xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInstructions.td (revision c66a499e037efd268a744e487e7d0c45a4944a9b)
1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17class UniformSextInreg<ValueType VT> : PatFrag<
18  (ops node:$src),
19  (sext_inreg $src, VT),
20  [{ return !N->isDivergent(); }]>;
21
22class DivergentSextInreg<ValueType VT> : PatFrag<
23  (ops node:$src),
24  (sext_inreg $src, VT),
25  [{ return N->isDivergent(); }]>;
26
27include "SOPInstructions.td"
28include "VOPInstructions.td"
29include "SMInstructions.td"
30include "FLATInstructions.td"
31include "BUFInstructions.td"
32include "EXPInstructions.td"
33include "LDSDIRInstructions.td"
34include "VINTERPInstructions.td"
35
36//===----------------------------------------------------------------------===//
37// VINTRP Instructions
38//===----------------------------------------------------------------------===//
39
40// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
41def VINTRPDst : VINTRPDstOperand <VGPR_32>;
42
43let Uses = [MODE, M0, EXEC] in {
44
45// FIXME: Specify SchedRW for VINTRP instructions.
46
47multiclass V_INTERP_P1_F32_m : VINTRP_m <
48  0x00000000,
49  (outs VINTRPDst:$vdst),
50  (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
51  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
52  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
53                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
54>;
55
56let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
57
58defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
59
60} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
61
62let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
63    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
64
65defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
66
67} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
68  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
69
70let OtherPredicates = [isNotGFX90APlus] in {
71let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
72
73defm V_INTERP_P2_F32 : VINTRP_m <
74  0x00000001,
75  (outs VINTRPDst:$vdst),
76  (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
77  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
78  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
79                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
80
81} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
82
83defm V_INTERP_MOV_F32 : VINTRP_m <
84  0x00000002,
85  (outs VINTRPDst:$vdst),
86  (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan),
87  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
88  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
89                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
90
91} // End OtherPredicates = [isNotGFX90APlus]
92
93} // End Uses = [MODE, M0, EXEC]
94
95//===----------------------------------------------------------------------===//
96// Pseudo Instructions
97//===----------------------------------------------------------------------===//
98def ATOMIC_FENCE : SPseudoInstSI<
99  (outs), (ins i32imm:$ordering, i32imm:$scope),
100  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
101  "ATOMIC_FENCE $ordering, $scope"> {
102  let hasSideEffects = 1;
103  let maybeAtomic = 1;
104}
105
106let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
107
108// For use in patterns
109def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
110  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
111  let isPseudo = 1;
112  let isCodeGenOnly = 1;
113  let usesCustomInserter = 1;
114}
115
116// 64-bit vector move instruction. This is mainly used by the
117// SIFoldOperands pass to enable folding of inline immediates.
118def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
119                                      (ins VSrc_b64:$src0)> {
120  let isReMaterializable = 1;
121  let isAsCheapAsAMove = 1;
122  let isMoveImm = 1;
123  let SchedRW = [Write64Bit];
124  let Size = 16; // Needs maximum 2 v_mov_b32 instructions 8 byte long each.
125  let UseNamedOperandTable = 1;
126}
127
128// 64-bit vector move with dpp. Expanded post-RA.
129def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
130  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
131}
132
133// 64-bit scalar move immediate instruction. This is used to avoid subregs
134// initialization and allow rematerialization.
135def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
136                                          (ins i64imm:$src0)> {
137  let isReMaterializable = 1;
138  let isAsCheapAsAMove = 1;
139  let isMoveImm = 1;
140  let SchedRW = [WriteSALU, Write64Bit];
141  let Size = 16; // Needs maximum 2 s_mov_b32 instructions 8 byte long each.
142  let Uses = [];
143}
144
145// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
146// WQM pass processes it.
147def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
148
149// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
150// turned into a copy by WQM pass, but does not seed WQM requirements.
151def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
152
153// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
154// that the @earlyclobber is respected. The @earlyclobber is to make sure that
155// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
156// accidentally clobber inactive channels of $vdst.
157let Constraints = "@earlyclobber $vdst" in {
158def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
159def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
160}
161
162} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
163
164def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
165  let Uses = [EXEC];
166  let Defs = [EXEC, SCC];
167  let hasSideEffects = 0;
168  let mayLoad = 0;
169  let mayStore = 0;
170}
171
172def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
173  let hasSideEffects = 0;
174  let mayLoad = 0;
175  let mayStore = 0;
176}
177
178def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
179  let Uses = [EXEC];
180  let Defs = [EXEC, SCC];
181  let hasSideEffects = 0;
182  let mayLoad = 0;
183  let mayStore = 0;
184}
185
186def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
187  let hasSideEffects = 0;
188  let mayLoad = 0;
189  let mayStore = 0;
190}
191
192// PSEUDO_WM is treated like STRICT_WWM/STRICT_WQM without exec changes.
193def ENTER_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
194  let Uses = [EXEC];
195  let Defs = [EXEC];
196  let hasSideEffects = 0;
197  let mayLoad = 0;
198  let mayStore = 0;
199}
200
201def EXIT_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
202  let hasSideEffects = 0;
203  let mayLoad = 0;
204  let mayStore = 0;
205}
206
207// Pseudo instructions used for @llvm.fptrunc.round upward
208// and @llvm.fptrunc.round downward.
209// These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD
210// and G_FPTRUNC_ROUND_DOWNWARD before being lowered to
211// FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO.
212// The final codegen is done in the ModeRegister pass.
213let Uses = [MODE, EXEC] in {
214def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
215  (ins VGPR_32:$src0),
216  [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>;
217
218def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
219  (ins VGPR_32:$src0),
220  [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>;
221} // End Uses = [MODE, EXEC]
222
223// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
224// restoring it after we're done.
225let Defs = [SCC] in {
226def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
227  (ins VSrc_b32: $src, VSrc_b32:$inactive),
228  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
229}
230
231def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
232  (ins VSrc_b64: $src, VSrc_b64:$inactive),
233  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
234}
235} // End Defs = [SCC]
236
237let usesCustomInserter = 1, Defs = [VCC, EXEC] in {
238def V_ADD_U64_PSEUDO : VPseudoInstSI <
239  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
240  [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
241>;
242
243def V_SUB_U64_PSEUDO : VPseudoInstSI <
244  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
245  [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
246>;
247} // End usesCustomInserter = 1, Defs = [VCC, EXEC]
248
249let usesCustomInserter = 1, Defs = [SCC] in {
250def S_ADD_U64_PSEUDO : SPseudoInstSI <
251  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
252  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
253>;
254
255def S_SUB_U64_PSEUDO : SPseudoInstSI <
256  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
257  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
258>;
259
260def S_ADD_CO_PSEUDO : SPseudoInstSI <
261  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
262>;
263
264def S_SUB_CO_PSEUDO : SPseudoInstSI <
265  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
266>;
267
268def S_UADDO_PSEUDO : SPseudoInstSI <
269  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
270>;
271
272def S_USUBO_PSEUDO : SPseudoInstSI <
273  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
274>;
275
276} // End usesCustomInserter = 1, Defs = [SCC]
277
278let usesCustomInserter = 1 in {
279def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
280  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
281} // End let usesCustomInserter = 1, SALU = 1
282
283// Wrap an instruction by duplicating it, except for setting isTerminator.
284class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
285      base_inst.OutOperandList,
286      base_inst.InOperandList> {
287  let Uses = base_inst.Uses;
288  let Defs = base_inst.Defs;
289  let isTerminator = 1;
290  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
291  let hasSideEffects = base_inst.hasSideEffects;
292  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
293  let CodeSize = base_inst.CodeSize;
294  let SchedRW = base_inst.SchedRW;
295}
296
297let WaveSizePredicate = isWave64 in {
298def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
299def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
300def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
301def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
302def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
303}
304
305let WaveSizePredicate = isWave32 in {
306def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
307def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
308def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
309def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
310def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
311}
312
313
314def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
315  [(int_amdgcn_wave_barrier)]> {
316  let SchedRW = [];
317  let hasNoSchedulingInfo = 1;
318  let hasSideEffects = 1;
319  let mayLoad = 0;
320  let mayStore = 0;
321  let isConvergent = 1;
322  let FixedSize = 1;
323  let Size = 0;
324  let isMeta = 1;
325}
326
327def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
328  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
329  let SchedRW = [];
330  let hasNoSchedulingInfo = 1;
331  let hasSideEffects = 1;
332  let mayLoad = 0;
333  let mayStore = 0;
334  let isConvergent = 1;
335  let FixedSize = 1;
336  let Size = 0;
337  let isMeta = 1;
338}
339
340def SCHED_GROUP_BARRIER : SPseudoInstSI<
341  (outs),
342  (ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
343  [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
344  let SchedRW = [];
345  let hasNoSchedulingInfo = 1;
346  let hasSideEffects = 1;
347  let mayLoad = 0;
348  let mayStore = 0;
349  let isConvergent = 1;
350  let FixedSize = 1;
351  let Size = 0;
352  let isMeta = 1;
353}
354
355def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
356  [(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
357  let SchedRW = [];
358  let hasNoSchedulingInfo = 1;
359  let hasSideEffects = 1;
360  let mayLoad = 0;
361  let mayStore = 0;
362  let isConvergent = 1;
363  let FixedSize = 1;
364  let Size = 0;
365  let isMeta = 1;
366}
367
368// SI pseudo instructions. These are used by the CFG structurizer pass
369// and should be lowered to ISA instructions prior to codegen.
370
371let isTerminator = 1 in {
372
373let OtherPredicates = [EnableLateCFGStructurize] in {
374 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
375  (outs),
376  (ins SReg_1:$vcc, brtarget:$target),
377  [(brcond i1:$vcc, bb:$target)]> {
378    let Size = 12;
379}
380}
381
382def SI_IF: CFPseudoInstSI <
383  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
384  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
385  let Constraints = "";
386  let Size = 12;
387  let hasSideEffects = 1;
388}
389
390def SI_ELSE : CFPseudoInstSI <
391  (outs SReg_1:$dst),
392  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
393  let Size = 12;
394  let hasSideEffects = 1;
395}
396
397def SI_WATERFALL_LOOP : CFPseudoInstSI <
398  (outs),
399  (ins brtarget:$target), [], 1> {
400  let Size = 8;
401  let isBranch = 1;
402  let Defs = [];
403}
404
405def SI_LOOP : CFPseudoInstSI <
406  (outs), (ins SReg_1:$saved, brtarget:$target),
407  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
408  let Size = 8;
409  let isBranch = 1;
410  let hasSideEffects = 1;
411}
412
413} // End isTerminator = 1
414
415def SI_END_CF : CFPseudoInstSI <
416  (outs), (ins SReg_1:$saved), [], 1, 1> {
417  let Size = 4;
418  let isAsCheapAsAMove = 1;
419  let isReMaterializable = 1;
420  let hasSideEffects = 1;
421  let mayLoad = 1; // FIXME: Should not need memory flags
422  let mayStore = 1;
423}
424
425def SI_IF_BREAK : CFPseudoInstSI <
426  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
427  let Size = 4;
428  let isAsCheapAsAMove = 1;
429  let isReMaterializable = 1;
430}
431
432// Branch to the early termination block of the shader if SCC is 0.
433// This uses SCC from a previous SALU operation, i.e. the update of
434// a mask of live lanes after a kill/demote operation.
435// Only valid in pixel shaders.
436def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
437  let Uses = [EXEC,SCC];
438}
439
440let Uses = [EXEC] in {
441
442multiclass PseudoInstKill <dag ins> {
443  // Even though this pseudo can usually be expanded without an SCC def, we
444  // conservatively assume that it has an SCC def, both because it is sometimes
445  // required in degenerate cases (when V_CMPX cannot be used due to constant
446  // bus limitations) and because it allows us to avoid having to track SCC
447  // liveness across basic blocks.
448  let Defs = [EXEC,SCC] in
449  def _PSEUDO : PseudoInstSI <(outs), ins> {
450    let isConvergent = 1;
451    let usesCustomInserter = 1;
452  }
453
454  let Defs = [EXEC,SCC] in
455  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
456    let isTerminator = 1;
457  }
458}
459
460defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
461let Defs = [VCC] in
462defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
463
464let Defs = [EXEC,VCC] in
465def SI_ILLEGAL_COPY : SPseudoInstSI <
466  (outs unknown:$dst), (ins unknown:$src),
467  [], " ; illegal copy $src to $dst">;
468
469} // End Uses = [EXEC], Defs = [EXEC,VCC]
470
471// Branch on undef scc. Used to avoid intermediate copy from
472// IMPLICIT_DEF to SCC.
