xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInstructions.td (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17class UniformSextInreg<ValueType VT> : PatFrag<
18  (ops node:$src),
19  (sext_inreg $src, VT),
20  [{ return !N->isDivergent(); }]>;
21
22class DivergentSextInreg<ValueType VT> : PatFrag<
23  (ops node:$src),
24  (sext_inreg $src, VT),
25  [{ return N->isDivergent(); }]>;
26
27include "SOPInstructions.td"
28include "VOPInstructions.td"
29include "SMInstructions.td"
30include "FLATInstructions.td"
31include "BUFInstructions.td"
32include "EXPInstructions.td"
33include "DSDIRInstructions.td"
34include "VINTERPInstructions.td"
35
36//===----------------------------------------------------------------------===//
37// VINTRP Instructions
38//===----------------------------------------------------------------------===//
39
40// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
41def VINTRPDst : VINTRPDstOperand <VGPR_32>;
42
43let Uses = [MODE, M0, EXEC] in {
44
45// FIXME: Specify SchedRW for VINTRP instructions.
46
47multiclass V_INTERP_P1_F32_m : VINTRP_m <
48  0x00000000,
49  (outs VINTRPDst:$vdst),
50  (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
51  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
52  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
53                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
54>;
55
56let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
57
58defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
59
60} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
61
62let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
63    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
64
65defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
66
67} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
68  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
69
70let OtherPredicates = [isNotGFX90APlus] in {
71let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
72
73defm V_INTERP_P2_F32 : VINTRP_m <
74  0x00000001,
75  (outs VINTRPDst:$vdst),
76  (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr,
77       InterpAttrChan:$attrchan),
78  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
79  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
80                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
81
82} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
83
84defm V_INTERP_MOV_F32 : VINTRP_m <
85  0x00000002,
86  (outs VINTRPDst:$vdst),
87  (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
88  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
89  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
90                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
91
92} // End OtherPredicates = [isNotGFX90APlus]
93
94} // End Uses = [MODE, M0, EXEC]
95
96//===----------------------------------------------------------------------===//
97// Pseudo Instructions
98//===----------------------------------------------------------------------===//
99
100// Insert a branch to an endpgm block to use as a fallback trap.
101def ENDPGM_TRAP : SPseudoInstSI<
102  (outs), (ins),
103  [(AMDGPUendpgm_trap)],
104  "ENDPGM_TRAP"> {
105  let hasSideEffects = 1;
106  let usesCustomInserter = 1;
107}
108
109def ATOMIC_FENCE : SPseudoInstSI<
110  (outs), (ins i32imm:$ordering, i32imm:$scope),
111  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
112  "ATOMIC_FENCE $ordering, $scope"> {
113  let hasSideEffects = 1;
114}
115
116let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
117
118// For use in patterns
119def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
120  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
121  let isPseudo = 1;
122  let isCodeGenOnly = 1;
123  let usesCustomInserter = 1;
124}
125
126// 64-bit vector move instruction. This is mainly used by the
127// SIFoldOperands pass to enable folding of inline immediates.
128def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
129                                      (ins VSrc_b64:$src0)> {
130  let isReMaterializable = 1;
131  let isAsCheapAsAMove = 1;
132  let isMoveImm = 1;
133  let SchedRW = [Write64Bit];
134  let Size = 4;
135  let UseNamedOperandTable = 1;
136}
137
138// 64-bit vector move with dpp. Expanded post-RA.
139def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
140  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
141}
142
143// 64-bit scalar move immediate instruction. This is used to avoid subregs
144// initialization and allow rematerialization.
145def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
146                                          (ins i64imm:$src0)> {
147  let isReMaterializable = 1;
148  let isAsCheapAsAMove = 1;
149  let isMoveImm = 1;
150  let SchedRW = [WriteSALU, Write64Bit];
151  let Size = 4;
152  let Uses = [];
153  let UseNamedOperandTable = 1;
154}
155
156// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
157// WQM pass processes it.
158def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
159
160// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
161// turned into a copy by WQM pass, but does not seed WQM requirements.
162def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
163
164// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
165// that the @earlyclobber is respected. The @earlyclobber is to make sure that
166// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
167// accidentally clobber inactive channels of $vdst.
168let Constraints = "@earlyclobber $vdst" in {
169def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
170def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
171}
172
173} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
174
175def WWM_COPY : SPseudoInstSI <
176  (outs unknown:$dst), (ins unknown:$src)> {
177  let hasSideEffects = 0;
178  let isAsCheapAsAMove = 1;
179  let isConvergent = 1;
180}
181
182def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
183  let Uses = [EXEC];
184  let Defs = [EXEC, SCC];
185  let hasSideEffects = 0;
186  let mayLoad = 0;
187  let mayStore = 0;
188}
189
190def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
191  let hasSideEffects = 0;
192  let mayLoad = 0;
193  let mayStore = 0;
194}
195
196def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
197  let Uses = [EXEC];
198  let Defs = [EXEC, SCC];
199  let hasSideEffects = 0;
200  let mayLoad = 0;
201  let mayStore = 0;
202}
203
204def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
205  let hasSideEffects = 0;
206  let mayLoad = 0;
207  let mayStore = 0;
208}
209
210let usesCustomInserter = 1 in {
211def S_INVERSE_BALLOT_U32 : SPseudoInstSI <(outs SReg_32:$sdst), (ins SSrc_b32:$mask)>;
212
213def S_INVERSE_BALLOT_U64 : SPseudoInstSI <(outs SReg_64:$sdst), (ins SSrc_b64:$mask)>;
214} // End usesCustomInserter = 1
215
216// PSEUDO_WM is treated like STRICT_WWM/STRICT_WQM without exec changes.
217def ENTER_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
218  let Uses = [EXEC];
219  let Defs = [EXEC];
220  let hasSideEffects = 0;
221  let mayLoad = 0;
222  let mayStore = 0;
223}
224
225def EXIT_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
226  let hasSideEffects = 0;
227  let mayLoad = 0;
228  let mayStore = 0;
229}
230
231// Pseudo instructions used for @llvm.fptrunc.round upward
232// and @llvm.fptrunc.round downward.
233// These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD
234// and G_FPTRUNC_ROUND_DOWNWARD before being lowered to
235// FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO.
236// The final codegen is done in the ModeRegister pass.
237let Uses = [MODE, EXEC] in {
238def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
239  (ins VGPR_32:$src0),
240  [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>;
241
242def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
243  (ins VGPR_32:$src0),
244  [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>;
245} // End Uses = [MODE, EXEC]
246
247// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
248// restoring it after we're done.
249let Defs = [SCC], isConvergent = 1 in {
250def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
251  (ins VSrc_b32: $src, VSrc_b32:$inactive),
252  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
253}
254
255def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
256  (ins VSrc_b64: $src, VSrc_b64:$inactive),
257  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
258}
259} // End Defs = [SCC]
260
261def : GCNPat<(i32 (int_amdgcn_set_inactive_chain_arg i32:$src, i32:$inactive)),
262    (V_SET_INACTIVE_B32 VGPR_32:$src, VGPR_32:$inactive)>;
263
264def : GCNPat<(i64 (int_amdgcn_set_inactive_chain_arg i64:$src, i64:$inactive)),
265    (V_SET_INACTIVE_B64 VReg_64:$src, VReg_64:$inactive)>;
266
267let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
268  def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
269    (ins VSrc_b32: $src, VSrc_b32:$strategy),
270    [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> {
271  }
272
273  def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
274    (ins VSrc_b32: $src, VSrc_b32:$strategy),
275    [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> {
276  }
277}
278
279let usesCustomInserter = 1, Defs = [VCC] in {
280def V_ADD_U64_PSEUDO : VPseudoInstSI <
281  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
282  [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
283>;
284
285def V_SUB_U64_PSEUDO : VPseudoInstSI <
286  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
287  [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
288>;
289} // End usesCustomInserter = 1, Defs = [VCC]
290
291let usesCustomInserter = 1, Defs = [SCC] in {
292def S_ADD_U64_PSEUDO : SPseudoInstSI <
293  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
294  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
295>;
296
297def S_SUB_U64_PSEUDO : SPseudoInstSI <
298  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
299  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
300>;
301
302def S_ADD_CO_PSEUDO : SPseudoInstSI <
303  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
304>;
305
306def S_SUB_CO_PSEUDO : SPseudoInstSI <
307  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
308>;
309
310def S_UADDO_PSEUDO : SPseudoInstSI <
311  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
312>;
313
314def S_USUBO_PSEUDO : SPseudoInstSI <
315  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
316>;
317
318let OtherPredicates = [HasShaderCyclesHiLoRegisters] in
319def GET_SHADERCYCLESHILO : SPseudoInstSI<
320  (outs SReg_64:$sdst), (ins),
321  [(set SReg_64:$sdst, (i64 (readcyclecounter)))]
322>;
323
324} // End usesCustomInserter = 1, Defs = [SCC]
325
326let usesCustomInserter = 1 in {
327def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
328  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
329} // End let usesCustomInserter = 1, SALU = 1
330
331// Wrap an instruction by duplicating it, except for setting isTerminator.
332class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
333      base_inst.OutOperandList,
334      base_inst.InOperandList> {
335  let Uses = base_inst.Uses;
336  let Defs = base_inst.Defs;
337  let isTerminator = 1;
338  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
339  let hasSideEffects = base_inst.hasSideEffects;
340  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
341  let CodeSize = base_inst.CodeSize;
342  let SchedRW = base_inst.SchedRW;
343}
344
345let WaveSizePredicate = isWave64 in {
346def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
347def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
348def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
349def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
350def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
351def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>;
352}
353
354let WaveSizePredicate = isWave32 in {
355def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
356def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
357def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
358def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
359def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
360def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>;
361}
362
363
364def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
365  [(int_amdgcn_wave_barrier)]> {
366  let SchedRW = [];
367  let hasNoSchedulingInfo = 1;
368  let hasSideEffects = 1;
369  let mayLoad = 0;
370  let mayStore = 0;
371  let isConvergent = 1;
372  let FixedSize = 1;
373  let Size = 0;
374  let isMeta = 1;
375}
376
377def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
378  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
379  let SchedRW = [];
380  let hasNoSchedulingInfo = 1;
381  let hasSideEffects = 1;
382  let mayLoad = 0;
383  let mayStore = 0;
384  let isConvergent = 1;
385  let FixedSize = 1;
386  let Size = 0;
387  let isMeta = 1;
388}
389
390def SCHED_GROUP_BARRIER : SPseudoInstSI<
391  (outs),
392  (ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
393  [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
394  let SchedRW = [];
395  let hasNoSchedulingInfo = 1;
396  let hasSideEffects = 1;
397  let mayLoad = 0;
398  let mayStore = 0;
399  let isConvergent = 1;
400  let FixedSize = 1;
401  let Size = 0;
402  let isMeta = 1;
403}
404
405def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
406  [(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
407  let SchedRW = [];
408  let hasNoSchedulingInfo = 1;
409  let hasSideEffects = 1;
410  let mayLoad = 0;
411  let mayStore = 0;
412  let isConvergent = 1;
413  let FixedSize = 1;
414  let Size = 0;
415  let isMeta = 1;
416}
417
418// SI pseudo instructions. These are used by the CFG structurizer pass
419// and should be lowered to ISA instructions prior to codegen.
420
421// As we have enhanced control flow intrinsics to work under unstructured CFG,
422// duplicating such intrinsics can be actually treated as legal. On the contrary,
423// by making them non-duplicable, we are observing better code generation result.
424// So we choose to mark them non-duplicable in hope of getting better code
425// generation as well as simplied CFG during Machine IR optimization stage.
426
427let isTerminator = 1, isNotDuplicable = 1 in {
428
429let OtherPredicates = [EnableLateCFGStructurize] in {
430 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
431  (outs),
432  (ins SReg_1:$vcc, brtarget:$target),
433  [(brcond i1:$vcc, bb:$target)]> {
434    let Size = 12;
435}
436}
437
438def SI_IF: CFPseudoInstSI <
439  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
440  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
441  let Constraints = "";
442  let Size = 12;
443  let hasSideEffects = 1;
444  let IsNeverUniform = 1;
445}
446
447def SI_ELSE : CFPseudoInstSI <
448  (outs SReg_1:$dst),
449  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
450  let Size = 12;
451  let hasSideEffects = 1;
452  let IsNeverUniform = 1;
453}
454
455def SI_WATERFALL_LOOP : CFPseudoInstSI <
456  (outs),
457  (ins brtarget:$target), [], 1> {
458  let Size = 8;
459  let isBranch = 1;
460  let Defs = [];
461}
462
463def SI_LOOP : CFPseudoInstSI <
464  (outs), (ins SReg_1:$saved, brtarget:$target),
465  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
466  let Size = 8;
467  let isBranch = 1;
468  let hasSideEffects = 1;
469  let IsNeverUniform = 1;
470}
471
472} // End isTerminator = 1
473
474def SI_END_CF : CFPseudoInstSI <
475  (outs), (ins SReg_1:$saved), [], 1, 1> {
476  let Size = 4;
477  let isAsCheapAsAMove = 1;
478  let isReMaterializable = 1;
479  let hasSideEffects = 1;
480  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
481  let mayLoad = 1; // FIXME: Should not need memory flags
482  let mayStore = 1;
483}
484
485def SI_IF_BREAK : CFPseudoInstSI <
486  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
487  let Size = 4;
488  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
489  let isAsCheapAsAMove = 1;
490  let isReMaterializable = 1;
491}
492
493// Branch to the early termination block of the shader if SCC is 0.
494// This uses SCC from a previous SALU operation, i.e. the update of
495// a mask of live lanes after a kill/demote operation.
496// Only valid in pixel shaders.
497def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
498  let Uses = [EXEC,SCC];
499}
500
501let Uses = [EXEC] in {
502
503multiclass PseudoInstKill <dag ins> {
504  // Even though this pseudo can usually be expanded without an SCC def, we
505  // conservatively assume that it has an SCC def, both because it is sometimes
506  // required in degenerate cases (when V_CMPX cannot be used due to constant
507  // bus limitations) and because it allows us to avoid having to track SCC
508  // liveness across basic blocks.
509  let Defs = [EXEC,SCC] in
510  def _PSEUDO : PseudoInstSI <(outs), ins> {
511    let isConvergent = 1;
512    let usesCustomInserter = 1;
513  }
514
515  let Defs = [EXEC,SCC] in
516  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
517    let isTerminator = 1;
518  }
519}
520
521defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
522let Defs = [VCC] in
523defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
524
525let Defs = [EXEC,VCC] in
526def SI_ILLEGAL_COPY : SPseudoInstSI <
527  (outs unknown:$dst), (ins unknown:$src),
528  [], " ; illegal copy $src to $dst">;
529
530} // End Uses = [EXEC], Defs = [EXEC,VCC]
531
532// Branch on undef scc. Used to avoid intermediate copy from
533// IMPLICIT_DEF to SCC.
