xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInstructions.td (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl;
14
15class UniformSextInreg<ValueType VT> : PatFrag<
16  (ops node:$src),
17  (sext_inreg $src, VT),
18  [{ return !N->isDivergent(); }]>;
19
20class DivergentSextInreg<ValueType VT> : PatFrag<
21  (ops node:$src),
22  (sext_inreg $src, VT),
23  [{ return N->isDivergent(); }]>;
24
25include "SOPInstructions.td"
26include "VOPInstructions.td"
27include "SMInstructions.td"
28include "FLATInstructions.td"
29include "BUFInstructions.td"
30include "EXPInstructions.td"
31include "DSDIRInstructions.td"
32include "VINTERPInstructions.td"
33
34//===----------------------------------------------------------------------===//
35// VINTRP Instructions
36//===----------------------------------------------------------------------===//
37
38// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
39def VINTRPDst : VINTRPDstOperand <VGPR_32>;
40
41let Uses = [MODE, M0, EXEC] in {
42
43// FIXME: Specify SchedRW for VINTRP instructions.
44
45multiclass V_INTERP_P1_F32_m : VINTRP_m <
46  0x00000000,
47  (outs VINTRPDst:$vdst),
48  (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
49  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
50  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
51                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
52>;
53
54let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
55
56defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
57
58} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
59
60let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
61    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
62
63defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
64
65} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
66  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
67
68let OtherPredicates = [isNotGFX90APlus] in {
69let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
70
71defm V_INTERP_P2_F32 : VINTRP_m <
72  0x00000001,
73  (outs VINTRPDst:$vdst),
74  (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr,
75       InterpAttrChan:$attrchan),
76  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
77  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
78                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
79
80} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
81
82defm V_INTERP_MOV_F32 : VINTRP_m <
83  0x00000002,
84  (outs VINTRPDst:$vdst),
85  (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
86  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
87  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
88                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
89
90} // End OtherPredicates = [isNotGFX90APlus]
91
92} // End Uses = [MODE, M0, EXEC]
93
94//===----------------------------------------------------------------------===//
95// Pseudo Instructions
96//===----------------------------------------------------------------------===//
97
98// Insert a branch to an endpgm block to use as a fallback trap.
99def ENDPGM_TRAP : SPseudoInstSI<
100  (outs), (ins),
101  [(AMDGPUendpgm_trap)],
102  "ENDPGM_TRAP"> {
103  let hasSideEffects = 1;
104  let usesCustomInserter = 1;
105}
106
107def SIMULATED_TRAP : SPseudoInstSI<(outs), (ins), [(AMDGPUsimulated_trap)],
108                                   "SIMULATED_TRAP"> {
109  let hasSideEffects = 1;
110  let usesCustomInserter = 1;
111}
112
113def ATOMIC_FENCE : SPseudoInstSI<
114  (outs), (ins i32imm:$ordering, i32imm:$scope),
115  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
116  "ATOMIC_FENCE $ordering, $scope"> {
117  let hasSideEffects = 1;
118}
119
120let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
121
122// For use in patterns
123def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
124  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
125  let isPseudo = 1;
126  let isCodeGenOnly = 1;
127  let usesCustomInserter = 1;
128}
129
130// 64-bit vector move instruction. This is mainly used by the
131// SIFoldOperands pass to enable folding of inline immediates.
132def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
133                                      (ins VSrc_b64:$src0)> {
134  let isReMaterializable = 1;
135  let isAsCheapAsAMove = 1;
136  let isMoveImm = 1;
137  let SchedRW = [Write64Bit];
138  let Size = 4;
139  let UseNamedOperandTable = 1;
140}
141
142// 64-bit vector move with dpp. Expanded post-RA.
143def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
144  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
145}
146
147// 64-bit scalar move immediate instruction. This is used to avoid subregs
148// initialization and allow rematerialization.
149def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
150                                          (ins i64imm:$src0)> {
151  let isReMaterializable = 1;
152  let isAsCheapAsAMove = 1;
153  let isMoveImm = 1;
154  let SchedRW = [WriteSALU, Write64Bit];
155  let Size = 4;
156  let Uses = [];
157  let UseNamedOperandTable = 1;
158}
159
160// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
161// WQM pass processes it.
162def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
163
164// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
165// turned into a copy by WQM pass, but does not seed WQM requirements.
166def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
167
168// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
169// that the @earlyclobber is respected. The @earlyclobber is to make sure that
170// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
171// accidentally clobber inactive channels of $vdst.
172let Constraints = "@earlyclobber $vdst" in {
173def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
174def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
175}
176
177} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
178
179def WWM_COPY : SPseudoInstSI <
180  (outs unknown:$dst), (ins unknown:$src)> {
181  let hasSideEffects = 0;
182  let isAsCheapAsAMove = 1;
183  let isConvergent = 1;
184}
185
186def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
187  let Uses = [EXEC];
188  let Defs = [EXEC, SCC];
189  let hasSideEffects = 0;
190  let mayLoad = 0;
191  let mayStore = 0;
192}
193
194def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
195  let hasSideEffects = 0;
196  let mayLoad = 0;
197  let mayStore = 0;
198}
199
200def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
201  let Uses = [EXEC];
202  let Defs = [EXEC, SCC];
203  let hasSideEffects = 0;
204  let mayLoad = 0;
205  let mayStore = 0;
206}
207
208def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
209  let hasSideEffects = 0;
210  let mayLoad = 0;
211  let mayStore = 0;
212}
213
214let usesCustomInserter = 1 in {
215let WaveSizePredicate = isWave32 in
216def S_INVERSE_BALLOT_U32 : SPseudoInstSI<
217  (outs SReg_32:$sdst), (ins SSrc_b32:$mask),
218  [(set i1:$sdst, (int_amdgcn_inverse_ballot i32:$mask))]
219>;
220
221let WaveSizePredicate = isWave64 in
222def S_INVERSE_BALLOT_U64 : SPseudoInstSI<
223  (outs SReg_64:$sdst), (ins SSrc_b64:$mask),
224  [(set i1:$sdst, (int_amdgcn_inverse_ballot i64:$mask))]
225>;
226} // End usesCustomInserter = 1
227
228// Pseudo instructions used for @llvm.fptrunc.round upward
229// and @llvm.fptrunc.round downward.
230// These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD
231// and G_FPTRUNC_ROUND_DOWNWARD before being lowered to
232// FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO.
233// The final codegen is done in the ModeRegister pass.
234let Uses = [MODE, EXEC] in {
235def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
236  (ins VGPR_32:$src0),
237  [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>;
238
239def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
240  (ins VGPR_32:$src0),
241  [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>;
242} // End Uses = [MODE, EXEC]
243
244// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
245// restoring it after we're done.
246let Defs = [SCC], isConvergent = 1 in {
247def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
248  (ins VSrc_b32: $src, VSrc_b32:$inactive), []>;
249
250def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
251  (ins VSrc_b64: $src, VSrc_b64:$inactive), []>;
252} // End Defs = [SCC]
253
254foreach vt = Reg32Types.types in {
255def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)),
256     (V_SET_INACTIVE_B32 VSrc_b32:$src, VSrc_b32:$inactive)>;
257}
258
259foreach vt = Reg64Types.types in {
260def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)),
261     (V_SET_INACTIVE_B64 VSrc_b64:$src, VSrc_b64:$inactive)>;
262}
263
264def : GCNPat<(i32 (int_amdgcn_set_inactive_chain_arg i32:$src, i32:$inactive)),
265    (V_SET_INACTIVE_B32 VGPR_32:$src, VGPR_32:$inactive)>;
266
267def : GCNPat<(i64 (int_amdgcn_set_inactive_chain_arg i64:$src, i64:$inactive)),
268    (V_SET_INACTIVE_B64 VReg_64:$src, VReg_64:$inactive)>;
269
270let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
271  def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
272    (ins VSrc_b32: $src, VSrc_b32:$strategy),
273    [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> {
274  }
275
276  def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
277    (ins VSrc_b32: $src, VSrc_b32:$strategy),
278    [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> {
279  }
280}
281
282let usesCustomInserter = 1, Defs = [VCC] in {
283def V_ADD_U64_PSEUDO : VPseudoInstSI <
284  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
285  [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
286>;
287
288def V_SUB_U64_PSEUDO : VPseudoInstSI <
289  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
290  [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
291>;
292} // End usesCustomInserter = 1, Defs = [VCC]
293
294let usesCustomInserter = 1, Defs = [SCC] in {
295def S_ADD_U64_PSEUDO : SPseudoInstSI <
296  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
297  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
298>;
299
300def S_SUB_U64_PSEUDO : SPseudoInstSI <
301  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
302  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
303>;
304
305def S_ADD_CO_PSEUDO : SPseudoInstSI <
306  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
307>;
308
309def S_SUB_CO_PSEUDO : SPseudoInstSI <
310  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
311>;
312
313def S_UADDO_PSEUDO : SPseudoInstSI <
314  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
315>;
316
317def S_USUBO_PSEUDO : SPseudoInstSI <
318  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
319>;
320
321let OtherPredicates = [HasShaderCyclesHiLoRegisters] in
322def GET_SHADERCYCLESHILO : SPseudoInstSI<
323  (outs SReg_64:$sdst), (ins),
324  [(set SReg_64:$sdst, (i64 (readcyclecounter)))]
325>;
326
327} // End usesCustomInserter = 1, Defs = [SCC]
328
329let usesCustomInserter = 1 in {
330def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
331  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
332} // End let usesCustomInserter = 1, SALU = 1
333
334// Wrap an instruction by duplicating it, except for setting isTerminator.
335class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
336      base_inst.OutOperandList,
337      base_inst.InOperandList> {
338  let Uses = base_inst.Uses;
339  let Defs = base_inst.Defs;
340  let isTerminator = 1;
341  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
342  let hasSideEffects = base_inst.hasSideEffects;
343  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
344  let CodeSize = base_inst.CodeSize;
345  let SchedRW = base_inst.SchedRW;
346}
347
348let WaveSizePredicate = isWave64 in {
349def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
350def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
351def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
352def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
353def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
354def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>;
355}
356
357let WaveSizePredicate = isWave32 in {
358def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
359def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
360def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
361def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
362def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
363def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>;
364}
365
366
367def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
368  [(int_amdgcn_wave_barrier)]> {
369  let SchedRW = [];
370  let hasNoSchedulingInfo = 1;
371  let hasSideEffects = 1;
372  let mayLoad = 0;
373  let mayStore = 0;
374  let isConvergent = 1;
375  let FixedSize = 1;
376  let Size = 0;
377  let isMeta = 1;
378}
379
380def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
381  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
382  let SchedRW = [];
383  let hasNoSchedulingInfo = 1;
384  let hasSideEffects = 1;
385  let mayLoad = 0;
386  let mayStore = 0;
387  let isConvergent = 1;
388  let FixedSize = 1;
389  let Size = 0;
390  let isMeta = 1;
391}
392
393def SCHED_GROUP_BARRIER : SPseudoInstSI<
394  (outs),
395  (ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
396  [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
397  let SchedRW = [];
398  let hasNoSchedulingInfo = 1;
399  let hasSideEffects = 1;
400  let mayLoad = 0;
401  let mayStore = 0;
402  let isConvergent = 1;
403  let FixedSize = 1;
404  let Size = 0;
405  let isMeta = 1;
406}
407
408def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
409  [(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
410  let SchedRW = [];
411  let hasNoSchedulingInfo = 1;
412  let hasSideEffects = 1;
413  let mayLoad = 0;
414  let mayStore = 0;
415  let isConvergent = 1;
416  let FixedSize = 1;
417  let Size = 0;
418  let isMeta = 1;
419}
420
421// SI pseudo instructions. These are used by the CFG structurizer pass
422// and should be lowered to ISA instructions prior to codegen.
423
424// As we have enhanced control flow intrinsics to work under unstructured CFG,
425// duplicating such intrinsics can be actually treated as legal. On the contrary,
426// by making them non-duplicable, we are observing better code generation result.
427// So we choose to mark them non-duplicable in hope of getting better code
428// generation as well as simplied CFG during Machine IR optimization stage.
429
430let isTerminator = 1, isNotDuplicable = 1 in {
431
432let OtherPredicates = [EnableLateCFGStructurize] in {
433 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
434  (outs),
435  (ins SReg_1:$vcc, brtarget:$target),
436  [(brcond i1:$vcc, bb:$target)]> {
437    let Size = 12;
438}
439}
440
441def SI_IF: CFPseudoInstSI <
442  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
443  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
444  let Constraints = "";
445  let Size = 12;
446  let hasSideEffects = 1;
447  let IsNeverUniform = 1;
448}
449
450def SI_ELSE : CFPseudoInstSI <
451  (outs SReg_1:$dst),
452  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
453  let Size = 12;
454  let hasSideEffects = 1;
455  let IsNeverUniform = 1;
456}
457
458def SI_WATERFALL_LOOP : CFPseudoInstSI <
459  (outs),
460  (ins brtarget:$target), [], 1> {
461  let Size = 8;
462  let isBranch = 1;
463  let Defs = [];
464}
465
466def SI_LOOP : CFPseudoInstSI <
467  (outs), (ins SReg_1:$saved, brtarget:$target),
468  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
469  let Size = 8;
470  let isBranch = 1;
471  let hasSideEffects = 1;
472  let IsNeverUniform = 1;
473}
474
475} // End isTerminator = 1
476
477def SI_END_CF : CFPseudoInstSI <
478  (outs), (ins SReg_1:$saved), [], 1, 1> {
479  let Size = 4;
480  let isAsCheapAsAMove = 1;
481  let isReMaterializable = 1;
482  let hasSideEffects = 1;
483  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
484  let mayLoad = 1; // FIXME: Should not need memory flags
485  let mayStore = 1;
486}
487
488def SI_IF_BREAK : CFPseudoInstSI <
489  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
490  let Size = 4;
491  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
492  let isAsCheapAsAMove = 1;
493  let isReMaterializable = 1;
494}
495
496// Branch to the early termination block of the shader if SCC is 0.
497// This uses SCC from a previous SALU operation, i.e. the update of
498// a mask of live lanes after a kill/demote operation.
499// Only valid in pixel shaders.
500def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
501  let Uses = [EXEC,SCC];
502}
503
504let Uses = [EXEC] in {
505
506multiclass PseudoInstKill <dag ins> {
507  // Even though this pseudo can usually be expanded without an SCC def, we
508  // conservatively assume that it has an SCC def, both because it is sometimes
509  // required in degenerate cases (when V_CMPX cannot be used due to constant
510  // bus limitations) and because it allows us to avoid having to track SCC
511  // liveness across basic blocks.
512  let Defs = [EXEC,SCC] in
513  def _PSEUDO : PseudoInstSI <(outs), ins> {
514    let isConvergent = 1;
515    let usesCustomInserter = 1;
516  }
517
518  let Defs = [EXEC,SCC] in
519  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
520    let isTerminator = 1;
521  }
522}
523
524defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
525let Defs = [VCC] in
526defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
527
528let Defs = [EXEC,VCC] in
529def SI_ILLEGAL_COPY : SPseudoInstSI <
530  (outs unknown:$dst), (ins unknown:$src),
531  [], " ; illegal copy $src to $dst">;
532
533} // End Uses = [EXEC], Defs = [EXEC,VCC]
534
535// Branch on undef scc. Used to avoid intermediate copy from
536// IMPLICIT_DEF to SCC.