473def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> {
474  let isTerminator = 1;
475  let usesCustomInserter = 1;
476  let isBranch = 1;
477}
478
479def SI_PS_LIVE : PseudoInstSI <
480  (outs SReg_1:$dst), (ins),
481  [(set i1:$dst, (int_amdgcn_ps_live))]> {
482  let SALU = 1;
483}
484
485let Uses = [EXEC] in {
486def SI_LIVE_MASK : PseudoInstSI <
487  (outs SReg_1:$dst), (ins),
488  [(set i1:$dst, (int_amdgcn_live_mask))]> {
489  let SALU = 1;
490}
491let Defs = [EXEC,SCC] in {
492// Demote: Turn a pixel shader thread into a helper lane.
493def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
494} // End Defs = [EXEC,SCC]
495} // End Uses = [EXEC]
496
497def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
498  [(int_amdgcn_unreachable)],
499  "; divergent unreachable"> {
500  let Size = 0;
501  let hasNoSchedulingInfo = 1;
502  let FixedSize = 1;
503  let isMeta = 1;
504}
505
506// Used as an isel pseudo to directly emit initialization with an
507// s_mov_b32 rather than a copy of another initialized
508// register. MachineCSE skips copies, and we don't want to have to
509// fold operands before it runs.
510def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
511  let Defs = [M0];
512  let usesCustomInserter = 1;
513  let isAsCheapAsAMove = 1;
514  let isReMaterializable = 1;
515}
516
517def SI_INIT_EXEC : SPseudoInstSI <
518  (outs), (ins i64imm:$src),
519  [(int_amdgcn_init_exec (i64 timm:$src))]> {
520  let Defs = [EXEC];
521  let isAsCheapAsAMove = 1;
522}
523
524def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
525  (outs), (ins SSrc_b32:$input, i32imm:$shift),
526  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
527  let Defs = [EXEC];
528}
529
530// Return for returning shaders to a shader variant epilog.
531def SI_RETURN_TO_EPILOG : SPseudoInstSI <
532  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
533  let isTerminator = 1;
534  let isBarrier = 1;
535  let isReturn = 1;
536  let hasNoSchedulingInfo = 1;
537  let DisableWQM = 1;
538  let FixedSize = 1;
539
540  // TODO: Should this be true?
541  let isMeta = 0;
542}
543
544// Return for returning function calls.
545def SI_RETURN : SPseudoInstSI <
546  (outs), (ins), [(AMDGPUret_flag)],
547  "; return"> {
548  let isTerminator = 1;
549  let isBarrier = 1;
550  let isReturn = 1;
551  let SchedRW = [WriteBranch];
552}
553
554// Return for returning function calls without output register.
555//
556// This version is only needed so we can fill in the output register
557// in the custom inserter.
558def SI_CALL_ISEL : SPseudoInstSI <
559  (outs), (ins SSrc_b64:$src0, unknown:$callee),
560  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
561  let Size = 4;
562  let isCall = 1;
563  let SchedRW = [WriteBranch];
564  let usesCustomInserter = 1;
565  // TODO: Should really base this on the call target
566  let isConvergent = 1;
567}
568
569def : GCNPat<
570  (AMDGPUcall i64:$src0, (i64 0)),
571  (SI_CALL_ISEL $src0, (i64 0))
572>;
573
574// Wrapper around s_swappc_b64 with extra $callee parameter to track
575// the called function after regalloc.
576def SI_CALL : SPseudoInstSI <
577  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
578  let Size = 4;
579  let FixedSize = 1;
580  let isCall = 1;
581  let UseNamedOperandTable = 1;
582  let SchedRW = [WriteBranch];
583  // TODO: Should really base this on the call target
584  let isConvergent = 1;
585}
586
587// Tail call handling pseudo
588def SI_TCRETURN : SPseudoInstSI <(outs),
589  (ins SReg_64:$src0, unknown:$callee, i32imm:$fpdiff),
590  [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
591  let Size = 4;
592  let FixedSize = 1;
593  let isCall = 1;
594  let isTerminator = 1;
595  let isReturn = 1;
596  let isBarrier = 1;
597  let UseNamedOperandTable = 1;
598  let SchedRW = [WriteBranch];
599  // TODO: Should really base this on the call target
600  let isConvergent = 1;
601}
602
603// Handle selecting indirect tail calls
604def : GCNPat<
605  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
606  (SI_TCRETURN SReg_64:$src0, (i64 0), i32imm:$fpdiff)
607>;
608
609def ADJCALLSTACKUP : SPseudoInstSI<
610  (outs), (ins i32imm:$amt0, i32imm:$amt1),
611  [(callseq_start timm:$amt0, timm:$amt1)],
612  "; adjcallstackup $amt0 $amt1"> {
613  let Size = 8; // Worst case. (s_add_u32 + constant)
614  let FixedSize = 1;
615  let hasSideEffects = 1;
616  let usesCustomInserter = 1;
617  let SchedRW = [WriteSALU];
618  let Defs = [SCC];
619}
620
621def ADJCALLSTACKDOWN : SPseudoInstSI<
622  (outs), (ins i32imm:$amt1, i32imm:$amt2),
623  [(callseq_end timm:$amt1, timm:$amt2)],
624  "; adjcallstackdown $amt1"> {
625  let Size = 8; // Worst case. (s_add_u32 + constant)
626  let hasSideEffects = 1;
627  let usesCustomInserter = 1;
628  let SchedRW = [WriteSALU];
629  let Defs = [SCC];
630}
631
632let Defs = [M0, EXEC, SCC],
633  UseNamedOperandTable = 1 in {
634
635// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
636// addressing implementation.
637class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
638  (outs VGPR_32:$vdst),
639  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
640  let usesCustomInserter = 1;
641}
642
643class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
644  (outs rc:$vdst),
645  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
646  let Constraints = "$src = $vdst";
647  let usesCustomInserter = 1;
648}
649
650def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
651def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
652def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
653def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
654def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
655def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
656def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
657def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
658def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
659def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
660
661def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
662def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
663def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
664def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
665def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
666def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
667def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
668def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
669def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
670def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
671
672} // End Uses = [EXEC], Defs = [M0, EXEC]
673
674// This is a pseudo variant of the v_movreld_b32 instruction in which the
675// vector operand appears only twice, once as def and once as use. Using this
676// pseudo avoids problems with the Two Address instructions pass.
677class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
678                                RegisterOperand val_ty> : PseudoInstSI <
679  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
680  let Constraints = "$vsrc = $vdst";
681  let Uses = [M0];
682}
683
684class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
685  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
686  let VALU = 1;
687  let VOP1 = 1;
688  let Uses = [M0, EXEC];
689}
690
691class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
692                                  RegisterOperand val_ty> :
693  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
694  let SALU = 1;
695  let SOP1 = 1;
696  let Uses = [M0];
697}
698
699class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
700  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
701class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
702  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
703
704def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
705def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
706def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
707def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
708def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
709def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
710def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
711def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
712def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
713def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
714def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
715def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
716
717def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
718def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
719def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
720def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
721def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
722def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
723def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
724def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
725
726def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
727def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
728def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
729def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
730def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
731
732// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
733// pseudos we avoid spills or copies being inserted within indirect sequences
734// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
735// this mode switching.
736
737class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
738  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
739  let Constraints = "$vsrc = $vdst";
740  let VALU = 1;
741  let Uses = [M0, EXEC];
742  let Defs = [M0];
743}
744
745def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
746def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
747def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
748def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
749def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
750def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
751def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
752def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
753def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
754def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
755def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
756def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
757
758class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
759  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
760  let VALU = 1;
761  let Uses = [M0, EXEC];
762  let Defs = [M0];
763}
764
765def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
766def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
767def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
768def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
769def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
770def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
771def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
772def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
773def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
774def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
775def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
776def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
777
778multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
779  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
780    def _SAVE : PseudoInstSI <
781      (outs),
782      (ins sgpr_class:$data, i32imm:$addr)> {
783      let mayStore = 1;
784      let mayLoad = 0;
785    }
786
787    def _RESTORE : PseudoInstSI <
788      (outs sgpr_class:$data),
789      (ins i32imm:$addr)> {
790      let mayStore = 0;
791      let mayLoad = 1;
792    }
793  } // End UseNamedOperandTable = 1
794}
795
796// You cannot use M0 as the output of v_readlane_b32 instructions or
797// use it in the sdata operand of SMEM instructions. We still need to
798// be able to spill the physical register m0, so allow it for
799// SI_SPILL_32_* instructions.
800defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
801defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
802defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
803defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
804defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
805defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
806defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
807defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
808defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
809defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
810defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
811defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
812defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
813defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
814
815// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
816// needs to be used and an extra instruction to move between VGPR and AGPR.
817// UsesTmp adds to the total size of an expanded spill in this case.
818multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
819  let UseNamedOperandTable = 1, VGPRSpill = 1,
820       SchedRW = [WriteVMEM] in {
821    def _SAVE : VPseudoInstSI <
822      (outs),
823      (ins vgpr_class:$vdata, i32imm:$vaddr,
824           SReg_32:$soffset, i32imm:$offset)> {
825      let mayStore = 1;
826      let mayLoad = 0;
827      // (2 * 4) + (8 * num_subregs) bytes maximum
828      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
829      // Size field is unsigned char and cannot fit more.
830      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
831    }
832
833    def _RESTORE : VPseudoInstSI <
834      (outs vgpr_class:$vdata),
835      (ins i32imm:$vaddr,
836           SReg_32:$soffset, i32imm:$offset)> {
837      let mayStore = 0;
838      let mayLoad = 1;
839
840      // (2 * 4) + (8 * num_subregs) bytes maximum
841      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
842      // Size field is unsigned char and cannot fit more.
843      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
844    }
845  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
846}
847
848defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
849defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
850defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
851defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
852defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
853defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
854defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
855defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
856defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
857defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
858defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
859defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
860defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
861defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
862
863defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
864defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
865defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
866defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
867defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
868defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
869defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
870defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
871defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
872defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
873defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
874defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
875defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
876defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
877
878defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
879defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
880defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
881defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
882defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
883defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
884defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
885defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
886defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
887defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
888defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
889defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
890defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
891defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
892
893def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
894  (outs SReg_64:$dst),
895  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
896  [(set SReg_64:$dst,
897      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
898  let Defs = [SCC];
899}
900
901def : GCNPat <
902  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
903  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
904>;
905
906def : GCNPat<
907  (AMDGPUtrap timm:$trapid),
908  (S_TRAP $trapid)
909>;
910
911def : GCNPat<
912  (AMDGPUelse i1:$src, bb:$target),
913  (SI_ELSE $src, $target)
914>;
915
916def : Pat <
917  (int_amdgcn_kill i1:$src),
918  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
919>;
920
921def : Pat <
922  (int_amdgcn_kill (i1 (not i1:$src))),
923  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
924>;
925
926def : Pat <
927  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
928  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
929>;
930
931def : Pat <
932  (int_amdgcn_wqm_demote i1:$src),
933  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
934>;
935
936def : Pat <
937  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
938  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
939>;
940
941  // TODO: we could add more variants for other types of conditionals
942
943def : Pat <
944  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
945  (COPY $src) // Return the SGPRs representing i1 src
946>;
947
948def : Pat <
949  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
950  (COPY $src) // Return the SGPRs representing i1 src
951>;
952
953//===----------------------------------------------------------------------===//
954// VOP1 Patterns
955//===----------------------------------------------------------------------===//
956
957let OtherPredicates = [UnsafeFPMath] in {
958
959// Convert (x - floor(x)) to fract(x)
960def : GCNPat <
961  (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)),
962             (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))),
963  (V_FRACT_F32_e64 $mods, $x)
964>;
965
966// Convert (x + (-floor(x))) to fract(x)
967def : GCNPat <
968  (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)),
969             (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))),
970  (V_FRACT_F64_e64 $mods, $x)
971>;
972
973} // End OtherPredicates = [UnsafeFPMath]
974
975
976multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
977  // f16_to_fp patterns
978  def : GCNPat <
979    (f32 (f16_to_fp i32:$src0)),
980    (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
981  >;
982
983  def : GCNPat <
984    (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
985    (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
986  >;
987
988  def : GCNPat <
989    (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
990    (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
991  >;
992
993  def : GCNPat <
994    (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
995    (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
996  >;
997
998  def : GCNPat <
999    (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
1000    (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
1001  >;
1002
1003  def : GCNPat <
1004    (f64 (fpextend f16:$src)),
1005    (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
1006  >;
1007
1008  // fp_to_fp16 patterns
1009  def : GCNPat <
1010    (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1011    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1012  >;
1013
1014  def : GCNPat <
1015    (i32 (fp_to_sint f16:$src)),
1016    (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1017  >;
1018
1019  def : GCNPat <
1020    (i32 (fp_to_uint f16:$src)),
1021    (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1022  >;
1023
1024  def : GCNPat <
1025    (f16 (sint_to_fp i32:$src)),
1026    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
1027  >;
1028
1029  def : GCNPat <
1030    (f16 (uint_to_fp i32:$src)),
1031    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
1032  >;
1033}
1034
1035let SubtargetPredicate = NotHasTrue16BitInsts in
1036defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
1037
1038let SubtargetPredicate = HasTrue16BitInsts in
1039defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64>;
1040
1041//===----------------------------------------------------------------------===//
1042// VOP2 Patterns
1043//===----------------------------------------------------------------------===//
1044
1045// NoMods pattern used for mac. If there are any source modifiers then it's
1046// better to select mad instead of mac.