534def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> {
535  let isTerminator = 1;
536  let usesCustomInserter = 1;
537  let isBranch = 1;
538}
539
540def SI_PS_LIVE : PseudoInstSI <
541  (outs SReg_1:$dst), (ins),
542  [(set i1:$dst, (int_amdgcn_ps_live))]> {
543  let SALU = 1;
544}
545
546let Uses = [EXEC] in {
547def SI_LIVE_MASK : PseudoInstSI <
548  (outs SReg_1:$dst), (ins),
549  [(set i1:$dst, (int_amdgcn_live_mask))]> {
550  let SALU = 1;
551}
552let Defs = [EXEC,SCC] in {
553// Demote: Turn a pixel shader thread into a helper lane.
554def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
555} // End Defs = [EXEC,SCC]
556} // End Uses = [EXEC]
557
558def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
559  [(int_amdgcn_unreachable)],
560  "; divergent unreachable"> {
561  let Size = 0;
562  let hasNoSchedulingInfo = 1;
563  let FixedSize = 1;
564  let isMeta = 1;
565  let maybeAtomic = 0;
566}
567
568// Used as an isel pseudo to directly emit initialization with an
569// s_mov_b32 rather than a copy of another initialized
570// register. MachineCSE skips copies, and we don't want to have to
571// fold operands before it runs.
572def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
573  let Defs = [M0];
574  let usesCustomInserter = 1;
575  let isAsCheapAsAMove = 1;
576  let isReMaterializable = 1;
577}
578
579def SI_INIT_EXEC : SPseudoInstSI <
580  (outs), (ins i64imm:$src),
581  [(int_amdgcn_init_exec (i64 timm:$src))]> {
582  let Defs = [EXEC];
583  let isAsCheapAsAMove = 1;
584}
585
586def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
587  (outs), (ins SSrc_b32:$input, i32imm:$shift),
588  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
589  let Defs = [EXEC];
590}
591
592// Return for returning shaders to a shader variant epilog.
593def SI_RETURN_TO_EPILOG : SPseudoInstSI <
594  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
595  let isTerminator = 1;
596  let isBarrier = 1;
597  let isReturn = 1;
598  let hasNoSchedulingInfo = 1;
599  let DisableWQM = 1;
600  let FixedSize = 1;
601
602  // TODO: Should this be true?
603  let isMeta = 0;
604}
605
606// Return for returning function calls.
607def SI_RETURN : SPseudoInstSI <
608  (outs), (ins), [(AMDGPUret_glue)],
609  "; return"> {
610  let isTerminator = 1;
611  let isBarrier = 1;
612  let isReturn = 1;
613  let SchedRW = [WriteBranch];
614}
615
616// Return for returning function calls without output register.
617//
618// This version is only needed so we can fill in the output register
619// in the custom inserter.
620def SI_CALL_ISEL : SPseudoInstSI <
621  (outs), (ins SSrc_b64:$src0, unknown:$callee),
622  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
623  let Size = 4;
624  let isCall = 1;
625  let SchedRW = [WriteBranch];
626  let usesCustomInserter = 1;
627  // TODO: Should really base this on the call target
628  let isConvergent = 1;
629}
630
631def : GCNPat<
632  (AMDGPUcall i64:$src0, (i64 0)),
633  (SI_CALL_ISEL $src0, (i64 0))
634>;
635
636// Wrapper around s_swappc_b64 with extra $callee parameter to track
637// the called function after regalloc.
638def SI_CALL : SPseudoInstSI <
639  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
640  let Size = 4;
641  let FixedSize = 1;
642  let isCall = 1;
643  let UseNamedOperandTable = 1;
644  let SchedRW = [WriteBranch];
645  // TODO: Should really base this on the call target
646  let isConvergent = 1;
647}
648
649class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs),
650  (ins rc:$src0, unknown:$callee, i32imm:$fpdiff),
651  [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
652  let Size = 4;
653  let FixedSize = 1;
654  let isCall = 1;
655  let isTerminator = 1;
656  let isReturn = 1;
657  let isBarrier = 1;
658  let UseNamedOperandTable = 1;
659  let SchedRW = [WriteBranch];
660  // TODO: Should really base this on the call target
661  let isConvergent = 1;
662}
663
664// Tail call handling pseudo
665def SI_TCRETURN :     SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>;
666def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>;
667
668// Handle selecting indirect tail calls
669def : GCNPat<
670  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
671  (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
672>;
673
674// Handle selecting indirect tail calls for AMDGPU_gfx
675def : GCNPat<
676  (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)),
677  (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
678>;
679
680// Pseudo for the llvm.amdgcn.cs.chain intrinsic.
681// This is essentially a tail call, but it also takes a mask to put in EXEC
682// right before jumping to the callee.
683class SI_CS_CHAIN_TC<
684    ValueType execvt, Predicate wavesizepred,
685    RegisterOperand execrc = getSOPSrcForVT<execvt>.ret>
686    : SPseudoInstSI <(outs),
687      (ins CCR_SGPR_64:$src0, unknown:$callee, i32imm:$fpdiff, execrc:$exec)> {
688  let FixedSize = 0;
689  let isCall = 1;
690  let isTerminator = 1;
691  let isBarrier = 1;
692  let isReturn = 1;
693  let UseNamedOperandTable = 1;
694  let SchedRW = [WriteBranch];
695  let isConvergent = 1;
696
697  let WaveSizePredicate = wavesizepred;
698}
699
700def SI_CS_CHAIN_TC_W32 : SI_CS_CHAIN_TC<i32, isWave32>;
701def SI_CS_CHAIN_TC_W64 : SI_CS_CHAIN_TC<i64, isWave64>;
702
703// Handle selecting direct & indirect calls via SI_CS_CHAIN_TC_W32/64
704multiclass si_cs_chain_tc_pattern<
705  dag callee, ValueType execvt, RegisterOperand execrc, Instruction tc> {
706def : GCNPat<
707  (AMDGPUtc_return_chain i64:$src0, callee, (i32 timm:$fpdiff), execvt:$exec),
708  (tc CCR_SGPR_64:$src0, callee, i32imm:$fpdiff, execrc:$exec)
709>;
710}
711
712multiclass si_cs_chain_tc_patterns<
713  ValueType execvt,
714  RegisterOperand execrc = getSOPSrcForVT<execvt>.ret,
715  Instruction tc = !if(!eq(execvt, i32), SI_CS_CHAIN_TC_W32, SI_CS_CHAIN_TC_W64)
716  > {
717  defm direct: si_cs_chain_tc_pattern<(tglobaladdr:$callee), execvt, execrc, tc>;
718  defm indirect: si_cs_chain_tc_pattern<(i64 0), execvt, execrc, tc>;
719}
720
721defm : si_cs_chain_tc_patterns<i32>;
722defm : si_cs_chain_tc_patterns<i64>;
723
724def ADJCALLSTACKUP : SPseudoInstSI<
725  (outs), (ins i32imm:$amt0, i32imm:$amt1),
726  [(callseq_start timm:$amt0, timm:$amt1)],
727  "; adjcallstackup $amt0 $amt1"> {
728  let Size = 8; // Worst case. (s_add_u32 + constant)
729  let FixedSize = 1;
730  let hasSideEffects = 1;
731  let usesCustomInserter = 1;
732  let SchedRW = [WriteSALU];
733  let Defs = [SCC];
734}
735
736def ADJCALLSTACKDOWN : SPseudoInstSI<
737  (outs), (ins i32imm:$amt1, i32imm:$amt2),
738  [(callseq_end timm:$amt1, timm:$amt2)],
739  "; adjcallstackdown $amt1"> {
740  let Size = 8; // Worst case. (s_add_u32 + constant)
741  let hasSideEffects = 1;
742  let usesCustomInserter = 1;
743  let SchedRW = [WriteSALU];
744  let Defs = [SCC];
745}
746
747let Defs = [M0, EXEC, SCC],
748  UseNamedOperandTable = 1 in {
749
750// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
751// addressing implementation.
752class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
753  (outs VGPR_32:$vdst),
754  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
755  let usesCustomInserter = 1;
756}
757
758class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
759  (outs rc:$vdst),
760  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
761  let Constraints = "$src = $vdst";
762  let usesCustomInserter = 1;
763}
764
765def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
766def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
767def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
768def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
769def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
770def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
771def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
772def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
773def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
774def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
775
776def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
777def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
778def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
779def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
780def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
781def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
782def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
783def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
784def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
785def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
786
787} // End Uses = [EXEC], Defs = [M0, EXEC]
788
789// This is a pseudo variant of the v_movreld_b32 instruction in which the
790// vector operand appears only twice, once as def and once as use. Using this
791// pseudo avoids problems with the Two Address instructions pass.
792class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
793                                RegisterOperand val_ty> : PseudoInstSI <
794  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
795  let Constraints = "$vsrc = $vdst";
796  let Uses = [M0];
797}
798
799class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
800  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
801  let VALU = 1;
802  let VOP1 = 1;
803  let Uses = [M0, EXEC];
804}
805
806class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
807                                  RegisterOperand val_ty> :
808  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
809  let SALU = 1;
810  let SOP1 = 1;
811  let Uses = [M0];
812}
813
814class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
815  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
816class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
817  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
818
819def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
820def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
821def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
822def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
823def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
824def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
825def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
826def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
827def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
828def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
829def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
830def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
831
832def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
833def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
834def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
835def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
836def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
837def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
838def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>;
839def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>;
840def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>;
841def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>;
842def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
843def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
844
845def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
846def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
847def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
848def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
849def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
850
851// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
852// pseudos we avoid spills or copies being inserted within indirect sequences
853// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
854// this mode switching.
855
856class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
857  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
858  let Constraints = "$vsrc = $vdst";
859  let VALU = 1;
860  let Uses = [M0, EXEC];
861  let Defs = [M0];
862}
863
864def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
865def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
866def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
867def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
868def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
869def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
870def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
871def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
872def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
873def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
874def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
875def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
876
877class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
878  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
879  let VALU = 1;
880  let Uses = [M0, EXEC];
881  let Defs = [M0];
882}
883
884def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
885def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
886def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
887def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
888def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
889def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
890def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
891def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
892def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
893def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
894def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
895def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
896
897multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
898  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
899    def _SAVE : PseudoInstSI <
900      (outs),
901      (ins sgpr_class:$data, i32imm:$addr)> {
902      let mayStore = 1;
903      let mayLoad = 0;
904    }
905
906    def _RESTORE : PseudoInstSI <
907      (outs sgpr_class:$data),
908      (ins i32imm:$addr)> {
909      let mayStore = 0;
910      let mayLoad = 1;
911    }
912  } // End UseNamedOperandTable = 1
913}
914
915// You cannot use M0 as the output of v_readlane_b32 instructions or
916// use it in the sdata operand of SMEM instructions. We still need to
917// be able to spill the physical register m0, so allow it for
918// SI_SPILL_32_* instructions.
919defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
920defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
921defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
922defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
923defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
924defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
925defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
926defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
927defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
928defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
929defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
930defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
931defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
932defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
933
934let SGPRSpill = 1, VALU = 1, isConvergent = 1 in {
935def SI_SPILL_S32_TO_VGPR : PseudoInstSI <(outs VGPR_32:$vdst),
936  (ins SReg_32:$src0, i32imm:$src1, VGPR_32:$vdst_in)> {
937  let Size = 4;
938  let FixedSize = 1;
939  let IsNeverUniform = 1;
940  let hasSideEffects = 0;
941  let mayLoad = 0;
942  let mayStore = 0;
943  let Constraints = "$vdst = $vdst_in";
944}
945
946def SI_RESTORE_S32_FROM_VGPR : PseudoInstSI <(outs SReg_32:$sdst),
947  (ins VGPR_32:$src0, i32imm:$src1)> {
948  let Size = 4;
949  let FixedSize = 1;
950  let hasSideEffects = 0;
951  let mayLoad = 0;
952  let mayStore = 0;
953}
954} // End SGPRSpill = 1, VALU = 1, isConvergent = 1
955
956// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
957// needs to be used and an extra instruction to move between VGPR and AGPR.
958// UsesTmp adds to the total size of an expanded spill in this case.
959multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
960  let UseNamedOperandTable = 1, VGPRSpill = 1,
961       SchedRW = [WriteVMEM] in {
962    def _SAVE : VPseudoInstSI <
963      (outs),
964      (ins vgpr_class:$vdata, i32imm:$vaddr,
965           SReg_32:$soffset, i32imm:$offset)> {
966      let mayStore = 1;
967      let mayLoad = 0;
968      // (2 * 4) + (8 * num_subregs) bytes maximum
969      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
970      // Size field is unsigned char and cannot fit more.
971      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
972    }
973
974    def _RESTORE : VPseudoInstSI <
975      (outs vgpr_class:$vdata),
976      (ins i32imm:$vaddr,
977           SReg_32:$soffset, i32imm:$offset)> {
978      let mayStore = 0;
979      let mayLoad = 1;
980
981      // (2 * 4) + (8 * num_subregs) bytes maximum
982      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
983      // Size field is unsigned char and cannot fit more.
