xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInstructions.td (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17class UniformSextInreg<ValueType VT> : PatFrag<
18  (ops node:$src),
19  (sext_inreg $src, VT),
20  [{ return !N->isDivergent(); }]>;
21
22class DivergentSextInreg<ValueType VT> : PatFrag<
23  (ops node:$src),
24  (sext_inreg $src, VT),
25  [{ return N->isDivergent(); }]>;
26
27include "SOPInstructions.td"
28include "VOPInstructions.td"
29include "SMInstructions.td"
30include "FLATInstructions.td"
31include "BUFInstructions.td"
32include "EXPInstructions.td"
33include "LDSDIRInstructions.td"
34include "VINTERPInstructions.td"
35
36//===----------------------------------------------------------------------===//
37// VINTRP Instructions
38//===----------------------------------------------------------------------===//
39
40// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
41def VINTRPDst : VINTRPDstOperand <VGPR_32>;
42
43let Uses = [MODE, M0, EXEC] in {
44
45// FIXME: Specify SchedRW for VINTRP instructions.
46
47multiclass V_INTERP_P1_F32_m : VINTRP_m <
48  0x00000000,
49  (outs VINTRPDst:$vdst),
50  (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
51  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
52  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
53                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
54>;
55
56let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
57
58defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
59
60} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
61
62let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
63    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
64
65defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
66
67} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
68  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
69
70let OtherPredicates = [isNotGFX90APlus] in {
71let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
72
73defm V_INTERP_P2_F32 : VINTRP_m <
74  0x00000001,
75  (outs VINTRPDst:$vdst),
76  (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr,
77       InterpAttrChan:$attrchan),
78  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
79  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
80                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
81
82} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
83
84defm V_INTERP_MOV_F32 : VINTRP_m <
85  0x00000002,
86  (outs VINTRPDst:$vdst),
87  (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
88  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
89  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
90                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
91
92} // End OtherPredicates = [isNotGFX90APlus]
93
94} // End Uses = [MODE, M0, EXEC]
95
96//===----------------------------------------------------------------------===//
97// Pseudo Instructions
98//===----------------------------------------------------------------------===//
99
100// Insert a branch to an endpgm block to use as a fallback trap.
101def ENDPGM_TRAP : SPseudoInstSI<
102  (outs), (ins),
103  [(AMDGPUendpgm_trap)],
104  "ENDPGM_TRAP"> {
105  let hasSideEffects = 1;
106  let usesCustomInserter = 1;
107}
108
109def ATOMIC_FENCE : SPseudoInstSI<
110  (outs), (ins i32imm:$ordering, i32imm:$scope),
111  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
112  "ATOMIC_FENCE $ordering, $scope"> {
113  let hasSideEffects = 1;
114  let maybeAtomic = 1;
115}
116
117let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
118
119// For use in patterns
120def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
121  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
122  let isPseudo = 1;
123  let isCodeGenOnly = 1;
124  let usesCustomInserter = 1;
125}
126
127// 64-bit vector move instruction. This is mainly used by the
128// SIFoldOperands pass to enable folding of inline immediates.
129def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
130                                      (ins VSrc_b64:$src0)> {
131  let isReMaterializable = 1;
132  let isAsCheapAsAMove = 1;
133  let isMoveImm = 1;
134  let SchedRW = [Write64Bit];
135  let Size = 16; // Needs maximum 2 v_mov_b32 instructions 8 byte long each.
136  let UseNamedOperandTable = 1;
137}
138
139// 64-bit vector move with dpp. Expanded post-RA.
140def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
141  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
142}
143
144// 64-bit scalar move immediate instruction. This is used to avoid subregs
145// initialization and allow rematerialization.
146def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
147                                          (ins i64imm:$src0)> {
148  let isReMaterializable = 1;
149  let isAsCheapAsAMove = 1;
150  let isMoveImm = 1;
151  let SchedRW = [WriteSALU, Write64Bit];
152  let Size = 16; // Needs maximum 2 s_mov_b32 instructions 8 byte long each.
153  let Uses = [];
154}
155
156// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
157// WQM pass processes it.
158def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
159
160// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
161// turned into a copy by WQM pass, but does not seed WQM requirements.
162def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
163
164// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
165// that the @earlyclobber is respected. The @earlyclobber is to make sure that
166// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
167// accidentally clobber inactive channels of $vdst.
168let Constraints = "@earlyclobber $vdst" in {
169def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
170def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
171}
172
173} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
174
175def WWM_COPY : SPseudoInstSI <
176  (outs unknown:$dst), (ins unknown:$src)> {
177  let hasSideEffects = 0;
178  let isAsCheapAsAMove = 1;
179  let isConvergent = 1;
180}
181
182def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
183  let Uses = [EXEC];
184  let Defs = [EXEC, SCC];
185  let hasSideEffects = 0;
186  let mayLoad = 0;
187  let mayStore = 0;
188}
189
190def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
191  let hasSideEffects = 0;
192  let mayLoad = 0;
193  let mayStore = 0;
194}
195
196def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
197  let Uses = [EXEC];
198  let Defs = [EXEC, SCC];
199  let hasSideEffects = 0;
200  let mayLoad = 0;
201  let mayStore = 0;
202}
203
204def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
205  let hasSideEffects = 0;
206  let mayLoad = 0;
207  let mayStore = 0;
208}
209
210let usesCustomInserter = 1 in {
211def S_INVERSE_BALLOT_U32 : SPseudoInstSI <(outs SReg_32:$sdst), (ins SSrc_b32:$mask)>;
212
213def S_INVERSE_BALLOT_U64 : SPseudoInstSI <(outs SReg_64:$sdst), (ins SSrc_b64:$mask)>;
214} // End usesCustomInserter = 1
215
216// PSEUDO_WM is treated like STRICT_WWM/STRICT_WQM without exec changes.
217def ENTER_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
218  let Uses = [EXEC];
219  let Defs = [EXEC];
220  let hasSideEffects = 0;
221  let mayLoad = 0;
222  let mayStore = 0;
223}
224
225def EXIT_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
226  let hasSideEffects = 0;
227  let mayLoad = 0;
228  let mayStore = 0;
229}
230
231// Pseudo instructions used for @llvm.fptrunc.round upward
232// and @llvm.fptrunc.round downward.
233// These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD
234// and G_FPTRUNC_ROUND_DOWNWARD before being lowered to
235// FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO.
236// The final codegen is done in the ModeRegister pass.
237let Uses = [MODE, EXEC] in {
238def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
239  (ins VGPR_32:$src0),
240  [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>;
241
242def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
243  (ins VGPR_32:$src0),
244  [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>;
245} // End Uses = [MODE, EXEC]
246
247// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
248// restoring it after we're done.
249let Defs = [SCC], isConvergent = 1 in {
250def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
251  (ins VSrc_b32: $src, VSrc_b32:$inactive),
252  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
253}
254
255def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
256  (ins VSrc_b64: $src, VSrc_b64:$inactive),
257  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
258}
259} // End Defs = [SCC]
260
261let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
262  def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
263    (ins VSrc_b32: $src, VSrc_b32:$strategy),
264    [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> {
265  }
266
267  def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
268    (ins VSrc_b32: $src, VSrc_b32:$strategy),
269    [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> {
270  }
271}
272
273let usesCustomInserter = 1, Defs = [VCC, EXEC] in {
274def V_ADD_U64_PSEUDO : VPseudoInstSI <
275  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
276  [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
277>;
278
279def V_SUB_U64_PSEUDO : VPseudoInstSI <
280  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
281  [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
282>;
283} // End usesCustomInserter = 1, Defs = [VCC, EXEC]
284
285let usesCustomInserter = 1, Defs = [SCC] in {
286def S_ADD_U64_PSEUDO : SPseudoInstSI <
287  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
288  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
289>;
290
291def S_SUB_U64_PSEUDO : SPseudoInstSI <
292  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
293  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
294>;
295
296def S_ADD_CO_PSEUDO : SPseudoInstSI <
297  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
298>;
299
300def S_SUB_CO_PSEUDO : SPseudoInstSI <
301  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
302>;
303
304def S_UADDO_PSEUDO : SPseudoInstSI <
305  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
306>;
307
308def S_USUBO_PSEUDO : SPseudoInstSI <
309  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
310>;
311
312} // End usesCustomInserter = 1, Defs = [SCC]
313
314let usesCustomInserter = 1 in {
315def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
316  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
317} // End let usesCustomInserter = 1, SALU = 1
318
319// Wrap an instruction by duplicating it, except for setting isTerminator.
320class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
321      base_inst.OutOperandList,
322      base_inst.InOperandList> {
323  let Uses = base_inst.Uses;
324  let Defs = base_inst.Defs;
325  let isTerminator = 1;
326  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
327  let hasSideEffects = base_inst.hasSideEffects;
328  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
329  let CodeSize = base_inst.CodeSize;
330  let SchedRW = base_inst.SchedRW;
331}
332
333let WaveSizePredicate = isWave64 in {
334def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
335def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
336def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
337def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
338def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
339def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>;
340}
341
342let WaveSizePredicate = isWave32 in {
343def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
344def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
345def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
346def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
347def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
348def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>;
349}
350
351
352def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
353  [(int_amdgcn_wave_barrier)]> {
354  let SchedRW = [];
355  let hasNoSchedulingInfo = 1;
356  let hasSideEffects = 1;
357  let mayLoad = 0;
358  let mayStore = 0;
359  let isConvergent = 1;
360  let FixedSize = 1;
361  let Size = 0;
362  let isMeta = 1;
363}
364
365def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
366  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
367  let SchedRW = [];
368  let hasNoSchedulingInfo = 1;
369  let hasSideEffects = 1;
370  let mayLoad = 0;
371  let mayStore = 0;
372  let isConvergent = 1;
373  let FixedSize = 1;
374  let Size = 0;
375  let isMeta = 1;
376}
377
378def SCHED_GROUP_BARRIER : SPseudoInstSI<
379  (outs),
380  (ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
381  [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
382  let SchedRW = [];
383  let hasNoSchedulingInfo = 1;
384  let hasSideEffects = 1;
385  let mayLoad = 0;
386  let mayStore = 0;
387  let isConvergent = 1;
388  let FixedSize = 1;
389  let Size = 0;
390  let isMeta = 1;
391}
392
393def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
394  [(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
395  let SchedRW = [];
396  let hasNoSchedulingInfo = 1;
397  let hasSideEffects = 1;
398  let mayLoad = 0;
399  let mayStore = 0;
400  let isConvergent = 1;
401  let FixedSize = 1;
402  let Size = 0;
403  let isMeta = 1;
404}
405
406// SI pseudo instructions. These are used by the CFG structurizer pass
407// and should be lowered to ISA instructions prior to codegen.
408
409// As we have enhanced control flow intrinsics to work under unstructured CFG,
410// duplicating such intrinsics can be actually treated as legal. On the contrary,
411// by making them non-duplicable, we are observing better code generation result.
412// So we choose to mark them non-duplicable in hope of getting better code
413// generation as well as simplied CFG during Machine IR optimization stage.
414
415let isTerminator = 1, isNotDuplicable = 1 in {
416
417let OtherPredicates = [EnableLateCFGStructurize] in {
418 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
419  (outs),
420  (ins SReg_1:$vcc, brtarget:$target),
421  [(brcond i1:$vcc, bb:$target)]> {
422    let Size = 12;
423}
424}
425
426def SI_IF: CFPseudoInstSI <
427  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
428  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
429  let Constraints = "";
430  let Size = 12;
431  let hasSideEffects = 1;
432  let IsNeverUniform = 1;
433}
434
435def SI_ELSE : CFPseudoInstSI <
436  (outs SReg_1:$dst),
437  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
438  let Size = 12;
439  let hasSideEffects = 1;
440  let IsNeverUniform = 1;
441}
442
443def SI_WATERFALL_LOOP : CFPseudoInstSI <
444  (outs),
445  (ins brtarget:$target), [], 1> {
446  let Size = 8;
447  let isBranch = 1;
448  let Defs = [];
449}
450
451def SI_LOOP : CFPseudoInstSI <
452  (outs), (ins SReg_1:$saved, brtarget:$target),
453  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
454  let Size = 8;
455  let isBranch = 1;
456  let hasSideEffects = 1;
457  let IsNeverUniform = 1;
458}
459
460} // End isTerminator = 1
461
462def SI_END_CF : CFPseudoInstSI <
463  (outs), (ins SReg_1:$saved), [], 1, 1> {
464  let Size = 4;
465  let isAsCheapAsAMove = 1;
466  let isReMaterializable = 1;
467  let hasSideEffects = 1;
468  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
469  let mayLoad = 1; // FIXME: Should not need memory flags
470  let mayStore = 1;
471}
472
473def SI_IF_BREAK : CFPseudoInstSI <
474  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
475  let Size = 4;
476  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
477  let isAsCheapAsAMove = 1;
478  let isReMaterializable = 1;
479}
480
481// Branch to the early termination block of the shader if SCC is 0.