1047class FMADPat <ValueType vt, Instruction inst>
1048  : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
1049                          (vt (VOP3NoMods vt:$src1)),
1050                          (vt (VOP3NoMods vt:$src2)))),
1051    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1052          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1053>;
1054
1055// Prefer mac form when there are no modifiers.
1056let AddedComplexity = 9 in {
1057let OtherPredicates = [HasMadMacF32Insts] in
1058def : FMADPat <f32, V_MAC_F32_e64>;
1059
1060// Don't allow source modifiers. If there are any source modifiers then it's
1061// better to select mad instead of mac.
1062let SubtargetPredicate = isGFX6GFX7GFX10,
1063    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1064def : GCNPat <
1065      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
1066                                    (VOP3NoMods f32:$src1)),
1067                 (VOP3NoMods f32:$src2))),
1068      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1069                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1070>;
1071
1072// Don't allow source modifiers. If there are any source modifiers then it's
1073// better to select fma instead of fmac.
1074let SubtargetPredicate = HasFmaLegacy32 in
1075def : GCNPat <
1076      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
1077                                  (VOP3NoMods f32:$src1),
1078                                  (VOP3NoMods f32:$src2))),
1079      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1080                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1081>;
1082
1083let SubtargetPredicate = Has16BitInsts in
1084def : FMADPat <f16, V_MAC_F16_e64>;
1085} // AddedComplexity = 9
1086
1087let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1088def : GCNPat <
1089      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1090                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1091                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1092      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1093                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1094>;
1095
1096class VOPSelectModsPat <ValueType vt> : GCNPat <
1097  (vt (select i1:$src0, (VOP3Mods vt:$src1, i32:$src1_mods),
1098                        (VOP3Mods vt:$src2, i32:$src2_mods))),
1099  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1100                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1101>;
1102
1103class VOPSelectPat <ValueType vt> : GCNPat <
1104  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1105  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1106>;
1107
1108def : VOPSelectModsPat <i32>;
1109def : VOPSelectModsPat <f32>;
1110def : VOPSelectPat <f16>;
1111def : VOPSelectPat <i16>;
1112
1113let AddedComplexity = 1 in {
1114def : GCNPat <
1115  (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
1116  (V_BCNT_U32_B32_e64 $popcnt, $val)
1117>;
1118}
1119
1120def : GCNPat <
1121  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1122  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1123>;
1124
1125def : GCNPat <
1126  (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
1127  (V_BCNT_U32_B32_e64 $popcnt, $val)
1128>;
1129
1130def : GCNPat <
1131  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1132  (REG_SEQUENCE VReg_64,
1133    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1134      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1135      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1136>;
1137
1138/********** ============================================ **********/
1139/********** Extraction, Insertion, Building and Casting  **********/
1140/********** ============================================ **********/
1141
1142// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1143// than an INSERT_SUBREG.
1144multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1145  def : GCNPat <
1146    (insertelt vec_type:$vec, elem_type:$elem, 0),
1147    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1148  >;
1149
1150  def : GCNPat <
1151    (insertelt vec_type:$vec, elem_type:$elem, 1),
1152    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1153  >;
1154}
1155
1156foreach Index = 0-1 in {
1157  def Extract_Element_v2i32_#Index : Extract_Element <
1158    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1159  >;
1160
1161  def Extract_Element_v2f32_#Index : Extract_Element <
1162    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1163  >;
1164}
1165
1166defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1167defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1168
1169foreach Index = 0-2 in {
1170  def Extract_Element_v3i32_#Index : Extract_Element <
1171    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1172  >;
1173  def Insert_Element_v3i32_#Index : Insert_Element <
1174    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1175  >;
1176
1177  def Extract_Element_v3f32_#Index : Extract_Element <
1178    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1179  >;
1180  def Insert_Element_v3f32_#Index : Insert_Element <
1181    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1182  >;
1183}
1184
1185foreach Index = 0-3 in {
1186  def Extract_Element_v4i32_#Index : Extract_Element <
1187    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1188  >;
1189  def Insert_Element_v4i32_#Index : Insert_Element <
1190    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1191  >;
1192
1193  def Extract_Element_v4f32_#Index : Extract_Element <
1194    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1195  >;
1196  def Insert_Element_v4f32_#Index : Insert_Element <
1197    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1198  >;
1199}
1200
1201foreach Index = 0-4 in {
1202  def Extract_Element_v5i32_#Index : Extract_Element <
1203    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1204  >;
1205  def Insert_Element_v5i32_#Index : Insert_Element <
1206    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1207  >;
1208
1209  def Extract_Element_v5f32_#Index : Extract_Element <
1210    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1211  >;
1212  def Insert_Element_v5f32_#Index : Insert_Element <
1213    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1214  >;
1215}
1216
1217foreach Index = 0-5 in {
1218  def Extract_Element_v6i32_#Index : Extract_Element <
1219    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1220  >;
1221  def Insert_Element_v6i32_#Index : Insert_Element <
1222    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1223  >;
1224
1225  def Extract_Element_v6f32_#Index : Extract_Element <
1226    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1227  >;
1228  def Insert_Element_v6f32_#Index : Insert_Element <
1229    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1230  >;
1231}
1232
1233foreach Index = 0-6 in {
1234  def Extract_Element_v7i32_#Index : Extract_Element <
1235    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1236  >;
1237  def Insert_Element_v7i32_#Index : Insert_Element <
1238    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1239  >;
1240
1241  def Extract_Element_v7f32_#Index : Extract_Element <
1242    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1243  >;
1244  def Insert_Element_v7f32_#Index : Insert_Element <
1245    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1246  >;
1247}
1248
1249foreach Index = 0-7 in {
1250  def Extract_Element_v8i32_#Index : Extract_Element <
1251    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1252  >;
1253  def Insert_Element_v8i32_#Index : Insert_Element <
1254    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1255  >;
1256
1257  def Extract_Element_v8f32_#Index : Extract_Element <
1258    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1259  >;
1260  def Insert_Element_v8f32_#Index : Insert_Element <
1261    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1262  >;
1263}
1264
1265foreach Index = 0-8 in {
1266  def Extract_Element_v9i32_#Index : Extract_Element <
1267    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1268  >;
1269  def Insert_Element_v9i32_#Index : Insert_Element <
1270    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1271  >;
1272
1273  def Extract_Element_v9f32_#Index : Extract_Element <
1274    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1275  >;
1276  def Insert_Element_v9f32_#Index : Insert_Element <
1277    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1278  >;
1279}
1280
1281foreach Index = 0-9 in {
1282  def Extract_Element_v10i32_#Index : Extract_Element <
1283    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1284  >;
1285  def Insert_Element_v10i32_#Index : Insert_Element <
1286    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1287  >;
1288
1289  def Extract_Element_v10f32_#Index : Extract_Element <
1290    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1291  >;
1292  def Insert_Element_v10f32_#Index : Insert_Element <
1293    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1294  >;
1295}
1296
1297foreach Index = 0-10 in {
1298  def Extract_Element_v11i32_#Index : Extract_Element <
1299    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1300  >;
1301  def Insert_Element_v11i32_#Index : Insert_Element <
1302    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1303  >;
1304
1305  def Extract_Element_v11f32_#Index : Extract_Element <
1306    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1307  >;
1308  def Insert_Element_v11f32_#Index : Insert_Element <
1309    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1310  >;
1311}
1312
1313foreach Index = 0-11 in {
1314  def Extract_Element_v12i32_#Index : Extract_Element <
1315    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1316  >;
1317  def Insert_Element_v12i32_#Index : Insert_Element <
1318    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1319  >;
1320
1321  def Extract_Element_v12f32_#Index : Extract_Element <
1322    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1323  >;
1324  def Insert_Element_v12f32_#Index : Insert_Element <
1325    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1326  >;
1327}
1328
1329foreach Index = 0-15 in {
1330  def Extract_Element_v16i32_#Index : Extract_Element <
1331    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1332  >;
1333  def Insert_Element_v16i32_#Index : Insert_Element <
1334    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1335  >;
1336
1337  def Extract_Element_v16f32_#Index : Extract_Element <
1338    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1339  >;
1340  def Insert_Element_v16f32_#Index : Insert_Element <
1341    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1342  >;
1343}
1344
1345
1346def : Pat <
1347  (extract_subvector v4i16:$vec, (i32 0)),
1348  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0))
1349>;
1350
1351def : Pat <
1352  (extract_subvector v4i16:$vec, (i32 2)),
1353  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1))
1354>;
1355
1356def : Pat <
1357  (extract_subvector v4f16:$vec, (i32 0)),
1358  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0))
1359>;
1360
1361def : Pat <
1362  (extract_subvector v4f16:$vec, (i32 2)),
1363  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1))
1364>;
1365
1366def : Pat <
1367  (extract_subvector v8i16:$vec, (i32 0)),
1368  (v4i16 (EXTRACT_SUBREG v8i16:$vec, sub0_sub1))
1369>;
1370
1371def : Pat <
1372  (extract_subvector v8i16:$vec, (i32 4)),
1373  (v4i16 (EXTRACT_SUBREG v8i16:$vec, sub2_sub3))
1374>;
1375
1376def : Pat <
1377  (extract_subvector v8f16:$vec, (i32 0)),
1378  (v4f16 (EXTRACT_SUBREG v8f16:$vec, sub0_sub1))
1379>;
1380
1381def : Pat <
1382  (extract_subvector v8f16:$vec, (i32 4)),
1383  (v4f16 (EXTRACT_SUBREG v8f16:$vec, sub2_sub3))
1384>;
1385
1386def : Pat <
1387  (extract_subvector v16i16:$vec, (i32 0)),
1388  (v8i16 (EXTRACT_SUBREG v16i16:$vec, sub0_sub1_sub2_sub3))
1389>;
1390
1391def : Pat <
1392  (extract_subvector v16i16:$vec, (i32 8)),
1393  (v8i16 (EXTRACT_SUBREG v16i16:$vec, sub4_sub5_sub6_sub7))
1394>;
1395
1396def : Pat <
1397  (extract_subvector v16f16:$vec, (i32 0)),
1398  (v8f16 (EXTRACT_SUBREG v16f16:$vec, sub0_sub1_sub2_sub3))
1399>;
1400
1401def : Pat <
1402  (extract_subvector v16f16:$vec, (i32 8)),
1403  (v8f16 (EXTRACT_SUBREG v16f16:$vec, sub4_sub5_sub6_sub7))
1404>;
1405
1406foreach Index = 0-31 in {
1407  def Extract_Element_v32i32_#Index : Extract_Element <
1408    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1409  >;
1410
1411  def Insert_Element_v32i32_#Index : Insert_Element <
1412    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1413  >;
1414
1415  def Extract_Element_v32f32_#Index : Extract_Element <
1416    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1417  >;
1418
1419  def Insert_Element_v32f32_#Index : Insert_Element <
1420    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1421  >;
1422}
1423
1424// FIXME: Why do only some of these type combinations for SReg and
1425// VReg?