537def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> {
538  let isTerminator = 1;
539  let usesCustomInserter = 1;
540  let isBranch = 1;
541}
542
543def SI_PS_LIVE : PseudoInstSI <
544  (outs SReg_1:$dst), (ins),
545  [(set i1:$dst, (int_amdgcn_ps_live))]> {
546  let SALU = 1;
547}
548
549let Uses = [EXEC] in {
550def SI_LIVE_MASK : PseudoInstSI <
551  (outs SReg_1:$dst), (ins),
552  [(set i1:$dst, (int_amdgcn_live_mask))]> {
553  let SALU = 1;
554}
555let Defs = [EXEC,SCC] in {
556// Demote: Turn a pixel shader thread into a helper lane.
557def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
558} // End Defs = [EXEC,SCC]
559} // End Uses = [EXEC]
560
561def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
562  [(int_amdgcn_unreachable)],
563  "; divergent unreachable"> {
564  let Size = 0;
565  let hasNoSchedulingInfo = 1;
566  let FixedSize = 1;
567  let isMeta = 1;
568  let maybeAtomic = 0;
569}
570
571// Used as an isel pseudo to directly emit initialization with an
572// s_mov_b32 rather than a copy of another initialized
573// register. MachineCSE skips copies, and we don't want to have to
574// fold operands before it runs.
575def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
576  let Defs = [M0];
577  let usesCustomInserter = 1;
578  let isAsCheapAsAMove = 1;
579  let isReMaterializable = 1;
580}
581
582def SI_INIT_EXEC : SPseudoInstSI <
583  (outs), (ins i64imm:$src),
584  [(int_amdgcn_init_exec (i64 timm:$src))]> {
585  let Defs = [EXEC];
586  let isAsCheapAsAMove = 1;
587}
588
589def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
590  (outs), (ins SSrc_b32:$input, i32imm:$shift),
591  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
592  let Defs = [EXEC];
593}
594
595// Return for returning shaders to a shader variant epilog.
596def SI_RETURN_TO_EPILOG : SPseudoInstSI <
597  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
598  let isTerminator = 1;
599  let isBarrier = 1;
600  let isReturn = 1;
601  let hasNoSchedulingInfo = 1;
602  let DisableWQM = 1;
603  let FixedSize = 1;
604
605  // TODO: Should this be true?
606  let isMeta = 0;
607}
608
609// Return for returning function calls.
610def SI_RETURN : SPseudoInstSI <
611  (outs), (ins), [(AMDGPUret_glue)],
612  "; return"> {
613  let isTerminator = 1;
614  let isBarrier = 1;
615  let isReturn = 1;
616  let SchedRW = [WriteBranch];
617}
618
619// Return for returning function calls without output register.
620//
621// This version is only needed so we can fill in the output register
622// in the custom inserter.
623def SI_CALL_ISEL : SPseudoInstSI <
624  (outs), (ins SSrc_b64:$src0, unknown:$callee),
625  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
626  let Size = 4;
627  let isCall = 1;
628  let SchedRW = [WriteBranch];
629  let usesCustomInserter = 1;
630  // TODO: Should really base this on the call target
631  let isConvergent = 1;
632}
633
634def : GCNPat<
635  (AMDGPUcall i64:$src0, (i64 0)),
636  (SI_CALL_ISEL $src0, (i64 0))
637>;
638
639// Wrapper around s_swappc_b64 with extra $callee parameter to track
640// the called function after regalloc.
641def SI_CALL : SPseudoInstSI <
642  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
643  let Size = 4;
644  let FixedSize = 1;
645  let isCall = 1;
646  let UseNamedOperandTable = 1;
647  let SchedRW = [WriteBranch];
648  // TODO: Should really base this on the call target
649  let isConvergent = 1;
650}
651
652class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs),
653  (ins rc:$src0, unknown:$callee, i32imm:$fpdiff),
654  [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
655  let Size = 4;
656  let FixedSize = 1;
657  let isCall = 1;
658  let isTerminator = 1;
659  let isReturn = 1;
660  let isBarrier = 1;
661  let UseNamedOperandTable = 1;
662  let SchedRW = [WriteBranch];
663  // TODO: Should really base this on the call target
664  let isConvergent = 1;
665}
666
667// Tail call handling pseudo
668def SI_TCRETURN :     SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>;
669def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>;
670
671// Handle selecting indirect tail calls
672def : GCNPat<
673  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
674  (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
675>;
676
677// Handle selecting indirect tail calls for AMDGPU_gfx
678def : GCNPat<
679  (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)),
680  (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
681>;
682
683// Pseudo for the llvm.amdgcn.cs.chain intrinsic.
684// This is essentially a tail call, but it also takes a mask to put in EXEC
685// right before jumping to the callee.
686class SI_CS_CHAIN_TC<
687    ValueType execvt, Predicate wavesizepred,
688    RegisterOperand execrc = getSOPSrcForVT<execvt>.ret>
689    : SPseudoInstSI <(outs),
690      (ins CCR_SGPR_64:$src0, unknown:$callee, i32imm:$fpdiff, execrc:$exec)> {
691  let FixedSize = 0;
692  let isCall = 1;
693  let isTerminator = 1;
694  let isBarrier = 1;
695  let isReturn = 1;
696  let UseNamedOperandTable = 1;
697  let SchedRW = [WriteBranch];
698  let isConvergent = 1;
699
700  let WaveSizePredicate = wavesizepred;
701}
702
703def SI_CS_CHAIN_TC_W32 : SI_CS_CHAIN_TC<i32, isWave32>;
704def SI_CS_CHAIN_TC_W64 : SI_CS_CHAIN_TC<i64, isWave64>;
705
706// Handle selecting direct & indirect calls via SI_CS_CHAIN_TC_W32/64
707multiclass si_cs_chain_tc_pattern<
708  dag callee, ValueType execvt, RegisterOperand execrc, Instruction tc> {
709def : GCNPat<
710  (AMDGPUtc_return_chain i64:$src0, callee, (i32 timm:$fpdiff), execvt:$exec),
711  (tc CCR_SGPR_64:$src0, callee, i32imm:$fpdiff, execrc:$exec)
712>;
713}
714
715multiclass si_cs_chain_tc_patterns<
716  ValueType execvt,
717  RegisterOperand execrc = getSOPSrcForVT<execvt>.ret,
718  Instruction tc = !if(!eq(execvt, i32), SI_CS_CHAIN_TC_W32, SI_CS_CHAIN_TC_W64)
719  > {
720  defm direct: si_cs_chain_tc_pattern<(tglobaladdr:$callee), execvt, execrc, tc>;
721  defm indirect: si_cs_chain_tc_pattern<(i64 0), execvt, execrc, tc>;
722}
723
724defm : si_cs_chain_tc_patterns<i32>;
725defm : si_cs_chain_tc_patterns<i64>;
726
727def ADJCALLSTACKUP : SPseudoInstSI<
728  (outs), (ins i32imm:$amt0, i32imm:$amt1),
729  [(callseq_start timm:$amt0, timm:$amt1)],
730  "; adjcallstackup $amt0 $amt1"> {
731  let Size = 8; // Worst case. (s_add_u32 + constant)
732  let FixedSize = 1;
733  let hasSideEffects = 1;
734  let usesCustomInserter = 1;
735  let SchedRW = [WriteSALU];
736  let Defs = [SCC];
737}
738
739def ADJCALLSTACKDOWN : SPseudoInstSI<
740  (outs), (ins i32imm:$amt1, i32imm:$amt2),
741  [(callseq_end timm:$amt1, timm:$amt2)],
742  "; adjcallstackdown $amt1"> {
743  let Size = 8; // Worst case. (s_add_u32 + constant)
744  let hasSideEffects = 1;
745  let usesCustomInserter = 1;
746  let SchedRW = [WriteSALU];
747  let Defs = [SCC];
748}
749
750let Defs = [M0, EXEC, SCC],
751  UseNamedOperandTable = 1 in {
752
753// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
754// addressing implementation.
755class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
756  (outs VGPR_32:$vdst),
757  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
758  let usesCustomInserter = 1;
759}
760
761class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
762  (outs rc:$vdst),
763  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
764  let Constraints = "$src = $vdst";
765  let usesCustomInserter = 1;
766}
767
768def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
769def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
770def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
771def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
772def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
773def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
774def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
775def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
776def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
777def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
778
779def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
780def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
781def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
782def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
783def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
784def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
785def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
786def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
787def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
788def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
789
790} // End Uses = [EXEC], Defs = [M0, EXEC]
791
792// This is a pseudo variant of the v_movreld_b32 instruction in which the
793// vector operand appears only twice, once as def and once as use. Using this
794// pseudo avoids problems with the Two Address instructions pass.
795class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
796                                RegisterOperand val_ty> : PseudoInstSI <
797  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
798  let Constraints = "$vsrc = $vdst";
799  let Uses = [M0];
800}
801
802class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
803  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
804  let VALU = 1;
805  let VOP1 = 1;
806  let Uses = [M0, EXEC];
807}
808
809class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
810                                  RegisterOperand val_ty> :
811  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
812  let SALU = 1;
813  let SOP1 = 1;
814  let Uses = [M0];
815}
816
817class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
818  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
819class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
820  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
821
822def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
823def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
824def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
825def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
826def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
827def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
828def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
829def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
830def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
831def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
832def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
833def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
834
835def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
836def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
837def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
838def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
839def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
840def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
841def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>;
842def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>;
843def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>;
844def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>;
845def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
846def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
847
848def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
849def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
850def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
851def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
852def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
853
854// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
855// pseudos we avoid spills or copies being inserted within indirect sequences
856// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
857// this mode switching.
858
859class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
860  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
861  let Constraints = "$vsrc = $vdst";
862  let VALU = 1;
863  let Uses = [M0, EXEC];
864  let Defs = [M0];
865}
866
867def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
868def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
869def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
870def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
871def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
872def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
873def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
874def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
875def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
876def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
877def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
878def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
879
880class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
881  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
882  let VALU = 1;
883  let Uses = [M0, EXEC];
884  let Defs = [M0];
885}
886
887def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
888def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
889def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
890def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
891def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
892def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
893def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
894def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
895def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
896def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
897def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
898def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
899
900multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
901  let UseNamedOperandTable = 1, Spill = 1, SALU = 1, Uses = [EXEC] in {
902    def _SAVE : PseudoInstSI <
903      (outs),
904      (ins sgpr_class:$data, i32imm:$addr)> {
905      let mayStore = 1;
906      let mayLoad = 0;
907    }
908
909    def _RESTORE : PseudoInstSI <
910      (outs sgpr_class:$data),
911      (ins i32imm:$addr)> {
912      let mayStore = 0;
913      let mayLoad = 1;
914    }
915  } // End UseNamedOperandTable = 1
916}
917
918// You cannot use M0 as the output of v_readlane_b32 instructions or
919// use it in the sdata operand of SMEM instructions. We still need to
920// be able to spill the physical register m0, so allow it for
921// SI_SPILL_32_* instructions.
922defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
923defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
924defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
925defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
926defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
927defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
928defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
929defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
930defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
931defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
932defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
933defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
934defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
935defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
936
937let Spill = 1, VALU = 1, isConvergent = 1 in {
938def SI_SPILL_S32_TO_VGPR : PseudoInstSI <(outs VGPR_32:$vdst),
939  (ins SReg_32:$src0, i32imm:$src1, VGPR_32:$vdst_in)> {
940  let Size = 4;
941  let FixedSize = 1;
942  let IsNeverUniform = 1;
943  let hasSideEffects = 0;
944  let mayLoad = 0;
945  let mayStore = 0;
946  let Constraints = "$vdst = $vdst_in";
947}
948
949def SI_RESTORE_S32_FROM_VGPR : PseudoInstSI <(outs SReg_32:$sdst),
950  (ins VGPR_32:$src0, i32imm:$src1)> {
951  let Size = 4;
952  let FixedSize = 1;
953  let hasSideEffects = 0;
954  let mayLoad = 0;
955  let mayStore = 0;
956}
957} // End Spill = 1, VALU = 1, isConvergent = 1
958
959// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
960// needs to be used and an extra instruction to move between VGPR and AGPR.
961// UsesTmp adds to the total size of an expanded spill in this case.
962multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
963  let UseNamedOperandTable = 1, Spill = 1, VALU = 1,
964       SchedRW = [WriteVMEM] in {
965    def _SAVE : VPseudoInstSI <
966      (outs),
967      (ins vgpr_class:$vdata, i32imm:$vaddr,
968           SReg_32:$soffset, i32imm:$offset)> {
969      let mayStore = 1;
970      let mayLoad = 0;
971      // (2 * 4) + (8 * num_subregs) bytes maximum
972      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
973      // Size field is unsigned char and cannot fit more.
974      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
975    }
976
977    def _RESTORE : VPseudoInstSI <
978      (outs vgpr_class:$vdata),
979      (ins i32imm:$vaddr,
980           SReg_32:$soffset, i32imm:$offset)> {
981      let mayStore = 0;
982      let mayLoad = 1;
983
984      // (2 * 4) + (8 * num_subregs) bytes maximum
985      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
986      // Size field is unsigned char and cannot fit more.