984      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
985    }
986  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
987}
988
989defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
990defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
991defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
992defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
993defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
994defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
995defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
996defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
997defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
998defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
999defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
1000defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
1001defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
1002defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
1003
1004defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
1005defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
1006defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
1007defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
1008defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
1009defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
1010defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
1011defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
1012defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
1013defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
1014defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
1015defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
1016defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
1017defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
1018
1019defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
1020defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
1021defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
1022defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
1023defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
1024defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
1025defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
1026defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
1027defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
1028defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
1029defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
1030defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
1031defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
1032defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
1033
1034let isConvergent = 1 in {
1035  defm SI_SPILL_WWM_V32  : SI_SPILL_VGPR <VGPR_32>;
1036  defm SI_SPILL_WWM_AV32 : SI_SPILL_VGPR <AV_32, 1>;
1037}
1038
1039def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
1040  (outs SReg_64:$dst),
1041  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
1042  [(set SReg_64:$dst,
1043      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
1044  let Defs = [SCC];
1045}
1046
1047def : GCNPat <
1048  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
1049  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
1050>;
1051
1052def : GCNPat<
1053  (AMDGPUtrap timm:$trapid),
1054  (S_TRAP $trapid)
1055>;
1056
1057def : GCNPat<
1058  (AMDGPUelse i1:$src, bb:$target),
1059  (SI_ELSE $src, $target)
1060>;
1061
1062def : Pat <
1063  (int_amdgcn_kill i1:$src),
1064  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
1065>;
1066
1067def : Pat <
1068  (int_amdgcn_kill (i1 (not i1:$src))),
1069  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
1070>;
1071
1072def : Pat <
1073  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
1074  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
1075>;
1076
1077def : Pat <
1078  (int_amdgcn_wqm_demote i1:$src),
1079  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
1080>;
1081
1082def : Pat <
1083  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
1084  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
1085>;
1086
1087  // TODO: we could add more variants for other types of conditionals
1088
1089def : Pat <
1090  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1091  (COPY $src) // Return the SGPRs representing i1 src
1092>;
1093
1094def : Pat <
1095  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1096  (COPY $src) // Return the SGPRs representing i1 src
1097>;
1098
1099//===----------------------------------------------------------------------===//
1100// VOP1 Patterns
1101//===----------------------------------------------------------------------===//
1102
1103multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
1104  // f16_to_fp patterns
1105  def : GCNPat <
1106    (f32 (any_f16_to_fp i32:$src0)),
1107    (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
1108  >;
1109
1110  def : GCNPat <
1111    (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
1112    (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
1113  >;
1114
1115  def : GCNPat <
1116    (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
1117    (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
1118  >;
1119
1120  def : GCNPat <
1121    (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
1122    (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
1123  >;
1124
1125  def : GCNPat <
1126    (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
1127    (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
1128  >;
1129
1130  def : GCNPat <
1131    (f64 (any_fpextend f16:$src)),
1132    (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
1133  >;
1134
1135  // fp_to_fp16 patterns
1136  def : GCNPat <
1137    (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1138    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1139  >;
1140
1141  def : GCNPat <
1142    (i32 (fp_to_sint f16:$src)),
1143    (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1144  >;
1145
1146  def : GCNPat <
1147    (i32 (fp_to_uint f16:$src)),
1148    (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1149  >;
1150
1151  def : GCNPat <
1152    (f16 (sint_to_fp i32:$src)),
1153    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
1154  >;
1155
1156  def : GCNPat <
1157    (f16 (uint_to_fp i32:$src)),
1158    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
1159  >;
1160
1161  // This is only used on targets without half support
1162  // TODO: Introduce strict variant of AMDGPUfp_to_f16 and share custom lowering
1163  def : GCNPat <
1164    (i32 (strict_fp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1165    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1166  >;
1167}
1168
1169let SubtargetPredicate = NotHasTrue16BitInsts in
1170defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
1171
1172let SubtargetPredicate = HasTrue16BitInsts in
1173defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64>;
1174
1175//===----------------------------------------------------------------------===//
1176// VOP2 Patterns
1177//===----------------------------------------------------------------------===//
1178
1179// NoMods pattern used for mac. If there are any source modifiers then it's
1180// better to select mad instead of mac.
1181class FMADPat <ValueType vt, Instruction inst>
1182  : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
1183                          (vt (VOP3NoMods vt:$src1)),
1184                          (vt (VOP3NoMods vt:$src2)))),
1185    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1186          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1187>;
1188
1189// Prefer mac form when there are no modifiers.
1190let AddedComplexity = 9 in {
1191let OtherPredicates = [HasMadMacF32Insts] in
1192def : FMADPat <f32, V_MAC_F32_e64>;
1193
1194// Don't allow source modifiers. If there are any source modifiers then it's
1195// better to select mad instead of mac.
1196let SubtargetPredicate = isGFX6GFX7GFX10,
1197    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1198def : GCNPat <
1199      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
1200                                    (VOP3NoMods f32:$src1)),
1201                 (VOP3NoMods f32:$src2))),
1202      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1203                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1204>;
1205
1206// Don't allow source modifiers. If there are any source modifiers then it's
1207// better to select fma instead of fmac.
1208let SubtargetPredicate = HasFmaLegacy32 in
1209def : GCNPat <
1210      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
1211                                  (VOP3NoMods f32:$src1),
1212                                  (VOP3NoMods f32:$src2))),
1213      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1214                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1215>;
1216
1217let SubtargetPredicate = Has16BitInsts in
1218def : FMADPat <f16, V_MAC_F16_e64>;
1219} // AddedComplexity = 9
1220
1221let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1222def : GCNPat <
1223      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1224                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1225                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1226      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1227                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1228>;
1229
1230class VOPSelectModsPat <ValueType vt> : GCNPat <
1231  (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods),
1232                        (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))),
1233  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1234                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1235>;
1236
1237class VOPSelectPat <ValueType vt> : GCNPat <
1238  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1239  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1240>;
1241
1242def : VOPSelectModsPat <i32>;
1243def : VOPSelectModsPat <f32>;
1244def : VOPSelectPat <f16>;
1245def : VOPSelectPat <i16>;
1246
1247let AddedComplexity = 1 in {
1248def : GCNPat <
1249  (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
1250  (V_BCNT_U32_B32_e64 $popcnt, $val)
1251>;
1252}
1253
1254def : GCNPat <
1255  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1256  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1257>;
1258
1259def : GCNPat <
1260  (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
1261  (V_BCNT_U32_B32_e64 $popcnt, $val)
1262>;
1263
1264def : GCNPat <
1265  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1266  (REG_SEQUENCE VReg_64,
1267    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1268      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1269      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1270>;
1271
1272/********** ============================================ **********/
1273/********** Extraction, Insertion, Building and Casting  **********/
1274/********** ============================================ **********/
1275
1276// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1277// than an INSERT_SUBREG.
1278multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1279  def : GCNPat <
1280    (insertelt vec_type:$vec, elem_type:$elem, 0),
1281    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1282  >;
1283
1284  def : GCNPat <
1285    (insertelt vec_type:$vec, elem_type:$elem, 1),
1286    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1287  >;
1288}
1289
1290foreach Index = 0-1 in {
1291  def Extract_Element_v2i32_#Index : Extract_Element <
1292    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1293  >;
1294
1295  def Extract_Element_v2f32_#Index : Extract_Element <
1296    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1297  >;
1298}
1299
1300defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1301defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1302
1303foreach Index = 0-2 in {
1304  def Extract_Element_v3i32_#Index : Extract_Element <
1305    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1306  >;
1307  def Insert_Element_v3i32_#Index : Insert_Element <
1308    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1309  >;
1310
1311  def Extract_Element_v3f32_#Index : Extract_Element <
1312    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1313  >;
1314  def Insert_Element_v3f32_#Index : Insert_Element <
1315    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1316  >;
1317}
1318
1319foreach Index = 0-3 in {
1320  def Extract_Element_v4i32_#Index : Extract_Element <
1321    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1322  >;
1323  def Insert_Element_v4i32_#Index : Insert_Element <
1324    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1325  >;
1326
1327  def Extract_Element_v4f32_#Index : Extract_Element <
1328    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1329  >;
1330  def Insert_Element_v4f32_#Index : Insert_Element <
1331    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1332  >;
1333}
1334
1335foreach Index = 0-4 in {
1336  def Extract_Element_v5i32_#Index : Extract_Element <
1337    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1338  >;
1339  def Insert_Element_v5i32_#Index : Insert_Element <
1340    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1341  >;
1342
1343  def Extract_Element_v5f32_#Index : Extract_Element <
1344    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1345  >;
1346  def Insert_Element_v5f32_#Index : Insert_Element <
1347    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1348  >;
1349}
1350
1351foreach Index = 0-5 in {
1352  def Extract_Element_v6i32_#Index : Extract_Element <
1353    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1354  >;
1355  def Insert_Element_v6i32_#Index : Insert_Element <
1356    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1357  >;
1358
1359  def Extract_Element_v6f32_#Index : Extract_Element <
1360    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1361  >;
1362  def Insert_Element_v6f32_#Index : Insert_Element <
1363    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1364  >;
1365}
1366
1367foreach Index = 0-6 in {
1368  def Extract_Element_v7i32_#Index : Extract_Element <
1369    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1370  >;
1371  def Insert_Element_v7i32_#Index : Insert_Element <
1372    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1373  >;
1374
1375  def Extract_Element_v7f32_#Index : Extract_Element <
1376    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1377  >;
1378  def Insert_Element_v7f32_#Index : Insert_Element <
1379    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1380  >;
1381}
1382
1383foreach Index = 0-7 in {
1384  def Extract_Element_v8i32_#Index : Extract_Element <
1385    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1386  >;
1387  def Insert_Element_v8i32_#Index : Insert_Element <
1388    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1389  >;
1390
1391  def Extract_Element_v8f32_#Index : Extract_Element <
1392    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1393  >;
1394  def Insert_Element_v8f32_#Index : Insert_Element <
1395    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1396  >;
1397}
1398
1399foreach Index = 0-8 in {
1400  def Extract_Element_v9i32_#Index : Extract_Element <
1401    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1402  >;
1403  def Insert_Element_v9i32_#Index : Insert_Element <
1404    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1405  >;
1406
1407  def Extract_Element_v9f32_#Index : Extract_Element <
1408    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1409  >;
1410  def Insert_Element_v9f32_#Index : Insert_Element <
1411    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1412  >;
1413}
1414
1415foreach Index = 0-9 in {
1416  def Extract_Element_v10i32_#Index : Extract_Element <
1417    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1418  >;
1419  def Insert_Element_v10i32_#Index : Insert_Element <
1420    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1421  >;
1422
1423  def Extract_Element_v10f32_#Index : Extract_Element <
1424    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1425  >;
1426  def Insert_Element_v10f32_#Index : Insert_Element <
1427    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1428  >;
1429}
1430
1431foreach Index = 0-10 in {
1432  def Extract_Element_v11i32_#Index : Extract_Element <
1433    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1434  >;
1435  def Insert_Element_v11i32_#Index : Insert_Element <
1436    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1437  >;
1438
1439  def Extract_Element_v11f32_#Index : Extract_Element <
1440    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1441  >;
1442  def Insert_Element_v11f32_#Index : Insert_Element <
1443    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1444  >;
1445}
1446
1447foreach Index = 0-11 in {
1448  def Extract_Element_v12i32_#Index : Extract_Element <
1449    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1450  >;
1451  def Insert_Element_v12i32_#Index : Insert_Element <
1452    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1453  >;
1454
1455  def Extract_Element_v12f32_#Index : Extract_Element <
1456    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1457  >;
1458  def Insert_Element_v12f32_#Index : Insert_Element <
1459    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1460  >;
1461}
1462
1463foreach Index = 0-15 in {
1464  def Extract_Element_v16i32_#Index : Extract_Element <
1465    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1466  >;
1467  def Insert_Element_v16i32_#Index : Insert_Element <
1468    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1469  >;
1470
1471  def Extract_Element_v16f32_#Index : Extract_Element <
1472    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1473  >;
1474  def Insert_Element_v16f32_#Index : Insert_Element <
1475    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1476  >;
1477}
1478
1479
1480foreach Index = 0-31 in {
1481  def Extract_Element_v32i32_#Index : Extract_Element <
1482    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1483  >;
1484
1485  def Insert_Element_v32i32_#Index : Insert_Element <
1486    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1487  >;
1488
1489  def Extract_Element_v32f32_#Index : Extract_Element <
1490    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1491  >;
1492
1493  def Insert_Element_v32f32_#Index : Insert_Element <
1494    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1495  >;
1496}
1497
1498// FIXME: Why do only some of these type combinations for SReg and
1499// VReg?
