xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInstructions.td (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17class UniformSextInreg<ValueType VT> : PatFrag<
18  (ops node:$src),
19  (sext_inreg $src, VT),
20  [{ return !N->isDivergent(); }]>;
21
22class DivergentSextInreg<ValueType VT> : PatFrag<
23  (ops node:$src),
24  (sext_inreg $src, VT),
25  [{ return N->isDivergent(); }]>;
26
27include "SOPInstructions.td"
28include "VOPInstructions.td"
29include "SMInstructions.td"
30include "FLATInstructions.td"
31include "BUFInstructions.td"
32include "EXPInstructions.td"
33include "LDSDIRInstructions.td"
34include "VINTERPInstructions.td"
35
36//===----------------------------------------------------------------------===//
37// VINTRP Instructions
38//===----------------------------------------------------------------------===//
39
40// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
41def VINTRPDst : VINTRPDstOperand <VGPR_32>;
42
43let Uses = [MODE, M0, EXEC] in {
44
45// FIXME: Specify SchedRW for VINTRP instructions.
46
47multiclass V_INTERP_P1_F32_m : VINTRP_m <
48  0x00000000,
49  (outs VINTRPDst:$vdst),
50  (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
51  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
52  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
53                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
54>;
55
56let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
57
58defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
59
60} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
61
62let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
63    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
64
65defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
66
67} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
68  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
69
70let OtherPredicates = [isNotGFX90APlus] in {
71let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
72
73defm V_INTERP_P2_F32 : VINTRP_m <
74  0x00000001,
75  (outs VINTRPDst:$vdst),
76  (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
77  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
78  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
79                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
80
81} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
82
83defm V_INTERP_MOV_F32 : VINTRP_m <
84  0x00000002,
85  (outs VINTRPDst:$vdst),
86  (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan),
87  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
88  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
89                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
90
91} // End OtherPredicates = [isNotGFX90APlus]
92
93} // End Uses = [MODE, M0, EXEC]
94
95//===----------------------------------------------------------------------===//
96// Pseudo Instructions
97//===----------------------------------------------------------------------===//
98def ATOMIC_FENCE : SPseudoInstSI<
99  (outs), (ins i32imm:$ordering, i32imm:$scope),
100  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
101  "ATOMIC_FENCE $ordering, $scope"> {
102  let hasSideEffects = 1;
103  let maybeAtomic = 1;
104}
105
106let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
107
108// For use in patterns
109def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
110  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
111  let isPseudo = 1;
112  let isCodeGenOnly = 1;
113  let usesCustomInserter = 1;
114}
115
116// 64-bit vector move instruction. This is mainly used by the
117// SIFoldOperands pass to enable folding of inline immediates.
118def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
119                                      (ins VSrc_b64:$src0)> {
120  let isReMaterializable = 1;
121  let isAsCheapAsAMove = 1;
122  let isMoveImm = 1;
123  let SchedRW = [Write64Bit];
124  let Size = 16; // Needs maximum 2 v_mov_b32 instructions 8 byte long each.
125}
126
127// 64-bit vector move with dpp. Expanded post-RA.
128def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
129  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
130}
131
132// 64-bit scalar move immediate instruction. This is used to avoid subregs
133// initialization and allow rematerialization.
134def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
135                                          (ins i64imm:$src0)> {
136  let isReMaterializable = 1;
137  let isAsCheapAsAMove = 1;
138  let isMoveImm = 1;
139  let SchedRW = [WriteSALU, Write64Bit];
140  let Size = 16; // Needs maximum 2 s_mov_b32 instructions 8 byte long each.
141  let Uses = [];
142}
143
144// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
145// WQM pass processes it.
146def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
147
148// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
149// turned into a copy by WQM pass, but does not seed WQM requirements.
150def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
151
152// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
153// that the @earlyclobber is respected. The @earlyclobber is to make sure that
154// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
155// accidentally clobber inactive channels of $vdst.
156let Constraints = "@earlyclobber $vdst" in {
157def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
158def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
159}
160
161} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
162
163def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
164  let Uses = [EXEC];
165  let Defs = [EXEC, SCC];
166  let hasSideEffects = 0;
167  let mayLoad = 0;
168  let mayStore = 0;
169}
170
171def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
172  let hasSideEffects = 0;
173  let mayLoad = 0;
174  let mayStore = 0;
175}
176
177def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
178  let Uses = [EXEC];
179  let Defs = [EXEC, SCC];
180  let hasSideEffects = 0;
181  let mayLoad = 0;
182  let mayStore = 0;
183}
184
185def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
186  let hasSideEffects = 0;
187  let mayLoad = 0;
188  let mayStore = 0;
189}
190
191// Pseudo instructions used for @llvm.fptrunc.round upward
192// and @llvm.fptrunc.round downward.
193// These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD
194// and G_FPTRUNC_ROUND_DOWNWARD before being lowered to
195// FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO.
196// The final codegen is done in the ModeRegister pass.
197let Uses = [MODE, EXEC] in {
198def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
199  (ins VGPR_32:$src0),
200  [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>;
201
202def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
203  (ins VGPR_32:$src0),
204  [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>;
205} // End Uses = [MODE, EXEC]
206
207// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
208// restoring it after we're done.
209let Defs = [SCC] in {
210def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
211  (ins VSrc_b32: $src, VSrc_b32:$inactive),
212  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
213}
214
215def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
216  (ins VSrc_b64: $src, VSrc_b64:$inactive),
217  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
218}
219} // End Defs = [SCC]
220
221let usesCustomInserter = 1, Defs = [VCC, EXEC] in {
222def V_ADD_U64_PSEUDO : VPseudoInstSI <
223  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
224  [(set VReg_64:$vdst, (getDivergentFrag<add>.ret i64:$src0, i64:$src1))]
225>;
226
227def V_SUB_U64_PSEUDO : VPseudoInstSI <
228  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
229  [(set VReg_64:$vdst, (getDivergentFrag<sub>.ret i64:$src0, i64:$src1))]
230>;
231} // End usesCustomInserter = 1, Defs = [VCC, EXEC]
232
233let usesCustomInserter = 1, Defs = [SCC] in {
234def S_ADD_U64_PSEUDO : SPseudoInstSI <
235  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
236  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
237>;
238
239def S_SUB_U64_PSEUDO : SPseudoInstSI <
240  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
241  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
242>;
243
244def S_ADD_U64_CO_PSEUDO : SPseudoInstSI <
245  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
246>;
247
248def S_SUB_U64_CO_PSEUDO : SPseudoInstSI <
249  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
250>;
251
252def S_ADD_CO_PSEUDO : SPseudoInstSI <
253  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
254>;
255
256def S_SUB_CO_PSEUDO : SPseudoInstSI <
257  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
258>;
259
260def S_UADDO_PSEUDO : SPseudoInstSI <
261  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
262>;
263
264def S_USUBO_PSEUDO : SPseudoInstSI <
265  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
266>;
267
268} // End usesCustomInserter = 1, Defs = [SCC]
269
270let usesCustomInserter = 1 in {
271def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
272  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
273} // End let usesCustomInserter = 1, SALU = 1
274
275// Wrap an instruction by duplicating it, except for setting isTerminator.
276class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
277      base_inst.OutOperandList,
278      base_inst.InOperandList> {
279  let Uses = base_inst.Uses;
280  let Defs = base_inst.Defs;
281  let isTerminator = 1;
282  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
283  let hasSideEffects = base_inst.hasSideEffects;
284  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
285  let CodeSize = base_inst.CodeSize;
286  let SchedRW = base_inst.SchedRW;
287}
288
289let WaveSizePredicate = isWave64 in {
290def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
291def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
292def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
293def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
294def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
295}
296
297let WaveSizePredicate = isWave32 in {
298def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
299def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
300def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
301def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
302def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
303}
304
305
306def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
307  [(int_amdgcn_wave_barrier)]> {
308  let SchedRW = [];
309  let hasNoSchedulingInfo = 1;
310  let hasSideEffects = 1;
311  let mayLoad = 0;
312  let mayStore = 0;
313  let isConvergent = 1;
314  let FixedSize = 1;
315  let Size = 0;
316  let isMeta = 1;
317}
318
319def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
320  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
321  let SchedRW = [];
322  let hasNoSchedulingInfo = 1;
323  let hasSideEffects = 1;
324  let mayLoad = 0;
325  let mayStore = 0;
326  let isConvergent = 1;
327  let FixedSize = 1;
328  let Size = 0;
329  let isMeta = 1;
330}
331
332// SI pseudo instructions. These are used by the CFG structurizer pass
333// and should be lowered to ISA instructions prior to codegen.
334
335let isTerminator = 1 in {
336
337let OtherPredicates = [EnableLateCFGStructurize] in {
338 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
339  (outs),
340  (ins SReg_1:$vcc, brtarget:$target),
341  [(brcond i1:$vcc, bb:$target)]> {
342    let Size = 12;
343}
344}
345
346def SI_IF: CFPseudoInstSI <
347  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
348  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
349  let Constraints = "";
350  let Size = 12;
351  let hasSideEffects = 1;
352}
353
354def SI_ELSE : CFPseudoInstSI <
355  (outs SReg_1:$dst),
356  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
357  let Size = 12;
358  let hasSideEffects = 1;
359}
360
361def SI_WATERFALL_LOOP : CFPseudoInstSI <
362  (outs),
363  (ins brtarget:$target), [], 1> {
364  let Size = 8;
365  let isBranch = 1;
366  let Defs = [];
367}
368
369def SI_LOOP : CFPseudoInstSI <
370  (outs), (ins SReg_1:$saved, brtarget:$target),
371  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
372  let Size = 8;
373  let isBranch = 1;
374  let hasSideEffects = 1;
375}
376
377} // End isTerminator = 1
378
379def SI_END_CF : CFPseudoInstSI <
380  (outs), (ins SReg_1:$saved), [], 1, 1> {
381  let Size = 4;
382  let isAsCheapAsAMove = 1;
383  let isReMaterializable = 1;
384  let hasSideEffects = 1;
385  let mayLoad = 1; // FIXME: Should not need memory flags
386  let mayStore = 1;
387}
388
389def SI_IF_BREAK : CFPseudoInstSI <
390  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
391  let Size = 4;
392  let isAsCheapAsAMove = 1;
393  let isReMaterializable = 1;
394}
395
396// Branch to the early termination block of the shader if SCC is 0.
397// This uses SCC from a previous SALU operation, i.e. the update of
398// a mask of live lanes after a kill/demote operation.
399// Only valid in pixel shaders.
400def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
401  let Uses = [EXEC,SCC];
402}
403
404let Uses = [EXEC] in {
405
406multiclass PseudoInstKill <dag ins> {
407  // Even though this pseudo can usually be expanded without an SCC def, we
408  // conservatively assume that it has an SCC def, both because it is sometimes
409  // required in degenerate cases (when V_CMPX cannot be used due to constant
410  // bus limitations) and because it allows us to avoid having to track SCC
411  // liveness across basic blocks.
412  let Defs = [EXEC,SCC] in
413  def _PSEUDO : PseudoInstSI <(outs), ins> {
414    let isConvergent = 1;
415    let usesCustomInserter = 1;
416  }
417
418  let Defs = [EXEC,SCC] in
419  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
420    let isTerminator = 1;
421  }
422}
423
424defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
425let Defs = [VCC] in
426defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
427
428let Defs = [EXEC,VCC] in
429def SI_ILLEGAL_COPY : SPseudoInstSI <
430  (outs unknown:$dst), (ins unknown:$src),
431  [], " ; illegal copy $src to $dst">;
432
433} // End Uses = [EXEC], Defs = [EXEC,VCC]
434
435// Branch on undef scc. Used to avoid intermediate copy from
436// IMPLICIT_DEF to SCC.