1426// 16-bit bitcast
1427def : BitConvert <i16, f16, VGPR_32>;
1428def : BitConvert <f16, i16, VGPR_32>;
1429def : BitConvert <i16, f16, SReg_32>;
1430def : BitConvert <f16, i16, SReg_32>;
1431
1432// 32-bit bitcast
1433def : BitConvert <i32, f32, VGPR_32>;
1434def : BitConvert <f32, i32, VGPR_32>;
1435def : BitConvert <i32, f32, SReg_32>;
1436def : BitConvert <f32, i32, SReg_32>;
1437def : BitConvert <v2i16, i32, SReg_32>;
1438def : BitConvert <i32, v2i16, SReg_32>;
1439def : BitConvert <v2f16, i32, SReg_32>;
1440def : BitConvert <i32, v2f16, SReg_32>;
1441def : BitConvert <v2i16, v2f16, SReg_32>;
1442def : BitConvert <v2f16, v2i16, SReg_32>;
1443def : BitConvert <v2f16, f32, SReg_32>;
1444def : BitConvert <f32, v2f16, SReg_32>;
1445def : BitConvert <v2i16, f32, SReg_32>;
1446def : BitConvert <f32, v2i16, SReg_32>;
1447
1448// 64-bit bitcast
1449def : BitConvert <i64, f64, VReg_64>;
1450def : BitConvert <f64, i64, VReg_64>;
1451def : BitConvert <v2i32, v2f32, VReg_64>;
1452def : BitConvert <v2f32, v2i32, VReg_64>;
1453def : BitConvert <i64, v2i32, VReg_64>;
1454def : BitConvert <v2i32, i64, VReg_64>;
1455def : BitConvert <i64, v2f32, VReg_64>;
1456def : BitConvert <v2f32, i64, VReg_64>;
1457def : BitConvert <f64, v2f32, VReg_64>;
1458def : BitConvert <v2f32, f64, VReg_64>;
1459def : BitConvert <f64, v2i32, VReg_64>;
1460def : BitConvert <v2i32, f64, VReg_64>;
1461def : BitConvert <v4i16, v4f16, VReg_64>;
1462def : BitConvert <v4f16, v4i16, VReg_64>;
1463
1464// FIXME: Make SGPR
1465def : BitConvert <v2i32, v4f16, VReg_64>;
1466def : BitConvert <v4f16, v2i32, VReg_64>;
1467def : BitConvert <v2i32, v4f16, VReg_64>;
1468def : BitConvert <v2i32, v4i16, VReg_64>;
1469def : BitConvert <v4i16, v2i32, VReg_64>;
1470def : BitConvert <v2f32, v4f16, VReg_64>;
1471def : BitConvert <v4f16, v2f32, VReg_64>;
1472def : BitConvert <v2f32, v4i16, VReg_64>;
1473def : BitConvert <v4i16, v2f32, VReg_64>;
1474def : BitConvert <v4i16, f64, VReg_64>;
1475def : BitConvert <v4f16, f64, VReg_64>;
1476def : BitConvert <f64, v4i16, VReg_64>;
1477def : BitConvert <f64, v4f16, VReg_64>;
1478def : BitConvert <v4i16, i64, VReg_64>;
1479def : BitConvert <v4f16, i64, VReg_64>;
1480def : BitConvert <i64, v4i16, VReg_64>;
1481def : BitConvert <i64, v4f16, VReg_64>;
1482
1483def : BitConvert <v4i32, v4f32, VReg_128>;
1484def : BitConvert <v4f32, v4i32, VReg_128>;
1485
1486// 96-bit bitcast
1487def : BitConvert <v3i32, v3f32, SGPR_96>;
1488def : BitConvert <v3f32, v3i32, SGPR_96>;
1489
1490// 128-bit bitcast
1491def : BitConvert <v2i64, v4i32, SReg_128>;
1492def : BitConvert <v4i32, v2i64, SReg_128>;
1493def : BitConvert <v2f64, v4f32, VReg_128>;
1494def : BitConvert <v2f64, v4i32, VReg_128>;
1495def : BitConvert <v4f32, v2f64, VReg_128>;
1496def : BitConvert <v4i32, v2f64, VReg_128>;
1497def : BitConvert <v2i64, v2f64, VReg_128>;
1498def : BitConvert <v2f64, v2i64, VReg_128>;
1499def : BitConvert <v4f32, v2i64, VReg_128>;
1500def : BitConvert <v2i64, v4f32, VReg_128>;
1501def : BitConvert <v8i16, v4i32, SReg_128>;
1502def : BitConvert <v4i32, v8i16, SReg_128>;
1503def : BitConvert <v8f16, v4f32, VReg_128>;
1504def : BitConvert <v8f16, v4i32, VReg_128>;
1505def : BitConvert <v4f32, v8f16, VReg_128>;
1506def : BitConvert <v4i32, v8f16, VReg_128>;
1507def : BitConvert <v8i16, v8f16, VReg_128>;
1508def : BitConvert <v8f16, v8i16, VReg_128>;
1509def : BitConvert <v4f32, v8i16, VReg_128>;
1510def : BitConvert <v8i16, v4f32, VReg_128>;
1511def : BitConvert <v8i16, v8f16, SReg_128>;
1512def : BitConvert <v8i16, v2i64, SReg_128>;
1513def : BitConvert <v8i16, v2f64, SReg_128>;
1514def : BitConvert <v8f16, v2i64, SReg_128>;
1515def : BitConvert <v8f16, v2f64, SReg_128>;
1516def : BitConvert <v8f16, v8i16, SReg_128>;
1517def : BitConvert <v2i64, v8i16, SReg_128>;
1518def : BitConvert <v2f64, v8i16, SReg_128>;
1519def : BitConvert <v2i64, v8f16, SReg_128>;
1520def : BitConvert <v2f64, v8f16, SReg_128>;
1521
1522// 160-bit bitcast
1523def : BitConvert <v5i32, v5f32, SReg_160>;
1524def : BitConvert <v5f32, v5i32, SReg_160>;
1525def : BitConvert <v5i32, v5f32, VReg_160>;
1526def : BitConvert <v5f32, v5i32, VReg_160>;
1527
1528// 192-bit bitcast
1529def : BitConvert <v6i32, v6f32, SReg_192>;
1530def : BitConvert <v6f32, v6i32, SReg_192>;
1531def : BitConvert <v6i32, v6f32, VReg_192>;
1532def : BitConvert <v6f32, v6i32, VReg_192>;
1533def : BitConvert <v3i64, v3f64, VReg_192>;
1534def : BitConvert <v3f64, v3i64, VReg_192>;
1535def : BitConvert <v3i64, v6i32, VReg_192>;
1536def : BitConvert <v3i64, v6f32, VReg_192>;
1537def : BitConvert <v3f64, v6i32, VReg_192>;
1538def : BitConvert <v3f64, v6f32, VReg_192>;
1539def : BitConvert <v6i32, v3i64, VReg_192>;
1540def : BitConvert <v6f32, v3i64, VReg_192>;
1541def : BitConvert <v6i32, v3f64, VReg_192>;
1542def : BitConvert <v6f32, v3f64, VReg_192>;
1543
1544// 224-bit bitcast
1545def : BitConvert <v7i32, v7f32, SReg_224>;
1546def : BitConvert <v7f32, v7i32, SReg_224>;
1547def : BitConvert <v7i32, v7f32, VReg_224>;
1548def : BitConvert <v7f32, v7i32, VReg_224>;
1549
1550// 256-bit bitcast
1551def : BitConvert <v8i32, v8f32, SReg_256>;
1552def : BitConvert <v8f32, v8i32, SReg_256>;
1553def : BitConvert <v8i32, v8f32, VReg_256>;
1554def : BitConvert <v8f32, v8i32, VReg_256>;
1555def : BitConvert <v4i64, v4f64, VReg_256>;
1556def : BitConvert <v4f64, v4i64, VReg_256>;
1557def : BitConvert <v4i64, v8i32, VReg_256>;
1558def : BitConvert <v4i64, v8f32, VReg_256>;
1559def : BitConvert <v4f64, v8i32, VReg_256>;
1560def : BitConvert <v4f64, v8f32, VReg_256>;
1561def : BitConvert <v8i32, v4i64, VReg_256>;
1562def : BitConvert <v8f32, v4i64, VReg_256>;
1563def : BitConvert <v8i32, v4f64, VReg_256>;
1564def : BitConvert <v8f32, v4f64, VReg_256>;
1565def : BitConvert <v16i16, v16f16, SReg_256>;
1566def : BitConvert <v16f16, v16i16, SReg_256>;
1567def : BitConvert <v16i16, v16f16, VReg_256>;
1568def : BitConvert <v16f16, v16i16, VReg_256>;
1569def : BitConvert <v16f16, v8i32, VReg_256>;
1570def : BitConvert <v16i16, v8i32, VReg_256>;
1571def : BitConvert <v16f16, v8f32, VReg_256>;
1572def : BitConvert <v16i16, v8f32, VReg_256>;
1573def : BitConvert <v8i32, v16f16, VReg_256>;
1574def : BitConvert <v8i32, v16i16, VReg_256>;
1575def : BitConvert <v8f32, v16f16, VReg_256>;
1576def : BitConvert <v8f32, v16i16, VReg_256>;
1577def : BitConvert <v16f16, v4i64, VReg_256>;
1578def : BitConvert <v16i16, v4i64, VReg_256>;
1579def : BitConvert <v16f16, v4f64, VReg_256>;
1580def : BitConvert <v16i16, v4f64, VReg_256>;
1581def : BitConvert <v4i64, v16f16, VReg_256>;
1582def : BitConvert <v4i64, v16i16, VReg_256>;
1583def : BitConvert <v4f64, v16f16, VReg_256>;
1584def : BitConvert <v4f64, v16i16, VReg_256>;
1585
1586// 288-bit bitcast
1587def : BitConvert <v9i32, v9f32, SReg_288>;
1588def : BitConvert <v9f32, v9i32, SReg_288>;
1589def : BitConvert <v9i32, v9f32, VReg_288>;
1590def : BitConvert <v9f32, v9i32, VReg_288>;
1591
1592// 320-bit bitcast
1593def : BitConvert <v10i32, v10f32, SReg_320>;
1594def : BitConvert <v10f32, v10i32, SReg_320>;
1595def : BitConvert <v10i32, v10f32, VReg_320>;
1596def : BitConvert <v10f32, v10i32, VReg_320>;
1597
1598// 320-bit bitcast
1599def : BitConvert <v11i32, v11f32, SReg_352>;
1600def : BitConvert <v11f32, v11i32, SReg_352>;
1601def : BitConvert <v11i32, v11f32, VReg_352>;
1602def : BitConvert <v11f32, v11i32, VReg_352>;
1603
1604// 384-bit bitcast
1605def : BitConvert <v12i32, v12f32, SReg_384>;
1606def : BitConvert <v12f32, v12i32, SReg_384>;
1607def : BitConvert <v12i32, v12f32, VReg_384>;
1608def : BitConvert <v12f32, v12i32, VReg_384>;
1609
1610// 512-bit bitcast
1611def : BitConvert <v16i32, v16f32, VReg_512>;
1612def : BitConvert <v16f32, v16i32, VReg_512>;
1613def : BitConvert <v8i64,  v8f64,  VReg_512>;
1614def : BitConvert <v8f64,  v8i64,  VReg_512>;
1615def : BitConvert <v8i64,  v16i32, VReg_512>;
1616def : BitConvert <v8f64,  v16i32, VReg_512>;
1617def : BitConvert <v16i32, v8i64,  VReg_512>;
1618def : BitConvert <v16i32, v8f64,  VReg_512>;
1619def : BitConvert <v8i64,  v16f32, VReg_512>;
1620def : BitConvert <v8f64,  v16f32, VReg_512>;
1621def : BitConvert <v16f32, v8i64,  VReg_512>;
1622def : BitConvert <v16f32, v8f64,  VReg_512>;
1623
1624// 1024-bit bitcast
1625def : BitConvert <v32i32, v32f32, VReg_1024>;
1626def : BitConvert <v32f32, v32i32, VReg_1024>;
1627def : BitConvert <v16i64, v16f64, VReg_1024>;
1628def : BitConvert <v16f64, v16i64, VReg_1024>;
1629def : BitConvert <v16i64, v32i32, VReg_1024>;
1630def : BitConvert <v32i32, v16i64, VReg_1024>;
1631def : BitConvert <v16f64, v32f32, VReg_1024>;
1632def : BitConvert <v32f32, v16f64, VReg_1024>;
1633def : BitConvert <v16i64, v32f32, VReg_1024>;
1634def : BitConvert <v32i32, v16f64, VReg_1024>;
1635def : BitConvert <v16f64, v32i32, VReg_1024>;
1636def : BitConvert <v32f32, v16i64, VReg_1024>;
1637
1638
1639/********** =================== **********/
1640/********** Src & Dst modifiers **********/
1641/********** =================== **********/
1642
1643
1644// If denormals are not enabled, it only impacts the compare of the
1645// inputs. The output result is not flushed.
