1 //===- SIInstrInfo.cpp - SI Instruction Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// SI Implementation of TargetInstrInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIInstrInfo.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "GCNHazardRecognizer.h" 18 #include "GCNSubtarget.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineScheduler.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/IntrinsicsAMDGPU.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Target/TargetMachine.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "si-instr-info" 39 40 #define GET_INSTRINFO_CTOR_DTOR 41 #include "AMDGPUGenInstrInfo.inc" 42 43 namespace llvm::AMDGPU { 44 #define GET_D16ImageDimIntrinsics_IMPL 45 #define GET_ImageDimIntrinsicTable_IMPL 46 #define GET_RsrcIntrinsics_IMPL 47 #include "AMDGPUGenSearchableTables.inc" 48 } // namespace llvm::AMDGPU 49 50 // Must be at least 4 to be able to branch over minimum unconditional branch 51 // code. This is only for making it possible to write reasonably small tests for 52 // long branches. 53 static cl::opt<unsigned> 54 BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16), 55 cl::desc("Restrict range of branch instructions (DEBUG)")); 56 57 static cl::opt<bool> Fix16BitCopies( 58 "amdgpu-fix-16-bit-physreg-copies", 59 cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"), 60 cl::init(true), 61 cl::ReallyHidden); 62 63 SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST) 64 : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN), 65 RI(ST), ST(ST) { 66 SchedModel.init(&ST); 67 } 68 69 //===----------------------------------------------------------------------===// 70 // TargetInstrInfo callbacks 71 //===----------------------------------------------------------------------===// 72 73 static unsigned getNumOperandsNoGlue(SDNode *Node) { 74 unsigned N = Node->getNumOperands(); 75 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 76 --N; 77 return N; 78 } 79 80 /// Returns true if both nodes have the same value for the given 81 /// operand \p Op, or if both nodes do not have this operand. 82 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 83 unsigned Opc0 = N0->getMachineOpcode(); 84 unsigned Opc1 = N1->getMachineOpcode(); 85 86 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 87 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 88 89 if (Op0Idx == -1 && Op1Idx == -1) 90 return true; 91 92 93 if ((Op0Idx == -1 && Op1Idx != -1) || 94 (Op1Idx == -1 && Op0Idx != -1)) 95 return false; 96 97 // getNamedOperandIdx returns the index for the MachineInstr's operands, 98 // which includes the result as the first operand. We are indexing into the 99 // MachineSDNode's operands, so we need to skip the result operand to get 100 // the real index. 101 --Op0Idx; 102 --Op1Idx; 103 104 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 105 } 106 107 static bool canRemat(const MachineInstr &MI) { 108 109 if (SIInstrInfo::isVOP1(MI) || SIInstrInfo::isVOP2(MI) || 110 SIInstrInfo::isVOP3(MI) || SIInstrInfo::isSDWA(MI) || 111 SIInstrInfo::isSALU(MI)) 112 return true; 113 114 if (SIInstrInfo::isSMRD(MI)) { 115 return !MI.memoperands_empty() && 116 llvm::all_of(MI.memoperands(), [](const MachineMemOperand *MMO) { 117 return MMO->isLoad() && MMO->isInvariant(); 118 }); 119 } 120 121 return false; 122 } 123 124 bool SIInstrInfo::isReallyTriviallyReMaterializable( 125 const MachineInstr &MI) const { 126 127 if (canRemat(MI)) { 128 // Normally VALU use of exec would block the rematerialization, but that 129 // is OK in this case to have an implicit exec read as all VALU do. 130 // We really want all of the generic logic for this except for this. 131 132 // Another potential implicit use is mode register. The core logic of 133 // the RA will not attempt rematerialization if mode is set anywhere 134 // in the function, otherwise it is safe since mode is not changed. 135 136 // There is difference to generic method which does not allow 137 // rematerialization if there are virtual register uses. We allow this, 138 // therefore this method includes SOP instructions as well. 139 if (!MI.hasImplicitDef() && 140 MI.getNumImplicitOperands() == MI.getDesc().implicit_uses().size() && 141 !MI.mayRaiseFPException()) 142 return true; 143 } 144 145 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 146 } 147 148 // Returns true if the scalar result of a VALU instruction depends on exec. 149 static bool resultDependsOnExec(const MachineInstr &MI) { 150 // Ignore comparisons which are only used masked with exec. 151 // This allows some hoisting/sinking of VALU comparisons. 152 if (MI.isCompare()) { 153 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 154 Register DstReg = MI.getOperand(0).getReg(); 155 if (!DstReg.isVirtual()) 156 return true; 157 for (MachineInstr &Use : MRI.use_nodbg_instructions(DstReg)) { 158 switch (Use.getOpcode()) { 159 case AMDGPU::S_AND_SAVEEXEC_B32: 160 case AMDGPU::S_AND_SAVEEXEC_B64: 161 break; 162 case AMDGPU::S_AND_B32: 163 case AMDGPU::S_AND_B64: 164 if (!Use.readsRegister(AMDGPU::EXEC, /*TRI=*/nullptr)) 165 return true; 166 break; 167 default: 168 return true; 169 } 170 } 171 return false; 172 } 173 174 switch (MI.getOpcode()) { 175 default: 176 break; 177 case AMDGPU::V_READFIRSTLANE_B32: 178 return true; 179 } 180 181 return false; 182 } 183 184 bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const { 185 // Any implicit use of exec by VALU is not a real register read. 186 return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() && 187 isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent()); 188 } 189 190 bool SIInstrInfo::isSafeToSink(MachineInstr &MI, 191 MachineBasicBlock *SuccToSinkTo, 192 MachineCycleInfo *CI) const { 193 // Allow sinking if MI edits lane mask (divergent i1 in sgpr). 194 if (MI.getOpcode() == AMDGPU::SI_IF_BREAK) 195 return true; 196 197 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 198 // Check if sinking of MI would create temporal divergent use. 199 for (auto Op : MI.uses()) { 200 if (Op.isReg() && Op.getReg().isVirtual() && 201 RI.isSGPRClass(MRI.getRegClass(Op.getReg()))) { 202 MachineInstr *SgprDef = MRI.getVRegDef(Op.getReg()); 203 204 // SgprDef defined inside cycle 205 MachineCycle *FromCycle = CI->getCycle(SgprDef->getParent()); 206 if (FromCycle == nullptr) 207 continue; 208 209 MachineCycle *ToCycle = CI->getCycle(SuccToSinkTo); 210 // Check if there is a FromCycle that contains SgprDef's basic block but 211 // does not contain SuccToSinkTo and also has divergent exit condition. 212 while (FromCycle && !FromCycle->contains(ToCycle)) { 213 SmallVector<MachineBasicBlock *, 1> ExitingBlocks; 214 FromCycle->getExitingBlocks(ExitingBlocks); 215 216 // FromCycle has divergent exit condition. 217 for (MachineBasicBlock *ExitingBlock : ExitingBlocks) { 218 if (hasDivergentBranch(ExitingBlock)) 219 return false; 220 } 221 222 FromCycle = FromCycle->getParentCycle(); 223 } 224 } 225 } 226 227 return true; 228 } 229 230 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 231 int64_t &Offset0, 232 int64_t &Offset1) const { 233 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 234 return false; 235 236 unsigned Opc0 = Load0->getMachineOpcode(); 237 unsigned Opc1 = Load1->getMachineOpcode(); 238 239 // Make sure both are actually loads. 240 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 241 return false; 242 243 // A mayLoad instruction without a def is not a load. Likely a prefetch. 244 if (!get(Opc0).getNumDefs() || !get(Opc1).getNumDefs()) 245 return false; 246 247 if (isDS(Opc0) && isDS(Opc1)) { 248 249 // FIXME: Handle this case: 250 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 251 return false; 252 253 // Check base reg. 254 if (Load0->getOperand(0) != Load1->getOperand(0)) 255 return false; 256 257 // Skip read2 / write2 variants for simplicity. 258 // TODO: We should report true if the used offsets are adjacent (excluded 259 // st64 versions). 260 int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 261 int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 262 if (Offset0Idx == -1 || Offset1Idx == -1) 263 return false; 264 265 // XXX - be careful of dataless loads 266 // getNamedOperandIdx returns the index for MachineInstrs. Since they 267 // include the output in the operand list, but SDNodes don't, we need to 268 // subtract the index by one. 269 Offset0Idx -= get(Opc0).NumDefs; 270 Offset1Idx -= get(Opc1).NumDefs; 271 Offset0 = Load0->getConstantOperandVal(Offset0Idx); 272 Offset1 = Load1->getConstantOperandVal(Offset1Idx); 273 return true; 274 } 275 276 if (isSMRD(Opc0) && isSMRD(Opc1)) { 277 // Skip time and cache invalidation instructions. 278 if (!AMDGPU::hasNamedOperand(Opc0, AMDGPU::OpName::sbase) || 279 !AMDGPU::hasNamedOperand(Opc1, AMDGPU::OpName::sbase)) 280 return false; 281 282 unsigned NumOps = getNumOperandsNoGlue(Load0); 283 if (NumOps != getNumOperandsNoGlue(Load1)) 284 return false; 285 286 // Check base reg. 287 if (Load0->getOperand(0) != Load1->getOperand(0)) 288 return false; 289 290 // Match register offsets, if both register and immediate offsets present. 