437def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> {
438  let isTerminator = 1;
439  let usesCustomInserter = 1;
440  let isBranch = 1;
441}
442
443def SI_PS_LIVE : PseudoInstSI <
444  (outs SReg_1:$dst), (ins),
445  [(set i1:$dst, (int_amdgcn_ps_live))]> {
446  let SALU = 1;
447}
448
449let Uses = [EXEC] in {
450def SI_LIVE_MASK : PseudoInstSI <
451  (outs SReg_1:$dst), (ins),
452  [(set i1:$dst, (int_amdgcn_live_mask))]> {
453  let SALU = 1;
454}
455let Defs = [EXEC,SCC] in {
456// Demote: Turn a pixel shader thread into a helper lane.
457def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
458} // End Defs = [EXEC,SCC]
459} // End Uses = [EXEC]
460
461def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
462  [(int_amdgcn_unreachable)],
463  "; divergent unreachable"> {
464  let Size = 0;
465  let hasNoSchedulingInfo = 1;
466  let FixedSize = 1;
467  let isMeta = 1;
468}
469
470// Used as an isel pseudo to directly emit initialization with an
471// s_mov_b32 rather than a copy of another initialized
472// register. MachineCSE skips copies, and we don't want to have to
473// fold operands before it runs.
474def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
475  let Defs = [M0];
476  let usesCustomInserter = 1;
477  let isAsCheapAsAMove = 1;
478  let isReMaterializable = 1;
479}
480
481def SI_INIT_EXEC : SPseudoInstSI <
482  (outs), (ins i64imm:$src),
483  [(int_amdgcn_init_exec (i64 timm:$src))]> {
484  let Defs = [EXEC];
485  let isAsCheapAsAMove = 1;
486}
487
488def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
489  (outs), (ins SSrc_b32:$input, i32imm:$shift),
490  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
491  let Defs = [EXEC];
492}
493
494// Return for returning shaders to a shader variant epilog.
495def SI_RETURN_TO_EPILOG : SPseudoInstSI <
496  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
497  let isTerminator = 1;
498  let isBarrier = 1;
499  let isReturn = 1;
500  let hasNoSchedulingInfo = 1;
501  let DisableWQM = 1;
502  let FixedSize = 1;
503
504  // TODO: Should this be true?
505  let isMeta = 0;
506}
507
508// Return for returning function calls.
509def SI_RETURN : SPseudoInstSI <
510  (outs), (ins), [(AMDGPUret_flag)],
511  "; return"> {
512  let isTerminator = 1;
513  let isBarrier = 1;
514  let isReturn = 1;
515  let SchedRW = [WriteBranch];
516}
517
518// Return for returning function calls without output register.
519//
520// This version is only needed so we can fill in the output register
521// in the custom inserter.
522def SI_CALL_ISEL : SPseudoInstSI <
523  (outs), (ins SSrc_b64:$src0, unknown:$callee),
524  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
525  let Size = 4;
526  let isCall = 1;
527  let SchedRW = [WriteBranch];
528  let usesCustomInserter = 1;
529  // TODO: Should really base this on the call target
530  let isConvergent = 1;
531}
532
533def : GCNPat<
534  (AMDGPUcall i64:$src0, (i64 0)),
535  (SI_CALL_ISEL $src0, (i64 0))
536>;
537
538// Wrapper around s_swappc_b64 with extra $callee parameter to track
539// the called function after regalloc.
540def SI_CALL : SPseudoInstSI <
541  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
542  let Size = 4;
543  let FixedSize = 1;
544  let isCall = 1;
545  let UseNamedOperandTable = 1;
546  let SchedRW = [WriteBranch];
547  // TODO: Should really base this on the call target
548  let isConvergent = 1;
549}
550
551// Tail call handling pseudo
552def SI_TCRETURN : SPseudoInstSI <(outs),
553  (ins SReg_64:$src0, unknown:$callee, i32imm:$fpdiff),
554  [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
555  let Size = 4;
556  let FixedSize = 1;
557  let isCall = 1;
558  let isTerminator = 1;
559  let isReturn = 1;
560  let isBarrier = 1;
561  let UseNamedOperandTable = 1;
562  let SchedRW = [WriteBranch];
563  // TODO: Should really base this on the call target
564  let isConvergent = 1;
565}
566
567// Handle selecting indirect tail calls
568def : GCNPat<
569  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
570  (SI_TCRETURN SReg_64:$src0, (i64 0), i32imm:$fpdiff)
571>;
572
573def ADJCALLSTACKUP : SPseudoInstSI<
574  (outs), (ins i32imm:$amt0, i32imm:$amt1),
575  [(callseq_start timm:$amt0, timm:$amt1)],
576  "; adjcallstackup $amt0 $amt1"> {
577  let Size = 8; // Worst case. (s_add_u32 + constant)
578  let FixedSize = 1;
579  let hasSideEffects = 1;
580  let usesCustomInserter = 1;
581  let SchedRW = [WriteSALU];
582  let Defs = [SCC];
583}
584
585def ADJCALLSTACKDOWN : SPseudoInstSI<
586  (outs), (ins i32imm:$amt1, i32imm:$amt2),
587  [(callseq_end timm:$amt1, timm:$amt2)],
588  "; adjcallstackdown $amt1"> {
589  let Size = 8; // Worst case. (s_add_u32 + constant)
590  let hasSideEffects = 1;
591  let usesCustomInserter = 1;
592  let SchedRW = [WriteSALU];
593  let Defs = [SCC];
594}
595
596let Defs = [M0, EXEC, SCC],
597  UseNamedOperandTable = 1 in {
598
599// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
600// addressing implementation.
601class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
602  (outs VGPR_32:$vdst),
603  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
604  let usesCustomInserter = 1;
605}
606
607class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
608  (outs rc:$vdst),
609  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
610  let Constraints = "$src = $vdst";
611  let usesCustomInserter = 1;
612}
613
614def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
615def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
616def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
617def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
618def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
619def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
620
621def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
622def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
623def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
624def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
625def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
626def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
627
628} // End Uses = [EXEC], Defs = [M0, EXEC]
629
630// This is a pseudo variant of the v_movreld_b32 instruction in which the
631// vector operand appears only twice, once as def and once as use. Using this
632// pseudo avoids problems with the Two Address instructions pass.
633class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
634                                RegisterOperand val_ty> : PseudoInstSI <
635  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
636  let Constraints = "$vsrc = $vdst";
637  let Uses = [M0];
638}
639
640class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
641  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
642  let VALU = 1;
643  let VOP1 = 1;
644  let Uses = [M0, EXEC];
645}
646
647class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
648                                  RegisterOperand val_ty> :
649  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
650  let SALU = 1;
651  let SOP1 = 1;
652  let Uses = [M0];
653}
654
655class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
656  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
657class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
658  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
659
660def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
661def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
662def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
663def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
664def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
665def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
666def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
667def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
668
669def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
670def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
671def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
672def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
673def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
674def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
675def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
676def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
677
678def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
679def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
680def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
681def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
682def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
683
684// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
685// pseudos we avoid spills or copies being inserted within indirect sequences
686// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
687// this mode switching.
688
689class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
690  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
691  let Constraints = "$vsrc = $vdst";
692  let VALU = 1;
693  let Uses = [M0, EXEC];
694  let Defs = [M0];
695}
696
697def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
698def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
699def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
700def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
701def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
702def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
703def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
704def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
705
706class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
707  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
708  let VALU = 1;
709  let Uses = [M0, EXEC];
710  let Defs = [M0];
711}
712
713def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
714def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
715def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
716def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
717def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
718def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
719def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
720def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
721
722multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
723  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
724    def _SAVE : PseudoInstSI <
725      (outs),
726      (ins sgpr_class:$data, i32imm:$addr)> {
727      let mayStore = 1;
728      let mayLoad = 0;
729    }
730
731    def _RESTORE : PseudoInstSI <
732      (outs sgpr_class:$data),
733      (ins i32imm:$addr)> {
734      let mayStore = 0;
735      let mayLoad = 1;
736    }
737  } // End UseNamedOperandTable = 1
738}
739
740// You cannot use M0 as the output of v_readlane_b32 instructions or
741// use it in the sdata operand of SMEM instructions. We still need to
742// be able to spill the physical register m0, so allow it for
743// SI_SPILL_32_* instructions.
744defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
745defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
746defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
747defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
748defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
749defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
750defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
751defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
752defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
753defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
754
755// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
756// needs to be used and an extra instruction to move between VGPR and AGPR.
757// UsesTmp adds to the total size of an expanded spill in this case.
758multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
759  let UseNamedOperandTable = 1, VGPRSpill = 1,
760       SchedRW = [WriteVMEM] in {
761    def _SAVE : VPseudoInstSI <
762      (outs),
763      (ins vgpr_class:$vdata, i32imm:$vaddr,
764           SReg_32:$soffset, i32imm:$offset)> {
765      let mayStore = 1;
766      let mayLoad = 0;
767      // (2 * 4) + (8 * num_subregs) bytes maximum
768      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
769      // Size field is unsigned char and cannot fit more.
770      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
771    }
772
773    def _RESTORE : VPseudoInstSI <
774      (outs vgpr_class:$vdata),
775      (ins i32imm:$vaddr,
776           SReg_32:$soffset, i32imm:$offset)> {
777      let mayStore = 0;
778      let mayLoad = 1;
779
780      // (2 * 4) + (8 * num_subregs) bytes maximum
781      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
782      // Size field is unsigned char and cannot fit more.
783      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
784    }
785  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
786}
787
788defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
789defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
790defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
791defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
792defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
793defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
794defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
795defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
796defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
797defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
798
799defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
800defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
801defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
802defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
803defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
804defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
805defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
806defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
807defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
808defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
809
810defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
811defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
812defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
813defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
814defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
815defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
816defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
817defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
818defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
819defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
820
821def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
822  (outs SReg_64:$dst),
823  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
824  [(set SReg_64:$dst,
825      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
826  let Defs = [SCC];
827}
828
829def : GCNPat <
830  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
831  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
832>;
833
834def : GCNPat<
835  (AMDGPUtrap timm:$trapid),
836  (S_TRAP $trapid)
837>;
838
839def : GCNPat<
840  (AMDGPUelse i1:$src, bb:$target),
841  (SI_ELSE $src, $target)
842>;
843
844def : Pat <
845  (int_amdgcn_kill i1:$src),
846  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
847>;
848
849def : Pat <
850  (int_amdgcn_kill (i1 (not i1:$src))),
851  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
852>;
853
854def : Pat <
855  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
856  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
857>;
858
859def : Pat <
860  (int_amdgcn_wqm_demote i1:$src),
861  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
862>;
863
864def : Pat <
865  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
866  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
867>;
868
869  // TODO: we could add more variants for other types of conditionals
870
871def : Pat <
872  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
873  (COPY $src) // Return the SGPRs representing i1 src
874>;
875
876def : Pat <
877  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
878  (COPY $src) // Return the SGPRs representing i1 src
879>;
880
881//===----------------------------------------------------------------------===//
882// VOP1 Patterns
883//===----------------------------------------------------------------------===//
884
885let OtherPredicates = [UnsafeFPMath] in {
886
887// Convert (x - floor(x)) to fract(x)
888def : GCNPat <
889  (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)),
890             (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))),
891  (V_FRACT_F32_e64 $mods, $x)
892>;
893
894// Convert (x + (-floor(x))) to fract(x)
895def : GCNPat <
896  (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)),
897             (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))),
898  (V_FRACT_F64_e64 $mods, $x)
899>;
900
901} // End OtherPredicates = [UnsafeFPMath]
902
903
904// f16_to_fp patterns
905def : GCNPat <
906  (f32 (f16_to_fp i32:$src0)),
907  (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0)
908>;
909
910def : GCNPat <
911  (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
912  (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0)
913>;
914
915def : GCNPat <
916  (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
917  (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
918>;
919
920def : GCNPat <
921  (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
922  (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0)
923>;
924
925def : GCNPat <
926  (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
927  (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0)
928>;
929
930def : GCNPat <
931  (f64 (fpextend f16:$src)),
932  (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src))
933>;
934
935// fp_to_fp16 patterns
936def : GCNPat <
937  (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
938  (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0)
939>;
940
941def : GCNPat <
942  (i32 (fp_to_sint f16:$src)),
943  (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
944>;
945
946def : GCNPat <
947  (i32 (fp_to_uint f16:$src)),
948  (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
949>;
950
951def : GCNPat <
952  (f16 (sint_to_fp i32:$src)),
953  (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src))
954>;
955
956def : GCNPat <
957  (f16 (uint_to_fp i32:$src)),
958  (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src))
959>;
960
961//===----------------------------------------------------------------------===//
962// VOP2 Patterns
963//===----------------------------------------------------------------------===//
964
965// NoMods pattern used for mac. If there are any source modifiers then it's
966// better to select mad instead of mac.
