1//===-- SIInstructions.td - SI Instruction Defintions ---------------------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// This file was originally auto-generated from a GPU register header file and 9// all the instruction definitions were originally commented out. Instructions 10// that are not yet supported remain commented out. 11//===----------------------------------------------------------------------===// 12 13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl { 14 15} 16 17include "SOPInstructions.td" 18include "VOPInstructions.td" 19include "SMInstructions.td" 20include "FLATInstructions.td" 21include "BUFInstructions.td" 22 23//===----------------------------------------------------------------------===// 24// EXP Instructions 25//===----------------------------------------------------------------------===// 26 27defm EXP : EXP_m<0, AMDGPUexport>; 28defm EXP_DONE : EXP_m<1, AMDGPUexport_done>; 29 30//===----------------------------------------------------------------------===// 31// VINTRP Instructions 32//===----------------------------------------------------------------------===// 33 34// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) 35def VINTRPDst : VINTRPDstOperand <VGPR_32>; 36 37let Uses = [M0, EXEC] in { 38 39// FIXME: Specify SchedRW for VINTRP insturctions. 40 41multiclass V_INTERP_P1_F32_m : VINTRP_m < 42 0x00000000, 43 (outs VINTRPDst:$vdst), 44 (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 45 "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", 46 [(set f32:$vdst, (AMDGPUinterp_p1 f32:$vsrc, (i32 imm:$attrchan), 47 (i32 imm:$attr)))] 48>; 49 50let OtherPredicates = [has32BankLDS] in { 51 52defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; 53 54} // End OtherPredicates = [has32BankLDS] 55 56let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { 57 58defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; 59 60} // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 61 62let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { 63 64defm V_INTERP_P2_F32 : VINTRP_m < 65 0x00000001, 66 (outs VINTRPDst:$vdst), 67 (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), 68 "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", 69 [(set f32:$vdst, (AMDGPUinterp_p2 f32:$src0, f32:$vsrc, (i32 imm:$attrchan), 70 (i32 imm:$attr)))]>; 71 72} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" 73 74defm V_INTERP_MOV_F32 : VINTRP_m < 75 0x00000002, 76 (outs VINTRPDst:$vdst), 77 (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), 78 "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", 79 [(set f32:$vdst, (AMDGPUinterp_mov (i32 imm:$vsrc), (i32 imm:$attrchan), 80 (i32 imm:$attr)))]>; 81 82} // End Uses = [M0, EXEC] 83 84//===----------------------------------------------------------------------===// 85// Pseudo Instructions 86//===----------------------------------------------------------------------===// 87def ATOMIC_FENCE : SPseudoInstSI< 88 (outs), (ins i32imm:$ordering, i32imm:$scope), 89 [(atomic_fence (i32 imm:$ordering), (i32 imm:$scope))], 90 "ATOMIC_FENCE $ordering, $scope"> { 91 let hasSideEffects = 1; 92 let maybeAtomic = 1; 93} 94 95let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { 96 97// For use in patterns 98def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), 99 (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { 100 let isPseudo = 1; 101 let isCodeGenOnly = 1; 102 let usesCustomInserter = 1; 103} 104 105// 64-bit vector move instruction. This is mainly used by the 106// SIFoldOperands pass to enable folding of inline immediates. 107def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), 108 (ins VSrc_b64:$src0)>; 109 110// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the 111// WQM pass processes it. 112def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 113 114// Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so 115// that the @earlyclobber is respected. The @earlyclobber is to make sure that 116// the instruction that defines $src0 (which is run in WWM) doesn't 117// accidentally clobber inactive channels of $vdst. 118let Constraints = "@earlyclobber $vdst" in { 119def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; 120} 121 122} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] 123 124def ENTER_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { 125 let Defs = [EXEC]; 126 let hasSideEffects = 0; 127 let mayLoad = 0; 128 let mayStore = 0; 129} 130 131def EXIT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { 132 let hasSideEffects = 0; 133 let mayLoad = 0; 134 let mayStore = 0; 135} 136 137// Invert the exec mask and overwrite the inactive lanes of dst with inactive, 138// restoring it after we're done. 139def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), 140 (ins VGPR_32: $src, VSrc_b32:$inactive), 141 [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { 142 let Constraints = "$src = $vdst"; 143} 144 145def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), 146 (ins VReg_64: $src, VSrc_b64:$inactive), 147 [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { 148 let Constraints = "$src = $vdst"; 149} 150 151 152let usesCustomInserter = 1, Defs = [SCC] in { 153def S_ADD_U64_PSEUDO : SPseudoInstSI < 154 (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 155 [(set SReg_64:$vdst, (add i64:$src0, i64:$src1))] 156>; 157 158def S_SUB_U64_PSEUDO : SPseudoInstSI < 159 (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), 160 [(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))] 161>; 162 163def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < 164 (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 165>; 166 167def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < 168 (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) 169>; 170} // End usesCustomInserter = 1, Defs = [SCC] 171 172let usesCustomInserter = 1 in { 173def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins), 174 [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; 175} // End let usesCustomInserter = 1, SALU = 1 176 177// Wrap an instruction by duplicating it, except for setting isTerminator. 178class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI< 179 base_inst.OutOperandList, 180 base_inst.InOperandList> { 181 let Uses = base_inst.Uses; 182 let Defs = base_inst.Defs; 183 let isTerminator = 1; 184 let isAsCheapAsAMove = base_inst.isAsCheapAsAMove; 185 let hasSideEffects = base_inst.hasSideEffects; 186 let UseNamedOperandTable = base_inst.UseNamedOperandTable; 187 let CodeSize = base_inst.CodeSize; 188} 189 190let WaveSizePredicate = isWave64 in { 191def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>; 192def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>; 193def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>; 194} 195 196let WaveSizePredicate = isWave32 in { 197def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>; 198def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>; 199def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>; 200def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>; 201} 202 203def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), 204 [(int_amdgcn_wave_barrier)]> { 205 let SchedRW = []; 206 let hasNoSchedulingInfo = 1; 207 let hasSideEffects = 1; 208 let mayLoad = 1; 209 let mayStore = 1; 210 let isConvergent = 1; 211 let FixedSize = 1; 212 let Size = 0; 213} 214 215// SI pseudo instructions. These are used by the CFG structurizer pass 216// and should be lowered to ISA instructions prior to codegen. 