291 assert(NumOps == 4 || NumOps == 5); 292 if (NumOps == 5 && Load0->getOperand(1) != Load1->getOperand(1)) 293 return false; 294 295 const ConstantSDNode *Load0Offset = 296 dyn_cast<ConstantSDNode>(Load0->getOperand(NumOps - 3)); 297 const ConstantSDNode *Load1Offset = 298 dyn_cast<ConstantSDNode>(Load1->getOperand(NumOps - 3)); 299 300 if (!Load0Offset || !Load1Offset) 301 return false; 302 303 Offset0 = Load0Offset->getZExtValue(); 304 Offset1 = Load1Offset->getZExtValue(); 305 return true; 306 } 307 308 // MUBUF and MTBUF can access the same addresses. 309 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 310 311 // MUBUF and MTBUF have vaddr at different indices. 312 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 313 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 314 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 315 return false; 316 317 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 318 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 319 320 if (OffIdx0 == -1 || OffIdx1 == -1) 321 return false; 322 323 // getNamedOperandIdx returns the index for MachineInstrs. Since they 324 // include the output in the operand list, but SDNodes don't, we need to 325 // subtract the index by one. 326 OffIdx0 -= get(Opc0).NumDefs; 327 OffIdx1 -= get(Opc1).NumDefs; 328 329 SDValue Off0 = Load0->getOperand(OffIdx0); 330 SDValue Off1 = Load1->getOperand(OffIdx1); 331 332 // The offset might be a FrameIndexSDNode. 333 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 334 return false; 335 336 Offset0 = Off0->getAsZExtVal(); 337 Offset1 = Off1->getAsZExtVal(); 338 return true; 339 } 340 341 return false; 342 } 343 344 static bool isStride64(unsigned Opc) { 345 switch (Opc) { 346 case AMDGPU::DS_READ2ST64_B32: 347 case AMDGPU::DS_READ2ST64_B64: 348 case AMDGPU::DS_WRITE2ST64_B32: 349 case AMDGPU::DS_WRITE2ST64_B64: 350 return true; 351 default: 352 return false; 353 } 354 } 355 356 bool SIInstrInfo::getMemOperandsWithOffsetWidth( 357 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 358 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, 359 const TargetRegisterInfo *TRI) const { 360 if (!LdSt.mayLoadOrStore()) 361 return false; 362 363 unsigned Opc = LdSt.getOpcode(); 364 OffsetIsScalable = false; 365 const MachineOperand *BaseOp, *OffsetOp; 366 int DataOpIdx; 367 368 if (isDS(LdSt)) { 369 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr); 370 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 371 if (OffsetOp) { 372 // Normal, single offset LDS instruction. 373 if (!BaseOp) { 374 // DS_CONSUME/DS_APPEND use M0 for the base address. 375 // TODO: find the implicit use operand for M0 and use that as BaseOp? 376 return false; 377 } 378 BaseOps.push_back(BaseOp); 379 Offset = OffsetOp->getImm(); 380 // Get appropriate operand, and compute width accordingly. 381 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 382 if (DataOpIdx == -1) 383 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 384 Width = getOpSize(LdSt, DataOpIdx); 385 } else { 386 // The 2 offset instructions use offset0 and offset1 instead. We can treat 387 // these as a load with a single offset if the 2 offsets are consecutive. 388 // We will use this for some partially aligned loads. 389 const MachineOperand *Offset0Op = 390 getNamedOperand(LdSt, AMDGPU::OpName::offset0); 391 const MachineOperand *Offset1Op = 392 getNamedOperand(LdSt, AMDGPU::OpName::offset1); 393 394 unsigned Offset0 = Offset0Op->getImm() & 0xff; 395 unsigned Offset1 = Offset1Op->getImm() & 0xff; 396 if (Offset0 + 1 != Offset1) 397 return false; 398 399 // Each of these offsets is in element sized units, so we need to convert 400 // to bytes of the individual reads. 401 402 unsigned EltSize; 403 if (LdSt.mayLoad()) 404 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16; 405 else { 406 assert(LdSt.mayStore()); 407 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 408 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8; 409 } 410 411 if (isStride64(Opc)) 412 EltSize *= 64; 413 414 BaseOps.push_back(BaseOp); 415 Offset = EltSize * Offset0; 416 // Get appropriate operand(s), and compute width accordingly. 417 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 418 if (DataOpIdx == -1) { 419 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 420 Width = getOpSize(LdSt, DataOpIdx); 421 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 422 Width = Width.getValue() + getOpSize(LdSt, DataOpIdx); 423 } else { 424 Width = getOpSize(LdSt, DataOpIdx); 425 } 426 } 427 return true; 428 } 429 430 if (isMUBUF(LdSt) || isMTBUF(LdSt)) { 431 const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc); 432 if (!RSrc) // e.g. BUFFER_WBINVL1_VOL 433 return false; 434 BaseOps.push_back(RSrc); 435 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 436 if (BaseOp && !BaseOp->isFI()) 437 BaseOps.push_back(BaseOp); 438 const MachineOperand *OffsetImm = 439 getNamedOperand(LdSt, AMDGPU::OpName::offset); 440 Offset = OffsetImm->getImm(); 441 const MachineOperand *SOffset = 442 getNamedOperand(LdSt, AMDGPU::OpName::soffset); 443 if (SOffset) { 444 if (SOffset->isReg()) 445 BaseOps.push_back(SOffset); 446 else 447 Offset += SOffset->getImm(); 448 } 449 // Get appropriate operand, and compute width accordingly. 450 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 451 if (DataOpIdx == -1) 452 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 453 if (DataOpIdx == -1) // LDS DMA 454 return false; 455 Width = getOpSize(LdSt, DataOpIdx); 456 return true; 457 } 458 459 if (isImage(LdSt)) { 460 auto RsrcOpName = 461 isMIMG(LdSt) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc; 462 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, RsrcOpName); 463 BaseOps.push_back(&LdSt.getOperand(SRsrcIdx)); 464 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 465 if (VAddr0Idx >= 0) { 466 // GFX10 possible NSA encoding. 467 for (int I = VAddr0Idx; I < SRsrcIdx; ++I) 468 BaseOps.push_back(&LdSt.getOperand(I)); 469 } else { 470 BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr)); 471 } 472 Offset = 0; 473 // Get appropriate operand, and compute width accordingly. 474 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 475 if (DataOpIdx == -1) 476 return false; // no return sampler 477 Width = getOpSize(LdSt, DataOpIdx); 478 return true; 479 } 480 481 if (isSMRD(LdSt)) { 482 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase); 483 if (!BaseOp) // e.g. S_MEMTIME 484 return false; 485 BaseOps.push_back(BaseOp); 486 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 487 Offset = OffsetOp ? OffsetOp->getImm() : 0; 488 // Get appropriate operand, and compute width accordingly. 489 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst); 490 if (DataOpIdx == -1) 491 return false; 492 Width = getOpSize(LdSt, DataOpIdx); 493 return true; 494 } 495 496 if (isFLAT(LdSt)) { 497 // Instructions have either vaddr or saddr or both or none. 498 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 499 if (BaseOp) 500 BaseOps.push_back(BaseOp); 501 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr); 502 if (BaseOp) 503 BaseOps.push_back(BaseOp); 504 Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm(); 505 // Get appropriate operand, and compute width accordingly. 506 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 507 if (DataOpIdx == -1) 508 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 509 if (DataOpIdx == -1) // LDS DMA 510 return false; 511 Width = getOpSize(LdSt, DataOpIdx); 512 return true; 513 } 514 515 return false; 516 } 517 518 static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, 519 ArrayRef<const MachineOperand *> BaseOps1, 520 const MachineInstr &MI2, 521 ArrayRef<const MachineOperand *> BaseOps2) { 522 // Only examine the first "base" operand of each instruction, on the 523 // assumption that it represents the real base address of the memory access. 524 // Other operands are typically offsets or indices from this base address. 525 if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front())) 526 return true; 527 528 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand()) 529 return false; 530 531 auto MO1 = *MI1.memoperands_begin(); 532 auto MO2 = *MI2.memoperands_begin(); 533 if (MO1->getAddrSpace() != MO2->getAddrSpace()) 534 return false; 535 536 auto Base1 = MO1->getValue(); 537 auto Base2 = MO2->getValue(); 538 if (!Base1 || !Base2) 539 return false; 540 Base1 = getUnderlyingObject(Base1); 541 Base2 = getUnderlyingObject(Base2); 542 543 if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2)) 544 return false; 545 546 return Base1 == Base2; 547 } 548 549 bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 550 int64_t Offset1, bool OffsetIsScalable1, 551 ArrayRef<const MachineOperand *> BaseOps2, 552 int64_t Offset2, bool OffsetIsScalable2, 553 unsigned ClusterSize, 554 unsigned NumBytes) const { 555 // If the mem ops (to be clustered) do not have the same base ptr, then they 556 // should not be clustered 557 if (!BaseOps1.empty() && !BaseOps2.empty()) { 558 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent(); 559 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent(); 560 if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2)) 561 return false; 562 } else if (!BaseOps1.empty() || !BaseOps2.empty()) { 563 // If only one base op is empty, they do not have the same base ptr 564 return false; 565 } 566 567 // In order to avoid register pressure, on an average, the number of DWORDS 568 // loaded together by all clustered mem ops should not exceed 8. This is an 569 // empirical value based on certain observations and performance related 570 // experiments. 