967class FMADPat <ValueType vt, Instruction inst, SDPatternOperator node>
968  : GCNPat <(vt (node (vt (VOP3NoMods vt:$src0)),
969                      (vt (VOP3NoMods vt:$src1)),
970                      (vt (VOP3NoMods vt:$src2)))),
971    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
972          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
973>;
974
975// Prefer mac form when there are no modifiers.
976let AddedComplexity = 9 in {
977let OtherPredicates = [HasMadMacF32Insts] in {
978def : FMADPat <f32, V_MAC_F32_e64, fmad>;
979def : FMADPat <f32, V_MAC_F32_e64, AMDGPUfmad_ftz>;
980} // OtherPredicates = [HasMadMacF32Insts]
981
982// Don't allow source modifiers. If there are any source modifiers then it's
983// better to select mad instead of mac.
984let SubtargetPredicate = isGFX6GFX7GFX10,
985    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
986def : GCNPat <
987      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
988                                    (VOP3NoMods f32:$src1)),
989                 (VOP3NoMods f32:$src2))),
990      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
991                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
992>;
993
994// Don't allow source modifiers. If there are any source modifiers then it's
995// better to select fma instead of fmac.
996let SubtargetPredicate = HasFmaLegacy32 in
997def : GCNPat <
998      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
999                                  (VOP3NoMods f32:$src1),
1000                                  (VOP3NoMods f32:$src2))),
1001      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1002                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1003>;
1004
1005let SubtargetPredicate = Has16BitInsts in {
1006def : FMADPat <f16, V_MAC_F16_e64, fmad>;
1007def : FMADPat <f16, V_MAC_F16_e64, AMDGPUfmad_ftz>;
1008} // SubtargetPredicate = Has16BitInsts
1009} // AddedComplexity = 9
1010
1011class FMADModsPat<ValueType Ty, Instruction inst, SDPatternOperator mad_opr>
1012  : GCNPat<
1013  (Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)),
1014               (Ty (VOP3Mods Ty:$src1, i32:$src1_mod)),
1015               (Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))),
1016  (inst $src0_mod, $src0, $src1_mod, $src1,
1017  $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1018>;
1019
1020let OtherPredicates = [HasMadMacF32Insts] in
1021def : FMADModsPat<f32, V_MAD_F32_e64, AMDGPUfmad_ftz>;
1022
1023let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1024def : GCNPat <
1025      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1026                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1027                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1028      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1029                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1030>;
1031
1032let SubtargetPredicate = Has16BitInsts in
1033def : FMADModsPat<f16, V_MAD_F16_e64, AMDGPUfmad_ftz>;
1034
1035class VOPSelectModsPat <ValueType vt> : GCNPat <
1036  (vt (select i1:$src0, (VOP3Mods vt:$src1, i32:$src1_mods),
1037                        (VOP3Mods vt:$src2, i32:$src2_mods))),
1038  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1039                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1040>;
1041
1042class VOPSelectPat <ValueType vt> : GCNPat <
1043  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1044  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1045>;
1046
1047def : VOPSelectModsPat <i32>;
1048def : VOPSelectModsPat <f32>;
1049def : VOPSelectPat <f16>;
1050def : VOPSelectPat <i16>;
1051
1052let AddedComplexity = 1 in {
1053def : GCNPat <
1054  (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)),
1055  (V_BCNT_U32_B32_e64 $popcnt, $val)
1056>;
1057}
1058
1059def : GCNPat <
1060  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1061  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1062>;
1063
1064def : GCNPat <
1065  (i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)),
1066  (V_BCNT_U32_B32_e64 $popcnt, $val)
1067>;
1068
1069def : GCNPat <
1070  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1071  (REG_SEQUENCE VReg_64,
1072    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1073      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1074      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1075>;
1076
1077/********** ============================================ **********/
1078/********** Extraction, Insertion, Building and Casting  **********/
1079/********** ============================================ **********/
1080
1081// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1082// than an INSERT_SUBREG.
1083multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1084  def : GCNPat <
1085    (insertelt vec_type:$vec, elem_type:$elem, 0),
1086    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1087  >;
1088
1089  def : GCNPat <
1090    (insertelt vec_type:$vec, elem_type:$elem, 1),
1091    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1092  >;
1093}
1094
1095foreach Index = 0-1 in {
1096  def Extract_Element_v2i32_#Index : Extract_Element <
1097    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1098  >;
1099
1100  def Extract_Element_v2f32_#Index : Extract_Element <
1101    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1102  >;
1103}
1104
1105defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1106defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1107
1108foreach Index = 0-2 in {
1109  def Extract_Element_v3i32_#Index : Extract_Element <
1110    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1111  >;
1112  def Insert_Element_v3i32_#Index : Insert_Element <
1113    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1114  >;
1115
1116  def Extract_Element_v3f32_#Index : Extract_Element <
1117    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1118  >;
1119  def Insert_Element_v3f32_#Index : Insert_Element <
1120    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1121  >;
1122}
1123
1124foreach Index = 0-3 in {
1125  def Extract_Element_v4i32_#Index : Extract_Element <
1126    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1127  >;
1128  def Insert_Element_v4i32_#Index : Insert_Element <
1129    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1130  >;
1131
1132  def Extract_Element_v4f32_#Index : Extract_Element <
1133    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1134  >;
1135  def Insert_Element_v4f32_#Index : Insert_Element <
1136    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1137  >;
1138}
1139
1140foreach Index = 0-4 in {
1141  def Extract_Element_v5i32_#Index : Extract_Element <
1142    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1143  >;
1144  def Insert_Element_v5i32_#Index : Insert_Element <
1145    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1146  >;
1147
1148  def Extract_Element_v5f32_#Index : Extract_Element <
1149    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1150  >;
1151  def Insert_Element_v5f32_#Index : Insert_Element <
1152    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1153  >;
1154}
1155
1156foreach Index = 0-5 in {
1157  def Extract_Element_v6i32_#Index : Extract_Element <
1158    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1159  >;
1160  def Insert_Element_v6i32_#Index : Insert_Element <
1161    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1162  >;
1163
1164  def Extract_Element_v6f32_#Index : Extract_Element <
1165    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1166  >;
1167  def Insert_Element_v6f32_#Index : Insert_Element <
1168    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1169  >;
1170}
1171
1172foreach Index = 0-6 in {
1173  def Extract_Element_v7i32_#Index : Extract_Element <
1174    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1175  >;
1176  def Insert_Element_v7i32_#Index : Insert_Element <
1177    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1178  >;
1179
1180  def Extract_Element_v7f32_#Index : Extract_Element <
1181    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1182  >;
1183  def Insert_Element_v7f32_#Index : Insert_Element <
1184    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1185  >;
1186}
1187
1188foreach Index = 0-7 in {
1189  def Extract_Element_v8i32_#Index : Extract_Element <
1190    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1191  >;
1192  def Insert_Element_v8i32_#Index : Insert_Element <
1193    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1194  >;
1195
1196  def Extract_Element_v8f32_#Index : Extract_Element <
1197    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1198  >;
1199  def Insert_Element_v8f32_#Index : Insert_Element <
1200    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1201  >;
1202}
1203
1204foreach Index = 0-15 in {
1205  def Extract_Element_v16i32_#Index : Extract_Element <
1206    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1207  >;
1208  def Insert_Element_v16i32_#Index : Insert_Element <
1209    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1210  >;
1211
1212  def Extract_Element_v16f32_#Index : Extract_Element <
1213    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1214  >;
1215  def Insert_Element_v16f32_#Index : Insert_Element <
1216    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1217  >;
1218}
1219
1220
1221def : Pat <
1222  (extract_subvector v4i16:$vec, (i32 0)),
1223  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0))
1224>;
1225
1226def : Pat <
1227  (extract_subvector v4i16:$vec, (i32 2)),
1228  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1))
1229>;
1230
1231def : Pat <
1232  (extract_subvector v4f16:$vec, (i32 0)),
1233  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0))
1234>;
1235
1236def : Pat <
1237  (extract_subvector v4f16:$vec, (i32 2)),
1238  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1))
1239>;
1240
1241def : Pat <
1242  (extract_subvector v8i16:$vec, (i32 0)),
1243  (v4i16 (EXTRACT_SUBREG v8i16:$vec, sub0_sub1))
1244>;
1245
1246def : Pat <
1247  (extract_subvector v8i16:$vec, (i32 4)),
1248  (v4i16 (EXTRACT_SUBREG v8i16:$vec, sub2_sub3))
1249>;
1250
1251def : Pat <
1252  (extract_subvector v8f16:$vec, (i32 0)),
1253  (v4f16 (EXTRACT_SUBREG v8f16:$vec, sub0_sub1))
1254>;
1255
1256def : Pat <
1257  (extract_subvector v8f16:$vec, (i32 4)),
1258  (v4f16 (EXTRACT_SUBREG v8f16:$vec, sub2_sub3))
1259>;
1260
1261def : Pat <
1262  (extract_subvector v16i16:$vec, (i32 0)),
1263  (v8i16 (EXTRACT_SUBREG v16i16:$vec, sub0_sub1_sub2_sub3))
1264>;
1265
1266def : Pat <
1267  (extract_subvector v16i16:$vec, (i32 8)),
1268  (v8i16 (EXTRACT_SUBREG v16i16:$vec, sub4_sub5_sub6_sub7))
1269>;
1270
1271def : Pat <
1272  (extract_subvector v16f16:$vec, (i32 0)),
1273  (v8f16 (EXTRACT_SUBREG v16f16:$vec, sub0_sub1_sub2_sub3))
1274>;
1275
1276def : Pat <
1277  (extract_subvector v16f16:$vec, (i32 8)),
1278  (v8f16 (EXTRACT_SUBREG v16f16:$vec, sub4_sub5_sub6_sub7))
1279>;
1280
1281foreach Index = 0-31 in {
1282  def Extract_Element_v32i32_#Index : Extract_Element <
1283    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1284  >;
1285
1286  def Insert_Element_v32i32_#Index : Insert_Element <
1287    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1288  >;
1289
1290  def Extract_Element_v32f32_#Index : Extract_Element <
1291    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1292  >;
1293
1294  def Insert_Element_v32f32_#Index : Insert_Element <
1295    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1296  >;
1297}
1298
1299// FIXME: Why do only some of these type combinations for SReg and
1300// VReg?