217 218// Dummy terminator instruction to use after control flow instructions 219// replaced with exec mask operations. 220def SI_MASK_BRANCH : VPseudoInstSI < 221 (outs), (ins brtarget:$target)> { 222 let isBranch = 0; 223 let isTerminator = 1; 224 let isBarrier = 0; 225 let SchedRW = []; 226 let hasNoSchedulingInfo = 1; 227 let FixedSize = 1; 228 let Size = 0; 229} 230 231let isTerminator = 1 in { 232 233let OtherPredicates = [EnableLateCFGStructurize] in { 234 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < 235 (outs), 236 (ins SReg_1:$vcc, brtarget:$target), 237 [(brcond i1:$vcc, bb:$target)]> { 238 let Size = 12; 239} 240} 241 242def SI_IF: CFPseudoInstSI < 243 (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target), 244 [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { 245 let Constraints = ""; 246 let Size = 12; 247 let hasSideEffects = 1; 248} 249 250def SI_ELSE : CFPseudoInstSI < 251 (outs SReg_1:$dst), 252 (ins SReg_1:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> { 253 let Size = 12; 254 let hasSideEffects = 1; 255} 256 257def SI_LOOP : CFPseudoInstSI < 258 (outs), (ins SReg_1:$saved, brtarget:$target), 259 [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> { 260 let Size = 8; 261 let isBranch = 1; 262 let hasSideEffects = 1; 263} 264 265} // End isTerminator = 1 266 267def SI_END_CF : CFPseudoInstSI < 268 (outs), (ins SReg_1:$saved), [], 1, 1> { 269 let Size = 4; 270 let isAsCheapAsAMove = 1; 271 let isReMaterializable = 1; 272 let hasSideEffects = 1; 273 let mayLoad = 1; // FIXME: Should not need memory flags 274 let mayStore = 1; 275} 276 277def SI_IF_BREAK : CFPseudoInstSI < 278 (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> { 279 let Size = 4; 280 let isAsCheapAsAMove = 1; 281 let isReMaterializable = 1; 282} 283 284let Uses = [EXEC] in { 285 286multiclass PseudoInstKill <dag ins> { 287 // Even though this pseudo can usually be expanded without an SCC def, we 288 // conservatively assume that it has an SCC def, both because it is sometimes 289 // required in degenerate cases (when V_CMPX cannot be used due to constant 290 // bus limitations) and because it allows us to avoid having to track SCC 291 // liveness across basic blocks. 292 let Defs = [EXEC,VCC,SCC] in 293 def _PSEUDO : PseudoInstSI <(outs), ins> { 294 let isConvergent = 1; 295 let usesCustomInserter = 1; 296 } 297 298 let Defs = [EXEC,VCC,SCC] in 299 def _TERMINATOR : SPseudoInstSI <(outs), ins> { 300 let isTerminator = 1; 301 } 302} 303 304defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>; 305defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; 306 307let Defs = [EXEC,VCC] in 308def SI_ILLEGAL_COPY : SPseudoInstSI < 309 (outs unknown:$dst), (ins unknown:$src), 310 [], " ; illegal copy $src to $dst">; 311 312} // End Uses = [EXEC], Defs = [EXEC,VCC] 313 314// Branch on undef scc. Used to avoid intermediate copy from 315// IMPLICIT_DEF to SCC. 316def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { 317 let isTerminator = 1; 318 let usesCustomInserter = 1; 319 let isBranch = 1; 320} 321 322def SI_PS_LIVE : PseudoInstSI < 323 (outs SReg_1:$dst), (ins), 324 [(set i1:$dst, (int_amdgcn_ps_live))]> { 325 let SALU = 1; 326} 327 328def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), 329 [(int_amdgcn_unreachable)], 330 "; divergent unreachable"> { 331 let Size = 0; 332 let hasNoSchedulingInfo = 1; 333 let FixedSize = 1; 334} 335 336// Used as an isel pseudo to directly emit initialization with an 337// s_mov_b32 rather than a copy of another initialized 338// register. MachineCSE skips copies, and we don't want to have to 339// fold operands before it runs. 340def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { 341 let Defs = [M0]; 342 let usesCustomInserter = 1; 343 let isAsCheapAsAMove = 1; 344 let isReMaterializable = 1; 345} 346 347def SI_INIT_EXEC : SPseudoInstSI < 348 (outs), (ins i64imm:$src), []> { 349 let Defs = [EXEC]; 350 let usesCustomInserter = 1; 351 let isAsCheapAsAMove = 1; 352 let WaveSizePredicate = isWave64; 353} 354 355def SI_INIT_EXEC_LO : SPseudoInstSI < 356 (outs), (ins i32imm:$src), []> { 357 let Defs = [EXEC_LO]; 358 let usesCustomInserter = 1; 359 let isAsCheapAsAMove = 1; 360 let WaveSizePredicate = isWave32; 361} 362 363def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < 364 (outs), (ins SSrc_b32:$input, i32imm:$shift), []> { 365 let Defs = [EXEC]; 366 let usesCustomInserter = 1; 367} 368 369// Return for returning shaders to a shader variant epilog. 370def SI_RETURN_TO_EPILOG : SPseudoInstSI < 371 (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { 372 let isTerminator = 1; 373 let isBarrier = 1; 374 let isReturn = 1; 375 let hasNoSchedulingInfo = 1; 376 let DisableWQM = 1; 377 let FixedSize = 1; 378} 379 380// Return for returning function calls. 381def SI_RETURN : SPseudoInstSI < 382 (outs), (ins), [], 383 "; return"> { 384 let isTerminator = 1; 385 let isBarrier = 1; 386 let isReturn = 1; 387 let SchedRW = [WriteBranch]; 388} 389 390// Return for returning function calls without output register. 391// 392// This version is only needed so we can fill in the output regiter in 393// the custom inserter. 394def SI_CALL_ISEL : SPseudoInstSI < 395 (outs), (ins SSrc_b64:$src0, unknown:$callee), 396 [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> { 397 let Size = 4; 398 let isCall = 1; 399 let SchedRW = [WriteBranch]; 400 let usesCustomInserter = 1; 401 // TODO: Should really base this on the call target 402 let isConvergent = 1; 403} 404 405// Wrapper around s_swappc_b64 with extra $callee parameter to track 406// the called function after regalloc. 407def SI_CALL : SPseudoInstSI < 408 (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { 409 let Size = 4; 410 let isCall = 1; 411 let UseNamedOperandTable = 1; 412 let SchedRW = [WriteBranch]; 413 // TODO: Should really base this on the call target 414 let isConvergent = 1; 415} 416 417// Tail call handling pseudo 418def SI_TCRETURN : SPseudoInstSI <(outs), 419 (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff), 420 [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> { 421 let Size = 4; 422 let isCall = 1; 423 let isTerminator = 1; 424 let isReturn = 1; 425 let isBarrier = 1; 426 let UseNamedOperandTable = 1; 427 let SchedRW = [WriteBranch]; 428 // TODO: Should really base this on the call target 429 let isConvergent = 1; 430} 431 432 433def ADJCALLSTACKUP : SPseudoInstSI< 434 (outs), (ins i32imm:$amt0, i32imm:$amt1), 435 [(callseq_start timm:$amt0, timm:$amt1)], 436 "; adjcallstackup $amt0 $amt1"> { 437 let Size = 8; // Worst case. (s_add_u32 + constant) 438 let FixedSize = 1; 439 let hasSideEffects = 1; 440 let usesCustomInserter = 1; 441 let SchedRW = [WriteSALU]; 442 let Defs = [SCC]; 443} 444 445def ADJCALLSTACKDOWN : SPseudoInstSI< 446 (outs), (ins i32imm:$amt1, i32imm:$amt2), 447 [(callseq_end timm:$amt1, timm:$amt2)], 448 "; adjcallstackdown $amt1"> { 449 let Size = 8; // Worst case. (s_add_u32 + constant) 450 let hasSideEffects = 1; 451 let usesCustomInserter = 1; 452 let SchedRW = [WriteSALU]; 453 let Defs = [SCC]; 454} 455 456let Defs = [M0, EXEC, SCC], 457 UseNamedOperandTable = 1 in { 458 459class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < 460 (outs VGPR_32:$vdst), 461 (ins rc:$src, VS_32:$idx, i32imm:$offset)> { 462 let usesCustomInserter = 1; 463} 464 465class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < 466 (outs rc:$vdst), 467 (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { 468 let Constraints = "$src = $vdst"; 469 let usesCustomInserter = 1; 470} 471 472// TODO: We can support indirect SGPR access. 