571 // The good thing about this heuristic is - it avoids clustering of too many 572 // sub-word loads, and also avoids clustering of wide loads. Below is the 573 // brief summary of how the heuristic behaves for various `LoadSize`. 574 // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops 575 // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops 576 // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops 577 // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops 578 // (5) LoadSize >= 17: do not cluster 579 const unsigned LoadSize = NumBytes / ClusterSize; 580 const unsigned NumDWORDs = ((LoadSize + 3) / 4) * ClusterSize; 581 return NumDWORDs <= 8; 582 } 583 584 // FIXME: This behaves strangely. If, for example, you have 32 load + stores, 585 // the first 16 loads will be interleaved with the stores, and the next 16 will 586 // be clustered as expected. It should really split into 2 16 store batches. 587 // 588 // Loads are clustered until this returns false, rather than trying to schedule 589 // groups of stores. This also means we have to deal with saying different 590 // address space loads should be clustered, and ones which might cause bank 591 // conflicts. 592 // 593 // This might be deprecated so it might not be worth that much effort to fix. 594 bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, 595 int64_t Offset0, int64_t Offset1, 596 unsigned NumLoads) const { 597 assert(Offset1 > Offset0 && 598 "Second offset should be larger than first offset!"); 599 // If we have less than 16 loads in a row, and the offsets are within 64 600 // bytes, then schedule together. 601 602 // A cacheline is 64 bytes (for global memory). 603 return (NumLoads <= 16 && (Offset1 - Offset0) < 64); 604 } 605 606 static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB, 607 MachineBasicBlock::iterator MI, 608 const DebugLoc &DL, MCRegister DestReg, 609 MCRegister SrcReg, bool KillSrc, 610 const char *Msg = "illegal VGPR to SGPR copy") { 611 MachineFunction *MF = MBB.getParent(); 612 DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error); 613 LLVMContext &C = MF->getFunction().getContext(); 614 C.diagnose(IllegalCopy); 615 616 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg) 617 .addReg(SrcReg, getKillRegState(KillSrc)); 618 } 619 620 /// Handle copying from SGPR to AGPR, or from AGPR to AGPR on GFX908. It is not 621 /// possible to have a direct copy in these cases on GFX908, so an intermediate 622 /// VGPR copy is required. 623 static void indirectCopyToAGPR(const SIInstrInfo &TII, 624 MachineBasicBlock &MBB, 625 MachineBasicBlock::iterator MI, 626 const DebugLoc &DL, MCRegister DestReg, 627 MCRegister SrcReg, bool KillSrc, 628 RegScavenger &RS, bool RegsOverlap, 629 Register ImpDefSuperReg = Register(), 630 Register ImpUseSuperReg = Register()) { 631 assert((TII.getSubtarget().hasMAIInsts() && 632 !TII.getSubtarget().hasGFX90AInsts()) && 633 "Expected GFX908 subtarget."); 634 635 assert((AMDGPU::SReg_32RegClass.contains(SrcReg) || 636 AMDGPU::AGPR_32RegClass.contains(SrcReg)) && 637 "Source register of the copy should be either an SGPR or an AGPR."); 638 639 assert(AMDGPU::AGPR_32RegClass.contains(DestReg) && 640 "Destination register of the copy should be an AGPR."); 641 642 const SIRegisterInfo &RI = TII.getRegisterInfo(); 643 644 // First try to find defining accvgpr_write to avoid temporary registers. 645 // In the case of copies of overlapping AGPRs, we conservatively do not 646 // reuse previous accvgpr_writes. Otherwise, we may incorrectly pick up 647 // an accvgpr_write used for this same copy due to implicit-defs 648 if (!RegsOverlap) { 649 for (auto Def = MI, E = MBB.begin(); Def != E; ) { 650 --Def; 651 652 if (!Def->modifiesRegister(SrcReg, &RI)) 653 continue; 654 655 if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 656 Def->getOperand(0).getReg() != SrcReg) 657 break; 658 659 MachineOperand &DefOp = Def->getOperand(1); 660 assert(DefOp.isReg() || DefOp.isImm()); 661 662 if (DefOp.isReg()) { 663 bool SafeToPropagate = true; 664 // Check that register source operand is not clobbered before MI. 665 // Immediate operands are always safe to propagate. 666 for (auto I = Def; I != MI && SafeToPropagate; ++I) 667 if (I->modifiesRegister(DefOp.getReg(), &RI)) 668 SafeToPropagate = false; 669 670 if (!SafeToPropagate) 671 break; 672 673 DefOp.setIsKill(false); 674 } 675 676 MachineInstrBuilder Builder = 677 BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 678 .add(DefOp); 679 if (ImpDefSuperReg) 680 Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 681 682 if (ImpUseSuperReg) { 683 Builder.addReg(ImpUseSuperReg, 684 getKillRegState(KillSrc) | RegState::Implicit); 685 } 686 687 return; 688 } 689 } 690 691 RS.enterBasicBlockEnd(MBB); 692 RS.backward(std::next(MI)); 693 694 // Ideally we want to have three registers for a long reg_sequence copy 695 // to hide 2 waitstates between v_mov_b32 and accvgpr_write. 696 unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass, 697 *MBB.getParent()); 698 699 // Registers in the sequence are allocated contiguously so we can just 700 // use register number to pick one of three round-robin temps. 701 unsigned RegNo = (DestReg - AMDGPU::AGPR0) % 3; 702 Register Tmp = 703 MBB.getParent()->getInfo<SIMachineFunctionInfo>()->getVGPRForAGPRCopy(); 704 assert(MBB.getParent()->getRegInfo().isReserved(Tmp) && 705 "VGPR used for an intermediate copy should have been reserved."); 706 707 // Only loop through if there are any free registers left. We don't want to 708 // spill. 709 while (RegNo--) { 710 Register Tmp2 = RS.scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, 711 /* RestoreAfter */ false, 0, 712 /* AllowSpill */ false); 713 if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs) 714 break; 715 Tmp = Tmp2; 716 RS.setRegUsed(Tmp); 717 } 718 719 // Insert copy to temporary VGPR. 720 unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32; 721 if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) { 722 TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64; 723 } else { 724 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 725 } 726 727 MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp) 728 .addReg(SrcReg, getKillRegState(KillSrc)); 729 if (ImpUseSuperReg) { 730 UseBuilder.addReg(ImpUseSuperReg, 731 getKillRegState(KillSrc) | RegState::Implicit); 732 } 733 734 MachineInstrBuilder DefBuilder 735 = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 736 .addReg(Tmp, RegState::Kill); 737 738 if (ImpDefSuperReg) 739 DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 740 } 741 742 static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB, 743 MachineBasicBlock::iterator MI, const DebugLoc &DL, 744 MCRegister DestReg, MCRegister SrcReg, bool KillSrc, 745 const TargetRegisterClass *RC, bool Forward) { 746 const SIRegisterInfo &RI = TII.getRegisterInfo(); 747 ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4); 748 MachineBasicBlock::iterator I = MI; 749 MachineInstr *FirstMI = nullptr, *LastMI = nullptr; 750 751 for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) { 752 int16_t SubIdx = BaseIndices[Idx]; 753 Register DestSubReg = RI.getSubReg(DestReg, SubIdx); 754 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 755 assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); 756 unsigned Opcode = AMDGPU::S_MOV_B32; 757 758 // Is SGPR aligned? If so try to combine with next. 759 bool AlignedDest = ((DestSubReg - AMDGPU::SGPR0) % 2) == 0; 760 bool AlignedSrc = ((SrcSubReg - AMDGPU::SGPR0) % 2) == 0; 761 if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) { 762 // Can use SGPR64 copy 763 unsigned Channel = RI.getChannelFromSubReg(SubIdx); 764 SubIdx = RI.getSubRegFromChannel(Channel, 2); 765 DestSubReg = RI.getSubReg(DestReg, SubIdx); 766 SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 767 assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); 768 Opcode = AMDGPU::S_MOV_B64; 769 Idx++; 770 } 771 772 LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), DestSubReg) 773 .addReg(SrcSubReg) 774 .addReg(SrcReg, RegState::Implicit); 775 776 if (!FirstMI) 777 FirstMI = LastMI; 778 779 if (!Forward) 780 I--; 781 } 782 783 assert(FirstMI && LastMI); 784 if (!Forward) 785 std::swap(FirstMI, LastMI); 786 787 FirstMI->addOperand( 788 MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/)); 789 790 if (KillSrc) 791 LastMI->addRegisterKilled(SrcReg, &RI); 792 } 793 794 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 795 MachineBasicBlock::iterator MI, 796 const DebugLoc &DL, MCRegister DestReg, 797 MCRegister SrcReg, bool KillSrc) const { 798 const TargetRegisterClass *RC = RI.getPhysRegBaseClass(DestReg); 799 unsigned Size = RI.getRegSizeInBits(*RC); 800 const TargetRegisterClass *SrcRC = RI.getPhysRegBaseClass(SrcReg); 801 unsigned SrcSize = RI.getRegSizeInBits(*SrcRC); 802 803 // The rest of copyPhysReg assumes Src and Dst size are the same size. 804 // TODO-GFX11_16BIT If all true 16 bit instruction patterns are completed can 805 // we remove Fix16BitCopies and this code block? 