1500// 16-bit bitcast
1501def : BitConvert <i16, f16, VGPR_32>;
1502def : BitConvert <f16, i16, VGPR_32>;
1503def : BitConvert <f16, bf16, VGPR_32>;
1504def : BitConvert <bf16, f16, VGPR_32>;
1505
1506def : BitConvert <i16, f16, SReg_32>;
1507def : BitConvert <f16, i16, SReg_32>;
1508def : BitConvert <f16, bf16, SReg_32>;
1509def : BitConvert <bf16, f16, SReg_32>;
1510
1511def : BitConvert <i16, bf16, VGPR_32>;
1512def : BitConvert <bf16, i16, VGPR_32>;
1513def : BitConvert <i16, bf16, SReg_32>;
1514def : BitConvert <bf16, i16, SReg_32>;
1515
1516// 32-bit bitcast
1517def : BitConvert <i32, f32, VGPR_32>;
1518def : BitConvert <f32, i32, VGPR_32>;
1519def : BitConvert <i32, f32, SReg_32>;
1520def : BitConvert <f32, i32, SReg_32>;
1521def : BitConvert <v2i16, i32, SReg_32>;
1522def : BitConvert <i32, v2i16, SReg_32>;
1523def : BitConvert <v2f16, i32, SReg_32>;
1524def : BitConvert <i32, v2f16, SReg_32>;
1525def : BitConvert <v2i16, v2f16, SReg_32>;
1526def : BitConvert <v2f16, v2i16, SReg_32>;
1527def : BitConvert <v2f16, f32, SReg_32>;
1528def : BitConvert <f32, v2f16, SReg_32>;
1529def : BitConvert <v2i16, f32, SReg_32>;
1530def : BitConvert <f32, v2i16, SReg_32>;
1531def : BitConvert <v2bf16, i32, SReg_32>;
1532def : BitConvert <i32, v2bf16, SReg_32>;
1533def : BitConvert <v2bf16, i32, VGPR_32>;
1534def : BitConvert <i32, v2bf16, VGPR_32>;
1535def : BitConvert <v2bf16, v2i16, SReg_32>;
1536def : BitConvert <v2i16, v2bf16, SReg_32>;
1537def : BitConvert <v2bf16, v2i16, VGPR_32>;
1538def : BitConvert <v2i16, v2bf16, VGPR_32>;
1539def : BitConvert <v2bf16, v2f16, SReg_32>;
1540def : BitConvert <v2f16, v2bf16, SReg_32>;
1541def : BitConvert <v2bf16, v2f16, VGPR_32>;
1542def : BitConvert <v2f16, v2bf16, VGPR_32>;
1543def : BitConvert <f32, v2bf16, VGPR_32>;
1544def : BitConvert <v2bf16, f32, VGPR_32>;
1545def : BitConvert <f32, v2bf16, SReg_32>;
1546def : BitConvert <v2bf16, f32, SReg_32>;
1547
1548
1549// 64-bit bitcast
1550def : BitConvert <i64, f64, VReg_64>;
1551def : BitConvert <f64, i64, VReg_64>;
1552def : BitConvert <v2i32, v2f32, VReg_64>;
1553def : BitConvert <v2f32, v2i32, VReg_64>;
1554def : BitConvert <i64, v2i32, VReg_64>;
1555def : BitConvert <v2i32, i64, VReg_64>;
1556def : BitConvert <i64, v2f32, VReg_64>;
1557def : BitConvert <v2f32, i64, VReg_64>;
1558def : BitConvert <f64, v2f32, VReg_64>;
1559def : BitConvert <v2f32, f64, VReg_64>;
1560def : BitConvert <f64, v2i32, VReg_64>;
1561def : BitConvert <v2i32, f64, VReg_64>;
1562def : BitConvert <v4i16, v4f16, VReg_64>;
1563def : BitConvert <v4f16, v4i16, VReg_64>;
1564def : BitConvert <v4bf16, v2i32, VReg_64>;
1565def : BitConvert <v2i32, v4bf16, VReg_64>;
1566def : BitConvert <v4bf16, i64, VReg_64>;
1567def : BitConvert <i64, v4bf16, VReg_64>;
1568def : BitConvert <v4bf16, v4i16, VReg_64>;
1569def : BitConvert <v4i16, v4bf16, VReg_64>;
1570def : BitConvert <v4bf16, v4f16, VReg_64>;
1571def : BitConvert <v4f16, v4bf16, VReg_64>;
1572def : BitConvert <v4bf16, v2f32, VReg_64>;
1573def : BitConvert <v2f32, v4bf16, VReg_64>;
1574def : BitConvert <v4bf16, f64, VReg_64>;
1575def : BitConvert <f64, v4bf16, VReg_64>;
1576
1577
1578// FIXME: Make SGPR
1579def : BitConvert <v2i32, v4f16, VReg_64>;
1580def : BitConvert <v4f16, v2i32, VReg_64>;
1581def : BitConvert <v2i32, v4f16, VReg_64>;
1582def : BitConvert <v2i32, v4i16, VReg_64>;
1583def : BitConvert <v4i16, v2i32, VReg_64>;
1584def : BitConvert <v2f32, v4f16, VReg_64>;
1585def : BitConvert <v4f16, v2f32, VReg_64>;
1586def : BitConvert <v2f32, v4i16, VReg_64>;
1587def : BitConvert <v4i16, v2f32, VReg_64>;
1588def : BitConvert <v4i16, f64, VReg_64>;
1589def : BitConvert <v4f16, f64, VReg_64>;
1590def : BitConvert <f64, v4i16, VReg_64>;
1591def : BitConvert <f64, v4f16, VReg_64>;
1592def : BitConvert <v4i16, i64, VReg_64>;
1593def : BitConvert <v4f16, i64, VReg_64>;
1594def : BitConvert <i64, v4i16, VReg_64>;
1595def : BitConvert <i64, v4f16, VReg_64>;
1596
1597def : BitConvert <v4i32, v4f32, VReg_128>;
1598def : BitConvert <v4f32, v4i32, VReg_128>;
1599
1600// 96-bit bitcast
1601def : BitConvert <v3i32, v3f32, SGPR_96>;
1602def : BitConvert <v3f32, v3i32, SGPR_96>;
1603
1604// 128-bit bitcast
1605def : BitConvert <v2i64, v4i32, SReg_128>;
1606def : BitConvert <v4i32, v2i64, SReg_128>;
1607def : BitConvert <v2f64, v4f32, VReg_128>;
1608def : BitConvert <v2f64, v4i32, VReg_128>;
1609def : BitConvert <v4f32, v2f64, VReg_128>;
1610def : BitConvert <v4i32, v2f64, VReg_128>;
1611def : BitConvert <v2i64, v2f64, VReg_128>;
1612def : BitConvert <v2f64, v2i64, VReg_128>;
1613def : BitConvert <v4f32, v2i64, VReg_128>;
1614def : BitConvert <v2i64, v4f32, VReg_128>;
1615def : BitConvert <v8i16, v4i32, SReg_128>;
1616def : BitConvert <v4i32, v8i16, SReg_128>;
1617def : BitConvert <v8f16, v4f32, VReg_128>;
1618def : BitConvert <v8f16, v4i32, VReg_128>;
1619def : BitConvert <v4f32, v8f16, VReg_128>;
1620def : BitConvert <v4i32, v8f16, VReg_128>;
1621def : BitConvert <v8i16, v8f16, VReg_128>;
1622def : BitConvert <v8f16, v8i16, VReg_128>;
1623def : BitConvert <v4f32, v8i16, VReg_128>;
1624def : BitConvert <v8i16, v4f32, VReg_128>;
1625def : BitConvert <v8i16, v8f16, SReg_128>;
1626def : BitConvert <v8i16, v2i64, SReg_128>;
1627def : BitConvert <v8i16, v2f64, SReg_128>;
1628def : BitConvert <v8f16, v2i64, SReg_128>;
1629def : BitConvert <v8f16, v2f64, SReg_128>;
1630def : BitConvert <v8f16, v8i16, SReg_128>;
1631def : BitConvert <v2i64, v8i16, SReg_128>;
1632def : BitConvert <v2f64, v8i16, SReg_128>;
1633def : BitConvert <v2i64, v8f16, SReg_128>;
1634def : BitConvert <v2f64, v8f16, SReg_128>;
1635
1636def : BitConvert <v4i32, v8bf16, SReg_128>;
1637def : BitConvert <v8bf16, v4i32, SReg_128>;
1638def : BitConvert <v4i32, v8bf16, VReg_128>;
1639def : BitConvert <v8bf16, v4i32, VReg_128>;
1640
1641def : BitConvert <v4f32, v8bf16, SReg_128>;
1642def : BitConvert <v8bf16, v4f32, SReg_128>;
1643def : BitConvert <v4f32, v8bf16, VReg_128>;
1644def : BitConvert <v8bf16, v4f32, VReg_128>;
1645
1646def : BitConvert <v8i16, v8bf16, SReg_128>;
1647def : BitConvert <v8bf16, v8i16, SReg_128>;
1648def : BitConvert <v8i16, v8bf16, VReg_128>;
1649def : BitConvert <v8bf16, v8i16, VReg_128>;
1650
1651def : BitConvert <v8f16, v8bf16, SReg_128>;
1652def : BitConvert <v8bf16, v8f16, SReg_128>;
1653def : BitConvert <v8f16, v8bf16, VReg_128>;
1654def : BitConvert <v8bf16, v8f16, VReg_128>;
1655
1656def : BitConvert <v2f64, v8bf16, SReg_128>;
1657def : BitConvert <v8bf16, v2f64, SReg_128>;
1658def : BitConvert <v2f64, v8bf16, VReg_128>;
1659def : BitConvert <v8bf16, v2f64, VReg_128>;
1660
1661def : BitConvert <v2i64, v8bf16, SReg_128>;
1662def : BitConvert <v8bf16, v2i64, SReg_128>;
1663def : BitConvert <v2i64, v8bf16, VReg_128>;
1664def : BitConvert <v8bf16, v2i64, VReg_128>;
1665
1666
1667// 160-bit bitcast
1668def : BitConvert <v5i32, v5f32, SReg_160>;
1669def : BitConvert <v5f32, v5i32, SReg_160>;
1670def : BitConvert <v5i32, v5f32, VReg_160>;
1671def : BitConvert <v5f32, v5i32, VReg_160>;
1672
1673// 192-bit bitcast
1674def : BitConvert <v6i32, v6f32, SReg_192>;
1675def : BitConvert <v6f32, v6i32, SReg_192>;
1676def : BitConvert <v6i32, v6f32, VReg_192>;
1677def : BitConvert <v6f32, v6i32, VReg_192>;
1678def : BitConvert <v3i64, v3f64, VReg_192>;
1679def : BitConvert <v3f64, v3i64, VReg_192>;
1680def : BitConvert <v3i64, v6i32, VReg_192>;
1681def : BitConvert <v3i64, v6f32, VReg_192>;
1682def : BitConvert <v3f64, v6i32, VReg_192>;
1683def : BitConvert <v3f64, v6f32, VReg_192>;
1684def : BitConvert <v6i32, v3i64, VReg_192>;
1685def : BitConvert <v6f32, v3i64, VReg_192>;
1686def : BitConvert <v6i32, v3f64, VReg_192>;
1687def : BitConvert <v6f32, v3f64, VReg_192>;
1688
1689// 224-bit bitcast
1690def : BitConvert <v7i32, v7f32, SReg_224>;
1691def : BitConvert <v7f32, v7i32, SReg_224>;
1692def : BitConvert <v7i32, v7f32, VReg_224>;
1693def : BitConvert <v7f32, v7i32, VReg_224>;
1694
1695// 256-bit bitcast
1696def : BitConvert <v8i32, v8f32, SReg_256>;
1697def : BitConvert <v8f32, v8i32, SReg_256>;
1698def : BitConvert <v8i32, v8f32, VReg_256>;
1699def : BitConvert <v8f32, v8i32, VReg_256>;
1700def : BitConvert <v4i64, v4f64, VReg_256>;
1701def : BitConvert <v4f64, v4i64, VReg_256>;
1702def : BitConvert <v4i64, v8i32, VReg_256>;
1703def : BitConvert <v4i64, v8f32, VReg_256>;
1704def : BitConvert <v4f64, v8i32, VReg_256>;
1705def : BitConvert <v4f64, v8f32, VReg_256>;
1706def : BitConvert <v8i32, v4i64, VReg_256>;
1707def : BitConvert <v8f32, v4i64, VReg_256>;
1708def : BitConvert <v8i32, v4f64, VReg_256>;
1709def : BitConvert <v8f32, v4f64, VReg_256>;
1710def : BitConvert <v16i16, v16f16, SReg_256>;
1711def : BitConvert <v16f16, v16i16, SReg_256>;
1712def : BitConvert <v16i16, v16f16, VReg_256>;
1713def : BitConvert <v16f16, v16i16, VReg_256>;
1714def : BitConvert <v16f16, v8i32, VReg_256>;
1715def : BitConvert <v16i16, v8i32, VReg_256>;
1716def : BitConvert <v16f16, v8f32, VReg_256>;
1717def : BitConvert <v16i16, v8f32, VReg_256>;
1718def : BitConvert <v8i32, v16f16, VReg_256>;
1719def : BitConvert <v8i32, v16i16, VReg_256>;
1720def : BitConvert <v8f32, v16f16, VReg_256>;
1721def : BitConvert <v8f32, v16i16, VReg_256>;
1722def : BitConvert <v16f16, v4i64, VReg_256>;
1723def : BitConvert <v16i16, v4i64, VReg_256>;
1724def : BitConvert <v16f16, v4f64, VReg_256>;
1725def : BitConvert <v16i16, v4f64, VReg_256>;
1726def : BitConvert <v4i64, v16f16, VReg_256>;
1727def : BitConvert <v4i64, v16i16, VReg_256>;
1728def : BitConvert <v4f64, v16f16, VReg_256>;
1729def : BitConvert <v4f64, v16i16, VReg_256>;
1730
1731
1732def : BitConvert <v8i32, v16bf16, VReg_256>;
1733def : BitConvert <v16bf16, v8i32, VReg_256>;
1734def : BitConvert <v8f32, v16bf16, VReg_256>;
1735def : BitConvert <v16bf16, v8f32, VReg_256>;
1736def : BitConvert <v4i64, v16bf16, VReg_256>;
1737def : BitConvert <v16bf16, v4i64, VReg_256>;
1738def : BitConvert <v4f64, v16bf16, VReg_256>;
1739def : BitConvert <v16bf16, v4f64, VReg_256>;
1740
1741
1742
1743def : BitConvert <v16i16, v16bf16, SReg_256>;
1744def : BitConvert <v16bf16, v16i16, SReg_256>;
1745def : BitConvert <v16i16, v16bf16, VReg_256>;
1746def : BitConvert <v16bf16, v16i16, VReg_256>;
1747
1748def : BitConvert <v16f16, v16bf16, SReg_256>;
1749def : BitConvert <v16bf16, v16f16, SReg_256>;
1750def : BitConvert <v16f16, v16bf16, VReg_256>;
1751def : BitConvert <v16bf16, v16f16, VReg_256>;
1752
1753
1754
1755
1756// 288-bit bitcast
1757def : BitConvert <v9i32, v9f32, SReg_288>;
1758def : BitConvert <v9f32, v9i32, SReg_288>;
1759def : BitConvert <v9i32, v9f32, VReg_288>;
1760def : BitConvert <v9f32, v9i32, VReg_288>;
1761
1762// 320-bit bitcast
1763def : BitConvert <v10i32, v10f32, SReg_320>;
1764def : BitConvert <v10f32, v10i32, SReg_320>;
1765def : BitConvert <v10i32, v10f32, VReg_320>;
1766def : BitConvert <v10f32, v10i32, VReg_320>;
1767
1768// 320-bit bitcast
1769def : BitConvert <v11i32, v11f32, SReg_352>;
1770def : BitConvert <v11f32, v11i32, SReg_352>;
1771def : BitConvert <v11i32, v11f32, VReg_352>;
1772def : BitConvert <v11f32, v11i32, VReg_352>;
1773
1774// 384-bit bitcast
1775def : BitConvert <v12i32, v12f32, SReg_384>;
1776def : BitConvert <v12f32, v12i32, SReg_384>;
1777def : BitConvert <v12i32, v12f32, VReg_384>;
1778def : BitConvert <v12f32, v12i32, VReg_384>;
1779
1780// 512-bit bitcast
1781def : BitConvert <v32f16, v32i16, VReg_512>;
1782def : BitConvert <v32i16, v32f16, VReg_512>;
1783def : BitConvert <v32f16, v16i32, VReg_512>;
1784def : BitConvert <v32f16, v16f32, VReg_512>;
1785def : BitConvert <v16f32, v32f16, VReg_512>;
1786def : BitConvert <v16i32, v32f16, VReg_512>;
1787def : BitConvert <v32i16, v16i32, VReg_512>;
1788def : BitConvert <v32i16, v16f32, VReg_512>;
1789def : BitConvert <v16f32, v32i16, VReg_512>;
1790def : BitConvert <v16i32, v32i16, VReg_512>;
1791def : BitConvert <v16i32, v16f32, VReg_512>;
1792def : BitConvert <v16f32, v16i32, VReg_512>;
1793def : BitConvert <v8i64,  v8f64,  VReg_512>;
1794def : BitConvert <v8f64,  v8i64,  VReg_512>;
1795def : BitConvert <v8i64,  v16i32, VReg_512>;
1796def : BitConvert <v8f64,  v16i32, VReg_512>;
1797def : BitConvert <v16i32, v8i64,  VReg_512>;
1798def : BitConvert <v16i32, v8f64,  VReg_512>;
1799def : BitConvert <v8i64,  v16f32, VReg_512>;
1800def : BitConvert <v8f64,  v16f32, VReg_512>;
1801def : BitConvert <v16f32, v8i64,  VReg_512>;
1802def : BitConvert <v16f32, v8f64,  VReg_512>;
1803
1804
1805
1806def : BitConvert <v32bf16, v32i16, VReg_512>;
1807def : BitConvert <v32i16, v32bf16, VReg_512>;
1808def : BitConvert <v32bf16, v32i16, SReg_512>;
1809def : BitConvert <v32i16, v32bf16, SReg_512>;
1810
1811def : BitConvert <v32bf16, v32f16, VReg_512>;
1812def : BitConvert <v32f16, v32bf16, VReg_512>;
1813def : BitConvert <v32bf16, v32f16, SReg_512>;
1814def : BitConvert <v32f16, v32bf16, SReg_512>;
1815
1816def : BitConvert <v32bf16, v16i32, VReg_512>;
1817def : BitConvert <v16i32, v32bf16, VReg_512>;
1818def : BitConvert <v32bf16, v16i32, SReg_512>;
1819def : BitConvert <v16i32, v32bf16, SReg_512>;
1820
1821def : BitConvert <v32bf16, v16f32, VReg_512>;
1822def : BitConvert <v16f32, v32bf16, VReg_512>;
1823def : BitConvert <v32bf16, v16f32, SReg_512>;
1824def : BitConvert <v16f32, v32bf16, SReg_512>;
1825
1826def : BitConvert <v32bf16, v8f64, VReg_512>;
1827def : BitConvert <v8f64, v32bf16, VReg_512>;
1828def : BitConvert <v32bf16, v8f64, SReg_512>;
1829def : BitConvert <v8f64, v32bf16, SReg_512>;
1830
1831def : BitConvert <v32bf16, v8i64, VReg_512>;
1832def : BitConvert <v8i64, v32bf16, VReg_512>;
1833def : BitConvert <v32bf16, v8i64, SReg_512>;
1834def : BitConvert <v8i64, v32bf16, SReg_512>;
1835
1836// 1024-bit bitcast
1837def : BitConvert <v32i32, v32f32, VReg_1024>;
1838def : BitConvert <v32f32, v32i32, VReg_1024>;
1839def : BitConvert <v16i64, v16f64, VReg_1024>;
1840def : BitConvert <v16f64, v16i64, VReg_1024>;
1841def : BitConvert <v16i64, v32i32, VReg_1024>;
1842def : BitConvert <v32i32, v16i64, VReg_1024>;
1843def : BitConvert <v16f64, v32f32, VReg_1024>;
1844def : BitConvert <v32f32, v16f64, VReg_1024>;
1845def : BitConvert <v16i64, v32f32, VReg_1024>;
1846def : BitConvert <v32i32, v16f64, VReg_1024>;
1847def : BitConvert <v16f64, v32i32, VReg_1024>;
1848def : BitConvert <v32f32, v16i64, VReg_1024>;
1849
1850
1851/********** =================== **********/
1852/********** Src & Dst modifiers **********/
1853/********** =================== **********/
1854
1855
1856// If denormals are not enabled, it only impacts the compare of the
1857// inputs. The output result is not flushed.