473def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; 474def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; 475def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; 476def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; 477def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; 478 479def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; 480def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; 481def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; 482def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; 483def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; 484 485} // End Uses = [EXEC], Defs = [M0, EXEC] 486 487multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { 488 let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { 489 def _SAVE : PseudoInstSI < 490 (outs), 491 (ins sgpr_class:$data, i32imm:$addr)> { 492 let mayStore = 1; 493 let mayLoad = 0; 494 } 495 496 def _RESTORE : PseudoInstSI < 497 (outs sgpr_class:$data), 498 (ins i32imm:$addr)> { 499 let mayStore = 0; 500 let mayLoad = 1; 501 } 502 } // End UseNamedOperandTable = 1 503} 504 505// You cannot use M0 as the output of v_readlane_b32 instructions or 506// use it in the sdata operand of SMEM instructions. We still need to 507// be able to spill the physical register m0, so allow it for 508// SI_SPILL_32_* instructions. 509defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>; 510defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; 511defm SI_SPILL_S96 : SI_SPILL_SGPR <SReg_96>; 512defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; 513defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>; 514defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; 515defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; 516defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>; 517 518multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> { 519 let UseNamedOperandTable = 1, VGPRSpill = 1, 520 SchedRW = [WriteVMEM] in { 521 def _SAVE : VPseudoInstSI < 522 (outs), 523 (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, 524 SReg_32:$soffset, i32imm:$offset)> { 525 let mayStore = 1; 526 let mayLoad = 0; 527 // (2 * 4) + (8 * num_subregs) bytes maximum 528 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); 529 // Size field is unsigned char and cannot fit more. 530 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 531 } 532 533 def _RESTORE : VPseudoInstSI < 534 (outs vgpr_class:$vdata), 535 (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, 536 i32imm:$offset)> { 537 let mayStore = 0; 538 let mayLoad = 1; 539 540 // (2 * 4) + (8 * num_subregs) bytes maximum 541 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); 542 // Size field is unsigned char and cannot fit more. 543 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 544 } 545 } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] 546} 547 548defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; 549defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; 550defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; 551defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; 552defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>; 553defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; 554defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; 555defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>; 556 557multiclass SI_SPILL_AGPR <RegisterClass vgpr_class> { 558 let UseNamedOperandTable = 1, VGPRSpill = 1, 559 Constraints = "@earlyclobber $tmp", 560 SchedRW = [WriteVMEM] in { 561 def _SAVE : VPseudoInstSI < 562 (outs VGPR_32:$tmp), 563 (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, 564 SReg_32:$soffset, i32imm:$offset)> { 565 let mayStore = 1; 566 let mayLoad = 0; 567 // (2 * 4) + (16 * num_subregs) bytes maximum 568 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8); 569 // Size field is unsigned char and cannot fit more. 570 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 571 } 572 573 def _RESTORE : VPseudoInstSI < 574 (outs vgpr_class:$vdata, VGPR_32:$tmp), 575 (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, 576 i32imm:$offset)> { 577 let mayStore = 0; 578 let mayLoad = 1; 579 580 // (2 * 4) + (16 * num_subregs) bytes maximum 581 int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8); 582 // Size field is unsigned char and cannot fit more. 583 let Size = !if(!le(MaxSize, 256), MaxSize, 252); 584 } 585 } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] 586} 587 588defm SI_SPILL_A32 : SI_SPILL_AGPR <AGPR_32>; 589defm SI_SPILL_A64 : SI_SPILL_AGPR <AReg_64>; 590defm SI_SPILL_A128 : SI_SPILL_AGPR <AReg_128>; 591defm SI_SPILL_A512 : SI_SPILL_AGPR <AReg_512>; 592defm SI_SPILL_A1024 : SI_SPILL_AGPR <AReg_1024>; 593 594def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < 595 (outs SReg_64:$dst), 596 (ins si_ga:$ptr_lo, si_ga:$ptr_hi), 597 [(set SReg_64:$dst, 598 (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> { 599 let Defs = [SCC]; 600} 601 602def : GCNPat < 603 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0), 604 (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0)) 605>; 606 607def : GCNPat < 608 (AMDGPUinit_exec i64:$src), 609 (SI_INIT_EXEC (as_i64imm $src)) 610> { 611 let WaveSizePredicate = isWave64; 612} 613 614def : GCNPat < 615 (AMDGPUinit_exec i64:$src), 616 (SI_INIT_EXEC_LO (as_i32imm $src)) 617> { 618 let WaveSizePredicate = isWave32; 619} 620 621def : GCNPat < 622 (AMDGPUinit_exec_from_input i32:$input, i32:$shift), 623 (SI_INIT_EXEC_FROM_INPUT (i32 $input), (as_i32imm $shift)) 624>; 625 626def : GCNPat< 627 (AMDGPUtrap timm:$trapid), 628 (S_TRAP $trapid) 629>; 630 631def : GCNPat< 632 (AMDGPUelse i1:$src, bb:$target), 633 (SI_ELSE $src, $target, 0) 634>; 635 636def : Pat < 637 // -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0) 638 (AMDGPUkill (i32 -1082130432)), 639 (SI_KILL_I1_PSEUDO (i1 0), 0) 640>; 641 642def : Pat < 643 (int_amdgcn_kill i1:$src), 644 (SI_KILL_I1_PSEUDO $src, 0) 645>; 646 647def : Pat < 648 (int_amdgcn_kill (i1 (not i1:$src))), 649 (SI_KILL_I1_PSEUDO $src, -1) 650>; 651 652def : Pat < 653 (AMDGPUkill i32:$src), 654 (SI_KILL_F32_COND_IMM_PSEUDO $src, 0, 3) // 3 means SETOGE 655>; 656 657def : Pat < 658 (int_amdgcn_kill (i1 (setcc f32:$src, InlineFPImm<f32>:$imm, cond:$cond))), 659 (SI_KILL_F32_COND_IMM_PSEUDO $src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) 660>; 661 662 // TODO: we could add more variants for other types of conditionals 663 664def : Pat < 665 (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), 666 (COPY $src) // Return the SGPRs representing i1 src 667>; 668 669def : Pat < 670 (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), 671 (COPY $src) // Return the SGPRs representing i1 src 672>; 673 674//===----------------------------------------------------------------------===// 675// VOP1 Patterns 676//===----------------------------------------------------------------------===// 677 678let OtherPredicates = [UnsafeFPMath] in { 679 680//def : RcpPat<V_RCP_F64_e32, f64>; 681//defm : RsqPat<V_RSQ_F64_e32, f64>; 682//defm : RsqPat<V_RSQ_F32_e32, f32>; 683 684def : RsqPat<V_RSQ_F32_e32, f32>; 685def : RsqPat<V_RSQ_F64_e32, f64>; 686 687// Convert (x - floor(x)) to fract(x) 688def : GCNPat < 689 (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), 690 (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), 691 (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) 692>; 693 694// Convert (x + (-floor(x))) to fract(x) 695def : GCNPat < 696 (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), 