1646class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1647  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1648  (inst i32:$src0_modifiers, vt:$src0,
1649        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1650>;
1651
1652def : ClampPat<V_MAX_F32_e64, f32>;
1653def : ClampPat<V_MAX_F64_e64, f64>;
1654let SubtargetPredicate = NotHasTrue16BitInsts in
1655def : ClampPat<V_MAX_F16_e64, f16>;
1656let SubtargetPredicate = HasTrue16BitInsts in
1657def : ClampPat<V_MAX_F16_t16_e64, f16>;
1658
1659let SubtargetPredicate = HasVOP3PInsts in {
1660def : GCNPat <
1661  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1662  (V_PK_MAX_F16 $src0_modifiers, $src0,
1663                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1664>;
1665}
1666
1667
1668/********** ================================ **********/
1669/********** Floating point absolute/negative **********/
1670/********** ================================ **********/
1671
1672def : GCNPat <
1673  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1674  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1675>;
1676
1677def : GCNPat <
1678  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1679  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1680>;
1681
1682def : GCNPat <
1683  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1684  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1685>;
1686
1687def : GCNPat <
1688  (UniformUnaryFrag<fneg> (f16 SReg_32:$src)),
1689  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1690>;
1691
1692def : GCNPat <
1693  (UniformUnaryFrag<fabs> (f16 SReg_32:$src)),
1694  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1695>;
1696
1697def : GCNPat <
1698  (UniformUnaryFrag<fneg> (fabs (f16 SReg_32:$src))),
1699  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1700>;
1701
1702def : GCNPat <
1703  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1704  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1705>;
1706
1707def : GCNPat <
1708  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1709  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1710>;
1711
1712// This is really (fneg (fabs v2f16:$src))
1713//
1714// fabs is not reported as free because there is modifier for it in
1715// VOP3P instructions, so it is turned into the bit op.
1716def : GCNPat <
1717  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1718  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1719>;
1720
1721def : GCNPat <
1722  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1723  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1724>;
1725
1726
1727// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1728// of the real value.
1729def : GCNPat <
1730  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1731  (v2f32 (REG_SEQUENCE SReg_64,
1732         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1733                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1734                                 SReg_32)), sub0,
1735         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1736                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1737                                 SReg_32)), sub1))
1738>;
1739
1740def : GCNPat <
1741  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1742  (v2f32 (REG_SEQUENCE SReg_64,
1743         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1744                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1745                                 SReg_32)), sub0,
1746         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1747                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1748                                 SReg_32)), sub1))
1749>;
1750
1751def : GCNPat <
1752  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1753  (v2f32 (REG_SEQUENCE SReg_64,
1754         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1755                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1756                                 SReg_32)), sub0,
1757         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1758                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1759                                 SReg_32)), sub1))
1760>;
1761
1762// FIXME: Use S_BITSET0_B32/B64?
1763def : GCNPat <
1764  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1765  (REG_SEQUENCE SReg_64,
1766    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1767    sub0,
1768    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1769                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1770     sub1)
1771>;
1772
1773def : GCNPat <
1774  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1775  (REG_SEQUENCE SReg_64,
1776    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1777    sub0,
1778    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1779                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
1780    sub1)
1781>;
1782
1783def : GCNPat <
1784  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
1785  (REG_SEQUENCE SReg_64,
1786    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1787    sub0,
1788    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1789                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
1790    sub1)
1791>;
1792
1793
1794def : GCNPat <
1795  (fneg (fabs (f32 VGPR_32:$src))),
1796  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
1797>;
1798
1799def : GCNPat <
1800  (fabs (f32 VGPR_32:$src)),
1801  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
1802>;
1803
1804def : GCNPat <
1805  (fneg (f32 VGPR_32:$src)),
1806  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
1807>;
1808
1809def : GCNPat <
1810  (fabs (f16 VGPR_32:$src)),
1811  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
1812>;
1813
1814def : GCNPat <
1815  (fneg (f16 VGPR_32:$src)),
1816  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
1817>;
1818
1819def : GCNPat <
1820  (fneg (fabs (f16 VGPR_32:$src))),
1821  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
1822>;
1823
1824def : GCNPat <
1825  (fneg (v2f16 VGPR_32:$src)),
1826  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1827>;
1828
1829def : GCNPat <
1830  (fabs (v2f16 VGPR_32:$src)),
1831  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
1832>;
1833
1834def : GCNPat <
1835  (fneg (v2f16 (fabs VGPR_32:$src))),
1836  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1837>;
1838
1839def : GCNPat <
1840  (fabs (f64 VReg_64:$src)),
1841  (REG_SEQUENCE VReg_64,
1842    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1843    sub0,
1844    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
1845        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1846     sub1)
1847>;
1848
1849def : GCNPat <
1850  (fneg (f64 VReg_64:$src)),
1851  (REG_SEQUENCE VReg_64,
1852    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1853    sub0,
1854    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1855        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1856    sub1)
1857>;
1858
1859def : GCNPat <
1860  (fneg (fabs (f64 VReg_64:$src))),
1861  (REG_SEQUENCE VReg_64,
1862    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1863    sub0,
1864    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1865        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1866    sub1)
1867>;
1868
1869def : GCNPat <
1870  (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
1871  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
1872                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0,
1873                0, 0, 0, 0, 0)
1874> {
1875  let SubtargetPredicate = HasPackedFP32Ops;
1876}
1877
1878def : GCNPat <
1879  (fcopysign f16:$src0, f16:$src1),
1880  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
1881>;
1882
1883def : GCNPat <
1884  (fcopysign f32:$src0, f16:$src1),
1885  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1886             (V_LSHLREV_B32_e64 (i32 16), $src1))
1887>;
1888
1889def : GCNPat <
1890  (fcopysign f64:$src0, f16:$src1),
1891  (REG_SEQUENCE SReg_64,
1892    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1893    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
1894               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
1895>;
1896
1897def : GCNPat <
1898  (fcopysign f16:$src0, f32:$src1),
1899  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1900             (V_LSHRREV_B32_e64 (i32 16), $src1))
1901>;
1902
1903def : GCNPat <
1904  (fcopysign f16:$src0, f64:$src1),
1905  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1906             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
1907>;
1908
1909/********** ================== **********/
1910/********** Immediate Patterns **********/
1911/********** ================== **********/
1912
1913def : GCNPat <
1914  (VGPRImm<(i32 imm)>:$imm),
1915  (V_MOV_B32_e32 imm:$imm)
1916>;
1917
1918def : GCNPat <
1919  (VGPRImm<(f32 fpimm)>:$imm),
1920  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
1921>;
1922
1923def : GCNPat <
1924  (i32 imm:$imm),
1925  (S_MOV_B32 imm:$imm)
1926>;
1927
1928def : GCNPat <
1929  (VGPRImm<(SIlds tglobaladdr:$ga)>),
1930  (V_MOV_B32_e32 $ga)
1931>;
1932
1933def : GCNPat <
1934  (SIlds tglobaladdr:$ga),
1935  (S_MOV_B32 $ga)
1936>;
1937
1938// FIXME: Workaround for ordering issue with peephole optimizer where
1939// a register class copy interferes with immediate folding.  Should
1940// use s_mov_b32, which can be shrunk to s_movk_i32
1941def : GCNPat <
1942  (VGPRImm<(f16 fpimm)>:$imm),
1943  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
1944>;
1945
1946def : GCNPat <
1947  (f32 fpimm:$imm),
1948  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
1949>;
1950
1951def : GCNPat <
1952  (f16 fpimm:$imm),
1953  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
1954>;
1955
1956def : GCNPat <
1957  (p5 frameindex:$fi),
1958  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
1959>;
1960
1961def : GCNPat <
1962  (p5 frameindex:$fi),
1963  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
1964>;
1965
1966def : GCNPat <
1967  (i64 InlineImm64:$imm),
1968  (S_MOV_B64 InlineImm64:$imm)
1969>;
1970
1971// XXX - Should this use a s_cmp to set SCC?
1972
1973// Set to sign-extended 64-bit value (true = -1, false = 0)
1974def : GCNPat <
1975  (i1 imm:$imm),
1976  (S_MOV_B64 (i64 (as_i64imm $imm)))
1977> {
1978  let WaveSizePredicate = isWave64;
1979}
1980
1981def : GCNPat <
1982  (i1 imm:$imm),
1983  (S_MOV_B32 (i32 (as_i32imm $imm)))
1984> {
1985  let WaveSizePredicate = isWave32;
1986}
1987
1988def : GCNPat <
1989  (f64 InlineImmFP64:$imm),
1990  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
1991>;
1992
1993/********** ================== **********/
1994/********** Intrinsic Patterns **********/
1995/********** ================== **********/
1996
1997def : GCNPat <
1998  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
1999  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
2000>;
2001
2002def : GCNPat <
2003  (i32 (sext i1:$src0)),
2004  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2005                     /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0)
2006>;
2007
2008class Ext32Pat <SDNode ext> : GCNPat <
2009  (i32 (ext i1:$src0)),
2010  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2011                     /*src1mod*/(i32 0), /*src1*/(i32 1), $src0)
2012>;
2013
2014def : Ext32Pat <zext>;
2015def : Ext32Pat <anyext>;
2016
2017// The multiplication scales from [0,1) to the unsigned integer range,
2018// rounding down a bit to avoid unwanted overflow.
2019def : GCNPat <
2020  (AMDGPUurecip i32:$src0),
2021  (V_CVT_U32_F32_e32
2022    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
2023                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
2024>;
2025
2026//===----------------------------------------------------------------------===//
2027// VOP3 Patterns
2028//===----------------------------------------------------------------------===//
2029
2030def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
2031def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
2032
2033// BFI patterns
2034
2035def BFIImm32 : PatFrag<
2036  (ops node:$x, node:$y, node:$z),
2037  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
2038  [{
2039    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
2040    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
2041    return X && NotX &&
2042      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
2043  }]
2044>;
2045
2046// Definition from ISA doc:
2047// (y & x) | (z & ~x)
2048def : AMDGPUPat <
2049  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
2050  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2051>;
2052
2053// (y & C) | (z & ~C)
2054def : AMDGPUPat <
2055  (BFIImm32 i32:$x, i32:$y, i32:$z),
2056  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2057>;
2058
2059// 64-bit version
2060def : AMDGPUPat <
2061  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
2062  (REG_SEQUENCE VReg_64,
2063    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2064               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2065               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2066    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2067               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2068               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2069>;
2070
2071// SHA-256 Ch function
2072// z ^ (x & (y ^ z))
2073def : AMDGPUPat <
2074  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
2075  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2076>;
2077
2078// 64-bit version
2079def : AMDGPUPat <
2080  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
2081  (REG_SEQUENCE VReg_64,
2082    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2083               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2084               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2085    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2086               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2087               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2088>;
2089
2090def : AMDGPUPat <
2091  (fcopysign f32:$src0, f32:$src1),
2092  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
2093>;
2094
2095def : AMDGPUPat <
2096  (fcopysign f32:$src0, f64:$src1),
2097  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2098             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
2099>;
2100
2101def : AMDGPUPat <
2102  (fcopysign f64:$src0, f64:$src1),
2103  (REG_SEQUENCE SReg_64,
2104    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2105    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2106               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2107               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
2108>;
2109
2110def : AMDGPUPat <
2111  (fcopysign f64:$src0, f32:$src1),
2112  (REG_SEQUENCE SReg_64,
2113    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2114    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2115               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2116               $src1), sub1)
2117>;
2118
2119def : ROTRPattern <V_ALIGNBIT_B32_e64>;
2120
2121def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
2122          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2123                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2124
2125def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
2126          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2127                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2128
2129/********** ====================== **********/
2130/**********   Indirect addressing  **********/
2131/********** ====================== **********/
2132
2133multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
2134  // Extract with offset
2135  def : GCNPat<
2136    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
2137    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
2138  >;
2139
2140  // Insert with offset
2141  def : GCNPat<
2142    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
2143    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
2144  >;
2145}
2146
2147defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
2148defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
2149defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
2150defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
2151defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
2152defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
2153defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
2154defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
2155defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2156
2157defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2158defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2159defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2160defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
2161defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
2162defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
2163defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
2164defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2165defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2166
2167//===----------------------------------------------------------------------===//
2168// SAD Patterns
2169//===----------------------------------------------------------------------===//
2170
2171def : GCNPat <
2172  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2173                   (umin i32:$src0, i32:$src1)),
2174       i32:$src2),
2175  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2176>;
2177
2178def : GCNPat <
2179  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2180                      (sub i32:$src0, i32:$src1),
2181                      (sub i32:$src1, i32:$src0)),
2182       i32:$src2),
2183  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2184>;
2185
2186//===----------------------------------------------------------------------===//
2187// Conversion Patterns
2188//===----------------------------------------------------------------------===//
2189def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2190  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2191
2192// Handle sext_inreg in i64
2193def : GCNPat <
2194  (i64 (UniformSextInreg<i1> i64:$src)),
2195  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2196>;
2197
2198def : GCNPat <
2199  (i16 (UniformSextInreg<i1> i16:$src)),
2200  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2201>;
2202
2203def : GCNPat <
2204  (i16 (UniformSextInreg<i8> i16:$src)),
2205  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2206>;
2207
2208def : GCNPat <
2209  (i64 (UniformSextInreg<i8> i64:$src)),
2210  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2211>;
2212
2213def : GCNPat <
2214  (i64 (UniformSextInreg<i16> i64:$src)),
2215  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2216>;
2217
2218def : GCNPat <
2219  (i64 (UniformSextInreg<i32> i64:$src)),
2220  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2221>;
2222
2223def : GCNPat<
2224  (i32 (DivergentSextInreg<i1> i32:$src)),
2225  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2226
2227def : GCNPat <
2228  (i16 (DivergentSextInreg<i1> i16:$src)),
2229  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2230>;
2231
2232def : GCNPat <
2233  (i16 (DivergentSextInreg<i8> i16:$src)),
2234  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2235>;
2236
2237def : GCNPat<
2238  (i32 (DivergentSextInreg<i8> i32:$src)),
2239  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2240>;
2241
2242def : GCNPat <
2243  (i32 (DivergentSextInreg<i16> i32:$src)),
2244  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2245>;
2246
2247def : GCNPat <
2248  (i64 (DivergentSextInreg<i1> i64:$src)),
2249  (REG_SEQUENCE VReg_64,
2250    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2251    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2252>;
2253
2254def : GCNPat <
2255  (i64 (DivergentSextInreg<i8> i64:$src)),
2256  (REG_SEQUENCE VReg_64,
2257    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2258    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2259>;
2260
2261def : GCNPat <
2262  (i64 (DivergentSextInreg<i16> i64:$src)),
2263  (REG_SEQUENCE VReg_64,
2264    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2265    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2266>;
2267
2268def : GCNPat <
2269  (i64 (DivergentSextInreg<i32> i64:$src)),
2270  (REG_SEQUENCE VReg_64,
2271    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2272    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2273>;
2274
2275def : GCNPat <
2276  (i64 (zext i32:$src)),
2277  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2278>;
2279
2280def : GCNPat <
2281  (i64 (anyext i32:$src)),
2282  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2283>;
2284
2285class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2286  (i64 (ext i1:$src)),
2287    (REG_SEQUENCE VReg_64,
2288      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2289                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2290      sub0, (S_MOV_B32 (i32 0)), sub1)
2291>;
2292
2293
2294def : ZExt_i64_i1_Pat<zext>;
2295def : ZExt_i64_i1_Pat<anyext>;
2296
2297// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2298// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2299def : GCNPat <
2300  (i64 (UniformUnaryFrag<sext> i32:$src)),
2301    (REG_SEQUENCE SReg_64, $src, sub0,
2302    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2303>;
2304
2305def : GCNPat <
2306  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2307    (REG_SEQUENCE VReg_64, $src, sub0,
2308    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2309>;
2310
2311def : GCNPat <
2312  (i64 (sext i1:$src)),
2313  (REG_SEQUENCE VReg_64,
2314    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2315                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2316    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2317                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2318>;
2319
2320class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2321  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2322  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2323>;
2324
2325def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2326def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2327def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2328def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2329def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2330def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2331
2332// If we need to perform a logical operation on i1 values, we need to
2333// use vector comparisons since there is only one SCC register. Vector
2334// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2335// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2336// instructions resulting in the copies from SCC to these instructions
2337// will be moved to the VALU.