806 if (Fix16BitCopies) { 807 if (((Size == 16) != (SrcSize == 16))) { 808 // Non-VGPR Src and Dst will later be expanded back to 32 bits. 809 assert(ST.hasTrue16BitInsts()); 810 MCRegister &RegToFix = (Size == 32) ? DestReg : SrcReg; 811 MCRegister SubReg = RI.getSubReg(RegToFix, AMDGPU::lo16); 812 RegToFix = SubReg; 813 814 if (DestReg == SrcReg) { 815 // Identity copy. Insert empty bundle since ExpandPostRA expects an 816 // instruction here. 817 BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE)); 818 return; 819 } 820 RC = RI.getPhysRegBaseClass(DestReg); 821 Size = RI.getRegSizeInBits(*RC); 822 SrcRC = RI.getPhysRegBaseClass(SrcReg); 823 SrcSize = RI.getRegSizeInBits(*SrcRC); 824 } 825 } 826 827 if (RC == &AMDGPU::VGPR_32RegClass) { 828 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 829 AMDGPU::SReg_32RegClass.contains(SrcReg) || 830 AMDGPU::AGPR_32RegClass.contains(SrcReg)); 831 unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ? 832 AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32; 833 BuildMI(MBB, MI, DL, get(Opc), DestReg) 834 .addReg(SrcReg, getKillRegState(KillSrc)); 835 return; 836 } 837 838 if (RC == &AMDGPU::SReg_32_XM0RegClass || 839 RC == &AMDGPU::SReg_32RegClass) { 840 if (SrcReg == AMDGPU::SCC) { 841 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg) 842 .addImm(1) 843 .addImm(0); 844 return; 845 } 846 847 if (DestReg == AMDGPU::VCC_LO) { 848 if (AMDGPU::SReg_32RegClass.contains(SrcReg)) { 849 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO) 850 .addReg(SrcReg, getKillRegState(KillSrc)); 851 } else { 852 // FIXME: Hack until VReg_1 removed. 853 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 854 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 855 .addImm(0) 856 .addReg(SrcReg, getKillRegState(KillSrc)); 857 } 858 859 return; 860 } 861 862 if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) { 863 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 864 return; 865 } 866 867 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 868 .addReg(SrcReg, getKillRegState(KillSrc)); 869 return; 870 } 871 872 if (RC == &AMDGPU::SReg_64RegClass) { 873 if (SrcReg == AMDGPU::SCC) { 874 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg) 875 .addImm(1) 876 .addImm(0); 877 return; 878 } 879 880 if (DestReg == AMDGPU::VCC) { 881 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 882 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 883 .addReg(SrcReg, getKillRegState(KillSrc)); 884 } else { 885 // FIXME: Hack until VReg_1 removed. 886 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 887 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 888 .addImm(0) 889 .addReg(SrcReg, getKillRegState(KillSrc)); 890 } 891 892 return; 893 } 894 895 if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) { 896 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 897 return; 898 } 899 900 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 901 .addReg(SrcReg, getKillRegState(KillSrc)); 902 return; 903 } 904 905 if (DestReg == AMDGPU::SCC) { 906 // Copying 64-bit or 32-bit sources to SCC barely makes sense, 907 // but SelectionDAG emits such copies for i1 sources. 908 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 909 // This copy can only be produced by patterns 910 // with explicit SCC, which are known to be enabled 911 // only for subtargets with S_CMP_LG_U64 present. 912 assert(ST.hasScalarCompareEq64()); 913 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64)) 914 .addReg(SrcReg, getKillRegState(KillSrc)) 915 .addImm(0); 916 } else { 917 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 918 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32)) 919 .addReg(SrcReg, getKillRegState(KillSrc)) 920 .addImm(0); 921 } 922 923 return; 924 } 925 926 if (RC == &AMDGPU::AGPR_32RegClass) { 927 if (AMDGPU::VGPR_32RegClass.contains(SrcReg) || 928 (ST.hasGFX90AInsts() && AMDGPU::SReg_32RegClass.contains(SrcReg))) { 929 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 930 .addReg(SrcReg, getKillRegState(KillSrc)); 931 return; 932 } 933 934 if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) { 935 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg) 936 .addReg(SrcReg, getKillRegState(KillSrc)); 937 return; 938 } 939 940 // FIXME: Pass should maintain scavenger to avoid scan through the block on 941 // every AGPR spill. 942 RegScavenger RS; 943 const bool Overlap = RI.regsOverlap(SrcReg, DestReg); 944 indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS, Overlap); 945 return; 946 } 947 948 if (Size == 16) { 949 assert(AMDGPU::VGPR_16RegClass.contains(SrcReg) || 950 AMDGPU::SReg_LO16RegClass.contains(SrcReg) || 951 AMDGPU::AGPR_LO16RegClass.contains(SrcReg)); 952 953 bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg); 954 bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg); 955 bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg); 956 bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg); 957 bool DstLow = !AMDGPU::isHi(DestReg, RI); 958 bool SrcLow = !AMDGPU::isHi(SrcReg, RI); 959 MCRegister NewDestReg = RI.get32BitRegister(DestReg); 960 MCRegister NewSrcReg = RI.get32BitRegister(SrcReg); 961 962 if (IsSGPRDst) { 963 if (!IsSGPRSrc) { 964 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 965 return; 966 } 967 968 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg) 969 .addReg(NewSrcReg, getKillRegState(KillSrc)); 970 return; 971 } 972 973 if (IsAGPRDst || IsAGPRSrc) { 974 if (!DstLow || !SrcLow) { 975 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 976 "Cannot use hi16 subreg with an AGPR!"); 977 } 978 979 copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc); 980 return; 981 } 982 983 if (ST.hasTrue16BitInsts()) { 984 if (IsSGPRSrc) { 985 assert(SrcLow); 986 SrcReg = NewSrcReg; 987 } 988 // Use the smaller instruction encoding if possible. 989 if (AMDGPU::VGPR_16_Lo128RegClass.contains(DestReg) && 990 (IsSGPRSrc || AMDGPU::VGPR_16_Lo128RegClass.contains(SrcReg))) { 991 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e32), DestReg) 992 .addReg(SrcReg); 993 } else { 994 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e64), DestReg) 995 .addImm(0) // src0_modifiers 996 .addReg(SrcReg) 997 .addImm(0); // op_sel 998 } 999 return; 1000 } 1001 1002 if (IsSGPRSrc && !ST.hasSDWAScalar()) { 1003 if (!DstLow || !SrcLow) { 1004 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 1005 "Cannot use hi16 subreg on VI!"); 1006 } 1007 1008 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg) 1009 .addReg(NewSrcReg, getKillRegState(KillSrc)); 1010 return; 1011 } 1012 1013 auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg) 1014 .addImm(0) // src0_modifiers 1015 .addReg(NewSrcReg) 1016 .addImm(0) // clamp 1017 .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0 1018 : AMDGPU::SDWA::SdwaSel::WORD_1) 1019 .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) 1020 .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0 1021 : AMDGPU::SDWA::SdwaSel::WORD_1) 1022 .addReg(NewDestReg, RegState::Implicit | RegState::Undef); 1023 // First implicit operand is $exec. 1024 MIB->tieOperands(0, MIB->getNumOperands() - 1); 1025 return; 1026 } 1027 1028 if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) { 1029 if (ST.hasMovB64()) { 1030 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_e32), DestReg) 1031 .addReg(SrcReg, getKillRegState(KillSrc)); 1032 return; 1033 } 1034 if (ST.hasPkMovB32()) { 1035 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg) 1036 .addImm(SISrcMods::OP_SEL_1) 1037 .addReg(SrcReg) 1038 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 1039 .addReg(SrcReg) 1040 .addImm(0) // op_sel_lo 1041 .addImm(0) // op_sel_hi 1042 .addImm(0) // neg_lo 1043 .addImm(0) // neg_hi 1044 .addImm(0) // clamp 1045 .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 1046 return; 1047 } 1048 } 1049 1050 const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg); 1051 if (RI.isSGPRClass(RC)) { 1052 if (!RI.isSGPRClass(SrcRC)) { 1053 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 1054 return; 1055 } 1056 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); 1057 expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, CanKillSuperReg, RC, 1058 Forward); 1059 return; 1060 } 1061 1062 unsigned EltSize = 4; 1063 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1064 if (RI.isAGPRClass(RC)) { 1065 if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC)) 1066 Opcode = AMDGPU::V_ACCVGPR_MOV_B32; 1067 else if (RI.hasVGPRs(SrcRC) || 1068 (ST.hasGFX90AInsts() && RI.isSGPRClass(SrcRC))) 1069 Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 1070 else 1071 Opcode = AMDGPU::INSTRUCTION_LIST_END; 1072 } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) { 1073 Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64; 1074 } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) && 1075 (RI.isProperlyAlignedRC(*RC) && 1076 (SrcRC == RC || RI.isSGPRClass(SrcRC)))) { 1077 // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov. 1078 if (ST.hasMovB64()) { 1079 Opcode = AMDGPU::V_MOV_B64_e32; 1080 EltSize = 8; 1081 } else if (ST.hasPkMovB32()) { 1082 Opcode = AMDGPU::V_PK_MOV_B32; 1083 EltSize = 8; 1084 } 1085 } 1086 1087 // For the cases where we need an intermediate instruction/temporary register 1088 // (destination is an AGPR), we need a scavenger. 