1//===-- SIInstructions.td - SI Instruction Definitions --------------------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// This file was originally auto-generated from a GPU register header file and 9// all the instruction definitions were originally commented out. Instructions 10// that are not yet supported remain commented out. 11//===----------------------------------------------------------------------===// 12 13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl { 14 15} 16 17include "SOPInstructions.td" 18include "VOPInstructions.td" 19include "SMInstructions.td" 20include "FLATInstructions.td" 21include "BUFInstructions.td" 22include "EXPInstructions.td" 23 24//===----------------------------------------------------------------------===// 25// VINTRP Instructions 26//===----------------------------------------------------------------------===// 27 28// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) 29def VINTRPDst : VINTRPDstOperand <VGPR_32>; 30 31let Uses = [MODE, M0, EXEC] in { 32 33// FIXME: Specify SchedRW for VINTRP instructions. 34 35multiclass V_INTERP_P1_F32_m : VINTRP_m < 36 0x00000000, 37 (outs VINTRPDst:$vdst), 38 (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 39 "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", 40 [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc, 41 (i32 timm:$attrchan), (i32 timm:$attr), M0))] 42>; 43 44let OtherPredicates = [has32BankLDS] in { 45 46defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; 47 48} // End OtherPredicates = [has32BankLDS] 49 50let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { 51 52defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; 53 54} // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 55 56let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { 57 58defm V_INTERP_P2_F32 : VINTRP_m < 59 0x00000001, 60 (outs VINTRPDst:$vdst), 61 (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 62 "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", 63 [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc, 64 (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; 65 66} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" 67 68defm V_INTERP_MOV_F32 : VINTRP_m < 69 0x00000002, 70 (outs VINTRPDst:$vdst), 71 (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), 72 "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", 73 [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc), 74 (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; 75 76} // End Uses = [MODE, M0, EXEC] 77 78//===----------------------------------------------------------------------===// 79// Pseudo Instructions 80//===----------------------------------------------------------------------===// 81def ATOMIC_FENCE : SPseudoInstSI< 82 (outs), (ins i32imm:$ordering, i32imm:$scope), 83 [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))], 84 "ATOMIC_FENCE $ordering, $scope"> { 85 let hasSideEffects = 1; 86 let maybeAtomic = 1; 87} 88 89def VOP_I64_I64_DPP : VOPProfile <[i64, i64, untyped, untyped]> { 90 let HasExt = 1; 91 let HasExtDPP = 1; 92} 93 94let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { 95 96// For use in patterns 97def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), 98 (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { 99 let isPseudo = 1; 100 let isCodeGenOnly = 1; 101 let usesCustomInserter = 1; 102} 103 104// 64-bit vector move instruction. This is mainly used by the 105// SIFoldOperands pass to enable folding of inline immediates. 106def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), 107 (ins VSrc_b64:$src0)>; 108 109// 64-bit vector move with dpp. Expanded post-RA. 110def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64_DPP> { 111 let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete. 112} 113 114// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the 115// WQM pass processes it. 116def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 117 118// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is 119// turned into a copy by WQM pass, but does not seed WQM requirements. 120def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 121 122// Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so 123// that the @earlyclobber is respected. The @earlyclobber is to make sure that 124// the instruction that defines $src0 (which is run in WWM) doesn't 125// accidentally clobber inactive channels of $vdst. 126let Constraints = "@earlyclobber $vdst" in { 127def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 128} 129 130} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] 131 132def ENTER_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { 133 let Uses = [EXEC]; 134 let Defs = [EXEC, SCC]; 135 let hasSideEffects = 0; 136 let mayLoad = 0; 137 let mayStore = 0; 138} 139 140def EXIT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { 141 let hasSideEffects = 0; 142 let mayLoad = 0; 143 let mayStore = 0; 144} 145 146// Invert the exec mask and overwrite the inactive lanes of dst with inactive, 147// restoring it after we're done. 148def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), 149 (ins VGPR_32: $src, VSrc_b32:$inactive), 150 [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { 151 let Constraints = "$src = $vdst"; 152} 153 154def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), 155 (ins VReg_64: $src, VSrc_b64:$inactive), 156 [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { 157 let Constraints = "$src = $vdst"; 158} 159 160let usesCustomInserter = 1, Defs = [VCC, EXEC] in { 161def V_ADD_U64_PSEUDO : VPseudoInstSI < 162 (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), 163 [(set VReg_64:$vdst, (getDivergentFrag<add>.ret i64:$src0, i64:$src1))] 164>; 165 166def V_SUB_U64_PSEUDO : VPseudoInstSI < 167 (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), 168 [(set VReg_64:$vdst, (getDivergentFrag<sub>.ret i64:$src0, i64:$src1))] 169>; 170} // End usesCustomInserter = 1, Defs = [VCC, EXEC] 171 172let usesCustomInserter = 1, Defs = [SCC] in { 173def S_ADD_U64_PSEUDO : SPseudoInstSI < 174 (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 175 [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))] 176>; 177 178def S_SUB_U64_PSEUDO : SPseudoInstSI < 179 (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 180 [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))] 181>; 182 183def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < 184 (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 185>; 186 187def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < 188 (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 189>; 190 191def S_ADD_CO_PSEUDO : SPseudoInstSI < 192 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) 193>; 194 195def S_SUB_CO_PSEUDO : SPseudoInstSI < 196 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) 197>; 198 199def S_UADDO_PSEUDO : SPseudoInstSI < 200 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) 201>; 202 203def S_USUBO_PSEUDO : SPseudoInstSI < 204 (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) 205>; 206 207} // End usesCustomInserter = 1, Defs = [SCC] 208 209let usesCustomInserter = 1 in { 210def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins), 211 [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; 212} // End let usesCustomInserter = 1, SALU = 1 213 214// Wrap an instruction by duplicating it, except for setting isTerminator. 215class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI< 216 base_inst.OutOperandList, 217 base_inst.InOperandList> { 218 let Uses = base_inst.Uses; 219 let Defs = base_inst.Defs; 220 let isTerminator = 1; 221 let isAsCheapAsAMove = base_inst.isAsCheapAsAMove; 222 let hasSideEffects = base_inst.hasSideEffects; 223 let UseNamedOperandTable = base_inst.UseNamedOperandTable; 224 let CodeSize = base_inst.CodeSize; 225 let SchedRW = base_inst.SchedRW; 226} 227 228let WaveSizePredicate = isWave64 in { 229def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>; 230def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>; 231def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>; 232def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>; 233} 234 235let WaveSizePredicate = isWave32 in { 236def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>; 237def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>; 238def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>; 239def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>; 240} 241 242 243def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), 244 [(int_amdgcn_wave_barrier)]> { 245 let SchedRW = []; 246 let hasNoSchedulingInfo = 1; 247 let hasSideEffects = 1; 248 let mayLoad = 0; 249 let mayStore = 0; 250 let isConvergent = 1; 251 let FixedSize = 1; 252 let Size = 0; 253} 254 255// SI pseudo instructions. These are used by the CFG structurizer pass 256// and should be lowered to ISA instructions prior to codegen. 257 258// Dummy terminator instruction to use after control flow instructions 259// replaced with exec mask operations. 260def SI_MASK_BRANCH : VPseudoInstSI < 261 (outs), (ins brtarget:$target)> { 262 let isBranch = 0; 263 let isTerminator = 1; 264 let isBarrier = 0; 265 let SchedRW = []; 266 let hasNoSchedulingInfo = 1; 267 let FixedSize = 1; 268 let Size = 0; 269} 270 271let isTerminator = 1 in { 272 273let OtherPredicates = [EnableLateCFGStructurize] in { 274 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < 275 (outs), 276 (ins SReg_1:$vcc, brtarget:$target), 277 [(brcond i1:$vcc, bb:$target)]> { 278 let Size = 12; 279} 280} 281 282def SI_IF: CFPseudoInstSI < 283 (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target), 284 [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { 285 let Constraints = ""; 286 let Size = 12; 287 let hasSideEffects = 1; 288} 289 290def SI_ELSE : CFPseudoInstSI < 291 (outs SReg_1:$dst), 292 (ins SReg_1:$src, brtarget:$target), [], 1, 1> { 293 let Size = 12; 294 let hasSideEffects = 1; 295} 296 297def SI_LOOP : CFPseudoInstSI < 298 (outs), (ins SReg_1:$saved, brtarget:$target), 299 [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> { 300 let Size = 8; 301 let isBranch = 1; 302 let hasSideEffects = 1; 303} 304 305} // End isTerminator = 1 306 307def SI_END_CF : CFPseudoInstSI < 308 (outs), (ins SReg_1:$saved), [], 1, 1> { 309 let Size = 4; 310 let isAsCheapAsAMove = 1; 311 let isReMaterializable = 1; 312 let hasSideEffects = 1; 313 let mayLoad = 1; // FIXME: Should not need memory flags 314 let mayStore = 1; 315} 316 317def SI_IF_BREAK : CFPseudoInstSI < 318 (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> { 319 let Size = 4; 320 let isAsCheapAsAMove = 1; 321 let isReMaterializable = 1; 322} 323 324// Branch to the early termination block of the shader if SCC is 0. 325// This uses SCC from a previous SALU operation, i.e. the update of 326// a mask of live lanes after a kill/demote operation. 327// Only valid in pixel shaders. 328def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> { 329 let Uses = [EXEC,SCC]; 330} 331 332let Uses = [EXEC] in { 333 334multiclass PseudoInstKill <dag ins> { 335 // Even though this pseudo can usually be expanded without an SCC def, we 336 // conservatively assume that it has an SCC def, both because it is sometimes 337 // required in degenerate cases (when V_CMPX cannot be used due to constant 338 // bus limitations) and because it allows us to avoid having to track SCC 339 // liveness across basic blocks. 