 1;
1181 
1182   LLVM_DEBUG(dbgs() << "Coloring the graph\n");
1183 
1184   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
1185     colorHighLatenciesGroups();
1186   else
1187     colorHighLatenciesAlone();
1188   colorComputeReservedDependencies();
1189   colorAccordingToReservedDependencies();
1190   colorEndsAccordingToDependencies();
1191   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
1192     colorForceConsecutiveOrderInGroup();
1193   regroupNoUserInstructions();
1194   colorMergeConstantLoadsNextGroup();
1195   colorMergeIfPossibleNextGroupOnlyForReserved();
1196   colorExports();
1197 
1198   // Put SUs of same color into same block
1199   Node2CurrentBlock.resize(DAGSize, -1);
1200   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1201     SUnit *SU = &DAG->SUnits[i];
1202     unsigned Color = CurrentColoring[SU->NodeNum];
1203     if (RealID.find(Color) == RealID.end()) {
1204       int ID = CurrentBlocks.size();
1205       BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
1206       CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
1207       RealID[Color] = ID;
1208     }
1209     CurrentBlocks[RealID[Color]]->addUnit(SU);
1210     Node2CurrentBlock[SU->NodeNum] = RealID[Color];
1211   }
1212 
1213   // Build dependencies between blocks.
1214   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1215     SUnit *SU = &DAG->SUnits[i];
1216     int SUID = Node2CurrentBlock[i];
1217      for (SDep& SuccDep : SU->Succs) {
1218        SUnit *Succ = SuccDep.getSUnit();
1219       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1220         continue;
1221       if (Node2CurrentBlock[Succ->NodeNum] != SUID)
1222         CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
1223                                      SuccDep.isCtrl() ? NoData : Data);
1224     }
1225     for (SDep& PredDep : SU->Preds) {
1226       SUnit *Pred = PredDep.getSUnit();
1227       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
1228         continue;
1229       if (Node2CurrentBlock[Pred->NodeNum] != SUID)
1230         CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
1231     }
1232   }
1233 
1234   // Free root and leafs of all blocks to enable scheduling inside them.
1235   for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1236     SIScheduleBlock *Block = CurrentBlocks[i];
1237     Block->finalizeUnits();
1238   }
1239   LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
1240              for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1241                SIScheduleBlock *Block = CurrentBlocks[i];
1242                Block->printDebug(true);
1243              });
1244 }
1245 
1246 // Two functions taken from Codegen/MachineScheduler.cpp
1247 
1248 /// Non-const version.
1249 static MachineBasicBlock::iterator
1250 nextIfDebug(MachineBasicBlock::iterator I,
1251             MachineBasicBlock::const_iterator End) {
1252   for (; I != End; ++I) {
1253     if (!I->isDebugInstr())
1254       break;
1255   }
1256   return I;
1257 }
1258 
1259 void SIScheduleBlockCreator::topologicalSort() {
1260   unsigned DAGSize = CurrentBlocks.size();
1261   std::vector<int> WorkList;
1262 
1263   LLVM_DEBUG(dbgs() << "Topological Sort\n");
1264 
1265   WorkList.reserve(DAGSize);
1266   TopDownIndex2Block.resize(DAGSize);
1267   TopDownBlock2Index.resize(DAGSize);
1268   BottomUpIndex2Block.resize(DAGSize);
1269 
1270   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1271     SIScheduleBlock *Block = CurrentBlocks[i];
1272     unsigned Degree = Block->getSuccs().size();
1273     TopDownBlock2Index[i] = Degree;
1274     if (Degree == 0) {
1275       WorkList.push_back(i);
1276     }
1277   }
1278 
1279   int Id = DAGSize;
1280   while (!WorkList.empty()) {
1281     int i = WorkList.back();
1282     SIScheduleBlock *Block = CurrentBlocks[i];
1283     WorkList.pop_back();
1284     TopDownBlock2Index[i] = --Id;
1285     TopDownIndex2Block[Id] = i;
1286     for (SIScheduleBlock* Pred : Block->getPreds()) {
1287       if (!--TopDownBlock2Index[Pred->getID()])
1288         WorkList.push_back(Pred->getID());
1289     }
1290   }
1291 
1292 #ifndef NDEBUG
1293   // Check correctness of the ordering.