697 (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), 698 (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) 699>; 700 701} // End OtherPredicates = [UnsafeFPMath] 702 703 704// f16_to_fp patterns 705def : GCNPat < 706 (f32 (f16_to_fp i32:$src0)), 707 (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 708>; 709 710def : GCNPat < 711 (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), 712 (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 713>; 714 715def : GCNPat < 716 (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), 717 (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)), DSTCLAMP.NONE, DSTOMOD.NONE) 718>; 719 720def : GCNPat < 721 (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), 722 (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 723>; 724 725def : GCNPat < 726 (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), 727 (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) 728>; 729 730def : GCNPat < 731 (f64 (fpextend f16:$src)), 732 (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) 733>; 734 735// fp_to_fp16 patterns 736def : GCNPat < 737 (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), 738 (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE) 739>; 740 741def : GCNPat < 742 (i32 (fp_to_sint f16:$src)), 743 (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 $src)) 744>; 745 746def : GCNPat < 747 (i32 (fp_to_uint f16:$src)), 748 (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 $src)) 749>; 750 751def : GCNPat < 752 (f16 (sint_to_fp i32:$src)), 753 (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 $src)) 754>; 755 756def : GCNPat < 757 (f16 (uint_to_fp i32:$src)), 758 (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 $src)) 759>; 760 761//===----------------------------------------------------------------------===// 762// VOP2 Patterns 763//===----------------------------------------------------------------------===// 764 765multiclass FMADPat <ValueType vt, Instruction inst> { 766 def : GCNPat < 767 (vt (fmad (VOP3NoMods vt:$src0), 768 (VOP3NoMods vt:$src1), 769 (VOP3NoMods vt:$src2))), 770 (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, 771 SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 772 >; 773} 774 775defm : FMADPat <f16, V_MAC_F16_e64>; 776defm : FMADPat <f32, V_MAC_F32_e64>; 777 778class FMADModsPat<Instruction inst, SDPatternOperator mad_opr, ValueType Ty> 779 : GCNPat< 780 (Ty (mad_opr (VOP3Mods Ty:$src0, i32:$src0_mod), 781 (VOP3Mods Ty:$src1, i32:$src1_mod), 782 (VOP3Mods Ty:$src2, i32:$src2_mod))), 783 (inst $src0_mod, $src0, $src1_mod, $src1, 784 $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 785>; 786 787def : FMADModsPat<V_MAD_F32, AMDGPUfmad_ftz, f32>; 788def : FMADModsPat<V_MAD_F16, AMDGPUfmad_ftz, f16> { 789 let SubtargetPredicate = Has16BitInsts; 790} 791 792multiclass SelectPat <ValueType vt> { 793 def : GCNPat < 794 (vt (select i1:$src0, (VOP3Mods_f32 vt:$src1, i32:$src1_mods), 795 (VOP3Mods_f32 vt:$src2, i32:$src2_mods))), 796 (V_CNDMASK_B32_e64 $src2_mods, $src2, $src1_mods, $src1, $src0) 797 >; 798} 799 800defm : SelectPat <i16>; 801defm : SelectPat <i32>; 802defm : SelectPat <f16>; 803defm : SelectPat <f32>; 804 805let AddedComplexity = 1 in { 806def : GCNPat < 807 (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)), 808 (V_BCNT_U32_B32_e64 $popcnt, $val) 809>; 810} 811def : GCNPat < 812 (i16 (add (i16 (trunc (getDivergentFrag<ctpop>.ret i32:$popcnt))), i16:$val)), 813 (V_BCNT_U32_B32_e64 $popcnt, $val) 814>; 815 816/********** ============================================ **********/ 817/********** Extraction, Insertion, Building and Casting **********/ 818/********** ============================================ **********/ 819 820foreach Index = 0-2 in { 821 def Extract_Element_v2i32_#Index : Extract_Element < 822 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 823 >; 824 def Insert_Element_v2i32_#Index : Insert_Element < 825 i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) 826 >; 827 828 def Extract_Element_v2f32_#Index : Extract_Element < 829 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 830 >; 831 def Insert_Element_v2f32_#Index : Insert_Element < 832 f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) 833 >; 834} 835 836foreach Index = 0-2 in { 837 def Extract_Element_v3i32_#Index : Extract_Element < 838 i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) 839 >; 840 def Insert_Element_v3i32_#Index : Insert_Element < 841 i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) 842 >; 843 844 def Extract_Element_v3f32_#Index : Extract_Element < 845 f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) 846 >; 847 def Insert_Element_v3f32_#Index : Insert_Element < 848 f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) 849 >; 850} 851 852foreach Index = 0-3 in { 853 def Extract_Element_v4i32_#Index : Extract_Element < 854 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 855 >; 856 def Insert_Element_v4i32_#Index : Insert_Element < 857 i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) 858 >; 859 860 def Extract_Element_v4f32_#Index : Extract_Element < 861 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 862 >; 863 def Insert_Element_v4f32_#Index : Insert_Element < 864 f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) 865 >; 866} 867 868foreach Index = 0-4 in { 869 def Extract_Element_v5i32_#Index : Extract_Element < 870 i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) 871 >; 872 def Insert_Element_v5i32_#Index : Insert_Element < 873 i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) 874 >; 875 876 def Extract_Element_v5f32_#Index : Extract_Element < 877 f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) 878 >; 879 def Insert_Element_v5f32_#Index : Insert_Element < 880 f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) 881 >; 882} 883 884foreach Index = 0-7 in { 885 def Extract_Element_v8i32_#Index : Extract_Element < 886 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 887 >; 888 def Insert_Element_v8i32_#Index : Insert_Element < 889 i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) 890 >; 891 892 def Extract_Element_v8f32_#Index : Extract_Element < 893 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 894 >; 895 def Insert_Element_v8f32_#Index : Insert_Element < 896 f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) 897 >; 898} 899 900foreach Index = 0-15 in { 901 def Extract_Element_v16i32_#Index : Extract_Element < 902 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 903 >; 904 def Insert_Element_v16i32_#Index : Insert_Element < 905 i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) 906 >; 907 908 def Extract_Element_v16f32_#Index : Extract_Element < 909 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 910 >; 911 def Insert_Element_v16f32_#Index : Insert_Element < 912 f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) 913 >; 914} 915 916 917def : Pat < 918 (extract_subvector v4i16:$vec, (i32 0)), 919 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0)) 920>; 921 922def : Pat < 923 (extract_subvector v4i16:$vec, (i32 2)), 924 (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1)) 925>; 926 927def : Pat < 928 (extract_subvector v4f16:$vec, (i32 0)), 929 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0)) 930>; 931 932def : Pat < 933 (extract_subvector v4f16:$vec, (i32 2)), 934 (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1)) 935>; 936 937foreach Index = 0-31 in { 938 def Extract_Element_v32i32_#Index : Extract_Element < 939 i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) 