1301// 16-bit bitcast
1302def : BitConvert <i16, f16, VGPR_32>;
1303def : BitConvert <f16, i16, VGPR_32>;
1304def : BitConvert <i16, f16, SReg_32>;
1305def : BitConvert <f16, i16, SReg_32>;
1306
1307// 32-bit bitcast
1308def : BitConvert <i32, f32, VGPR_32>;
1309def : BitConvert <f32, i32, VGPR_32>;
1310def : BitConvert <i32, f32, SReg_32>;
1311def : BitConvert <f32, i32, SReg_32>;
1312def : BitConvert <v2i16, i32, SReg_32>;
1313def : BitConvert <i32, v2i16, SReg_32>;
1314def : BitConvert <v2f16, i32, SReg_32>;
1315def : BitConvert <i32, v2f16, SReg_32>;
1316def : BitConvert <v2i16, v2f16, SReg_32>;
1317def : BitConvert <v2f16, v2i16, SReg_32>;
1318def : BitConvert <v2f16, f32, SReg_32>;
1319def : BitConvert <f32, v2f16, SReg_32>;
1320def : BitConvert <v2i16, f32, SReg_32>;
1321def : BitConvert <f32, v2i16, SReg_32>;
1322
1323// 64-bit bitcast
1324def : BitConvert <i64, f64, VReg_64>;
1325def : BitConvert <f64, i64, VReg_64>;
1326def : BitConvert <v2i32, v2f32, VReg_64>;
1327def : BitConvert <v2f32, v2i32, VReg_64>;
1328def : BitConvert <i64, v2i32, VReg_64>;
1329def : BitConvert <v2i32, i64, VReg_64>;
1330def : BitConvert <i64, v2f32, VReg_64>;
1331def : BitConvert <v2f32, i64, VReg_64>;
1332def : BitConvert <f64, v2f32, VReg_64>;
1333def : BitConvert <v2f32, f64, VReg_64>;
1334def : BitConvert <f64, v2i32, VReg_64>;
1335def : BitConvert <v2i32, f64, VReg_64>;
1336def : BitConvert <v4i16, v4f16, VReg_64>;
1337def : BitConvert <v4f16, v4i16, VReg_64>;
1338
1339// FIXME: Make SGPR
1340def : BitConvert <v2i32, v4f16, VReg_64>;
1341def : BitConvert <v4f16, v2i32, VReg_64>;
1342def : BitConvert <v2i32, v4f16, VReg_64>;
1343def : BitConvert <v2i32, v4i16, VReg_64>;
1344def : BitConvert <v4i16, v2i32, VReg_64>;
1345def : BitConvert <v2f32, v4f16, VReg_64>;
1346def : BitConvert <v4f16, v2f32, VReg_64>;
1347def : BitConvert <v2f32, v4i16, VReg_64>;
1348def : BitConvert <v4i16, v2f32, VReg_64>;
1349def : BitConvert <v4i16, f64, VReg_64>;
1350def : BitConvert <v4f16, f64, VReg_64>;
1351def : BitConvert <f64, v4i16, VReg_64>;
1352def : BitConvert <f64, v4f16, VReg_64>;
1353def : BitConvert <v4i16, i64, VReg_64>;
1354def : BitConvert <v4f16, i64, VReg_64>;
1355def : BitConvert <i64, v4i16, VReg_64>;
1356def : BitConvert <i64, v4f16, VReg_64>;
1357
1358def : BitConvert <v4i32, v4f32, VReg_128>;
1359def : BitConvert <v4f32, v4i32, VReg_128>;
1360
1361// 96-bit bitcast
1362def : BitConvert <v3i32, v3f32, SGPR_96>;
1363def : BitConvert <v3f32, v3i32, SGPR_96>;
1364
1365// 128-bit bitcast
1366def : BitConvert <v2i64, v4i32, SReg_128>;
1367def : BitConvert <v4i32, v2i64, SReg_128>;
1368def : BitConvert <v2f64, v4f32, VReg_128>;
1369def : BitConvert <v2f64, v4i32, VReg_128>;
1370def : BitConvert <v4f32, v2f64, VReg_128>;
1371def : BitConvert <v4i32, v2f64, VReg_128>;
1372def : BitConvert <v2i64, v2f64, VReg_128>;
1373def : BitConvert <v2f64, v2i64, VReg_128>;
1374def : BitConvert <v4f32, v2i64, VReg_128>;
1375def : BitConvert <v2i64, v4f32, VReg_128>;
1376def : BitConvert <v8i16, v4i32, SReg_128>;
1377def : BitConvert <v4i32, v8i16, SReg_128>;
1378def : BitConvert <v8f16, v4f32, VReg_128>;
1379def : BitConvert <v8f16, v4i32, VReg_128>;
1380def : BitConvert <v4f32, v8f16, VReg_128>;
1381def : BitConvert <v4i32, v8f16, VReg_128>;
1382def : BitConvert <v8i16, v8f16, VReg_128>;
1383def : BitConvert <v8f16, v8i16, VReg_128>;
1384def : BitConvert <v4f32, v8i16, VReg_128>;
1385def : BitConvert <v8i16, v4f32, VReg_128>;
1386def : BitConvert <v8i16, v8f16, SReg_128>;
1387def : BitConvert <v8i16, v2i64, SReg_128>;
1388def : BitConvert <v8i16, v2f64, SReg_128>;
1389def : BitConvert <v8f16, v2i64, SReg_128>;
1390def : BitConvert <v8f16, v2f64, SReg_128>;
1391def : BitConvert <v8f16, v8i16, SReg_128>;
1392def : BitConvert <v2i64, v8i16, SReg_128>;
1393def : BitConvert <v2f64, v8i16, SReg_128>;
1394def : BitConvert <v2i64, v8f16, SReg_128>;
1395def : BitConvert <v2f64, v8f16, SReg_128>;
1396
1397// 160-bit bitcast
1398def : BitConvert <v5i32, v5f32, SReg_160>;
1399def : BitConvert <v5f32, v5i32, SReg_160>;
1400def : BitConvert <v5i32, v5f32, VReg_160>;
1401def : BitConvert <v5f32, v5i32, VReg_160>;
1402
1403// 192-bit bitcast
1404def : BitConvert <v6i32, v6f32, SReg_192>;
1405def : BitConvert <v6f32, v6i32, SReg_192>;
1406def : BitConvert <v6i32, v6f32, VReg_192>;
1407def : BitConvert <v6f32, v6i32, VReg_192>;
1408def : BitConvert <v3i64, v3f64, VReg_192>;
1409def : BitConvert <v3f64, v3i64, VReg_192>;
1410def : BitConvert <v3i64, v6i32, VReg_192>;
1411def : BitConvert <v3i64, v6f32, VReg_192>;
1412def : BitConvert <v3f64, v6i32, VReg_192>;
1413def : BitConvert <v3f64, v6f32, VReg_192>;
1414def : BitConvert <v6i32, v3i64, VReg_192>;
1415def : BitConvert <v6f32, v3i64, VReg_192>;
1416def : BitConvert <v6i32, v3f64, VReg_192>;
1417def : BitConvert <v6f32, v3f64, VReg_192>;
1418
1419// 224-bit bitcast
1420def : BitConvert <v7i32, v7f32, SReg_224>;
1421def : BitConvert <v7f32, v7i32, SReg_224>;
1422def : BitConvert <v7i32, v7f32, VReg_224>;
1423def : BitConvert <v7f32, v7i32, VReg_224>;
1424
1425// 256-bit bitcast
1426def : BitConvert <v8i32, v8f32, SReg_256>;
1427def : BitConvert <v8f32, v8i32, SReg_256>;
1428def : BitConvert <v8i32, v8f32, VReg_256>;
1429def : BitConvert <v8f32, v8i32, VReg_256>;
1430def : BitConvert <v4i64, v4f64, VReg_256>;
1431def : BitConvert <v4f64, v4i64, VReg_256>;
1432def : BitConvert <v4i64, v8i32, VReg_256>;
1433def : BitConvert <v4i64, v8f32, VReg_256>;
1434def : BitConvert <v4f64, v8i32, VReg_256>;
1435def : BitConvert <v4f64, v8f32, VReg_256>;
1436def : BitConvert <v8i32, v4i64, VReg_256>;
1437def : BitConvert <v8f32, v4i64, VReg_256>;
1438def : BitConvert <v8i32, v4f64, VReg_256>;
1439def : BitConvert <v8f32, v4f64, VReg_256>;
1440def : BitConvert <v16i16, v16f16, SReg_256>;
1441def : BitConvert <v16f16, v16i16, SReg_256>;
1442def : BitConvert <v16i16, v16f16, VReg_256>;
1443def : BitConvert <v16f16, v16i16, VReg_256>;
1444def : BitConvert <v16f16, v8i32, VReg_256>;
1445def : BitConvert <v16i16, v8i32, VReg_256>;
1446def : BitConvert <v16f16, v8f32, VReg_256>;
1447def : BitConvert <v16i16, v8f32, VReg_256>;
1448def : BitConvert <v8i32, v16f16, VReg_256>;
1449def : BitConvert <v8i32, v16i16, VReg_256>;
1450def : BitConvert <v8f32, v16f16, VReg_256>;
1451def : BitConvert <v8f32, v16i16, VReg_256>;
1452def : BitConvert <v16f16, v4i64, VReg_256>;
1453def : BitConvert <v16i16, v4i64, VReg_256>;
1454def : BitConvert <v16f16, v4f64, VReg_256>;
1455def : BitConvert <v16i16, v4f64, VReg_256>;
1456def : BitConvert <v4i64, v16f16, VReg_256>;
1457def : BitConvert <v4i64, v16i16, VReg_256>;
1458def : BitConvert <v4f64, v16f16, VReg_256>;
1459def : BitConvert <v4f64, v16i16, VReg_256>;
1460
1461// 512-bit bitcast
1462def : BitConvert <v16i32, v16f32, VReg_512>;
1463def : BitConvert <v16f32, v16i32, VReg_512>;
1464def : BitConvert <v8i64,  v8f64,  VReg_512>;
1465def : BitConvert <v8f64,  v8i64,  VReg_512>;
1466def : BitConvert <v8i64,  v16i32, VReg_512>;
1467def : BitConvert <v8f64,  v16i32, VReg_512>;
1468def : BitConvert <v16i32, v8i64,  VReg_512>;
1469def : BitConvert <v16i32, v8f64,  VReg_512>;
1470def : BitConvert <v8i64,  v16f32, VReg_512>;
1471def : BitConvert <v8f64,  v16f32, VReg_512>;
1472def : BitConvert <v16f32, v8i64,  VReg_512>;
1473def : BitConvert <v16f32, v8f64,  VReg_512>;
1474
1475// 1024-bit bitcast
1476def : BitConvert <v32i32, v32f32, VReg_1024>;
1477def : BitConvert <v32f32, v32i32, VReg_1024>;
1478def : BitConvert <v16i64, v16f64, VReg_1024>;
1479def : BitConvert <v16f64, v16i64, VReg_1024>;
1480def : BitConvert <v16i64, v32i32, VReg_1024>;
1481def : BitConvert <v32i32, v16i64, VReg_1024>;
1482def : BitConvert <v16f64, v32f32, VReg_1024>;
1483def : BitConvert <v32f32, v16f64, VReg_1024>;
1484def : BitConvert <v16i64, v32f32, VReg_1024>;
1485def : BitConvert <v32i32, v16f64, VReg_1024>;
1486def : BitConvert <v16f64, v32i32, VReg_1024>;
1487def : BitConvert <v32f32, v16i64, VReg_1024>;
1488
1489
1490/********** =================== **********/
1491/********** Src & Dst modifiers **********/
1492/********** =================== **********/
1493
1494
1495// If denormals are not enabled, it only impacts the compare of the
1496// inputs. The output result is not flushed.