1294   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1295     SIScheduleBlock *Block = CurrentBlocks[i];
1296     for (SIScheduleBlock* Pred : Block->getPreds()) {
1297       assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
1298       "Wrong Top Down topological sorting");
1299     }
1300   }
1301 #endif
1302 
1303   BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
1304                                          TopDownIndex2Block.rend());
1305 }
1306 
1307 void SIScheduleBlockCreator::scheduleInsideBlocks() {
1308   unsigned DAGSize = CurrentBlocks.size();
1309 
1310   LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
1311 
1312   // We do schedule a valid scheduling such that a Block corresponds
1313   // to a range of instructions.
1314   LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
1315   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1316     SIScheduleBlock *Block = CurrentBlocks[i];
1317     Block->fastSchedule();
1318   }
1319 
1320   // Note: the following code, and the part restoring previous position
1321   // is by far the most expensive operation of the Scheduler.
1322 
1323   // Do not update CurrentTop.
1324   MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
1325   std::vector<MachineBasicBlock::iterator> PosOld;
1326   std::vector<MachineBasicBlock::iterator> PosNew;
1327   PosOld.reserve(DAG->SUnits.size());
1328   PosNew.reserve(DAG->SUnits.size());
1329 
1330   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1331     int BlockIndice = TopDownIndex2Block[i];
1332     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1333     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1334 
1335     for (SUnit* SU : SUs) {
1336       MachineInstr *MI = SU->getInstr();
1337       MachineBasicBlock::iterator Pos = MI;
1338       PosOld.push_back(Pos);
1339       if (&*CurrentTopFastSched == MI) {
1340         PosNew.push_back(Pos);
1341         CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
1342                                           DAG->getCurrentBottom());
1343       } else {
1344         // Update the instruction stream.
1345         DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
1346 
1347         // Update LiveIntervals.
1348         // Note: Moving all instructions and calling handleMove every time
1349         // is the most cpu intensive operation of the scheduler.
1350         // It would gain a lot if there was a way to recompute the
1351         // LiveIntervals for the entire scheduling region.
1352         DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
1353         PosNew.push_back(CurrentTopFastSched);
1354       }
1355     }
1356   }
1357 
1358   // Now we have Block of SUs == Block of MI.
1359   // We do the final schedule for the instructions inside the block.
1360   // The property that all the SUs of the Block are grouped together as MI
1361   // is used for correct reg usage tracking.
1362   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1363     SIScheduleBlock *Block = CurrentBlocks[i];
1364     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1365     Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
1366   }
1367 
1368   LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
1369   // Restore old ordering (which prevents a LIS->handleMove bug).
1370   for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
1371     MachineBasicBlock::iterator POld = PosOld[i-1];
1372     MachineBasicBlock::iterator PNew = PosNew[i-1];
1373     if (PNew != POld) {
1374       // Update the instruction stream.
1375       DAG->getBB()->splice(POld, DAG->getBB(), PNew);
1376 
1377       // Update LiveIntervals.
1378       DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
1379     }
1380   }
1381 
1382   LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1383     SIScheduleBlock *Block = CurrentBlocks[i];
1384     Block->printDebug(true);
1385   });
1386 }
1387 
1388 void SIScheduleBlockCreator::fillStats() {
1389   unsigned DAGSize = CurrentBlocks.size();
1390 
1391   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1392     int BlockIndice = TopDownIndex2Block[i];
1393     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1394     if (Block->getPreds().empty())
1395       Block->Depth = 0;
1396     else {
1397       unsigned Depth = 0;
1398       for (SIScheduleBlock *Pred : Block->getPreds()) {
1399         if (Depth < Pred->Depth + Pred->getCost())
1400           Depth = Pred->Depth + Pred->getCost();
1401       }
1402       Block->Depth = Depth;
1403     }
1404   }
1405 
1406   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1407     int BlockIndice = BottomUpIndex2Block[i];
1408     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1409     if (Block->getSuccs().empty())
1410       Block->Height = 0;
1411     else {
1412       unsigned Height = 0;
1413       for (const auto &Succ : Block->getSuccs())
1414         Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
1415       Block->Height = Height;
1416     }
1417   }
1418 }
1419 
1420 // SIScheduleBlockScheduler //
1421 
1422 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
1423                                                    SISchedulerBlockSchedulerVariant Variant,
1424                                                    SIScheduleBlocks  BlocksStruct) :
1425   DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
1426   LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
1427   SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
1428 
1429   // Fill the usage of every output
1430   // Warning: while by construction we always have a link between two blocks
1431   // when one needs a result from the other, the number of users of an output
1432   // is not the sum of child blocks having as input the same virtual register.