940 >; 941 942 def Insert_Element_v32i32_#Index : Insert_Element < 943 i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) 944 >; 945 946 def Extract_Element_v32f32_#Index : Extract_Element < 947 f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) 948 >; 949 950 def Insert_Element_v32f32_#Index : Insert_Element < 951 f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) 952 >; 953} 954 955// FIXME: Why do only some of these type combinations for SReg and 956// VReg? 957// 16-bit bitcast 958def : BitConvert <i16, f16, VGPR_32>; 959def : BitConvert <f16, i16, VGPR_32>; 960def : BitConvert <i16, f16, SReg_32>; 961def : BitConvert <f16, i16, SReg_32>; 962 963// 32-bit bitcast 964def : BitConvert <i32, f32, VGPR_32>; 965def : BitConvert <f32, i32, VGPR_32>; 966def : BitConvert <i32, f32, SReg_32>; 967def : BitConvert <f32, i32, SReg_32>; 968def : BitConvert <v2i16, i32, SReg_32>; 969def : BitConvert <i32, v2i16, SReg_32>; 970def : BitConvert <v2f16, i32, SReg_32>; 971def : BitConvert <i32, v2f16, SReg_32>; 972def : BitConvert <v2i16, v2f16, SReg_32>; 973def : BitConvert <v2f16, v2i16, SReg_32>; 974def : BitConvert <v2f16, f32, SReg_32>; 975def : BitConvert <f32, v2f16, SReg_32>; 976def : BitConvert <v2i16, f32, SReg_32>; 977def : BitConvert <f32, v2i16, SReg_32>; 978 979// 64-bit bitcast 980def : BitConvert <i64, f64, VReg_64>; 981def : BitConvert <f64, i64, VReg_64>; 982def : BitConvert <v2i32, v2f32, VReg_64>; 983def : BitConvert <v2f32, v2i32, VReg_64>; 984def : BitConvert <i64, v2i32, VReg_64>; 985def : BitConvert <v2i32, i64, VReg_64>; 986def : BitConvert <i64, v2f32, VReg_64>; 987def : BitConvert <v2f32, i64, VReg_64>; 988def : BitConvert <f64, v2f32, VReg_64>; 989def : BitConvert <v2f32, f64, VReg_64>; 990def : BitConvert <f64, v2i32, VReg_64>; 991def : BitConvert <v2i32, f64, VReg_64>; 992def : BitConvert <v4i16, v4f16, VReg_64>; 993def : BitConvert <v4f16, v4i16, VReg_64>; 994 995// FIXME: Make SGPR 996def : BitConvert <v2i32, v4f16, VReg_64>; 997def : BitConvert <v4f16, v2i32, VReg_64>; 998def : BitConvert <v2i32, v4f16, VReg_64>; 999def : BitConvert <v2i32, v4i16, VReg_64>; 1000def : BitConvert <v4i16, v2i32, VReg_64>; 1001def : BitConvert <v2f32, v4f16, VReg_64>; 1002def : BitConvert <v4f16, v2f32, VReg_64>; 1003def : BitConvert <v2f32, v4i16, VReg_64>; 1004def : BitConvert <v4i16, v2f32, VReg_64>; 1005def : BitConvert <v4i16, f64, VReg_64>; 1006def : BitConvert <v4f16, f64, VReg_64>; 1007def : BitConvert <f64, v4i16, VReg_64>; 1008def : BitConvert <f64, v4f16, VReg_64>; 1009def : BitConvert <v4i16, i64, VReg_64>; 1010def : BitConvert <v4f16, i64, VReg_64>; 1011def : BitConvert <i64, v4i16, VReg_64>; 1012def : BitConvert <i64, v4f16, VReg_64>; 1013 1014def : BitConvert <v4i32, v4f32, VReg_128>; 1015def : BitConvert <v4f32, v4i32, VReg_128>; 1016 1017// 96-bit bitcast 1018def : BitConvert <v3i32, v3f32, SGPR_96>; 1019def : BitConvert <v3f32, v3i32, SGPR_96>; 1020 1021// 128-bit bitcast 1022def : BitConvert <v2i64, v4i32, SReg_128>; 1023def : BitConvert <v4i32, v2i64, SReg_128>; 1024def : BitConvert <v2f64, v4f32, VReg_128>; 1025def : BitConvert <v2f64, v4i32, VReg_128>; 1026def : BitConvert <v4f32, v2f64, VReg_128>; 1027def : BitConvert <v4i32, v2f64, VReg_128>; 1028def : BitConvert <v2i64, v2f64, VReg_128>; 1029def : BitConvert <v2f64, v2i64, VReg_128>; 1030 1031// 160-bit bitcast 1032def : BitConvert <v5i32, v5f32, SGPR_160>; 1033def : BitConvert <v5f32, v5i32, SGPR_160>; 1034 1035// 256-bit bitcast 1036def : BitConvert <v8i32, v8f32, SReg_256>; 1037def : BitConvert <v8f32, v8i32, SReg_256>; 1038def : BitConvert <v8i32, v8f32, VReg_256>; 1039def : BitConvert <v8f32, v8i32, VReg_256>; 1040 1041// 512-bit bitcast 1042def : BitConvert <v16i32, v16f32, VReg_512>; 1043def : BitConvert <v16f32, v16i32, VReg_512>; 1044 1045// 1024-bit bitcast 1046def : BitConvert <v32i32, v32f32, VReg_1024>; 1047def : BitConvert <v32f32, v32i32, VReg_1024>; 1048 1049/********** =================== **********/ 1050/********** Src & Dst modifiers **********/ 1051/********** =================== **********/ 1052 1053 1054// If denormals are not enabled, it only impacts the compare of the 1055// inputs. The output result is not flushed. 1056class ClampPat<Instruction inst, ValueType vt> : GCNPat < 1057 (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), 1058 (inst i32:$src0_modifiers, vt:$src0, 1059 i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) 1060>; 1061 1062def : ClampPat<V_MAX_F32_e64, f32>; 1063def : ClampPat<V_MAX_F64, f64>; 1064def : ClampPat<V_MAX_F16_e64, f16>; 1065 1066let SubtargetPredicate = HasVOP3PInsts in { 1067def : GCNPat < 1068 (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), 1069 (V_PK_MAX_F16 $src0_modifiers, $src0, 1070 $src0_modifiers, $src0, DSTCLAMP.ENABLE) 1071>; 1072} 1073 1074/********** ================================ **********/ 1075/********** Floating point absolute/negative **********/ 1076/********** ================================ **********/ 1077 1078// Prevent expanding both fneg and fabs. 1079 1080def : GCNPat < 1081 (fneg (fabs f32:$src)), 1082 (S_OR_B32 $src, (S_MOV_B32(i32 0x80000000))) // Set sign bit 1083>; 1084 1085// FIXME: Should use S_OR_B32 1086def : GCNPat < 1087 (fneg (fabs f64:$src)), 1088 (REG_SEQUENCE VReg_64, 1089 (i32 (EXTRACT_SUBREG f64:$src, sub0)), 1090 sub0, 1091 (V_OR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), 1092 (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. 1093 sub1) 1094>; 1095 1096def : GCNPat < 1097 (fabs f32:$src), 1098 (S_AND_B32 $src, (S_MOV_B32 (i32 0x7fffffff))) 1099>; 1100 1101def : GCNPat < 1102 (fneg f32:$src), 1103 (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x80000000))) 1104>; 1105 1106def : GCNPat < 1107 (fabs f64:$src), 1108 (REG_SEQUENCE VReg_64, 1109 (i32 (EXTRACT_SUBREG f64:$src, sub0)), 1110 sub0, 1111 (V_AND_B32_e64 (i32 (EXTRACT_SUBREG f64:$src, sub1)), 1112 (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. 1113 sub1) 1114>; 1115 1116def : GCNPat < 1117 (fneg f64:$src), 1118 (REG_SEQUENCE VReg_64, 1119 (i32 (EXTRACT_SUBREG f64:$src, sub0)), 1120 sub0, 1121 (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), 1122 (i32 (V_MOV_B32_e32 (i32 0x80000000)))), 1123 sub1) 1124>; 1125 1126def : GCNPat < 1127 (fcopysign f16:$src0, f16:$src1), 1128 (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) 1129>; 1130 1131def : GCNPat < 1132 (fcopysign f32:$src0, f16:$src1), 1133 (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0, 1134 (V_LSHLREV_B32_e64 (i32 16), $src1)) 1135>; 1136 1137def : GCNPat < 1138 (fcopysign f64:$src0, f16:$src1), 1139 (REG_SEQUENCE SReg_64, 1140 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 1141 (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), 1142 (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) 1143>; 1144 1145def : GCNPat < 1146 (fcopysign f16:$src0, f32:$src1), 1147 (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, 1148 (V_LSHRREV_B32_e64 (i32 16), $src1)) 1149>; 1150 1151def : GCNPat < 1152 (fcopysign f16:$src0, f64:$src1), 1153 (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, 1154 (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) 1155>; 1156 1157def : GCNPat < 1158 (fneg f16:$src), 1159 (S_XOR_B32 $src, (S_MOV_B32 (i32 0x00008000))) 1160>; 1161 1162def : GCNPat < 1163 (fabs f16:$src), 1164 (S_AND_B32 $src, (S_MOV_B32 (i32 0x00007fff))) 1165>; 1166 1167def : GCNPat < 1168 (fneg (fabs f16:$src)), 1169 (S_OR_B32 $src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit 1170>; 1171 1172def : GCNPat < 1173 (fneg v2f16:$src), 1174 (S_XOR_B32 $src, (S_MOV_B32 (i32 0x80008000))) 1175>; 1176 1177def : GCNPat < 1178 (fabs v2f16:$src), 1179 (S_AND_B32 $src, (S_MOV_B32 (i32 0x7fff7fff))) 1180>; 1181 1182// This is really (fneg (fabs v2f16:$src)) 1183// 1184// fabs is not reported as free because there is modifier for it in 1185// VOP3P instructions, so it is turned into the bit op. 1186def : GCNPat < 1187 (fneg (v2f16 (bitconvert (and_oneuse i32:$src, 0x7fff7fff)))), 1188 (S_OR_B32 $src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1189>; 1190 1191def : GCNPat < 1192 (fneg (v2f16 (fabs v2f16:$src))), 1193 (S_OR_B32 $src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit 1194>; 1195 1196/********** ================== **********/ 1197/********** Immediate Patterns **********/ 1198/********** ================== **********/ 1199 1200def : GCNPat < 1201 (VGPRImm<(i32 imm)>:$imm), 1202 (V_MOV_B32_e32 imm:$imm) 1203>; 1204 1205def : GCNPat < 1206 (VGPRImm<(f32 fpimm)>:$imm), 1207 (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) 1208>; 1209 1210def : GCNPat < 1211 (i32 imm:$imm), 1212 (S_MOV_B32 imm:$imm) 1213>; 1214 1215def : GCNPat < 1216 (VGPRImm<(SIlds tglobaladdr:$ga)>), 1217 (V_MOV_B32_e32 $ga) 1218>; 1219 1220def : GCNPat < 1221 (SIlds tglobaladdr:$ga), 1222 (S_MOV_B32 $ga) 1223>; 1224 1225// FIXME: Workaround for ordering issue with peephole optimizer where 1226// a register class copy interferes with immediate folding. Should 1227// use s_mov_b32, which can be shrunk to s_movk_i32 1228def : GCNPat < 1229 (VGPRImm<(f16 fpimm)>:$imm), 1230 (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) 1231>; 1232 1233def : GCNPat < 1234 (f32 fpimm:$imm), 1235 (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) 1236>; 1237 1238def : GCNPat < 1239 (f16 fpimm:$imm), 1240 (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) 1241>; 1242 1243def : GCNPat < 1244 (i32 frameindex:$fi), 1245 (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi))) 1246>; 1247 1248def : GCNPat < 1249 (i64 InlineImm<i64>:$imm), 1250 (S_MOV_B64 InlineImm<i64>:$imm) 1251>; 1252 1253// XXX - Should this use a s_cmp to set SCC? 1254 1255// Set to sign-extended 64-bit value (true = -1, false = 0) 1256def : GCNPat < 1257 (i1 imm:$imm), 1258 (S_MOV_B64 (i64 (as_i64imm $imm))) 1259> { 1260 let WaveSizePredicate = isWave64; 1261} 1262 1263def : GCNPat < 1264 (i1 imm:$imm), 1265 (S_MOV_B32 (i32 (as_i32imm $imm))) 1266> { 1267 let WaveSizePredicate = isWave32; 1268} 1269 1270def : GCNPat < 1271 (f64 InlineFPImm<f64>:$imm), 1272 (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm<f64>:$imm))) 1273>; 1274 1275/********** ================== **********/ 1276/********** Intrinsic Patterns **********/ 1277/********** ================== **********/ 1278 1279def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; 1280 1281def : GCNPat < 1282 (i32 (sext i1:$src0)), 1283 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1284 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0) 1285>; 1286 1287class Ext32Pat <SDNode ext> : GCNPat < 1288 (i32 (ext i1:$src0)), 1289 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1290 /*src1mod*/(i32 0), /*src1*/(i32 1), $src0) 1291>; 1292 1293def : Ext32Pat <zext>; 1294def : Ext32Pat <anyext>; 1295 1296// The multiplication scales from [0,1] to the unsigned integer range 1297def : GCNPat < 1298 (AMDGPUurecip i32:$src0), 1299 (V_CVT_U32_F32_e32 1300 (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1), 1301 (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) 1302>; 1303 1304//===----------------------------------------------------------------------===// 1305// VOP3 Patterns 1306//===----------------------------------------------------------------------===// 1307 1308def : IMad24Pat<V_MAD_I32_I24, 1>; 1309def : UMad24Pat<V_MAD_U32_U24, 1>; 1310 1311// FIXME: This should only be done for VALU inputs 1312defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>; 1313def : ROTRPattern <V_ALIGNBIT_B32>; 1314 1315def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), 1316 (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1317 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1318 1319def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), 1320 (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), 1321 (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; 1322 1323/********** ====================== **********/ 1324/********** Indirect addressing **********/ 1325/********** ====================== **********/ 1326 1327multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { 1328 // Extract with offset 1329 def : GCNPat< 1330 (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), 1331 (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) 1332 >; 1333 1334 // Insert with offset 1335 def : GCNPat< 1336 (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), 1337 (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) 1338 >; 1339} 1340 1341defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; 1342defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; 1343defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; 1344defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; 1345 1346defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; 1347defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; 1348defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; 1349defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; 1350 1351//===----------------------------------------------------------------------===// 1352// SAD Patterns 1353//===----------------------------------------------------------------------===// 1354 1355def : GCNPat < 1356 (add (sub_oneuse (umax i32:$src0, i32:$src1), 1357 (umin i32:$src0, i32:$src1)), 1358 i32:$src2), 1359 (V_SAD_U32 $src0, $src1, $src2, (i1 0)) 1360>; 1361 1362def : GCNPat < 1363 (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), 1364 (sub i32:$src0, i32:$src1), 1365 (sub i32:$src1, i32:$src0)), 1366 i32:$src2), 1367 (V_SAD_U32 $src0, $src1, $src2, (i1 0)) 1368>; 1369 1370//===----------------------------------------------------------------------===// 1371// Conversion Patterns 1372//===----------------------------------------------------------------------===// 1373 1374def : GCNPat<(i32 (sext_inreg i32:$src, i1)), 1375 (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 1376 1377// Handle sext_inreg in i64 1378def : GCNPat < 1379 (i64 (sext_inreg i64:$src, i1)), 1380 (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 1381>; 1382 1383def : GCNPat < 1384 (i16 (sext_inreg i16:$src, i1)), 1385 (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 1386>; 1387 1388def : GCNPat < 1389 (i16 (sext_inreg i16:$src, i8)), 1390 (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 1391>; 1392 1393def : GCNPat < 1394 (i64 (sext_inreg i64:$src, i8)), 1395 (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 1396>; 1397 1398def : GCNPat < 1399 (i64 (sext_inreg i64:$src, i16)), 1400 (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 1401>; 1402 1403def : GCNPat < 1404 (i64 (sext_inreg i64:$src, i32)), 1405 (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 1406>; 1407 1408def : GCNPat < 1409 (i64 (zext i32:$src)), 1410 (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) 1411>; 1412 1413def : GCNPat < 1414 (i64 (anyext i32:$src)), 1415 (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) 1416>; 1417 1418class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < 1419 (i64 (ext i1:$src)), 1420 (REG_SEQUENCE VReg_64, 1421 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1422 /*src1mod*/(i32 0), /*src1*/(i32 1), $src), 1423 sub0, (S_MOV_B32 (i32 0)), sub1) 1424>; 1425 1426 1427def : ZExt_i64_i1_Pat<zext>; 1428def : ZExt_i64_i1_Pat<anyext>; 1429 1430// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that 1431// REG_SEQUENCE patterns don't support instructions with multiple outputs. 