482// This uses SCC from a previous SALU operation, i.e. the update of
483// a mask of live lanes after a kill/demote operation.
484// Only valid in pixel shaders.
485def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
486  let Uses = [EXEC,SCC];
487}
488
489let Uses = [EXEC] in {
490
491multiclass PseudoInstKill <dag ins> {
492  // Even though this pseudo can usually be expanded without an SCC def, we
493  // conservatively assume that it has an SCC def, both because it is sometimes
494  // required in degenerate cases (when V_CMPX cannot be used due to constant
495  // bus limitations) and because it allows us to avoid having to track SCC
496  // liveness across basic blocks.
497  let Defs = [EXEC,SCC] in
498  def _PSEUDO : PseudoInstSI <(outs), ins> {
499    let isConvergent = 1;
500    let usesCustomInserter = 1;
501  }
502
503  let Defs = [EXEC,SCC] in
504  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
505    let isTerminator = 1;
506  }
507}
508
509defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
510let Defs = [VCC] in
511defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
512
513let Defs = [EXEC,VCC] in
514def SI_ILLEGAL_COPY : SPseudoInstSI <
515  (outs unknown:$dst), (ins unknown:$src),
516  [], " ; illegal copy $src to $dst">;
517
518} // End Uses = [EXEC], Defs = [EXEC,VCC]
519
520// Branch on undef scc. Used to avoid intermediate copy from
521// IMPLICIT_DEF to SCC.
522def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> {
523  let isTerminator = 1;
524  let usesCustomInserter = 1;
525  let isBranch = 1;
526}
527
528def SI_PS_LIVE : PseudoInstSI <
529  (outs SReg_1:$dst), (ins),
530  [(set i1:$dst, (int_amdgcn_ps_live))]> {
531  let SALU = 1;
532}
533
534let Uses = [EXEC] in {
535def SI_LIVE_MASK : PseudoInstSI <
536  (outs SReg_1:$dst), (ins),
537  [(set i1:$dst, (int_amdgcn_live_mask))]> {
538  let SALU = 1;
539}
540let Defs = [EXEC,SCC] in {
541// Demote: Turn a pixel shader thread into a helper lane.
542def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
543} // End Defs = [EXEC,SCC]
544} // End Uses = [EXEC]
545
546def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
547  [(int_amdgcn_unreachable)],
548  "; divergent unreachable"> {
549  let Size = 0;
550  let hasNoSchedulingInfo = 1;
551  let FixedSize = 1;
552  let isMeta = 1;
553}
554
555// Used as an isel pseudo to directly emit initialization with an
556// s_mov_b32 rather than a copy of another initialized
557// register. MachineCSE skips copies, and we don't want to have to
558// fold operands before it runs.
559def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
560  let Defs = [M0];
561  let usesCustomInserter = 1;
562  let isAsCheapAsAMove = 1;
563  let isReMaterializable = 1;
564}
565
566def SI_INIT_EXEC : SPseudoInstSI <
567  (outs), (ins i64imm:$src),
568  [(int_amdgcn_init_exec (i64 timm:$src))]> {
569  let Defs = [EXEC];
570  let isAsCheapAsAMove = 1;
571}
572
573def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
574  (outs), (ins SSrc_b32:$input, i32imm:$shift),
575  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
576  let Defs = [EXEC];
577}
578
579// Return for returning shaders to a shader variant epilog.
580def SI_RETURN_TO_EPILOG : SPseudoInstSI <
581  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
582  let isTerminator = 1;
583  let isBarrier = 1;
584  let isReturn = 1;
585  let hasNoSchedulingInfo = 1;
586  let DisableWQM = 1;
587  let FixedSize = 1;
588
589  // TODO: Should this be true?
590  let isMeta = 0;
591}
592
593// Return for returning function calls.
594def SI_RETURN : SPseudoInstSI <
595  (outs), (ins), [(AMDGPUret_glue)],
596  "; return"> {
597  let isTerminator = 1;
598  let isBarrier = 1;
599  let isReturn = 1;
600  let SchedRW = [WriteBranch];
601}
602
603// Return for returning function calls without output register.
604//
605// This version is only needed so we can fill in the output register
606// in the custom inserter.
607def SI_CALL_ISEL : SPseudoInstSI <
608  (outs), (ins SSrc_b64:$src0, unknown:$callee),
609  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
610  let Size = 4;
611  let isCall = 1;
612  let SchedRW = [WriteBranch];
613  let usesCustomInserter = 1;
614  // TODO: Should really base this on the call target
615  let isConvergent = 1;
616}
617
618def : GCNPat<
619  (AMDGPUcall i64:$src0, (i64 0)),
620  (SI_CALL_ISEL $src0, (i64 0))
621>;
622
623// Wrapper around s_swappc_b64 with extra $callee parameter to track
624// the called function after regalloc.
625def SI_CALL : SPseudoInstSI <
626  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
627  let Size = 4;
628  let FixedSize = 1;
629  let isCall = 1;
630  let UseNamedOperandTable = 1;
631  let SchedRW = [WriteBranch];
632  // TODO: Should really base this on the call target
633  let isConvergent = 1;
634}
635
636class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs),
637  (ins rc:$src0, unknown:$callee, i32imm:$fpdiff),
638  [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
639  let Size = 4;
640  let FixedSize = 1;
641  let isCall = 1;
642  let isTerminator = 1;
643  let isReturn = 1;
644  let isBarrier = 1;
645  let UseNamedOperandTable = 1;
646  let SchedRW = [WriteBranch];
647  // TODO: Should really base this on the call target
648  let isConvergent = 1;
649}
650
651// Tail call handling pseudo
652def SI_TCRETURN :     SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>;
653def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>;
654
655// Handle selecting indirect tail calls
656def : GCNPat<
657  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
658  (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
659>;
660
661// Handle selecting indirect tail calls for AMDGPU_gfx
662def : GCNPat<
663  (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)),
664  (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
665>;
666
667def ADJCALLSTACKUP : SPseudoInstSI<
668  (outs), (ins i32imm:$amt0, i32imm:$amt1),
669  [(callseq_start timm:$amt0, timm:$amt1)],
670  "; adjcallstackup $amt0 $amt1"> {
671  let Size = 8; // Worst case. (s_add_u32 + constant)
672  let FixedSize = 1;
673  let hasSideEffects = 1;
674  let usesCustomInserter = 1;
675  let SchedRW = [WriteSALU];
676  let Defs = [SCC];
677}
678
679def ADJCALLSTACKDOWN : SPseudoInstSI<
680  (outs), (ins i32imm:$amt1, i32imm:$amt2),
681  [(callseq_end timm:$amt1, timm:$amt2)],
682  "; adjcallstackdown $amt1"> {
683  let Size = 8; // Worst case. (s_add_u32 + constant)
684  let hasSideEffects = 1;
685  let usesCustomInserter = 1;
686  let SchedRW = [WriteSALU];
687  let Defs = [SCC];
688}
689
690let Defs = [M0, EXEC, SCC],
691  UseNamedOperandTable = 1 in {
692
693// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
694// addressing implementation.
695class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
696  (outs VGPR_32:$vdst),
697  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
698  let usesCustomInserter = 1;
699}
700
701class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
702  (outs rc:$vdst),
703  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
704  let Constraints = "$src = $vdst";
705  let usesCustomInserter = 1;
706}
707
708def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
709def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
710def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
711def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
712def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
713def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
714def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
715def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
716def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
717def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
718
719def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
720def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
721def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
722def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
723def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
724def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
725def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
726def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
727def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
728def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
729
730} // End Uses = [EXEC], Defs = [M0, EXEC]
731
732// This is a pseudo variant of the v_movreld_b32 instruction in which the
733// vector operand appears only twice, once as def and once as use. Using this
734// pseudo avoids problems with the Two Address instructions pass.
735class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
736                                RegisterOperand val_ty> : PseudoInstSI <
737  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
738  let Constraints = "$vsrc = $vdst";
739  let Uses = [M0];
740}
741
742class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
743  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
744  let VALU = 1;
745  let VOP1 = 1;
746  let Uses = [M0, EXEC];
747}
748
749class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
750                                  RegisterOperand val_ty> :
751  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
752  let SALU = 1;
753  let SOP1 = 1;
754  let Uses = [M0];
755}
756
757class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
758  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
759class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
760  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
761
762def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
763def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
764def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
765def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
766def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
767def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
768def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
769def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
770def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
771def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
772def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
773def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
774
775def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
776def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
777def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
778def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
779def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
780def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
781def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>;
782def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>;
783def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>;
784def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>;
785def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
786def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
787
788def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
789def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
790def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
791def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
792def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
793
794// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
795// pseudos we avoid spills or copies being inserted within indirect sequences
796// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
797// this mode switching.
798
799class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
800  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
801  let Constraints = "$vsrc = $vdst";
802  let VALU = 1;
803  let Uses = [M0, EXEC];
804  let Defs = [M0];
805}
806
807def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
808def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
809def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
810def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
811def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
812def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
813def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
814def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
815def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
816def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
817def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
818def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
819
820class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
821  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
822  let VALU = 1;
823  let Uses = [M0, EXEC];
824  let Defs = [M0];
825}
826
827def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
828def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
829def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
830def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
831def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
832def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
833def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
834def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
835def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
836def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
837def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
838def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
839
840multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
841  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
842    def _SAVE : PseudoInstSI <
843      (outs),
844      (ins sgpr_class:$data, i32imm:$addr)> {
845      let mayStore = 1;
846      let mayLoad = 0;
847    }
848
849    def _RESTORE : PseudoInstSI <
850      (outs sgpr_class:$data),
851      (ins i32imm:$addr)> {
852      let mayStore = 0;
853      let mayLoad = 1;
854    }
855  } // End UseNamedOperandTable = 1
856}
857
858// You cannot use M0 as the output of v_readlane_b32 instructions or
859// use it in the sdata operand of SMEM instructions. We still need to
860// be able to spill the physical register m0, so allow it for
861// SI_SPILL_32_* instructions.
862defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
863defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
864defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
865defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
866defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
867defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
868defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
869defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
870defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
871defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
872defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
873defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
874defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
875defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
876
877// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
878// needs to be used and an extra instruction to move between VGPR and AGPR.
879// UsesTmp adds to the total size of an expanded spill in this case.
880multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
881  let UseNamedOperandTable = 1, VGPRSpill = 1,
882       SchedRW = [WriteVMEM] in {
883    def _SAVE : VPseudoInstSI <
884      (outs),
885      (ins vgpr_class:$vdata, i32imm:$vaddr,
886           SReg_32:$soffset, i32imm:$offset)> {
887      let mayStore = 1;
888      let mayLoad = 0;
889      // (2 * 4) + (8 * num_subregs) bytes maximum
890      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
891      // Size field is unsigned char and cannot fit more.
892      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
893    }
894
895    def _RESTORE : VPseudoInstSI <
896      (outs vgpr_class:$vdata),
897      (ins i32imm:$vaddr,
898           SReg_32:$soffset, i32imm:$offset)> {
899      let mayStore = 0;
900      let mayLoad = 1;
901
902      // (2 * 4) + (8 * num_subregs) bytes maximum
903      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
904      // Size field is unsigned char and cannot fit more.