987      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
988    }
989  } // End UseNamedOperandTable = 1, Spill = 1, VALU = 1, SchedRW = [WriteVMEM]
990}
991
992defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
993defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
994defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
995defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
996defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
997defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
998defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
999defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
1000defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
1001defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
1002defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
1003defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
1004defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
1005defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
1006
1007defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
1008defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
1009defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
1010defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
1011defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
1012defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
1013defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
1014defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
1015defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
1016defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
1017defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
1018defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
1019defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
1020defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
1021
1022defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
1023defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
1024defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
1025defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
1026defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
1027defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
1028defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
1029defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
1030defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
1031defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
1032defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
1033defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
1034defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
1035defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
1036
1037let isConvergent = 1 in {
1038  defm SI_SPILL_WWM_V32  : SI_SPILL_VGPR <VGPR_32>;
1039  defm SI_SPILL_WWM_AV32 : SI_SPILL_VGPR <AV_32, 1>;
1040}
1041
1042let isReMaterializable = 1, isAsCheapAsAMove = 1 in
1043def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
1044  (outs SReg_64:$dst),
1045  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
1046  [(set SReg_64:$dst,
1047      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
1048  let Defs = [SCC];
1049}
1050
1051def : GCNPat <
1052  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
1053  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
1054>;
1055
1056def : GCNPat<
1057  (AMDGPUtrap timm:$trapid),
1058  (S_TRAP $trapid)
1059>;
1060
1061def : GCNPat<
1062  (AMDGPUelse i1:$src, bb:$target),
1063  (SI_ELSE $src, $target)
1064>;
1065
1066def : Pat <
1067  (int_amdgcn_kill i1:$src),
1068  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
1069>;
1070
1071def : Pat <
1072  (int_amdgcn_kill (i1 (not i1:$src))),
1073  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
1074>;
1075
1076def : Pat <
1077  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
1078  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
1079>;
1080
1081def : Pat <
1082  (int_amdgcn_wqm_demote i1:$src),
1083  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
1084>;
1085
1086def : Pat <
1087  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
1088  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
1089>;
1090
1091  // TODO: we could add more variants for other types of conditionals
1092
1093def : Pat <
1094  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1095  (COPY $src) // Return the SGPRs representing i1 src
1096>;
1097
1098def : Pat <
1099  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1100  (COPY $src) // Return the SGPRs representing i1 src
1101>;
1102
1103//===----------------------------------------------------------------------===//
1104// VOP1 Patterns
1105//===----------------------------------------------------------------------===//
1106
1107multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
1108  // f16_to_fp patterns
1109  def : GCNPat <
1110    (f32 (any_f16_to_fp i32:$src0)),
1111    (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
1112  >;
1113
1114  def : GCNPat <
1115    (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
1116    (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
1117  >;
1118
1119  def : GCNPat <
1120    (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
1121    (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
1122  >;
1123
1124  def : GCNPat <
1125    (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
1126    (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
1127  >;
1128
1129  def : GCNPat <
1130    (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
1131    (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
1132  >;
1133
1134  def : GCNPat <
1135    (f64 (any_fpextend f16:$src)),
1136    (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
1137  >;
1138
1139  // fp_to_fp16 patterns
1140  def : GCNPat <
1141    (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1142    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1143  >;
1144
1145  def : GCNPat <
1146    (i32 (fp_to_sint f16:$src)),
1147    (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1148  >;
1149
1150  def : GCNPat <
1151    (i32 (fp_to_uint f16:$src)),
1152    (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1153  >;
1154
1155  def : GCNPat <
1156    (f16 (sint_to_fp i32:$src)),
1157    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
1158  >;
1159
1160  def : GCNPat <
1161    (f16 (uint_to_fp i32:$src)),
1162    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
1163  >;
1164
1165  // This is only used on targets without half support
1166  // TODO: Introduce strict variant of AMDGPUfp_to_f16 and share custom lowering
1167  def : GCNPat <
1168    (i32 (strict_fp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1169    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1170  >;
1171}
1172
1173let SubtargetPredicate = NotHasTrue16BitInsts in
1174defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
1175
1176let SubtargetPredicate = HasTrue16BitInsts in
1177defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64>;
1178
1179//===----------------------------------------------------------------------===//
1180// VOP2 Patterns
1181//===----------------------------------------------------------------------===//
1182
1183// NoMods pattern used for mac. If there are any source modifiers then it's
1184// better to select mad instead of mac.
1185class FMADPat <ValueType vt, Instruction inst>
1186  : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
1187                          (vt (VOP3NoMods vt:$src1)),
1188                          (vt (VOP3NoMods vt:$src2)))),
1189    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1190          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1191>;
1192
1193// Prefer mac form when there are no modifiers.
1194let AddedComplexity = 9 in {
1195let OtherPredicates = [HasMadMacF32Insts] in
1196def : FMADPat <f32, V_MAC_F32_e64>;
1197
1198// Don't allow source modifiers. If there are any source modifiers then it's
1199// better to select mad instead of mac.
1200let SubtargetPredicate = isGFX6GFX7GFX10,
1201    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1202def : GCNPat <
1203      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
1204                                    (VOP3NoMods f32:$src1)),
1205                 (VOP3NoMods f32:$src2))),
1206      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1207                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1208>;
1209
1210// Don't allow source modifiers. If there are any source modifiers then it's
1211// better to select fma instead of fmac.
1212let SubtargetPredicate = HasFmaLegacy32 in
1213def : GCNPat <
1214      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
1215                                  (VOP3NoMods f32:$src1),
1216                                  (VOP3NoMods f32:$src2))),
1217      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1218                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1219>;
1220
1221let SubtargetPredicate = Has16BitInsts in
1222def : FMADPat <f16, V_MAC_F16_e64>;
1223} // AddedComplexity = 9
1224
1225let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1226def : GCNPat <
1227      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1228                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1229                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1230      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1231                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1232>;
1233
1234class VOPSelectModsPat <ValueType vt> : GCNPat <
1235  (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods),
1236                        (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))),
1237  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1238                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1239>;
1240
1241class VOPSelectPat <ValueType vt> : GCNPat <
1242  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1243  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1244>;
1245
1246def : VOPSelectModsPat <i32>;
1247def : VOPSelectModsPat <f32>;
1248def : VOPSelectPat <f16>;
1249def : VOPSelectPat <i16>;
1250
1251let AddedComplexity = 1 in {
1252def : GCNPat <
1253  (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
1254  (V_BCNT_U32_B32_e64 $popcnt, $val)
1255>;
1256}
1257
1258def : GCNPat <
1259  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1260  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1261>;
1262
1263def : GCNPat <
1264  (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
1265  (V_BCNT_U32_B32_e64 $popcnt, $val)
1266>;
1267
1268def : GCNPat <
1269  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1270  (REG_SEQUENCE VReg_64,
1271    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1272      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1273      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1274>;
1275
1276/********** ============================================ **********/
1277/********** Extraction, Insertion, Building and Casting  **********/
1278/********** ============================================ **********/
1279
1280// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1281// than an INSERT_SUBREG.
1282multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1283  def : GCNPat <
1284    (insertelt vec_type:$vec, elem_type:$elem, 0),
1285    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1286  >;
1287
1288  def : GCNPat <
1289    (insertelt vec_type:$vec, elem_type:$elem, 1),
1290    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1291  >;
1292}
1293
1294foreach Index = 0-1 in {
1295  def Extract_Element_v2i32_#Index : Extract_Element <
1296    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1297  >;
1298
1299  def Extract_Element_v2f32_#Index : Extract_Element <
1300    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1301  >;
1302}
1303
1304defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1305defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1306
1307foreach Index = 0-2 in {
1308  def Extract_Element_v3i32_#Index : Extract_Element <
1309    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1310  >;
1311  def Insert_Element_v3i32_#Index : Insert_Element <
1312    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1313  >;
1314
1315  def Extract_Element_v3f32_#Index : Extract_Element <
1316    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1317  >;
1318  def Insert_Element_v3f32_#Index : Insert_Element <
1319    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1320  >;
1321}
1322
1323foreach Index = 0-3 in {
1324  def Extract_Element_v4i32_#Index : Extract_Element <
1325    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1326  >;
1327  def Insert_Element_v4i32_#Index : Insert_Element <
1328    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1329  >;
1330
1331  def Extract_Element_v4f32_#Index : Extract_Element <
1332    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1333  >;
1334  def Insert_Element_v4f32_#Index : Insert_Element <
1335    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1336  >;
1337}
1338
1339foreach Index = 0-4 in {
1340  def Extract_Element_v5i32_#Index : Extract_Element <
1341    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1342  >;
1343  def Insert_Element_v5i32_#Index : Insert_Element <
1344    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1345  >;
1346
1347  def Extract_Element_v5f32_#Index : Extract_Element <
1348    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1349  >;
1350  def Insert_Element_v5f32_#Index : Insert_Element <
1351    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1352  >;
1353}
1354
1355foreach Index = 0-5 in {
1356  def Extract_Element_v6i32_#Index : Extract_Element <
1357    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1358  >;
1359  def Insert_Element_v6i32_#Index : Insert_Element <
1360    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1361  >;
1362
1363  def Extract_Element_v6f32_#Index : Extract_Element <
1364    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1365  >;
1366  def Insert_Element_v6f32_#Index : Insert_Element <
1367    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1368  >;
1369}
1370
1371foreach Index = 0-6 in {
1372  def Extract_Element_v7i32_#Index : Extract_Element <
1373    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1374  >;
1375  def Insert_Element_v7i32_#Index : Insert_Element <
1376    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1377  >;
1378
1379  def Extract_Element_v7f32_#Index : Extract_Element <
1380    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1381  >;
1382  def Insert_Element_v7f32_#Index : Insert_Element <
1383    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1384  >;
1385}
1386
1387foreach Index = 0-7 in {
1388  def Extract_Element_v8i32_#Index : Extract_Element <
1389    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1390  >;
1391  def Insert_Element_v8i32_#Index : Insert_Element <
1392    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1393  >;
1394
1395  def Extract_Element_v8f32_#Index : Extract_Element <
1396    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1397  >;
1398  def Insert_Element_v8f32_#Index : Insert_Element <
1399    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1400  >;
1401}
1402
1403foreach Index = 0-8 in {
1404  def Extract_Element_v9i32_#Index : Extract_Element <
1405    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1406  >;
1407  def Insert_Element_v9i32_#Index : Insert_Element <
1408    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1409  >;
1410
1411  def Extract_Element_v9f32_#Index : Extract_Element <
1412    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1413  >;
1414  def Insert_Element_v9f32_#Index : Insert_Element <
1415    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1416  >;
1417}
1418
1419foreach Index = 0-9 in {
1420  def Extract_Element_v10i32_#Index : Extract_Element <
1421    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1422  >;
1423  def Insert_Element_v10i32_#Index : Insert_Element <
1424    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1425  >;
1426
1427  def Extract_Element_v10f32_#Index : Extract_Element <
1428    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1429  >;
1430  def Insert_Element_v10f32_#Index : Insert_Element <
1431    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1432  >;
1433}
1434
1435foreach Index = 0-10 in {
1436  def Extract_Element_v11i32_#Index : Extract_Element <
1437    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1438  >;
1439  def Insert_Element_v11i32_#Index : Insert_Element <
1440    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1441  >;
1442
1443  def Extract_Element_v11f32_#Index : Extract_Element <
1444    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1445  >;
1446  def Insert_Element_v11f32_#Index : Insert_Element <
1447    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1448  >;
1449}
1450
1451foreach Index = 0-11 in {
1452  def Extract_Element_v12i32_#Index : Extract_Element <
1453    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1454  >;
1455  def Insert_Element_v12i32_#Index : Insert_Element <
1456    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1457  >;
1458
1459  def Extract_Element_v12f32_#Index : Extract_Element <
1460    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1461  >;
1462  def Insert_Element_v12f32_#Index : Insert_Element <
1463    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1464  >;
1465}
1466
1467foreach Index = 0-15 in {
1468  def Extract_Element_v16i32_#Index : Extract_Element <
1469    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1470  >;
1471  def Insert_Element_v16i32_#Index : Insert_Element <
1472    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1473  >;
1474
1475  def Extract_Element_v16f32_#Index : Extract_Element <
1476    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1477  >;
1478  def Insert_Element_v16f32_#Index : Insert_Element <
1479    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1480  >;
1481}
1482
1483
1484foreach Index = 0-31 in {
1485  def Extract_Element_v32i32_#Index : Extract_Element <
1486    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1487  >;
1488
1489  def Insert_Element_v32i32_#Index : Insert_Element <
1490    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1491  >;
1492
1493  def Extract_Element_v32f32_#Index : Extract_Element <
1494    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1495  >;
1496
1497  def Insert_Element_v32f32_#Index : Insert_Element <
1498    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1499  >;
1500}
1501
1502// FIXME: Why do only some of these type combinations for SReg and
1503// VReg?