1432def : GCNPat < 1433 (i64 (sext i32:$src)), 1434 (REG_SEQUENCE SReg_64, $src, sub0, 1435 (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) 1436>; 1437 1438def : GCNPat < 1439 (i64 (sext i1:$src)), 1440 (REG_SEQUENCE VReg_64, 1441 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1442 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0, 1443 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1444 /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1) 1445>; 1446 1447class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < 1448 (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), 1449 (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) 1450>; 1451 1452def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; 1453def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; 1454def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; 1455def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; 1456 1457// If we need to perform a logical operation on i1 values, we need to 1458// use vector comparisons since there is only one SCC register. Vector 1459// comparisons may write to a pair of SGPRs or a single SGPR, so treat 1460// these as 32 or 64-bit comparisons. When legalizing SGPR copies, 1461// instructions resulting in the copies from SCC to these instructions 1462// will be moved to the VALU. 1463 1464let WaveSizePredicate = isWave64 in { 1465def : GCNPat < 1466 (i1 (and i1:$src0, i1:$src1)), 1467 (S_AND_B64 $src0, $src1) 1468>; 1469 1470def : GCNPat < 1471 (i1 (or i1:$src0, i1:$src1)), 1472 (S_OR_B64 $src0, $src1) 1473>; 1474 1475def : GCNPat < 1476 (i1 (xor i1:$src0, i1:$src1)), 1477 (S_XOR_B64 $src0, $src1) 1478>; 1479 1480def : GCNPat < 1481 (i1 (add i1:$src0, i1:$src1)), 1482 (S_XOR_B64 $src0, $src1) 1483>; 1484 1485def : GCNPat < 1486 (i1 (sub i1:$src0, i1:$src1)), 1487 (S_XOR_B64 $src0, $src1) 1488>; 1489 1490let AddedComplexity = 1 in { 1491def : GCNPat < 1492 (i1 (add i1:$src0, (i1 -1))), 1493 (S_NOT_B64 $src0) 1494>; 1495 1496def : GCNPat < 1497 (i1 (sub i1:$src0, (i1 -1))), 1498 (S_NOT_B64 $src0) 1499>; 1500} 1501} // end isWave64 1502 1503let WaveSizePredicate = isWave32 in { 1504def : GCNPat < 1505 (i1 (and i1:$src0, i1:$src1)), 1506 (S_AND_B32 $src0, $src1) 1507>; 1508 1509def : GCNPat < 1510 (i1 (or i1:$src0, i1:$src1)), 1511 (S_OR_B32 $src0, $src1) 1512>; 1513 1514def : GCNPat < 1515 (i1 (xor i1:$src0, i1:$src1)), 1516 (S_XOR_B32 $src0, $src1) 1517>; 1518 1519def : GCNPat < 1520 (i1 (add i1:$src0, i1:$src1)), 1521 (S_XOR_B32 $src0, $src1) 1522>; 1523 1524def : GCNPat < 1525 (i1 (sub i1:$src0, i1:$src1)), 1526 (S_XOR_B32 $src0, $src1) 1527>; 1528 1529let AddedComplexity = 1 in { 1530def : GCNPat < 1531 (i1 (add i1:$src0, (i1 -1))), 1532 (S_NOT_B32 $src0) 1533>; 1534 1535def : GCNPat < 1536 (i1 (sub i1:$src0, (i1 -1))), 1537 (S_NOT_B32 $src0) 1538>; 1539} 1540} // end isWave32 1541 1542def : GCNPat < 1543 (f16 (sint_to_fp i1:$src)), 1544 (V_CVT_F16_F32_e32 ( 1545 V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1546 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), 1547 $src)) 1548>; 1549 1550def : GCNPat < 1551 (f16 (uint_to_fp i1:$src)), 1552 (V_CVT_F16_F32_e32 ( 1553 V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1554 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), 1555 $src)) 1556>; 1557 1558def : GCNPat < 1559 (f32 (sint_to_fp i1:$src)), 1560 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1561 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), 1562 $src) 1563>; 1564 1565def : GCNPat < 1566 (f32 (uint_to_fp i1:$src)), 1567 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1568 /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), 1569 $src) 1570>; 1571 1572def : GCNPat < 1573 (f64 (sint_to_fp i1:$src)), 1574 (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1575 /*src1mod*/(i32 0), /*src1*/(i32 -1), 1576 $src)) 1577>; 1578 1579def : GCNPat < 1580 (f64 (uint_to_fp i1:$src)), 1581 (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), 1582 /*src1mod*/(i32 0), /*src1*/(i32 1), 1583 $src)) 1584>; 1585 1586//===----------------------------------------------------------------------===// 1587// Miscellaneous Patterns 1588//===----------------------------------------------------------------------===// 1589def : GCNPat < 1590 (i32 (AMDGPUfp16_zext f16:$src)), 1591 (COPY $src) 1592>; 1593 1594 1595def : GCNPat < 1596 (i32 (trunc i64:$a)), 1597 (EXTRACT_SUBREG $a, sub0) 1598>; 1599 1600def : GCNPat < 1601 (i1 (trunc i32:$a)), 1602 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 1603>; 1604 1605def : GCNPat < 1606 (i1 (trunc i16:$a)), 1607 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) 1608>; 1609 1610def : GCNPat < 1611 (i1 (trunc i64:$a)), 1612 (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), 1613 (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) 1614>; 1615 1616def : GCNPat < 1617 (i32 (bswap i32:$a)), 1618 (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)), 1619 (V_ALIGNBIT_B32 $a, $a, (i32 24)), 1620 (V_ALIGNBIT_B32 $a, $a, (i32 8))) 1621>; 1622 1623let OtherPredicates = [NoFP16Denormals] in { 1624def : GCNPat< 1625 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 1626 (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0) 1627>; 1628 1629def : GCNPat< 1630 (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), 1631 (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src, 0, 0) 1632>; 1633 1634def : GCNPat< 1635 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 1636 (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) 1637>; 1638} 1639 1640let OtherPredicates = [FP16Denormals] in { 1641def : GCNPat< 1642 (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), 1643 (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0) 1644>; 1645 1646let SubtargetPredicate = HasVOP3PInsts in { 1647def : GCNPat< 1648 (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), 1649 (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE) 1650>; 1651} 1652} 1653 1654let OtherPredicates = [NoFP32Denormals] in { 1655def : GCNPat< 1656 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 1657 (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0) 1658>; 1659 1660def : GCNPat< 1661 (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), 1662 (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src, 0, 0) 1663>; 1664} 1665 1666let OtherPredicates = [FP32Denormals] in { 1667def : GCNPat< 1668 (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), 1669 (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0) 1670>; 1671} 1672 1673let OtherPredicates = [NoFP64Denormals] in { 1674def : GCNPat< 1675 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 1676 (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0) 1677>; 1678} 1679 1680let OtherPredicates = [FP64Denormals] in { 1681def : GCNPat< 1682 (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), 1683 (V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0) 1684>; 1685} 1686 1687let OtherPredicates = [HasDLInsts] in { 1688def : GCNPat < 1689 (fma (f32 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)), 1690 (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 1691 (f32 (VOP3NoMods f32:$src2))), 1692 (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 1693 