905      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
906    }
907  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
908}
909
910defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
911defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
912defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
913defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
914defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
915defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
916defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
917defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
918defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
919defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
920defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
921defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
922defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
923defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
924
925defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
926defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
927defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
928defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
929defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
930defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
931defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
932defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
933defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
934defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
935defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
936defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
937defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
938defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
939
940defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
941defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
942defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
943defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
944defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
945defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
946defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
947defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
948defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
949defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
950defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
951defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
952defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
953defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
954
955let isConvergent = 1 in
956defm SI_SPILL_WWM_V32 : SI_SPILL_VGPR <VGPR_32>;
957
958def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
959  (outs SReg_64:$dst),
960  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
961  [(set SReg_64:$dst,
962      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
963  let Defs = [SCC];
964}
965
966def : GCNPat <
967  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
968  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
969>;
970
971def : GCNPat<
972  (AMDGPUtrap timm:$trapid),
973  (S_TRAP $trapid)
974>;
975
976def : GCNPat<
977  (AMDGPUelse i1:$src, bb:$target),
978  (SI_ELSE $src, $target)
979>;
980
981def : Pat <
982  (int_amdgcn_kill i1:$src),
983  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
984>;
985
986def : Pat <
987  (int_amdgcn_kill (i1 (not i1:$src))),
988  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
989>;
990
991def : Pat <
992  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
993  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
994>;
995
996def : Pat <
997  (int_amdgcn_wqm_demote i1:$src),
998  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
999>;
1000
1001def : Pat <
1002  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
1003  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
1004>;
1005
1006  // TODO: we could add more variants for other types of conditionals
1007
1008def : Pat <
1009  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1010  (COPY $src) // Return the SGPRs representing i1 src
1011>;
1012
1013def : Pat <
1014  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1015  (COPY $src) // Return the SGPRs representing i1 src
1016>;
1017
1018//===----------------------------------------------------------------------===//
1019// VOP1 Patterns
1020//===----------------------------------------------------------------------===//
1021
1022multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
1023  // f16_to_fp patterns
1024  def : GCNPat <
1025    (f32 (f16_to_fp i32:$src0)),
1026    (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
1027  >;
1028
1029  def : GCNPat <
1030    (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
1031    (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
1032  >;
1033
1034  def : GCNPat <
1035    (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
1036    (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
1037  >;
1038
1039  def : GCNPat <
1040    (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
1041    (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
1042  >;
1043
1044  def : GCNPat <
1045    (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
1046    (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
1047  >;
1048
1049  def : GCNPat <
1050    (f64 (fpextend f16:$src)),
1051    (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
1052  >;
1053
1054  // fp_to_fp16 patterns
1055  def : GCNPat <
1056    (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1057    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1058  >;
1059
1060  def : GCNPat <
1061    (i32 (fp_to_sint f16:$src)),
1062    (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1063  >;
1064
1065  def : GCNPat <
1066    (i32 (fp_to_uint f16:$src)),
1067    (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1068  >;
1069
1070  def : GCNPat <
1071    (f16 (sint_to_fp i32:$src)),
1072    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
1073  >;
1074
1075  def : GCNPat <
1076    (f16 (uint_to_fp i32:$src)),
1077    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
1078  >;
1079}
1080
1081let SubtargetPredicate = NotHasTrue16BitInsts in
1082defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
1083
1084let SubtargetPredicate = HasTrue16BitInsts in
1085defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64>;
1086
1087//===----------------------------------------------------------------------===//
1088// VOP2 Patterns
1089//===----------------------------------------------------------------------===//
1090
1091// NoMods pattern used for mac. If there are any source modifiers then it's
1092// better to select mad instead of mac.
1093class FMADPat <ValueType vt, Instruction inst>
1094  : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
1095                          (vt (VOP3NoMods vt:$src1)),
1096                          (vt (VOP3NoMods vt:$src2)))),
1097    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1098          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1099>;
1100
1101// Prefer mac form when there are no modifiers.
1102let AddedComplexity = 9 in {
1103let OtherPredicates = [HasMadMacF32Insts] in
1104def : FMADPat <f32, V_MAC_F32_e64>;
1105
1106// Don't allow source modifiers. If there are any source modifiers then it's
1107// better to select mad instead of mac.
1108let SubtargetPredicate = isGFX6GFX7GFX10,
1109    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1110def : GCNPat <
1111      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
1112                                    (VOP3NoMods f32:$src1)),
1113                 (VOP3NoMods f32:$src2))),
1114      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1115                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1116>;
1117
1118// Don't allow source modifiers. If there are any source modifiers then it's
1119// better to select fma instead of fmac.
1120let SubtargetPredicate = HasFmaLegacy32 in
1121def : GCNPat <
1122      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
1123                                  (VOP3NoMods f32:$src1),
1124                                  (VOP3NoMods f32:$src2))),
1125      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1126                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1127>;
1128
1129let SubtargetPredicate = Has16BitInsts in
1130def : FMADPat <f16, V_MAC_F16_e64>;
1131} // AddedComplexity = 9
1132
1133let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1134def : GCNPat <
1135      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1136                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1137                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1138      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1139                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1140>;
1141
1142class VOPSelectModsPat <ValueType vt> : GCNPat <
1143  (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods),
1144                        (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))),
1145  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1146                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1147>;
1148
1149class VOPSelectPat <ValueType vt> : GCNPat <
1150  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1151  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1152>;
1153
1154def : VOPSelectModsPat <i32>;
1155def : VOPSelectModsPat <f32>;
1156def : VOPSelectPat <f16>;
1157def : VOPSelectPat <i16>;
1158
1159let AddedComplexity = 1 in {
1160def : GCNPat <
1161  (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
1162  (V_BCNT_U32_B32_e64 $popcnt, $val)
1163>;
1164}
1165
1166def : GCNPat <
1167  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1168  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1169>;
1170
1171def : GCNPat <
1172  (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
1173  (V_BCNT_U32_B32_e64 $popcnt, $val)
1174>;
1175
1176def : GCNPat <
1177  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1178  (REG_SEQUENCE VReg_64,
1179    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1180      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1181      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1182>;
1183
1184/********** ============================================ **********/
1185/********** Extraction, Insertion, Building and Casting  **********/
1186/********** ============================================ **********/
1187
1188// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1189// than an INSERT_SUBREG.
1190multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1191  def : GCNPat <
1192    (insertelt vec_type:$vec, elem_type:$elem, 0),
1193    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1194  >;
1195
1196  def : GCNPat <
1197    (insertelt vec_type:$vec, elem_type:$elem, 1),
1198    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1199  >;
1200}
1201
1202foreach Index = 0-1 in {
1203  def Extract_Element_v2i32_#Index : Extract_Element <
1204    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1205  >;
1206
1207  def Extract_Element_v2f32_#Index : Extract_Element <
1208    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1209  >;
1210}
1211
1212defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1213defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1214
1215foreach Index = 0-2 in {
1216  def Extract_Element_v3i32_#Index : Extract_Element <
1217    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1218  >;
1219  def Insert_Element_v3i32_#Index : Insert_Element <
1220    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1221  >;
1222
1223  def Extract_Element_v3f32_#Index : Extract_Element <
1224    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1225  >;
1226  def Insert_Element_v3f32_#Index : Insert_Element <
1227    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1228  >;
1229}
1230
1231foreach Index = 0-3 in {
1232  def Extract_Element_v4i32_#Index : Extract_Element <
1233    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1234  >;
1235  def Insert_Element_v4i32_#Index : Insert_Element <
1236    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1237  >;
1238
1239  def Extract_Element_v4f32_#Index : Extract_Element <
1240    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1241  >;
1242  def Insert_Element_v4f32_#Index : Insert_Element <
1243    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1244  >;
1245}
1246
1247foreach Index = 0-4 in {
1248  def Extract_Element_v5i32_#Index : Extract_Element <
1249    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1250  >;
1251  def Insert_Element_v5i32_#Index : Insert_Element <
1252    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1253  >;
1254
1255  def Extract_Element_v5f32_#Index : Extract_Element <
1256    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1257  >;
1258  def Insert_Element_v5f32_#Index : Insert_Element <
1259    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1260  >;
1261}
1262
1263foreach Index = 0-5 in {
1264  def Extract_Element_v6i32_#Index : Extract_Element <
1265    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1266  >;
1267  def Insert_Element_v6i32_#Index : Insert_Element <
1268    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1269  >;
1270
1271  def Extract_Element_v6f32_#Index : Extract_Element <
1272    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1273  >;
1274  def Insert_Element_v6f32_#Index : Insert_Element <
1275    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1276  >;
1277}
1278
1279foreach Index = 0-6 in {
1280  def Extract_Element_v7i32_#Index : Extract_Element <
1281    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1282  >;
1283  def Insert_Element_v7i32_#Index : Insert_Element <
1284    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1285  >;
1286
1287  def Extract_Element_v7f32_#Index : Extract_Element <
1288    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1289  >;
1290  def Insert_Element_v7f32_#Index : Insert_Element <
1291    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1292  >;
1293}
1294
1295foreach Index = 0-7 in {
1296  def Extract_Element_v8i32_#Index : Extract_Element <
1297    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1298  >;
1299  def Insert_Element_v8i32_#Index : Insert_Element <
1300    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1301  >;
1302
1303  def Extract_Element_v8f32_#Index : Extract_Element <
1304    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1305  >;
1306  def Insert_Element_v8f32_#Index : Insert_Element <
1307    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1308  >;
1309}
1310
1311foreach Index = 0-8 in {
1312  def Extract_Element_v9i32_#Index : Extract_Element <
1313    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1314  >;
1315  def Insert_Element_v9i32_#Index : Insert_Element <
1316    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1317  >;
1318
1319  def Extract_Element_v9f32_#Index : Extract_Element <
1320    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1321  >;
1322  def Insert_Element_v9f32_#Index : Insert_Element <
1323    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1324  >;
1325}
1326
1327foreach Index = 0-9 in {
1328  def Extract_Element_v10i32_#Index : Extract_Element <
1329    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1330  >;
1331  def Insert_Element_v10i32_#Index : Insert_Element <
1332    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1333  >;
1334
1335  def Extract_Element_v10f32_#Index : Extract_Element <
1336    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1337  >;
1338  def Insert_Element_v10f32_#Index : Insert_Element <
1339    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1340  >;
1341}
1342
1343foreach Index = 0-10 in {
1344  def Extract_Element_v11i32_#Index : Extract_Element <
1345    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1346  >;
1347  def Insert_Element_v11i32_#Index : Insert_Element <
1348    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1349  >;
1350
1351  def Extract_Element_v11f32_#Index : Extract_Element <
1352    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1353  >;
1354  def Insert_Element_v11f32_#Index : Insert_Element <
1355    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1356  >;
1357}
1358
1359foreach Index = 0-11 in {
1360  def Extract_Element_v12i32_#Index : Extract_Element <
1361    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1362  >;
1363  def Insert_Element_v12i32_#Index : Insert_Element <
1364    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1365  >;
1366
1367  def Extract_Element_v12f32_#Index : Extract_Element <
1368    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1369  >;
1370  def Insert_Element_v12f32_#Index : Insert_Element <
1371    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1372  >;
1373}
1374
1375foreach Index = 0-15 in {
1376  def Extract_Element_v16i32_#Index : Extract_Element <
1377    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1378  >;
1379  def Insert_Element_v16i32_#Index : Insert_Element <
1380    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1381  >;
1382
1383  def Extract_Element_v16f32_#Index : Extract_Element <
1384    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1385  >;
1386  def Insert_Element_v16f32_#Index : Insert_Element <
1387    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1388  >;
1389}
1390
1391
1392foreach Index = 0-31 in {
1393  def Extract_Element_v32i32_#Index : Extract_Element <
1394    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1395  >;
1396
1397  def Insert_Element_v32i32_#Index : Insert_Element <
1398    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1399  >;
1400
1401  def Extract_Element_v32f32_#Index : Extract_Element <
1402    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1403  >;
1404
1405  def Insert_Element_v32f32_#Index : Insert_Element <
1406    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1407  >;
1408}
1409
1410// FIXME: Why do only some of these type combinations for SReg and
1411// VReg?