340 let Defs = [EXEC,VCC,SCC] in 341 def _PSEUDO : PseudoInstSI <(outs), ins> { 342 let isConvergent = 1; 343 let usesCustomInserter = 1; 344 } 345 346 let Defs = [EXEC,VCC,SCC] in 347 def _TERMINATOR : SPseudoInstSI <(outs), ins> { 348 let isTerminator = 1; 349 } 350} 351 352defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>; 353defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; 354 355let Defs = [EXEC] in 356def SI_KILL_CLEANUP : SPseudoInstSI <(outs), (ins)>; 357 358let Defs = [EXEC,VCC] in 359def SI_ILLEGAL_COPY : SPseudoInstSI < 360 (outs unknown:$dst), (ins unknown:$src), 361 [], " ; illegal copy $src to $dst">; 362 363} // End Uses = [EXEC], Defs = [EXEC,VCC] 364 365// Branch on undef scc. Used to avoid intermediate copy from 366// IMPLICIT_DEF to SCC. 367def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { 368 let isTerminator = 1; 369 let usesCustomInserter = 1; 370 let isBranch = 1; 371} 372 373def SI_PS_LIVE : PseudoInstSI < 374 (outs SReg_1:$dst), (ins), 375 [(set i1:$dst, (int_amdgcn_ps_live))]> { 376 let SALU = 1; 377} 378 379def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), 380 [(int_amdgcn_unreachable)], 381 "; divergent unreachable"> { 382 let Size = 0; 383 let hasNoSchedulingInfo = 1; 384 let FixedSize = 1; 385} 386 387// Used as an isel pseudo to directly emit initialization with an 388// s_mov_b32 rather than a copy of another initialized 389// register. MachineCSE skips copies, and we don't want to have to 390// fold operands before it runs. 391def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { 392 let Defs = [M0]; 393 let usesCustomInserter = 1; 394 let isAsCheapAsAMove = 1; 395 let isReMaterializable = 1; 396} 397 398def SI_INIT_EXEC : SPseudoInstSI < 399 (outs), (ins i64imm:$src), 400 [(int_amdgcn_init_exec (i64 timm:$src))]> { 401 let Defs = [EXEC]; 402 let isAsCheapAsAMove = 1; 403} 404 405def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < 406 (outs), (ins SSrc_b32:$input, i32imm:$shift), 407 [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> { 408 let Defs = [EXEC]; 409} 410 411// Return for returning shaders to a shader variant epilog. 412def SI_RETURN_TO_EPILOG : SPseudoInstSI < 413 (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { 414 let isTerminator = 1; 415 let isBarrier = 1; 416 let isReturn = 1; 417 let hasNoSchedulingInfo = 1; 418 let DisableWQM = 1; 419 let FixedSize = 1; 420} 421 422// Return for returning function calls. 423def SI_RETURN : SPseudoInstSI < 424 (outs), (ins), [], 425 "; return"> { 426 let isTerminator = 1; 427 let isBarrier = 1; 428 let isReturn = 1; 429 let SchedRW = [WriteBranch]; 430} 431 432// Return for returning function calls without output register. 433// 434// This version is only needed so we can fill in the output register 435// in the custom inserter. 436def SI_CALL_ISEL : SPseudoInstSI < 437 (outs), (ins SSrc_b64:$src0, unknown:$callee), 438 [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> { 439 let Size = 4; 440 let isCall = 1; 441 let SchedRW = [WriteBranch]; 442 let usesCustomInserter = 1; 443 // TODO: Should really base this on the call target 444 let isConvergent = 1; 445} 446 447def : GCNPat< 448 (AMDGPUcall i64:$src0, (i64 0)), 449 (SI_CALL_ISEL $src0, (i64 0)) 450>; 451 452// Wrapper around s_swappc_b64 with extra $callee parameter to track 453// the called function after regalloc. 454def SI_CALL : SPseudoInstSI < 455 (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { 456 let Size = 4; 457 let isCall = 1; 458 let UseNamedOperandTable = 1; 459 let SchedRW = [WriteBranch]; 460 // TODO: Should really base this on the call target 461 let isConvergent = 1; 462} 463 464// Tail call handling pseudo 465def SI_TCRETURN : SPseudoInstSI <(outs), 466 (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff), 467 [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> { 468 let Size = 4; 469 let isCall = 1; 470 let isTerminator = 1; 471 let isReturn = 1; 472 let isBarrier = 1; 473 let UseNamedOperandTable = 1; 474 let SchedRW = [WriteBranch]; 475 // TODO: Should really base this on the call target 476 let isConvergent = 1; 477} 478 479 480def ADJCALLSTACKUP : SPseudoInstSI< 481 (outs), (ins i32imm:$amt0, i32imm:$amt1), 482 [(callseq_start timm:$amt0, timm:$amt1)], 483 "; adjcallstackup $amt0 $amt1"> { 484 let Size = 8; // Worst case. (s_add_u32 + constant) 485 let FixedSize = 1; 486 let hasSideEffects = 1; 487 let usesCustomInserter = 1; 488 let SchedRW = [WriteSALU]; 489 let Defs = [SCC]; 490} 491 492def ADJCALLSTACKDOWN : SPseudoInstSI< 493 (outs), (ins i32imm:$amt1, i32imm:$amt2), 494 [(callseq_end timm:$amt1, timm:$amt2)], 495 "; adjcallstackdown $amt1"> { 496 let Size = 8; // Worst case. (s_add_u32 + constant) 497 let hasSideEffects = 1; 498 let usesCustomInserter = 1; 499 let SchedRW = [WriteSALU]; 500 let Defs = [SCC]; 501} 502 503let Defs = [M0, EXEC, SCC], 504 UseNamedOperandTable = 1 in { 505 506// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect 507// addressing implementation. 508class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < 509 (outs VGPR_32:$vdst), 510 (ins rc:$src, VS_32:$idx, i32imm:$offset)> { 511 let usesCustomInserter = 1; 512} 513 514class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < 515 (outs rc:$vdst), 516 (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { 517 let Constraints = "$src = $vdst"; 518 let usesCustomInserter = 1; 519} 520 521def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; 522def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; 523def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; 524def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; 525def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; 526def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>; 527 528def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; 529def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; 530def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; 531def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; 532def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; 533def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>; 534 535} // End Uses = [EXEC], Defs = [M0, EXEC] 536 537// This is a pseudo variant of the v_movreld_b32 instruction in which the 538// vector operand appears only twice, once as def and once as use. Using this 539// pseudo avoids problems with the Two Address instructions pass. 540class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc, 541 RegisterOperand val_ty> : PseudoInstSI < 542 (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> { 543 let Constraints = "$vsrc = $vdst"; 544 let Uses = [M0]; 545} 546 547class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> : 548 INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> { 549 let VALU = 1; 550 let VOP1 = 1; 551 let Uses = [M0, EXEC]; 552} 553 554class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc, 555 RegisterOperand val_ty> : 556 INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> { 557 let SALU = 1; 558 let SOP1 = 1; 559 let Uses = [M0]; 560} 561 562class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> : 563 S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>; 564class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> : 565 S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>; 566 567def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>; 568def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>; 569def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>; 570def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>; 571def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>; 572def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>; 573def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>; 574def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>; 575 576def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>; 577def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>; 578def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>; 579def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>; 580def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>; 581def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>; 582def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>; 583def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>; 584 585def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>; 586def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>; 587def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>; 588def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>; 589def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>; 590 591// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these 592// pseudos we avoid spills or copies being inserted within indirect sequences 593// that switch the VGPR indexing mode. Spills to accvgprs could be effected by 594// this mode switching. 595 596class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI < 597 (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> { 598 let Constraints = "$vsrc = $vdst"; 599 let VALU = 1; 600 let Uses = [M0, EXEC]; 601 let Defs = [M0]; 602} 603 604def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>; 605def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>; 606def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>; 607def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>; 608def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>; 609def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>; 610def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>; 611def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>; 612 613class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI < 614 (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> { 615 let VALU = 1; 616 let Uses = [M0, EXEC]; 617 let Defs = [M0]; 618} 619 620def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>; 621def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>; 622def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>; 623def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>; 624def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>; 625def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>; 626def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>; 627def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>; 628 629multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { 630 let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { 631 def _SAVE : PseudoInstSI < 632 (outs), 633 (ins sgpr_class:$data, i32imm:$addr)> { 634 let mayStore = 1; 635 let mayLoad = 0; 636 } 637 638 def _RESTORE : PseudoInstSI < 639 (outs sgpr_class:$data), 640 (ins i32imm:$addr)> { 641 let mayStore = 0; 642 let mayLoad = 1; 643 } 644 } // End UseNamedOperandTable = 1 645} 646 647// You cannot use M0 as the output of v_readlane_b32 instructions or 648// use it in the sdata operand of SMEM instructions. We still need to 649// be able to spill the physical register m0, so allow it for 650// SI_SPILL_32_* instructions. 651defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>; 652defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; 653defm SI_SPILL_S96 : SI_SPILL_SGPR <SReg_96>; 654defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; 655defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>; 656defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>; 657defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; 658defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; 659defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>; 660 661// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register 662// needs to be used and an extra instruction to move between VGPR and AGPR. 663// UsesTmp adds to the total size of an expanded spill in this case. 664multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> { 665 let UseNamedOperandTable = 1, VGPRSpill = 1, 666 SchedRW = [WriteVMEM] in { 667 def _SAVE : VPseudoInstSI < 668 (outs), 669 (ins vgpr_class:$vdata, i32imm:$vaddr, 670 SReg_32:$soffset, i32imm:$offset)> { 671 let mayStore = 1; 672 let mayLoad = 0; 673 // (2 * 4) + (8 * num_subregs) bytes maximum 674 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); 675 // Size field is unsigned char and cannot fit more. 676 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 677 } 678 679 def _RESTORE : VPseudoInstSI < 680 (outs vgpr_class:$vdata), 681 (ins i32imm:$vaddr, 682 SReg_32:$soffset, i32imm:$offset)> { 683 let mayStore = 0; 684 let mayLoad = 1; 685 686 // (2 * 4) + (8 * num_subregs) bytes maximum 687 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); 688 // Size field is unsigned char and cannot fit more. 689 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 690 } 691 } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] 692} 693 694defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; 695defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; 696defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; 697defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; 698defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>; 699defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>; 700defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; 701defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; 702defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>; 703 704defm SI_SPILL_A32 : SI_SPILL_VGPR <AGPR_32, 1>; 705defm SI_SPILL_A64 : SI_SPILL_VGPR <AReg_64, 1>; 706defm SI_SPILL_A96 : SI_SPILL_VGPR <AReg_96, 1>; 707defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>; 708defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>; 709defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>; 710defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>; 711defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>; 712defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>; 713 714def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < 715 (outs SReg_64:$dst), 716 (ins si_ga:$ptr_lo, si_ga:$ptr_hi), 717 [(set SReg_64:$dst, 718 (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> { 719 let Defs = [SCC]; 720} 721 722def : GCNPat < 723 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0), 724 (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0)) 725>; 726 727def : GCNPat< 728 (AMDGPUtrap timm:$trapid), 729 (S_TRAP $trapid) 730>; 731 732def : GCNPat< 733 (AMDGPUelse i1:$src, bb:$target), 734 (SI_ELSE $src, $target) 735>; 736 737def : Pat < 738 (int_amdgcn_kill i1:$src), 739 (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0) 740>; 741 742def : Pat < 743 (int_amdgcn_kill (i1 (not i1:$src))), 744 (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1) 745>; 746 747def : Pat < 748 (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))), 749 (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) 750>; 751 752 // TODO: we could add more variants for other types of conditionals 753 754def : Pat < 755 (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), 756 (COPY $src) // Return the SGPRs representing i1 src 757>; 758 759def : Pat < 760 (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), 761 (COPY $src) // Return the SGPRs representing i1 src 762>; 763 764//===----------------------------------------------------------------------===// 765// VOP1 Patterns 766//===----------------------------------------------------------------------===// 767 768let OtherPredicates = [UnsafeFPMath] in { 769 770//defm : RsqPat<V_RSQ_F32_e32, f32>; 771 772def : RsqPat<V_RSQ_F32_e32, f32>; 773 774// Convert (x - floor(x)) to fract(x) 775def : GCNPat < 776 (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), 777 (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), 778 (V_FRACT_F32_e64 $mods, $x) 779>; 780 781// Convert (x + (-floor(x))) to fract(x) 782def : GCNPat < 783 (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), 784 (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), 785 (V_FRACT_F64_e64 $mods, $x) 786>; 787 788} // End OtherPredicates = [UnsafeFPMath] 789 790 791// f16_to_fp patterns 792def : GCNPat < 793 (f32 (f16_to_fp i32:$src0)), 794 (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0) 795>; 796 797def : GCNPat < 798 (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), 799 (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0) 800>; 801 802def : GCNPat < 803 (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), 804 (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0))) 805>; 806 807def : GCNPat < 808 (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), 809 (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0) 810>; 811 812def : GCNPat < 813 (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), 814 (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0) 815>; 816 817def : GCNPat < 818 (f64 (fpextend f16:$src)), 819 (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) 820>; 821 822// fp_to_fp16 patterns 823def : GCNPat < 824 (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), 825 (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0) 826>; 827 828def : GCNPat < 829 (i32 (fp_to_sint f16:$src)), 830 (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src)) 831>; 832 833def : GCNPat < 834 (i32 (fp_to_uint f16:$src)), 835 (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src)) 836>; 837 838def : GCNPat < 839 (f16 (sint_to_fp i32:$src)), 840 (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src)) 841>; 842 843def : GCNPat < 844 (f16 (uint_to_fp i32:$src)), 845 (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src)) 846>; 847 848//===----------------------------------------------------------------------===// 849// VOP2 Patterns 850//===----------------------------------------------------------------------===// 851 852// NoMods pattern used for mac. If there are any source modifiers then it's 853// better to select mad instead of mac. 854class FMADPat <ValueType vt, Instruction inst, SDPatternOperator node> 855 : GCNPat <(vt (node (vt (VOP3NoMods vt:$src0)), 856 (vt (VOP3NoMods vt:$src1)), 857 (vt (VOP3NoMods vt:$src2)))), 858 (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 859 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 860>; 861 862// Prefer mac form when there are no modifiers. 863let AddedComplexity = 9 in { 864let OtherPredicates = [HasMadMacF32Insts] in { 865def : FMADPat <f32, V_MAC_F32_e64, fmad>; 866def : FMADPat <f32, V_MAC_F32_e64, AMDGPUfmad_ftz>; 867} // OtherPredicates = [HasMadMacF32Insts] 868 869// Don't allow source modifiers. If there are any source modifiers then it's 870// better to select mad instead of mac. 871let SubtargetPredicate = isGFX6GFX7GFX10, 872 OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in 873def : GCNPat < 874 (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0), 875 (VOP3NoMods f32:$src1)), 876 (VOP3NoMods f32:$src2))), 877 (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 878 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 879>; 880 881// Don't allow source modifiers. If there are any source modifiers then it's 882// better to select fma instead of fmac. 883let SubtargetPredicate = HasFmaLegacy32 in 884def : GCNPat < 885 (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0), 886 (VOP3NoMods f32:$src1), 887 (VOP3NoMods f32:$src2))), 888 (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 889 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 890>; 891 892let SubtargetPredicate = Has16BitInsts in { 893def : FMADPat <f16, V_MAC_F16_e64, fmad>; 894def : FMADPat <f16, V_MAC_F16_e64, AMDGPUfmad_ftz>; 895} // SubtargetPredicate = Has16BitInsts 896} // AddedComplexity = 9 897 898class FMADModsPat<ValueType Ty, Instruction inst, SDPatternOperator mad_opr> 899 : GCNPat< 900 (Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)), 901 (Ty (VOP3Mods Ty:$src1, i32:$src1_mod)), 902 (Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))), 903 (inst $src0_mod, $src0, $src1_mod, $src1, 904 $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 905>; 906 907let OtherPredicates = [HasMadMacF32Insts] in 908def : FMADModsPat<f32, V_MAD_F32_e64, AMDGPUfmad_ftz>; 909 910let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in 911def : GCNPat < 912 (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod), 913 (VOP3Mods f32:$src1, i32:$src1_mod)), 914 (VOP3Mods f32:$src2, i32:$src2_mod))), 915 (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1, 916 $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 917>; 918 919let SubtargetPredicate = Has16BitInsts in 920def : FMADModsPat<f16, V_MAD_F16_e64, AMDGPUfmad_ftz>; 921 922class VOPSelectModsPat <ValueType vt> : GCNPat < 923 (vt (select i1:$src0, (VOP3Mods vt:$src1, i32:$src1_mods), 924 (VOP3Mods vt:$src2, i32:$src2_mods))), 925 (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2, 926 FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0) 927>; 928 929class VOPSelectPat <ValueType vt> : GCNPat < 930 (vt (select i1:$src0, vt:$src1, vt:$src2)), 931 (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0) 932>; 933 934def : VOPSelectModsPat <i32>; 935def : VOPSelectModsPat <f32>; 936def : VOPSelectPat <f16>; 937def : VOPSelectPat <i16>; 938 939let AddedComplexity = 1 in { 940def : GCNPat < 941 (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)), 942 (V_BCNT_U32_B32_e64 $popcnt, $val) 943>; 944} 945 946def : GCNPat < 947 (i32 (ctpop i32:$popcnt)), 948 (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0)) 949>; 950 951def : GCNPat < 952 (i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)), 953 (V_BCNT_U32_B32_e64 $popcnt, $val) 954>; 955 956/********** ============================================ **********/ 957/********** Extraction, Insertion, Building and Casting **********/ 958/********** ============================================ **********/ 959 960foreach Index = 0-2 in { 961 def Extract_Element_v2i32_#Index : Extract_Element < 962 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 963 >; 964 def Insert_Element_v2i32_#Index : Insert_Element < 965 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 966 >; 967 968 def Extract_Element_v2f32_#Index : Extract_Element < 969 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 970 >; 971 def Insert_Element_v2f32_#Index : Insert_Element < 972 