1858class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1859  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1860  (inst i32:$src0_modifiers, vt:$src0,
1861        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1862>;
1863
1864def : ClampPat<V_MAX_F32_e64, f32>;
1865let SubtargetPredicate = isNotGFX12Plus in
1866def : ClampPat<V_MAX_F64_e64, f64>;
1867let SubtargetPredicate = isGFX12Plus in
1868def : ClampPat<V_MAX_NUM_F64_e64, f64>;
1869let SubtargetPredicate = NotHasTrue16BitInsts in
1870def : ClampPat<V_MAX_F16_e64, f16>;
1871let SubtargetPredicate = UseRealTrue16Insts in
1872def : ClampPat<V_MAX_F16_t16_e64, f16>;
1873let SubtargetPredicate = UseFakeTrue16Insts in
1874def : ClampPat<V_MAX_F16_fake16_e64, f16>;
1875
1876let SubtargetPredicate = HasVOP3PInsts in {
1877def : GCNPat <
1878  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1879  (V_PK_MAX_F16 $src0_modifiers, $src0,
1880                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1881>;
1882}
1883
1884
1885/********** ================================ **********/
1886/********** Floating point absolute/negative **********/
1887/********** ================================ **********/
1888
1889def : GCNPat <
1890  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1891  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1892>;
1893
1894def : GCNPat <
1895  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1896  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1897>;
1898
1899def : GCNPat <
1900  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1901  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1902>;
1903
1904def : GCNPat <
1905  (UniformUnaryFrag<fneg> (f16 SReg_32:$src)),
1906  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1907>;
1908
1909def : GCNPat <
1910  (UniformUnaryFrag<fabs> (f16 SReg_32:$src)),
1911  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1912>;
1913
1914def : GCNPat <
1915  (UniformUnaryFrag<fneg> (fabs (f16 SReg_32:$src))),
1916  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1917>;
1918
1919def : GCNPat <
1920  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1921  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1922>;
1923
1924def : GCNPat <
1925  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1926  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1927>;
1928
1929// This is really (fneg (fabs v2f16:$src))
1930//
1931// fabs is not reported as free because there is modifier for it in
1932// VOP3P instructions, so it is turned into the bit op.
1933def : GCNPat <
1934  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1935  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1936>;
1937
1938def : GCNPat <
1939  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1940  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1941>;
1942
1943
1944// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1945// of the real value.
1946def : GCNPat <
1947  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1948  (v2f32 (REG_SEQUENCE SReg_64,
1949         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1950                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1951                                 SReg_32)), sub0,
1952         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1953                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1954                                 SReg_32)), sub1))
1955>;
1956
1957def : GCNPat <
1958  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1959  (v2f32 (REG_SEQUENCE SReg_64,
1960         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1961                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1962                                 SReg_32)), sub0,
1963         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1964                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1965                                 SReg_32)), sub1))
1966>;
1967
1968def : GCNPat <
1969  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1970  (v2f32 (REG_SEQUENCE SReg_64,
1971         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1972                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1973                                 SReg_32)), sub0,
1974         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1975                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1976                                 SReg_32)), sub1))
1977>;
1978
1979// FIXME: Use S_BITSET0_B32/B64?
1980def : GCNPat <
1981  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1982  (REG_SEQUENCE SReg_64,
1983    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1984    sub0,
1985    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1986                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1987     sub1)
1988>;
1989
1990def : GCNPat <
1991  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1992  (REG_SEQUENCE SReg_64,
1993    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1994    sub0,
1995    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1996                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
1997    sub1)
1998>;
1999
2000def : GCNPat <
2001  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
2002  (REG_SEQUENCE SReg_64,
2003    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
2004    sub0,
2005    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
2006                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
2007    sub1)
2008>;
2009
2010
2011def : GCNPat <
2012  (fneg (fabs (f32 VGPR_32:$src))),
2013  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
2014>;
2015
2016def : GCNPat <
2017  (fabs (f32 VGPR_32:$src)),
2018  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
2019>;
2020
2021def : GCNPat <
2022  (fneg (f32 VGPR_32:$src)),
2023  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
2024>;
2025
2026def : GCNPat <
2027  (fabs (f16 VGPR_32:$src)),
2028  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
2029>;
2030
2031def : GCNPat <
2032  (fneg (f16 VGPR_32:$src)),
2033  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
2034>;
2035
2036def : GCNPat <
2037  (fneg (fabs (f16 VGPR_32:$src))),
2038  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
2039>;
2040
2041def : GCNPat <
2042  (fneg (v2f16 VGPR_32:$src)),
2043  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
2044>;
2045
2046def : GCNPat <
2047  (fabs (v2f16 VGPR_32:$src)),
2048  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
2049>;
2050
2051def : GCNPat <
2052  (fneg (v2f16 (fabs VGPR_32:$src))),
2053  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
2054>;
2055
2056def : GCNPat <
2057  (fabs (f64 VReg_64:$src)),
2058  (REG_SEQUENCE VReg_64,
2059    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2060    sub0,
2061    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
2062        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2063     sub1)
2064>;
2065
2066def : GCNPat <
2067  (fneg (f64 VReg_64:$src)),
2068  (REG_SEQUENCE VReg_64,
2069    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2070    sub0,
2071    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
2072        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2073    sub1)
2074>;
2075
2076def : GCNPat <
2077  (fneg (fabs (f64 VReg_64:$src))),
2078  (REG_SEQUENCE VReg_64,
2079    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2080    sub0,
2081    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
2082        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2083    sub1)
2084>;
2085
2086def : GCNPat <
2087  (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
2088  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
2089                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0,
2090                0, 0, 0, 0, 0)
2091> {
2092  let SubtargetPredicate = HasPackedFP32Ops;
2093}
2094
2095foreach fp16vt = [f16, bf16] in {
2096
2097def : GCNPat <
2098  (fcopysign fp16vt:$src0, fp16vt:$src1),
2099  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
2100>;
2101
2102def : GCNPat <
2103  (fcopysign f32:$src0, fp16vt:$src1),
2104  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2105             (V_LSHLREV_B32_e64 (i32 16), $src1))
2106>;
2107
2108def : GCNPat <
2109  (fcopysign f64:$src0, fp16vt:$src1),
2110  (REG_SEQUENCE SReg_64,
2111    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2112    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
2113               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
2114>;
2115
2116def : GCNPat <
2117  (fcopysign fp16vt:$src0, f32:$src1),
2118  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
2119             (V_LSHRREV_B32_e64 (i32 16), $src1))
2120>;
2121
2122def : GCNPat <
2123  (fcopysign fp16vt:$src0, f64:$src1),
2124  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
2125             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
2126>;
2127} // End foreach fp16vt = [f16, bf16]
2128
2129/********** ================== **********/
2130/********** Immediate Patterns **********/
2131/********** ================== **********/
2132
2133def : GCNPat <
2134  (VGPRImm<(i32 imm)>:$imm),
2135  (V_MOV_B32_e32 imm:$imm)
2136>;
2137
2138def : GCNPat <
2139  (VGPRImm<(f32 fpimm)>:$imm),
2140  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
2141>;
2142
2143def : GCNPat <
2144  (i32 imm:$imm),
2145  (S_MOV_B32 imm:$imm)
2146>;
2147
2148def : GCNPat <
2149  (VGPRImm<(SIlds tglobaladdr:$ga)>),
2150  (V_MOV_B32_e32 $ga)
2151>;
2152
2153def : GCNPat <
2154  (SIlds tglobaladdr:$ga),
2155  (S_MOV_B32 $ga)
2156>;
2157
2158// FIXME: Workaround for ordering issue with peephole optimizer where
2159// a register class copy interferes with immediate folding.  Should
2160// use s_mov_b32, which can be shrunk to s_movk_i32
2161def : GCNPat <
2162  (VGPRImm<(f16 fpimm)>:$imm),
2163  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
2164>;
2165
2166def : GCNPat <
2167  (VGPRImm<(bf16 fpimm)>:$imm),
2168  (V_MOV_B32_e32 (bf16 (bitcast_fpimm_to_i32 $imm)))
2169>;
2170
2171// V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit
2172// immediate and wil be expanded as needed, but we will only use these patterns
2173// for values which can be encoded.
2174def : GCNPat <
2175  (VGPRImm<(i64 imm)>:$imm),
2176  (V_MOV_B64_PSEUDO imm:$imm)
2177>;
2178
2179def : GCNPat <
2180  (VGPRImm<(f64 fpimm)>:$imm),
2181  (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm)))
2182>;
2183
2184def : GCNPat <
2185  (i64 imm:$imm),
2186  (S_MOV_B64_IMM_PSEUDO imm:$imm)
2187>;
2188
2189def : GCNPat <
2190  (f64 fpimm:$imm),
2191  (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm)))
2192>;
2193
2194def : GCNPat <
2195  (f32 fpimm:$imm),
2196  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
2197>;
2198
2199def : GCNPat <
2200  (f16 fpimm:$imm),
2201  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
2202>;
2203
2204def : GCNPat <
2205  (bf16 fpimm:$imm),
2206  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
2207>;
2208
2209def : GCNPat <
2210  (p5 frameindex:$fi),
2211  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
2212>;
2213
2214def : GCNPat <
2215  (p5 frameindex:$fi),
2216  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
2217>;
2218
2219def : GCNPat <
2220  (i64 InlineImm64:$imm),
2221  (S_MOV_B64 InlineImm64:$imm)
2222>;
2223
2224// XXX - Should this use a s_cmp to set SCC?
2225
2226// Set to sign-extended 64-bit value (true = -1, false = 0)
2227def : GCNPat <
2228  (i1 imm:$imm),
2229  (S_MOV_B64 (i64 (as_i64imm $imm)))
2230> {
2231  let WaveSizePredicate = isWave64;
2232}
2233
2234def : GCNPat <
2235  (i1 imm:$imm),
2236  (S_MOV_B32 (i32 (as_i32imm $imm)))
2237> {
2238  let WaveSizePredicate = isWave32;
2239}
2240
2241def : GCNPat <
2242  (f64 InlineImmFP64:$imm),
2243  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
2244>;
2245
2246/********** ================== **********/
2247/********** Intrinsic Patterns **********/
2248/********** ================== **********/
2249
2250def : GCNPat <
2251  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
2252  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
2253>;
2254
2255def : GCNPat <
2256  (i32 (sext i1:$src0)),
2257  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2258                     /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0)
2259>;
2260
2261class Ext32Pat <SDNode ext> : GCNPat <
2262  (i32 (ext i1:$src0)),
2263  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2264                     /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0)
2265>;
2266
2267def : Ext32Pat <zext>;
2268def : Ext32Pat <anyext>;
2269
2270// The multiplication scales from [0,1) to the unsigned integer range,
2271// rounding down a bit to avoid unwanted overflow.