1412// 16-bit bitcast
1413def : BitConvert <i16, f16, VGPR_32>;
1414def : BitConvert <f16, i16, VGPR_32>;
1415def : BitConvert <i16, f16, SReg_32>;
1416def : BitConvert <f16, i16, SReg_32>;
1417
1418// 32-bit bitcast
1419def : BitConvert <i32, f32, VGPR_32>;
1420def : BitConvert <f32, i32, VGPR_32>;
1421def : BitConvert <i32, f32, SReg_32>;
1422def : BitConvert <f32, i32, SReg_32>;
1423def : BitConvert <v2i16, i32, SReg_32>;
1424def : BitConvert <i32, v2i16, SReg_32>;
1425def : BitConvert <v2f16, i32, SReg_32>;
1426def : BitConvert <i32, v2f16, SReg_32>;
1427def : BitConvert <v2i16, v2f16, SReg_32>;
1428def : BitConvert <v2f16, v2i16, SReg_32>;
1429def : BitConvert <v2f16, f32, SReg_32>;
1430def : BitConvert <f32, v2f16, SReg_32>;
1431def : BitConvert <v2i16, f32, SReg_32>;
1432def : BitConvert <f32, v2i16, SReg_32>;
1433
1434// 64-bit bitcast
1435def : BitConvert <i64, f64, VReg_64>;
1436def : BitConvert <f64, i64, VReg_64>;
1437def : BitConvert <v2i32, v2f32, VReg_64>;
1438def : BitConvert <v2f32, v2i32, VReg_64>;
1439def : BitConvert <i64, v2i32, VReg_64>;
1440def : BitConvert <v2i32, i64, VReg_64>;
1441def : BitConvert <i64, v2f32, VReg_64>;
1442def : BitConvert <v2f32, i64, VReg_64>;
1443def : BitConvert <f64, v2f32, VReg_64>;
1444def : BitConvert <v2f32, f64, VReg_64>;
1445def : BitConvert <f64, v2i32, VReg_64>;
1446def : BitConvert <v2i32, f64, VReg_64>;
1447def : BitConvert <v4i16, v4f16, VReg_64>;
1448def : BitConvert <v4f16, v4i16, VReg_64>;
1449
1450// FIXME: Make SGPR
1451def : BitConvert <v2i32, v4f16, VReg_64>;
1452def : BitConvert <v4f16, v2i32, VReg_64>;
1453def : BitConvert <v2i32, v4f16, VReg_64>;
1454def : BitConvert <v2i32, v4i16, VReg_64>;
1455def : BitConvert <v4i16, v2i32, VReg_64>;
1456def : BitConvert <v2f32, v4f16, VReg_64>;
1457def : BitConvert <v4f16, v2f32, VReg_64>;
1458def : BitConvert <v2f32, v4i16, VReg_64>;
1459def : BitConvert <v4i16, v2f32, VReg_64>;
1460def : BitConvert <v4i16, f64, VReg_64>;
1461def : BitConvert <v4f16, f64, VReg_64>;
1462def : BitConvert <f64, v4i16, VReg_64>;
1463def : BitConvert <f64, v4f16, VReg_64>;
1464def : BitConvert <v4i16, i64, VReg_64>;
1465def : BitConvert <v4f16, i64, VReg_64>;
1466def : BitConvert <i64, v4i16, VReg_64>;
1467def : BitConvert <i64, v4f16, VReg_64>;
1468
1469def : BitConvert <v4i32, v4f32, VReg_128>;
1470def : BitConvert <v4f32, v4i32, VReg_128>;
1471
1472// 96-bit bitcast
1473def : BitConvert <v3i32, v3f32, SGPR_96>;
1474def : BitConvert <v3f32, v3i32, SGPR_96>;
1475
1476// 128-bit bitcast
1477def : BitConvert <v2i64, v4i32, SReg_128>;
1478def : BitConvert <v4i32, v2i64, SReg_128>;
1479def : BitConvert <v2f64, v4f32, VReg_128>;
1480def : BitConvert <v2f64, v4i32, VReg_128>;
1481def : BitConvert <v4f32, v2f64, VReg_128>;
1482def : BitConvert <v4i32, v2f64, VReg_128>;
1483def : BitConvert <v2i64, v2f64, VReg_128>;
1484def : BitConvert <v2f64, v2i64, VReg_128>;
1485def : BitConvert <v4f32, v2i64, VReg_128>;
1486def : BitConvert <v2i64, v4f32, VReg_128>;
1487def : BitConvert <v8i16, v4i32, SReg_128>;
1488def : BitConvert <v4i32, v8i16, SReg_128>;
1489def : BitConvert <v8f16, v4f32, VReg_128>;
1490def : BitConvert <v8f16, v4i32, VReg_128>;
1491def : BitConvert <v4f32, v8f16, VReg_128>;
1492def : BitConvert <v4i32, v8f16, VReg_128>;
1493def : BitConvert <v8i16, v8f16, VReg_128>;
1494def : BitConvert <v8f16, v8i16, VReg_128>;
1495def : BitConvert <v4f32, v8i16, VReg_128>;
1496def : BitConvert <v8i16, v4f32, VReg_128>;
1497def : BitConvert <v8i16, v8f16, SReg_128>;
1498def : BitConvert <v8i16, v2i64, SReg_128>;
1499def : BitConvert <v8i16, v2f64, SReg_128>;
1500def : BitConvert <v8f16, v2i64, SReg_128>;
1501def : BitConvert <v8f16, v2f64, SReg_128>;
1502def : BitConvert <v8f16, v8i16, SReg_128>;
1503def : BitConvert <v2i64, v8i16, SReg_128>;
1504def : BitConvert <v2f64, v8i16, SReg_128>;
1505def : BitConvert <v2i64, v8f16, SReg_128>;
1506def : BitConvert <v2f64, v8f16, SReg_128>;
1507
1508// 160-bit bitcast
1509def : BitConvert <v5i32, v5f32, SReg_160>;
1510def : BitConvert <v5f32, v5i32, SReg_160>;
1511def : BitConvert <v5i32, v5f32, VReg_160>;
1512def : BitConvert <v5f32, v5i32, VReg_160>;
1513
1514// 192-bit bitcast
1515def : BitConvert <v6i32, v6f32, SReg_192>;
1516def : BitConvert <v6f32, v6i32, SReg_192>;
1517def : BitConvert <v6i32, v6f32, VReg_192>;
1518def : BitConvert <v6f32, v6i32, VReg_192>;
1519def : BitConvert <v3i64, v3f64, VReg_192>;
1520def : BitConvert <v3f64, v3i64, VReg_192>;
1521def : BitConvert <v3i64, v6i32, VReg_192>;
1522def : BitConvert <v3i64, v6f32, VReg_192>;
1523def : BitConvert <v3f64, v6i32, VReg_192>;
1524def : BitConvert <v3f64, v6f32, VReg_192>;
1525def : BitConvert <v6i32, v3i64, VReg_192>;
1526def : BitConvert <v6f32, v3i64, VReg_192>;
1527def : BitConvert <v6i32, v3f64, VReg_192>;
1528def : BitConvert <v6f32, v3f64, VReg_192>;
1529
1530// 224-bit bitcast
1531def : BitConvert <v7i32, v7f32, SReg_224>;
1532def : BitConvert <v7f32, v7i32, SReg_224>;
1533def : BitConvert <v7i32, v7f32, VReg_224>;
1534def : BitConvert <v7f32, v7i32, VReg_224>;
1535
1536// 256-bit bitcast
1537def : BitConvert <v8i32, v8f32, SReg_256>;
1538def : BitConvert <v8f32, v8i32, SReg_256>;
1539def : BitConvert <v8i32, v8f32, VReg_256>;
1540def : BitConvert <v8f32, v8i32, VReg_256>;
1541def : BitConvert <v4i64, v4f64, VReg_256>;
1542def : BitConvert <v4f64, v4i64, VReg_256>;
1543def : BitConvert <v4i64, v8i32, VReg_256>;
1544def : BitConvert <v4i64, v8f32, VReg_256>;
1545def : BitConvert <v4f64, v8i32, VReg_256>;
1546def : BitConvert <v4f64, v8f32, VReg_256>;
1547def : BitConvert <v8i32, v4i64, VReg_256>;
1548def : BitConvert <v8f32, v4i64, VReg_256>;
1549def : BitConvert <v8i32, v4f64, VReg_256>;
1550def : BitConvert <v8f32, v4f64, VReg_256>;
1551def : BitConvert <v16i16, v16f16, SReg_256>;
1552def : BitConvert <v16f16, v16i16, SReg_256>;
1553def : BitConvert <v16i16, v16f16, VReg_256>;
1554def : BitConvert <v16f16, v16i16, VReg_256>;
1555def : BitConvert <v16f16, v8i32, VReg_256>;
1556def : BitConvert <v16i16, v8i32, VReg_256>;
1557def : BitConvert <v16f16, v8f32, VReg_256>;
1558def : BitConvert <v16i16, v8f32, VReg_256>;
1559def : BitConvert <v8i32, v16f16, VReg_256>;
1560def : BitConvert <v8i32, v16i16, VReg_256>;
1561def : BitConvert <v8f32, v16f16, VReg_256>;
1562def : BitConvert <v8f32, v16i16, VReg_256>;
1563def : BitConvert <v16f16, v4i64, VReg_256>;
1564def : BitConvert <v16i16, v4i64, VReg_256>;
1565def : BitConvert <v16f16, v4f64, VReg_256>;
1566def : BitConvert <v16i16, v4f64, VReg_256>;
1567def : BitConvert <v4i64, v16f16, VReg_256>;
1568def : BitConvert <v4i64, v16i16, VReg_256>;
1569def : BitConvert <v4f64, v16f16, VReg_256>;
1570def : BitConvert <v4f64, v16i16, VReg_256>;
1571
1572// 288-bit bitcast
1573def : BitConvert <v9i32, v9f32, SReg_288>;
1574def : BitConvert <v9f32, v9i32, SReg_288>;
1575def : BitConvert <v9i32, v9f32, VReg_288>;
1576def : BitConvert <v9f32, v9i32, VReg_288>;
1577
1578// 320-bit bitcast
1579def : BitConvert <v10i32, v10f32, SReg_320>;
1580def : BitConvert <v10f32, v10i32, SReg_320>;
1581def : BitConvert <v10i32, v10f32, VReg_320>;
1582def : BitConvert <v10f32, v10i32, VReg_320>;
1583
1584// 320-bit bitcast
1585def : BitConvert <v11i32, v11f32, SReg_352>;
1586def : BitConvert <v11f32, v11i32, SReg_352>;
1587def : BitConvert <v11i32, v11f32, VReg_352>;
1588def : BitConvert <v11f32, v11i32, VReg_352>;
1589
1590// 384-bit bitcast
1591def : BitConvert <v12i32, v12f32, SReg_384>;
1592def : BitConvert <v12f32, v12i32, SReg_384>;
1593def : BitConvert <v12i32, v12f32, VReg_384>;
1594def : BitConvert <v12f32, v12i32, VReg_384>;
1595
1596// 512-bit bitcast
1597def : BitConvert <v16i32, v16f32, VReg_512>;
1598def : BitConvert <v16f32, v16i32, VReg_512>;
1599def : BitConvert <v8i64,  v8f64,  VReg_512>;
1600def : BitConvert <v8f64,  v8i64,  VReg_512>;
1601def : BitConvert <v8i64,  v16i32, VReg_512>;
1602def : BitConvert <v8f64,  v16i32, VReg_512>;
1603def : BitConvert <v16i32, v8i64,  VReg_512>;
1604def : BitConvert <v16i32, v8f64,  VReg_512>;
1605def : BitConvert <v8i64,  v16f32, VReg_512>;
1606def : BitConvert <v8f64,  v16f32, VReg_512>;
1607def : BitConvert <v16f32, v8i64,  VReg_512>;
1608def : BitConvert <v16f32, v8f64,  VReg_512>;
1609
1610// 1024-bit bitcast
1611def : BitConvert <v32i32, v32f32, VReg_1024>;
1612def : BitConvert <v32f32, v32i32, VReg_1024>;
1613def : BitConvert <v16i64, v16f64, VReg_1024>;
1614def : BitConvert <v16f64, v16i64, VReg_1024>;
1615def : BitConvert <v16i64, v32i32, VReg_1024>;
1616def : BitConvert <v32i32, v16i64, VReg_1024>;
1617def : BitConvert <v16f64, v32f32, VReg_1024>;
1618def : BitConvert <v32f32, v16f64, VReg_1024>;
1619def : BitConvert <v16i64, v32f32, VReg_1024>;
1620def : BitConvert <v32i32, v16f64, VReg_1024>;
1621def : BitConvert <v16f64, v32i32, VReg_1024>;
1622def : BitConvert <v32f32, v16i64, VReg_1024>;
1623
1624
1625/********** =================== **********/
1626/********** Src & Dst modifiers **********/
1627/********** =================== **********/
1628
1629
1630// If denormals are not enabled, it only impacts the compare of the
1631// inputs. The output result is not flushed.