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 973 >; 974} 975 976foreach Index = 0-2 in { 977 def Extract_Element_v3i32_#Index : Extract_Element < 978 i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) 979 >; 980 def Insert_Element_v3i32_#Index : Insert_Element < 981 i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) 982 >; 983 984 def Extract_Element_v3f32_#Index : Extract_Element < 985 f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) 986 >; 987 def Insert_Element_v3f32_#Index : Insert_Element < 988 f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) 989 >; 990} 991 992foreach Index = 0-3 in { 993 def Extract_Element_v4i32_#Index : Extract_Element < 994 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 995 >; 996 def Insert_Element_v4i32_#Index : Insert_Element < 997 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 998 >; 999 1000 def Extract_Element_v4f32_#Index : Extract_Element < 1001 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 1002 >; 1003 def Insert_Element_v4f32_#Index : Insert_Element < 1004 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 1005 >; 1006} 1007 1008foreach Index = 0-4 in { 1009 def Extract_Element_v5i32_#Index : Extract_Element < 1010 i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) 1011 >; 1012 def Insert_Element_v5i32_#Index : Insert_Element < 1013 i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) 1014 >; 1015 1016 def Extract_Element_v5f32_#Index : Extract_Element < 1017 f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) 1018 >; 1019 def Insert_Element_v5f32_#Index : Insert_Element < 1020 f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) 1021 >; 1022} 1023 1024foreach Index = 0-7 in { 1025 def Extract_Element_v8i32_#Index : Extract_Element < 1026 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 1027 >; 1028 def Insert_Element_v8i32_#Index : Insert_Element < 1029 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 1030 >; 1031 1032 def Extract_Element_v8f32_#Index : Extract_Element < 1033 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 1034 >; 1035 def Insert_Element_v8f32_#Index : Insert_Element < 1036 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 1037 >; 1038} 1039 1040foreach Index = 0-15 in { 1041 def Extract_Element_v16i32_#Index : Extract_Element < 1042 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 1043 >; 1044 def Insert_Element_v16i32_#Index : Insert_Element < 1045 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 1046 >; 1047 1048 def Extract_Element_v16f32_#Index : Extract_Element < 1049 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 1050 >; 1051 def Insert_Element_v16f32_#Index : Insert_Element < 1052 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 1053 >; 1054} 1055 1056 1057def : Pat < 1058 (extract_subvector v4i16:$vec, (i32 0)), 1059 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0)) 1060>; 1061 1062def : Pat < 1063 (extract_subvector v4i16:$vec, (i32 2)), 1064 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1)) 1065>; 1066 1067def : Pat < 1068 (extract_subvector v4f16:$vec, (i32 0)), 1069 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0)) 1070>; 1071 1072def : Pat < 1073 (extract_subvector v4f16:$vec, (i32 2)), 1074 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1)) 1075>; 1076 1077foreach Index = 0-31 in { 1078 def Extract_Element_v32i32_#Index : Extract_Element < 1079 i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) 1080 >; 1081 1082 def Insert_Element_v32i32_#Index : Insert_Element < 1083 i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) 1084 >; 1085 1086 def Extract_Element_v32f32_#Index : Extract_Element < 1087 f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) 1088 >; 1089 1090 def Insert_Element_v32f32_#Index : Insert_Element < 1091 f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) 1092 >; 1093} 1094 1095// FIXME: Why do only some of these type combinations for SReg and 1096// VReg? 1097// 16-bit bitcast 1098def : BitConvert <i16, f16, VGPR_32>; 1099def : BitConvert <f16, i16, VGPR_32>; 1100def : BitConvert <i16, f16, SReg_32>; 1101def : BitConvert <f16, i16, SReg_32>; 1102 1103// 32-bit bitcast 1104def : BitConvert <i32, f32, VGPR_32>; 1105def : BitConvert <f32, i32, VGPR_32>; 1106def : BitConvert <i32, f32, SReg_32>; 1107def : BitConvert <f32, i32, SReg_32>; 1108def : BitConvert <v2i16, i32, SReg_32>; 1109def : BitConvert <i32, v2i16, SReg_32>; 1110def : BitConvert <v2f16, i32, SReg_32>; 1111def : BitConvert <i32, v2f16, SReg_32>; 1112def : BitConvert <v2i16, v2f16, SReg_32>; 1113def : BitConvert <v2f16, v2i16, SReg_32>; 1114def : BitConvert <v2f16, f32, SReg_32>; 1115def : BitConvert <f32, v2f16, SReg_32>; 1116def : BitConvert <v2i16, f32, SReg_32>; 1117def : BitConvert <f32, v2i16, SReg_32>; 1118 1119// 64-bit bitcast 1120def : BitConvert <i64, f64, VReg_64>; 1121def : BitConvert <f64, i64, VReg_64>; 1122def : BitConvert <v2i32, v2f32, VReg_64>; 1123def : BitConvert <v2f32, v2i32, VReg_64>; 1124def : BitConvert <i64, v2i32, VReg_64>; 1125def : BitConvert <v2i32, i64, VReg_64>; 1126def : BitConvert <i64, v2f32, VReg_64>; 1127def : BitConvert <v2f32, i64, VReg_64>; 1128def : BitConvert <f64, v2f32, VReg_64>; 1129def : BitConvert <v2f32, f64, VReg_64>; 1130def : BitConvert <f64, v2i32, VReg_64>; 1131def : BitConvert <v2i32, f64, VReg_64>; 1132def : BitConvert <v4i16, v4f16, VReg_64>; 1133def : BitConvert <v4f16, v4i16, VReg_64>; 1134 1135// FIXME: Make SGPR 1136def : BitConvert <v2i32, v4f16, VReg_64>; 1137def : BitConvert <v4f16, v2i32, VReg_64>; 1138def : BitConvert <v2i32, v4f16, VReg_64>; 1139def : BitConvert <v2i32, v4i16, VReg_64>; 1140def : BitConvert <v4i16, v2i32, VReg_64>; 1141def : BitConvert <v2f32, v4f16, VReg_64>; 1142def : BitConvert <v4f16, v2f32, VReg_64>; 1143def : BitConvert <v2f32, v4i16, VReg_64>; 1144def : BitConvert <v4i16, v2f32, VReg_64>; 1145def : BitConvert <v4i16, f64, VReg_64>; 1146def : BitConvert <v4f16, f64, VReg_64>; 1147def : BitConvert <f64, v4i16, VReg_64>; 1148def : BitConvert <f64, v4f16, VReg_64>; 1149def : BitConvert <v4i16, i64, VReg_64>; 1150def : BitConvert <v4f16, i64, VReg_64>; 1151def : BitConvert <i64, v4i16, VReg_64>; 1152def : BitConvert <i64, v4f16, VReg_64>; 1153 1154def : BitConvert <v4i32, v4f32, VReg_128>; 1155def : BitConvert <v4f32, v4i32, VReg_128>; 1156 1157// 96-bit bitcast 1158def : BitConvert <v3i32, v3f32, SGPR_96>; 1159def : BitConvert <v3f32, v3i32, SGPR_96>; 1160 1161// 128-bit bitcast 1162def : BitConvert <v2i64, v4i32, SReg_128>; 1163def : BitConvert <v4i32, v2i64, SReg_128>; 1164def : BitConvert <v2f64, v4f32, VReg_128>; 1165def : BitConvert <v2f64, v4i32, VReg_128>; 1166def : BitConvert <v4f32, v2f64, VReg_128>; 1167def : BitConvert <v4i32, v2f64, VReg_128>; 1168def : BitConvert <v2i64, v2f64, VReg_128>; 1169def : BitConvert <v2f64, v2i64, VReg_128>; 1170def : BitConvert <v4f32, v2i64, VReg_128>; 1171def : BitConvert <v2i64, v4f32, VReg_128>; 1172 1173// 160-bit bitcast 1174def : BitConvert <v5i32, v5f32, SGPR_160>; 1175def : BitConvert <v5f32, v5i32, SGPR_160>; 1176 1177// 256-bit bitcast 1178def : BitConvert <v8i32, v8f32, SReg_256>; 1179def : BitConvert <v8f32, v8i32, SReg_256>; 1180def : BitConvert <v8i32, v8f32, VReg_256>; 1181def : BitConvert <v8f32, v8i32, VReg_256>; 1182def : BitConvert <v4i64, v4f64, VReg_256>; 1183def : BitConvert <v4f64, v4i64, VReg_256>; 1184def : BitConvert <v4i64, v8i32, VReg_256>; 1185def : BitConvert <v4i64, v8f32, VReg_256>; 1186def : BitConvert <v4f64, v8i32, VReg_256>; 1187def : BitConvert <v4f64, v8f32, VReg_256>; 1188def : BitConvert <v8i32, v4i64, VReg_256>; 1189def : BitConvert <v8f32, v4i64, VReg_256>; 1190def : BitConvert <v8i32, v4f64, VReg_256>; 1191def : BitConvert <v8f32, v4f64, VReg_256>; 1192 1193 1194// 512-bit bitcast 1195def : BitConvert <v16i32, v16f32, VReg_512>; 1196def : BitConvert <v16f32, v16i32, VReg_512>; 1197def : BitConvert <v8i64, v8f64, VReg_512>; 1198def : BitConvert <v8f64, v8i64, VReg_512>; 1199def : BitConvert <v8i64, v16i32, VReg_512>; 1200def : BitConvert <v8f64, v16i32, VReg_512>; 1201def : BitConvert <v16i32, v8i64, VReg_512>; 1202def : BitConvert <v16i32, v8f64, VReg_512>; 1203def : BitConvert <v8i64, v16f32, VReg_512>; 1204def : BitConvert <v8f64, v16f32, VReg_512>; 1205def : BitConvert <v16f32, v8i64, VReg_512>; 1206def : BitConvert <v16f32, v8f64, VReg_512>; 1207 1208// 1024-bit bitcast 1209def : BitConvert <v32i32, v32f32, VReg_1024>; 1210def : BitConvert <v32f32, v32i32, VReg_1024>; 1211def : BitConvert <v16i64, v16f64, VReg_1024>; 1212def : BitConvert <v16f64, v16i64, VReg_1024>; 1213def : BitConvert <v16i64, v32i32, VReg_1024>; 1214def : BitConvert <v32i32, v16i64, VReg_1024>; 1215def : BitConvert <v16f64, v32f32, VReg_1024>; 1216def : BitConvert <v32f32, v16f64, VReg_1024>; 1217def : BitConvert <v16i64, v32f32, VReg_1024>; 1218def : BitConvert <v32i32, v16f64, VReg_1024>; 1219def : BitConvert <v16f64, v32i32, VReg_1024>; 1220def : BitConvert <v32f32, v16i64, VReg_1024>; 1221 1222 1223/********** =================== **********/ 1224/********** Src & Dst modifiers **********/ 1225/********** =================== **********/ 1226 1227 1228// If denormals are not enabled, it only impacts the compare of the 1229// inputs. The output result is not flushed. 1230class ClampPat<Instruction inst, ValueType vt> : GCNPat < 1231 (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), 1232 (inst i32:$src0_modifiers, vt:$src0, 1233 i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) 1234>; 1235 1236def : ClampPat<V_MAX_F32_e64, f32>; 1237def : ClampPat<V_MAX_F64_e64, f64>; 1238def : ClampPat<V_MAX_F16_e64, f16>; 1239 1240let SubtargetPredicate = HasVOP3PInsts in { 1241def : GCNPat < 1242 (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), 1243 (V_PK_MAX_F16 $src0_modifiers, $src0, 1244 $src0_modifiers, $src0, DSTCLAMP.ENABLE) 1245>; 1246} 1247 1248/********** ================================ **********/ 1249/********** Floating point absolute/negative **********/ 1250/********** ================================ **********/ 1251 1252// Prevent expanding both fneg and fabs. 1253// TODO: Add IgnoredBySelectionDAG bit? 1254let AddedComplexity = 1 in { // Prefer SALU to VALU patterns for DAG 1255 1256def : GCNPat < 1257 (fneg (fabs (f32 SReg_32:$src))), 1258 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit 1259>; 1260 1261def : GCNPat < 1262 (fabs (f32 SReg_32:$src)), 1263 (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff))) 1264>; 1265 1266def : GCNPat < 1267 (fneg (f32 SReg_32:$src)), 1268 (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) 1269>; 1270 1271def : GCNPat < 1272 (fneg (f16 SReg_32:$src)), 1273 (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) 1274>; 1275 1276def : GCNPat < 1277 (fneg (f16 VGPR_32:$src)), 1278 (V_XOR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) 1279>; 1280 1281def : GCNPat < 1282 (fabs (f16 SReg_32:$src)), 1283 (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff))) 1284>; 1285 1286def : GCNPat < 1287 (fneg (fabs (f16 SReg_32:$src))), 1288 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit 1289>; 1290 1291def : GCNPat < 1292 (fneg (fabs (f16 VGPR_32:$src))), 1293 (V_OR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit 1294>; 1295 1296def : GCNPat < 1297 (fneg (v2f16 SReg_32:$src)), 1298 (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) 1299>; 1300 1301def : GCNPat < 1302 (fabs (v2f16 SReg_32:$src)), 1303 (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff))) 1304>; 1305 1306// This is really (fneg (fabs v2f16:$src)) 1307// 1308// fabs is not reported as free because there is modifier for it in 1309// VOP3P instructions, so it is turned into the bit op. 1310def : GCNPat < 1311 (fneg (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))), 1312 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1313>; 1314 1315def : GCNPat < 1316 (fneg (v2f16 (fabs SReg_32:$src))), 1317 (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1318>; 1319 1320// FIXME: The implicit-def of scc from S_[X]OR/AND_B32 is mishandled 1321 // def : GCNPat < 1322// (fneg (f64 SReg_64:$src)), 1323// (REG_SEQUENCE SReg_64, 1324// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), 1325// sub0, 1326// (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), 1327// (i32 (S_MOV_B32 (i32 0x80000000)))), 1328// sub1) 1329// >; 1330 1331// def : GCNPat < 1332// (fneg (fabs (f64 SReg_64:$src))), 1333// (REG_SEQUENCE SReg_64, 1334// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), 1335// sub0, 1336// (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), 1337// (S_MOV_B32 (i32 0x80000000))), // Set sign bit. 1338// sub1) 1339// >; 1340 1341// FIXME: Use S_BITSET0_B32/B64? 