1433   // Here is an example. A produces x and y. B eats x and produces x'.
1434   // C eats x' and y. The register coalescer may have attributed the same
1435   // virtual register to x and x'.
1436   // To count accurately, we do a topological sort. In case the register is
1437   // found for several parents, we increment the usage of the one with the
1438   // highest topological index.
1439   LiveOutRegsNumUsages.resize(Blocks.size());
1440   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1441     SIScheduleBlock *Block = Blocks[i];
1442     for (unsigned Reg : Block->getInRegs()) {
1443       bool Found = false;
1444       int topoInd = -1;
1445       for (SIScheduleBlock* Pred: Block->getPreds()) {
1446         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1447         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1448 
1449         if (RegPos != PredOutRegs.end()) {
1450           Found = true;
1451           if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
1452             topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
1453           }
1454         }
1455       }
1456 
1457       if (!Found)
1458         continue;
1459 
1460       int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
1461       ++LiveOutRegsNumUsages[PredID][Reg];
1462     }
1463   }
1464 
1465   LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
1466   BlockNumPredsLeft.resize(Blocks.size());
1467   BlockNumSuccsLeft.resize(Blocks.size());
1468 
1469   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1470     SIScheduleBlock *Block = Blocks[i];
1471     BlockNumPredsLeft[i] = Block->getPreds().size();
1472     BlockNumSuccsLeft[i] = Block->getSuccs().size();
1473   }
1474 
1475 #ifndef NDEBUG
1476   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1477     SIScheduleBlock *Block = Blocks[i];
1478     assert(Block->getID() == i);
1479   }
1480 #endif
1481 
1482   std::set<unsigned> InRegs = DAG->getInRegs();
1483   addLiveRegs(InRegs);
1484 
1485   // Increase LiveOutRegsNumUsages for blocks
1486   // producing registers consumed in another
1487   // scheduling region.
1488   for (unsigned Reg : DAG->getOutRegs()) {
1489     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1490       // Do reverse traversal
1491       int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
1492       SIScheduleBlock *Block = Blocks[ID];
1493       const std::set<unsigned> &OutRegs = Block->getOutRegs();
1494 
1495       if (OutRegs.find(Reg) == OutRegs.end())
1496         continue;
1497 
1498       ++LiveOutRegsNumUsages[ID][Reg];
1499       break;
1500     }
1501   }
1502 
1503   // Fill LiveRegsConsumers for regs that were already
1504   // defined before scheduling.
1505   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1506     SIScheduleBlock *Block = Blocks[i];
1507     for (unsigned Reg : Block->getInRegs()) {
1508       bool Found = false;
1509       for (SIScheduleBlock* Pred: Block->getPreds()) {
1510         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1511         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1512 
1513         if (RegPos != PredOutRegs.end()) {
1514           Found = true;
1515           break;
1516         }
1517       }
1518 
1519       if (!Found)
1520         ++LiveRegsConsumers[Reg];
1521     }
1522   }
1523 
1524   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1525     SIScheduleBlock *Block = Blocks[i];
1526     if (BlockNumPredsLeft[i] == 0) {
1527       ReadyBlocks.push_back(Block);
1528     }
1529   }
1530 
1531   while (SIScheduleBlock *Block = pickBlock()) {
1532     BlocksScheduled.push_back(Block);
1533     blockScheduled(Block);
1534   }
1535 
1536   LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
1537                                             : BlocksScheduled) {
1538     dbgs() << ' ' << Block->getID();
1539   } dbgs() << '\n';);
1540 }
1541 
1542 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
1543                                                    SIBlockSchedCandidate &TryCand) {
1544   if (!Cand.isValid()) {
1545     TryCand.Reason = NodeOrder;
1546     return true;
1547   }
1548 
1549   // Try to hide high latencies.