1632class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1633  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1634  (inst i32:$src0_modifiers, vt:$src0,
1635        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1636>;
1637
1638def : ClampPat<V_MAX_F32_e64, f32>;
1639def : ClampPat<V_MAX_F64_e64, f64>;
1640let SubtargetPredicate = NotHasTrue16BitInsts in
1641def : ClampPat<V_MAX_F16_e64, f16>;
1642let SubtargetPredicate = HasTrue16BitInsts in
1643def : ClampPat<V_MAX_F16_t16_e64, f16>;
1644
1645let SubtargetPredicate = HasVOP3PInsts in {
1646def : GCNPat <
1647  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1648  (V_PK_MAX_F16 $src0_modifiers, $src0,
1649                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1650>;
1651}
1652
1653
1654/********** ================================ **********/
1655/********** Floating point absolute/negative **********/
1656/********** ================================ **********/
1657
1658def : GCNPat <
1659  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1660  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1661>;
1662
1663def : GCNPat <
1664  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1665  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1666>;
1667
1668def : GCNPat <
1669  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1670  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1671>;
1672
1673def : GCNPat <
1674  (UniformUnaryFrag<fneg> (f16 SReg_32:$src)),
1675  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1676>;
1677
1678def : GCNPat <
1679  (UniformUnaryFrag<fabs> (f16 SReg_32:$src)),
1680  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1681>;
1682
1683def : GCNPat <
1684  (UniformUnaryFrag<fneg> (fabs (f16 SReg_32:$src))),
1685  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1686>;
1687
1688def : GCNPat <
1689  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1690  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1691>;
1692
1693def : GCNPat <
1694  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1695  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1696>;
1697
1698// This is really (fneg (fabs v2f16:$src))
1699//
1700// fabs is not reported as free because there is modifier for it in
1701// VOP3P instructions, so it is turned into the bit op.
1702def : GCNPat <
1703  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1704  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1705>;
1706
1707def : GCNPat <
1708  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1709  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1710>;
1711
1712
1713// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1714// of the real value.
1715def : GCNPat <
1716  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1717  (v2f32 (REG_SEQUENCE SReg_64,
1718         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1719                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1720                                 SReg_32)), sub0,
1721         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1722                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1723                                 SReg_32)), sub1))
1724>;
1725
1726def : GCNPat <
1727  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1728  (v2f32 (REG_SEQUENCE SReg_64,
1729         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1730                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1731                                 SReg_32)), sub0,
1732         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1733                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1734                                 SReg_32)), sub1))
1735>;
1736
1737def : GCNPat <
1738  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1739  (v2f32 (REG_SEQUENCE SReg_64,
1740         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1741                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1742                                 SReg_32)), sub0,
1743         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1744                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1745                                 SReg_32)), sub1))
1746>;
1747
1748// FIXME: Use S_BITSET0_B32/B64?
1749def : GCNPat <
1750  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1751  (REG_SEQUENCE SReg_64,
1752    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1753    sub0,
1754    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1755                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1756     sub1)
1757>;
1758
1759def : GCNPat <
1760  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1761  (REG_SEQUENCE SReg_64,
1762    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1763    sub0,
1764    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1765                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
1766    sub1)
1767>;
1768
1769def : GCNPat <
1770  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
1771  (REG_SEQUENCE SReg_64,
1772    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1773    sub0,
1774    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1775                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
1776    sub1)
1777>;
1778
1779
1780def : GCNPat <
1781  (fneg (fabs (f32 VGPR_32:$src))),
1782  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
1783>;
1784
1785def : GCNPat <
1786  (fabs (f32 VGPR_32:$src)),
1787  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
1788>;
1789
1790def : GCNPat <
1791  (fneg (f32 VGPR_32:$src)),
1792  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
1793>;
1794
1795def : GCNPat <
1796  (fabs (f16 VGPR_32:$src)),
1797  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
1798>;
1799
1800def : GCNPat <
1801  (fneg (f16 VGPR_32:$src)),
1802  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
1803>;
1804
1805def : GCNPat <
1806  (fneg (fabs (f16 VGPR_32:$src))),
1807  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
1808>;
1809
1810def : GCNPat <
1811  (fneg (v2f16 VGPR_32:$src)),
1812  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1813>;
1814
1815def : GCNPat <
1816  (fabs (v2f16 VGPR_32:$src)),
1817  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
1818>;
1819
1820def : GCNPat <
1821  (fneg (v2f16 (fabs VGPR_32:$src))),
1822  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1823>;
1824
1825def : GCNPat <
1826  (fabs (f64 VReg_64:$src)),
1827  (REG_SEQUENCE VReg_64,
1828    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1829    sub0,
1830    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
1831        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1832     sub1)
1833>;
1834
1835def : GCNPat <
1836  (fneg (f64 VReg_64:$src)),
1837  (REG_SEQUENCE VReg_64,
1838    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1839    sub0,
1840    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1841        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1842    sub1)
1843>;
1844
1845def : GCNPat <
1846  (fneg (fabs (f64 VReg_64:$src))),
1847  (REG_SEQUENCE VReg_64,
1848    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1849    sub0,
1850    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1851        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1852    sub1)
1853>;
1854
1855def : GCNPat <
1856  (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
1857  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
1858                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0,
1859                0, 0, 0, 0, 0)
1860> {
1861  let SubtargetPredicate = HasPackedFP32Ops;
1862}
1863
1864def : GCNPat <
1865  (fcopysign f16:$src0, f16:$src1),
1866  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
1867>;
1868
1869def : GCNPat <
1870  (fcopysign f32:$src0, f16:$src1),
1871  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1872             (V_LSHLREV_B32_e64 (i32 16), $src1))
1873>;
1874
1875def : GCNPat <
1876  (fcopysign f64:$src0, f16:$src1),
1877  (REG_SEQUENCE SReg_64,
1878    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1879    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
1880               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
1881>;
1882
1883def : GCNPat <
1884  (fcopysign f16:$src0, f32:$src1),
1885  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1886             (V_LSHRREV_B32_e64 (i32 16), $src1))
1887>;
1888
1889def : GCNPat <
1890  (fcopysign f16:$src0, f64:$src1),
1891  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1892             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
1893>;
1894
1895/********** ================== **********/
1896/********** Immediate Patterns **********/
1897/********** ================== **********/
1898
1899def : GCNPat <
1900  (VGPRImm<(i32 imm)>:$imm),
1901  (V_MOV_B32_e32 imm:$imm)
1902>;
1903
1904def : GCNPat <
1905  (VGPRImm<(f32 fpimm)>:$imm),
1906  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
1907>;
1908
1909def : GCNPat <
1910  (i32 imm:$imm),
1911  (S_MOV_B32 imm:$imm)
1912>;
1913
1914def : GCNPat <
1915  (VGPRImm<(SIlds tglobaladdr:$ga)>),
1916  (V_MOV_B32_e32 $ga)
1917>;
1918
1919def : GCNPat <
1920  (SIlds tglobaladdr:$ga),
1921  (S_MOV_B32 $ga)
1922>;
1923
1924// FIXME: Workaround for ordering issue with peephole optimizer where
1925// a register class copy interferes with immediate folding.  Should
1926// use s_mov_b32, which can be shrunk to s_movk_i32
1927def : GCNPat <
1928  (VGPRImm<(f16 fpimm)>:$imm),
1929  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
1930>;
1931
1932def : GCNPat <
1933  (f32 fpimm:$imm),
1934  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
1935>;
1936
1937def : GCNPat <
1938  (f16 fpimm:$imm),
1939  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
1940>;
1941
1942def : GCNPat <
1943  (p5 frameindex:$fi),
1944  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
1945>;
1946
1947def : GCNPat <
1948  (p5 frameindex:$fi),
1949  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
1950>;
1951
1952def : GCNPat <
1953  (i64 InlineImm64:$imm),
1954  (S_MOV_B64 InlineImm64:$imm)
1955>;
1956
1957// XXX - Should this use a s_cmp to set SCC?
1958
1959// Set to sign-extended 64-bit value (true = -1, false = 0)
1960def : GCNPat <
1961  (i1 imm:$imm),
1962  (S_MOV_B64 (i64 (as_i64imm $imm)))
1963> {
1964  let WaveSizePredicate = isWave64;
1965}
1966
1967def : GCNPat <
1968  (i1 imm:$imm),
1969  (S_MOV_B32 (i32 (as_i32imm $imm)))
1970> {
1971  let WaveSizePredicate = isWave32;
1972}
1973
1974def : GCNPat <
1975  (f64 InlineImmFP64:$imm),
1976  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
1977>;
1978
1979/********** ================== **********/
1980/********** Intrinsic Patterns **********/
1981/********** ================== **********/
1982
1983def : GCNPat <
1984  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
1985  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
1986>;
1987
1988def : GCNPat <
1989  (i32 (sext i1:$src0)),
1990  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1991                     /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0)
1992>;
1993
1994class Ext32Pat <SDNode ext> : GCNPat <
1995  (i32 (ext i1:$src0)),
1996  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1997                     /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0)
1998>;
1999
2000def : Ext32Pat <zext>;
2001def : Ext32Pat <anyext>;
2002
2003// The multiplication scales from [0,1) to the unsigned integer range,
2004// rounding down a bit to avoid unwanted overflow.
2005def : GCNPat <
2006  (AMDGPUurecip i32:$src0),
2007  (V_CVT_U32_F32_e32
2008    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
2009                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
2010>;
2011
2012//===----------------------------------------------------------------------===//
2013// VOP3 Patterns
2014//===----------------------------------------------------------------------===//
2015
2016def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
2017def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
2018
2019// BFI patterns
2020
2021def BFIImm32 : PatFrag<
2022  (ops node:$x, node:$y, node:$z),
2023  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
2024  [{
2025    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
2026    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
2027    return X && NotX &&
2028      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
2029  }]
2030>;
2031
2032
2033// Definition from ISA doc:
2034// (y & x) | (z & ~x)
2035def : AMDGPUPatIgnoreCopies <
2036  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
2037  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2038                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2039                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2040>;
2041
2042// (y & C) | (z & ~C)
2043def : AMDGPUPatIgnoreCopies <
2044  (BFIImm32 i32:$x, i32:$y, i32:$z),
2045  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2046>;
2047
2048// 64-bit version
2049def : AMDGPUPatIgnoreCopies <
2050  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
2051  (REG_SEQUENCE VReg_64,
2052    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2053              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2054              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2055    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2056              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2057              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2058>;
2059
2060// SHA-256 Ch function
2061// z ^ (x & (y ^ z))
2062def : AMDGPUPatIgnoreCopies <
2063  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
2064  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2065                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2066                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2067>;
2068
2069// 64-bit version
2070def : AMDGPUPatIgnoreCopies <
2071  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
2072  (REG_SEQUENCE VReg_64,
2073    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2074              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2075              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2076    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2077              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2078              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2079>;
2080
2081def : AMDGPUPat <
2082  (fcopysign f32:$src0, f32:$src1),
2083  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
2084>;
2085
2086def : AMDGPUPat <
2087  (fcopysign f32:$src0, f64:$src1),
2088  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2089             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
2090>;
2091
2092def : AMDGPUPat <
2093  (fcopysign f64:$src0, f64:$src1),
2094  (REG_SEQUENCE SReg_64,
2095    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2096    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2097               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2098               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
2099>;
2100
2101def : AMDGPUPat <
2102  (fcopysign f64:$src0, f32:$src1),
2103  (REG_SEQUENCE SReg_64,
2104    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2105    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2106               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2107               $src1), sub1)
2108>;
2109
2110def : ROTRPattern <V_ALIGNBIT_B32_e64>;
2111
2112def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
2113          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2114                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2115
2116def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
2117          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2118                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2119
2120/********** ====================== **********/
2121/**********   Indirect addressing  **********/
2122/********** ====================== **********/
2123
2124multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
2125  // Extract with offset
2126  def : GCNPat<
2127    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
2128    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
2129  >;
2130
2131  // Insert with offset
2132  def : GCNPat<
2133    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
2134    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
2135  >;
2136}
2137
2138defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
2139defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
2140defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
2141defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
2142defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
2143defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
2144defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
2145defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
2146defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2147
2148defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2149defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2150defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2151defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
2152defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
2153defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
2154defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
2155defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2156defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2157
2158//===----------------------------------------------------------------------===//
2159// SAD Patterns
2160//===----------------------------------------------------------------------===//
2161
2162def : GCNPat <
2163  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2164                   (umin i32:$src0, i32:$src1)),
2165       i32:$src2),
2166  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2167>;
2168
2169def : GCNPat <
2170  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2171                      (sub i32:$src0, i32:$src1),
2172                      (sub i32:$src1, i32:$src0)),
2173       i32:$src2),
2174  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2175>;
2176
2177//===----------------------------------------------------------------------===//
2178// Conversion Patterns
2179//===----------------------------------------------------------------------===//
2180def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2181  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2182
2183// Handle sext_inreg in i64
2184def : GCNPat <
2185  (i64 (UniformSextInreg<i1> i64:$src)),
2186  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2187>;
2188
2189def : GCNPat <
2190  (i16 (UniformSextInreg<i1> i16:$src)),
2191  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2192>;
2193
2194def : GCNPat <
2195  (i16 (UniformSextInreg<i8> i16:$src)),
2196  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2197>;
2198
2199def : GCNPat <
2200  (i64 (UniformSextInreg<i8> i64:$src)),
2201  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2202>;
2203
2204def : GCNPat <
2205  (i64 (UniformSextInreg<i16> i64:$src)),
2206  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2207>;
2208
2209def : GCNPat <
2210  (i64 (UniformSextInreg<i32> i64:$src)),
2211  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2212>;
2213
2214def : GCNPat<
2215  (i32 (DivergentSextInreg<i1> i32:$src)),
2216  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2217
2218def : GCNPat <
2219  (i16 (DivergentSextInreg<i1> i16:$src)),
2220  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2221>;
2222
2223def : GCNPat <
2224  (i16 (DivergentSextInreg<i8> i16:$src)),
2225  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2226>;
2227
2228def : GCNPat<
2229  (i32 (DivergentSextInreg<i8> i32:$src)),
2230  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2231>;
2232
2233def : GCNPat <
2234  (i32 (DivergentSextInreg<i16> i32:$src)),
2235  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2236>;
2237
2238def : GCNPat <
2239  (i64 (DivergentSextInreg<i1> i64:$src)),
2240  (REG_SEQUENCE VReg_64,
2241    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2242    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2243>;
2244
2245def : GCNPat <
2246  (i64 (DivergentSextInreg<i8> i64:$src)),
2247  (REG_SEQUENCE VReg_64,
2248    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2249    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2250>;
2251
2252def : GCNPat <
2253  (i64 (DivergentSextInreg<i16> i64:$src)),
2254  (REG_SEQUENCE VReg_64,
2255    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2256    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2257>;
2258
2259def : GCNPat <
2260  (i64 (DivergentSextInreg<i32> i64:$src)),
2261  (REG_SEQUENCE VReg_64,
2262    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2263    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2264>;
2265
2266def : GCNPat <
2267  (i64 (zext i32:$src)),
2268  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2269>;
2270
2271def : GCNPat <
2272  (i64 (anyext i32:$src)),
2273  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2274>;
2275
2276class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2277  (i64 (ext i1:$src)),
2278    (REG_SEQUENCE VReg_64,
2279      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2280                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2281      sub0, (S_MOV_B32 (i32 0)), sub1)
2282>;
2283
2284
2285def : ZExt_i64_i1_Pat<zext>;
2286def : ZExt_i64_i1_Pat<anyext>;
2287
2288// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2289// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2290def : GCNPat <
2291  (i64 (UniformUnaryFrag<sext> i32:$src)),
2292    (REG_SEQUENCE SReg_64, $src, sub0,
2293    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2294>;
2295
2296def : GCNPat <
2297  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2298    (REG_SEQUENCE VReg_64, $src, sub0,
2299    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2300>;
2301
2302def : GCNPat <
2303  (i64 (sext i1:$src)),
2304  (REG_SEQUENCE VReg_64,
2305    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2306                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2307    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2308                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2309>;
2310
2311class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2312  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2313  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2314>;
2315
2316def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2317def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2318def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2319def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2320def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2321def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2322
2323// If we need to perform a logical operation on i1 values, we need to
2324// use vector comparisons since there is only one SCC register. Vector
2325// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2326// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2327// instructions resulting in the copies from SCC to these instructions
2328// will be moved to the VALU.