1497class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1498  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1499  (inst i32:$src0_modifiers, vt:$src0,
1500        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1501>;
1502
1503def : ClampPat<V_MAX_F32_e64, f32>;
1504def : ClampPat<V_MAX_F64_e64, f64>;
1505def : ClampPat<V_MAX_F16_e64, f16>;
1506
1507let SubtargetPredicate = HasVOP3PInsts in {
1508def : GCNPat <
1509  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1510  (V_PK_MAX_F16 $src0_modifiers, $src0,
1511                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1512>;
1513}
1514
1515
1516/********** ================================ **********/
1517/********** Floating point absolute/negative **********/
1518/********** ================================ **********/
1519
1520def : GCNPat <
1521  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1522  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1523>;
1524
1525def : GCNPat <
1526  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1527  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1528>;
1529
1530def : GCNPat <
1531  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1532  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1533>;
1534
1535def : GCNPat <
1536  (UniformUnaryFrag<fneg> (f16 SReg_32:$src)),
1537  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1538>;
1539
1540def : GCNPat <
1541  (UniformUnaryFrag<fabs> (f16 SReg_32:$src)),
1542  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1543>;
1544
1545def : GCNPat <
1546  (UniformUnaryFrag<fneg> (fabs (f16 SReg_32:$src))),
1547  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1548>;
1549
1550def : GCNPat <
1551  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1552  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1553>;
1554
1555def : GCNPat <
1556  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1557  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1558>;
1559
1560// This is really (fneg (fabs v2f16:$src))
1561//
1562// fabs is not reported as free because there is modifier for it in
1563// VOP3P instructions, so it is turned into the bit op.
1564def : GCNPat <
1565  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1566  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1567>;
1568
1569def : GCNPat <
1570  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1571  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1572>;
1573
1574
1575// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1576// of the real value.
1577def : GCNPat <
1578  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1579  (v2f32 (REG_SEQUENCE SReg_64,
1580         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1581                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1582                                 SReg_32)), sub0,
1583         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1584                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1585                                 SReg_32)), sub1))
1586>;
1587
1588def : GCNPat <
1589  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1590  (v2f32 (REG_SEQUENCE SReg_64,
1591         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1592                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1593                                 SReg_32)), sub0,
1594         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1595                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1596                                 SReg_32)), sub1))
1597>;
1598
1599def : GCNPat <
1600  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1601  (v2f32 (REG_SEQUENCE SReg_64,
1602         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1603                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1604                                 SReg_32)), sub0,
1605         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1606                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1607                                 SReg_32)), sub1))
1608>;
1609
1610// FIXME: Use S_BITSET0_B32/B64?
1611def : GCNPat <
1612  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1613  (REG_SEQUENCE SReg_64,
1614    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1615    sub0,
1616    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1617                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1618     sub1)
1619>;
1620
1621def : GCNPat <
1622  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1623  (REG_SEQUENCE SReg_64,
1624    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1625    sub0,
1626    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1627                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
1628    sub1)
1629>;
1630
1631def : GCNPat <
1632  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
1633  (REG_SEQUENCE SReg_64,
1634    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1635    sub0,
1636    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1637                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
1638    sub1)
1639>;
1640
1641
1642def : GCNPat <
1643  (fneg (fabs (f32 VGPR_32:$src))),
1644  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
1645>;
1646
1647def : GCNPat <
1648  (fabs (f32 VGPR_32:$src)),
1649  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
1650>;
1651
1652def : GCNPat <
1653  (fneg (f32 VGPR_32:$src)),
1654  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
1655>;
1656
1657def : GCNPat <
1658  (fabs (f16 VGPR_32:$src)),
1659  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
1660>;
1661
1662def : GCNPat <
1663  (fneg (f16 VGPR_32:$src)),
1664  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
1665>;
1666
1667def : GCNPat <
1668  (fneg (fabs (f16 VGPR_32:$src))),
1669  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
1670>;
1671
1672def : GCNPat <
1673  (fneg (v2f16 VGPR_32:$src)),
1674  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1675>;
1676
1677def : GCNPat <
1678  (fabs (v2f16 VGPR_32:$src)),
1679  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
1680>;
1681
1682def : GCNPat <
1683  (fneg (v2f16 (fabs VGPR_32:$src))),
1684  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1685>;
1686
1687def : GCNPat <
1688  (fabs (f64 VReg_64:$src)),
1689  (REG_SEQUENCE VReg_64,
1690    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1691    sub0,
1692    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
1693        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1694     sub1)
1695>;
1696
1697def : GCNPat <
1698  (fneg (f64 VReg_64:$src)),
1699  (REG_SEQUENCE VReg_64,
1700    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1701    sub0,
1702    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1703        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1704    sub1)
1705>;
1706
1707def : GCNPat <
1708  (fneg (fabs (f64 VReg_64:$src))),
1709  (REG_SEQUENCE VReg_64,
1710    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1711    sub0,
1712    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1713        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1714    sub1)
1715>;
1716
1717def : GCNPat <
1718  (getDivergentFrag<fneg>.ret (v2f32 VReg_64:$src)),
1719  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
1720                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0,
1721                0, 0, 0, 0, 0)
1722> {
1723  let SubtargetPredicate = HasPackedFP32Ops;
1724}
1725
1726def : GCNPat <
1727  (fcopysign f16:$src0, f16:$src1),
1728  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
1729>;
1730
1731def : GCNPat <
1732  (fcopysign f32:$src0, f16:$src1),
1733  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1734             (V_LSHLREV_B32_e64 (i32 16), $src1))
1735>;
1736
1737def : GCNPat <
1738  (fcopysign f64:$src0, f16:$src1),
1739  (REG_SEQUENCE SReg_64,
1740    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1741    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
1742               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
1743>;
1744
1745def : GCNPat <
1746  (fcopysign f16:$src0, f32:$src1),
1747  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1748             (V_LSHRREV_B32_e64 (i32 16), $src1))
1749>;
1750
1751def : GCNPat <
1752  (fcopysign f16:$src0, f64:$src1),
1753  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1754             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
1755>;
1756
1757/********** ================== **********/
1758/********** Immediate Patterns **********/
1759/********** ================== **********/
1760
1761def : GCNPat <
1762  (VGPRImm<(i32 imm)>:$imm),
1763  (V_MOV_B32_e32 imm:$imm)
1764>;
1765
1766def : GCNPat <
1767  (VGPRImm<(f32 fpimm)>:$imm),
1768  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
1769>;
1770
1771def : GCNPat <
1772  (i32 imm:$imm),
1773  (S_MOV_B32 imm:$imm)
1774>;
1775
1776def : GCNPat <
1777  (VGPRImm<(SIlds tglobaladdr:$ga)>),
1778  (V_MOV_B32_e32 $ga)
1779>;
1780
1781def : GCNPat <
1782  (SIlds tglobaladdr:$ga),
1783  (S_MOV_B32 $ga)
1784>;
1785
1786// FIXME: Workaround for ordering issue with peephole optimizer where
1787// a register class copy interferes with immediate folding.  Should
1788// use s_mov_b32, which can be shrunk to s_movk_i32
1789def : GCNPat <
1790  (VGPRImm<(f16 fpimm)>:$imm),
1791  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
1792>;
1793
1794def : GCNPat <
1795  (f32 fpimm:$imm),
1796  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
1797>;
1798
1799def : GCNPat <
1800  (f16 fpimm:$imm),
1801  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
1802>;
1803
1804def : GCNPat <
1805  (p5 frameindex:$fi),
1806  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
1807>;
1808
1809def : GCNPat <
1810  (p5 frameindex:$fi),
1811  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
1812>;
1813
1814def : GCNPat <
1815  (i64 InlineImm64:$imm),
1816  (S_MOV_B64 InlineImm64:$imm)
1817>;
1818
1819// XXX - Should this use a s_cmp to set SCC?
1820
1821// Set to sign-extended 64-bit value (true = -1, false = 0)
1822def : GCNPat <
1823  (i1 imm:$imm),
1824  (S_MOV_B64 (i64 (as_i64imm $imm)))
1825> {
1826  let WaveSizePredicate = isWave64;
1827}
1828
1829def : GCNPat <
1830  (i1 imm:$imm),
1831  (S_MOV_B32 (i32 (as_i32imm $imm)))
1832> {
1833  let WaveSizePredicate = isWave32;
1834}
1835
1836def : GCNPat <
1837  (f64 InlineImmFP64:$imm),
1838  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
1839>;
1840
1841/********** ================== **********/
1842/********** Intrinsic Patterns **********/
1843/********** ================== **********/
1844
1845def : GCNPat <
1846  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
1847  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
1848>;
1849
1850def : GCNPat <
1851  (i32 (sext i1:$src0)),
1852  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1853                     /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0)
1854>;
1855
1856class Ext32Pat <SDNode ext> : GCNPat <
1857  (i32 (ext i1:$src0)),
1858  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1859                     /*src1mod*/(i32 0), /*src1*/(i32 1), $src0)
1860>;
1861
1862def : Ext32Pat <zext>;
1863def : Ext32Pat <anyext>;
1864
1865// The multiplication scales from [0,1) to the unsigned integer range,
1866// rounding down a bit to avoid unwanted overflow.