2338
2339let WaveSizePredicate = isWave64 in {
2340def : GCNPat <
2341  (i1 (and i1:$src0, i1:$src1)),
2342  (S_AND_B64 $src0, $src1)
2343>;
2344
2345def : GCNPat <
2346  (i1 (or i1:$src0, i1:$src1)),
2347  (S_OR_B64 $src0, $src1)
2348>;
2349
2350def : GCNPat <
2351  (i1 (xor i1:$src0, i1:$src1)),
2352  (S_XOR_B64 $src0, $src1)
2353>;
2354
2355def : GCNPat <
2356  (i1 (add i1:$src0, i1:$src1)),
2357  (S_XOR_B64 $src0, $src1)
2358>;
2359
2360def : GCNPat <
2361  (i1 (sub i1:$src0, i1:$src1)),
2362  (S_XOR_B64 $src0, $src1)
2363>;
2364
2365let AddedComplexity = 1 in {
2366def : GCNPat <
2367  (i1 (add i1:$src0, (i1 -1))),
2368  (S_NOT_B64 $src0)
2369>;
2370
2371def : GCNPat <
2372  (i1 (sub i1:$src0, (i1 -1))),
2373  (S_NOT_B64 $src0)
2374>;
2375}
2376} // end isWave64
2377
2378let WaveSizePredicate = isWave32 in {
2379def : GCNPat <
2380  (i1 (and i1:$src0, i1:$src1)),
2381  (S_AND_B32 $src0, $src1)
2382>;
2383
2384def : GCNPat <
2385  (i1 (or i1:$src0, i1:$src1)),
2386  (S_OR_B32 $src0, $src1)
2387>;
2388
2389def : GCNPat <
2390  (i1 (xor i1:$src0, i1:$src1)),
2391  (S_XOR_B32 $src0, $src1)
2392>;
2393
2394def : GCNPat <
2395  (i1 (add i1:$src0, i1:$src1)),
2396  (S_XOR_B32 $src0, $src1)
2397>;
2398
2399def : GCNPat <
2400  (i1 (sub i1:$src0, i1:$src1)),
2401  (S_XOR_B32 $src0, $src1)
2402>;
2403
2404let AddedComplexity = 1 in {
2405def : GCNPat <
2406  (i1 (add i1:$src0, (i1 -1))),
2407  (S_NOT_B32 $src0)
2408>;
2409
2410def : GCNPat <
2411  (i1 (sub i1:$src0, (i1 -1))),
2412  (S_NOT_B32 $src0)
2413>;
2414}
2415} // end isWave32
2416
2417def : GCNPat <
2418  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2419  (V_NOT_B32_e32 $src0)
2420>;
2421
2422def : GCNPat <
2423  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2424    (REG_SEQUENCE VReg_64,
2425      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2426      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2427    )
2428>;
2429
2430let SubtargetPredicate = NotHasTrue16BitInsts in
2431def : GCNPat <
2432  (f16 (sint_to_fp i1:$src)),
2433  (V_CVT_F16_F32_e32 (
2434      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2435                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2436                        SSrc_i1:$src))
2437>;
2438
2439let SubtargetPredicate = HasTrue16BitInsts in
2440def : GCNPat <
2441  (f16 (sint_to_fp i1:$src)),
2442  (V_CVT_F16_F32_t16_e32 (
2443      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2444                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2445                        SSrc_i1:$src))
2446>;
2447
2448let SubtargetPredicate = NotHasTrue16BitInsts in
2449def : GCNPat <
2450  (f16 (uint_to_fp i1:$src)),
2451  (V_CVT_F16_F32_e32 (
2452      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2453                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2454                        SSrc_i1:$src))
2455>;
2456let SubtargetPredicate = HasTrue16BitInsts in
2457def : GCNPat <
2458  (f16 (uint_to_fp i1:$src)),
2459  (V_CVT_F16_F32_t16_e32 (
2460      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2461                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2462                        SSrc_i1:$src))
2463>;
2464
2465def : GCNPat <
2466  (f32 (sint_to_fp i1:$src)),
2467  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2468                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2469                        SSrc_i1:$src)
2470>;
2471
2472def : GCNPat <
2473  (f32 (uint_to_fp i1:$src)),
2474  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2475                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2476                        SSrc_i1:$src)
2477>;
2478
2479def : GCNPat <
2480  (f64 (sint_to_fp i1:$src)),
2481  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2482                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2483                                        SSrc_i1:$src))
2484>;
2485
2486def : GCNPat <
2487  (f64 (uint_to_fp i1:$src)),
2488  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2489                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2490                                        SSrc_i1:$src))
2491>;
2492
2493//===----------------------------------------------------------------------===//
2494// Miscellaneous Patterns
2495//===----------------------------------------------------------------------===//
2496
2497// Eliminate a zero extension from an fp16 operation if it already
2498// zeros the high bits of the 32-bit register.
2499//
2500// This is complicated on gfx9+. Some instructions maintain the legacy
2501// zeroing behavior, but others preserve the high bits. Some have a
2502// control bit to change the behavior. We can't simply say with
2503// certainty what the source behavior is without more context on how
2504// the src is lowered. e.g. fptrunc + fma may be lowered to a
2505// v_fma_mix* instruction which does not zero, or may not.
2506def : GCNPat<
2507  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2508  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2509
2510let AddedComplexity = 1 in {
2511def : GCNPat<
2512  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2513  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2514  let SubtargetPredicate = HasAddNoCarryInsts;
2515}
2516}  // AddedComplexity = 1
2517
2518def : GCNPat<
2519  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2520  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2521>;
2522
2523def : GCNPat<
2524  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2525  (REG_SEQUENCE VReg_64,
2526    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2527    (S_MOV_B32 (i32 0)), sub1)
2528>;
2529
2530def : GCNPat<
2531  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2532  (COPY VSrc_b16:$src)>;
2533
2534def : GCNPat <
2535  (i32 (trunc i64:$a)),
2536  (EXTRACT_SUBREG $a, sub0)
2537>;
2538
2539def : GCNPat <
2540  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2541  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2542>;
2543
2544def : GCNPat <
2545  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2546  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2547>;
2548
2549def : GCNPat <
2550  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2551  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2552                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2553>;
2554
2555def : GCNPat <
2556  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2557  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2558>;
2559
2560def : GCNPat <
2561  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2562  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2563>;
2564
2565def IMMBitSelConst : SDNodeXForm<imm, [{
2566  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2567                                   MVT::i32);
2568}]>;
2569
2570// Matching separate SRL and TRUNC instructions
2571// with dependent operands (SRL dest is source of TRUNC)
2572// generates three instructions. However, by using bit shifts,
2573// the V_LSHRREV_B32_e64 result can be directly used in the
2574// operand of the V_AND_B32_e64 instruction:
2575// (trunc i32 (srl i32 $a, i32 $b)) ->
2576// v_and_b32_e64 $a, (1 << $b), $a
2577// v_cmp_ne_u32_e64 $a, 0, $a
2578
2579// Handle the VALU case.
2580def : GCNPat <
2581  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2582  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2583    (i32 0))
2584>;
2585
2586// Handle the scalar case.
2587def : GCNPat <
2588  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2589  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2590    (i32 0))
2591>;
2592
2593def : GCNPat <
2594  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2595  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2596                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2597>;
2598
2599def : GCNPat <
2600  (i32 (bswap i32:$a)),
2601  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2602             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2603             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2604>;
2605
2606// FIXME: This should have been narrowed to i32 during legalization.
2607// This pattern should also be skipped for GlobalISel
2608def : GCNPat <
2609  (i64 (bswap i64:$a)),
2610  (REG_SEQUENCE VReg_64,
2611  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2612             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2613                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2614                             (i32 24)),
2615             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2616                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2617                             (i32 8))),
2618  sub0,
2619  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2620             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2621                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2622                             (i32 24)),
2623             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2624                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2625                             (i32 8))),
2626  sub1)
2627>;
2628
2629// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2630// the BFI pattern ends up taking precedence without it.
2631let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2632// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2633//
2634// My reading of the manual suggests we should be using src0 for the
2635// register value, but this is what seems to work.
2636def : GCNPat <
2637  (i32 (bswap i32:$a)),
2638  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2639>;
2640
2641// FIXME: This should have been narrowed to i32 during legalization.
2642// This pattern should also be skipped for GlobalISel
2643def : GCNPat <
2644  (i64 (bswap i64:$a)),
2645  (REG_SEQUENCE VReg_64,
2646  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2647              (S_MOV_B32 (i32 0x00010203))),
2648  sub0,
2649  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2650              (S_MOV_B32 (i32 0x00010203))),
2651  sub1)
2652>;
2653
2654// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2655// The 12s emit 0s.
2656def : GCNPat <
2657  (i16 (bswap i16:$a)),
2658  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2659>;
2660
2661def : GCNPat <
2662  (i32 (zext (bswap i16:$a))),
2663  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2664>;
2665
2666// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2667def : GCNPat <
2668  (v2i16 (bswap v2i16:$a)),
2669  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2670>;
2671
2672}
2673
2674def : GCNPat<
2675  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
2676  (REG_SEQUENCE VReg_64,
2677   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
2678   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
2679
2680// Prefer selecting to max when legal, but using mul is always valid.
2681let AddedComplexity = -5 in {
2682
2683let OtherPredicates = [NotHasTrue16BitInsts] in {
2684def : GCNPat<
2685  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2686  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2687>;
2688
2689def : GCNPat<
2690  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2691  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2692>;
2693} // End OtherPredicates
2694
2695let OtherPredicates = [HasTrue16BitInsts] in {
2696def : GCNPat<
2697  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2698  (V_MUL_F16_t16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2699>;
2700
2701def : GCNPat<
2702  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2703  (V_MUL_F16_t16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2704>;
2705} // End OtherPredicates
2706
2707def : GCNPat<
2708  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2709  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2710>;
2711
2712def : GCNPat<
2713  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2714  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2715>;
2716
2717def : GCNPat<
2718  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
2719  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
2720>;
2721
2722// TODO: Handle fneg like other types.