1089 // 1090 // FIXME: The pass should maintain this for us so we don't have to re-scan the 1091 // whole block for every handled copy. 1092 std::unique_ptr<RegScavenger> RS; 1093 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) 1094 RS = std::make_unique<RegScavenger>(); 1095 1096 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize); 1097 1098 // If there is an overlap, we can't kill the super-register on the last 1099 // instruction, since it will also kill the components made live by this def. 1100 const bool Overlap = RI.regsOverlap(SrcReg, DestReg); 1101 const bool CanKillSuperReg = KillSrc && !Overlap; 1102 1103 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 1104 unsigned SubIdx; 1105 if (Forward) 1106 SubIdx = SubIndices[Idx]; 1107 else 1108 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 1109 Register DestSubReg = RI.getSubReg(DestReg, SubIdx); 1110 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 1111 assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); 1112 1113 bool IsFirstSubreg = Idx == 0; 1114 bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1; 1115 1116 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) { 1117 Register ImpDefSuper = IsFirstSubreg ? Register(DestReg) : Register(); 1118 Register ImpUseSuper = SrcReg; 1119 indirectCopyToAGPR(*this, MBB, MI, DL, DestSubReg, SrcSubReg, UseKill, 1120 *RS, Overlap, ImpDefSuper, ImpUseSuper); 1121 } else if (Opcode == AMDGPU::V_PK_MOV_B32) { 1122 MachineInstrBuilder MIB = 1123 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestSubReg) 1124 .addImm(SISrcMods::OP_SEL_1) 1125 .addReg(SrcSubReg) 1126 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 1127 .addReg(SrcSubReg) 1128 .addImm(0) // op_sel_lo 1129 .addImm(0) // op_sel_hi 1130 .addImm(0) // neg_lo 1131 .addImm(0) // neg_hi 1132 .addImm(0) // clamp 1133 .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1134 if (IsFirstSubreg) 1135 MIB.addReg(DestReg, RegState::Define | RegState::Implicit); 1136 } else { 1137 MachineInstrBuilder Builder = 1138 BuildMI(MBB, MI, DL, get(Opcode), DestSubReg).addReg(SrcSubReg); 1139 if (IsFirstSubreg) 1140 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 1141 1142 Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1143 } 1144 } 1145 } 1146 1147 int SIInstrInfo::commuteOpcode(unsigned Opcode) const { 1148 int NewOpc; 1149 1150 // Try to map original to commuted opcode 1151 NewOpc = AMDGPU::getCommuteRev(Opcode); 1152 if (NewOpc != -1) 1153 // Check if the commuted (REV) opcode exists on the target. 1154 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1155 1156 // Try to map commuted to original opcode 1157 NewOpc = AMDGPU::getCommuteOrig(Opcode); 1158 if (NewOpc != -1) 1159 // Check if the original (non-REV) opcode exists on the target. 1160 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1161 1162 return Opcode; 1163 } 1164 1165 void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB, 1166 MachineBasicBlock::iterator MI, 1167 const DebugLoc &DL, Register DestReg, 1168 int64_t Value) const { 1169 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1170 const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg); 1171 if (RegClass == &AMDGPU::SReg_32RegClass || 1172 RegClass == &AMDGPU::SGPR_32RegClass || 1173 RegClass == &AMDGPU::SReg_32_XM0RegClass || 1174 RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) { 1175 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 1176 .addImm(Value); 1177 return; 1178 } 1179 1180 if (RegClass == &AMDGPU::SReg_64RegClass || 1181 RegClass == &AMDGPU::SGPR_64RegClass || 1182 RegClass == &AMDGPU::SReg_64_XEXECRegClass) { 1183 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 1184 .addImm(Value); 1185 return; 1186 } 1187 1188 if (RegClass == &AMDGPU::VGPR_32RegClass) { 1189 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 1190 .addImm(Value); 1191 return; 1192 } 1193 if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) { 1194 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg) 1195 .addImm(Value); 1196 return; 1197 } 1198 1199 unsigned EltSize = 4; 1200 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1201 if (RI.isSGPRClass(RegClass)) { 1202 if (RI.getRegSizeInBits(*RegClass) > 32) { 1203 Opcode = AMDGPU::S_MOV_B64; 1204 EltSize = 8; 1205 } else { 1206 Opcode = AMDGPU::S_MOV_B32; 1207 EltSize = 4; 1208 } 1209 } 1210 1211 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize); 1212 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 1213 int64_t IdxValue = Idx == 0 ? Value : 0; 1214 1215 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 1216 get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx])); 1217 Builder.addImm(IdxValue); 1218 } 1219 } 1220 1221 const TargetRegisterClass * 1222 SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const { 1223 return &AMDGPU::VGPR_32RegClass; 1224 } 1225 1226 void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB, 1227 MachineBasicBlock::iterator I, 1228 const DebugLoc &DL, Register DstReg, 1229 ArrayRef<MachineOperand> Cond, 1230 Register TrueReg, 1231 Register FalseReg) const { 1232 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1233 const TargetRegisterClass *BoolXExecRC = 1234 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 1235 assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass && 1236 "Not a VGPR32 reg"); 1237 1238 if (Cond.size() == 1) { 1239 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1240 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1241 .add(Cond[0]); 1242 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1243 .addImm(0) 1244 .addReg(FalseReg) 1245 .addImm(0) 1246 .addReg(TrueReg) 1247 .addReg(SReg); 1248 } else if (Cond.size() == 2) { 1249 assert(Cond[0].isImm() && "Cond[0] is not an immediate"); 1250 switch (Cond[0].getImm()) { 1251 case SIInstrInfo::SCC_TRUE: { 1252 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1253 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1254 : AMDGPU::S_CSELECT_B64), SReg) 1255 .addImm(1) 1256 .addImm(0); 1257 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1258 .addImm(0) 1259 .addReg(FalseReg) 1260 .addImm(0) 1261 .addReg(TrueReg) 1262 .addReg(SReg); 1263 break; 1264 } 1265 case SIInstrInfo::SCC_FALSE: { 1266 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1267 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1268 : AMDGPU::S_CSELECT_B64), SReg) 1269 .addImm(0) 1270 .addImm(1); 1271 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1272 .addImm(0) 1273 .addReg(FalseReg) 1274 .addImm(0) 1275 .addReg(TrueReg) 1276 .addReg(SReg); 1277 break; 1278 } 1279 case SIInstrInfo::VCCNZ: { 1280 MachineOperand RegOp = Cond[1]; 1281 RegOp.setImplicit(false); 1282 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1283 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1284 .add(RegOp); 1285 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1286 .addImm(0) 1287 .addReg(FalseReg) 1288 .addImm(0) 1289 .addReg(TrueReg) 1290 .addReg(SReg); 1291 break; 1292 } 1293 case SIInstrInfo::VCCZ: { 1294 MachineOperand RegOp = Cond[1]; 1295 RegOp.setImplicit(false); 1296 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1297 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1298 .add(RegOp); 1299 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1300 .addImm(0) 1301 .addReg(TrueReg) 1302 .addImm(0) 1303 .addReg(FalseReg) 1304 .addReg(SReg); 1305 break; 1306 } 1307 case SIInstrInfo::EXECNZ: { 1308 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1309 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1310 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1311 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1312 .addImm(0); 1313 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1314 : AMDGPU::S_CSELECT_B64), SReg) 1315 .addImm(1) 1316 .addImm(0); 1317 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1318 .addImm(0) 1319 .addReg(FalseReg) 1320 .addImm(0) 1321 .addReg(TrueReg) 1322 .addReg(SReg); 1323 break; 1324 } 1325 case SIInstrInfo::EXECZ: { 1326 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1327 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1328 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1329 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1330 .addImm(0); 1331 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1332 : AMDGPU::S_CSELECT_B64), SReg) 1333 .addImm(0) 1334 .addImm(1); 1335 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1336 .addImm(0) 1337 .addReg(FalseReg) 1338 .addImm(0) 1339 .addReg(TrueReg) 1340 .addReg(SReg); 1341 llvm_unreachable("Unhandled branch predicate EXECZ"); 1342 break; 1343 } 1344 default: 1345 llvm_unreachable("invalid branch predicate"); 1346 } 1347 } else { 1348 llvm_unreachable("Can only handle Cond size 1 or 2"); 1349 } 1350 } 1351 1352 Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB, 1353 MachineBasicBlock::iterator I, 1354 const DebugLoc &DL, 1355 Register SrcReg, int Value) const { 1356 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1357 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1358 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg) 1359 .addImm(Value) 1360 .addReg(SrcReg); 1361 1362 return Reg; 1363 } 1364 1365 Register SIInstrInfo::insertNE(MachineBasicBlock *MBB, 1366 MachineBasicBlock::iterator I, 1367 const DebugLoc &DL, 1368 Register SrcReg, int Value) const { 1369 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1370 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1371 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg) 1372 .addImm(Value) 1373 .addReg(SrcReg); 1374 1375 return Reg; 1376 } 1377 1378 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 1379 1380 if (RI.isAGPRClass(DstRC)) 1381 return AMDGPU::COPY; 1382 if (RI.getRegSizeInBits(*DstRC) == 16) { 1383 // Assume hi bits are unneeded. Only _e64 true16 instructions are legal 1384 // before RA. 1385 return RI.isSGPRClass(DstRC) ? AMDGPU::COPY : AMDGPU::V_MOV_B16_t16_e64; 1386 } 1387 if (RI.getRegSizeInBits(*DstRC) == 32) 1388 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1389 if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) 1390 return AMDGPU::S_MOV_B64; 1391 if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) 1392 return AMDGPU::V_MOV_B64_PSEUDO; 1393 return AMDGPU::COPY; 1394 } 1395 1396 const MCInstrDesc & 1397 SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize, 1398 bool IsIndirectSrc) const { 1399 if (IsIndirectSrc) { 1400 if (VecSize <= 32) // 4 bytes 1401 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1); 1402 if (VecSize <= 64) // 8 bytes 1403 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2); 1404 if (VecSize <= 96) // 12 bytes 1405 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3); 1406 if (VecSize <= 128) // 16 bytes 1407 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4); 1408 if (VecSize <= 160) // 20 bytes 1409 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5); 1410 if (VecSize <= 256) // 32 bytes 1411 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8); 1412 if (VecSize <= 288) // 36 bytes 1413 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9); 1414 if (VecSize <= 320) // 40 bytes 1415 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10); 1416 if (VecSize <= 352) // 44 bytes 1417 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11); 1418 if (VecSize <= 384) // 48 bytes 1419 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12); 1420 if (VecSize <= 512) // 64 bytes 1421 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16); 1422 if (VecSize <= 1024) // 128 bytes 1423 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32); 1424 1425 llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos"); 1426 } 1427 1428 if (VecSize <= 32) // 4 bytes 1429 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1); 1430 if (VecSize <= 64) // 8 bytes 1431 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2); 1432 if (VecSize <= 96) // 12 bytes 1433 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3); 1434 if (VecSize <= 128) // 16 bytes 1435 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4); 1436 if (VecSize <= 160) // 20 bytes 1437 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5); 1438 if (VecSize <= 256) // 32 bytes 1439 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8); 1440 if (VecSize <= 288) // 36 bytes 1441 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9); 1442 if (VecSize <= 320) // 40 bytes 1443 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10); 1444 if (VecSize <= 352) // 44 bytes 1445 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11); 1446 if (VecSize <= 384) // 48 bytes 1447 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12); 1448 if (VecSize <= 512) // 64 bytes 1449 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16); 1450 if (VecSize <= 1024) // 128 bytes 1451 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32); 1452 1453 llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos"); 1454 } 1455 1456 static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) { 1457 if (VecSize <= 32) // 4 bytes 1458 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1459 if (VecSize <= 64) // 8 bytes 1460 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1461 if (VecSize <= 96) // 12 bytes 1462 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1463 if (VecSize <= 128) // 16 bytes 1464 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1465 if (VecSize <= 160) // 20 bytes 1466 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1467 if (VecSize <= 256) // 32 bytes 1468 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1469 if (VecSize <= 288) // 36 bytes 1470 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9; 1471 if (VecSize <= 320) // 40 bytes 1472 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10; 1473 if (VecSize <= 352) // 44 bytes 1474 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11; 1475 if (VecSize <= 384) // 48 bytes 1476 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12; 1477 if (VecSize <= 512) // 64 bytes 1478 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1479 if (VecSize <= 1024) // 128 bytes 1480 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1481 1482 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1483 } 1484 1485 static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) { 1486 if (VecSize <= 32) // 4 bytes 1487 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1488 if (VecSize <= 64) // 8 bytes 1489 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1490 if (VecSize <= 96) // 12 bytes 1491 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1492 if (VecSize <= 128) // 16 bytes 1493 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1494 if (VecSize <= 160) // 20 bytes 1495 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1496 if (VecSize <= 256) // 32 bytes 1497 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1498 if (VecSize <= 288) // 36 bytes 1499 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9; 1500 if (VecSize <= 320) // 40 bytes 1501 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10; 1502 if (VecSize <= 352) // 44 bytes 1503 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11; 1504 if (VecSize <= 384) // 48 bytes 1505 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12; 1506 if (VecSize <= 512) // 64 bytes 1507 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1508 if (VecSize <= 1024) // 128 bytes 1509 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1510 1511 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1512 } 1513 1514 static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) { 1515 if (VecSize <= 64) // 8 bytes 1516 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1; 1517 if (VecSize <= 128) // 16 bytes 1518 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2; 1519 if (VecSize <= 256) // 32 bytes 1520 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4; 1521 if (VecSize <= 512) // 64 bytes 1522 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8; 1523 if (VecSize <= 1024) // 128 bytes 1524 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16; 1525 1526 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1527 } 1528 1529 const MCInstrDesc & 1530 SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize, 1531 bool IsSGPR) const { 1532 if (IsSGPR) { 1533 switch (EltSize) { 1534 case 32: 1535 return get(getIndirectSGPRWriteMovRelPseudo32(VecSize)); 1536 case 64: 1537 return get(getIndirectSGPRWriteMovRelPseudo64(VecSize)); 1538 default: 1539 llvm_unreachable("invalid reg indexing elt size"); 1540 } 1541 } 1542 1543 assert(EltSize == 32 && "invalid reg indexing elt size"); 1544 return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize)); 1545 } 1546 1547 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 1548 switch (Size) { 1549 case 4: 1550 return AMDGPU::SI_SPILL_S32_SAVE; 1551 case 8: 1552 return AMDGPU::SI_SPILL_S64_SAVE; 1553 case 12: 1554 return AMDGPU::SI_SPILL_S96_SAVE; 1555 case 16: 1556 return AMDGPU::SI_SPILL_S128_SAVE; 1557 case 20: 1558 return AMDGPU::SI_SPILL_S160_SAVE; 1559 case 24: 1560 return AMDGPU::SI_SPILL_S192_SAVE; 1561 case 28: 1562 return AMDGPU::SI_SPILL_S224_SAVE; 1563 case 32: 1564 return AMDGPU::SI_SPILL_S256_SAVE; 1565 case 36: 1566 return AMDGPU::SI_SPILL_S288_SAVE; 1567 case 40: 1568 return AMDGPU::SI_SPILL_S320_SAVE; 1569 case 44: 1570 return AMDGPU::SI_SPILL_S352_SAVE; 1571 case 48: 1572 return AMDGPU::SI_SPILL_S384_SAVE; 1573 case 64: 1574 return AMDGPU::SI_SPILL_S512_SAVE; 1575 case 128: 1576 return AMDGPU::SI_SPILL_S1024_SAVE; 1577 default: 1578 llvm_unreachable("unknown register size"); 1579 } 1580 } 1581 1582 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 1583 switch (Size) { 1584 case 4: 1585 return AMDGPU::SI_SPILL_V32_SAVE; 1586 case 8: 1587 return AMDGPU::SI_SPILL_V64_SAVE; 1588 case 12: 1589 return AMDGPU::SI_SPILL_V96_SAVE; 1590 case 16: 1591 return AMDGPU::SI_SPILL_V128_SAVE; 1592 case 20: 1593 return