1550   if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
1551                  Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
1552     return true;
1553   // Schedule high latencies early so you can hide them better.
1554   if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
1555                           TryCand, Cand, Latency))
1556     return true;
1557   if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
1558                                                    TryCand, Cand, Depth))
1559     return true;
1560   if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
1561                           Cand.NumHighLatencySuccessors,
1562                           TryCand, Cand, Successor))
1563     return true;
1564   return false;
1565 }
1566 
1567 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
1568                                                     SIBlockSchedCandidate &TryCand) {
1569   if (!Cand.isValid()) {
1570     TryCand.Reason = NodeOrder;
1571     return true;
1572   }
1573 
1574   if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
1575                        TryCand, Cand, RegUsage))
1576     return true;
1577   if (SISched::tryGreater(TryCand.NumSuccessors > 0,
1578                           Cand.NumSuccessors > 0,
1579                           TryCand, Cand, Successor))
1580     return true;
1581   if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
1582     return true;
1583   if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
1584                        TryCand, Cand, RegUsage))
1585     return true;
1586   return false;
1587 }
1588 
1589 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
1590   SIBlockSchedCandidate Cand;
1591   std::vector<SIScheduleBlock*>::iterator Best;
1592   SIScheduleBlock *Block;
1593   if (ReadyBlocks.empty())
1594     return nullptr;
1595 
1596   DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
1597                         VregCurrentUsage, SregCurrentUsage);
1598   if (VregCurrentUsage > maxVregUsage)
1599     maxVregUsage = VregCurrentUsage;
1600   if (SregCurrentUsage > maxSregUsage)
1601     maxSregUsage = SregCurrentUsage;
1602   LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
1603              for (SIScheduleBlock *Block
1604                   : ReadyBlocks) dbgs()
1605              << Block->getID() << ' ';
1606              dbgs() << "\nCurrent Live:\n";
1607              for (unsigned Reg
1608                   : LiveRegs) dbgs()
1609              << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
1610              dbgs() << '\n';
1611              dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
1612              dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
1613 
1614   Cand.Block = nullptr;
1615   for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
1616        E = ReadyBlocks.end(); I != E; ++I) {
1617     SIBlockSchedCandidate TryCand;
1618     TryCand.Block = *I;
1619     TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
1620     TryCand.VGPRUsageDiff =
1621       checkRegUsageImpact(TryCand.Block->getInRegs(),
1622           TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
1623     TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
1624     TryCand.NumHighLatencySuccessors =
1625       TryCand.Block->getNumHighLatencySuccessors();
1626     TryCand.LastPosHighLatParentScheduled =
1627       (unsigned int) std::max<int> (0,
1628          LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
1629            LastPosWaitedHighLatency);
1630     TryCand.Height = TryCand.Block->Height;
1631     // Try not to increase VGPR usage too much, else we may spill.
1632     if (VregCurrentUsage > 120 ||
1633         Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
1634       if (!tryCandidateRegUsage(Cand, TryCand) &&
1635           Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
1636         tryCandidateLatency(Cand, TryCand);
1637     } else {
1638       if (!tryCandidateLatency(Cand, TryCand))
1639         tryCandidateRegUsage(Cand, TryCand);
1640     }
1641     if (TryCand.Reason != NoCand) {
1642       Cand.setBest(TryCand);
1643       Best = I;
1644       LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
1645                         << getReasonStr(Cand.Reason) << '\n');
1646     }
1647   }
1648 
1649   LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
1650              dbgs() << "Is a block with high latency instruction: "
1651                     << (Cand.IsHighLatency ? "yes\n" : "no\n");
1652              dbgs() << "Position of last high latency dependency: "
1653                     << Cand.LastPosHighLatParentScheduled << '\n';
1654              dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
1655              dbgs() << '\n';);
1656 
1657   Block = Cand.Block;
1658   ReadyBlocks.erase(Best);
1659   return Block;
1660 }
1661 
1662 // Tracking of currently alive registers to determine VGPR Usage.
1663 
1664 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
1665   for (Register Reg : Regs) {
1666     // For now only track virtual registers.
1667     if (!Reg.isVirtual())
1668       continue;
1669     // If not already in the live set, then add it.