2272def : GCNPat <
2273  (AMDGPUurecip i32:$src0),
2274  (V_CVT_U32_F32_e32
2275    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
2276                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
2277>;
2278
2279//===----------------------------------------------------------------------===//
2280// VOP3 Patterns
2281//===----------------------------------------------------------------------===//
2282
2283def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
2284def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
2285
2286// BFI patterns
2287
2288def BFIImm32 : PatFrag<
2289  (ops node:$x, node:$y, node:$z),
2290  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
2291  [{
2292    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
2293    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
2294    return X && NotX &&
2295      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
2296  }]
2297>;
2298
2299
2300// Definition from ISA doc:
2301// (y & x) | (z & ~x)
2302def : AMDGPUPatIgnoreCopies <
2303  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
2304  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2305                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2306                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2307>;
2308
2309// (y & C) | (z & ~C)
2310def : AMDGPUPatIgnoreCopies <
2311  (BFIImm32 i32:$x, i32:$y, i32:$z),
2312  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2313>;
2314
2315// 64-bit version
2316def : AMDGPUPatIgnoreCopies <
2317  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
2318  (REG_SEQUENCE VReg_64,
2319    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2320              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2321              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2322    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2323              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2324              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2325>;
2326
2327// SHA-256 Ch function
2328// z ^ (x & (y ^ z))
2329def : AMDGPUPatIgnoreCopies <
2330  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
2331  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2332                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2333                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2334>;
2335
2336// 64-bit version
2337def : AMDGPUPatIgnoreCopies <
2338  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
2339  (REG_SEQUENCE VReg_64,
2340    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2341              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2342              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2343    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2344              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2345              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2346>;
2347
2348def : AMDGPUPat <
2349  (fcopysign f32:$src0, f32:$src1),
2350  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
2351>;
2352
2353def : AMDGPUPat <
2354  (fcopysign f32:$src0, f64:$src1),
2355  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2356             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
2357>;
2358
2359def : AMDGPUPat <
2360  (fcopysign f64:$src0, f64:$src1),
2361  (REG_SEQUENCE SReg_64,
2362    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2363    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2364               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2365               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
2366>;
2367
2368def : AMDGPUPat <
2369  (fcopysign f64:$src0, f32:$src1),
2370  (REG_SEQUENCE SReg_64,
2371    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2372    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2373               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2374               $src1), sub1)
2375>;
2376
2377def : ROTRPattern <V_ALIGNBIT_B32_e64>;
2378
2379def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
2380          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2381                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2382
2383def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
2384          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2385                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2386
2387/********** ====================== **********/
2388/**********   Indirect addressing  **********/
2389/********** ====================== **********/
2390
2391multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
2392  // Extract with offset
2393  def : GCNPat<
2394    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
2395    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
2396  >;
2397
2398  // Insert with offset
2399  def : GCNPat<
2400    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
2401    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
2402  >;
2403}
2404
2405defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
2406defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
2407defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
2408defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
2409defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
2410defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
2411defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
2412defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
2413defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2414
2415defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2416defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2417defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2418defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
2419defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
2420defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
2421defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
2422defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2423defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2424
2425//===----------------------------------------------------------------------===//
2426// SAD Patterns
2427//===----------------------------------------------------------------------===//
2428
2429def : GCNPat <
2430  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2431                   (umin i32:$src0, i32:$src1)),
2432       i32:$src2),
2433  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2434>;
2435
2436def : GCNPat <
2437  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2438                      (sub i32:$src0, i32:$src1),
2439                      (sub i32:$src1, i32:$src0)),
2440       i32:$src2),
2441  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2442>;
2443
2444//===----------------------------------------------------------------------===//
2445// Conversion Patterns
2446//===----------------------------------------------------------------------===//
2447def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2448  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2449
2450// Handle sext_inreg in i64
2451def : GCNPat <
2452  (i64 (UniformSextInreg<i1> i64:$src)),
2453  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2454>;
2455
2456def : GCNPat <
2457  (i16 (UniformSextInreg<i1> i16:$src)),
2458  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2459>;
2460
2461def : GCNPat <
2462  (i16 (UniformSextInreg<i8> i16:$src)),
2463  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2464>;
2465
2466def : GCNPat <
2467  (i64 (UniformSextInreg<i8> i64:$src)),
2468  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2469>;
2470
2471def : GCNPat <
2472  (i64 (UniformSextInreg<i16> i64:$src)),
2473  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2474>;
2475
2476def : GCNPat <
2477  (i64 (UniformSextInreg<i32> i64:$src)),
2478  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2479>;
2480
2481def : GCNPat<
2482  (i32 (DivergentSextInreg<i1> i32:$src)),
2483  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2484
2485def : GCNPat <
2486  (i16 (DivergentSextInreg<i1> i16:$src)),
2487  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2488>;
2489
2490def : GCNPat <
2491  (i16 (DivergentSextInreg<i8> i16:$src)),
2492  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2493>;
2494
2495def : GCNPat<
2496  (i32 (DivergentSextInreg<i8> i32:$src)),
2497  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2498>;
2499
2500def : GCNPat <
2501  (i32 (DivergentSextInreg<i16> i32:$src)),
2502  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2503>;
2504
2505def : GCNPat <
2506  (i64 (DivergentSextInreg<i1> i64:$src)),
2507  (REG_SEQUENCE VReg_64,
2508    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2509    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2510>;
2511
2512def : GCNPat <
2513  (i64 (DivergentSextInreg<i8> i64:$src)),
2514  (REG_SEQUENCE VReg_64,
2515    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2516    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2517>;
2518
2519def : GCNPat <
2520  (i64 (DivergentSextInreg<i16> i64:$src)),
2521  (REG_SEQUENCE VReg_64,
2522    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2523    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2524>;
2525
2526def : GCNPat <
2527  (i64 (DivergentSextInreg<i32> i64:$src)),
2528  (REG_SEQUENCE VReg_64,
2529    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2530    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2531>;
2532
2533def : GCNPat <
2534  (i64 (zext i32:$src)),
2535  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2536>;
2537
2538def : GCNPat <
2539  (i64 (anyext i32:$src)),
2540  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2541>;
2542
2543class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2544  (i64 (ext i1:$src)),
2545    (REG_SEQUENCE VReg_64,
2546      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2547                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2548      sub0, (S_MOV_B32 (i32 0)), sub1)
2549>;
2550
2551
2552def : ZExt_i64_i1_Pat<zext>;
2553def : ZExt_i64_i1_Pat<anyext>;
2554
2555// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2556// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2557def : GCNPat <
2558  (i64 (UniformUnaryFrag<sext> i32:$src)),
2559    (REG_SEQUENCE SReg_64, $src, sub0,
2560    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2561>;
2562
2563def : GCNPat <
2564  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2565    (REG_SEQUENCE VReg_64, $src, sub0,
2566    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2567>;
2568
2569def : GCNPat <
2570  (i64 (sext i1:$src)),
2571  (REG_SEQUENCE VReg_64,
2572    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2573                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2574    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2575                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2576>;
2577
2578class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2579  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2580  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2581>;
2582
2583let OtherPredicates = [NotHasTrue16BitInsts] in {
2584  def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2585  def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2586} // end OtherPredicates = [NotHasTrue16BitInsts]
2587
2588let OtherPredicates = [HasTrue16BitInsts] in {
2589  def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2590  def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2591} // end OtherPredicates = [HasTrue16BitInsts]
2592
2593def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2594def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2595def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2596def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2597
2598// If we need to perform a logical operation on i1 values, we need to
2599// use vector comparisons since there is only one SCC register. Vector
2600// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2601// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2602// instructions resulting in the copies from SCC to these instructions
2603// will be moved to the VALU.
2604
2605let WaveSizePredicate = isWave64 in {
2606def : GCNPat <
2607  (i1 (and i1:$src0, i1:$src1)),
2608  (S_AND_B64 $src0, $src1)
2609>;
2610
2611def : GCNPat <
2612  (i1 (or i1:$src0, i1:$src1)),
2613  (S_OR_B64 $src0, $src1)
2614>;
2615
2616def : GCNPat <
2617  (i1 (xor i1:$src0, i1:$src1)),
2618  (S_XOR_B64 $src0, $src1)
2619>;
2620
2621def : GCNPat <
2622  (i1 (add i1:$src0, i1:$src1)),
2623  (S_XOR_B64 $src0, $src1)
2624>;
2625
2626def : GCNPat <
2627  (i1 (sub i1:$src0, i1:$src1)),
2628  (S_XOR_B64 $src0, $src1)
2629>;
2630
2631let AddedComplexity = 1 in {
2632def : GCNPat <
2633  (i1 (add i1:$src0, (i1 -1))),
2634  (S_NOT_B64 $src0)
2635>;
2636
2637def : GCNPat <
2638  (i1 (sub i1:$src0, (i1 -1))),
2639  (S_NOT_B64 $src0)
2640>;
2641}
2642} // end isWave64
2643
2644let WaveSizePredicate = isWave32 in {
2645def : GCNPat <
2646  (i1 (and i1:$src0, i1:$src1)),
2647  (S_AND_B32 $src0, $src1)
2648>;
2649
2650def : GCNPat <
2651  (i1 (or i1:$src0, i1:$src1)),
2652  (S_OR_B32 $src0, $src1)
2653>;
2654
2655def : GCNPat <
2656  (i1 (xor i1:$src0, i1:$src1)),
2657  (S_XOR_B32 $src0, $src1)
2658>;
2659
2660def : GCNPat <
2661  (i1 (add i1:$src0, i1:$src1)),
2662  (S_XOR_B32 $src0, $src1)
2663>;
2664
2665def : GCNPat <
2666  (i1 (sub i1:$src0, i1:$src1)),
2667  (S_XOR_B32 $src0, $src1)
2668>;
2669
2670let AddedComplexity = 1 in {
2671def : GCNPat <
2672  (i1 (add i1:$src0, (i1 -1))),
2673  (S_NOT_B32 $src0)
2674>;
2675
2676def : GCNPat <
2677  (i1 (sub i1:$src0, (i1 -1))),
2678  (S_NOT_B32 $src0)
2679>;
2680}
2681} // end isWave32
2682
2683def : GCNPat <
2684  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2685  (V_NOT_B32_e32 $src0)
2686>;
2687
2688def : GCNPat <
2689  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2690    (REG_SEQUENCE VReg_64,
2691      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2692      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2693    )
2694>;
2695
2696let SubtargetPredicate = NotHasTrue16BitInsts in
2697def : GCNPat <
2698  (f16 (sint_to_fp i1:$src)),
2699  (V_CVT_F16_F32_e32 (
2700      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2701                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2702                        SSrc_i1:$src))
2703>;
2704
2705let SubtargetPredicate = HasTrue16BitInsts in
2706def : GCNPat <
2707  (f16 (sint_to_fp i1:$src)),
2708  (V_CVT_F16_F32_t16_e32 (
2709      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2710                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2711                        SSrc_i1:$src))
2712>;
2713
2714let SubtargetPredicate = NotHasTrue16BitInsts in
2715def : GCNPat <
2716  (f16 (uint_to_fp i1:$src)),
2717  (V_CVT_F16_F32_e32 (
2718      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2719                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2720                        SSrc_i1:$src))
2721>;
2722let SubtargetPredicate = HasTrue16BitInsts in
2723def : GCNPat <
2724  (f16 (uint_to_fp i1:$src)),
2725  (V_CVT_F16_F32_t16_e32 (
2726      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2727                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2728                        SSrc_i1:$src))
2729>;
2730
2731def : GCNPat <
2732  (f32 (sint_to_fp i1:$src)),
2733  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2734                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2735                        SSrc_i1:$src)
2736>;
2737
2738def : GCNPat <
2739  (f32 (uint_to_fp i1:$src)),
2740  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2741                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2742                        SSrc_i1:$src)
2743>;
2744
2745def : GCNPat <
2746  (f64 (sint_to_fp i1:$src)),
2747  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2748                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2749                                        SSrc_i1:$src))
2750>;
2751
2752def : GCNPat <
2753  (f64 (uint_to_fp i1:$src)),
2754  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2755                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2756                                        SSrc_i1:$src))
2757>;
2758
2759//===----------------------------------------------------------------------===//
2760// Miscellaneous Patterns
2761//===----------------------------------------------------------------------===//
2762
2763// Eliminate a zero extension from an fp16 operation if it already
2764// zeros the high bits of the 32-bit register.
2765//
2766// This is complicated on gfx9+. Some instructions maintain the legacy
2767// zeroing behavior, but others preserve the high bits. Some have a
2768// control bit to change the behavior. We can't simply say with
2769// certainty what the source behavior is without more context on how
2770// the src is lowered. e.g. fptrunc + fma may be lowered to a
2771// v_fma_mix* instruction which does not zero, or may not.
2772def : GCNPat<
2773  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2774  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2775
2776let AddedComplexity = 1 in {
2777def : GCNPat<
2778  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2779  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2780  let SubtargetPredicate = HasAddNoCarryInsts;
2781}
2782}  // AddedComplexity = 1
2783
2784def : GCNPat<
2785  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2786  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2787>;
2788
2789def : GCNPat<
2790  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2791  (REG_SEQUENCE VReg_64,
2792    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2793    (S_MOV_B32 (i32 0)), sub1)
2794>;
2795
2796def : GCNPat<
2797  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2798  (COPY VSrc_b16:$src)>;
2799
2800def : GCNPat <
2801  (i32 (trunc i64:$a)),
2802  (EXTRACT_SUBREG $a, sub0)
2803>;
2804
2805def : GCNPat <
2806  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2807  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2808>;
2809
2810def : GCNPat <
2811  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2812  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2813>;
2814
2815def : GCNPat <
2816  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2817  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2818                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2819>;
2820
2821def : GCNPat <
2822  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2823  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2824>;
2825
2826def : GCNPat <
2827  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2828  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2829>;
2830
2831def IMMBitSelConst : SDNodeXForm<imm, [{
2832  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2833                                   MVT::i32);
2834}]>;
2835
2836// Matching separate SRL and TRUNC instructions
2837// with dependent operands (SRL dest is source of TRUNC)
2838// generates three instructions. However, by using bit shifts,
2839// the V_LSHRREV_B32_e64 result can be directly used in the
2840// operand of the V_AND_B32_e64 instruction:
2841// (trunc i32 (srl i32 $a, i32 $b)) ->
2842// v_and_b32_e64 $a, (1 << $b), $a
2843// v_cmp_ne_u32_e64 $a, 0, $a
2844
2845// Handle the VALU case.
2846def : GCNPat <
2847  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2848  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2849    (i32 0))
2850>;
2851
2852// Handle the scalar case.
2853def : GCNPat <
2854  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2855  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2856    (i32 0))
2857>;
2858
2859def : GCNPat <
2860  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2861  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2862                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2863>;
2864
2865def : GCNPat <
2866  (i32 (bswap i32:$a)),
2867  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2868             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2869             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2870>;
2871
2872// FIXME: This should have been narrowed to i32 during legalization.
2873// This pattern should also be skipped for GlobalISel
2874def : GCNPat <
2875  (i64 (bswap i64:$a)),
2876  (REG_SEQUENCE VReg_64,
2877  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2878             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2879                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2880                             (i32 24)),
2881             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2882                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2883                             (i32 8))),
2884  sub0,
2885  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2886             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2887                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2888                             (i32 24)),
2889             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2890                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2891                             (i32 8))),
2892  sub1)
2893>;
2894
2895// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2896// the BFI pattern ends up taking precedence without it.
2897let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2898// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2899//
2900// My reading of the manual suggests we should be using src0 for the
2901// register value, but this is what seems to work.
2902def : GCNPat <
2903  (i32 (bswap i32:$a)),
2904  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2905>;
2906
2907// FIXME: This should have been narrowed to i32 during legalization.
2908// This pattern should also be skipped for GlobalISel
2909def : GCNPat <
2910  (i64 (bswap i64:$a)),
2911  (REG_SEQUENCE VReg_64,
2912  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2913              (S_MOV_B32 (i32 0x00010203))),
2914  sub0,
2915  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2916              (S_MOV_B32 (i32 0x00010203))),
2917  sub1)
2918>;
2919
2920// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2921// The 12s emit 0s.
2922def : GCNPat <
2923  (i16 (bswap i16:$a)),
2924  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2925>;
2926
2927def : GCNPat <
2928  (i32 (zext (bswap i16:$a))),
2929  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2930>;
2931
2932// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2933def : GCNPat <
2934  (v2i16 (bswap v2i16:$a)),
2935  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2936>;
2937
2938}
2939
2940def : GCNPat<
2941  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
2942  (REG_SEQUENCE VReg_64,
2943   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
2944   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
2945
2946// Prefer selecting to max when legal, but using mul is always valid.
2947let AddedComplexity = -5 in {
2948
2949let OtherPredicates = [NotHasTrue16BitInsts] in {
2950def : GCNPat<
2951  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2952  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2953>;
2954
2955def : GCNPat<
2956  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2957  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2958>;
2959} // End OtherPredicates
2960
2961let OtherPredicates = [HasTrue16BitInsts] in {
2962def : GCNPat<
2963  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2964  (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2965>;
2966
2967def : GCNPat<
2968  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2969  (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2970>;
2971} // End OtherPredicates
2972
2973def : GCNPat<
2974  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2975  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2976>;
2977
2978def : GCNPat<
2979  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2980  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2981>;
2982
2983def : GCNPat<
2984  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
2985  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
2986>;
2987
2988let SubtargetPredicate = HasPackedFP32Ops in {
2989def : GCNPat<
2990  (fcanonicalize (v2f32 (VOP3PMods v2f32:$src, i32:$src_mods))),
2991  (V_PK_MUL_F32 0, CONST.FP32_ONE, $src_mods, $src)
2992>;
2993}
2994
2995// TODO: Handle fneg like other types.