AMDGPU::SI_SPILL_V160_SAVE; 1594 case 24: 1595 return AMDGPU::SI_SPILL_V192_SAVE; 1596 case 28: 1597 return AMDGPU::SI_SPILL_V224_SAVE; 1598 case 32: 1599 return AMDGPU::SI_SPILL_V256_SAVE; 1600 case 36: 1601 return AMDGPU::SI_SPILL_V288_SAVE; 1602 case 40: 1603 return AMDGPU::SI_SPILL_V320_SAVE; 1604 case 44: 1605 return AMDGPU::SI_SPILL_V352_SAVE; 1606 case 48: 1607 return AMDGPU::SI_SPILL_V384_SAVE; 1608 case 64: 1609 return AMDGPU::SI_SPILL_V512_SAVE; 1610 case 128: 1611 return AMDGPU::SI_SPILL_V1024_SAVE; 1612 default: 1613 llvm_unreachable("unknown register size"); 1614 } 1615 } 1616 1617 static unsigned getAGPRSpillSaveOpcode(unsigned Size) { 1618 switch (Size) { 1619 case 4: 1620 return AMDGPU::SI_SPILL_A32_SAVE; 1621 case 8: 1622 return AMDGPU::SI_SPILL_A64_SAVE; 1623 case 12: 1624 return AMDGPU::SI_SPILL_A96_SAVE; 1625 case 16: 1626 return AMDGPU::SI_SPILL_A128_SAVE; 1627 case 20: 1628 return AMDGPU::SI_SPILL_A160_SAVE; 1629 case 24: 1630 return AMDGPU::SI_SPILL_A192_SAVE; 1631 case 28: 1632 return AMDGPU::SI_SPILL_A224_SAVE; 1633 case 32: 1634 return AMDGPU::SI_SPILL_A256_SAVE; 1635 case 36: 1636 return AMDGPU::SI_SPILL_A288_SAVE; 1637 case 40: 1638 return AMDGPU::SI_SPILL_A320_SAVE; 1639 case 44: 1640 return AMDGPU::SI_SPILL_A352_SAVE; 1641 case 48: 1642 return AMDGPU::SI_SPILL_A384_SAVE; 1643 case 64: 1644 return AMDGPU::SI_SPILL_A512_SAVE; 1645 case 128: 1646 return AMDGPU::SI_SPILL_A1024_SAVE; 1647 default: 1648 llvm_unreachable("unknown register size"); 1649 } 1650 } 1651 1652 static unsigned getAVSpillSaveOpcode(unsigned Size) { 1653 switch (Size) { 1654 case 4: 1655 return AMDGPU::SI_SPILL_AV32_SAVE; 1656 case 8: 1657 return AMDGPU::SI_SPILL_AV64_SAVE; 1658 case 12: 1659 return AMDGPU::SI_SPILL_AV96_SAVE; 1660 case 16: 1661 return AMDGPU::SI_SPILL_AV128_SAVE; 1662 case 20: 1663 return AMDGPU::SI_SPILL_AV160_SAVE; 1664 case 24: 1665 return AMDGPU::SI_SPILL_AV192_SAVE; 1666 case 28: 1667 return AMDGPU::SI_SPILL_AV224_SAVE; 1668 case 32: 1669 return AMDGPU::SI_SPILL_AV256_SAVE; 1670 case 36: 1671 return AMDGPU::SI_SPILL_AV288_SAVE; 1672 case 40: 1673 return AMDGPU::SI_SPILL_AV320_SAVE; 1674 case 44: 1675 return AMDGPU::SI_SPILL_AV352_SAVE; 1676 case 48: 1677 return AMDGPU::SI_SPILL_AV384_SAVE; 1678 case 64: 1679 return AMDGPU::SI_SPILL_AV512_SAVE; 1680 case 128: 1681 return AMDGPU::SI_SPILL_AV1024_SAVE; 1682 default: 1683 llvm_unreachable("unknown register size"); 1684 } 1685 } 1686 1687 static unsigned getWWMRegSpillSaveOpcode(unsigned Size, 1688 bool IsVectorSuperClass) { 1689 // Currently, there is only 32-bit WWM register spills needed. 1690 if (Size != 4) 1691 llvm_unreachable("unknown wwm register spill size"); 1692 1693 if (IsVectorSuperClass) 1694 return AMDGPU::SI_SPILL_WWM_AV32_SAVE; 1695 1696 return AMDGPU::SI_SPILL_WWM_V32_SAVE; 1697 } 1698 1699 static unsigned getVectorRegSpillSaveOpcode(Register Reg, 1700 const TargetRegisterClass *RC, 1701 unsigned Size, 1702 const SIRegisterInfo &TRI, 1703 const SIMachineFunctionInfo &MFI) { 1704 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC); 1705 1706 // Choose the right opcode if spilling a WWM register. 1707 if (MFI.checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)) 1708 return getWWMRegSpillSaveOpcode(Size, IsVectorSuperClass); 1709 1710 if (IsVectorSuperClass) 1711 return getAVSpillSaveOpcode(Size); 1712 1713 return TRI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(Size) 1714 : getVGPRSpillSaveOpcode(Size); 1715 } 1716 1717 void SIInstrInfo::storeRegToStackSlot( 1718 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 1719 bool isKill, int FrameIndex, const TargetRegisterClass *RC, 1720 const TargetRegisterInfo *TRI, Register VReg) const { 1721 MachineFunction *MF = MBB.getParent(); 1722 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1723 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1724 const DebugLoc &DL = MBB.findDebugLoc(MI); 1725 1726 MachinePointerInfo PtrInfo 1727 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1728 MachineMemOperand *MMO = MF->getMachineMemOperand( 1729 PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex), 1730 FrameInfo.getObjectAlign(FrameIndex)); 1731 unsigned SpillSize = TRI->getSpillSize(*RC); 1732 1733 MachineRegisterInfo &MRI = MF->getRegInfo(); 1734 if (RI.isSGPRClass(RC)) { 1735 MFI->setHasSpilledSGPRs(); 1736 assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled"); 1737 assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI && 1738 SrcReg != AMDGPU::EXEC && "exec should not be spilled"); 1739 1740 // We are only allowed to create one new instruction when spilling 1741 // registers, so we need to use pseudo instruction for spilling SGPRs. 1742 const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize)); 1743 1744 // The SGPR spill/restore instructions only work on number sgprs, so we need 1745 // to make sure we are using the correct register class. 1746 if (SrcReg.isVirtual() && SpillSize == 4) { 1747 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1748 } 1749 1750 BuildMI(MBB, MI, DL, OpDesc) 1751 .addReg(SrcReg, getKillRegState(isKill)) // data 1752 .addFrameIndex(FrameIndex) // addr 1753 .addMemOperand(MMO) 1754 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1755 1756 if (RI.spillSGPRToVGPR()) 1757 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1758 return; 1759 } 1760 1761 unsigned Opcode = getVectorRegSpillSaveOpcode(VReg ? VReg : SrcReg, RC, 1762 SpillSize, RI, *MFI); 1763 MFI->setHasSpilledVGPRs(); 1764 1765 BuildMI(MBB, MI, DL, get(Opcode)) 1766 .addReg(SrcReg, getKillRegState(isKill)) // data 1767 .addFrameIndex(FrameIndex) // addr 1768 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1769 .addImm(0) // offset 1770 .addMemOperand(MMO); 1771 } 1772 1773 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 1774 switch (Size) { 1775 case 4: 1776 return AMDGPU::SI_SPILL_S32_RESTORE; 1777 case 8: 1778 return AMDGPU::SI_SPILL_S64_RESTORE; 1779 case 12: 1780 return AMDGPU::SI_SPILL_S96_RESTORE; 1781 case 16: 1782 return AMDGPU::SI_SPILL_S128_RESTORE; 1783 case 20: 1784 return AMDGPU::SI_SPILL_S160_RESTORE; 1785 case 24: 1786 return AMDGPU::SI_SPILL_S192_RESTORE; 1787 case 28: 1788 return AMDGPU::SI_SPILL_S224_RESTORE; 1789 case 32: 1790 return AMDGPU::SI_SPILL_S256_RESTORE; 1791 case 36: 1792 return AMDGPU::SI_SPILL_S288_RESTORE; 1793 case 40: 1794 return AMDGPU::SI_SPILL_S320_RESTORE; 1795 case 44: 1796 return AMDGPU::SI_SPILL_S352_RESTORE; 1797 case 48: 1798 return AMDGPU::SI_SPILL_S384_RESTORE; 1799 case 64: 1800 return AMDGPU::SI_SPILL_S512_RESTORE; 1801 case 128: 1802 return AMDGPU::SI_SPILL_S1024_RESTORE; 1803 default: 1804 llvm_unreachable("unknown register size"); 1805 } 1806 } 1807 1808 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 1809 switch (Size) { 1810 case 4: 1811 return AMDGPU::SI_SPILL_V32_RESTORE; 1812 case 8: 1813 return AMDGPU::SI_SPILL_V64_RESTORE; 1814 case 12: 1815 return AMDGPU::SI_SPILL_V96_RESTORE; 1816 case 16: 1817 return AMDGPU::SI_SPILL_V128_RESTORE; 1818 case 20: 1819 return AMDGPU::SI_SPILL_V160_RESTORE; 1820 case 24: 1821 return AMDGPU::SI_SPILL_V192_RESTORE; 1822 case 28: 1823 return AMDGPU::SI_SPILL_V224_RESTORE; 1824 case 32: 1825 return AMDGPU::SI_SPILL_V256_RESTORE; 1826 case 36: 1827 return AMDGPU::SI_SPILL_V288_RESTORE; 1828 case 40: 1829 return AMDGPU::SI_SPILL_V320_RESTORE; 1830 case 44: 1831 return AMDGPU::SI_SPILL_V352_RESTORE; 1832 case 48: 1833 return AMDGPU::SI_SPILL_V384_RESTORE; 1834 case 64: 1835 return AMDGPU::SI_SPILL_V512_RESTORE; 1836 case 128: 1837 return AMDGPU::SI_SPILL_V1024_RESTORE; 1838 default: 1839 llvm_unreachable("unknown register size"); 1840 } 1841 } 1842 1843 static unsigned getAGPRSpillRestoreOpcode(unsigned Size) { 1844 switch (Size) { 1845 case 4: 1846 return AMDGPU::SI_SPILL_A32_RESTORE; 1847 case 8: 1848 return AMDGPU::SI_SPILL_A64_RESTORE; 1849 case 12: 1850 return AMDGPU::SI_SPILL_A96_RESTORE; 1851 case 16: 1852 return AMDGPU::SI_SPILL_A128_RESTORE; 1853 case 20: 1854 return AMDGPU::SI_SPILL_A160_RESTORE; 1855 case 24: 1856 return AMDGPU::SI_SPILL_A192_RESTORE; 1857 case 28: 1858 return AMDGPU::SI_SPILL_A224_RESTORE; 1859 case 32: 1860 return AMDGPU::SI_SPILL_A256_RESTORE; 1861 case 36: 1862 return AMDGPU::SI_SPILL_A288_RESTORE; 1863 case 40: 1864 return AMDGPU::SI_SPILL_A320_RESTORE; 1865 case 44: 1866 return AMDGPU::SI_SPILL_A352_RESTORE; 1867 case 48: 1868 return AMDGPU::SI_SPILL_A384_RESTORE; 1869 case 64: 1870 return AMDGPU::SI_SPILL_A512_RESTORE; 1871 case 128: 1872 return AMDGPU::SI_SPILL_A1024_RESTORE; 1873 default: 1874 llvm_unreachable("unknown register size"); 1875 } 1876 } 1877 1878 static unsigned getAVSpillRestoreOpcode(unsigned Size) { 1879 switch (Size) { 1880 case 4: 1881 return AMDGPU::SI_SPILL_AV32_RESTORE; 1882 case 8: 1883 return AMDGPU::SI_SPILL_AV64_RESTORE; 1884 case 12: 1885 return AMDGPU::SI_SPILL_AV96_RESTORE; 1886 case 16: 1887 return AMDGPU::SI_SPILL_AV128_RESTORE; 1888 case 20: 1889 return AMDGPU::SI_SPILL_AV160_RESTORE; 1890 case 24: 1891 return AMDGPU::SI_SPILL_AV192_RESTORE; 1892 case 28: 1893 return AMDGPU::SI_SPILL_AV224_RESTORE; 1894 case 32: 1895 return AMDGPU::SI_SPILL_AV256_RESTORE; 1896 case 36: 1897 return AMDGPU::SI_SPILL_AV288_RESTORE; 1898 case 40: 1899 return AMDGPU::SI_SPILL_AV320_RESTORE; 1900 case 44: 1901 return AMDGPU::SI_SPILL_AV352_RESTORE; 1902 case 48: 1903 return AMDGPU::SI_SPILL_AV384_RESTORE; 1904 case 64: 1905 return AMDGPU::SI_SPILL_AV512_RESTORE; 1906 case 128: 1907 return AMDGPU::SI_SPILL_AV1024_RESTORE; 1908 default: 1909 llvm_unreachable("unknown register size"); 1910 } 1911 } 1912 1913 static unsigned getWWMRegSpillRestoreOpcode(unsigned Size, 1914 bool IsVectorSuperClass) { 1915 // Currently, there is only 32-bit WWM register spills needed. 