1670     (void) LiveRegs.insert(Reg);
1671   }
1672 }
1673 
1674 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
1675                                        std::set<unsigned> &Regs) {
1676   for (unsigned Reg : Regs) {
1677     // For now only track virtual registers.
1678     std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
1679     assert (Pos != LiveRegs.end() && // Reg must be live.
1680                LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
1681                LiveRegsConsumers[Reg] >= 1);
1682     --LiveRegsConsumers[Reg];
1683     if (LiveRegsConsumers[Reg] == 0)
1684       LiveRegs.erase(Pos);
1685   }
1686 }
1687 
1688 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
1689   for (const auto &Block : Parent->getSuccs()) {
1690     if (--BlockNumPredsLeft[Block.first->getID()] == 0)
1691       ReadyBlocks.push_back(Block.first);
1692 
1693     if (Parent->isHighLatencyBlock() &&
1694         Block.second == SIScheduleBlockLinkKind::Data)
1695       LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
1696   }
1697 }
1698 
1699 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
1700   decreaseLiveRegs(Block, Block->getInRegs());
1701   addLiveRegs(Block->getOutRegs());
1702   releaseBlockSuccs(Block);
1703   for (std::map<unsigned, unsigned>::iterator RegI =
1704        LiveOutRegsNumUsages[Block->getID()].begin(),
1705        E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
1706     std::pair<unsigned, unsigned> RegP = *RegI;
1707     // We produce this register, thus it must not be previously alive.
1708     assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
1709            LiveRegsConsumers[RegP.first] == 0);
1710     LiveRegsConsumers[RegP.first] += RegP.second;
1711   }
1712   if (LastPosHighLatencyParentScheduled[Block->getID()] >
1713         (unsigned)LastPosWaitedHighLatency)
1714     LastPosWaitedHighLatency =
1715       LastPosHighLatencyParentScheduled[Block->getID()];
1716   ++NumBlockScheduled;
1717 }
1718 
1719 std::vector<int>
1720 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
1721                                      std::set<unsigned> &OutRegs) {
1722   std::vector<int> DiffSetPressure;
1723   DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
1724 
1725   for (Register Reg : InRegs) {
1726     // For now only track virtual registers.
1727     if (!Reg.isVirtual())
1728       continue;
1729     if (LiveRegsConsumers[Reg] > 1)
1730       continue;
1731     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1732     for (; PSetI.isValid(); ++PSetI) {
1733       DiffSetPressure[*PSetI] -= PSetI.getWeight();
1734     }
1735   }
1736 
1737   for (Register Reg : OutRegs) {
1738     // For now only track virtual registers.
1739     if (!Reg.isVirtual())
1740       continue;
1741     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1742     for (; PSetI.isValid(); ++PSetI) {
1743       DiffSetPressure[*PSetI] += PSetI.getWeight();
1744     }
1745   }
1746 
1747   return DiffSetPressure;
1748 }
1749 
1750 // SIScheduler //
1751 
1752 struct SIScheduleBlockResult
1753 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
1754                              SISchedulerBlockSchedulerVariant ScheduleVariant) {
1755   SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
1756   SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
1757   std::vector<SIScheduleBlock*> ScheduledBlocks;
1758   struct SIScheduleBlockResult Res;
1759 
1760   ScheduledBlocks = Scheduler.getBlocks();
1761 
1762   for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
1763     SIScheduleBlock *Block = ScheduledBlocks[b];
1764     std::vector<SUnit*> SUs = Block->getScheduledUnits();
1765 
1766     for (SUnit* SU : SUs)
1767       Res.SUs.push_back(SU->NodeNum);
1768   }
1769 
1770   Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
1771   Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
1772   return Res;
1773 }
1774 
1775 // SIScheduleDAGMI //
1776 
1777 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
1778   ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
1779   SITII = static_cast<const SIInstrInfo*>(TII);
1780   SITRI = static_cast<const SIRegisterInfo*>(TRI);
1781 }
1782 
1783 SIScheduleDAGMI::~SIScheduleDAGMI() = default;
1784 
1785 // Code adapted from scheduleDAG.cpp
1786 // Does a topological sort over the SUs.