1504// 16-bit bitcast
1505def : BitConvert <i16, f16, VGPR_32>;
1506def : BitConvert <f16, i16, VGPR_32>;
1507def : BitConvert <f16, bf16, VGPR_32>;
1508def : BitConvert <bf16, f16, VGPR_32>;
1509
1510def : BitConvert <i16, f16, SReg_32>;
1511def : BitConvert <f16, i16, SReg_32>;
1512def : BitConvert <f16, bf16, SReg_32>;
1513def : BitConvert <bf16, f16, SReg_32>;
1514
1515def : BitConvert <i16, bf16, VGPR_32>;
1516def : BitConvert <bf16, i16, VGPR_32>;
1517def : BitConvert <i16, bf16, SReg_32>;
1518def : BitConvert <bf16, i16, SReg_32>;
1519
1520// 32-bit bitcast
1521def : BitConvert <i32, f32, VGPR_32>;
1522def : BitConvert <f32, i32, VGPR_32>;
1523def : BitConvert <i32, f32, SReg_32>;
1524def : BitConvert <f32, i32, SReg_32>;
1525def : BitConvert <v2i16, i32, SReg_32>;
1526def : BitConvert <i32, v2i16, SReg_32>;
1527def : BitConvert <v2f16, i32, SReg_32>;
1528def : BitConvert <i32, v2f16, SReg_32>;
1529def : BitConvert <v2i16, v2f16, SReg_32>;
1530def : BitConvert <v2f16, v2i16, SReg_32>;
1531def : BitConvert <v2f16, f32, SReg_32>;
1532def : BitConvert <f32, v2f16, SReg_32>;
1533def : BitConvert <v2i16, f32, SReg_32>;
1534def : BitConvert <f32, v2i16, SReg_32>;
1535def : BitConvert <v2bf16, i32, SReg_32>;
1536def : BitConvert <i32, v2bf16, SReg_32>;
1537def : BitConvert <v2bf16, i32, VGPR_32>;
1538def : BitConvert <i32, v2bf16, VGPR_32>;
1539def : BitConvert <v2bf16, v2i16, SReg_32>;
1540def : BitConvert <v2i16, v2bf16, SReg_32>;
1541def : BitConvert <v2bf16, v2i16, VGPR_32>;
1542def : BitConvert <v2i16, v2bf16, VGPR_32>;
1543def : BitConvert <v2bf16, v2f16, SReg_32>;
1544def : BitConvert <v2f16, v2bf16, SReg_32>;
1545def : BitConvert <v2bf16, v2f16, VGPR_32>;
1546def : BitConvert <v2f16, v2bf16, VGPR_32>;
1547def : BitConvert <f32, v2bf16, VGPR_32>;
1548def : BitConvert <v2bf16, f32, VGPR_32>;
1549def : BitConvert <f32, v2bf16, SReg_32>;
1550def : BitConvert <v2bf16, f32, SReg_32>;
1551
1552
1553// 64-bit bitcast
1554def : BitConvert <i64, f64, VReg_64>;
1555def : BitConvert <f64, i64, VReg_64>;
1556def : BitConvert <v2i32, v2f32, VReg_64>;
1557def : BitConvert <v2f32, v2i32, VReg_64>;
1558def : BitConvert <i64, v2i32, VReg_64>;
1559def : BitConvert <v2i32, i64, VReg_64>;
1560def : BitConvert <i64, v2f32, VReg_64>;
1561def : BitConvert <v2f32, i64, VReg_64>;
1562def : BitConvert <f64, v2f32, VReg_64>;
1563def : BitConvert <v2f32, f64, VReg_64>;
1564def : BitConvert <f64, v2i32, VReg_64>;
1565def : BitConvert <v2i32, f64, VReg_64>;
1566def : BitConvert <v4i16, v4f16, VReg_64>;
1567def : BitConvert <v4f16, v4i16, VReg_64>;
1568def : BitConvert <v4bf16, v2i32, VReg_64>;
1569def : BitConvert <v2i32, v4bf16, VReg_64>;
1570def : BitConvert <v4bf16, i64, VReg_64>;
1571def : BitConvert <i64, v4bf16, VReg_64>;
1572def : BitConvert <v4bf16, v4i16, VReg_64>;
1573def : BitConvert <v4i16, v4bf16, VReg_64>;
1574def : BitConvert <v4bf16, v4f16, VReg_64>;
1575def : BitConvert <v4f16, v4bf16, VReg_64>;
1576def : BitConvert <v4bf16, v2f32, VReg_64>;
1577def : BitConvert <v2f32, v4bf16, VReg_64>;
1578def : BitConvert <v4bf16, f64, VReg_64>;
1579def : BitConvert <f64, v4bf16, VReg_64>;
1580
1581
1582// FIXME: Make SGPR
1583def : BitConvert <v2i32, v4f16, VReg_64>;
1584def : BitConvert <v4f16, v2i32, VReg_64>;
1585def : BitConvert <v2i32, v4f16, VReg_64>;
1586def : BitConvert <v2i32, v4i16, VReg_64>;
1587def : BitConvert <v4i16, v2i32, VReg_64>;
1588def : BitConvert <v2f32, v4f16, VReg_64>;
1589def : BitConvert <v4f16, v2f32, VReg_64>;
1590def : BitConvert <v2f32, v4i16, VReg_64>;
1591def : BitConvert <v4i16, v2f32, VReg_64>;
1592def : BitConvert <v4i16, f64, VReg_64>;
1593def : BitConvert <v4f16, f64, VReg_64>;
1594def : BitConvert <f64, v4i16, VReg_64>;
1595def : BitConvert <f64, v4f16, VReg_64>;
1596def : BitConvert <v4i16, i64, VReg_64>;
1597def : BitConvert <v4f16, i64, VReg_64>;
1598def : BitConvert <i64, v4i16, VReg_64>;
1599def : BitConvert <i64, v4f16, VReg_64>;
1600
1601def : BitConvert <v4i32, v4f32, VReg_128>;
1602def : BitConvert <v4f32, v4i32, VReg_128>;
1603
1604// 96-bit bitcast
1605def : BitConvert <v3i32, v3f32, SGPR_96>;
1606def : BitConvert <v3f32, v3i32, SGPR_96>;
1607
1608// 128-bit bitcast
1609def : BitConvert <v2i64, v4i32, SReg_128>;
1610def : BitConvert <v4i32, v2i64, SReg_128>;
1611def : BitConvert <v2f64, v4f32, VReg_128>;
1612def : BitConvert <v2f64, v4i32, VReg_128>;
1613def : BitConvert <v4f32, v2f64, VReg_128>;
1614def : BitConvert <v4i32, v2f64, VReg_128>;
1615def : BitConvert <v2i64, v2f64, VReg_128>;
1616def : BitConvert <v2f64, v2i64, VReg_128>;
1617def : BitConvert <v4f32, v2i64, VReg_128>;
1618def : BitConvert <v2i64, v4f32, VReg_128>;
1619def : BitConvert <v8i16, v4i32, SReg_128>;
1620def : BitConvert <v4i32, v8i16, SReg_128>;
1621def : BitConvert <v8f16, v4f32, VReg_128>;
1622def : BitConvert <v8f16, v4i32, VReg_128>;
1623def : BitConvert <v4f32, v8f16, VReg_128>;
1624def : BitConvert <v4i32, v8f16, VReg_128>;
1625def : BitConvert <v8i16, v8f16, VReg_128>;
1626def : BitConvert <v8f16, v8i16, VReg_128>;
1627def : BitConvert <v4f32, v8i16, VReg_128>;
1628def : BitConvert <v8i16, v4f32, VReg_128>;
1629def : BitConvert <v8i16, v8f16, SReg_128>;
1630def : BitConvert <v8i16, v2i64, SReg_128>;
1631def : BitConvert <v8i16, v2f64, SReg_128>;
1632def : BitConvert <v8f16, v2i64, SReg_128>;
1633def : BitConvert <v8f16, v2f64, SReg_128>;
1634def : BitConvert <v8f16, v8i16, SReg_128>;
1635def : BitConvert <v2i64, v8i16, SReg_128>;
1636def : BitConvert <v2f64, v8i16, SReg_128>;
1637def : BitConvert <v2i64, v8f16, SReg_128>;
1638def : BitConvert <v2f64, v8f16, SReg_128>;
1639
1640def : BitConvert <v4i32, v8bf16, SReg_128>;
1641def : BitConvert <v8bf16, v4i32, SReg_128>;
1642def : BitConvert <v4i32, v8bf16, VReg_128>;
1643def : BitConvert <v8bf16, v4i32, VReg_128>;
1644
1645def : BitConvert <v4f32, v8bf16, SReg_128>;
1646def : BitConvert <v8bf16, v4f32, SReg_128>;
1647def : BitConvert <v4f32, v8bf16, VReg_128>;
1648def : BitConvert <v8bf16, v4f32, VReg_128>;
1649
1650def : BitConvert <v8i16, v8bf16, SReg_128>;
1651def : BitConvert <v8bf16, v8i16, SReg_128>;
1652def : BitConvert <v8i16, v8bf16, VReg_128>;
1653def : BitConvert <v8bf16, v8i16, VReg_128>;
1654
1655def : BitConvert <v8f16, v8bf16, SReg_128>;
1656def : BitConvert <v8bf16, v8f16, SReg_128>;
1657def : BitConvert <v8f16, v8bf16, VReg_128>;
1658def : BitConvert <v8bf16, v8f16, VReg_128>;
1659
1660def : BitConvert <v2f64, v8bf16, SReg_128>;
1661def : BitConvert <v8bf16, v2f64, SReg_128>;
1662def : BitConvert <v2f64, v8bf16, VReg_128>;
1663def : BitConvert <v8bf16, v2f64, VReg_128>;
1664
1665def : BitConvert <v2i64, v8bf16, SReg_128>;
1666def : BitConvert <v8bf16, v2i64, SReg_128>;
1667def : BitConvert <v2i64, v8bf16, VReg_128>;
1668def : BitConvert <v8bf16, v2i64, VReg_128>;
1669
1670
1671// 160-bit bitcast
1672def : BitConvert <v5i32, v5f32, SReg_160>;
1673def : BitConvert <v5f32, v5i32, SReg_160>;
1674def : BitConvert <v5i32, v5f32, VReg_160>;
1675def : BitConvert <v5f32, v5i32, VReg_160>;
1676
1677// 192-bit bitcast
1678def : BitConvert <v6i32, v6f32, SReg_192>;
1679def : BitConvert <v6f32, v6i32, SReg_192>;
1680def : BitConvert <v6i32, v6f32, VReg_192>;
1681def : BitConvert <v6f32, v6i32, VReg_192>;
1682def : BitConvert <v3i64, v3f64, VReg_192>;
1683def : BitConvert <v3f64, v3i64, VReg_192>;
1684def : BitConvert <v3i64, v6i32, VReg_192>;
1685def : BitConvert <v3i64, v6f32, VReg_192>;
1686def : BitConvert <v3f64, v6i32, VReg_192>;
1687def : BitConvert <v3f64, v6f32, VReg_192>;
1688def : BitConvert <v6i32, v3i64, VReg_192>;
1689def : BitConvert <v6f32, v3i64, VReg_192>;
1690def : BitConvert <v6i32, v3f64, VReg_192>;
1691def : BitConvert <v6f32, v3f64, VReg_192>;
1692
1693// 224-bit bitcast
1694def : BitConvert <v7i32, v7f32, SReg_224>;
1695def : BitConvert <v7f32, v7i32, SReg_224>;
1696def : BitConvert <v7i32, v7f32, VReg_224>;
1697def : BitConvert <v7f32, v7i32, VReg_224>;
1698
1699// 256-bit bitcast
1700def : BitConvert <v8i32, v8f32, SReg_256>;
1701def : BitConvert <v8f32, v8i32, SReg_256>;
1702def : BitConvert <v8i32, v8f32, VReg_256>;
1703def : BitConvert <v8f32, v8i32, VReg_256>;
1704def : BitConvert <v4i64, v4f64, VReg_256>;
1705def : BitConvert <v4f64, v4i64, VReg_256>;
1706def : BitConvert <v4i64, v8i32, VReg_256>;
1707def : BitConvert <v4i64, v8f32, VReg_256>;
1708def : BitConvert <v4f64, v8i32, VReg_256>;
1709def : BitConvert <v4f64, v8f32, VReg_256>;
1710def : BitConvert <v8i32, v4i64, VReg_256>;
1711def : BitConvert <v8f32, v4i64, VReg_256>;
1712def : BitConvert <v8i32, v4f64, VReg_256>;
1713def : BitConvert <v8f32, v4f64, VReg_256>;
1714def : BitConvert <v16i16, v16f16, SReg_256>;
1715def : BitConvert <v16f16, v16i16, SReg_256>;
1716def : BitConvert <v16i16, v16f16, VReg_256>;
1717def : BitConvert <v16f16, v16i16, VReg_256>;
1718def : BitConvert <v16f16, v8i32, VReg_256>;
1719def : BitConvert <v16i16, v8i32, VReg_256>;
1720def : BitConvert <v16f16, v8f32, VReg_256>;
1721def : BitConvert <v16i16, v8f32, VReg_256>;
1722def : BitConvert <v8i32, v16f16, VReg_256>;
1723def : BitConvert <v8i32, v16i16, VReg_256>;
1724def : BitConvert <v8f32, v16f16, VReg_256>;
1725def : BitConvert <v8f32, v16i16, VReg_256>;
1726def : BitConvert <v16f16, v4i64, VReg_256>;
1727def : BitConvert <v16i16, v4i64, VReg_256>;
1728def : BitConvert <v16f16, v4f64, VReg_256>;
1729def : BitConvert <v16i16, v4f64, VReg_256>;
1730def : BitConvert <v4i64, v16f16, VReg_256>;
1731def : BitConvert <v4i64, v16i16, VReg_256>;
1732def : BitConvert <v4f64, v16f16, VReg_256>;
1733def : BitConvert <v4f64, v16i16, VReg_256>;
1734
1735
1736def : BitConvert <v8i32, v16bf16, VReg_256>;
1737def : BitConvert <v16bf16, v8i32, VReg_256>;
1738def : BitConvert <v8f32, v16bf16, VReg_256>;
1739def : BitConvert <v16bf16, v8f32, VReg_256>;
1740def : BitConvert <v4i64, v16bf16, VReg_256>;
1741def : BitConvert <v16bf16, v4i64, VReg_256>;
1742def : BitConvert <v4f64, v16bf16, VReg_256>;
1743def : BitConvert <v16bf16, v4f64, VReg_256>;
1744
1745
1746
1747def : BitConvert <v16i16, v16bf16, SReg_256>;
1748def : BitConvert <v16bf16, v16i16, SReg_256>;
1749def : BitConvert <v16i16, v16bf16, VReg_256>;
1750def : BitConvert <v16bf16, v16i16, VReg_256>;
1751
1752def : BitConvert <v16f16, v16bf16, SReg_256>;
1753def : BitConvert <v16bf16, v16f16, SReg_256>;
1754def : BitConvert <v16f16, v16bf16, VReg_256>;
1755def : BitConvert <v16bf16, v16f16, VReg_256>;
1756
1757
1758
1759
1760// 288-bit bitcast
1761def : BitConvert <v9i32, v9f32, SReg_288>;
1762def : BitConvert <v9f32, v9i32, SReg_288>;
1763def : BitConvert <v9i32, v9f32, VReg_288>;
1764def : BitConvert <v9f32, v9i32, VReg_288>;
1765
1766// 320-bit bitcast
1767def : BitConvert <v10i32, v10f32, SReg_320>;
1768def : BitConvert <v10f32, v10i32, SReg_320>;
1769def : BitConvert <v10i32, v10f32, VReg_320>;
1770def : BitConvert <v10f32, v10i32, VReg_320>;
1771
1772// 320-bit bitcast
1773def : BitConvert <v11i32, v11f32, SReg_352>;
1774def : BitConvert <v11f32, v11i32, SReg_352>;
1775def : BitConvert <v11i32, v11f32, VReg_352>;
1776def : BitConvert <v11f32, v11i32, VReg_352>;
1777
1778// 384-bit bitcast
1779def : BitConvert <v12i32, v12f32, SReg_384>;
1780def : BitConvert <v12f32, v12i32, SReg_384>;
1781def : BitConvert <v12i32, v12f32, VReg_384>;
1782def : BitConvert <v12f32, v12i32, VReg_384>;
1783
1784// 512-bit bitcast
1785def : BitConvert <v32f16, v32i16, VReg_512>;
1786def : BitConvert <v32i16, v32f16, VReg_512>;
1787def : BitConvert <v32f16, v16i32, VReg_512>;
1788def : BitConvert <v32f16, v16f32, VReg_512>;
1789def : BitConvert <v16f32, v32f16, VReg_512>;
1790def : BitConvert <v16i32, v32f16, VReg_512>;
1791def : BitConvert <v32i16, v16i32, VReg_512>;
1792def : BitConvert <v32i16, v16f32, VReg_512>;
1793def : BitConvert <v16f32, v32i16, VReg_512>;
1794def : BitConvert <v16i32, v32i16, VReg_512>;
1795def : BitConvert <v16i32, v16f32, VReg_512>;
1796def : BitConvert <v16f32, v16i32, VReg_512>;
1797def : BitConvert <v8i64,  v8f64,  VReg_512>;
1798def : BitConvert <v8f64,  v8i64,  VReg_512>;
1799def : BitConvert <v8i64,  v16i32, VReg_512>;
1800def : BitConvert <v8f64,  v16i32, VReg_512>;
1801def : BitConvert <v16i32, v8i64,  VReg_512>;
1802def : BitConvert <v16i32, v8f64,  VReg_512>;
1803def : BitConvert <v8i64,  v16f32, VReg_512>;
1804def : BitConvert <v8f64,  v16f32, VReg_512>;
1805def : BitConvert <v16f32, v8i64,  VReg_512>;
1806def : BitConvert <v16f32, v8f64,  VReg_512>;
1807
1808
1809
1810def : BitConvert <v32bf16, v32i16, VReg_512>;
1811def : BitConvert <v32i16, v32bf16, VReg_512>;
1812def : BitConvert <v32bf16, v32i16, SReg_512>;
1813def : BitConvert <v32i16, v32bf16, SReg_512>;
1814
1815def : BitConvert <v32bf16, v32f16, VReg_512>;
1816def : BitConvert <v32f16, v32bf16, VReg_512>;
1817def : BitConvert <v32bf16, v32f16, SReg_512>;
1818def : BitConvert <v32f16, v32bf16, SReg_512>;
1819
1820def : BitConvert <v32bf16, v16i32, VReg_512>;
1821def : BitConvert <v16i32, v32bf16, VReg_512>;
1822def : BitConvert <v32bf16, v16i32, SReg_512>;
1823def : BitConvert <v16i32, v32bf16, SReg_512>;
1824
1825def : BitConvert <v32bf16, v16f32, VReg_512>;
1826def : BitConvert <v16f32, v32bf16, VReg_512>;
1827def : BitConvert <v32bf16, v16f32, SReg_512>;
1828def : BitConvert <v16f32, v32bf16, SReg_512>;
1829
1830def : BitConvert <v32bf16, v8f64, VReg_512>;
1831def : BitConvert <v8f64, v32bf16, VReg_512>;
1832def : BitConvert <v32bf16, v8f64, SReg_512>;
1833def : BitConvert <v8f64, v32bf16, SReg_512>;
1834
1835def : BitConvert <v32bf16, v8i64, VReg_512>;
1836def : BitConvert <v8i64, v32bf16, VReg_512>;
1837def : BitConvert <v32bf16, v8i64, SReg_512>;
1838def : BitConvert <v8i64, v32bf16, SReg_512>;
1839
1840// 1024-bit bitcast
1841def : BitConvert <v32i32, v32f32, VReg_1024>;
1842def : BitConvert <v32f32, v32i32, VReg_1024>;
1843def : BitConvert <v16i64, v16f64, VReg_1024>;
1844def : BitConvert <v16f64, v16i64, VReg_1024>;
1845def : BitConvert <v16i64, v32i32, VReg_1024>;
1846def : BitConvert <v32i32, v16i64, VReg_1024>;
1847def : BitConvert <v16f64, v32f32, VReg_1024>;
1848def : BitConvert <v32f32, v16f64, VReg_1024>;
1849def : BitConvert <v16i64, v32f32, VReg_1024>;
1850def : BitConvert <v32i32, v16f64, VReg_1024>;
1851def : BitConvert <v16f64, v32i32, VReg_1024>;
1852def : BitConvert <v32f32, v16i64, VReg_1024>;
1853
1854
1855/********** =================== **********/
1856/********** Src & Dst modifiers **********/
1857/********** =================== **********/
1858
1859
1860// If denormals are not enabled, it only impacts the compare of the
1861// inputs. The output result is not flushed.