1342// def : GCNPat < 1343// (fabs (f64 SReg_64:$src)), 1344// (REG_SEQUENCE SReg_64, 1345// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), 1346// sub0, 1347// (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), 1348// (i32 (S_MOV_B32 (i32 0x7fffffff)))), 1349// sub1) 1350// >; 1351 1352} // End let AddedComplexity = 1 1353 1354def : GCNPat < 1355 (fabs (f32 VGPR_32:$src)), 1356 (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src) 1357>; 1358 1359def : GCNPat < 1360 (fneg (f32 VGPR_32:$src)), 1361 (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) 1362>; 1363 1364def : GCNPat < 1365 (fabs (f16 VGPR_32:$src)), 1366 (V_AND_B32_e32 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src) 1367>; 1368 1369def : GCNPat < 1370 (fneg (v2f16 VGPR_32:$src)), 1371 (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) 1372>; 1373 1374def : GCNPat < 1375 (fabs (v2f16 VGPR_32:$src)), 1376 (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src) 1377>; 1378 1379def : GCNPat < 1380 (fneg (v2f16 (fabs VGPR_32:$src))), 1381 (V_OR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) // Set sign bit 1382>; 1383 1384def : GCNPat < 1385 (fabs (f64 VReg_64:$src)), 1386 (REG_SEQUENCE VReg_64, 1387 (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), 1388 sub0, 1389 (V_AND_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)), 1390 (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. 1391 sub1) 1392>; 1393 1394// TODO: Use SGPR for constant 1395def : GCNPat < 1396 (fneg (f64 VReg_64:$src)), 1397 (REG_SEQUENCE VReg_64, 1398 (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), 1399 sub0, 1400 (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)), 1401 (i32 (V_MOV_B32_e32 (i32 0x80000000)))), 1402 sub1) 1403>; 1404 1405// TODO: Use SGPR for constant 1406def : GCNPat < 1407 (fneg (fabs (f64 VReg_64:$src))), 1408 (REG_SEQUENCE VReg_64, 1409 (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), 1410 sub0, 1411 (V_OR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)), 1412 (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. 1413 sub1) 1414>; 1415 1416def : GCNPat < 1417 (fcopysign f16:$src0, f16:$src1), 1418 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) 1419>; 1420 1421def : GCNPat < 1422 (fcopysign f32:$src0, f16:$src1), 1423 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, 1424 (V_LSHLREV_B32_e64 (i32 16), $src1)) 1425>; 1426 1427def : GCNPat < 1428 (fcopysign f64:$src0, f16:$src1), 1429 (REG_SEQUENCE SReg_64, 1430 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1431 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), 1432 (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) 1433>; 1434 1435def : GCNPat < 1436 (fcopysign f16:$src0, f32:$src1), 1437 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, 1438 (V_LSHRREV_B32_e64 (i32 16), $src1)) 1439>; 1440 1441def : GCNPat < 1442 (fcopysign f16:$src0, f64:$src1), 1443 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, 1444 (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) 1445>; 1446 1447/********** ================== **********/ 1448/********** Immediate Patterns **********/ 1449/********** ================== **********/ 1450 1451def : GCNPat < 1452 (VGPRImm<(i32 imm)>:$imm), 1453 (V_MOV_B32_e32 imm:$imm) 1454>; 1455 1456def : GCNPat < 1457 (VGPRImm<(f32 fpimm)>:$imm), 1458 (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) 1459>; 1460 1461def : GCNPat < 1462 (i32 imm:$imm), 1463 (S_MOV_B32 imm:$imm) 1464>; 1465 1466def : GCNPat < 1467 (VGPRImm<(SIlds tglobaladdr:$ga)>), 1468 (V_MOV_B32_e32 $ga) 1469>; 1470 1471def : GCNPat < 1472 (SIlds tglobaladdr:$ga), 1473 (S_MOV_B32 $ga) 1474>; 1475 1476// FIXME: Workaround for ordering issue with peephole optimizer where 1477// a register class copy interferes with immediate folding. Should 1478// use s_mov_b32, which can be shrunk to s_movk_i32 1479def : GCNPat < 1480 (VGPRImm<(f16 fpimm)>:$imm), 1481 (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) 1482>; 1483 1484def : GCNPat < 1485 (f32 fpimm:$imm), 1486 (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) 1487>; 1488 1489def : GCNPat < 1490 (f16 fpimm:$imm), 1491 (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) 1492>; 1493 1494def : GCNPat < 1495 (p5 frameindex:$fi), 1496 (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi))) 1497>; 1498 1499def : GCNPat < 1500 (p5 frameindex:$fi), 1501 (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi))) 1502>; 1503 1504def : GCNPat < 1505 (i64 InlineImm64:$imm), 1506 (S_MOV_B64 InlineImm64:$imm) 1507>; 1508 1509// XXX - Should this use a s_cmp to set SCC? 1510 1511// Set to sign-extended 64-bit value (true = -1, false = 0) 1512def : GCNPat < 1513 (i1 imm:$imm), 1514 (S_MOV_B64 (i64 (as_i64imm $imm))) 1515> { 1516 let WaveSizePredicate = isWave64; 1517} 1518 1519def : GCNPat < 1520 (i1 imm:$imm), 1521 (S_MOV_B32 (i32 (as_i32imm $imm))) 1522> { 1523 let WaveSizePredicate = isWave32; 1524} 1525 1526def : GCNPat < 1527 (f64 InlineImmFP64:$imm), 1528 (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm))) 1529>; 1530 1531/********** ================== **********/ 1532/********** Intrinsic Patterns **********/ 1533/********** ================== **********/ 1534 1535// FIXME: Should use _e64 and select source modifiers. 1536def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; 1537 1538def : GCNPat < 1539 (i32 (sext i1:$src0)), 1540 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1541 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0) 1542>; 1543 1544class Ext32Pat <SDNode ext> : GCNPat < 1545 (i32 (ext i1:$src0)), 1546 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1547 /*src1mod*/(i32 0), /*src1*/(i32 1), $src0) 1548>; 1549 1550def : Ext32Pat <zext>; 1551def : Ext32Pat <anyext>; 1552 1553// The multiplication scales from [0,1) to the unsigned integer range, 1554// rounding down a bit to avoid unwanted overflow. 1555def : GCNPat < 1556 (AMDGPUurecip i32:$src0), 1557 (V_CVT_U32_F32_e32 1558 (V_MUL_F32_e32 (i32 CONST.FP_4294966784), 1559 (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) 1560>; 1561 1562//===----------------------------------------------------------------------===// 1563// VOP3 Patterns 1564//===----------------------------------------------------------------------===// 1565 1566def : IMad24Pat<V_MAD_I32_I24_e64, 1>; 1567def : UMad24Pat<V_MAD_U32_U24_e64, 1>; 1568 1569// BFI patterns 1570 1571def BFIImm32 : PatFrag< 1572 (ops node:$x, node:$y, node:$z), 1573 (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))), 1574 [{ 1575 auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1)); 1576 auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1)); 1577 return X && NotX && 1578 ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue(); 1579 }] 1580>; 1581 1582// Definition from ISA doc: 1583// (y & x) | (z & ~x) 1584def : AMDGPUPat < 1585 (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), 1586 (V_BFI_B32_e64 $x, $y, $z) 1587>; 1588 1589// (y & C) | (z & ~C) 1590def : AMDGPUPat < 1591 (BFIImm32 i32:$x, i32:$y, i32:$z), 1592 (V_BFI_B32_e64 $x, $y, $z) 1593>; 1594 1595// 64-bit version 1596def : AMDGPUPat < 1597 (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), 1598 (REG_SEQUENCE SReg_64, 1599 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub0)), 1600 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0)), 1601 (i32 (EXTRACT_SUBREG SReg_64:$z, sub0))), sub0, 1602 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub1)), 1603 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1)), 1604 (i32 (EXTRACT_SUBREG SReg_64:$z, sub1))), sub1) 1605>; 1606 1607// SHA-256 Ch function 1608// z ^ (x & (y ^ z)) 1609def : AMDGPUPat < 1610 (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), 1611 (V_BFI_B32_e64 $x, $y, $z) 1612>; 1613 1614// 64-bit version 1615def : AMDGPUPat < 1616 (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), 1617 (REG_SEQUENCE SReg_64, 1618 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub0)), 1619 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0)), 1620 (i32 (EXTRACT_SUBREG SReg_64:$z, sub0))), sub0, 1621 (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub1)), 1622 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1)), 1623 (i32 (EXTRACT_SUBREG SReg_64:$z, sub1))), sub1) 1624>; 1625 1626def : AMDGPUPat < 1627 (fcopysign f32:$src0, f32:$src1), 1628 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1) 1629>; 1630 1631def : AMDGPUPat < 1632 (fcopysign f32:$src0, f64:$src1), 1633 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, 1634 (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))) 1635>; 1636 1637def : AMDGPUPat < 1638 (fcopysign f64:$src0, f64:$src1), 1639 (REG_SEQUENCE SReg_64, 1640 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1641 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), 1642 (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), 1643 (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1) 1644>; 1645 1646def : AMDGPUPat < 1647 (fcopysign f64:$src0, f32:$src1), 1648 (REG_SEQUENCE SReg_64, 1649 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1650 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), 1651 (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), 1652 $src1), sub1) 1653>; 1654 1655def : ROTRPattern <V_ALIGNBIT_B32_e64>; 1656 1657def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), 1658 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1659 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1660 1661def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), 1662 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1663 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1664 1665/********** ====================== **********/ 1666/********** Indirect addressing **********/ 