1867def : GCNPat <
1868  (AMDGPUurecip i32:$src0),
1869  (V_CVT_U32_F32_e32
1870    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
1871                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
1872>;
1873
1874//===----------------------------------------------------------------------===//
1875// VOP3 Patterns
1876//===----------------------------------------------------------------------===//
1877
1878def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
1879def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
1880
1881// BFI patterns
1882
1883def BFIImm32 : PatFrag<
1884  (ops node:$x, node:$y, node:$z),
1885  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
1886  [{
1887    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
1888    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
1889    return X && NotX &&
1890      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
1891  }]
1892>;
1893
1894// Definition from ISA doc:
1895// (y & x) | (z & ~x)
1896def : AMDGPUPat <
1897  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
1898  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
1899>;
1900
1901// (y & C) | (z & ~C)
1902def : AMDGPUPat <
1903  (BFIImm32 i32:$x, i32:$y, i32:$z),
1904  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
1905>;
1906
1907// 64-bit version
1908def : AMDGPUPat <
1909  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
1910  (REG_SEQUENCE VReg_64,
1911    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
1912               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
1913               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
1914    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
1915               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
1916               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
1917>;
1918
1919// SHA-256 Ch function
1920// z ^ (x & (y ^ z))
1921def : AMDGPUPat <
1922  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
1923  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
1924>;
1925
1926// 64-bit version
1927def : AMDGPUPat <
1928  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
1929  (REG_SEQUENCE VReg_64,
1930    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
1931               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
1932               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
1933    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
1934               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
1935               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
1936>;
1937
1938def : AMDGPUPat <
1939  (fcopysign f32:$src0, f32:$src1),
1940  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
1941>;
1942
1943def : AMDGPUPat <
1944  (fcopysign f32:$src0, f64:$src1),
1945  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1946             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
1947>;
1948
1949def : AMDGPUPat <
1950  (fcopysign f64:$src0, f64:$src1),
1951  (REG_SEQUENCE SReg_64,
1952    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1953    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
1954               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
1955               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
1956>;
1957
1958def : AMDGPUPat <
1959  (fcopysign f64:$src0, f32:$src1),
1960  (REG_SEQUENCE SReg_64,
1961    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1962    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
1963               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
1964               $src1), sub1)
1965>;
1966
1967def : ROTRPattern <V_ALIGNBIT_B32_e64>;
1968
1969def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
1970          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
1971                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
1972
1973def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
1974          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
1975                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
1976
1977/********** ====================== **********/
1978/**********   Indirect addressing  **********/
1979/********** ====================== **********/
1980
1981multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
1982  // Extract with offset
1983  def : GCNPat<
1984    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
1985    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
1986  >;
1987
1988  // Insert with offset
1989  def : GCNPat<
1990    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
1991    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
1992  >;
1993}
1994
1995defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
1996defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
1997defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
1998defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
1999defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2000
2001defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2002defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2003defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2004defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2005defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2006
2007//===----------------------------------------------------------------------===//
2008// SAD Patterns
2009//===----------------------------------------------------------------------===//
2010
2011def : GCNPat <
2012  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2013                   (umin i32:$src0, i32:$src1)),
2014       i32:$src2),
2015  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2016>;
2017
2018def : GCNPat <
2019  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2020                      (sub i32:$src0, i32:$src1),
2021                      (sub i32:$src1, i32:$src0)),
2022       i32:$src2),
2023  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2024>;
2025
2026//===----------------------------------------------------------------------===//
2027// Conversion Patterns
2028//===----------------------------------------------------------------------===//
2029def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2030  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2031
2032// Handle sext_inreg in i64
2033def : GCNPat <
2034  (i64 (UniformSextInreg<i1> i64:$src)),
2035  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2036>;
2037
2038def : GCNPat <
2039  (i16 (UniformSextInreg<i1> i16:$src)),
2040  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2041>;
2042
2043def : GCNPat <
2044  (i16 (UniformSextInreg<i8> i16:$src)),
2045  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2046>;
2047
2048def : GCNPat <
2049  (i64 (UniformSextInreg<i8> i64:$src)),
2050  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2051>;
2052
2053def : GCNPat <
2054  (i64 (UniformSextInreg<i16> i64:$src)),
2055  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2056>;
2057
2058def : GCNPat <
2059  (i64 (UniformSextInreg<i32> i64:$src)),
2060  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2061>;
2062
2063def : GCNPat<
2064  (i32 (DivergentSextInreg<i1> i32:$src)),
2065  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2066
2067def : GCNPat <
2068  (i16 (DivergentSextInreg<i1> i16:$src)),
2069  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2070>;
2071
2072def : GCNPat <
2073  (i16 (DivergentSextInreg<i8> i16:$src)),
2074  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2075>;
2076
2077def : GCNPat<
2078  (i32 (DivergentSextInreg<i8> i32:$src)),
2079  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2080>;
2081
2082def : GCNPat <
2083  (i32 (DivergentSextInreg<i16> i32:$src)),
2084  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2085>;
2086
2087def : GCNPat <
2088  (i64 (DivergentSextInreg<i1> i64:$src)),
2089  (REG_SEQUENCE VReg_64,
2090    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2091    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2092>;
2093
2094def : GCNPat <
2095  (i64 (DivergentSextInreg<i8> i64:$src)),
2096  (REG_SEQUENCE VReg_64,
2097    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2098    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2099>;
2100
2101def : GCNPat <
2102  (i64 (DivergentSextInreg<i16> i64:$src)),
2103  (REG_SEQUENCE VReg_64,
2104    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2105    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2106>;
2107
2108def : GCNPat <
2109  (i64 (DivergentSextInreg<i32> i64:$src)),
2110  (REG_SEQUENCE VReg_64,
2111    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2112    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2113>;
2114
2115def : GCNPat <
2116  (i64 (zext i32:$src)),
2117  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2118>;
2119
2120def : GCNPat <
2121  (i64 (anyext i32:$src)),
2122  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2123>;
2124
2125class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2126  (i64 (ext i1:$src)),
2127    (REG_SEQUENCE VReg_64,
2128      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2129                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2130      sub0, (S_MOV_B32 (i32 0)), sub1)
2131>;
2132
2133
2134def : ZExt_i64_i1_Pat<zext>;
2135def : ZExt_i64_i1_Pat<anyext>;
2136
2137// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2138// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2139def : GCNPat <
2140  (i64 (UniformUnaryFrag<sext> i32:$src)),
2141    (REG_SEQUENCE SReg_64, $src, sub0,
2142    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2143>;
2144
2145def : GCNPat <
2146  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2147    (REG_SEQUENCE VReg_64, $src, sub0,
2148    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2149>;
2150
2151def : GCNPat <
2152  (i64 (sext i1:$src)),
2153  (REG_SEQUENCE VReg_64,
2154    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2155                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2156    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2157                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2158>;
2159
2160class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2161  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2162  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2163>;
2164
2165def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2166def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2167def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2168def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2169def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2170def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2171
2172// If we need to perform a logical operation on i1 values, we need to
2173// use vector comparisons since there is only one SCC register. Vector
2174// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2175// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2176// instructions resulting in the copies from SCC to these instructions
2177// will be moved to the VALU.
2178
2179let WaveSizePredicate = isWave64 in {
2180def : GCNPat <
2181  (i1 (and i1:$src0, i1:$src1)),
2182  (S_AND_B64 $src0, $src1)
2183>;
2184
2185def : GCNPat <
2186  (i1 (or i1:$src0, i1:$src1)),
2187  (S_OR_B64 $src0, $src1)
2188>;
2189
2190def : GCNPat <
2191  (i1 (xor i1:$src0, i1:$src1)),
2192  (S_XOR_B64 $src0, $src1)
2193>;
2194
2195def : GCNPat <
2196  (i1 (add i1:$src0, i1:$src1)),
2197  (S_XOR_B64 $src0, $src1)
2198>;
2199
2200def : GCNPat <
2201  (i1 (sub i1:$src0, i1:$src1)),
2202  (S_XOR_B64 $src0, $src1)
2203>;
2204
2205let AddedComplexity = 1 in {
2206def : GCNPat <
2207  (i1 (add i1:$src0, (i1 -1))),
2208  (S_NOT_B64 $src0)
2209>;
2210
2211def : GCNPat <
2212  (i1 (sub i1:$src0, (i1 -1))),
2213  (S_NOT_B64 $src0)
2214>;
2215}
2216} // end isWave64
2217
2218let WaveSizePredicate = isWave32 in {
2219def : GCNPat <
2220  (i1 (and i1:$src0, i1:$src1)),
2221  (S_AND_B32 $src0, $src1)
2222>;
2223
2224def : GCNPat <
2225  (i1 (or i1:$src0, i1:$src1)),
2226  (S_OR_B32 $src0, $src1)
2227>;
2228
2229def : GCNPat <
2230  (i1 (xor i1:$src0, i1:$src1)),
2231  (S_XOR_B32 $src0, $src1)
2232>;
2233
2234def : GCNPat <
2235  (i1 (add i1:$src0, i1:$src1)),
2236  (S_XOR_B32 $src0, $src1)
2237>;
2238
2239def : GCNPat <
2240  (i1 (sub i1:$src0, i1:$src1)),
2241  (S_XOR_B32 $src0, $src1)
2242>;
2243
2244let AddedComplexity = 1 in {
2245def : GCNPat <
2246  (i1 (add i1:$src0, (i1 -1))),
2247  (S_NOT_B32 $src0)
2248>;
2249
2250def : GCNPat <
2251  (i1 (sub i1:$src0, (i1 -1))),
2252  (S_NOT_B32 $src0)
2253>;
2254}
2255} // end isWave32
2256
2257def : GCNPat <
2258  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2259  (V_NOT_B32_e32 $src0)
2260>;
2261
2262def : GCNPat <
2263  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2264    (REG_SEQUENCE VReg_64,
2265      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2266      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2267    )
2268>;
2269
2270def : GCNPat <
2271  (f16 (sint_to_fp i1:$src)),
2272  (V_CVT_F16_F32_e32 (
2273      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2274                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2275                        SSrc_i1:$src))
2276>;
2277
2278def : GCNPat <
2279  (f16 (uint_to_fp i1:$src)),
2280  (V_CVT_F16_F32_e32 (
2281      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2282                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2283                        SSrc_i1:$src))
2284>;
2285
2286def : GCNPat <
2287  (f32 (sint_to_fp i1:$src)),
2288  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2289                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2290                        SSrc_i1:$src)
2291>;
2292
2293def : GCNPat <
2294  (f32 (uint_to_fp i1:$src)),
2295  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2296                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2297                        SSrc_i1:$src)
2298>;
2299
2300def : GCNPat <
2301  (f64 (sint_to_fp i1:$src)),
2302  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2303                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2304                                        SSrc_i1:$src))
2305>;
2306
2307def : GCNPat <
2308  (f64 (uint_to_fp i1:$src)),
2309  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2310                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2311                                        SSrc_i1:$src))
2312>;
2313
2314//===----------------------------------------------------------------------===//
2315// Miscellaneous Patterns
2316//===----------------------------------------------------------------------===//
2317
2318// Eliminate a zero extension from an fp16 operation if it already
2319// zeros the high bits of the 32-bit register.
2320//
2321// This is complicated on gfx9+. Some instructions maintain the legacy
2322// zeroing behavior, but others preserve the high bits. Some have a
2323// control bit to change the behavior. We can't simply say with
2324// certainty what the source behavior is without more context on how
2325// the src is lowered. e.g. fptrunc + fma may be lowered to a
2326// v_fma_mix* instruction which does not zero, or may not.
2327def : GCNPat<
2328  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2329  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2330
2331let AddedComplexity = 1 in {
2332def : GCNPat<
2333  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2334  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2335  let SubtargetPredicate = HasAddNoCarryInsts;
2336}
2337}  // AddedComplexity = 1
2338
2339def : GCNPat<
2340  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2341  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2342>;
2343
2344def : GCNPat<
2345  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2346  (REG_SEQUENCE VReg_64,
2347    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2348    (S_MOV_B32 (i32 0)), sub1)
2349>;
2350
2351def : GCNPat<
2352  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2353  (COPY VSrc_b16:$src)>;
2354
2355def : GCNPat <
2356  (i32 (trunc i64:$a)),
2357  (EXTRACT_SUBREG $a, sub0)
2358>;
2359
2360def : GCNPat <
2361  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2362  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2363>;
2364
2365def : GCNPat <
2366  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2367  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2368>;
2369
2370def : GCNPat <
2371  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2372  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2373                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2374>;
2375
2376def : GCNPat <
2377  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2378  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2379>;
2380
2381def : GCNPat <
2382  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2383  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2384>;
2385
2386def IMMBitSelConst : SDNodeXForm<imm, [{
2387  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2388                                   MVT::i32);
2389}]>;
2390
2391// Matching separate SRL and TRUNC instructions
2392// with dependent operands (SRL dest is source of TRUNC)
2393// generates three instructions. However, by using bit shifts,
2394// the V_LSHRREV_B32_e64 result can be directly used in the
2395// operand of the V_AND_B32_e64 instruction:
2396// (trunc i32 (srl i32 $a, i32 $b)) ->
2397// v_and_b32_e64 $a, (1 << $b), $a
2398// v_cmp_ne_u32_e64 $a, 0, $a
2399
2400// Handle the VALU case.
2401def : GCNPat <
2402  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2403  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2404    (i32 0))
2405>;
2406
2407// Handle the scalar case.
2408def : GCNPat <
2409  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2410  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2411    (i32 0))
2412>;
2413
2414def : GCNPat <
2415  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2416  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2417                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2418>;
2419
2420def : GCNPat <
2421  (i32 (bswap i32:$a)),
2422  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2423             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2424             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2425>;
2426
2427// FIXME: This should have been narrowed to i32 during legalization.
2428// This pattern should also be skipped for GlobalISel
2429def : GCNPat <
2430  (i64 (bswap i64:$a)),
2431  (REG_SEQUENCE VReg_64,
2432  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2433             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2434                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2435                             (i32 24)),
2436             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2437                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2438                             (i32 8))),
2439  sub0,
2440  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2441             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2442                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2443                             (i32 24)),
2444             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2445                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2446                             (i32 8))),
2447  sub1)
2448>;
2449
2450// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2451// the BFI pattern ends up taking precedence without it.
2452let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2453// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2454//
2455// My reading of the manual suggests we should be using src0 for the
2456// register value, but this is what seems to work.
2457def : GCNPat <
2458  (i32 (bswap i32:$a)),
2459  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2460>;
2461
2462// FIXME: This should have been narrowed to i32 during legalization.
2463// This pattern should also be skipped for GlobalISel
2464def : GCNPat <
2465  (i64 (bswap i64:$a)),
2466  (REG_SEQUENCE VReg_64,
2467  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2468              (S_MOV_B32 (i32 0x00010203))),
2469  sub0,
2470  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2471              (S_MOV_B32 (i32 0x00010203))),
2472  sub1)
2473>;
2474
2475// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2476// The 12s emit 0s.
2477def : GCNPat <
2478  (i16 (bswap i16:$a)),
2479  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2480>;
2481
2482def : GCNPat <
2483  (i32 (zext (bswap i16:$a))),
2484  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2485>;
2486
2487// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2488def : GCNPat <
2489  (v2i16 (bswap v2i16:$a)),
2490  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2491>;
2492
2493}
2494
2495def : GCNPat<
2496  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
2497  (REG_SEQUENCE VReg_64,
2498   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
2499   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
2500
2501// Prefer selecting to max when legal, but using mul is always valid.