2723def : GCNPat<
2724  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2725  (V_MUL_F64_e64  0, CONST.FP64_ONE, $src_mods, $src)
2726>;
2727} // End AddedComplexity = -5
2728
2729multiclass SelectCanonicalizeAsMax<
2730  list<Predicate> f32_preds = [],
2731  list<Predicate> f64_preds = [],
2732  list<Predicate> f16_preds = []> {
2733  def : GCNPat<
2734    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2735    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
2736    let OtherPredicates = f32_preds;
2737  }
2738
2739  def : GCNPat<
2740    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2741    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
2742    let OtherPredicates = f64_preds;
2743  }
2744
2745  def : GCNPat<
2746    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2747    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2748    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]);
2749  }
2750
2751  def : GCNPat<
2752    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2753    (V_MAX_F16_t16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2754    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]);
2755  }
2756
2757  def : GCNPat<
2758    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2759    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
2760    // FIXME: Should have VOP3P subtarget predicate
2761    let OtherPredicates = f16_preds;
2762  }
2763}
2764
2765// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
2766// mode, and would never flush. For f64, it's faster to do implement
2767// this with a max. For f16/f32 it's a wash, but prefer max when
2768// valid.
2769//
2770// FIXME: Lowering f32/f16 with max is worse since we can use a
2771// smaller encoding if the input is fneg'd. It also adds an extra
2772// register use.
2773let SubtargetPredicate = HasMinMaxDenormModes in {
2774  defm : SelectCanonicalizeAsMax<[], [], []>;
2775} // End SubtargetPredicate = HasMinMaxDenormModes
2776
2777let SubtargetPredicate = NotHasMinMaxDenormModes in {
2778  // Use the max lowering if we don't need to flush.
2779
2780  // FIXME: We don't do use this for f32 as a workaround for the
2781  // library being compiled with the default ieee mode, but
2782  // potentially being called from flushing kernels. Really we should
2783  // not be mixing code expecting different default FP modes, but mul
2784  // works in any FP environment.
2785  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
2786} // End SubtargetPredicate = NotHasMinMaxDenormModes
2787
2788
2789let OtherPredicates = [HasDLInsts] in {
2790// Don't allow source modifiers. If there are any source modifiers then it's
2791// better to select fma instead of fmac.
2792def : GCNPat <
2793  (fma (f32 (VOP3NoMods f32:$src0)),
2794       (f32 (VOP3NoMods f32:$src1)),
2795       (f32 (VOP3NoMods f32:$src2))),
2796  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2797                  SRCMODS.NONE, $src2)
2798>;
2799} // End OtherPredicates = [HasDLInsts]
2800
2801let SubtargetPredicate = isGFX10Plus in {
2802// Don't allow source modifiers. If there are any source modifiers then it's
2803// better to select fma instead of fmac.
2804let OtherPredicates = [NotHasTrue16BitInsts] in
2805def : GCNPat <
2806  (fma (f16 (VOP3NoMods f32:$src0)),
2807       (f16 (VOP3NoMods f32:$src1)),
2808       (f16 (VOP3NoMods f32:$src2))),
2809  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2810                  SRCMODS.NONE, $src2)
2811>;
2812let OtherPredicates = [HasTrue16BitInsts] in
2813def : GCNPat <
2814  (fma (f16 (VOP3NoMods f32:$src0)),
2815       (f16 (VOP3NoMods f32:$src1)),
2816       (f16 (VOP3NoMods f32:$src2))),
2817  (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2818                  SRCMODS.NONE, $src2)
2819>;
2820}
2821
2822let OtherPredicates = [HasFmacF64Inst] in
2823// Don't allow source modifiers. If there are any source modifiers then it's
2824// better to select fma instead of fmac.
2825def : GCNPat <
2826  (fma (f64 (VOP3NoMods f64:$src0)),
2827       (f64 (VOP3NoMods f64:$src1)),
2828       (f64 (VOP3NoMods f64:$src2))),
2829  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2830                  SRCMODS.NONE, $src2)
2831>;
2832
2833// COPY is workaround tablegen bug from multiple outputs
2834// from S_LSHL_B32's multiple outputs from implicit scc def.
2835let AddedComplexity = 1 in {
2836def : GCNPat <
2837  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2838  (S_LSHL_B32 SReg_32:$src1, (i16 16))
2839>;
2840
2841def : GCNPat <
2842  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
2843  (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
2844>;
2845
2846
2847def : GCNPat <
2848  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2849  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2850>;
2851
2852def : GCNPat <
2853  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
2854  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
2855>;
2856
2857def : GCNPat <
2858  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2859  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2860>;
2861
2862def : GCNPat <
2863  (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
2864  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
2865>;
2866
2867def : GCNPat <
2868  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 undef))),
2869  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
2870>;
2871
2872def : GCNPat <
2873  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 undef))),
2874  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
2875>;
2876
2877def : GCNPat <
2878  (v2f16 (build_vector f16:$src0, (f16 undef))),
2879  (COPY $src0)
2880>;
2881
2882def : GCNPat <
2883  (v2i16 (UniformBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2884  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2885>;
2886
2887def : GCNPat <
2888  (v2i16 (DivergentBinFrag<build_vector> (i16 undef), (i16 VGPR_32:$src1))),
2889  (v2i16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
2890>;
2891
2892
2893def : GCNPat <
2894  (v2f16 (UniformBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2895  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2896>;
2897
2898def : GCNPat <
2899  (v2f16 (DivergentBinFrag<build_vector> (f16 undef), (f16 VGPR_32:$src1))),
2900  (v2f16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
2901>;
2902}
2903
2904let SubtargetPredicate = HasVOP3PInsts in {
2905def : GCNPat <
2906  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2907  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2908>;
2909
2910def : GCNPat <
2911  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
2912  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
2913>;
2914
2915// With multiple uses of the shift, this will duplicate the shift and
2916// increase register pressure.
2917def : GCNPat <
2918  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2919  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
2920>;
2921
2922def : GCNPat <
2923  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2924                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2925  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
2926>;
2927
2928def : GCNPat <
2929  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2930  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2931>;
2932
2933
2934
2935foreach Ty = [i16, f16] in {
2936
2937defvar vecTy = !if(!eq(Ty, i16), v2i16, v2f16);
2938defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
2939
2940// Take the lower 16 bits from each VGPR_32 and concat them
2941def : GCNPat <
2942  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
2943  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
2944>;
2945
2946
2947// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
2948// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
2949def : GCNPat <
2950  (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
2951    (Ty !if(!eq(Ty, i16),
2952      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2953      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2954  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
2955>;
2956
2957
2958// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
2959// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
2960def : GCNPat <
2961  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
2962    (Ty !if(!eq(Ty, i16),
2963      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2964      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2965  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)),  VGPR_32:$a, VGPR_32:$b)
2966>;
2967
2968
2969// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
2970// Special case, can use V_ALIGNBIT (always uses encoded literal)
2971def : GCNPat <
2972  (vecTy (DivergentBinFrag<build_vector>
2973    (Ty !if(!eq(Ty, i16),
2974      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
2975      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
2976    (Ty VGPR_32:$b))),
2977    (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
2978>;
2979
2980// Take the upper 16 bits from each VGPR_32 and concat them
2981def : GCNPat <
2982  (vecTy (DivergentBinFrag<build_vector>
2983    (Ty !if(!eq(Ty, i16),
2984      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
2985      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
2986    (Ty !if(!eq(Ty, i16),
2987      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2988      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2989  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
2990>;
2991
2992
2993} // end foreach Ty
2994
2995
2996let AddedComplexity = 5 in {
2997def : GCNPat <
2998  (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
2999                                         (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
3000  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
3001>;
3002}
3003} // End SubtargetPredicate = HasVOP3PInsts
3004
3005// With multiple uses of the shift, this will duplicate the shift and
3006// increase register pressure.
3007let SubtargetPredicate = isGFX11Plus in
3008def : GCNPat <
3009  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
3010  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
3011>;
3012
3013
3014def : GCNPat <
3015  (v2f16 (scalar_to_vector f16:$src0)),
3016  (COPY $src0)
3017>;
3018
3019def : GCNPat <
3020  (v2i16 (scalar_to_vector i16:$src0)),
3021  (COPY $src0)
3022>;
3023
3024def : GCNPat <
3025  (v4i16 (scalar_to_vector i16:$src0)),
3026  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3027>;
3028
3029def : GCNPat <
3030  (v4f16 (scalar_to_vector f16:$src0)),
3031  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3032>;
3033
3034def : GCNPat <
3035  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3036                           timm:$bank_mask, timm:$bound_ctrl)),
3037  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
3038                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
3039                        (as_i32timm $bank_mask),
3040                        (as_i1timm $bound_ctrl))
3041>;
3042
3043def : GCNPat <
3044  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3045                              timm:$bank_mask, timm:$bound_ctrl)),
3046  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
3047                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
3048                        (as_i1timm $bound_ctrl))
3049>;
3050
3051//===----------------------------------------------------------------------===//
3052// Fract Patterns
3053//===----------------------------------------------------------------------===//
3054
3055let SubtargetPredicate = isGFX6 in {
3056
3057// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
3058// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
3059// way to implement it is using V_FRACT_F64.
3060// The workaround for the V_FRACT bug is:
3061//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
3062
3063// Convert floor(x) to (x - fract(x))
3064
3065// Don't bother handling this for GlobalISel, it's handled during
3066// lowering.
3067//
3068// FIXME: DAG should also custom lower this.
3069def : GCNPat <
3070  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
3071  (V_ADD_F64_e64
3072      $mods,
3073      $x,
3074      SRCMODS.NEG,
3075      (V_CNDMASK_B64_PSEUDO
3076         (V_MIN_F64_e64
3077             SRCMODS.NONE,
3078             (V_FRACT_F64_e64 $mods, $x),
3079             SRCMODS.NONE,
3080             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
3081         $x,
3082         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
3083>;
3084
3085} // End SubtargetPredicates = isGFX6
3086
3087//============================================================================//
3088// Miscellaneous Optimization Patterns
3089//============================================================================//
3090
3091// Undo sub x, c -> add x, -c canonicalization since c is more likely
3092// an inline immediate than -c.
3093// TODO: Also do for 64-bit.
3094def : GCNPat<
3095  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3096  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
3097>;
3098
3099def : GCNPat<
3100  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3101  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3102  let SubtargetPredicate = HasAddNoCarryInsts;
3103}
3104
3105def : GCNPat<
3106  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3107  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3108  let SubtargetPredicate = NotHasAddNoCarryInsts;
3109}
3110
3111
3112// Avoid pointlessly materializing a constant in VGPR.
3113// FIXME: Should also do this for readlane, but tablegen crashes on
3114// the ignored src1.