1787 // Both TopDown and BottomUp
1788 void SIScheduleDAGMI::topologicalSort() {
1789   Topo.InitDAGTopologicalSorting();
1790 
1791   TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
1792   BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
1793 }
1794 
1795 // Move low latencies further from their user without
1796 // increasing SGPR usage (in general)
1797 // This is to be replaced by a better pass that would
1798 // take into account SGPR usage (based on VGPR Usage
1799 // and the corresponding wavefront count), that would
1800 // try to merge groups of loads if it make sense, etc
1801 void SIScheduleDAGMI::moveLowLatencies() {
1802    unsigned DAGSize = SUnits.size();
1803    int LastLowLatencyUser = -1;
1804    int LastLowLatencyPos = -1;
1805 
1806    for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
1807     SUnit *SU = &SUnits[ScheduledSUnits[i]];
1808     bool IsLowLatencyUser = false;
1809     unsigned MinPos = 0;
1810 
1811     for (SDep& PredDep : SU->Preds) {
1812       SUnit *Pred = PredDep.getSUnit();
1813       if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
1814         IsLowLatencyUser = true;
1815       }
1816       if (Pred->NodeNum >= DAGSize)
1817         continue;
1818       unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
1819       if (PredPos >= MinPos)
1820         MinPos = PredPos + 1;
1821     }
1822 
1823     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1824       unsigned BestPos = LastLowLatencyUser + 1;
1825       if ((int)BestPos <= LastLowLatencyPos)
1826         BestPos = LastLowLatencyPos + 1;
1827       if (BestPos < MinPos)
1828         BestPos = MinPos;
1829       if (BestPos < i) {
1830         for (unsigned u = i; u > BestPos; --u) {
1831           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1832           ScheduledSUnits[u] = ScheduledSUnits[u-1];
1833         }
1834         ScheduledSUnits[BestPos] = SU->NodeNum;
1835         ScheduledSUnitsInv[SU->NodeNum] = BestPos;
1836       }
1837       LastLowLatencyPos = BestPos;
1838       if (IsLowLatencyUser)
1839         LastLowLatencyUser = BestPos;
1840     } else if (IsLowLatencyUser) {
1841       LastLowLatencyUser = i;
1842     // Moves COPY instructions on which depends
1843     // the low latency instructions too.
1844     } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
1845       bool CopyForLowLat = false;
1846       for (SDep& SuccDep : SU->Succs) {
1847         SUnit *Succ = SuccDep.getSUnit();
1848         if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1849           continue;
1850         if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
1851           CopyForLowLat = true;
1852         }
1853       }
1854       if (!CopyForLowLat)
1855         continue;
1856       if (MinPos < i) {
1857         for (unsigned u = i; u > MinPos; --u) {
1858           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1859           ScheduledSUnits[u] = ScheduledSUnits[u-1];
1860         }
1861         ScheduledSUnits[MinPos] = SU->NodeNum;
1862         ScheduledSUnitsInv[SU->NodeNum] = MinPos;
1863       }
1864     }
1865   }
1866 }
1867 
1868 void SIScheduleDAGMI::restoreSULinksLeft() {
1869   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1870     SUnits[i].isScheduled = false;
1871     SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
1872     SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
1873     SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
1874     SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
1875   }
1876 }
1877 
1878 // Return the Vgpr and Sgpr usage corresponding to some virtual registers.
1879 template<typename _Iterator> void
1880 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
1881                                   unsigned &VgprUsage, unsigned &SgprUsage) {
1882   VgprUsage = 0;
1883   SgprUsage = 0;
1884   for (_Iterator RegI = First; RegI != End; ++RegI) {
1885     Register Reg = *RegI;
1886     // For now only track virtual registers
1887     if (!Reg.isVirtual())
1888       continue;
1889     PSetIterator PSetI = MRI.getPressureSets(Reg);
1890     for (; PSetI.isValid(); ++PSetI) {
1891       if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
1892         VgprUsage += PSetI.getWeight();
1893       else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
1894         SgprUsage += PSetI.getWeight();
1895     }
1896   }
1897 }
1898 
1899 void SIScheduleDAGMI::schedule()
1900 {
1901   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1902   SIScheduleBlockResult Best, Temp;
1903   LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
1904 
1905   buildDAGWithRegPressure();
1906   LLVM_DEBUG(dump());
1907 
1908   topologicalSort();
1909   findRootsAndBiasEdges(TopRoots, BotRoots);
1910   // We reuse several ScheduleDAGMI and ScheduleDAGMILive
1911   // functions, but to make them happy we must initialize
1912   // the default Scheduler implementation (even if we do not
1913   // run it)
1914   SchedImpl->initialize(this);
1915   initQueues(TopRoots, BotRoots);
1916 
1917   // Fill some stats to help scheduling.