2996let SubtargetPredicate = isNotGFX12Plus in {
2997def : GCNPat<
2998  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2999  (V_MUL_F64_e64  0, CONST.FP64_ONE, $src_mods, $src)
3000>;
3001}
3002} // End AddedComplexity = -5
3003
3004multiclass SelectCanonicalizeAsMax<
3005  list<Predicate> f32_preds = [],
3006  list<Predicate> f64_preds = [],
3007  list<Predicate> f16_preds = []> {
3008  def : GCNPat<
3009    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
3010    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
3011    let OtherPredicates = f32_preds;
3012  }
3013
3014  def : GCNPat<
3015    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3016    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
3017    let OtherPredicates = !listconcat(f64_preds, [isNotGFX12Plus]);
3018  }
3019
3020  def : GCNPat<
3021    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3022    (V_MAX_NUM_F64_e64  $src_mods, $src, $src_mods, $src)> {
3023    let OtherPredicates = !listconcat(f64_preds, [isGFX12Plus]);
3024  }
3025
3026  def : GCNPat<
3027    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3028    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3029    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]);
3030  }
3031
3032  def : GCNPat<
3033    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3034    (V_MAX_F16_fake16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3035    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]);
3036  }
3037
3038  def : GCNPat<
3039    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
3040    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
3041    // FIXME: Should have VOP3P subtarget predicate
3042    let OtherPredicates = f16_preds;
3043  }
3044}
3045
3046// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
3047// mode, and would never flush. For f64, it's faster to do implement
3048// this with a max. For f16/f32 it's a wash, but prefer max when
3049// valid.
3050//
3051// FIXME: Lowering f32/f16 with max is worse since we can use a
3052// smaller encoding if the input is fneg'd. It also adds an extra
3053// register use.
3054let SubtargetPredicate = HasMinMaxDenormModes in {
3055  defm : SelectCanonicalizeAsMax<[], [], []>;
3056} // End SubtargetPredicate = HasMinMaxDenormModes
3057
3058let SubtargetPredicate = NotHasMinMaxDenormModes in {
3059  // Use the max lowering if we don't need to flush.
3060
3061  // FIXME: We don't do use this for f32 as a workaround for the
3062  // library being compiled with the default ieee mode, but
3063  // potentially being called from flushing kernels. Really we should
3064  // not be mixing code expecting different default FP modes, but mul
3065  // works in any FP environment.
3066  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
3067} // End SubtargetPredicate = NotHasMinMaxDenormModes
3068
3069
3070let OtherPredicates = [HasDLInsts] in {
3071// Don't allow source modifiers. If there are any source modifiers then it's
3072// better to select fma instead of fmac.
3073def : GCNPat <
3074  (fma (f32 (VOP3NoMods f32:$src0)),
3075       (f32 (VOP3NoMods f32:$src1)),
3076       (f32 (VOP3NoMods f32:$src2))),
3077  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3078                  SRCMODS.NONE, $src2)
3079>;
3080} // End OtherPredicates = [HasDLInsts]
3081
3082let SubtargetPredicate = isGFX10Plus in {
3083// Don't allow source modifiers. If there are any source modifiers then it's
3084// better to select fma instead of fmac.
3085let OtherPredicates = [NotHasTrue16BitInsts] in
3086def : GCNPat <
3087  (fma (f16 (VOP3NoMods f32:$src0)),
3088       (f16 (VOP3NoMods f32:$src1)),
3089       (f16 (VOP3NoMods f32:$src2))),
3090  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3091                  SRCMODS.NONE, $src2)
3092>;
3093let OtherPredicates = [HasTrue16BitInsts] in
3094def : GCNPat <
3095  (fma (f16 (VOP3NoMods f32:$src0)),
3096       (f16 (VOP3NoMods f32:$src1)),
3097       (f16 (VOP3NoMods f32:$src2))),
3098  (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3099                  SRCMODS.NONE, $src2)
3100>;
3101}
3102
3103let OtherPredicates = [HasFmacF64Inst] in
3104// Don't allow source modifiers. If there are any source modifiers then it's
3105// better to select fma instead of fmac.
3106def : GCNPat <
3107  (fma (f64 (VOP3NoMods f64:$src0)),
3108       (f64 (VOP3NoMods f64:$src1)),
3109       (f64 (VOP3NoMods f64:$src2))),
3110  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3111                  SRCMODS.NONE, $src2)
3112>;
3113
3114// COPY is workaround tablegen bug from multiple outputs
3115// from S_LSHL_B32's multiple outputs from implicit scc def.
3116let AddedComplexity = 1 in {
3117def : GCNPat <
3118  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
3119  (S_LSHL_B32 SReg_32:$src1, (i16 16))
3120>;
3121
3122def : GCNPat <
3123  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
3124  (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
3125>;
3126
3127
3128def : GCNPat <
3129  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
3130  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
3131>;
3132
3133def : GCNPat <
3134  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
3135  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
3136>;
3137
3138def : GCNPat <
3139  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
3140  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
3141>;
3142
3143def : GCNPat <
3144  (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
3145  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
3146>;
3147
3148def : GCNPat <
3149  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 undef))),
3150  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
3151>;
3152
3153def : GCNPat <
3154  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 undef))),
3155  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
3156>;
3157
3158def : GCNPat <
3159  (v2f16 (build_vector f16:$src0, (f16 undef))),
3160  (COPY $src0)
3161>;
3162
3163def : GCNPat <
3164  (v2i16 (UniformBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
3165  (S_LSHL_B32 SReg_32:$src1, (i32 16))
3166>;
3167
3168def : GCNPat <
3169  (v2i16 (DivergentBinFrag<build_vector> (i16 undef), (i16 VGPR_32:$src1))),
3170  (v2i16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
3171>;
3172
3173
3174def : GCNPat <
3175  (v2f16 (UniformBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
3176  (S_LSHL_B32 SReg_32:$src1, (i32 16))
3177>;
3178
3179def : GCNPat <
3180  (v2f16 (DivergentBinFrag<build_vector> (f16 undef), (f16 VGPR_32:$src1))),
3181  (v2f16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
3182>;
3183}
3184
3185let SubtargetPredicate = HasVOP3PInsts in {
3186def : GCNPat <
3187  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
3188  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
3189>;
3190
3191def : GCNPat <
3192  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
3193  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
3194>;
3195
3196// With multiple uses of the shift, this will duplicate the shift and
3197// increase register pressure.
3198def : GCNPat <
3199  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
3200  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
3201>;
3202
3203def : GCNPat <
3204  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
3205                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
3206  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
3207>;
3208
3209def : GCNPat <
3210  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
3211  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
3212>;
3213
3214
3215
3216foreach Ty = [i16, f16] in {
3217
3218defvar vecTy = !if(!eq(Ty, i16), v2i16, v2f16);
3219defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
3220
3221// Take the lower 16 bits from each VGPR_32 and concat them
3222def : GCNPat <
3223  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
3224  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
3225>;
3226
3227
3228// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
3229// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
3230def : GCNPat <
3231  (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
3232    (Ty !if(!eq(Ty, i16),
3233      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3234      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3235  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
3236>;
3237
3238
3239// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
3240// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
3241def : GCNPat <
3242  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
3243    (Ty !if(!eq(Ty, i16),
3244      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3245      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3246  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)),  VGPR_32:$a, VGPR_32:$b)
3247>;
3248
3249
3250// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
3251// Special case, can use V_ALIGNBIT (always uses encoded literal)
3252def : GCNPat <
3253  (vecTy (DivergentBinFrag<build_vector>
3254    (Ty !if(!eq(Ty, i16),
3255      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
3256      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
3257    (Ty VGPR_32:$b))),
3258    (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
3259>;
3260
3261// Take the upper 16 bits from each VGPR_32 and concat them
3262def : GCNPat <
3263  (vecTy (DivergentBinFrag<build_vector>
3264    (Ty !if(!eq(Ty, i16),
3265      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
3266      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
3267    (Ty !if(!eq(Ty, i16),
3268      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3269      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3270  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
3271>;
3272
3273
3274} // end foreach Ty
3275
3276
3277let AddedComplexity = 5 in {
3278def : GCNPat <
3279  (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
3280                                         (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
3281  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
3282>;
3283}
3284} // End SubtargetPredicate = HasVOP3PInsts
3285
3286// With multiple uses of the shift, this will duplicate the shift and
3287// increase register pressure.
3288let SubtargetPredicate = isGFX11Plus in
3289def : GCNPat <
3290  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
3291  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
3292>;
3293
3294
3295def : GCNPat <
3296  (v2f16 (scalar_to_vector f16:$src0)),
3297  (COPY $src0)
3298>;
3299
3300def : GCNPat <
3301  (v2i16 (scalar_to_vector i16:$src0)),
3302  (COPY $src0)
3303>;
3304
3305def : GCNPat <
3306  (v4i16 (scalar_to_vector i16:$src0)),
3307  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3308>;
3309
3310def : GCNPat <
3311  (v4f16 (scalar_to_vector f16:$src0)),
3312  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3313>;
3314
3315def : GCNPat <
3316  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3317                           timm:$bank_mask, timm:$bound_ctrl)),
3318  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
3319                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
3320                        (as_i32timm $bank_mask),
3321                        (as_i1timm $bound_ctrl))
3322>;
3323
3324def : GCNPat <
3325  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3326                              timm:$bank_mask, timm:$bound_ctrl)),
3327  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
3328                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
3329                        (as_i1timm $bound_ctrl))
3330>;
3331
3332//===----------------------------------------------------------------------===//
3333// Fract Patterns
3334//===----------------------------------------------------------------------===//
3335
3336let SubtargetPredicate = isGFX6 in {
3337
3338// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
3339// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
3340// way to implement it is using V_FRACT_F64.
3341// The workaround for the V_FRACT bug is:
3342//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
3343
3344// Convert floor(x) to (x - fract(x))
3345
3346// Don't bother handling this for GlobalISel, it's handled during
3347// lowering.
3348//
3349// FIXME: DAG should also custom lower this.
3350def : GCNPat <
3351  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
3352  (V_ADD_F64_e64
3353      $mods,
3354      $x,
3355      SRCMODS.NEG,
3356      (V_CNDMASK_B64_PSEUDO
3357         (V_MIN_F64_e64
3358             SRCMODS.NONE,
3359             (V_FRACT_F64_e64 $mods, $x),
3360             SRCMODS.NONE,
3361             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
3362         $x,
3363         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
3364>;
3365
3366} // End SubtargetPredicates = isGFX6
3367
3368//============================================================================//
3369// Miscellaneous Optimization Patterns
3370//============================================================================//
3371
3372// Undo sub x, c -> add x, -c canonicalization since c is more likely
3373// an inline immediate than -c.
3374// TODO: Also do for 64-bit.
3375def : GCNPat<
3376  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3377  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
3378>;
3379
3380def : GCNPat<
3381  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3382  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3383  let SubtargetPredicate = HasAddNoCarryInsts;
3384}
3385
3386def : GCNPat<
3387  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3388  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3389  let SubtargetPredicate = NotHasAddNoCarryInsts;
3390}
3391
3392
3393// Avoid pointlessly materializing a constant in VGPR.
3394// FIXME: Should also do this for readlane, but tablegen crashes on
3395// the ignored src1.
3396def : GCNPat<
3397  (int_amdgcn_readfirstlane (i32 imm:$src)),
3398  (S_MOV_B32 SReg_32:$src)
3399>;
3400
3401multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
3402  def : GCNPat <
3403    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
3404    (BFM $a, $b)
3405  >;
3406
3407  def : GCNPat <
3408    (vt (ADD (vt (shl 1, vt:$a)), -1)),
3409    (BFM $a, (i32 0))
3410  >;
3411}
3412
3413defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
3414// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
3415defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
3416
3417// Bitfield extract patterns
3418
3419def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
3420  return isMask_32(Imm);
3421}]>;
3422
3423def IMMPopCount : SDNodeXForm<imm, [{
3424  return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
3425                                   MVT::i32);
3426}]>;
3427
3428def : AMDGPUPat <
3429  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
3430                         IMMZeroBasedBitfieldMask:$mask),
3431  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
3432>;
3433
3434// x & ((1 << y) - 1)
3435def : AMDGPUPat <
3436  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
3437  (V_BFE_U32_e64 $src, (i32 0), $width)
3438>;
3439
3440// x & ~(-1 << y)
3441def : AMDGPUPat <
3442  (DivergentBinFrag<and> i32:$src,
3443                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
3444  (V_BFE_U32_e64 $src, (i32 0), $width)
3445>;
3446
3447// x & (-1 >> (bitwidth - y))
3448def : AMDGPUPat <
3449  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
3450  (V_BFE_U32_e64 $src, (i32 0), $width)
3451>;
3452
3453// x << (bitwidth - y) >> (bitwidth - y)
3454def : AMDGPUPat <
3455  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3456                         (sub 32, i32:$width)),
3457  (V_BFE_U32_e64 $src, (i32 0), $width)
3458>;
3459
3460def : AMDGPUPat <
3461  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3462                         (sub 32, i32:$width)),
3463  (V_BFE_I32_e64 $src, (i32 0), $width)
3464>;
3465
3466// SHA-256 Ma patterns
3467
3468// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
3469def : AMDGPUPatIgnoreCopies <
3470  (DivergentBinFrag<or> (and i32:$x, i32:$z),
3471                        (and i32:$y, (or i32:$x, i32:$z))),
3472  (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
3473                                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)),
3474                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32),
3475                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32))
3476>;
3477
3478def : AMDGPUPatIgnoreCopies <
3479  (DivergentBinFrag<or> (and i64:$x, i64:$z),
3480                        (and i64:$y, (or i64:$x, i64:$z))),
3481  (REG_SEQUENCE VReg_64,
3482    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
3483                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
3484              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
3485              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
3486    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
3487                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
3488              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
3489              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
3490>;
3491
3492multiclass IntMed3Pat<Instruction med3Inst,
3493                 SDPatternOperator min,
3494                 SDPatternOperator max> {
3495
3496  // This matches 16 permutations of
3497  // min(max(a, b), max(min(a, b), c))
3498  def : AMDGPUPat <
3499  (min (max i32:$src0, i32:$src1),
3500       (max (min i32:$src0, i32:$src1), i32:$src2)),
3501  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3502>;
3503
3504  // This matches 16 permutations of
3505  // max(min(x, y), min(max(x, y), z))
3506  def : AMDGPUPat <
3507  (max (min i32:$src0, i32:$src1),
3508       (min (max i32:$src0, i32:$src1), i32:$src2)),
3509  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3510>;
3511}
3512
3513defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
3514defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
3515
3516multiclass FPMed3Pat<ValueType vt,
3517                Instruction med3Inst> {
3518  // This matches 16 permutations of max(min(x, y), min(max(x, y), z))
3519  def : GCNPat<
3520    (fmaxnum_like_nnan
3521      (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3522                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3523      (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3524                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3525                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3526    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3527              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3528
3529
3530  // This matches 16 permutations of min(max(x, y), max(min(x, y), z))
3531  def : GCNPat<
3532    (fminnum_like_nnan
3533      (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3534                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3535      (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3536                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3537                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3538    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3539              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3540}
3541
3542class FP16Med3Pat<ValueType vt,
3543                Instruction med3Inst> : GCNPat<
3544  (fmaxnum_like_nnan (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3545                                   (VOP3Mods vt:$src1, i32:$src1_mods)),
3546           (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3547                                       (VOP3Mods vt:$src1, i32:$src1_mods)),
3548                         (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3549  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
3550>;
3551
3552multiclass Int16Med3Pat<Instruction med3Inst,
3553                        SDPatternOperator min,
3554                        SDPatternOperator max> {
3555  // This matches 16 permutations of
3556  // max(min(x, y), min(max(x, y), z))
3557  def : GCNPat <
3558  (max (min i16:$src0, i16:$src1),
3559       (min (max i16:$src0, i16:$src1), i16:$src2)),
3560  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3561>;
3562
3563  // This matches 16 permutations of
3564  // min(max(a, b), max(min(a, b), c))
3565  def : GCNPat <
3566  (min (max i16:$src0, i16:$src1),
3567       (max (min i16:$src0, i16:$src1), i16:$src2)),
3568  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3569>;
3570}
3571
3572defm : FPMed3Pat<f32, V_MED3_F32_e64>;
3573
3574class
3575IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3576             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3577  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3578                                i32:$src2),
3579  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3580>;
3581
3582class
3583FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3584            SDPatternOperator max_or_min_oneuse> : GCNPat <
3585  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3586                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3587               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3588  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3589              DSTCLAMP.NONE, DSTOMOD.NONE)
3590>;
3591
3592let OtherPredicates = [isGFX11Plus] in {
3593def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3594def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3595def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3596def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3597def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3598def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3599def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3600def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3601}
3602
3603let OtherPredicates = [isGFX9Plus] in {
3604def : FP16Med3Pat<f16, V_MED3_F16_e64>;
3605defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax>;
3606defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax>;
3607} // End Predicates = [isGFX9Plus]
3608
3609let OtherPredicates = [isGFX12Plus] in {
3610def : FPMinMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3611def : FPMinMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3612def : FPMinMaxPat<V_MINIMUMMAXIMUM_F16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3613def : FPMinMaxPat<V_MAXIMUMMINIMUM_F16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3614}
3615
3616// Convert a floating-point power of 2 to the integer exponent.