2502let AddedComplexity = -5 in {
2503def : GCNPat<
2504  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2505  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2506>;
2507
2508def : GCNPat<
2509  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2510  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2511>;
2512
2513def : GCNPat<
2514  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2515  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2516>;
2517
2518def : GCNPat<
2519  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2520  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2521>;
2522
2523def : GCNPat<
2524  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
2525  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
2526>;
2527
2528// TODO: Handle fneg like other types.
2529def : GCNPat<
2530  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2531  (V_MUL_F64_e64  0, CONST.FP64_ONE, $src_mods, $src)
2532>;
2533} // End AddedComplexity = -5
2534
2535multiclass SelectCanonicalizeAsMax<
2536  list<Predicate> f32_preds = [],
2537  list<Predicate> f64_preds = [],
2538  list<Predicate> f16_preds = []> {
2539  def : GCNPat<
2540    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2541    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
2542    let OtherPredicates = f32_preds;
2543  }
2544
2545  def : GCNPat<
2546    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2547    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
2548    let OtherPredicates = f64_preds;
2549  }
2550
2551  def : GCNPat<
2552    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2553    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2554    // FIXME: Should have 16-bit inst subtarget predicate
2555    let OtherPredicates = f16_preds;
2556  }
2557
2558  def : GCNPat<
2559    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2560    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
2561    // FIXME: Should have VOP3P subtarget predicate
2562    let OtherPredicates = f16_preds;
2563  }
2564}
2565
2566// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
2567// mode, and would never flush. For f64, it's faster to do implement
2568// this with a max. For f16/f32 it's a wash, but prefer max when
2569// valid.
2570//
2571// FIXME: Lowering f32/f16 with max is worse since we can use a
2572// smaller encoding if the input is fneg'd. It also adds an extra
2573// register use.
2574let SubtargetPredicate = HasMinMaxDenormModes in {
2575  defm : SelectCanonicalizeAsMax<[], [], []>;
2576} // End SubtargetPredicate = HasMinMaxDenormModes
2577
2578let SubtargetPredicate = NotHasMinMaxDenormModes in {
2579  // Use the max lowering if we don't need to flush.
2580
2581  // FIXME: We don't do use this for f32 as a workaround for the
2582  // library being compiled with the default ieee mode, but
2583  // potentially being called from flushing kernels. Really we should
2584  // not be mixing code expecting different default FP modes, but mul
2585  // works in any FP environment.
2586  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
2587} // End SubtargetPredicate = NotHasMinMaxDenormModes
2588
2589
2590let OtherPredicates = [HasDLInsts] in {
2591// Don't allow source modifiers. If there are any source modifiers then it's
2592// better to select fma instead of fmac.
2593def : GCNPat <
2594  (fma (f32 (VOP3NoMods f32:$src0)),
2595       (f32 (VOP3NoMods f32:$src1)),
2596       (f32 (VOP3NoMods f32:$src2))),
2597  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2598                  SRCMODS.NONE, $src2)
2599>;
2600} // End OtherPredicates = [HasDLInsts]
2601
2602let SubtargetPredicate = isGFX10Plus in
2603// Don't allow source modifiers. If there are any source modifiers then it's
2604// better to select fma instead of fmac.
2605def : GCNPat <
2606  (fma (f16 (VOP3NoMods f32:$src0)),
2607       (f16 (VOP3NoMods f32:$src1)),
2608       (f16 (VOP3NoMods f32:$src2))),
2609  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2610                  SRCMODS.NONE, $src2)
2611>;
2612
2613let SubtargetPredicate = isGFX90APlus in
2614// Don't allow source modifiers. If there are any source modifiers then it's
2615// better to select fma instead of fmac.
2616def : GCNPat <
2617  (fma (f64 (VOP3NoMods f64:$src0)),
2618       (f64 (VOP3NoMods f64:$src1)),
2619       (f64 (VOP3NoMods f64:$src2))),
2620  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2621                  SRCMODS.NONE, $src2)
2622>;
2623
2624// COPY is workaround tablegen bug from multiple outputs
2625// from S_LSHL_B32's multiple outputs from implicit scc def.
2626def : GCNPat <
2627  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2628  (S_LSHL_B32 SReg_32:$src1, (i16 16))
2629>;
2630
2631def : GCNPat <
2632  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2633  (v2i16 (V_LSHLREV_B32_e64 (i16 16), SReg_32:$src1))
2634>;
2635
2636
2637def : GCNPat <
2638  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2639  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2640>;
2641
2642def : GCNPat <
2643  (v2i16 (DivergentBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2644  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src1))
2645>;
2646
2647def : GCNPat <
2648  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2649  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2650>;
2651
2652def : GCNPat <
2653  (v2f16 (DivergentBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2654  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src1))
2655>;
2656
2657def : GCNPat <
2658  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 undef))),
2659  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
2660>;
2661
2662def : GCNPat <
2663  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 undef))),
2664  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
2665>;
2666
2667def : GCNPat <
2668  (v2f16 (build_vector f16:$src0, (f16 undef))),
2669  (COPY $src0)
2670>;
2671
2672def : GCNPat <
2673  (v2i16 (UniformBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2674  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2675>;
2676
2677def : GCNPat <
2678  (v2i16 (DivergentBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2679  (v2i16 (V_LSHLREV_B32_e64 (i32 16), SReg_32:$src1))
2680>;
2681
2682
2683def : GCNPat <
2684  (v2f16 (UniformBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2685  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2686>;
2687
2688def : GCNPat <
2689  (v2f16 (DivergentBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2690  (v2f16 (V_LSHLREV_B32_e64 (i32 16), SReg_32:$src1))
2691>;
2692
2693let SubtargetPredicate = HasVOP3PInsts in {
2694def : GCNPat <
2695  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2696  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2697>;
2698
2699def : GCNPat <
2700  (v2i16 (DivergentBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2701  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
2702>;
2703
2704// With multiple uses of the shift, this will duplicate the shift and
2705// increase register pressure.
2706def : GCNPat <
2707  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2708  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
2709>;
2710
2711def : GCNPat <
2712  (v2i16 (DivergentBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2713  (v2i16 (V_BFI_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src0, SReg_32:$src1))
2714>;
2715
2716
2717def : GCNPat <
2718  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2719                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2720  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
2721>;
2722
2723def : GCNPat <
2724  (v2i16 (DivergentBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2725                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2726  (v2i16 (V_AND_OR_B32_e64 SReg_32:$src1, (i32 (V_MOV_B32_e32 (i32 0xffff0000))), (i32 (V_LSHRREV_B32_e64 (i32 16), SReg_32:$src0))))
2727>;
2728
2729def : GCNPat <
2730  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2731  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2732>;
2733
2734def : GCNPat <
2735  (v2f16 (DivergentBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2736  (v2f16 (V_LSHL_OR_B32_e64 SReg_32:$src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src0))))
2737>;
2738
2739
2740def : GCNPat <
2741  (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
2742                                         (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
2743  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
2744>;
2745} // End SubtargetPredicate = HasVOP3PInsts
2746
2747// With multiple uses of the shift, this will duplicate the shift and
2748// increase register pressure.
2749let SubtargetPredicate = isGFX11Plus in
2750def : GCNPat <
2751  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
2752  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
2753>;
2754
2755
2756def : GCNPat <
2757  (v2f16 (scalar_to_vector f16:$src0)),
2758  (COPY $src0)
2759>;
2760
2761def : GCNPat <
2762  (v2i16 (scalar_to_vector i16:$src0)),
2763  (COPY $src0)
2764>;
2765
2766def : GCNPat <
2767  (v4i16 (scalar_to_vector i16:$src0)),
2768  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
2769>;
2770
2771def : GCNPat <
2772  (v4f16 (scalar_to_vector f16:$src0)),
2773  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
2774>;
2775
2776def : GCNPat <
2777  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
2778                           timm:$bank_mask, timm:$bound_ctrl)),
2779  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
2780                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
2781                        (as_i32timm $bank_mask),
2782                        (as_i1timm $bound_ctrl))
2783>;
2784
2785def : GCNPat <
2786  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
2787                              timm:$bank_mask, timm:$bound_ctrl)),
2788  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
2789                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
2790                        (as_i1timm $bound_ctrl))
2791>;
2792
2793//===----------------------------------------------------------------------===//
2794// Fract Patterns
2795//===----------------------------------------------------------------------===//
2796
2797let SubtargetPredicate = isGFX6 in {
2798
2799// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
2800// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
2801// way to implement it is using V_FRACT_F64.
2802// The workaround for the V_FRACT bug is:
2803//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
2804
2805// Convert floor(x) to (x - fract(x))
2806
2807// Don't bother handling this for GlobalISel, it's handled during
2808// lowering.
2809//
2810// FIXME: DAG should also custom lower this.
2811def : GCNPat <
2812  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
2813  (V_ADD_F64_e64
2814      $mods,
2815      $x,
2816      SRCMODS.NEG,
2817      (V_CNDMASK_B64_PSEUDO
2818         (V_MIN_F64_e64
2819             SRCMODS.NONE,
2820             (V_FRACT_F64_e64 $mods, $x),
2821             SRCMODS.NONE,
2822             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
2823         $x,
2824         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
2825>;
2826
2827} // End SubtargetPredicates = isGFX6
2828
2829//============================================================================//
2830// Miscellaneous Optimization Patterns
2831//============================================================================//
2832
2833// Undo sub x, c -> add x, -c canonicalization since c is more likely
2834// an inline immediate than -c.
2835// TODO: Also do for 64-bit.
2836def : GCNPat<
2837  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
2838  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
2839>;
2840
2841def : GCNPat<
2842  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
2843  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
2844  let SubtargetPredicate = HasAddNoCarryInsts;
2845}
2846
2847def : GCNPat<
2848  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
2849  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
2850  let SubtargetPredicate = NotHasAddNoCarryInsts;
2851}
2852
2853
2854// Avoid pointlessly materializing a constant in VGPR.
2855// FIXME: Should also do this for readlane, but tablegen crashes on
2856// the ignored src1.