1918 
1919   SUnitsLinksBackup = SUnits;
1920   IsLowLatencySU.clear();
1921   LowLatencyOffset.clear();
1922   IsHighLatencySU.clear();
1923 
1924   IsLowLatencySU.resize(SUnits.size(), 0);
1925   LowLatencyOffset.resize(SUnits.size(), 0);
1926   IsHighLatencySU.resize(SUnits.size(), 0);
1927 
1928   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1929     SUnit *SU = &SUnits[i];
1930     const MachineOperand *BaseLatOp;
1931     int64_t OffLatReg;
1932     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1933       IsLowLatencySU[i] = 1;
1934       bool OffsetIsScalable;
1935       if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
1936                                          OffsetIsScalable, TRI))
1937         LowLatencyOffset[i] = OffLatReg;
1938     } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
1939       IsHighLatencySU[i] = 1;
1940   }
1941 
1942   SIScheduler Scheduler(this);
1943   Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
1944                                    SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
1945 
1946   // if VGPR usage is extremely high, try other good performing variants
1947   // which could lead to lower VGPR usage
1948   if (Best.MaxVGPRUsage > 180) {
1949     static const std::pair<SISchedulerBlockCreatorVariant,
1950                            SISchedulerBlockSchedulerVariant>
1951         Variants[] = {
1952       { LatenciesAlone, BlockRegUsageLatency },
1953 //      { LatenciesAlone, BlockRegUsage },
1954       { LatenciesGrouped, BlockLatencyRegUsage },
1955 //      { LatenciesGrouped, BlockRegUsageLatency },
1956 //      { LatenciesGrouped, BlockRegUsage },
1957       { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1958 //      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1959 //      { LatenciesAlonePlusConsecutive, BlockRegUsage }
1960     };
1961     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1962       Temp = Scheduler.scheduleVariant(v.first, v.second);
1963       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1964         Best = Temp;
1965     }
1966   }
1967   // if VGPR usage is still extremely high, we may spill. Try other variants
1968   // which are less performing, but that could lead to lower VGPR usage.
1969   if (Best.MaxVGPRUsage > 200) {
1970     static const std::pair<SISchedulerBlockCreatorVariant,
1971                            SISchedulerBlockSchedulerVariant>
1972         Variants[] = {
1973 //      { LatenciesAlone, BlockRegUsageLatency },
1974       { LatenciesAlone, BlockRegUsage },
1975 //      { LatenciesGrouped, BlockLatencyRegUsage },
1976       { LatenciesGrouped, BlockRegUsageLatency },
1977       { LatenciesGrouped, BlockRegUsage },
1978 //      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1979       { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1980       { LatenciesAlonePlusConsecutive, BlockRegUsage }
1981     };
1982     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1983       Temp = Scheduler.scheduleVariant(v.first, v.second);
1984       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1985         Best = Temp;
1986     }
1987   }
1988 
1989   ScheduledSUnits = Best.SUs;
1990   ScheduledSUnitsInv.resize(SUnits.size());
1991 
1992   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1993     ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
1994   }
1995 
1996   moveLowLatencies();
1997 
1998   // Tell the outside world about the result of the scheduling.
1999 
2000   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
2001   TopRPTracker.setPos(CurrentTop);
2002 
2003   for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
2004        E = ScheduledSUnits.end(); I != E; ++I) {
2005     SUnit *SU = &SUnits[*I];
2006 
2007     scheduleMI(SU, true);
2008 
2009     LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
2010                       << *SU->getInstr());
2011   }
2012 
2013   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
2014 
2015   placeDebugValues();
2016 
2017   LLVM_DEBUG({
2018     dbgs() << "*** Final schedule for "
2019            << printMBBReference(*begin()->getParent()) << " ***\n";
2020     dumpSchedule();
2021     dbgs() << '\n';
2022   });
2023 }
2024