1667/********** ====================== **********/ 1668 1669multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { 1670 // Extract with offset 1671 def : GCNPat< 1672 (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), 1673 (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) 1674 >; 1675 1676 // Insert with offset 1677 def : GCNPat< 1678 (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), 1679 (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) 1680 >; 1681} 1682 1683defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; 1684defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; 1685defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; 1686defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; 1687defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">; 1688 1689defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; 1690defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; 1691defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; 1692defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; 1693defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">; 1694 1695//===----------------------------------------------------------------------===// 1696// SAD Patterns 1697//===----------------------------------------------------------------------===// 1698 1699def : GCNPat < 1700 (add (sub_oneuse (umax i32:$src0, i32:$src1), 1701 (umin i32:$src0, i32:$src1)), 1702 i32:$src2), 1703 (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) 1704>; 1705 1706def : GCNPat < 1707 (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), 1708 (sub i32:$src0, i32:$src1), 1709 (sub i32:$src1, i32:$src0)), 1710 i32:$src2), 1711 (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) 1712>; 1713 1714//===----------------------------------------------------------------------===// 1715// Conversion Patterns 1716//===----------------------------------------------------------------------===// 1717 1718def : GCNPat<(i32 (sext_inreg i32:$src, i1)), 1719 (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 1720 1721// Handle sext_inreg in i64 1722def : GCNPat < 1723 (i64 (sext_inreg i64:$src, i1)), 1724 (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 1725>; 1726 1727def : GCNPat < 1728 (i16 (sext_inreg i16:$src, i1)), 1729 (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 1730>; 1731 1732def : GCNPat < 1733 (i16 (sext_inreg i16:$src, i8)), 1734 (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 1735>; 1736 1737def : GCNPat < 1738 (i64 (sext_inreg i64:$src, i8)), 1739 (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 1740>; 1741 1742def : GCNPat < 1743 (i64 (sext_inreg i64:$src, i16)), 1744 (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 1745>; 1746 1747def : GCNPat < 1748 (i64 (sext_inreg i64:$src, i32)), 1749 (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 1750>; 1751 1752def : GCNPat < 1753 (i64 (zext i32:$src)), 1754 (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) 1755>; 1756 1757def : GCNPat < 1758 (i64 (anyext i32:$src)), 1759 (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) 1760>; 1761 1762class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < 1763 (i64 (ext i1:$src)), 1764 (REG_SEQUENCE VReg_64, 1765 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1766 /*src1mod*/(i32 0), /*src1*/(i32 1), $src), 1767 sub0, (S_MOV_B32 (i32 0)), sub1) 1768>; 1769 1770 1771def : ZExt_i64_i1_Pat<zext>; 1772def : ZExt_i64_i1_Pat<anyext>; 1773 1774// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that 1775// REG_SEQUENCE patterns don't support instructions with multiple outputs. 1776def : GCNPat < 1777 (i64 (sext i32:$src)), 1778 (REG_SEQUENCE SReg_64, $src, sub0, 1779 (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) 1780>; 1781 1782def : GCNPat < 1783 (i64 (sext i1:$src)), 1784 (REG_SEQUENCE VReg_64, 1785 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1786 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0, 1787 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1788 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1) 1789>; 1790 1791class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < 1792 (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), 1793 (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) 1794>; 1795 1796def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; 1797def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; 1798def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; 1799def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; 1800 1801// If we need to perform a logical operation on i1 values, we need to 1802// use vector comparisons since there is only one SCC register. Vector 1803// comparisons may write to a pair of SGPRs or a single SGPR, so treat 1804// these as 32 or 64-bit comparisons. When legalizing SGPR copies, 1805// instructions resulting in the copies from SCC to these instructions 1806// will be moved to the VALU. 1807 1808let WaveSizePredicate = isWave64 in { 1809def : GCNPat < 1810 (i1 (and i1:$src0, i1:$src1)), 1811 (S_AND_B64 $src0, $src1) 1812>; 1813 1814def : GCNPat < 1815 (i1 (or i1:$src0, i1:$src1)), 1816 (S_OR_B64 $src0, $src1) 1817>; 1818 1819def : GCNPat < 1820 (i1 (xor i1:$src0, i1:$src1)), 1821 (S_XOR_B64 $src0, $src1) 1822>; 1823 1824def : GCNPat < 1825 (i1 (add i1:$src0, i1:$src1)), 1826 (S_XOR_B64 $src0, $src1) 1827>; 1828 1829def : GCNPat < 1830 (i1 (sub i1:$src0, i1:$src1)), 1831 (S_XOR_B64 $src0, $src1) 1832>; 1833 1834let AddedComplexity = 1 in { 1835def : GCNPat < 1836 (i1 (add i1:$src0, (i1 -1))), 1837 (S_NOT_B64 $src0) 1838>; 1839 1840def : GCNPat < 1841 (i1 (sub i1:$src0, (i1 -1))), 1842 (S_NOT_B64 $src0) 1843>; 1844} 1845} // end isWave64 1846 1847let WaveSizePredicate = isWave32 in { 1848def : GCNPat < 1849 (i1 (and i1:$src0, i1:$src1)), 1850 (S_AND_B32 $src0, $src1) 1851>; 1852 1853def : GCNPat < 1854 (i1 (or i1:$src0, i1:$src1)), 1855 (S_OR_B32 $src0, $src1) 1856>; 1857 1858def : GCNPat < 1859 (i1 (xor i1:$src0, i1:$src1)), 1860 (S_XOR_B32 $src0, $src1) 1861>; 1862 1863def : GCNPat < 1864 (i1 (add i1:$src0, i1:$src1)), 1865 (S_XOR_B32 $src0, $src1) 1866>; 1867 1868def : GCNPat < 1869 (i1 (sub i1:$src0, i1:$src1)), 1870 (S_XOR_B32 $src0, $src1) 1871>; 1872 1873let AddedComplexity = 1 in { 1874def : GCNPat < 1875 (i1 (add i1:$src0, (i1 -1))), 1876 (S_NOT_B32 $src0) 1877>; 1878 1879def : GCNPat < 1880 (i1 (sub i1:$src0, (i1 -1))), 1881 (S_NOT_B32 $src0) 1882>; 1883} 1884} // end isWave32 1885 1886def : GCNPat < 1887 (f16 (sint_to_fp i1:$src)), 1888 (V_CVT_F16_F32_e32 ( 1889 V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1890 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), 1891 SSrc_i1:$src)) 1892>; 1893 1894def : GCNPat < 1895 (f16 (uint_to_fp i1:$src)), 1896 (V_CVT_F16_F32_e32 ( 1897 V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1898 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), 1899 SSrc_i1:$src)) 1900>; 1901 1902def : GCNPat < 1903 (f32 (sint_to_fp i1:$src)), 1904 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1905 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), 1906 SSrc_i1:$src) 1907>; 1908 1909def : GCNPat < 1910 (f32 (uint_to_fp i1:$src)), 1911 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1912 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), 1913 SSrc_i1:$src) 1914>; 1915 1916def : GCNPat < 1917 (f64 (sint_to_fp i1:$src)), 1918 (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1919 /*src1mod*/(i32 0), /*src1*/(i32 -1), 1920 SSrc_i1:$src)) 1921>; 1922 1923def : GCNPat < 1924 (f64 (uint_to_fp i1:$src)), 1925 (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1926 /*src1mod*/(i32 0), /*src1*/(i32 1), 1927 SSrc_i1:$src)) 1928>; 1929 1930//===----------------------------------------------------------------------===// 1931// Miscellaneous Patterns 1932//===----------------------------------------------------------------------===// 1933def : GCNPat < 1934 (i32 (AMDGPUfp16_zext f16:$src)), 1935 (COPY $src) 1936>; 1937 1938 1939def : GCNPat < 1940 (i32 (trunc i64:$a)), 1941 (EXTRACT_SUBREG $a, sub0) 1942>; 1943 1944def : GCNPat < 1945 (i1 (trunc i32:$a)), 1946 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 1947>; 1948 1949def : GCNPat < 1950 (i1 (trunc i16:$a)), 1951 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 1952>; 1953 1954def : GCNPat < 1955 (i1 (trunc i64:$a)), 1956 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), 1957 (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) 1958>; 1959 1960def : GCNPat < 1961 (i32 (bswap i32:$a)), 1962 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), 1963 (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)), 1964 (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8))) 1965>; 1966 1967// FIXME: This should have been narrowed to i32 during legalization. 1968// This pattern should also be skipped for GlobalISel 1969def : GCNPat < 1970 (i64 (bswap i64:$a)), 1971 (REG_SEQUENCE VReg_64, 1972 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), 1973 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 1974 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 1975 (i32 24)), 1976 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 1977 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), 1978 (i32 8))), 1979 sub0, 1980 (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), 1981 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 1982 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 1983 (i32 24)), 1984 (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 1985 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), 1986 (i32 8))), 1987 sub1) 1988>; 1989 1990// FIXME: The AddedComplexity should not be needed, but in GlobalISel 1991// the BFI pattern ends up taking precedence without it. 1992let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in { 1993// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24) 1994// 1995// My reading of the manual suggests we should be using src0 for the 1996// register value, but this is what seems to work. 1997def : GCNPat < 1998 (i32 (bswap i32:$a)), 1999 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203))) 2000>; 2001 2002// FIXME: This should have been narrowed to i32 during legalization. 2003// This pattern should also be skipped for GlobalISel 2004def : GCNPat < 2005 (i64 (bswap i64:$a)), 2006 (REG_SEQUENCE VReg_64, 2007 (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1), 2008 (S_MOV_B32 (i32 0x00010203))), 2009 sub0, 2010 (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0), 2011 (S_MOV_B32 (i32 0x00010203))), 2012 sub1) 2013>; 2014 2015// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24) 2016// The 12s emit 0s. 2017def : GCNPat < 2018 (i16 (bswap i16:$a)), 2019 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) 2020>; 2021 2022def : GCNPat < 2023 (i32 (zext (bswap i16:$a))), 2024 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) 2025>; 2026 2027// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24) 2028def : GCNPat < 2029 (v2i16 (bswap v2i16:$a)), 2030 (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001))) 2031>; 2032 2033} 2034 2035 2036// Prefer selecting to max when legal, but using mul is always valid. 