2329
2330let WaveSizePredicate = isWave64 in {
2331def : GCNPat <
2332  (i1 (and i1:$src0, i1:$src1)),
2333  (S_AND_B64 $src0, $src1)
2334>;
2335
2336def : GCNPat <
2337  (i1 (or i1:$src0, i1:$src1)),
2338  (S_OR_B64 $src0, $src1)
2339>;
2340
2341def : GCNPat <
2342  (i1 (xor i1:$src0, i1:$src1)),
2343  (S_XOR_B64 $src0, $src1)
2344>;
2345
2346def : GCNPat <
2347  (i1 (add i1:$src0, i1:$src1)),
2348  (S_XOR_B64 $src0, $src1)
2349>;
2350
2351def : GCNPat <
2352  (i1 (sub i1:$src0, i1:$src1)),
2353  (S_XOR_B64 $src0, $src1)
2354>;
2355
2356let AddedComplexity = 1 in {
2357def : GCNPat <
2358  (i1 (add i1:$src0, (i1 -1))),
2359  (S_NOT_B64 $src0)
2360>;
2361
2362def : GCNPat <
2363  (i1 (sub i1:$src0, (i1 -1))),
2364  (S_NOT_B64 $src0)
2365>;
2366}
2367} // end isWave64
2368
2369let WaveSizePredicate = isWave32 in {
2370def : GCNPat <
2371  (i1 (and i1:$src0, i1:$src1)),
2372  (S_AND_B32 $src0, $src1)
2373>;
2374
2375def : GCNPat <
2376  (i1 (or i1:$src0, i1:$src1)),
2377  (S_OR_B32 $src0, $src1)
2378>;
2379
2380def : GCNPat <
2381  (i1 (xor i1:$src0, i1:$src1)),
2382  (S_XOR_B32 $src0, $src1)
2383>;
2384
2385def : GCNPat <
2386  (i1 (add i1:$src0, i1:$src1)),
2387  (S_XOR_B32 $src0, $src1)
2388>;
2389
2390def : GCNPat <
2391  (i1 (sub i1:$src0, i1:$src1)),
2392  (S_XOR_B32 $src0, $src1)
2393>;
2394
2395let AddedComplexity = 1 in {
2396def : GCNPat <
2397  (i1 (add i1:$src0, (i1 -1))),
2398  (S_NOT_B32 $src0)
2399>;
2400
2401def : GCNPat <
2402  (i1 (sub i1:$src0, (i1 -1))),
2403  (S_NOT_B32 $src0)
2404>;
2405}
2406} // end isWave32
2407
2408def : GCNPat <
2409  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2410  (V_NOT_B32_e32 $src0)
2411>;
2412
2413def : GCNPat <
2414  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2415    (REG_SEQUENCE VReg_64,
2416      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2417      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2418    )
2419>;
2420
2421let SubtargetPredicate = NotHasTrue16BitInsts in
2422def : GCNPat <
2423  (f16 (sint_to_fp i1:$src)),
2424  (V_CVT_F16_F32_e32 (
2425      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2426                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2427                        SSrc_i1:$src))
2428>;
2429
2430let SubtargetPredicate = HasTrue16BitInsts in
2431def : GCNPat <
2432  (f16 (sint_to_fp i1:$src)),
2433  (V_CVT_F16_F32_t16_e32 (
2434      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2435                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2436                        SSrc_i1:$src))
2437>;
2438
2439let SubtargetPredicate = NotHasTrue16BitInsts in
2440def : GCNPat <
2441  (f16 (uint_to_fp i1:$src)),
2442  (V_CVT_F16_F32_e32 (
2443      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2444                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2445                        SSrc_i1:$src))
2446>;
2447let SubtargetPredicate = HasTrue16BitInsts in
2448def : GCNPat <
2449  (f16 (uint_to_fp i1:$src)),
2450  (V_CVT_F16_F32_t16_e32 (
2451      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2452                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2453                        SSrc_i1:$src))
2454>;
2455
2456def : GCNPat <
2457  (f32 (sint_to_fp i1:$src)),
2458  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2459                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2460                        SSrc_i1:$src)
2461>;
2462
2463def : GCNPat <
2464  (f32 (uint_to_fp i1:$src)),
2465  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2466                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2467                        SSrc_i1:$src)
2468>;
2469
2470def : GCNPat <
2471  (f64 (sint_to_fp i1:$src)),
2472  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2473                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2474                                        SSrc_i1:$src))
2475>;
2476
2477def : GCNPat <
2478  (f64 (uint_to_fp i1:$src)),
2479  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2480                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2481                                        SSrc_i1:$src))
2482>;
2483
2484//===----------------------------------------------------------------------===//
2485// Miscellaneous Patterns
2486//===----------------------------------------------------------------------===//
2487
2488// Eliminate a zero extension from an fp16 operation if it already
2489// zeros the high bits of the 32-bit register.
2490//
2491// This is complicated on gfx9+. Some instructions maintain the legacy
2492// zeroing behavior, but others preserve the high bits. Some have a
2493// control bit to change the behavior. We can't simply say with
2494// certainty what the source behavior is without more context on how
2495// the src is lowered. e.g. fptrunc + fma may be lowered to a
2496// v_fma_mix* instruction which does not zero, or may not.
2497def : GCNPat<
2498  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2499  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2500
2501let AddedComplexity = 1 in {
2502def : GCNPat<
2503  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2504  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2505  let SubtargetPredicate = HasAddNoCarryInsts;
2506}
2507}  // AddedComplexity = 1
2508
2509def : GCNPat<
2510  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2511  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2512>;
2513
2514def : GCNPat<
2515  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2516  (REG_SEQUENCE VReg_64,
2517    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2518    (S_MOV_B32 (i32 0)), sub1)
2519>;
2520
2521def : GCNPat<
2522  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2523  (COPY VSrc_b16:$src)>;
2524
2525def : GCNPat <
2526  (i32 (trunc i64:$a)),
2527  (EXTRACT_SUBREG $a, sub0)
2528>;
2529
2530def : GCNPat <
2531  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2532  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2533>;
2534
2535def : GCNPat <
2536  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2537  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2538>;
2539
2540def : GCNPat <
2541  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2542  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2543                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2544>;
2545
2546def : GCNPat <
2547  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2548  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2549>;
2550
2551def : GCNPat <
2552  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2553  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2554>;
2555
2556def IMMBitSelConst : SDNodeXForm<imm, [{
2557  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2558                                   MVT::i32);
2559}]>;
2560
2561// Matching separate SRL and TRUNC instructions
2562// with dependent operands (SRL dest is source of TRUNC)
2563// generates three instructions. However, by using bit shifts,
2564// the V_LSHRREV_B32_e64 result can be directly used in the
2565// operand of the V_AND_B32_e64 instruction:
2566// (trunc i32 (srl i32 $a, i32 $b)) ->
2567// v_and_b32_e64 $a, (1 << $b), $a
2568// v_cmp_ne_u32_e64 $a, 0, $a
2569
2570// Handle the VALU case.
2571def : GCNPat <
2572  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2573  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2574    (i32 0))
2575>;
2576
2577// Handle the scalar case.
2578def : GCNPat <
2579  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2580  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2581    (i32 0))
2582>;
2583
2584def : GCNPat <
2585  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2586  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2587                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2588>;
2589
2590def : GCNPat <
2591  (i32 (bswap i32:$a)),
2592  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2593             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2594             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2595>;
2596
2597// FIXME: This should have been narrowed to i32 during legalization.
2598// This pattern should also be skipped for GlobalISel
2599def : GCNPat <
2600  (i64 (bswap i64:$a)),
2601  (REG_SEQUENCE VReg_64,
2602  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2603             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2604                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2605                             (i32 24)),
2606             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2607                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2608                             (i32 8))),
2609  sub0,
2610  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2611             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2612                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2613                             (i32 24)),
2614             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2615                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2616                             (i32 8))),
2617  sub1)
2618>;
2619
2620// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2621// the BFI pattern ends up taking precedence without it.
2622let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2623// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2624//
2625// My reading of the manual suggests we should be using src0 for the
2626// register value, but this is what seems to work.
2627def : GCNPat <
2628  (i32 (bswap i32:$a)),
2629  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2630>;
2631
2632// FIXME: This should have been narrowed to i32 during legalization.
2633// This pattern should also be skipped for GlobalISel
2634def : GCNPat <
2635  (i64 (bswap i64:$a)),
2636  (REG_SEQUENCE VReg_64,
2637  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2638              (S_MOV_B32 (i32 0x00010203))),
2639  sub0,
2640  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2641              (S_MOV_B32 (i32 0x00010203))),
2642  sub1)
2643>;
2644
2645// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2646// The 12s emit 0s.
2647def : GCNPat <
2648  (i16 (bswap i16:$a)),
2649  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2650>;
2651
2652def : GCNPat <
2653  (i32 (zext (bswap i16:$a))),
2654  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2655>;
2656
2657// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2658def : GCNPat <
2659  (v2i16 (bswap v2i16:$a)),
2660  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2661>;
2662
2663}
2664
2665def : GCNPat<
2666  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
2667  (REG_SEQUENCE VReg_64,
2668   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
2669   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
2670
2671// Prefer selecting to max when legal, but using mul is always valid.