SRCMODS.NONE, $src2, $clamp, $omod) 1694>; 1695} // End OtherPredicates = [HasDLInsts] 1696 1697let SubtargetPredicate = isGFX10Plus in 1698def : GCNPat < 1699 (fma (f16 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)), 1700 (f16 (VOP3Mods f32:$src1, i32:$src1_modifiers)), 1701 (f16 (VOP3NoMods f32:$src2))), 1702 (V_FMAC_F16_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, 1703 SRCMODS.NONE, $src2, $clamp, $omod) 1704>; 1705 1706// Allow integer inputs 1707class ExpPattern<SDPatternOperator node, ValueType vt, Instruction Inst> : GCNPat< 1708 (node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)), 1709 (Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en) 1710>; 1711 1712def : ExpPattern<AMDGPUexport, i32, EXP>; 1713def : ExpPattern<AMDGPUexport_done, i32, EXP_DONE>; 1714 1715// COPY is workaround tablegen bug from multiple outputs 1716// from S_LSHL_B32's multiple outputs from implicit scc def. 1717def : GCNPat < 1718 (v2i16 (build_vector (i16 0), i16:$src1)), 1719 (v2i16 (COPY (S_LSHL_B32 i16:$src1, (i16 16)))) 1720>; 1721 1722def : GCNPat < 1723 (v2i16 (build_vector i16:$src0, (i16 undef))), 1724 (v2i16 (COPY $src0)) 1725>; 1726 1727def : GCNPat < 1728 (v2f16 (build_vector f16:$src0, (f16 undef))), 1729 (v2f16 (COPY $src0)) 1730>; 1731 1732def : GCNPat < 1733 (v2i16 (build_vector (i16 undef), i16:$src1)), 1734 (v2i16 (COPY (S_LSHL_B32 $src1, (i32 16)))) 1735>; 1736 1737def : GCNPat < 1738 (v2f16 (build_vector (f16 undef), f16:$src1)), 1739 (v2f16 (COPY (S_LSHL_B32 $src1, (i32 16)))) 1740>; 1741 1742let SubtargetPredicate = HasVOP3PInsts in { 1743def : GCNPat < 1744 (v2i16 (build_vector i16:$src0, i16:$src1)), 1745 (v2i16 (S_PACK_LL_B32_B16 $src0, $src1)) 1746>; 1747 1748// With multiple uses of the shift, this will duplicate the shift and 1749// increase register pressure. 1750def : GCNPat < 1751 (v2i16 (build_vector i16:$src0, (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), 1752 (v2i16 (S_PACK_LH_B32_B16 i16:$src0, i32:$src1)) 1753>; 1754 1755 1756def : GCNPat < 1757 (v2i16 (build_vector (i16 (trunc (srl_oneuse i32:$src0, (i32 16)))), 1758 (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), 1759 (v2i16 (S_PACK_HH_B32_B16 $src0, $src1)) 1760>; 1761 1762// TODO: Should source modifiers be matched to v_pack_b32_f16? 1763def : GCNPat < 1764 (v2f16 (build_vector f16:$src0, f16:$src1)), 1765 (v2f16 (S_PACK_LL_B32_B16 $src0, $src1)) 1766>; 1767 1768} // End SubtargetPredicate = HasVOP3PInsts 1769 1770 1771def : GCNPat < 1772 (v2f16 (scalar_to_vector f16:$src0)), 1773 (COPY $src0) 1774>; 1775 1776def : GCNPat < 1777 (v2i16 (scalar_to_vector i16:$src0)), 1778 (COPY $src0) 1779>; 1780 1781def : GCNPat < 1782 (v4i16 (scalar_to_vector i16:$src0)), 1783 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 1784>; 1785 1786def : GCNPat < 1787 (v4f16 (scalar_to_vector f16:$src0)), 1788 (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) 1789>; 1790 1791//===----------------------------------------------------------------------===// 1792// Fract Patterns 1793//===----------------------------------------------------------------------===// 1794 1795let SubtargetPredicate = isGFX6 in { 1796 1797// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is 1798// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient 1799// way to implement it is using V_FRACT_F64. 1800// The workaround for the V_FRACT bug is: 1801// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) 1802 1803// Convert floor(x) to (x - fract(x)) 1804def : GCNPat < 1805 (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), 1806 (V_ADD_F64 1807 $mods, 1808 $x, 1809 SRCMODS.NEG, 1810 (V_CNDMASK_B64_PSEUDO 1811 (V_MIN_F64 1812 SRCMODS.NONE, 1813 (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), 1814 SRCMODS.NONE, 1815 (V_MOV_B64_PSEUDO 0x3fefffffffffffff), 1816 DSTCLAMP.NONE, DSTOMOD.NONE), 1817 $x, 1818 (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))), 1819 DSTCLAMP.NONE, DSTOMOD.NONE) 1820>; 1821 1822} // End SubtargetPredicates = isGFX6 1823 1824//============================================================================// 1825// Miscellaneous Optimization Patterns 1826//============================================================================// 1827 1828// Undo sub x, c -> add x, -c canonicalization since c is more likely 1829// an inline immediate than -c. 1830// TODO: Also do for 64-bit. 1831def : GCNPat< 1832 (add i32:$src0, (i32 NegSubInlineConst32:$src1)), 1833 (S_SUB_I32 $src0, NegSubInlineConst32:$src1) 1834>; 1835 1836// Avoid pointlessly materializing a constant in VGPR. 1837// FIXME: Should also do this for readlane, but tablegen crashes on 1838// the ignored src1. 1839def : GCNPat< 1840 (int_amdgcn_readfirstlane (i32 imm:$src)), 1841 (S_MOV_B32 $src) 1842>; 1843 1844multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { 1845 def : GCNPat < 1846 (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), 1847 (BFM $a, $b) 1848 >; 1849 1850 def : GCNPat < 1851 (vt (add (vt (shl 1, vt:$a)), -1)), 1852 (BFM $a, (MOV (i32 0))) 1853 >; 1854} 1855 1856defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; 1857// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; 1858 1859defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>; 1860defm : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64, SReg_64>; 1861 1862defm : IntMed3Pat<V_MED3_I32, smin, smax, smin_oneuse, smax_oneuse>; 1863defm : IntMed3Pat<V_MED3_U32, umin, umax, umin_oneuse, umax_oneuse>; 1864 1865// This matches 16 permutations of 1866// max(min(x, y), min(max(x, y), z)) 1867class FPMed3Pat<ValueType vt, 1868 //SDPatternOperator max, SDPatternOperator min, 1869 Instruction med3Inst> : GCNPat< 1870 (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1871 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1872 (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1873 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1874 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 1875 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) 1876>; 1877 1878class FP16Med3Pat<ValueType vt, 1879 Instruction med3Inst> : GCNPat< 1880 (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1881 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1882 (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), 1883 (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), 1884 (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), 1885 (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) 1886>; 1887 1888multiclass Int16Med3Pat<Instruction med3Inst, 1889 SDPatternOperator min, 1890 SDPatternOperator max, 1891 SDPatternOperator max_oneuse, 1892 SDPatternOperator min_oneuse, 1893 ValueType vt = i16> { 1894 // This matches 16 permutations of 1895 // max(min(x, y), min(max(x, y), z)) 1896 def : GCNPat < 1897 (max (min_oneuse vt:$src0, vt:$src1), 1898 (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), 1899 (med3Inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE) 1900>; 1901 1902 // This matches 16 permutations of 1903 // min(max(a, b), max(min(a, b), c)) 1904 def : GCNPat < 1905 (min (max_oneuse vt:$src0, vt:$src1), 1906 (max_oneuse (min_oneuse vt:$src0, vt:$src1), vt:$src2)), 1907 (med3Inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE) 1908>; 1909} 1910 1911def : FPMed3Pat<f32, V_MED3_F32>; 1912 1913let OtherPredicates = [isGFX9Plus] in { 1914def : FP16Med3Pat<f16, V_MED3_F16>; 1915defm : Int16Med3Pat<V_MED3_I16, smin, smax, smax_oneuse, smin_oneuse>; 1916defm : Int16Med3Pat<V_MED3_U16, umin, umax, umax_oneuse, umin_oneuse>; 1917} // End Predicates = [isGFX9Plus] 1918