2037let AddedComplexity = -5 in { 2038def : GCNPat< 2039 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 2040 (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src) 2041>; 2042 2043def : GCNPat< 2044 (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), 2045 (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src) 2046>; 2047 2048def : GCNPat< 2049 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 2050 (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) 2051>; 2052 2053def : GCNPat< 2054 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 2055 (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src) 2056>; 2057 2058def : GCNPat< 2059 (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), 2060 (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src) 2061>; 2062 2063// TODO: Handle fneg like other types. 2064def : GCNPat< 2065 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 2066 (V_MUL_F64_e64 0, CONST.FP64_ONE, $src_mods, $src) 2067>; 2068} // End AddedComplexity = -5 2069 2070multiclass SelectCanonicalizeAsMax< 2071 list<Predicate> f32_preds = [], 2072 list<Predicate> f64_preds = [], 2073 list<Predicate> f16_preds = []> { 2074 def : GCNPat< 2075 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 2076 (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> { 2077 let OtherPredicates = f32_preds; 2078 } 2079 2080 def : GCNPat< 2081 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 2082 (V_MAX_F64_e64 $src_mods, $src, $src_mods, $src)> { 2083 let OtherPredicates = f64_preds; 2084 } 2085 2086 def : GCNPat< 2087 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 2088 (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { 2089 // FIXME: Should have 16-bit inst subtarget predicate 2090 let OtherPredicates = f16_preds; 2091 } 2092 2093 def : GCNPat< 2094 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 2095 (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> { 2096 // FIXME: Should have VOP3P subtarget predicate 2097 let OtherPredicates = f16_preds; 2098 } 2099} 2100 2101// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal 2102// mode, and would never flush. For f64, it's faster to do implement 2103// this with a max. For f16/f32 it's a wash, but prefer max when 2104// valid. 2105// 2106// FIXME: Lowering f32/f16 with max is worse since we can use a 2107// smaller encoding if the input is fneg'd. It also adds an extra 2108// register use. 2109let SubtargetPredicate = HasMinMaxDenormModes in { 2110 defm : SelectCanonicalizeAsMax<[], [], []>; 2111} // End SubtargetPredicate = HasMinMaxDenormModes 2112 2113let SubtargetPredicate = NotHasMinMaxDenormModes in { 2114 // Use the max lowering if we don't need to flush. 2115 2116 // FIXME: We don't do use this for f32 as a workaround for the 2117 // library being compiled with the default ieee mode, but 2118 // potentially being called from flushing kernels. Really we should 2119 // not be mixing code expecting different default FP modes, but mul 2120 // works in any FP environment. 2121 defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>; 2122} // End SubtargetPredicate = NotHasMinMaxDenormModes 2123 2124 2125let OtherPredicates = [HasDLInsts] in { 2126def : GCNPat < 2127 (fma (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)), 2128 (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 2129 (f32 (VOP3NoMods f32:$src2))), 2130 (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 2131 SRCMODS.NONE, $src2) 2132>; 2133} // End OtherPredicates = [HasDLInsts] 2134 2135let SubtargetPredicate = isGFX10Plus in 2136def : GCNPat < 2137 (fma (f16 (VOP3Mods f32:$src0, i32:$src0_modifiers)), 2138 (f16 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 2139 (f16 (VOP3NoMods f32:$src2))), 2140 (V_FMAC_F16_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 2141 SRCMODS.NONE, $src2) 2142>; 2143 2144def : GCNPat < 2145 (v2i16 (build_vector (i16 0), (i16 SReg_32:$src1))), 2146 (S_LSHL_B32 SReg_32:$src1, (i16 16)) 2147>; 2148 2149def : GCNPat < 2150 (v2i16 (build_vector (i16 SReg_32:$src1), (i16 0))), 2151 (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) 2152>; 2153 2154def : GCNPat < 2155 (v2f16 (build_vector (f16 SReg_32:$src1), (f16 FP_ZERO))), 2156 (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) 2157>; 2158 2159def : GCNPat < 2160 (v2i16 (build_vector (i16 SReg_32:$src0), (i16 undef))), 2161 (COPY_TO_REGCLASS SReg_32:$src0, SReg_32) 2162>; 2163 2164def : GCNPat < 2165 (v2i16 (build_vector (i16 VGPR_32:$src0), (i16 undef))), 2166 (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32) 2167>; 2168 2169def : GCNPat < 2170 (v2f16 (build_vector f16:$src0, (f16 undef))), 2171 (COPY $src0) 2172>; 2173 2174def : GCNPat < 2175 (v2i16 (build_vector (i16 undef), (i16 SReg_32:$src1))), 2176 (S_LSHL_B32 SReg_32:$src1, (i32 16)) 2177>; 2178 2179def : GCNPat < 2180 (v2f16 (build_vector (f16 undef), (f16 SReg_32:$src1))), 2181 (S_LSHL_B32 SReg_32:$src1, (i32 16)) 2182>; 2183 2184let SubtargetPredicate = HasVOP3PInsts in { 2185def : GCNPat < 2186 (v2i16 (build_vector (i16 SReg_32:$src0), (i16 SReg_32:$src1))), 2187 (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1) 2188>; 2189 2190// With multiple uses of the shift, this will duplicate the shift and 2191// increase register pressure. 2192def : GCNPat < 2193 (v2i16 (build_vector (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), 2194 (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1)) 2195>; 2196 2197 2198def : GCNPat < 2199 (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), 2200 (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), 2201 (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1) 2202>; 2203 2204// TODO: Should source modifiers be matched to v_pack_b32_f16? 2205def : GCNPat < 2206 (v2f16 (build_vector (f16 SReg_32:$src0), (f16 SReg_32:$src1))), 2207 (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1) 2208>; 2209 2210} // End SubtargetPredicate = HasVOP3PInsts 2211 2212 2213def : GCNPat < 2214 (v2f16 (scalar_to_vector f16:$src0)), 2215 (COPY $src0) 2216>; 2217 2218def : GCNPat < 2219 (v2i16 (scalar_to_vector i16:$src0)), 2220 (COPY $src0) 2221>; 2222 2223def : GCNPat < 2224 (v4i16 (scalar_to_vector i16:$src0)), 2225 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 2226>; 2227 2228def : GCNPat < 2229 (v4f16 (scalar_to_vector f16:$src0)), 2230 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 2231>; 2232 2233def : GCNPat < 2234 (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask, 2235 timm:$bank_mask, timm:$bound_ctrl)), 2236 (V_MOV_B64_DPP_PSEUDO VReg_64:$src, VReg_64:$src, 2237 (as_i32timm $dpp_ctrl), (as_i32timm $row_mask), 2238 (as_i32timm $bank_mask), 2239 (as_i1timm $bound_ctrl)) 2240>; 2241 2242def : GCNPat < 2243 (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask, 2244 timm:$bank_mask, timm:$bound_ctrl)), 2245 (V_MOV_B64_DPP_PSEUDO VReg_64:$old, VReg_64:$src, (as_i32timm $dpp_ctrl), 2246 (as_i32timm $row_mask), (as_i32timm $bank_mask), 2247 (as_i1timm $bound_ctrl)) 2248>; 2249 2250//===----------------------------------------------------------------------===// 2251// Fract Patterns 2252//===----------------------------------------------------------------------===// 2253 2254let SubtargetPredicate = isGFX6 in { 2255 2256// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is 2257// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient 2258// way to implement it is using V_FRACT_F64. 2259// The workaround for the V_FRACT bug is: 2260// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 2261 2262// Convert floor(x) to (x - fract(x)) 2263 2264// Don't bother handling this for GlobalISel, it's handled during 2265// lowering. 2266// 2267// FIXME: DAG should also custom lower this. 2268def : GCNPat < 2269 (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), 2270 (V_ADD_F64_e64 2271 $mods, 2272 $x, 2273 SRCMODS.NEG, 2274 (V_CNDMASK_B64_PSEUDO 2275 (V_MIN_F64_e64 2276 SRCMODS.NONE, 2277 (V_FRACT_F64_e64 $mods, $x), 2278 SRCMODS.NONE, 2279 (V_MOV_B64_PSEUDO 0x3fefffffffffffff)), 2280 $x, 2281 (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/)))) 2282>; 2283 2284} // End SubtargetPredicates = isGFX6 2285 2286//============================================================================// 2287// Miscellaneous Optimization Patterns 2288//============================================================================// 2289 2290// Undo sub x, c -> add x, -c canonicalization since c is more likely 2291// an inline immediate than -c. 2292// TODO: Also do for 64-bit. 2293def : GCNPat< 2294 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 2295 (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1) 2296>; 2297 2298def : GCNPat< 2299 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 2300 (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { 2301 let SubtargetPredicate = HasAddNoCarryInsts; 2302} 2303 2304def : GCNPat< 2305 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 2306 (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { 2307 let SubtargetPredicate = NotHasAddNoCarryInsts; 2308} 2309 2310 2311// Avoid pointlessly materializing a constant in VGPR. 2312// FIXME: Should also do this for readlane, but tablegen crashes on 2313// the ignored src1. 2314def : GCNPat< 2315 (int_amdgcn_readfirstlane (i32 imm:$src)), 2316 (S_MOV_B32 SReg_32:$src) 2317>; 2318 2319multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { 2320 def : GCNPat < 2321 (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), 2322 (BFM $a, $b) 2323 >; 2324 2325 def : GCNPat < 2326 (vt (add (vt (shl 1, vt:$a)), -1)), 2327 (BFM $a, (MOV (i32 0))) 2328 >; 2329} 2330 2331defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; 2332// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; 2333 2334// Bitfield extract patterns 2335 2336def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{ 2337 return isMask_32(Imm); 2338}]>; 2339 2340def IMMPopCount : SDNodeXForm<imm, [{ 2341 return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N), 2342 MVT::i32); 2343}]>; 2344 2345def : AMDGPUPat < 2346 (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)), 2347 IMMZeroBasedBitfieldMask:$mask), 2348 (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask))) 2349>; 2350 2351// x & ((1 << y) - 1) 2352def : AMDGPUPat < 2353 (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), 2354 (V_BFE_U32_e64 $src, (i32 0), $width) 2355>; 2356 2357// x & ~(-1 << y) 2358def : AMDGPUPat < 2359 (DivergentBinFrag<and> i32:$src, 2360 (xor_oneuse (shl_oneuse -1, i32:$width), -1)), 2361 (V_BFE_U32_e64 $src, (i32 0), $width) 2362>; 2363 2364// x & (-1 >> (bitwidth - y)) 2365def : AMDGPUPat < 2366 (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), 2367 (V_BFE_U32_e64 $src, (i32 0), $width) 2368>; 2369 2370// x << (bitwidth - y) >> (bitwidth - y) 2371def : AMDGPUPat < 2372 (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)), 2373 (sub 32, i32:$width)), 2374 (V_BFE_U32_e64 $src, (i32 0), $width) 2375>; 2376 2377def : AMDGPUPat < 2378 (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)), 2379 (sub 32, i32:$width)), 2380 (V_BFE_I32_e64 $src, (i32 0), $width) 2381>; 2382 2383// SHA-256 Ma patterns 2384 2385// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y 2386def : AMDGPUPat < 2387 (DivergentBinFrag<or> (and