2672let AddedComplexity = -5 in {
2673
2674let OtherPredicates = [NotHasTrue16BitInsts] in {
2675def : GCNPat<
2676  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2677  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2678>;
2679
2680def : GCNPat<
2681  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2682  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2683>;
2684} // End OtherPredicates
2685
2686let OtherPredicates = [HasTrue16BitInsts] in {
2687def : GCNPat<
2688  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2689  (V_MUL_F16_t16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2690>;
2691
2692def : GCNPat<
2693  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2694  (V_MUL_F16_t16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2695>;
2696} // End OtherPredicates
2697
2698def : GCNPat<
2699  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2700  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2701>;
2702
2703def : GCNPat<
2704  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2705  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2706>;
2707
2708def : GCNPat<
2709  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
2710  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
2711>;
2712
2713// TODO: Handle fneg like other types.
2714def : GCNPat<
2715  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2716  (V_MUL_F64_e64  0, CONST.FP64_ONE, $src_mods, $src)
2717>;
2718} // End AddedComplexity = -5
2719
2720multiclass SelectCanonicalizeAsMax<
2721  list<Predicate> f32_preds = [],
2722  list<Predicate> f64_preds = [],
2723  list<Predicate> f16_preds = []> {
2724  def : GCNPat<
2725    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2726    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
2727    let OtherPredicates = f32_preds;
2728  }
2729
2730  def : GCNPat<
2731    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2732    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
2733    let OtherPredicates = f64_preds;
2734  }
2735
2736  def : GCNPat<
2737    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2738    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2739    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]);
2740  }
2741
2742  def : GCNPat<
2743    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2744    (V_MAX_F16_t16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2745    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]);
2746  }
2747
2748  def : GCNPat<
2749    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2750    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
2751    // FIXME: Should have VOP3P subtarget predicate
2752    let OtherPredicates = f16_preds;
2753  }
2754}
2755
2756// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
2757// mode, and would never flush. For f64, it's faster to do implement
2758// this with a max. For f16/f32 it's a wash, but prefer max when
2759// valid.
2760//
2761// FIXME: Lowering f32/f16 with max is worse since we can use a
2762// smaller encoding if the input is fneg'd. It also adds an extra
2763// register use.
2764let SubtargetPredicate = HasMinMaxDenormModes in {
2765  defm : SelectCanonicalizeAsMax<[], [], []>;
2766} // End SubtargetPredicate = HasMinMaxDenormModes
2767
2768let SubtargetPredicate = NotHasMinMaxDenormModes in {
2769  // Use the max lowering if we don't need to flush.
2770
2771  // FIXME: We don't do use this for f32 as a workaround for the
2772  // library being compiled with the default ieee mode, but
2773  // potentially being called from flushing kernels. Really we should
2774  // not be mixing code expecting different default FP modes, but mul
2775  // works in any FP environment.
2776  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
2777} // End SubtargetPredicate = NotHasMinMaxDenormModes
2778
2779
2780let OtherPredicates = [HasDLInsts] in {
2781// Don't allow source modifiers. If there are any source modifiers then it's
2782// better to select fma instead of fmac.
2783def : GCNPat <
2784  (fma (f32 (VOP3NoMods f32:$src0)),
2785       (f32 (VOP3NoMods f32:$src1)),
2786       (f32 (VOP3NoMods f32:$src2))),
2787  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2788                  SRCMODS.NONE, $src2)
2789>;
2790} // End OtherPredicates = [HasDLInsts]
2791
2792let SubtargetPredicate = isGFX10Plus in {
2793// Don't allow source modifiers. If there are any source modifiers then it's
2794// better to select fma instead of fmac.
2795let OtherPredicates = [NotHasTrue16BitInsts] in
2796def : GCNPat <
2797  (fma (f16 (VOP3NoMods f32:$src0)),
2798       (f16 (VOP3NoMods f32:$src1)),
2799       (f16 (VOP3NoMods f32:$src2))),
2800  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2801                  SRCMODS.NONE, $src2)
2802>;
2803let OtherPredicates = [HasTrue16BitInsts] in
2804def : GCNPat <
2805  (fma (f16 (VOP3NoMods f32:$src0)),
2806       (f16 (VOP3NoMods f32:$src1)),
2807       (f16 (VOP3NoMods f32:$src2))),
2808  (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2809                  SRCMODS.NONE, $src2)
2810>;
2811}
2812
2813let OtherPredicates = [HasFmacF64Inst] in
2814// Don't allow source modifiers. If there are any source modifiers then it's
2815// better to select fma instead of fmac.
2816def : GCNPat <
2817  (fma (f64 (VOP3NoMods f64:$src0)),
2818       (f64 (VOP3NoMods f64:$src1)),
2819       (f64 (VOP3NoMods f64:$src2))),
2820  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2821                  SRCMODS.NONE, $src2)
2822>;
2823
2824// COPY is workaround tablegen bug from multiple outputs
2825// from S_LSHL_B32's multiple outputs from implicit scc def.
2826let AddedComplexity = 1 in {
2827def : GCNPat <
2828  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2829  (S_LSHL_B32 SReg_32:$src1, (i16 16))
2830>;
2831
2832def : GCNPat <
2833  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
2834  (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
2835>;
2836
2837
2838def : GCNPat <
2839  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2840  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2841>;
2842
2843def : GCNPat <
2844  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
2845  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
2846>;
2847
2848def : GCNPat <
2849  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2850  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2851>;
2852
2853def : GCNPat <
2854  (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
2855  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
2856>;
2857
2858def : GCNPat <
2859  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 undef))),
2860  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
2861>;
2862
2863def : GCNPat <
2864  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 undef))),
2865  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
2866>;
2867
2868def : GCNPat <
2869  (v2f16 (build_vector f16:$src0, (f16 undef))),
2870  (COPY $src0)
2871>;
2872
2873def : GCNPat <
2874  (v2i16 (UniformBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2875  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2876>;
2877
2878def : GCNPat <
2879  (v2i16 (DivergentBinFrag<build_vector> (i16 undef), (i16 VGPR_32:$src1))),
2880  (v2i16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
2881>;
2882
2883
2884def : GCNPat <
2885  (v2f16 (UniformBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2886  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2887>;
2888
2889def : GCNPat <
2890  (v2f16 (DivergentBinFrag<build_vector> (f16 undef), (f16 VGPR_32:$src1))),
2891  (v2f16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
2892>;
2893}
2894
2895let SubtargetPredicate = HasVOP3PInsts in {
2896def : GCNPat <
2897  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2898  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2899>;
2900
2901def : GCNPat <
2902  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
2903  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
2904>;
2905
2906// With multiple uses of the shift, this will duplicate the shift and
2907// increase register pressure.
2908def : GCNPat <
2909  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2910  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
2911>;
2912
2913def : GCNPat <
2914  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2915                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2916  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
2917>;
2918
2919def : GCNPat <
2920  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2921  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2922>;
2923
2924
2925
2926foreach Ty = [i16, f16] in {
2927
2928defvar vecTy = !if(!eq(Ty, i16), v2i16, v2f16);
2929defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
2930
2931// Take the lower 16 bits from each VGPR_32 and concat them
2932def : GCNPat <
2933  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
2934  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
2935>;
2936
2937
2938// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
2939// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
2940def : GCNPat <
2941  (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
2942    (Ty !if(!eq(Ty, i16),
2943      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2944      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2945  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
2946>;
2947
2948
2949// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
2950// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
2951def : GCNPat <
2952  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
2953    (Ty !if(!eq(Ty, i16),
2954      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2955      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2956  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)),  VGPR_32:$a, VGPR_32:$b)
2957>;
2958
2959
2960// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
2961// Special case, can use V_ALIGNBIT (always uses encoded literal)
2962def : GCNPat <
2963  (vecTy (DivergentBinFrag<build_vector>
2964    (Ty !if(!eq(Ty, i16),
2965      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
2966      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
2967    (Ty VGPR_32:$b))),
2968    (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
2969>;
2970
2971// Take the upper 16 bits from each VGPR_32 and concat them
2972def : GCNPat <
2973  (vecTy (DivergentBinFrag<build_vector>
2974    (Ty !if(!eq(Ty, i16),
2975      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
2976      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
2977    (Ty !if(!eq(Ty, i16),
2978      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2979      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2980  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
2981>;
2982
2983
2984} // end foreach Ty
2985
2986
2987let AddedComplexity = 5 in {
2988def : GCNPat <
2989  (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
2990                                         (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
2991  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
2992>;
2993}
2994} // End SubtargetPredicate = HasVOP3PInsts
2995
2996// With multiple uses of the shift, this will duplicate the shift and
2997// increase register pressure.
2998let SubtargetPredicate = isGFX11Plus in
2999def : GCNPat <
3000  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
3001  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
3002>;
3003
3004
3005def : GCNPat <
3006  (v2f16 (scalar_to_vector f16:$src0)),
3007  (COPY $src0)
3008>;
3009
3010def : GCNPat <
3011  (v2i16 (scalar_to_vector i16:$src0)),
3012  (COPY $src0)
3013>;
3014
3015def : GCNPat <
3016  (v4i16 (scalar_to_vector i16:$src0)),
3017  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3018>;
3019
3020def : GCNPat <
3021  (v4f16 (scalar_to_vector f16:$src0)),
3022  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3023>;
3024
3025def : GCNPat <
3026  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3027                           timm:$bank_mask, timm:$bound_ctrl)),
3028  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
3029                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
3030                        (as_i32timm $bank_mask),
3031                        (as_i1timm $bound_ctrl))
3032>;
3033
3034def : GCNPat <
3035  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3036                              timm:$bank_mask, timm:$bound_ctrl)),
3037  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
3038                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
3039                        (as_i1timm $bound_ctrl))
3040>;
3041
3042//===----------------------------------------------------------------------===//
3043// Fract Patterns
3044//===----------------------------------------------------------------------===//
3045
3046let SubtargetPredicate = isGFX6 in {
3047
3048// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
3049// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
3050// way to implement it is using V_FRACT_F64.
3051// The workaround for the V_FRACT bug is:
3052//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
3053
3054// Convert floor(x) to (x - fract(x))
3055
3056// Don't bother handling this for GlobalISel, it's handled during
3057// lowering.
3058//
3059// FIXME: DAG should also custom lower this.
3060def : GCNPat <
3061  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
3062  (V_ADD_F64_e64
3063      $mods,
3064      $x,
3065      SRCMODS.NEG,
3066      (V_CNDMASK_B64_PSEUDO
3067         (V_MIN_F64_e64
3068             SRCMODS.NONE,
3069             (V_FRACT_F64_e64 $mods, $x),
3070             SRCMODS.NONE,
3071             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
3072         $x,
3073         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
3074>;
3075
3076} // End SubtargetPredicates = isGFX6
3077
3078//============================================================================//
3079// Miscellaneous Optimization Patterns
3080//============================================================================//
3081
3082// Undo sub x, c -> add x, -c canonicalization since c is more likely
3083// an inline immediate than -c.
3084// TODO: Also do for 64-bit.
3085def : GCNPat<
3086  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3087  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
3088>;
3089
3090def : GCNPat<
3091  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3092  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3093  let SubtargetPredicate = HasAddNoCarryInsts;
3094}
3095
3096def : GCNPat<
3097  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3098  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3099  let SubtargetPredicate = NotHasAddNoCarryInsts;
3100}
3101
3102
3103// Avoid pointlessly materializing a constant in VGPR.
3104// FIXME: Should also do this for readlane, but tablegen crashes on
3105// the ignored src1.