1862class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1863  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1864  (inst i32:$src0_modifiers, vt:$src0,
1865        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1866>;
1867
1868def : ClampPat<V_MAX_F32_e64, f32>;
1869let SubtargetPredicate = isNotGFX12Plus in
1870def : ClampPat<V_MAX_F64_e64, f64>;
1871let SubtargetPredicate = isGFX12Plus in
1872def : ClampPat<V_MAX_NUM_F64_e64, f64>;
1873let SubtargetPredicate = NotHasTrue16BitInsts in
1874def : ClampPat<V_MAX_F16_e64, f16>;
1875let SubtargetPredicate = UseRealTrue16Insts in
1876def : ClampPat<V_MAX_F16_t16_e64, f16>;
1877let SubtargetPredicate = UseFakeTrue16Insts in
1878def : ClampPat<V_MAX_F16_fake16_e64, f16>;
1879
1880let SubtargetPredicate = HasVOP3PInsts in {
1881def : GCNPat <
1882  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1883  (V_PK_MAX_F16 $src0_modifiers, $src0,
1884                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1885>;
1886}
1887
1888
1889/********** ================================ **********/
1890/********** Floating point absolute/negative **********/
1891/********** ================================ **********/
1892
1893def : GCNPat <
1894  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1895  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1896>;
1897
1898def : GCNPat <
1899  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1900  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1901>;
1902
1903def : GCNPat <
1904  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1905  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1906>;
1907
1908foreach fp16vt = [f16, bf16] in {
1909def : GCNPat <
1910  (UniformUnaryFrag<fneg> (fp16vt SReg_32:$src)),
1911  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1912>;
1913
1914def : GCNPat <
1915  (UniformUnaryFrag<fabs> (fp16vt SReg_32:$src)),
1916  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1917>;
1918
1919def : GCNPat <
1920  (UniformUnaryFrag<fneg> (fabs (fp16vt SReg_32:$src))),
1921  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1922>;
1923} // End foreach fp16vt = ...
1924
1925def : GCNPat <
1926  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1927  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1928>;
1929
1930def : GCNPat <
1931  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1932  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1933>;
1934
1935// This is really (fneg (fabs v2f16:$src))
1936//
1937// fabs is not reported as free because there is modifier for it in
1938// VOP3P instructions, so it is turned into the bit op.
1939def : GCNPat <
1940  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1941  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1942>;
1943
1944def : GCNPat <
1945  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1946  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1947>;
1948
1949
1950// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1951// of the real value.
1952def : GCNPat <
1953  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1954  (v2f32 (REG_SEQUENCE SReg_64,
1955         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1956                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1957                                 SReg_32)), sub0,
1958         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1959                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1960                                 SReg_32)), sub1))
1961>;
1962
1963def : GCNPat <
1964  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1965  (v2f32 (REG_SEQUENCE SReg_64,
1966         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1967                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1968                                 SReg_32)), sub0,
1969         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1970                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1971                                 SReg_32)), sub1))
1972>;
1973
1974def : GCNPat <
1975  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1976  (v2f32 (REG_SEQUENCE SReg_64,
1977         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1978                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1979                                 SReg_32)), sub0,
1980         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1981                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1982                                 SReg_32)), sub1))
1983>;
1984
1985// FIXME: Use S_BITSET0_B32/B64?
1986def : GCNPat <
1987  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1988  (REG_SEQUENCE SReg_64,
1989    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1990    sub0,
1991    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1992                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1993     sub1)
1994>;
1995
1996def : GCNPat <
1997  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1998  (REG_SEQUENCE SReg_64,
1999    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
2000    sub0,
2001    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
2002                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
2003    sub1)
2004>;
2005
2006def : GCNPat <
2007  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
2008  (REG_SEQUENCE SReg_64,
2009    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
2010    sub0,
2011    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
2012                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
2013    sub1)
2014>;
2015
2016
2017def : GCNPat <
2018  (fneg (fabs (f32 VGPR_32:$src))),
2019  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
2020>;
2021
2022def : GCNPat <
2023  (fabs (f32 VGPR_32:$src)),
2024  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
2025>;
2026
2027def : GCNPat <
2028  (fneg (f32 VGPR_32:$src)),
2029  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
2030>;
2031
2032foreach fp16vt = [f16, bf16] in {
2033def : GCNPat <
2034  (fabs (fp16vt VGPR_32:$src)),
2035  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
2036>;
2037
2038def : GCNPat <
2039  (fneg (fp16vt VGPR_32:$src)),
2040  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
2041>;
2042
2043def : GCNPat <
2044  (fneg (fabs (fp16vt VGPR_32:$src))),
2045  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
2046>;
2047} // End foreach fp16vt = ...
2048
2049def : GCNPat <
2050  (fneg (v2f16 VGPR_32:$src)),
2051  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
2052>;
2053
2054def : GCNPat <
2055  (fabs (v2f16 VGPR_32:$src)),
2056  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
2057>;
2058
2059def : GCNPat <
2060  (fneg (v2f16 (fabs VGPR_32:$src))),
2061  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
2062>;
2063
2064def : GCNPat <
2065  (fabs (f64 VReg_64:$src)),
2066  (REG_SEQUENCE VReg_64,
2067    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2068    sub0,
2069    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
2070        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2071     sub1)
2072>;
2073
2074def : GCNPat <
2075  (fneg (f64 VReg_64:$src)),
2076  (REG_SEQUENCE VReg_64,
2077    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2078    sub0,
2079    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
2080        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2081    sub1)
2082>;
2083
2084def : GCNPat <
2085  (fneg (fabs (f64 VReg_64:$src))),
2086  (REG_SEQUENCE VReg_64,
2087    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2088    sub0,
2089    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
2090        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2091    sub1)
2092>;
2093
2094def : GCNPat <
2095  (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
2096  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
2097                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, (i64 0),
2098                0, 0, 0, 0, 0)
2099> {
2100  let SubtargetPredicate = HasPackedFP32Ops;
2101}
2102
2103foreach fp16vt = [f16, bf16] in {
2104
2105def : GCNPat <
2106  (fcopysign fp16vt:$src0, fp16vt:$src1),
2107  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
2108>;
2109
2110def : GCNPat <
2111  (fcopysign f32:$src0, fp16vt:$src1),
2112  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2113             (V_LSHLREV_B32_e64 (i32 16), $src1))
2114>;
2115
2116def : GCNPat <
2117  (fcopysign f64:$src0, fp16vt:$src1),
2118  (REG_SEQUENCE SReg_64,
2119    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2120    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
2121               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
2122>;
2123
2124def : GCNPat <
2125  (fcopysign fp16vt:$src0, f32:$src1),
2126  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
2127             (V_LSHRREV_B32_e64 (i32 16), $src1))
2128>;
2129
2130def : GCNPat <
2131  (fcopysign fp16vt:$src0, f64:$src1),
2132  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
2133             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
2134>;
2135} // End foreach fp16vt = [f16, bf16]
2136
2137/********** ================== **********/
2138/********** Immediate Patterns **********/
2139/********** ================== **********/
2140
2141def : GCNPat <
2142  (VGPRImm<(i32 imm)>:$imm),
2143  (V_MOV_B32_e32 imm:$imm)
2144>;
2145
2146def : GCNPat <
2147  (VGPRImm<(f32 fpimm)>:$imm),
2148  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
2149>;
2150
2151def : GCNPat <
2152  (i32 imm:$imm),
2153  (S_MOV_B32 imm:$imm)
2154>;
2155
2156def : GCNPat <
2157  (VGPRImm<(SIlds tglobaladdr:$ga)>),
2158  (V_MOV_B32_e32 $ga)
2159>;
2160
2161def : GCNPat <
2162  (SIlds tglobaladdr:$ga),
2163  (S_MOV_B32 $ga)
2164>;
2165
2166// FIXME: Workaround for ordering issue with peephole optimizer where
2167// a register class copy interferes with immediate folding.  Should
2168// use s_mov_b32, which can be shrunk to s_movk_i32
2169def : GCNPat <
2170  (VGPRImm<(f16 fpimm)>:$imm),
2171  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
2172>;
2173
2174def : GCNPat <
2175  (VGPRImm<(bf16 fpimm)>:$imm),
2176  (V_MOV_B32_e32 (bf16 (bitcast_fpimm_to_i32 $imm)))
2177>;
2178
2179// V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit
2180// immediate and wil be expanded as needed, but we will only use these patterns
2181// for values which can be encoded.
2182def : GCNPat <
2183  (VGPRImm<(i64 imm)>:$imm),
2184  (V_MOV_B64_PSEUDO imm:$imm)
2185>;
2186
2187def : GCNPat <
2188  (VGPRImm<(f64 fpimm)>:$imm),
2189  (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm)))
2190>;
2191
2192def : GCNPat <
2193  (i64 imm:$imm),
2194  (S_MOV_B64_IMM_PSEUDO imm:$imm)
2195>;
2196
2197def : GCNPat <
2198  (f64 fpimm:$imm),
2199  (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm)))
2200>;
2201
2202def : GCNPat <
2203  (f32 fpimm:$imm),
2204  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
2205>;
2206
2207def : GCNPat <
2208  (f16 fpimm:$imm),
2209  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
2210>;
2211
2212def : GCNPat <
2213  (bf16 fpimm:$imm),
2214  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
2215>;
2216
2217def : GCNPat <
2218  (p5 frameindex:$fi),
2219  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
2220>;
2221
2222def : GCNPat <
2223  (p5 frameindex:$fi),
2224  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
2225>;
2226
2227def : GCNPat <
2228  (i64 InlineImm64:$imm),
2229  (S_MOV_B64 InlineImm64:$imm)
2230>;
2231
2232// XXX - Should this use a s_cmp to set SCC?
2233
2234// Set to sign-extended 64-bit value (true = -1, false = 0)
2235def : GCNPat <
2236  (i1 imm:$imm),
2237  (S_MOV_B64 (i64 (as_i64imm $imm)))
2238> {
2239  let WaveSizePredicate = isWave64;
2240}
2241
2242def : GCNPat <
2243  (i1 imm:$imm),
2244  (S_MOV_B32 (i32 (as_i32imm $imm)))
2245> {
2246  let WaveSizePredicate = isWave32;
2247}
2248
2249def : GCNPat <
2250  (f64 InlineImmFP64:$imm),
2251  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
2252>;
2253
2254/********** ================== **********/
2255/********** Intrinsic Patterns **********/
2256/********** ================== **********/
2257
2258def : GCNPat <
2259  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
2260  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
2261>;
2262
2263def : GCNPat <
2264  (i32 (sext i1:$src0)),
2265  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2266                     /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0)
2267>;
2268
2269class Ext32Pat <SDNode ext> : GCNPat <
2270  (i32 (ext i1:$src0)),
2271  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2272                     /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0)
2273>;
2274
2275def : Ext32Pat <zext>;
2276def : Ext32Pat <anyext>;
2277
2278// The multiplication scales from [0,1) to the unsigned integer range,
2279// rounding down a bit to avoid unwanted overflow.