2857def : GCNPat<
2858  (int_amdgcn_readfirstlane (i32 imm:$src)),
2859  (S_MOV_B32 SReg_32:$src)
2860>;
2861
2862multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
2863  def : GCNPat <
2864    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
2865    (BFM $a, $b)
2866  >;
2867
2868  def : GCNPat <
2869    (vt (ADD (vt (shl 1, vt:$a)), -1)),
2870    (BFM $a, (i32 0))
2871  >;
2872}
2873
2874defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
2875// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
2876defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
2877
2878// Bitfield extract patterns
2879
2880def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
2881  return isMask_32(Imm);
2882}]>;
2883
2884def IMMPopCount : SDNodeXForm<imm, [{
2885  return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N),
2886                                   MVT::i32);
2887}]>;
2888
2889def : AMDGPUPat <
2890  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
2891                         IMMZeroBasedBitfieldMask:$mask),
2892  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
2893>;
2894
2895// x & ((1 << y) - 1)
2896def : AMDGPUPat <
2897  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
2898  (V_BFE_U32_e64 $src, (i32 0), $width)
2899>;
2900
2901// x & ~(-1 << y)
2902def : AMDGPUPat <
2903  (DivergentBinFrag<and> i32:$src,
2904                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
2905  (V_BFE_U32_e64 $src, (i32 0), $width)
2906>;
2907
2908// x & (-1 >> (bitwidth - y))
2909def : AMDGPUPat <
2910  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
2911  (V_BFE_U32_e64 $src, (i32 0), $width)
2912>;
2913
2914// x << (bitwidth - y) >> (bitwidth - y)
2915def : AMDGPUPat <
2916  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
2917                         (sub 32, i32:$width)),
2918  (V_BFE_U32_e64 $src, (i32 0), $width)
2919>;
2920
2921def : AMDGPUPat <
2922  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
2923                         (sub 32, i32:$width)),
2924  (V_BFE_I32_e64 $src, (i32 0), $width)
2925>;
2926
2927// SHA-256 Ma patterns
2928
2929// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
2930def : AMDGPUPat <
2931  (DivergentBinFrag<or> (and i32:$x, i32:$z),
2932                        (and i32:$y, (or i32:$x, i32:$z))),
2933  (V_BFI_B32_e64 (V_XOR_B32_e64 VSrc_b32:$x, VSrc_b32:$y), VSrc_b32:$z, VSrc_b32:$y)
2934>;
2935
2936def : AMDGPUPat <
2937  (DivergentBinFrag<or> (and i64:$x, i64:$z),
2938                        (and i64:$y, (or i64:$x, i64:$z))),
2939  (REG_SEQUENCE VReg_64,
2940    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2941                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
2942               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
2943               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
2944    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2945                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
2946               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
2947               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
2948>;
2949
2950multiclass IntMed3Pat<Instruction med3Inst,
2951                 SDPatternOperator min,
2952                 SDPatternOperator max,
2953                 SDPatternOperator min_oneuse,
2954                 SDPatternOperator max_oneuse> {
2955
2956  // This matches 16 permutations of
2957  // min(max(a, b), max(min(a, b), c))
2958  def : AMDGPUPat <
2959  (min (max_oneuse i32:$src0, i32:$src1),
2960       (max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)),
2961  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
2962>;
2963
2964  // This matches 16 permutations of
2965  // max(min(x, y), min(max(x, y), z))
2966  def : AMDGPUPat <
2967  (max (min_oneuse i32:$src0, i32:$src1),
2968       (min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)),
2969  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
2970>;
2971}
2972
2973defm : IntMed3Pat<V_MED3_I32_e64, smin, smax, smin_oneuse, smax_oneuse>;
2974defm : IntMed3Pat<V_MED3_U32_e64, umin, umax, umin_oneuse, umax_oneuse>;
2975
2976// This matches 16 permutations of
2977// max(min(x, y), min(max(x, y), z))
2978class FPMed3Pat<ValueType vt,
2979                //SDPatternOperator max, SDPatternOperator min,
2980                Instruction med3Inst> : GCNPat<
2981  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2982                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2983           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2984                                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2985                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
2986  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
2987>;
2988
2989class FP16Med3Pat<ValueType vt,
2990                Instruction med3Inst> : GCNPat<
2991  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2992                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2993           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2994                                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2995                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
2996  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
2997>;
2998
2999multiclass Int16Med3Pat<Instruction med3Inst,
3000                   SDPatternOperator min,
3001                   SDPatternOperator max,
3002                   SDPatternOperator max_oneuse,
3003                   SDPatternOperator min_oneuse> {
3004  // This matches 16 permutations of
3005  // max(min(x, y), min(max(x, y), z))
3006  def : GCNPat <
3007  (max (min_oneuse i16:$src0, i16:$src1),
3008       (min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)),
3009  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3010>;
3011
3012  // This matches 16 permutations of
3013  // min(max(a, b), max(min(a, b), c))
3014  def : GCNPat <
3015  (min (max_oneuse i16:$src0, i16:$src1),
3016      (max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)),
3017  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3018>;
3019}
3020
3021def : FPMed3Pat<f32, V_MED3_F32_e64>;
3022
3023class
3024IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3025             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3026  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3027                                i32:$src2),
3028  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3029>;
3030
3031class
3032FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3033            SDPatternOperator max_or_min_oneuse> : GCNPat <
3034  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3035                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3036               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3037  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3038              DSTCLAMP.NONE, DSTOMOD.NONE)
3039>;
3040
3041let OtherPredicates = [isGFX11Plus] in {
3042def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3043def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3044def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3045def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3046def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3047def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3048def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3049def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3050}
3051
3052let OtherPredicates = [isGFX9Plus] in {
3053def : FP16Med3Pat<f16, V_MED3_F16_e64>;
3054defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax, smax_oneuse, smin_oneuse>;
3055defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax, umax_oneuse, umin_oneuse>;
3056} // End Predicates = [isGFX9Plus]
3057
3058class AMDGPUGenericInstruction : GenericInstruction {
3059  let Namespace = "AMDGPU";
3060}
3061
3062// Convert a wave address to a swizzled vector address (i.e. this is
3063// for copying the stack pointer to a vector address appropriate to
3064// use in the offset field of mubuf instructions).
3065def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3066  let OutOperandList = (outs type0:$dst);
3067  let InOperandList = (ins type0:$src);
3068  let hasSideEffects = 0;
3069}
3070
3071// Returns -1 if the input is zero.
3072def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3073  let OutOperandList = (outs type0:$dst);
3074  let InOperandList = (ins type1:$src);
3075  let hasSideEffects = 0;
3076}
3077
3078// Returns -1 if the input is zero.
3079def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3080  let OutOperandList = (outs type0:$dst);
3081  let InOperandList = (ins type1:$src);
3082  let hasSideEffects = 0;
3083}
3084
3085def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3086  let OutOperandList = (outs type0:$dst);
3087  let InOperandList = (ins type1:$src);
3088  let hasSideEffects = 0;
3089}
3090
3091class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3092  let OutOperandList = (outs type0:$dst);
3093  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3094                           type2:$soffset, untyped_imm_0:$offset,
3095                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3096  let hasSideEffects = 0;
3097  let mayLoad = 1;
3098}
3099
3100class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3101  let OutOperandList = (outs type0:$dst);
3102  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3103                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3104                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3105  let hasSideEffects = 0;
3106  let mayLoad = 1;
3107}
3108
3109def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3110def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3111def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3112def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3113def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3114def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3115def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3116def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3117def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3118
3119class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3120  let OutOperandList = (outs);
3121  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3122                           type2:$soffset, untyped_imm_0:$offset,
3123                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3124  let hasSideEffects = 0;
3125  let mayStore = 1;
3126}
3127
3128class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3129  let OutOperandList = (outs);
3130  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3131                           type2:$soffset, untyped_imm_0:$offset,
3132                           untyped_imm_0:$format,
3133                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3134  let hasSideEffects = 0;
3135  let mayStore = 1;
3136}
3137
3138def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3139def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3140def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3141def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3142def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3143def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3144def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3145
3146def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3147  let OutOperandList = (outs type0:$dst);
3148  let InOperandList = (ins type0:$src0, type0:$src1);
3149  let hasSideEffects = 0;
3150}
3151
3152def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3153  let OutOperandList = (outs type0:$dst);
3154  let InOperandList = (ins type0:$src0, type0:$src1);
3155  let hasSideEffects = 0;
3156}
3157
3158foreach N = 0-3 in {
3159def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3160  let OutOperandList = (outs type0:$dst);
3161  let InOperandList = (ins type0:$src0);
3162  let hasSideEffects = 0;
3163}
3164}
3165
3166def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3167  let OutOperandList = (outs type0:$dst);
3168  let InOperandList = (ins type0:$src0, type0:$src1);
3169  let hasSideEffects = 0;
3170}
3171
3172def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3173  let OutOperandList = (outs type0:$dst);
3174  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3175  let hasSideEffects = 0;
3176}
3177
3178def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
3179  let OutOperandList = (outs type0:$dst);
3180  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3181  let hasSideEffects = 0;
3182}
3183
3184def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
3185  let OutOperandList = (outs type0:$dst);
3186  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3187  let hasSideEffects = 0;
3188}
3189
3190def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3191  let OutOperandList = (outs type0:$dst);
3192  let InOperandList = (ins type0:$src);
3193  let hasSideEffects = 0;
3194}
3195
3196// Integer multiply-add: arg0 * arg1 + arg2.
3197//
3198// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
3199// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
3200class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
3201  let OutOperandList = (outs type0:$dst, type1:$carry_out);
3202  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
3203  let hasSideEffects = 0;
3204}
3205
3206def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
3207def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
3208
3209// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3210// operand Expects a MachineMemOperand in addition to explicit
3211// operands.
3212def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3213  let OutOperandList = (outs type0:$oldval);
3214  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3215  let hasSideEffects = 0;
3216  let mayLoad = 1;
3217  let mayStore = 1;
3218}
3219
3220let Namespace = "AMDGPU" in {
3221def G_AMDGPU_ATOMIC_INC : G_ATOMICRMW_OP;
3222def G_AMDGPU_ATOMIC_DEC : G_ATOMICRMW_OP;
3223def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP;
3224def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP;
3225}
3226
3227class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction {
3228  let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst));
3229  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3230                           type2:$soffset, untyped_imm_0:$offset,
3231                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3232  let hasSideEffects = 0;
3233  let mayLoad = 1;
3234  let mayStore = 1;
3235}
3236
3237def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3238def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3239def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3240def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3241def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3242def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3243def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3244def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3245def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3246def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3247def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3248def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3249def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3250def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3251def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3252
3253def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3254  let OutOperandList = (outs type0:$dst);
3255  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3256                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3257                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3258  let hasSideEffects = 0;
3259  let mayLoad = 1;
3260  let mayStore = 1;
3261}
3262
3263// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3264// a workaround for the intrinsic being defined as readnone, but
3265// really needs a memory operand.
3266def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction {
3267  let OutOperandList = (outs type0:$dst);
3268  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3269  let hasSideEffects = 0;
3270  let mayLoad = 1;
3271  let mayStore = 0;
3272}
3273
3274// This is equivalent to the G_INTRINSIC*, but the operands may have
3275// been legalized depending on the subtarget requirements.
3276def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3277  let OutOperandList = (outs type0:$dst);
3278  let InOperandList = (ins unknown:$intrin, variable_ops);
3279  let hasSideEffects = 0;
3280  let mayLoad = 1;
3281
3282  // FIXME: Use separate opcode for atomics.
3283  let mayStore = 1;
3284}
3285
3286def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3287  let OutOperandList = (outs type0:$dst);
3288  let InOperandList = (ins unknown:$intrin, variable_ops);
3289  let hasSideEffects = 0;
3290  let mayLoad = 1;
3291
3292  // FIXME: Use separate opcode for atomics.
3293  let mayStore = 1;
3294}
3295
3296// This is equivalent to the G_INTRINSIC*, but the operands may have
3297// been legalized depending on the subtarget requirements.
3298def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3299  let OutOperandList = (outs);
3300  let InOperandList = (ins unknown:$intrin, variable_ops);
3301  let hasSideEffects = 0;
3302  let mayStore = 1;
3303}
3304
3305def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3306  let OutOperandList = (outs);
3307  let InOperandList = (ins unknown:$intrin, variable_ops);
3308  let hasSideEffects = 0;
3309  let mayStore = 1;
3310}
3311
3312def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3313  let OutOperandList = (outs type0:$dst);
3314  let InOperandList = (ins unknown:$intrin, variable_ops);
3315  let hasSideEffects = 0;
3316  let mayLoad = 1;
3317  let mayStore = 0;
3318}
3319
3320// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3321// if necessary.
3322def G_SI_CALL : AMDGPUGenericInstruction {
3323  let OutOperandList = (outs SReg_64:$dst);
3324  let InOperandList = (ins type0:$src0, unknown:$callee);
3325  let Size = 4;
3326  let isCall = 1;
3327  let UseNamedOperandTable = 1;
3328  let SchedRW = [WriteBranch];
3329  // TODO: Should really base this on the call target
3330  let isConvergent = 1;
3331}
3332
3333def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction {
3334  let OutOperandList = (outs type0:$vdst);
3335  let InOperandList = (ins type1:$src0);
3336  let hasSideEffects = 0;
3337}
3338
3339def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction {
3340  let OutOperandList = (outs type0:$vdst);
3341  let InOperandList = (ins type1:$src0);
3342  let hasSideEffects = 0;
3343}
3344