3106def : GCNPat<
3107  (int_amdgcn_readfirstlane (i32 imm:$src)),
3108  (S_MOV_B32 SReg_32:$src)
3109>;
3110
3111multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
3112  def : GCNPat <
3113    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
3114    (BFM $a, $b)
3115  >;
3116
3117  def : GCNPat <
3118    (vt (ADD (vt (shl 1, vt:$a)), -1)),
3119    (BFM $a, (i32 0))
3120  >;
3121}
3122
3123defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
3124// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
3125defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
3126
3127// Bitfield extract patterns
3128
3129def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
3130  return isMask_32(Imm);
3131}]>;
3132
3133def IMMPopCount : SDNodeXForm<imm, [{
3134  return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
3135                                   MVT::i32);
3136}]>;
3137
3138def : AMDGPUPat <
3139  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
3140                         IMMZeroBasedBitfieldMask:$mask),
3141  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
3142>;
3143
3144// x & ((1 << y) - 1)
3145def : AMDGPUPat <
3146  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
3147  (V_BFE_U32_e64 $src, (i32 0), $width)
3148>;
3149
3150// x & ~(-1 << y)
3151def : AMDGPUPat <
3152  (DivergentBinFrag<and> i32:$src,
3153                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
3154  (V_BFE_U32_e64 $src, (i32 0), $width)
3155>;
3156
3157// x & (-1 >> (bitwidth - y))
3158def : AMDGPUPat <
3159  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
3160  (V_BFE_U32_e64 $src, (i32 0), $width)
3161>;
3162
3163// x << (bitwidth - y) >> (bitwidth - y)
3164def : AMDGPUPat <
3165  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3166                         (sub 32, i32:$width)),
3167  (V_BFE_U32_e64 $src, (i32 0), $width)
3168>;
3169
3170def : AMDGPUPat <
3171  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3172                         (sub 32, i32:$width)),
3173  (V_BFE_I32_e64 $src, (i32 0), $width)
3174>;
3175
3176// SHA-256 Ma patterns
3177
3178// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
3179def : AMDGPUPatIgnoreCopies <
3180  (DivergentBinFrag<or> (and i32:$x, i32:$z),
3181                        (and i32:$y, (or i32:$x, i32:$z))),
3182  (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
3183                                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)),
3184                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32),
3185                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32))
3186>;
3187
3188def : AMDGPUPatIgnoreCopies <
3189  (DivergentBinFrag<or> (and i64:$x, i64:$z),
3190                        (and i64:$y, (or i64:$x, i64:$z))),
3191  (REG_SEQUENCE VReg_64,
3192    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
3193                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
3194              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
3195              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
3196    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
3197                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
3198              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
3199              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
3200>;
3201
3202multiclass IntMed3Pat<Instruction med3Inst,
3203                 SDPatternOperator min,
3204                 SDPatternOperator max> {
3205
3206  // This matches 16 permutations of
3207  // min(max(a, b), max(min(a, b), c))
3208  def : AMDGPUPat <
3209  (min (max i32:$src0, i32:$src1),
3210       (max (min i32:$src0, i32:$src1), i32:$src2)),
3211  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3212>;
3213
3214  // This matches 16 permutations of
3215  // max(min(x, y), min(max(x, y), z))
3216  def : AMDGPUPat <
3217  (max (min i32:$src0, i32:$src1),
3218       (min (max i32:$src0, i32:$src1), i32:$src2)),
3219  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3220>;
3221}
3222
3223defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
3224defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
3225
3226multiclass FPMed3Pat<ValueType vt,
3227                Instruction med3Inst> {
3228  // This matches 16 permutations of max(min(x, y), min(max(x, y), z))
3229  def : GCNPat<
3230    (fmaxnum_like_nnan
3231      (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3232                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3233      (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3234                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3235                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3236    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3237              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3238
3239
3240  // This matches 16 permutations of min(max(x, y), max(min(x, y), z))
3241  def : GCNPat<
3242    (fminnum_like_nnan
3243      (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3244                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3245      (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3246                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3247                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3248    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3249              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3250}
3251
3252class FP16Med3Pat<ValueType vt,
3253                Instruction med3Inst> : GCNPat<
3254  (fmaxnum_like_nnan (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3255                                   (VOP3Mods vt:$src1, i32:$src1_mods)),
3256           (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3257                                       (VOP3Mods vt:$src1, i32:$src1_mods)),
3258                         (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3259  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
3260>;
3261
3262multiclass Int16Med3Pat<Instruction med3Inst,
3263                        SDPatternOperator min,
3264                        SDPatternOperator max> {
3265  // This matches 16 permutations of
3266  // max(min(x, y), min(max(x, y), z))
3267  def : GCNPat <
3268  (max (min i16:$src0, i16:$src1),
3269       (min (max i16:$src0, i16:$src1), i16:$src2)),
3270  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3271>;
3272
3273  // This matches 16 permutations of
3274  // min(max(a, b), max(min(a, b), c))
3275  def : GCNPat <
3276  (min (max i16:$src0, i16:$src1),
3277       (max (min i16:$src0, i16:$src1), i16:$src2)),
3278  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3279>;
3280}
3281
3282defm : FPMed3Pat<f32, V_MED3_F32_e64>;
3283
3284class
3285IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3286             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3287  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3288                                i32:$src2),
3289  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3290>;
3291
3292class
3293FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3294            SDPatternOperator max_or_min_oneuse> : GCNPat <
3295  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3296                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3297               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3298  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3299              DSTCLAMP.NONE, DSTOMOD.NONE)
3300>;
3301
3302let OtherPredicates = [isGFX11Plus] in {
3303def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3304def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3305def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3306def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3307def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3308def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3309def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3310def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3311}
3312
3313let OtherPredicates = [isGFX9Plus] in {
3314def : FP16Med3Pat<f16, V_MED3_F16_e64>;
3315defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax>;
3316defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax>;
3317} // End Predicates = [isGFX9Plus]
3318
3319class AMDGPUGenericInstruction : GenericInstruction {
3320  let Namespace = "AMDGPU";
3321}
3322
3323// Convert a wave address to a swizzled vector address (i.e. this is
3324// for copying the stack pointer to a vector address appropriate to
3325// use in the offset field of mubuf instructions).
3326def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3327  let OutOperandList = (outs type0:$dst);
3328  let InOperandList = (ins type0:$src);
3329  let hasSideEffects = 0;
3330}
3331
3332// Returns -1 if the input is zero.
3333def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3334  let OutOperandList = (outs type0:$dst);
3335  let InOperandList = (ins type1:$src);
3336  let hasSideEffects = 0;
3337}
3338
3339// Returns -1 if the input is zero.
3340def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3341  let OutOperandList = (outs type0:$dst);
3342  let InOperandList = (ins type1:$src);
3343  let hasSideEffects = 0;
3344}
3345
3346def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3347  let OutOperandList = (outs type0:$dst);
3348  let InOperandList = (ins type1:$src);
3349  let hasSideEffects = 0;
3350}
3351
3352class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3353  let OutOperandList = (outs type0:$dst);
3354  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3355                           type2:$soffset, untyped_imm_0:$offset,
3356                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3357  let hasSideEffects = 0;
3358  let mayLoad = 1;
3359}
3360
3361class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3362  let OutOperandList = (outs type0:$dst);
3363  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3364                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3365                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3366  let hasSideEffects = 0;
3367  let mayLoad = 1;
3368}
3369
3370def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3371def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3372def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3373def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3374def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3375def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3376def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
3377def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3378def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3379def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3380
3381class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3382  let OutOperandList = (outs);
3383  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3384                           type2:$soffset, untyped_imm_0:$offset,
3385                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3386  let hasSideEffects = 0;
3387  let mayStore = 1;
3388}
3389
3390class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3391  let OutOperandList = (outs);
3392  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3393                           type2:$soffset, untyped_imm_0:$offset,
3394                           untyped_imm_0:$format,
3395                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3396  let hasSideEffects = 0;
3397  let mayStore = 1;
3398}
3399
3400def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3401def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3402def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3403def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3404def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3405def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3406def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3407
3408def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3409  let OutOperandList = (outs type0:$dst);
3410  let InOperandList = (ins type0:$src0, type0:$src1);
3411  let hasSideEffects = 0;
3412}
3413
3414def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3415  let OutOperandList = (outs type0:$dst);
3416  let InOperandList = (ins type0:$src0, type0:$src1);
3417  let hasSideEffects = 0;
3418}
3419
3420foreach N = 0-3 in {
3421def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3422  let OutOperandList = (outs type0:$dst);
3423  let InOperandList = (ins type0:$src0);
3424  let hasSideEffects = 0;
3425}
3426}
3427
3428def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3429  let OutOperandList = (outs type0:$dst);
3430  let InOperandList = (ins type0:$src0, type0:$src1);
3431  let hasSideEffects = 0;
3432}
3433
3434def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3435  let OutOperandList = (outs type0:$dst);
3436  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3437  let hasSideEffects = 0;
3438}
3439
3440def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
3441  let OutOperandList = (outs type0:$dst);
3442  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3443  let hasSideEffects = 0;
3444}
3445
3446def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
3447  let OutOperandList = (outs type0:$dst);
3448  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3449  let hasSideEffects = 0;
3450}
3451
3452def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3453  let OutOperandList = (outs type0:$dst);
3454  let InOperandList = (ins type0:$src);
3455  let hasSideEffects = 0;
3456}
3457
3458// Integer multiply-add: arg0 * arg1 + arg2.
3459//
3460// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
3461// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
3462class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
3463  let OutOperandList = (outs type0:$dst, type1:$carry_out);
3464  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
3465  let hasSideEffects = 0;
3466}
3467
3468def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
3469def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
3470
3471// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3472// operand Expects a MachineMemOperand in addition to explicit
3473// operands.
3474def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3475  let OutOperandList = (outs type0:$oldval);
3476  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3477  let hasSideEffects = 0;
3478  let mayLoad = 1;
3479  let mayStore = 1;
3480}
3481
3482let Namespace = "AMDGPU" in {
3483def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP;
3484def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP;
3485}
3486
3487class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction {
3488  let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst));
3489  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3490                           type2:$soffset, untyped_imm_0:$offset,
3491                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3492  let hasSideEffects = 0;
3493  let mayLoad = 1;
3494  let mayStore = 1;
3495}
3496
3497def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3498def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3499def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3500def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3501def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3502def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3503def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3504def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3505def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3506def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3507def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3508def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3509def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3510def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3511def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3512
3513def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3514  let OutOperandList = (outs type0:$dst);
3515  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3516                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3517                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3518  let hasSideEffects = 0;
3519  let mayLoad = 1;
3520  let mayStore = 1;
3521}
3522
3523// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3524// a workaround for the intrinsic being defined as readnone, but
3525// really needs a memory operand.
3526def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction {
3527  let OutOperandList = (outs type0:$dst);
3528  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3529  let hasSideEffects = 0;
3530  let mayLoad = 1;
3531  let mayStore = 0;
3532}
3533
3534// This is equivalent to the G_INTRINSIC*, but the operands may have
3535// been legalized depending on the subtarget requirements.
3536def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3537  let OutOperandList = (outs type0:$dst);
3538  let InOperandList = (ins unknown:$intrin, variable_ops);
3539  let hasSideEffects = 0;
3540  let mayLoad = 1;
3541
3542  // FIXME: Use separate opcode for atomics.
3543  let mayStore = 1;
3544}
3545
3546def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3547  let OutOperandList = (outs type0:$dst);
3548  let InOperandList = (ins unknown:$intrin, variable_ops);
3549  let hasSideEffects = 0;
3550  let mayLoad = 1;
3551
3552  // FIXME: Use separate opcode for atomics.
3553  let mayStore = 1;
3554}
3555
3556// This is equivalent to the G_INTRINSIC*, but the operands may have
3557// been legalized depending on the subtarget requirements.
3558def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3559  let OutOperandList = (outs);
3560  let InOperandList = (ins unknown:$intrin, variable_ops);
3561  let hasSideEffects = 0;
3562  let mayStore = 1;
3563}
3564
3565def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3566  let OutOperandList = (outs);
3567  let InOperandList = (ins unknown:$intrin, variable_ops);
3568  let hasSideEffects = 0;
3569  let mayStore = 1;
3570}
3571
3572def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3573  let OutOperandList = (outs type0:$dst);
3574  let InOperandList = (ins unknown:$intrin, variable_ops);
3575  let hasSideEffects = 0;
3576  let mayLoad = 1;
3577  let mayStore = 0;
3578}
3579
3580// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3581// if necessary.
3582def G_SI_CALL : AMDGPUGenericInstruction {
3583  let OutOperandList = (outs SReg_64:$dst);
3584  let InOperandList = (ins type0:$src0, unknown:$callee);
3585  let Size = 4;
3586  let isCall = 1;
3587  let UseNamedOperandTable = 1;
3588  let SchedRW = [WriteBranch];
3589  // TODO: Should really base this on the call target
3590  let isConvergent = 1;
3591}
3592
3593def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction {
3594  let OutOperandList = (outs type0:$vdst);
3595  let InOperandList = (ins type1:$src0);
3596  let hasSideEffects = 0;
3597}
3598
3599def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction {
3600  let OutOperandList = (outs type0:$vdst);
3601  let InOperandList = (ins type1:$src0);
3602  let hasSideEffects = 0;
3603}
3604
3605//============================================================================//
3606// Dummy Instructions
3607//============================================================================//
3608
3609def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
3610  let Inst{31-0} = 0x00000000;
3611  let FixedSize = 1;
3612  let Size = 4;
3613  let Uses = [EXEC];
3614  let hasSideEffects = 1;
3615  let SubtargetPredicate = isGFX10Plus;
3616}
3617