2280def : GCNPat <
2281  (AMDGPUurecip i32:$src0),
2282  (V_CVT_U32_F32_e32
2283    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
2284                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
2285>;
2286
2287//===----------------------------------------------------------------------===//
2288// VOP3 Patterns
2289//===----------------------------------------------------------------------===//
2290
2291def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
2292def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
2293
2294// BFI patterns
2295
2296def BFIImm32 : PatFrag<
2297  (ops node:$x, node:$y, node:$z),
2298  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
2299  [{
2300    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
2301    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
2302    return X && NotX &&
2303      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
2304  }]
2305>;
2306
2307
2308// Definition from ISA doc:
2309// (y & x) | (z & ~x)
2310def : AMDGPUPatIgnoreCopies <
2311  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
2312  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2313                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2314                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2315>;
2316
2317// (y & C) | (z & ~C)
2318def : AMDGPUPatIgnoreCopies <
2319  (BFIImm32 i32:$x, i32:$y, i32:$z),
2320  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2321>;
2322
2323// 64-bit version
2324def : AMDGPUPatIgnoreCopies <
2325  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
2326  (REG_SEQUENCE VReg_64,
2327    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2328              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2329              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2330    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2331              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2332              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2333>;
2334
2335// SHA-256 Ch function
2336// z ^ (x & (y ^ z))
2337def : AMDGPUPatIgnoreCopies <
2338  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
2339  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2340                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2341                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2342>;
2343
2344// 64-bit version
2345def : AMDGPUPatIgnoreCopies <
2346  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
2347  (REG_SEQUENCE VReg_64,
2348    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2349              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2350              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2351    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2352              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2353              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2354>;
2355
2356def : AMDGPUPat <
2357  (fcopysign f32:$src0, f32:$src1),
2358  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
2359>;
2360
2361def : AMDGPUPat <
2362  (fcopysign f32:$src0, f64:$src1),
2363  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2364             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
2365>;
2366
2367def : AMDGPUPat <
2368  (fcopysign f64:$src0, f64:$src1),
2369  (REG_SEQUENCE SReg_64,
2370    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2371    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2372               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2373               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
2374>;
2375
2376def : AMDGPUPat <
2377  (fcopysign f64:$src0, f32:$src1),
2378  (REG_SEQUENCE SReg_64,
2379    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2380    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2381               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2382               $src1), sub1)
2383>;
2384
2385def : ROTRPattern <V_ALIGNBIT_B32_e64>;
2386
2387def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
2388          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2389                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2390
2391def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
2392          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2393                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2394
2395/********** ====================== **********/
2396/**********   Indirect addressing  **********/
2397/********** ====================== **********/
2398
2399multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
2400  // Extract with offset
2401  def : GCNPat<
2402    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
2403    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
2404  >;
2405
2406  // Insert with offset
2407  def : GCNPat<
2408    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
2409    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
2410  >;
2411}
2412
2413defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
2414defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
2415defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
2416defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
2417defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
2418defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
2419defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
2420defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
2421defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2422
2423defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2424defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2425defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2426defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
2427defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
2428defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
2429defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
2430defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2431defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2432
2433//===----------------------------------------------------------------------===//
2434// SAD Patterns
2435//===----------------------------------------------------------------------===//
2436
2437def : GCNPat <
2438  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2439                   (umin i32:$src0, i32:$src1)),
2440       i32:$src2),
2441  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2442>;
2443
2444def : GCNPat <
2445  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2446                      (sub i32:$src0, i32:$src1),
2447                      (sub i32:$src1, i32:$src0)),
2448       i32:$src2),
2449  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2450>;
2451
2452//===----------------------------------------------------------------------===//
2453// Conversion Patterns
2454//===----------------------------------------------------------------------===//
2455def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2456  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2457
2458// Handle sext_inreg in i64
2459def : GCNPat <
2460  (i64 (UniformSextInreg<i1> i64:$src)),
2461  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2462>;
2463
2464def : GCNPat <
2465  (i16 (UniformSextInreg<i1> i16:$src)),
2466  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2467>;
2468
2469def : GCNPat <
2470  (i16 (UniformSextInreg<i8> i16:$src)),
2471  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2472>;
2473
2474def : GCNPat <
2475  (i64 (UniformSextInreg<i8> i64:$src)),
2476  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2477>;
2478
2479def : GCNPat <
2480  (i64 (UniformSextInreg<i16> i64:$src)),
2481  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2482>;
2483
2484def : GCNPat <
2485  (i64 (UniformSextInreg<i32> i64:$src)),
2486  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2487>;
2488
2489def : GCNPat<
2490  (i32 (DivergentSextInreg<i1> i32:$src)),
2491  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2492
2493def : GCNPat <
2494  (i16 (DivergentSextInreg<i1> i16:$src)),
2495  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2496>;
2497
2498def : GCNPat <
2499  (i16 (DivergentSextInreg<i8> i16:$src)),
2500  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2501>;
2502
2503def : GCNPat<
2504  (i32 (DivergentSextInreg<i8> i32:$src)),
2505  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2506>;
2507
2508def : GCNPat <
2509  (i32 (DivergentSextInreg<i16> i32:$src)),
2510  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2511>;
2512
2513def : GCNPat <
2514  (i64 (DivergentSextInreg<i1> i64:$src)),
2515  (REG_SEQUENCE VReg_64,
2516    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2517    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2518>;
2519
2520def : GCNPat <
2521  (i64 (DivergentSextInreg<i8> i64:$src)),
2522  (REG_SEQUENCE VReg_64,
2523    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2524    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2525>;
2526
2527def : GCNPat <
2528  (i64 (DivergentSextInreg<i16> i64:$src)),
2529  (REG_SEQUENCE VReg_64,
2530    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2531    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2532>;
2533
2534def : GCNPat <
2535  (i64 (DivergentSextInreg<i32> i64:$src)),
2536  (REG_SEQUENCE VReg_64,
2537    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2538    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2539>;
2540
2541def : GCNPat <
2542  (i64 (zext i32:$src)),
2543  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2544>;
2545
2546def : GCNPat <
2547  (i64 (anyext i32:$src)),
2548  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2549>;
2550
2551class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2552  (i64 (ext i1:$src)),
2553    (REG_SEQUENCE VReg_64,
2554      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2555                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2556      sub0, (S_MOV_B32 (i32 0)), sub1)
2557>;
2558
2559
2560def : ZExt_i64_i1_Pat<zext>;
2561def : ZExt_i64_i1_Pat<anyext>;
2562
2563// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2564// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2565def : GCNPat <
2566  (i64 (UniformUnaryFrag<sext> i32:$src)),
2567    (REG_SEQUENCE SReg_64, $src, sub0,
2568    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2569>;
2570
2571def : GCNPat <
2572  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2573    (REG_SEQUENCE VReg_64, $src, sub0,
2574    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2575>;
2576
2577def : GCNPat <
2578  (i64 (sext i1:$src)),
2579  (REG_SEQUENCE VReg_64,
2580    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2581                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2582    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2583                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2584>;
2585
2586class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2587  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2588  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2589>;
2590
2591let OtherPredicates = [NotHasTrue16BitInsts] in {
2592  def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2593  def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2594} // end OtherPredicates = [NotHasTrue16BitInsts]
2595
2596let OtherPredicates = [HasTrue16BitInsts] in {
2597  def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2598  def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2599} // end OtherPredicates = [HasTrue16BitInsts]
2600
2601def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2602def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2603def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2604def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2605
2606// If we need to perform a logical operation on i1 values, we need to
2607// use vector comparisons since there is only one SCC register. Vector
2608// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2609// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2610// instructions resulting in the copies from SCC to these instructions
2611// will be moved to the VALU.
2612
2613let WaveSizePredicate = isWave64 in {
2614def : GCNPat <
2615  (i1 (and i1:$src0, i1:$src1)),
2616  (S_AND_B64 $src0, $src1)
2617>;
2618
2619def : GCNPat <
2620  (i1 (or i1:$src0, i1:$src1)),
2621  (S_OR_B64 $src0, $src1)
2622>;
2623
2624def : GCNPat <
2625  (i1 (xor i1:$src0, i1:$src1)),
2626  (S_XOR_B64 $src0, $src1)
2627>;
2628
2629def : GCNPat <
2630  (i1 (add i1:$src0, i1:$src1)),
2631  (S_XOR_B64 $src0, $src1)
2632>;
2633
2634def : GCNPat <
2635  (i1 (sub i1:$src0, i1:$src1)),
2636  (S_XOR_B64 $src0, $src1)
2637>;
2638
2639let AddedComplexity = 1 in {
2640def : GCNPat <
2641  (i1 (add i1:$src0, (i1 -1))),
2642  (S_NOT_B64 $src0)
2643>;
2644
2645def : GCNPat <
2646  (i1 (sub i1:$src0, (i1 -1))),
2647  (S_NOT_B64 $src0)
2648>;
2649}
2650} // end isWave64
2651
2652let WaveSizePredicate = isWave32 in {
2653def : GCNPat <
2654  (i1 (and i1:$src0, i1:$src1)),
2655  (S_AND_B32 $src0, $src1)
2656>;
2657
2658def : GCNPat <
2659  (i1 (or i1:$src0, i1:$src1)),
2660  (S_OR_B32 $src0, $src1)
2661>;
2662
2663def : GCNPat <
2664  (i1 (xor i1:$src0, i1:$src1)),
2665  (S_XOR_B32 $src0, $src1)
2666>;
2667
2668def : GCNPat <
2669  (i1 (add i1:$src0, i1:$src1)),
2670  (S_XOR_B32 $src0, $src1)
2671>;
2672
2673def : GCNPat <
2674  (i1 (sub i1:$src0, i1:$src1)),
2675  (S_XOR_B32 $src0, $src1)
2676>;
2677
2678let AddedComplexity = 1 in {
2679def : GCNPat <
2680  (i1 (add i1:$src0, (i1 -1))),
2681  (S_NOT_B32 $src0)
2682>;
2683
2684def : GCNPat <
2685  (i1 (sub i1:$src0, (i1 -1))),
2686  (S_NOT_B32 $src0)
2687>;
2688}
2689} // end isWave32
2690
2691def : GCNPat <
2692  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2693  (V_NOT_B32_e32 $src0)
2694>;
2695
2696def : GCNPat <
2697  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2698    (REG_SEQUENCE VReg_64,
2699      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2700      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2701    )
2702>;
2703
2704let SubtargetPredicate = NotHasTrue16BitInsts in
2705def : GCNPat <
2706  (f16 (sint_to_fp i1:$src)),
2707  (V_CVT_F16_F32_e32 (
2708      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2709                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2710                        SSrc_i1:$src))
2711>;
2712
2713let SubtargetPredicate = HasTrue16BitInsts in
2714def : GCNPat <
2715  (f16 (sint_to_fp i1:$src)),
2716  (V_CVT_F16_F32_t16_e32 (
2717      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2718                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2719                        SSrc_i1:$src))
2720>;
2721
2722let SubtargetPredicate = NotHasTrue16BitInsts in
2723def : GCNPat <
2724  (f16 (uint_to_fp i1:$src)),
2725  (V_CVT_F16_F32_e32 (
2726      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2727                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2728                        SSrc_i1:$src))
2729>;
2730let SubtargetPredicate = HasTrue16BitInsts in
2731def : GCNPat <
2732  (f16 (uint_to_fp i1:$src)),
2733  (V_CVT_F16_F32_t16_e32 (
2734      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2735                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2736                        SSrc_i1:$src))
2737>;
2738
2739def : GCNPat <
2740  (f32 (sint_to_fp i1:$src)),
2741  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2742                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2743                        SSrc_i1:$src)
2744>;
2745
2746def : GCNPat <
2747  (f32 (uint_to_fp i1:$src)),
2748  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2749                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2750                        SSrc_i1:$src)
2751>;
2752
2753def : GCNPat <
2754  (f64 (sint_to_fp i1:$src)),
2755  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2756                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2757                                        SSrc_i1:$src))
2758>;
2759
2760def : GCNPat <
2761  (f64 (uint_to_fp i1:$src)),
2762  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2763                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2764                                        SSrc_i1:$src))
2765>;
2766
2767//===----------------------------------------------------------------------===//
2768// Miscellaneous Patterns
2769//===----------------------------------------------------------------------===//
2770
2771// Eliminate a zero extension from an fp16 operation if it already
2772// zeros the high bits of the 32-bit register.
2773//
2774// This is complicated on gfx9+. Some instructions maintain the legacy
2775// zeroing behavior, but others preserve the high bits. Some have a
2776// control bit to change the behavior. We can't simply say with
2777// certainty what the source behavior is without more context on how
2778// the src is lowered. e.g. fptrunc + fma may be lowered to a
2779// v_fma_mix* instruction which does not zero, or may not.
2780def : GCNPat<
2781  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2782  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2783
2784let AddedComplexity = 1 in {
2785def : GCNPat<
2786  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2787  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2788  let SubtargetPredicate = HasAddNoCarryInsts;
2789}
2790}  // AddedComplexity = 1
2791
2792def : GCNPat<
2793  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2794  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2795>;
2796
2797def : GCNPat<
2798  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2799  (REG_SEQUENCE VReg_64,
2800    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2801    (S_MOV_B32 (i32 0)), sub1)
2802>;
2803
2804def : GCNPat<
2805  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2806  (COPY VSrc_b16:$src)>;
2807
2808def : GCNPat <
2809  (i32 (trunc i64:$a)),
2810  (EXTRACT_SUBREG $a, sub0)
2811>;
2812
2813def : GCNPat <
2814  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2815  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2816>;
2817
2818def : GCNPat <
2819  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2820  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2821>;
2822
2823def : GCNPat <
2824  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2825  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2826                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2827>;
2828
2829def : GCNPat <
2830  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2831  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2832>;
2833
2834def : GCNPat <
2835  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2836  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2837>;
2838
2839def IMMBitSelConst : SDNodeXForm<imm, [{
2840  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2841                                   MVT::i32);
2842}]>;
2843
2844// Matching separate SRL and TRUNC instructions
2845// with dependent operands (SRL dest is source of TRUNC)
2846// generates three instructions. However, by using bit shifts,
2847// the V_LSHRREV_B32_e64 result can be directly used in the
2848// operand of the V_AND_B32_e64 instruction:
2849// (trunc i32 (srl i32 $a, i32 $b)) ->
2850// v_and_b32_e64 $a, (1 << $b), $a
2851// v_cmp_ne_u32_e64 $a, 0, $a
2852
2853// Handle the VALU case.
2854def : GCNPat <
2855  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2856  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2857    (i32 0))
2858>;
2859
2860// Handle the scalar case.
2861def : GCNPat <
2862  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2863  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2864    (i32 0))
2865>;
2866
2867def : GCNPat <
2868  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2869  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2870                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2871>;
2872
2873def : GCNPat <
2874  (i32 (bswap i32:$a)),
2875  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2876             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2877             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2878>;
2879
2880// FIXME: This should have been narrowed to i32 during legalization.
2881// This pattern should also be skipped for GlobalISel
2882def : GCNPat <
2883  (i64 (bswap i64:$a)),
2884  (REG_SEQUENCE VReg_64,
2885  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2886             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2887                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2888                             (i32 24)),
2889             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2890                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2891                             (i32 8))),
2892  sub0,
2893  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2894             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2895                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2896                             (i32 24)),
2897             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2898                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2899                             (i32 8))),
2900  sub1)
2901>;
2902
2903// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2904// the BFI pattern ends up taking precedence without it.
2905let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2906// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2907//
2908// My reading of the manual suggests we should be using src0 for the
2909// register value, but this is what seems to work.
2910def : GCNPat <
2911  (i32 (bswap i32:$a)),
2912  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2913>;
2914
2915// FIXME: This should have been narrowed to i32 during legalization.
2916// This pattern should also be skipped for GlobalISel
2917def : GCNPat <
2918  (i64 (bswap i64:$a)),
2919  (REG_SEQUENCE VReg_64,
2920  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2921              (S_MOV_B32 (i32 0x00010203))),
2922  sub0,
2923  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2924              (S_MOV_B32 (i32 0x00010203))),
2925  sub1)
2926>;
2927
2928// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2929// The 12s emit 0s.
2930def : GCNPat <
2931  (i16 (bswap i16:$a)),
2932  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2933>;
2934
2935def : GCNPat <
2936  (i32 (zext (bswap i16:$a))),
2937  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2938>;
2939
2940// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2941def : GCNPat <
2942  (v2i16 (bswap v2i16:$a)),
2943  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2944>;
2945
2946}
2947
2948def : GCNPat<
2949  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
2950  (REG_SEQUENCE VReg_64,
2951   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
2952   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
2953
2954// If fcanonicalize's operand is implicitly canonicalized, we only need a copy.
2955let AddedComplexity = 1000 in {
2956foreach vt = [f16, v2f16, f32, v2f32, f64] in {
2957  def : GCNPat<
2958    (fcanonicalize (vt is_canonicalized:$src)),
2959    (COPY vt:$src)
2960  >;
2961}
2962}
2963
2964// Prefer selecting to max when legal, but using mul is always valid.
2965let AddedComplexity = -5 in {
2966
2967let OtherPredicates = [NotHasTrue16BitInsts] in {
2968def : GCNPat<
2969  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2970  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2971>;
2972
2973def : GCNPat<
2974  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2975  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2976>;
2977} // End OtherPredicates
2978
2979let OtherPredicates = [HasTrue16BitInsts] in {
2980def : GCNPat<
2981  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2982  (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2983>;
2984
2985def : GCNPat<
2986  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2987  (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2988>;
2989} // End OtherPredicates
2990
2991def : GCNPat<
2992  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2993  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2994>;
2995
2996def : GCNPat<
2997  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2998  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2999>;
3000
3001def : GCNPat<
3002  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
3003  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
3004>;
3005
3006let SubtargetPredicate = HasPackedFP32Ops in {
3007def : GCNPat<
3008  (fcanonicalize (v2f32 (VOP3PMods v2f32:$src, i32:$src_mods))),
3009  (V_PK_MUL_F32 0, (i64 CONST.FP32_ONE), $src_mods, $src)
3010>;
3011}
3012
3013// TODO: Handle fneg like other types.