3115def : GCNPat<
3116  (int_amdgcn_readfirstlane (i32 imm:$src)),
3117  (S_MOV_B32 SReg_32:$src)
3118>;
3119
3120multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
3121  def : GCNPat <
3122    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
3123    (BFM $a, $b)
3124  >;
3125
3126  def : GCNPat <
3127    (vt (ADD (vt (shl 1, vt:$a)), -1)),
3128    (BFM $a, (i32 0))
3129  >;
3130}
3131
3132defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
3133// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
3134defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
3135
3136// Bitfield extract patterns
3137
3138def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
3139  return isMask_32(Imm);
3140}]>;
3141
3142def IMMPopCount : SDNodeXForm<imm, [{
3143  return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
3144                                   MVT::i32);
3145}]>;
3146
3147def : AMDGPUPat <
3148  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
3149                         IMMZeroBasedBitfieldMask:$mask),
3150  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
3151>;
3152
3153// x & ((1 << y) - 1)
3154def : AMDGPUPat <
3155  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
3156  (V_BFE_U32_e64 $src, (i32 0), $width)
3157>;
3158
3159// x & ~(-1 << y)
3160def : AMDGPUPat <
3161  (DivergentBinFrag<and> i32:$src,
3162                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
3163  (V_BFE_U32_e64 $src, (i32 0), $width)
3164>;
3165
3166// x & (-1 >> (bitwidth - y))
3167def : AMDGPUPat <
3168  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
3169  (V_BFE_U32_e64 $src, (i32 0), $width)
3170>;
3171
3172// x << (bitwidth - y) >> (bitwidth - y)
3173def : AMDGPUPat <
3174  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3175                         (sub 32, i32:$width)),
3176  (V_BFE_U32_e64 $src, (i32 0), $width)
3177>;
3178
3179def : AMDGPUPat <
3180  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3181                         (sub 32, i32:$width)),
3182  (V_BFE_I32_e64 $src, (i32 0), $width)
3183>;
3184
3185// SHA-256 Ma patterns
3186
3187// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
3188def : AMDGPUPat <
3189  (DivergentBinFrag<or> (and i32:$x, i32:$z),
3190                        (and i32:$y, (or i32:$x, i32:$z))),
3191  (V_BFI_B32_e64 (V_XOR_B32_e64 VSrc_b32:$x, VSrc_b32:$y), VSrc_b32:$z, VSrc_b32:$y)
3192>;
3193
3194def : AMDGPUPat <
3195  (DivergentBinFrag<or> (and i64:$x, i64:$z),
3196                        (and i64:$y, (or i64:$x, i64:$z))),
3197  (REG_SEQUENCE VReg_64,
3198    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
3199                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
3200               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
3201               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
3202    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
3203                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
3204               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
3205               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
3206>;
3207
3208multiclass IntMed3Pat<Instruction med3Inst,
3209                 SDPatternOperator min,
3210                 SDPatternOperator max> {
3211
3212  // This matches 16 permutations of
3213  // min(max(a, b), max(min(a, b), c))
3214  def : AMDGPUPat <
3215  (min (max i32:$src0, i32:$src1),
3216       (max (min i32:$src0, i32:$src1), i32:$src2)),
3217  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3218>;
3219
3220  // This matches 16 permutations of
3221  // max(min(x, y), min(max(x, y), z))
3222  def : AMDGPUPat <
3223  (max (min i32:$src0, i32:$src1),
3224       (min (max i32:$src0, i32:$src1), i32:$src2)),
3225  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3226>;
3227}
3228
3229defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
3230defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
3231
3232multiclass FPMed3Pat<ValueType vt,
3233                Instruction med3Inst> {
3234  // This matches 16 permutations of max(min(x, y), min(max(x, y), z))
3235  def : GCNPat<
3236    (fmaxnum_like_nnan
3237      (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3238                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3239      (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3240                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3241                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3242    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3243              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3244
3245
3246  // This matches 16 permutations of min(max(x, y), max(min(x, y), z))
3247  def : GCNPat<
3248    (fminnum_like_nnan
3249      (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3250                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3251      (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3252                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3253                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3254    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3255              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3256}
3257
3258class FP16Med3Pat<ValueType vt,
3259                Instruction med3Inst> : GCNPat<
3260  (fmaxnum_like_nnan (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3261                                   (VOP3Mods vt:$src1, i32:$src1_mods)),
3262           (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3263                                       (VOP3Mods vt:$src1, i32:$src1_mods)),
3264                         (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3265  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
3266>;
3267
3268multiclass Int16Med3Pat<Instruction med3Inst,
3269                        SDPatternOperator min,
3270                        SDPatternOperator max> {
3271  // This matches 16 permutations of
3272  // max(min(x, y), min(max(x, y), z))
3273  def : GCNPat <
3274  (max (min i16:$src0, i16:$src1),
3275       (min (max i16:$src0, i16:$src1), i16:$src2)),
3276  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3277>;
3278
3279  // This matches 16 permutations of
3280  // min(max(a, b), max(min(a, b), c))
3281  def : GCNPat <
3282  (min (max i16:$src0, i16:$src1),
3283       (max (min i16:$src0, i16:$src1), i16:$src2)),
3284  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3285>;
3286}
3287
3288defm : FPMed3Pat<f32, V_MED3_F32_e64>;
3289
3290class
3291IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3292             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3293  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3294                                i32:$src2),
3295  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3296>;
3297
3298class
3299FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3300            SDPatternOperator max_or_min_oneuse> : GCNPat <
3301  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3302                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3303               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3304  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3305              DSTCLAMP.NONE, DSTOMOD.NONE)
3306>;
3307
3308let OtherPredicates = [isGFX11Plus] in {
3309def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3310def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3311def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3312def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3313def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3314def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3315def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3316def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3317}
3318
3319let OtherPredicates = [isGFX9Plus] in {
3320def : FP16Med3Pat<f16, V_MED3_F16_e64>;
3321defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax>;
3322defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax>;
3323} // End Predicates = [isGFX9Plus]
3324
3325class AMDGPUGenericInstruction : GenericInstruction {
3326  let Namespace = "AMDGPU";
3327}
3328
3329// Convert a wave address to a swizzled vector address (i.e. this is
3330// for copying the stack pointer to a vector address appropriate to
3331// use in the offset field of mubuf instructions).
3332def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3333  let OutOperandList = (outs type0:$dst);
3334  let InOperandList = (ins type0:$src);
3335  let hasSideEffects = 0;
3336}
3337
3338// Returns -1 if the input is zero.
3339def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3340  let OutOperandList = (outs type0:$dst);
3341  let InOperandList = (ins type1:$src);
3342  let hasSideEffects = 0;
3343}
3344
3345// Returns -1 if the input is zero.
3346def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3347  let OutOperandList = (outs type0:$dst);
3348  let InOperandList = (ins type1:$src);
3349  let hasSideEffects = 0;
3350}
3351
3352def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3353  let OutOperandList = (outs type0:$dst);
3354  let InOperandList = (ins type1:$src);
3355  let hasSideEffects = 0;
3356}
3357
3358class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3359  let OutOperandList = (outs type0:$dst);
3360  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3361                           type2:$soffset, untyped_imm_0:$offset,
3362                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3363  let hasSideEffects = 0;
3364  let mayLoad = 1;
3365}
3366
3367class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3368  let OutOperandList = (outs type0:$dst);
3369  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3370                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3371                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3372  let hasSideEffects = 0;
3373  let mayLoad = 1;
3374}
3375
3376def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3377def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3378def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3379def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3380def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3381def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3382def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
3383def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3384def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3385def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3386
3387class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3388  let OutOperandList = (outs);
3389  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3390                           type2:$soffset, untyped_imm_0:$offset,
3391                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3392  let hasSideEffects = 0;
3393  let mayStore = 1;
3394}
3395
3396class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3397  let OutOperandList = (outs);
3398  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3399                           type2:$soffset, untyped_imm_0:$offset,
3400                           untyped_imm_0:$format,
3401                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3402  let hasSideEffects = 0;
3403  let mayStore = 1;
3404}
3405
3406def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3407def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3408def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3409def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3410def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3411def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3412def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3413
3414def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3415  let OutOperandList = (outs type0:$dst);
3416  let InOperandList = (ins type0:$src0, type0:$src1);
3417  let hasSideEffects = 0;
3418}
3419
3420def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3421  let OutOperandList = (outs type0:$dst);
3422  let InOperandList = (ins type0:$src0, type0:$src1);
3423  let hasSideEffects = 0;
3424}
3425
3426foreach N = 0-3 in {
3427def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3428  let OutOperandList = (outs type0:$dst);
3429  let InOperandList = (ins type0:$src0);
3430  let hasSideEffects = 0;
3431}
3432}
3433
3434def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3435  let OutOperandList = (outs type0:$dst);
3436  let InOperandList = (ins type0:$src0, type0:$src1);
3437  let hasSideEffects = 0;
3438}
3439
3440def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3441  let OutOperandList = (outs type0:$dst);
3442  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3443  let hasSideEffects = 0;
3444}
3445
3446def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
3447  let OutOperandList = (outs type0:$dst);
3448  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3449  let hasSideEffects = 0;
3450}
3451
3452def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
3453  let OutOperandList = (outs type0:$dst);
3454  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3455  let hasSideEffects = 0;
3456}
3457
3458def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3459  let OutOperandList = (outs type0:$dst);
3460  let InOperandList = (ins type0:$src);
3461  let hasSideEffects = 0;
3462}
3463
3464// Integer multiply-add: arg0 * arg1 + arg2.
3465//
3466// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
3467// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
3468class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
3469  let OutOperandList = (outs type0:$dst, type1:$carry_out);
3470  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
3471  let hasSideEffects = 0;
3472}
3473
3474def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
3475def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
3476
3477// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3478// operand Expects a MachineMemOperand in addition to explicit
3479// operands.
3480def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3481  let OutOperandList = (outs type0:$oldval);
3482  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3483  let hasSideEffects = 0;
3484  let mayLoad = 1;
3485  let mayStore = 1;
3486}
3487
3488let Namespace = "AMDGPU" in {
3489def G_AMDGPU_ATOMIC_INC : G_ATOMICRMW_OP;
3490def G_AMDGPU_ATOMIC_DEC : G_ATOMICRMW_OP;
3491def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP;
3492def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP;
3493}
3494
3495class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction {
3496  let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst));
3497  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3498                           type2:$soffset, untyped_imm_0:$offset,
3499                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3500  let hasSideEffects = 0;
3501  let mayLoad = 1;
3502  let mayStore = 1;
3503}
3504
3505def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3506def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3507def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3508def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3509def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3510def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3511def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3512def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3513def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3514def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3515def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3516def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3517def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3518def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3519def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3520
3521def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3522  let OutOperandList = (outs type0:$dst);
3523  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3524                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3525                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3526  let hasSideEffects = 0;
3527  let mayLoad = 1;
3528  let mayStore = 1;
3529}
3530
3531// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3532// a workaround for the intrinsic being defined as readnone, but
3533// really needs a memory operand.
3534def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction {
3535  let OutOperandList = (outs type0:$dst);
3536  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3537  let hasSideEffects = 0;
3538  let mayLoad = 1;
3539  let mayStore = 0;
3540}
3541
3542// This is equivalent to the G_INTRINSIC*, but the operands may have
3543// been legalized depending on the subtarget requirements.
3544def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3545  let OutOperandList = (outs type0:$dst);
3546  let InOperandList = (ins unknown:$intrin, variable_ops);
3547  let hasSideEffects = 0;
3548  let mayLoad = 1;
3549
3550  // FIXME: Use separate opcode for atomics.
3551  let mayStore = 1;
3552}
3553
3554def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3555  let OutOperandList = (outs type0:$dst);
3556  let InOperandList = (ins unknown:$intrin, variable_ops);
3557  let hasSideEffects = 0;
3558  let mayLoad = 1;
3559
3560  // FIXME: Use separate opcode for atomics.
3561  let mayStore = 1;
3562}
3563
3564// This is equivalent to the G_INTRINSIC*, but the operands may have
3565// been legalized depending on the subtarget requirements.
3566def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3567  let OutOperandList = (outs);
3568  let InOperandList = (ins unknown:$intrin, variable_ops);
3569  let hasSideEffects = 0;
3570  let mayStore = 1;
3571}
3572
3573def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3574  let OutOperandList = (outs);
3575  let InOperandList = (ins unknown:$intrin, variable_ops);
3576  let hasSideEffects = 0;
3577  let mayStore = 1;
3578}
3579
3580def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3581  let OutOperandList = (outs type0:$dst);
3582  let InOperandList = (ins unknown:$intrin, variable_ops);
3583  let hasSideEffects = 0;
3584  let mayLoad = 1;
3585  let mayStore = 0;
3586}
3587
3588// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3589// if necessary.
3590def G_SI_CALL : AMDGPUGenericInstruction {
3591  let OutOperandList = (outs SReg_64:$dst);
3592  let InOperandList = (ins type0:$src0, unknown:$callee);
3593  let Size = 4;
3594  let isCall = 1;
3595  let UseNamedOperandTable = 1;
3596  let SchedRW = [WriteBranch];
3597  // TODO: Should really base this on the call target
3598  let isConvergent = 1;
3599}
3600
3601def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction {
3602  let OutOperandList = (outs type0:$vdst);
3603  let InOperandList = (ins type1:$src0);
3604  let hasSideEffects = 0;
3605}
3606
3607def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction {
3608  let OutOperandList = (outs type0:$vdst);
3609  let InOperandList = (ins type1:$src0);
3610  let hasSideEffects = 0;
3611}
3612
3613//============================================================================//
3614// Dummy Instructions
3615//============================================================================//
3616
3617def V_ILLEGAL_gfx6_gfx7_gfx8_gfx9 : Enc32, InstSI<(outs), (ins), "v_illegal"> {
3618  let Inst{31-0} = 0xFFFFFFFF;
3619  let FixedSize = 1;
3620  let Size = 4;
3621  let Uses = [EXEC];
3622  let hasSideEffects = 1;
3623  let SubtargetPredicate = isGFX6GFX7GFX8GFX9;
3624}
3625
3626def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
3627  let Inst{31-0} = 0x00000000;
3628  let FixedSize = 1;
3629  let Size = 4;
3630  let Uses = [EXEC];
3631  let hasSideEffects = 1;
3632  let SubtargetPredicate = isGFX10Plus;
3633}
3634