i32:$x, i32:$z), 2388 (and i32:$y, (or i32:$x, i32:$z))), 2389 (V_BFI_B32_e64 (V_XOR_B32_e64 i32:$x, i32:$y), i32:$z, i32:$y) 2390>; 2391 2392def : AMDGPUPat < 2393 (DivergentBinFrag<or> (and i64:$x, i64:$z), 2394 (and i64:$y, (or i64:$x, i64:$z))), 2395 (REG_SEQUENCE SReg_64, 2396 (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub0)), 2397 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0))), 2398 (i32 (EXTRACT_SUBREG SReg_64:$z, sub0)), 2399 (i32 (EXTRACT_SUBREG SReg_64:$y, sub0))), sub0, 2400 (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG SReg_64:$x, sub1)), 2401 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1))), 2402 (i32 (EXTRACT_SUBREG SReg_64:$z, sub1)), 2403 (i32 (EXTRACT_SUBREG SReg_64:$y, sub1))), sub1) 2404>; 2405 2406multiclass IntMed3Pat<Instruction med3Inst, 2407 SDPatternOperator min, 2408 SDPatternOperator max, 2409 SDPatternOperator min_oneuse, 2410 SDPatternOperator max_oneuse> { 2411 2412 // This matches 16 permutations of 2413 // min(max(a, b), max(min(a, b), c)) 2414 def : AMDGPUPat < 2415 (min (max_oneuse i32:$src0, i32:$src1), 2416 (max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)), 2417 (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) 2418>; 2419 2420 // This matches 16 permutations of 2421 // max(min(x, y), min(max(x, y), z)) 2422 def : AMDGPUPat < 2423 (max (min_oneuse i32:$src0, i32:$src1), 2424 (min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)), 2425 (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) 2426>; 2427} 2428 2429defm : IntMed3Pat<V_MED3_I32_e64, smin, smax, smin_oneuse, smax_oneuse>; 2430defm : IntMed3Pat<V_MED3_U32_e64, umin, umax, umin_oneuse, umax_oneuse>; 2431 2432// This matches 16 permutations of 2433// max(min(x, y), min(max(x, y), z)) 2434class FPMed3Pat<ValueType vt, 2435 //SDPatternOperator max, SDPatternOperator min, 2436 Instruction med3Inst> : GCNPat< 2437 (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2438 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2439 (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2440 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2441 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 2442 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 2443>; 2444 2445class FP16Med3Pat<ValueType vt, 2446 Instruction med3Inst> : GCNPat< 2447 (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2448 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2449 (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 2450 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 2451 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 2452 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) 2453>; 2454 2455multiclass Int16Med3Pat<Instruction med3Inst, 2456 SDPatternOperator min, 2457 SDPatternOperator max, 2458 SDPatternOperator max_oneuse, 2459 SDPatternOperator min_oneuse> { 2460 // This matches 16 permutations of 2461 // max(min(x, y), min(max(x, y), z)) 2462 def : GCNPat < 2463 (max (min_oneuse i16:$src0, i16:$src1), 2464 (min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)), 2465 (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) 2466>; 2467 2468 // This matches 16 permutations of 2469 // min(max(a, b), max(min(a, b), c)) 2470 def : GCNPat < 2471 (min (max_oneuse i16:$src0, i16:$src1), 2472 (max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)), 2473 (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) 2474>; 2475} 2476 2477def : FPMed3Pat<f32, V_MED3_F32_e64>; 2478 2479let OtherPredicates = [isGFX9Plus] in { 2480def : FP16Med3Pat<f16, V_MED3_F16_e64>; 2481defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax, smax_oneuse, smin_oneuse>; 2482defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax, umax_oneuse, umin_oneuse>; 2483} // End Predicates = [isGFX9Plus] 2484 2485class AMDGPUGenericInstruction : GenericInstruction { 2486 let Namespace = "AMDGPU"; 2487} 2488 2489def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction { 2490 let OutOperandList = (outs type0:$dst); 2491 let InOperandList = (ins type1:$src); 2492 let hasSideEffects = 0; 2493} 2494 2495def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction { 2496 let OutOperandList = (outs type0:$dst); 2497 let InOperandList = (ins type1:$src); 2498 let hasSideEffects = 0; 2499} 2500 2501class BufferLoadGenericInstruction : AMDGPUGenericInstruction { 2502 let OutOperandList = (outs type0:$dst); 2503 let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, 2504 type2:$soffset, untyped_imm_0:$offset, 2505 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2506 let hasSideEffects = 0; 2507 let mayLoad = 1; 2508} 2509 2510class TBufferLoadGenericInstruction : AMDGPUGenericInstruction { 2511 let OutOperandList = (outs type0:$dst); 2512 let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, 2513 type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format, 2514 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2515 let hasSideEffects = 0; 2516 let mayLoad = 1; 2517} 2518 2519def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction; 2520def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction; 2521def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction; 2522def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction; 2523def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction; 2524def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction; 2525def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction; 2526def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction; 2527def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction; 2528 2529class BufferStoreGenericInstruction : AMDGPUGenericInstruction { 2530 let OutOperandList = (outs); 2531 let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, 2532 type2:$soffset, untyped_imm_0:$offset, 2533 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2534 let hasSideEffects = 0; 2535 let mayStore = 1; 2536} 2537 2538class TBufferStoreGenericInstruction : AMDGPUGenericInstruction { 2539 let OutOperandList = (outs); 2540 let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, 2541 type2:$soffset, untyped_imm_0:$offset, 2542 untyped_imm_0:$format, 2543 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2544 let hasSideEffects = 0; 2545 let mayStore = 1; 2546} 2547 2548def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction; 2549def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction; 2550def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction; 2551def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction; 2552def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction; 2553def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction; 2554def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction; 2555 2556def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction { 2557 let OutOperandList = (outs type0:$dst); 2558 let InOperandList = (ins type0:$src0, type0:$src1); 2559 let hasSideEffects = 0; 2560} 2561 2562def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction { 2563 let OutOperandList = (outs type0:$dst); 2564 let InOperandList = (ins type0:$src0, type0:$src1); 2565 let hasSideEffects = 0; 2566} 2567 2568foreach N = 0-3 in { 2569def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction { 2570 let OutOperandList = (outs type0:$dst); 2571 let InOperandList = (ins type0:$src0); 2572 let hasSideEffects = 0; 2573} 2574} 2575 2576// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector 2577// operand Expects a MachineMemOperand in addition to explicit 2578// operands. 2579def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction { 2580 let OutOperandList = (outs type0:$oldval); 2581 let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval); 2582 let hasSideEffects = 0; 2583 let mayLoad = 1; 2584 let mayStore = 1; 2585} 2586 2587let Namespace = "AMDGPU" in { 2588def G_AMDGPU_ATOMIC_INC : G_ATOMICRMW_OP; 2589def G_AMDGPU_ATOMIC_DEC : G_ATOMICRMW_OP; 2590def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP; 2591def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP; 2592} 2593 2594class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction { 2595 let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst)); 2596 let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, 2597 type2:$soffset, untyped_imm_0:$offset, 2598 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2599 let hasSideEffects = 0; 2600 let mayLoad = 1; 2601 let mayStore = 1; 2602} 2603 2604def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction; 2605def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction; 2606def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction; 2607def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction; 2608def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction; 2609def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction; 2610def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction; 2611def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction; 2612def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction; 2613def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction; 2614def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction; 2615def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction; 2616def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction; 2617 2618def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction { 2619 let OutOperandList = (outs type0:$dst); 2620 let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex, 2621 type2:$voffset, type2:$soffset, untyped_imm_0:$offset, 2622 untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); 2623 let hasSideEffects = 0; 2624 let mayLoad = 1; 2625 let mayStore = 1; 2626} 2627 2628// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as 2629// a workaround for the intrinsic being defined as readnone, but 2630// really needs a memory operand. 2631def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction { 2632 let OutOperandList = (outs type0:$dst); 2633 let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy); 2634 let hasSideEffects = 0; 2635 let mayLoad = 1; 2636 let mayStore = 0; 2637} 2638 2639// This is equivalent to the G_INTRINSIC*, but the operands may have 2640// been legalized depending on the subtarget requirements. 2641def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction { 2642 let OutOperandList = (outs type0:$dst); 2643 let InOperandList = (ins unknown:$intrin, variable_ops); 2644 let hasSideEffects = 0; 2645 let mayLoad = 1; 2646 2647 // FIXME: Use separate opcode for atomics. 2648 let mayStore = 1; 2649} 2650 2651// This is equivalent to the G_INTRINSIC*, but the operands may have 2652// been legalized depending on the subtarget requirements. 2653def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction { 2654 let OutOperandList = (outs); 2655 let InOperandList = (ins unknown:$intrin, variable_ops); 2656 let hasSideEffects = 0; 2657 let mayStore = 1; 2658} 2659 2660def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction { 2661 let OutOperandList = (outs type0:$dst); 2662 let InOperandList = (ins unknown:$intrin, variable_ops); 2663 let hasSideEffects = 0; 2664 let mayLoad = 1; 2665 let mayStore = 0; 2666} 2667