3014let SubtargetPredicate = isNotGFX12Plus in {
3015def : GCNPat<
3016  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3017  (V_MUL_F64_e64  0, (i64 CONST.FP64_ONE), $src_mods, $src)
3018>;
3019}
3020} // End AddedComplexity = -5
3021
3022multiclass SelectCanonicalizeAsMax<
3023  list<Predicate> f32_preds = [],
3024  list<Predicate> f64_preds = [],
3025  list<Predicate> f16_preds = []> {
3026  def : GCNPat<
3027    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
3028    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
3029    let OtherPredicates = f32_preds;
3030  }
3031
3032  def : GCNPat<
3033    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3034    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
3035    let OtherPredicates = !listconcat(f64_preds, [isNotGFX12Plus]);
3036  }
3037
3038  def : GCNPat<
3039    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3040    (V_MAX_NUM_F64_e64  $src_mods, $src, $src_mods, $src)> {
3041    let OtherPredicates = !listconcat(f64_preds, [isGFX12Plus]);
3042  }
3043
3044  def : GCNPat<
3045    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3046    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3047    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]);
3048  }
3049
3050  def : GCNPat<
3051    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3052    (V_MAX_F16_fake16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3053    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]);
3054  }
3055
3056  def : GCNPat<
3057    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
3058    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
3059    // FIXME: Should have VOP3P subtarget predicate
3060    let OtherPredicates = f16_preds;
3061  }
3062}
3063
3064// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
3065// mode, and would never flush. For f64, it's faster to do implement
3066// this with a max. For f16/f32 it's a wash, but prefer max when
3067// valid.
3068//
3069// FIXME: Lowering f32/f16 with max is worse since we can use a
3070// smaller encoding if the input is fneg'd. It also adds an extra
3071// register use.
3072let SubtargetPredicate = HasMinMaxDenormModes in {
3073  defm : SelectCanonicalizeAsMax<[], [], []>;
3074} // End SubtargetPredicate = HasMinMaxDenormModes
3075
3076let SubtargetPredicate = NotHasMinMaxDenormModes in {
3077  // Use the max lowering if we don't need to flush.
3078
3079  // FIXME: We don't do use this for f32 as a workaround for the
3080  // library being compiled with the default ieee mode, but
3081  // potentially being called from flushing kernels. Really we should
3082  // not be mixing code expecting different default FP modes, but mul
3083  // works in any FP environment.
3084  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
3085} // End SubtargetPredicate = NotHasMinMaxDenormModes
3086
3087
3088let OtherPredicates = [HasDLInsts] in {
3089// Don't allow source modifiers. If there are any source modifiers then it's
3090// better to select fma instead of fmac.
3091def : GCNPat <
3092  (fma (f32 (VOP3NoMods f32:$src0)),
3093       (f32 (VOP3NoMods f32:$src1)),
3094       (f32 (VOP3NoMods f32:$src2))),
3095  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3096                  SRCMODS.NONE, $src2)
3097>;
3098} // End OtherPredicates = [HasDLInsts]
3099
3100let SubtargetPredicate = isGFX10Plus in {
3101// Don't allow source modifiers. If there are any source modifiers then it's
3102// better to select fma instead of fmac.
3103let OtherPredicates = [NotHasTrue16BitInsts] in
3104def : GCNPat <
3105  (fma (f16 (VOP3NoMods f32:$src0)),
3106       (f16 (VOP3NoMods f32:$src1)),
3107       (f16 (VOP3NoMods f32:$src2))),
3108  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3109                  SRCMODS.NONE, $src2)
3110>;
3111let OtherPredicates = [HasTrue16BitInsts] in
3112def : GCNPat <
3113  (fma (f16 (VOP3NoMods f32:$src0)),
3114       (f16 (VOP3NoMods f32:$src1)),
3115       (f16 (VOP3NoMods f32:$src2))),
3116  (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3117                  SRCMODS.NONE, $src2)
3118>;
3119}
3120
3121let OtherPredicates = [HasFmacF64Inst] in
3122// Don't allow source modifiers. If there are any source modifiers then it's
3123// better to select fma instead of fmac.
3124def : GCNPat <
3125  (fma (f64 (VOP3NoMods f64:$src0)),
3126       (f64 (VOP3NoMods f64:$src1)),
3127       (f64 (VOP3NoMods f64:$src2))),
3128  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3129                  SRCMODS.NONE, $src2)
3130>;
3131
3132// COPY is workaround tablegen bug from multiple outputs
3133// from S_LSHL_B32's multiple outputs from implicit scc def.
3134let AddedComplexity = 1 in {
3135def : GCNPat <
3136  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
3137  (S_LSHL_B32 SReg_32:$src1, (i16 16))
3138>;
3139
3140def : GCNPat <
3141  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
3142  (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
3143>;
3144
3145
3146def : GCNPat <
3147  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
3148  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
3149>;
3150
3151def : GCNPat <
3152  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
3153  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
3154>;
3155
3156def : GCNPat <
3157  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
3158  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
3159>;
3160
3161def : GCNPat <
3162  (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
3163  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
3164>;
3165
3166foreach vecTy = [v2i16, v2f16, v2bf16] in {
3167
3168defvar Ty = vecTy.ElementType;
3169
3170def : GCNPat <
3171  (vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty undef))),
3172  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
3173>;
3174
3175def : GCNPat <
3176  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$src0), (Ty undef))),
3177  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
3178>;
3179
3180def : GCNPat <
3181  (vecTy (UniformBinFrag<build_vector> (Ty undef), (Ty SReg_32:$src1))),
3182  (S_LSHL_B32 SReg_32:$src1, (i32 16))
3183>;
3184
3185def : GCNPat <
3186  (vecTy (DivergentBinFrag<build_vector> (Ty undef), (Ty VGPR_32:$src1))),
3187  (vecTy (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
3188>;
3189} // End foreach Ty = ...
3190}
3191
3192let SubtargetPredicate = HasVOP3PInsts in {
3193def : GCNPat <
3194  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
3195  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
3196>;
3197
3198// With multiple uses of the shift, this will duplicate the shift and
3199// increase register pressure.
3200def : GCNPat <
3201  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
3202  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
3203>;
3204
3205def : GCNPat <
3206  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
3207                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
3208  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
3209>;
3210
3211
3212foreach vecTy = [v2i16, v2f16, v2bf16] in {
3213
3214defvar Ty = vecTy.ElementType;
3215defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
3216
3217def : GCNPat <
3218  (vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty SReg_32:$src1))),
3219  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
3220>;
3221
3222// Take the lower 16 bits from each VGPR_32 and concat them
3223def : GCNPat <
3224  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
3225  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
3226>;
3227
3228
3229// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
3230// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
3231def : GCNPat <
3232  (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
3233    (Ty !if(!eq(Ty, i16),
3234      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3235      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3236  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
3237>;
3238
3239
3240// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
3241// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
3242def : GCNPat <
3243  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
3244    (Ty !if(!eq(Ty, i16),
3245      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3246      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3247  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)),  VGPR_32:$a, VGPR_32:$b)
3248>;
3249
3250
3251// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
3252// Special case, can use V_ALIGNBIT (always uses encoded literal)
3253def : GCNPat <
3254  (vecTy (DivergentBinFrag<build_vector>
3255    (Ty !if(!eq(Ty, i16),
3256      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
3257      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
3258    (Ty VGPR_32:$b))),
3259    (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
3260>;
3261
3262// Take the upper 16 bits from each VGPR_32 and concat them
3263def : GCNPat <
3264  (vecTy (DivergentBinFrag<build_vector>
3265    (Ty !if(!eq(Ty, i16),
3266      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
3267      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
3268    (Ty !if(!eq(Ty, i16),
3269      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3270      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3271  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
3272>;
3273
3274
3275} // end foreach Ty
3276
3277
3278let AddedComplexity = 5 in {
3279def : GCNPat <
3280  (v2f16 (is_canonicalized_2<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
3281                                           (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
3282  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
3283>;
3284}
3285} // End SubtargetPredicate = HasVOP3PInsts
3286
3287// With multiple uses of the shift, this will duplicate the shift and
3288// increase register pressure.
3289let SubtargetPredicate = isGFX11Plus in
3290def : GCNPat <
3291  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
3292  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
3293>;
3294
3295
3296def : GCNPat <
3297  (v2f16 (scalar_to_vector f16:$src0)),
3298  (COPY $src0)
3299>;
3300
3301def : GCNPat <
3302  (v2i16 (scalar_to_vector i16:$src0)),
3303  (COPY $src0)
3304>;
3305
3306def : GCNPat <
3307  (v4i16 (scalar_to_vector i16:$src0)),
3308  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3309>;
3310
3311def : GCNPat <
3312  (v4f16 (scalar_to_vector f16:$src0)),
3313  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3314>;
3315
3316def : GCNPat <
3317  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3318                           timm:$bank_mask, timm:$bound_ctrl)),
3319  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
3320                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
3321                        (as_i32timm $bank_mask),
3322                        (as_i1timm $bound_ctrl))
3323>;
3324
3325foreach vt = Reg64Types.types in {
3326def : GCNPat <
3327  (vt (int_amdgcn_update_dpp vt:$old, vt:$src, timm:$dpp_ctrl, timm:$row_mask,
3328                              timm:$bank_mask, timm:$bound_ctrl)),
3329  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
3330                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
3331                        (as_i1timm $bound_ctrl))
3332>;
3333}
3334
3335//===----------------------------------------------------------------------===//
3336// Fract Patterns
3337//===----------------------------------------------------------------------===//
3338
3339let SubtargetPredicate = isGFX6 in {
3340
3341// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
3342// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
3343// way to implement it is using V_FRACT_F64.
3344// The workaround for the V_FRACT bug is:
3345//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
3346
3347// Convert floor(x) to (x - fract(x))
3348
3349// Don't bother handling this for GlobalISel, it's handled during
3350// lowering.
3351//
3352// FIXME: DAG should also custom lower this.
3353def : GCNPat <
3354  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
3355  (V_ADD_F64_e64
3356      $mods,
3357      $x,
3358      SRCMODS.NEG,
3359      (V_CNDMASK_B64_PSEUDO
3360         (V_MIN_F64_e64
3361             SRCMODS.NONE,
3362             (V_FRACT_F64_e64 $mods, $x),
3363             SRCMODS.NONE,
3364             (V_MOV_B64_PSEUDO (i64 0x3fefffffffffffff))),
3365         $x,
3366         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
3367>;
3368
3369} // End SubtargetPredicates = isGFX6
3370
3371//============================================================================//
3372// Miscellaneous Optimization Patterns
3373//============================================================================//
3374
3375// Undo sub x, c -> add x, -c canonicalization since c is more likely
3376// an inline immediate than -c.
3377// TODO: Also do for 64-bit.
3378def : GCNPat<
3379  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3380  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
3381>;
3382
3383def : GCNPat<
3384  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3385  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3386  let SubtargetPredicate = HasAddNoCarryInsts;
3387}
3388
3389def : GCNPat<
3390  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3391  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3392  let SubtargetPredicate = NotHasAddNoCarryInsts;
3393}
3394
3395
3396// Avoid pointlessly materializing a constant in VGPR.
3397// FIXME: Should also do this for readlane, but tablegen crashes on
3398// the ignored src1.
3399def : GCNPat<
3400  (i32 (int_amdgcn_readfirstlane (i32 imm:$src))),
3401  (S_MOV_B32 SReg_32:$src)
3402>;
3403
3404multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
3405  def : GCNPat <
3406    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
3407    (BFM $a, $b)
3408  >;
3409
3410  def : GCNPat <
3411    (vt (ADD (vt (shl 1, vt:$a)), -1)),
3412    (BFM $a, (i32 0))
3413  >;
3414}
3415
3416defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
3417// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
3418defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
3419
3420// Bitfield extract patterns
3421
3422def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
3423  return isMask_32(Imm);
3424}]>;
3425
3426def IMMPopCount : SDNodeXForm<imm, [{
3427  return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
3428                                   MVT::i32);
3429}]>;
3430
3431def : AMDGPUPat <
3432  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
3433                         IMMZeroBasedBitfieldMask:$mask),
3434  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
3435>;
3436
3437// x & ((1 << y) - 1)
3438def : AMDGPUPat <
3439  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
3440  (V_BFE_U32_e64 $src, (i32 0), $width)
3441>;
3442
3443// x & ~(-1 << y)
3444def : AMDGPUPat <
3445  (DivergentBinFrag<and> i32:$src,
3446                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
3447  (V_BFE_U32_e64 $src, (i32 0), $width)
3448>;
3449
3450// x & (-1 >> (bitwidth - y))
3451def : AMDGPUPat <
3452  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
3453  (V_BFE_U32_e64 $src, (i32 0), $width)
3454>;
3455
3456// x << (bitwidth - y) >> (bitwidth - y)
3457def : AMDGPUPat <
3458  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3459                         (sub 32, i32:$width)),
3460  (V_BFE_U32_e64 $src, (i32 0), $width)
3461>;
3462
3463def : AMDGPUPat <
3464  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3465                         (sub 32, i32:$width)),
3466  (V_BFE_I32_e64 $src, (i32 0), $width)
3467>;
3468
3469// SHA-256 Ma patterns
3470
3471// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
3472def : AMDGPUPatIgnoreCopies <
3473  (DivergentBinFrag<or> (and i32:$x, i32:$z),
3474                        (and i32:$y, (or i32:$x, i32:$z))),
3475  (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
3476                                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)),
3477                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32),
3478                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32))
3479>;
3480
3481def : AMDGPUPatIgnoreCopies <
3482  (DivergentBinFrag<or> (and i64:$x, i64:$z),
3483                        (and i64:$y, (or i64:$x, i64:$z))),
3484  (REG_SEQUENCE VReg_64,
3485    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
3486                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
3487              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
3488              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
3489    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
3490                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
3491              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
3492              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
3493>;
3494
3495multiclass IntMed3Pat<Instruction med3Inst,
3496                 SDPatternOperator min,
3497                 SDPatternOperator max> {
3498
3499  // This matches 16 permutations of
3500  // min(max(a, b), max(min(a, b), c))
3501  def : AMDGPUPat <
3502  (min (max i32:$src0, i32:$src1),
3503       (max (min i32:$src0, i32:$src1), i32:$src2)),
3504  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3505>;
3506
3507  // This matches 16 permutations of
3508  // max(min(x, y), min(max(x, y), z))
3509  def : AMDGPUPat <
3510  (max (min i32:$src0, i32:$src1),
3511       (min (max i32:$src0, i32:$src1), i32:$src2)),
3512  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3513>;
3514}
3515
3516defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
3517defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
3518
3519multiclass FPMed3Pat<ValueType vt,
3520                Instruction med3Inst> {
3521  // This matches 16 permutations of max(min(x, y), min(max(x, y), z))
3522  def : GCNPat<
3523    (fmaxnum_like_nnan
3524      (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3525                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3526      (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3527                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3528                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3529    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3530              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3531
3532
3533  // This matches 16 permutations of min(max(x, y), max(min(x, y), z))
3534  def : GCNPat<
3535    (fminnum_like_nnan
3536      (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3537                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3538      (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3539                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3540                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3541    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3542              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3543}
3544
3545multiclass Int16Med3Pat<Instruction med3Inst,
3546                        SDPatternOperator min,
3547                        SDPatternOperator max> {
3548  // This matches 16 permutations of
3549  // max(min(x, y), min(max(x, y), z))
3550  def : GCNPat <
3551  (max (min i16:$src0, i16:$src1),
3552       (min (max i16:$src0, i16:$src1), i16:$src2)),
3553  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3554>;
3555
3556  // This matches 16 permutations of
3557  // min(max(a, b), max(min(a, b), c))
3558  def : GCNPat <
3559  (min (max i16:$src0, i16:$src1),
3560       (max (min i16:$src0, i16:$src1), i16:$src2)),
3561  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3562>;
3563}
3564
3565defm : FPMed3Pat<f32, V_MED3_F32_e64>;
3566
3567let SubtargetPredicate = HasMed3_16 in {
3568defm : FPMed3Pat<f16, V_MED3_F16_e64>;
3569}
3570
3571class
3572IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3573             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3574  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3575                                i32:$src2),
3576  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3577>;
3578
3579class
3580FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3581            SDPatternOperator max_or_min_oneuse> : GCNPat <
3582  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3583                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3584               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3585  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3586              DSTCLAMP.NONE, DSTOMOD.NONE)
3587>;
3588
3589class
3590FPMinCanonMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3591                 SDPatternOperator max_or_min_oneuse> : GCNPat <
3592  (min_or_max (is_canonicalized_1<fcanonicalize>
3593                  (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3594                                     (VOP3Mods vt:$src1, i32:$src1_mods))),
3595               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3596  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3597              DSTCLAMP.NONE, DSTOMOD.NONE)
3598>;
3599
3600let OtherPredicates = [isGFX11Plus] in {
3601def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3602def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3603def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3604def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3605def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3606def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3607def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3608def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3609def : FPMinCanonMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3610def : FPMinCanonMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3611def : FPMinCanonMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3612def : FPMinCanonMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3613}
3614
3615let OtherPredicates = [isGFX9Plus] in {
3616defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax>;
3617defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax>;
3618} // End Predicates = [isGFX9Plus]
3619
3620let OtherPredicates = [isGFX12Plus] in {
3621def : FPMinMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3622def : FPMinMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3623def : FPMinMaxPat<V_MINIMUMMAXIMUM_F16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3624def : FPMinMaxPat<V_MAXIMUMMINIMUM_F16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3625def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3626def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3627def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3628def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3629}
3630
3631// Convert a floating-point power of 2 to the integer exponent.