3617def FPPow2ToExponentXForm : SDNodeXForm<fpimm, [{
3618  const auto &APF = N->getValueAPF();
3619  int Log2 = APF.getExactLog2Abs();
3620  assert(Log2 != INT_MIN);
3621  return CurDAG->getTargetConstant(Log2, SDLoc(N), MVT::i32);
3622}]>;
3623
3624// Check if a floating point value is a power of 2 floating-point
3625// immediate where it's preferable to emit a multiply by as an
3626// ldexp. We skip over 0.5 to 4.0 as those are inline immediates
3627// anyway.
3628def fpimm_pos_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
3629    if (Imm.isNegative())
3630      return false;
3631
3632    int Exp = Imm.getExactLog2Abs();
3633    // Prefer leaving the FP inline immediates as they are.
3634    // 0.5, 1.0, 2.0, 4.0
3635
3636    // For f64 ldexp is always better than materializing a 64-bit
3637    // constant.
3638    return Exp != INT_MIN && (Exp < -1 || Exp > 2);
3639  }], FPPow2ToExponentXForm
3640>;
3641
3642def fpimm_neg_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
3643    if (!Imm.isNegative())
3644      return false;
3645    int Exp = Imm.getExactLog2Abs();
3646    // Prefer leaving the FP inline immediates as they are.
3647    // 0.5, 1.0, 2.0, 4.0
3648
3649    // For f64 ldexp is always better than materializing a 64-bit
3650    // constant.
3651    return Exp != INT_MIN && (Exp < -1 || Exp > 2);
3652  }], FPPow2ToExponentXForm
3653>;
3654
3655// f64 is different because we also want to handle cases that may
3656// require materialization of the exponent.
3657// TODO: If we know f64 ops are fast, prefer add (ldexp x, N), y over fma
3658// TODO: For f32/f16, it's not a clear win on code size to use ldexp
3659// in place of mul since we have to use the vop3 form. Are there power
3660// savings or some other reason to prefer ldexp over mul?
3661def : GCNPat<
3662  (any_fmul (f64 (VOP3Mods f64:$src0, i32:$src0_mods)),
3663            fpimm_pos_pow2_prefer_ldexp_f64:$src1),
3664  (V_LDEXP_F64_e64 i32:$src0_mods, VSrc_b64:$src0,
3665                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3666>;
3667
3668def : GCNPat<
3669  (any_fmul f64:$src0, fpimm_neg_pow2_prefer_ldexp_f64:$src1),
3670  (V_LDEXP_F64_e64 SRCMODS.NEG, VSrc_b64:$src0,
3671                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3672>;
3673
3674// We want to avoid using VOP3Mods which could pull in another fneg
3675// which we would need to be re-negated (which should never happen in
3676// practice). I don't see a way to apply an SDNodeXForm that accounts
3677// for a second operand.
3678def : GCNPat<
3679  (any_fmul (fabs f64:$src0), fpimm_neg_pow2_prefer_ldexp_f64:$src1),
3680  (V_LDEXP_F64_e64 SRCMODS.NEG_ABS, VSrc_b64:$src0,
3681                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3682>;
3683
3684class AMDGPUGenericInstruction : GenericInstruction {
3685  let Namespace = "AMDGPU";
3686}
3687
3688// Convert a wave address to a swizzled vector address (i.e. this is
3689// for copying the stack pointer to a vector address appropriate to
3690// use in the offset field of mubuf instructions).
3691def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3692  let OutOperandList = (outs type0:$dst);
3693  let InOperandList = (ins type0:$src);
3694  let hasSideEffects = 0;
3695}
3696
3697// Returns -1 if the input is zero.
3698def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3699  let OutOperandList = (outs type0:$dst);
3700  let InOperandList = (ins type1:$src);
3701  let hasSideEffects = 0;
3702}
3703
3704// Returns -1 if the input is zero.
3705def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3706  let OutOperandList = (outs type0:$dst);
3707  let InOperandList = (ins type1:$src);
3708  let hasSideEffects = 0;
3709}
3710
3711def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3712  let OutOperandList = (outs type0:$dst);
3713  let InOperandList = (ins type1:$src);
3714  let hasSideEffects = 0;
3715}
3716
3717class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3718  let OutOperandList = (outs type0:$dst);
3719  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3720                           type2:$soffset, untyped_imm_0:$offset,
3721                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3722  let hasSideEffects = 0;
3723  let mayLoad = 1;
3724}
3725
3726class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3727  let OutOperandList = (outs type0:$dst);
3728  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3729                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3730                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3731  let hasSideEffects = 0;
3732  let mayLoad = 1;
3733}
3734
3735def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3736def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3737def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3738def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3739def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3740def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3741def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
3742def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3743def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3744def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3745
3746class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3747  let OutOperandList = (outs);
3748  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3749                           type2:$soffset, untyped_imm_0:$offset,
3750                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3751  let hasSideEffects = 0;
3752  let mayStore = 1;
3753}
3754
3755class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3756  let OutOperandList = (outs);
3757  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3758                           type2:$soffset, untyped_imm_0:$offset,
3759                           untyped_imm_0:$format,
3760                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3761  let hasSideEffects = 0;
3762  let mayStore = 1;
3763}
3764
3765def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3766def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3767def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3768def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3769def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3770def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3771def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3772
3773def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3774  let OutOperandList = (outs type0:$dst);
3775  let InOperandList = (ins type0:$src0, type0:$src1);
3776  let hasSideEffects = 0;
3777}
3778
3779def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3780  let OutOperandList = (outs type0:$dst);
3781  let InOperandList = (ins type0:$src0, type0:$src1);
3782  let hasSideEffects = 0;
3783}
3784
3785foreach N = 0-3 in {
3786def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3787  let OutOperandList = (outs type0:$dst);
3788  let InOperandList = (ins type0:$src0);
3789  let hasSideEffects = 0;
3790}
3791}
3792
3793def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3794  let OutOperandList = (outs type0:$dst);
3795  let InOperandList = (ins type0:$src0, type0:$src1);
3796  let hasSideEffects = 0;
3797}
3798
3799def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3800  let OutOperandList = (outs type0:$dst);
3801  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3802  let hasSideEffects = 0;
3803}
3804
3805def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
3806  let OutOperandList = (outs type0:$dst);
3807  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3808  let hasSideEffects = 0;
3809}
3810
3811def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
3812  let OutOperandList = (outs type0:$dst);
3813  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3814  let hasSideEffects = 0;
3815}
3816
3817def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3818  let OutOperandList = (outs type0:$dst);
3819  let InOperandList = (ins type0:$src);
3820  let hasSideEffects = 0;
3821}
3822
3823// Integer multiply-add: arg0 * arg1 + arg2.
3824//
3825// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
3826// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
3827class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
3828  let OutOperandList = (outs type0:$dst, type1:$carry_out);
3829  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
3830  let hasSideEffects = 0;
3831}
3832
3833def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
3834def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
3835
3836// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3837// operand Expects a MachineMemOperand in addition to explicit
3838// operands.
3839def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3840  let OutOperandList = (outs type0:$oldval);
3841  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3842  let hasSideEffects = 0;
3843  let mayLoad = 1;
3844  let mayStore = 1;
3845}
3846
3847let Namespace = "AMDGPU" in {
3848def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP;
3849def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP;
3850}
3851
3852class BufferAtomicGenericInstruction : AMDGPUGenericInstruction {
3853  let OutOperandList = (outs type0:$dst);
3854  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3855                           type2:$soffset, untyped_imm_0:$offset,
3856                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3857  let hasSideEffects = 0;
3858  let mayLoad = 1;
3859  let mayStore = 1;
3860}
3861
3862def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3863def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3864def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3865def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3866def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3867def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3868def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3869def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3870def G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 : BufferAtomicGenericInstruction;
3871def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3872def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3873def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3874def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3875def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3876def G_AMDGPU_BUFFER_ATOMIC_FADD_BF16 : BufferAtomicGenericInstruction;
3877def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3878def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3879
3880def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3881  let OutOperandList = (outs type0:$dst);
3882  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3883                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3884                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3885  let hasSideEffects = 0;
3886  let mayLoad = 1;
3887  let mayStore = 1;
3888}
3889
3890// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3891// a workaround for the intrinsic being defined as readnone, but
3892// really needs a memory operand.
3893
3894class SBufferLoadInstruction : AMDGPUGenericInstruction {
3895  let OutOperandList = (outs type0:$dst);
3896  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3897  let hasSideEffects = 0;
3898  let mayLoad = 1;
3899  let mayStore = 0;
3900}
3901
3902def G_AMDGPU_S_BUFFER_LOAD : SBufferLoadInstruction;
3903def G_AMDGPU_S_BUFFER_LOAD_SBYTE : SBufferLoadInstruction;
3904def G_AMDGPU_S_BUFFER_LOAD_UBYTE : SBufferLoadInstruction;
3905def G_AMDGPU_S_BUFFER_LOAD_SSHORT : SBufferLoadInstruction;
3906def G_AMDGPU_S_BUFFER_LOAD_USHORT : SBufferLoadInstruction;
3907
3908def G_AMDGPU_S_MUL_U64_U32 : AMDGPUGenericInstruction {
3909  let OutOperandList = (outs type0:$dst);
3910  let InOperandList = (ins type0:$src0, type0:$src1);
3911  let hasSideEffects = 0;
3912}
3913
3914def G_AMDGPU_S_MUL_I64_I32 : AMDGPUGenericInstruction {
3915  let OutOperandList = (outs type0:$dst);
3916  let InOperandList = (ins type0:$src0, type0:$src1);
3917  let hasSideEffects = 0;
3918}
3919
3920// This is equivalent to the G_INTRINSIC*, but the operands may have
3921// been legalized depending on the subtarget requirements.
3922def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3923  let OutOperandList = (outs type0:$dst);
3924  let InOperandList = (ins unknown:$intrin, variable_ops);
3925  let hasSideEffects = 0;
3926  let mayLoad = 1;
3927
3928  // FIXME: Use separate opcode for atomics.
3929  let mayStore = 1;
3930}
3931
3932def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3933  let OutOperandList = (outs type0:$dst);
3934  let InOperandList = (ins unknown:$intrin, variable_ops);
3935  let hasSideEffects = 0;
3936  let mayLoad = 1;
3937
3938  // FIXME: Use separate opcode for atomics.
3939  let mayStore = 1;
3940}
3941
3942// This is equivalent to the G_INTRINSIC*, but the operands may have
3943// been legalized depending on the subtarget requirements.
3944def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3945  let OutOperandList = (outs);
3946  let InOperandList = (ins unknown:$intrin, variable_ops);
3947  let hasSideEffects = 0;
3948  let mayStore = 1;
3949}
3950
3951def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3952  let OutOperandList = (outs);
3953  let InOperandList = (ins unknown:$intrin, variable_ops);
3954  let hasSideEffects = 0;
3955  let mayStore = 1;
3956}
3957
3958def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3959  let OutOperandList = (outs type0:$dst);
3960  let InOperandList = (ins unknown:$intrin, variable_ops);
3961  let hasSideEffects = 0;
3962  let mayLoad = 1;
3963  let mayStore = 0;
3964}
3965
3966// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3967// if necessary.
3968def G_SI_CALL : AMDGPUGenericInstruction {
3969  let OutOperandList = (outs SReg_64:$dst);
3970  let InOperandList = (ins type0:$src0, unknown:$callee);
3971  let Size = 4;
3972  let isCall = 1;
3973  let UseNamedOperandTable = 1;
3974  let SchedRW = [WriteBranch];
3975  // TODO: Should really base this on the call target
3976  let isConvergent = 1;
3977}
3978
3979def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction {
3980  let OutOperandList = (outs type0:$vdst);
3981  let InOperandList = (ins type1:$src0);
3982  let hasSideEffects = 0;
3983}
3984
3985def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction {
3986  let OutOperandList = (outs type0:$vdst);
3987  let InOperandList = (ins type1:$src0);
3988  let hasSideEffects = 0;
3989}
3990
3991//============================================================================//
3992// Dummy Instructions
3993//============================================================================//
3994
3995def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
3996  let Inst{31-0} = 0x00000000;
3997  let FixedSize = 1;
3998  let Size = 4;
3999  let Uses = [EXEC];
4000  let hasSideEffects = 1;
4001  let SubtargetPredicate = isGFX10Plus;
4002}
4003