3632def FPPow2ToExponentXForm : SDNodeXForm<fpimm, [{
3633  const auto &APF = N->getValueAPF();
3634  int Log2 = APF.getExactLog2Abs();
3635  assert(Log2 != INT_MIN);
3636  return CurDAG->getTargetConstant(Log2, SDLoc(N), MVT::i32);
3637}]>;
3638
3639// Check if a floating point value is a power of 2 floating-point
3640// immediate where it's preferable to emit a multiply by as an
3641// ldexp. We skip over 0.5 to 4.0 as those are inline immediates
3642// anyway.
3643def fpimm_pos_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
3644    if (Imm.isNegative())
3645      return false;
3646
3647    int Exp = Imm.getExactLog2Abs();
3648    // Prefer leaving the FP inline immediates as they are.
3649    // 0.5, 1.0, 2.0, 4.0
3650
3651    // For f64 ldexp is always better than materializing a 64-bit
3652    // constant.
3653    return Exp != INT_MIN && (Exp < -1 || Exp > 2);
3654  }], FPPow2ToExponentXForm
3655>;
3656
3657def fpimm_neg_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
3658    if (!Imm.isNegative())
3659      return false;
3660    int Exp = Imm.getExactLog2Abs();
3661    // Prefer leaving the FP inline immediates as they are.
3662    // 0.5, 1.0, 2.0, 4.0
3663
3664    // For f64 ldexp is always better than materializing a 64-bit
3665    // constant.
3666    return Exp != INT_MIN && (Exp < -1 || Exp > 2);
3667  }], FPPow2ToExponentXForm
3668>;
3669
3670// f64 is different because we also want to handle cases that may
3671// require materialization of the exponent.
3672// TODO: If we know f64 ops are fast, prefer add (ldexp x, N), y over fma
3673// TODO: For f32/f16, it's not a clear win on code size to use ldexp
3674// in place of mul since we have to use the vop3 form. Are there power
3675// savings or some other reason to prefer ldexp over mul?
3676def : GCNPat<
3677  (any_fmul (f64 (VOP3Mods f64:$src0, i32:$src0_mods)),
3678            fpimm_pos_pow2_prefer_ldexp_f64:$src1),
3679  (V_LDEXP_F64_e64 i32:$src0_mods, VSrc_b64:$src0,
3680                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3681>;
3682
3683def : GCNPat<
3684  (any_fmul f64:$src0, fpimm_neg_pow2_prefer_ldexp_f64:$src1),
3685  (V_LDEXP_F64_e64 SRCMODS.NEG, VSrc_b64:$src0,
3686                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3687>;
3688
3689// We want to avoid using VOP3Mods which could pull in another fneg
3690// which we would need to be re-negated (which should never happen in
3691// practice). I don't see a way to apply an SDNodeXForm that accounts
3692// for a second operand.
3693def : GCNPat<
3694  (any_fmul (fabs f64:$src0), fpimm_neg_pow2_prefer_ldexp_f64:$src1),
3695  (V_LDEXP_F64_e64 SRCMODS.NEG_ABS, VSrc_b64:$src0,
3696                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3697>;
3698
3699class AMDGPUGenericInstruction : GenericInstruction {
3700  let Namespace = "AMDGPU";
3701}
3702
3703// Convert a wave address to a swizzled vector address (i.e. this is
3704// for copying the stack pointer to a vector address appropriate to
3705// use in the offset field of mubuf instructions).
3706def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3707  let OutOperandList = (outs type0:$dst);
3708  let InOperandList = (ins type0:$src);
3709  let hasSideEffects = 0;
3710}
3711
3712// Returns -1 if the input is zero.
3713def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3714  let OutOperandList = (outs type0:$dst);
3715  let InOperandList = (ins type1:$src);
3716  let hasSideEffects = 0;
3717}
3718
3719// Returns -1 if the input is zero.
3720def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3721  let OutOperandList = (outs type0:$dst);
3722  let InOperandList = (ins type1:$src);
3723  let hasSideEffects = 0;
3724}
3725
3726def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3727  let OutOperandList = (outs type0:$dst);
3728  let InOperandList = (ins type1:$src);
3729  let hasSideEffects = 0;
3730}
3731
3732class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3733  let OutOperandList = (outs type0:$dst);
3734  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3735                           type2:$soffset, untyped_imm_0:$offset,
3736                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3737  let hasSideEffects = 0;
3738  let mayLoad = 1;
3739}
3740
3741class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3742  let OutOperandList = (outs type0:$dst);
3743  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3744                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3745                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3746  let hasSideEffects = 0;
3747  let mayLoad = 1;
3748}
3749
3750def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3751def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3752def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3753def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3754def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3755def G_AMDGPU_BUFFER_LOAD_UBYTE_TFE : BufferLoadGenericInstruction;
3756def G_AMDGPU_BUFFER_LOAD_SBYTE_TFE : BufferLoadGenericInstruction;
3757def G_AMDGPU_BUFFER_LOAD_USHORT_TFE : BufferLoadGenericInstruction;
3758def G_AMDGPU_BUFFER_LOAD_SSHORT_TFE : BufferLoadGenericInstruction;
3759def G_AMDGPU_BUFFER_LOAD_TFE : BufferLoadGenericInstruction;
3760def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3761def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
3762def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3763def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3764def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3765
3766class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3767  let OutOperandList = (outs);
3768  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3769                           type2:$soffset, untyped_imm_0:$offset,
3770                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3771  let hasSideEffects = 0;
3772  let mayStore = 1;
3773}
3774
3775class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3776  let OutOperandList = (outs);
3777  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3778                           type2:$soffset, untyped_imm_0:$offset,
3779                           untyped_imm_0:$format,
3780                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3781  let hasSideEffects = 0;
3782  let mayStore = 1;
3783}
3784
3785def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3786def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3787def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3788def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3789def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3790def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3791def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3792
3793def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3794  let OutOperandList = (outs type0:$dst);
3795  let InOperandList = (ins type0:$src0, type0:$src1);
3796  let hasSideEffects = 0;
3797}
3798
3799def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3800  let OutOperandList = (outs type0:$dst);
3801  let InOperandList = (ins type0:$src0, type0:$src1);
3802  let hasSideEffects = 0;
3803}
3804
3805foreach N = 0-3 in {
3806def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3807  let OutOperandList = (outs type0:$dst);
3808  let InOperandList = (ins type0:$src0);
3809  let hasSideEffects = 0;
3810}
3811}
3812
3813def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3814  let OutOperandList = (outs type0:$dst);
3815  let InOperandList = (ins type0:$src0, type0:$src1);
3816  let hasSideEffects = 0;
3817}
3818
3819def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3820  let OutOperandList = (outs type0:$dst);
3821  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3822  let hasSideEffects = 0;
3823}
3824
3825def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
3826  let OutOperandList = (outs type0:$dst);
3827  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3828  let hasSideEffects = 0;
3829}
3830
3831def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
3832  let OutOperandList = (outs type0:$dst);
3833  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3834  let hasSideEffects = 0;
3835}
3836
3837def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3838  let OutOperandList = (outs type0:$dst);
3839  let InOperandList = (ins type0:$src);
3840  let hasSideEffects = 0;
3841}
3842
3843// Integer multiply-add: arg0 * arg1 + arg2.
3844//
3845// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
3846// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
3847class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
3848  let OutOperandList = (outs type0:$dst, type1:$carry_out);
3849  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
3850  let hasSideEffects = 0;
3851}
3852
3853def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
3854def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
3855
3856// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3857// operand Expects a MachineMemOperand in addition to explicit
3858// operands.
3859def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3860  let OutOperandList = (outs type0:$oldval);
3861  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3862  let hasSideEffects = 0;
3863  let mayLoad = 1;
3864  let mayStore = 1;
3865}
3866
3867class BufferAtomicGenericInstruction : AMDGPUGenericInstruction {
3868  let OutOperandList = (outs type0:$dst);
3869  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3870                           type2:$soffset, untyped_imm_0:$offset,
3871                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3872  let hasSideEffects = 0;
3873  let mayLoad = 1;
3874  let mayStore = 1;
3875}
3876
3877def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3878def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3879def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3880def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3881def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3882def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3883def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3884def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3885def G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 : BufferAtomicGenericInstruction;
3886def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3887def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3888def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3889def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3890def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3891def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3892def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3893
3894def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3895  let OutOperandList = (outs type0:$dst);
3896  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3897                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3898                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3899  let hasSideEffects = 0;
3900  let mayLoad = 1;
3901  let mayStore = 1;
3902}
3903
3904// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3905// a workaround for the intrinsic being defined as readnone, but
3906// really needs a memory operand.
3907
3908class SBufferLoadInstruction : AMDGPUGenericInstruction {
3909  let OutOperandList = (outs type0:$dst);
3910  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3911  let hasSideEffects = 0;
3912  let mayLoad = 1;
3913  let mayStore = 0;
3914}
3915
3916def G_AMDGPU_S_BUFFER_LOAD : SBufferLoadInstruction;
3917def G_AMDGPU_S_BUFFER_LOAD_SBYTE : SBufferLoadInstruction;
3918def G_AMDGPU_S_BUFFER_LOAD_UBYTE : SBufferLoadInstruction;
3919def G_AMDGPU_S_BUFFER_LOAD_SSHORT : SBufferLoadInstruction;
3920def G_AMDGPU_S_BUFFER_LOAD_USHORT : SBufferLoadInstruction;
3921
3922def G_AMDGPU_S_MUL_U64_U32 : AMDGPUGenericInstruction {
3923  let OutOperandList = (outs type0:$dst);
3924  let InOperandList = (ins type0:$src0, type0:$src1);
3925  let hasSideEffects = 0;
3926}
3927
3928def G_AMDGPU_S_MUL_I64_I32 : AMDGPUGenericInstruction {
3929  let OutOperandList = (outs type0:$dst);
3930  let InOperandList = (ins type0:$src0, type0:$src1);
3931  let hasSideEffects = 0;
3932}
3933
3934// This is equivalent to the G_INTRINSIC*, but the operands may have
3935// been legalized depending on the subtarget requirements.
3936def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3937  let OutOperandList = (outs type0:$dst);
3938  let InOperandList = (ins unknown:$intrin, variable_ops);
3939  let hasSideEffects = 0;
3940  let mayLoad = 1;
3941
3942  // FIXME: Use separate opcode for atomics.
3943  let mayStore = 1;
3944}
3945
3946def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3947  let OutOperandList = (outs type0:$dst);
3948  let InOperandList = (ins unknown:$intrin, variable_ops);
3949  let hasSideEffects = 0;
3950  let mayLoad = 1;
3951
3952  // FIXME: Use separate opcode for atomics.
3953  let mayStore = 1;
3954}
3955
3956def G_AMDGPU_INTRIN_IMAGE_LOAD_NORET : AMDGPUGenericInstruction {
3957  let OutOperandList = (outs);
3958  let InOperandList = (ins unknown:$intrin, variable_ops);
3959  let hasSideEffects = 0;
3960  let mayLoad = 1;
3961  let mayStore = 1;
3962}
3963
3964// This is equivalent to the G_INTRINSIC*, but the operands may have
3965// been legalized depending on the subtarget requirements.
3966def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3967  let OutOperandList = (outs);
3968  let InOperandList = (ins unknown:$intrin, variable_ops);
3969  let hasSideEffects = 0;
3970  let mayStore = 1;
3971}
3972
3973def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3974  let OutOperandList = (outs);
3975  let InOperandList = (ins unknown:$intrin, variable_ops);
3976  let hasSideEffects = 0;
3977  let mayStore = 1;
3978}
3979
3980def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3981  let OutOperandList = (outs type0:$dst);
3982  let InOperandList = (ins unknown:$intrin, variable_ops);
3983  let hasSideEffects = 0;
3984  let mayLoad = 1;
3985  let mayStore = 0;
3986}
3987
3988// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3989// if necessary.
3990def G_SI_CALL : AMDGPUGenericInstruction {
3991  let OutOperandList = (outs SReg_64:$dst);
3992  let InOperandList = (ins type0:$src0, unknown:$callee);
3993  let Size = 4;
3994  let isCall = 1;
3995  let UseNamedOperandTable = 1;
3996  let SchedRW = [WriteBranch];
3997  // TODO: Should really base this on the call target
3998  let isConvergent = 1;
3999}
4000
4001def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction {
4002  let OutOperandList = (outs type0:$vdst);
4003  let InOperandList = (ins type1:$src0);
4004  let hasSideEffects = 0;
4005}
4006
4007def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction {
4008  let OutOperandList = (outs type0:$vdst);
4009  let InOperandList = (ins type1:$src0);
4010  let hasSideEffects = 0;
4011}
4012
4013//============================================================================//
4014// Dummy Instructions
4015//============================================================================//
4016
4017def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
4018  let Inst{31-0} = 0x00000000;
4019  let FixedSize = 1;
4020  let Size = 4;
4021  let Uses = [EXEC];
4022  let hasSideEffects = 1;
4023  let SubtargetPredicate = isGFX10Plus;
4024}
4025