1916 if (Size != 4) 1917 llvm_unreachable("unknown wwm register spill size"); 1918 1919 if (IsVectorSuperClass) 1920 return AMDGPU::SI_SPILL_WWM_AV32_RESTORE; 1921 1922 return AMDGPU::SI_SPILL_WWM_V32_RESTORE; 1923 } 1924 1925 static unsigned 1926 getVectorRegSpillRestoreOpcode(Register Reg, const TargetRegisterClass *RC, 1927 unsigned Size, const SIRegisterInfo &TRI, 1928 const SIMachineFunctionInfo &MFI) { 1929 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC); 1930 1931 // Choose the right opcode if restoring a WWM register. 1932 if (MFI.checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)) 1933 return getWWMRegSpillRestoreOpcode(Size, IsVectorSuperClass); 1934 1935 if (IsVectorSuperClass) 1936 return getAVSpillRestoreOpcode(Size); 1937 1938 return TRI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(Size) 1939 : getVGPRSpillRestoreOpcode(Size); 1940 } 1941 1942 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1943 MachineBasicBlock::iterator MI, 1944 Register DestReg, int FrameIndex, 1945 const TargetRegisterClass *RC, 1946 const TargetRegisterInfo *TRI, 1947 Register VReg) const { 1948 MachineFunction *MF = MBB.getParent(); 1949 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1950 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1951 const DebugLoc &DL = MBB.findDebugLoc(MI); 1952 unsigned SpillSize = TRI->getSpillSize(*RC); 1953 1954 MachinePointerInfo PtrInfo 1955 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1956 1957 MachineMemOperand *MMO = MF->getMachineMemOperand( 1958 PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex), 1959 FrameInfo.getObjectAlign(FrameIndex)); 1960 1961 if (RI.isSGPRClass(RC)) { 1962 MFI->setHasSpilledSGPRs(); 1963 assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into"); 1964 assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI && 1965 DestReg != AMDGPU::EXEC && "exec should not be spilled"); 1966 1967 // FIXME: Maybe this should not include a memoperand because it will be 1968 // lowered to non-memory instructions. 1969 const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize)); 1970 if (DestReg.isVirtual() && SpillSize == 4) { 1971 MachineRegisterInfo &MRI = MF->getRegInfo(); 1972 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1973 } 1974 1975 if (RI.spillSGPRToVGPR()) 1976 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1977 BuildMI(MBB, MI, DL, OpDesc, DestReg) 1978 .addFrameIndex(FrameIndex) // addr 1979 .addMemOperand(MMO) 1980 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1981 1982 return; 1983 } 1984 1985 unsigned Opcode = getVectorRegSpillRestoreOpcode(VReg ? VReg : DestReg, RC, 1986 SpillSize, RI, *MFI); 1987 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 1988 .addFrameIndex(FrameIndex) // vaddr 1989 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1990 .addImm(0) // offset 1991 .addMemOperand(MMO); 1992 } 1993 1994 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 1995 MachineBasicBlock::iterator MI) const { 1996 insertNoops(MBB, MI, 1); 1997 } 1998 1999 void SIInstrInfo::insertNoops(MachineBasicBlock &MBB, 2000 MachineBasicBlock::iterator MI, 2001 unsigned Quantity) const { 2002 DebugLoc DL = MBB.findDebugLoc(MI); 2003 while (Quantity > 0) { 2004 unsigned Arg = std::min(Quantity, 8u); 2005 Quantity -= Arg; 2006 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1); 2007 } 2008 } 2009 2010 void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const { 2011 auto MF = MBB.getParent(); 2012 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2013 2014 assert(Info->isEntryFunction()); 2015 2016 if (MBB.succ_empty()) { 2017 bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end(); 2018 if (HasNoTerminator) { 2019 if (Info->returnsVoid()) { 2020 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0); 2021 } else { 2022 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG)); 2023 } 2024 } 2025 } 2026 } 2027 2028 MachineBasicBlock *SIInstrInfo::insertSimulatedTrap(MachineRegisterInfo &MRI, 2029 MachineBasicBlock &MBB, 2030 MachineInstr &MI, 2031 const DebugLoc &DL) const { 2032 MachineFunction *MF = MBB.getParent(); 2033 constexpr unsigned DoorbellIDMask = 0x3ff; 2034 constexpr unsigned ECQueueWaveAbort = 0x400; 2035 2036 MachineBasicBlock *TrapBB = &MBB; 2037 MachineBasicBlock *ContBB = &MBB; 2038 MachineBasicBlock *HaltLoopBB = MF->CreateMachineBasicBlock(); 2039 2040 if (!MBB.succ_empty() || std::next(MI.getIterator()) != MBB.end()) { 2041 ContBB = MBB.splitAt(MI, /*UpdateLiveIns=*/false); 2042 TrapBB = MF->CreateMachineBasicBlock(); 2043 BuildMI(MBB, MI, DL, get(AMDGPU::S_CBRANCH_EXECNZ)).addMBB(TrapBB); 2044 MF->push_back(TrapBB); 2045 MBB.addSuccessor(TrapBB); 2046 } 2047 2048 // Start with a `s_trap 2`, if we're in PRIV=1 and we need the workaround this 2049 // will be a nop. 2050 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_TRAP)) 2051 .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap)); 2052 Register DoorbellReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 2053 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_SENDMSG_RTN_B32), 2054 DoorbellReg) 2055 .addImm(AMDGPU::SendMsg::ID_RTN_GET_DOORBELL); 2056 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_MOV_B32), AMDGPU::TTMP2) 2057 .addUse(AMDGPU::M0); 2058 Register DoorbellRegMasked = 2059 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 2060 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_AND_B32), DoorbellRegMasked) 2061 .addUse(DoorbellReg) 2062 .addImm(DoorbellIDMask); 2063 Register SetWaveAbortBit = 2064 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 2065 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_OR_B32), SetWaveAbortBit) 2066 .addUse(DoorbellRegMasked) 2067 .addImm(ECQueueWaveAbort); 2068 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_MOV_B32), AMDGPU::M0) 2069 .addUse(SetWaveAbortBit); 2070 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_SENDMSG)) 2071 .addImm(AMDGPU::SendMsg::ID_INTERRUPT); 2072 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_MOV_B32), AMDGPU::M0) 2073 .addUse(AMDGPU::TTMP2); 2074 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_BRANCH)).addMBB(HaltLoopBB); 2075 TrapBB->addSuccessor(HaltLoopBB); 2076 2077 BuildMI(*HaltLoopBB, HaltLoopBB->end(), DL, get(AMDGPU::S_SETHALT)).addImm(5); 2078 BuildMI(*HaltLoopBB, HaltLoopBB->end(), DL, get(AMDGPU::S_BRANCH)) 2079 .addMBB(HaltLoopBB); 2080 MF->push_back(HaltLoopBB); 2081 HaltLoopBB->addSuccessor(HaltLoopBB); 2082 2083 return ContBB; 2084 } 2085 2086 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) { 2087 switch (MI.getOpcode()) { 2088 default: 2089 if (MI.isMetaInstruction()) 2090 return 0; 2091 return 1; // FIXME: Do wait states equal cycles? 2092 2093 case AMDGPU::S_NOP: 2094 return MI.getOperand(0).getImm() + 1; 2095 // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The 2096 // hazard, even if one exist, won't really be visible. Should we handle it? 2097 } 2098 } 2099 2100 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2101 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2102 MachineBasicBlock &MBB = *MI.getParent(); 2103 DebugLoc DL = MBB.findDebugLoc(MI); 2104 switch (MI.getOpcode()) { 2105 default: return TargetInstrInfo::expandPostRAPseudo(MI); 2106 case AMDGPU::S_MOV_B64_term: 2107 // This is only a terminator to get the correct spill code placement during 2108 // register allocation. 2109 MI.setDesc(get(AMDGPU::S_MOV_B64)); 2110 break; 2111 2112 case AMDGPU::S_MOV_B32_term: 2113 // This is only a terminator to get the correct spill code placement during 2114 // register allocation. 2115 MI.setDesc(get(AMDGPU::S_MOV_B32)); 2116 break; 2117 2118 case AMDGPU::S_XOR_B64_term: 2119 // This is only a terminator to get the correct spill code placement during 2120 // register allocation. 2121 MI.setDesc(get(AMDGPU::S_XOR_B64)); 2122 break; 2123 2124 case AMDGPU::S_XOR_B32_term: 2125 // This is only a terminator to get the correct spill code placement during 2126 // register allocation. 2127 MI.setDesc(get(AMDGPU::S_XOR_B32)); 2128 break; 2129 case AMDGPU::S_OR_B64_term: 2130 // This is only a terminator to get the correct spill code placement during 2131 // register allocation. 2132 MI.setDesc(get(AMDGPU::S_OR_B64)); 2133 break; 2134 case AMDGPU::S_OR_B32_term: 2135 // This is only a terminator to get the correct spill code placement during 2136 // register allocation. 2137 MI.setDesc(get(AMDGPU::S_OR_B32)); 2138 break; 2139 2140 case AMDGPU::S_ANDN2_B64_term: 2141 // This is only a terminator to get the correct spill code placement during 2142 // register allocation. 2143 MI.setDesc(get(AMDGPU::S_ANDN2_B64)); 2144 break; 2145 2146 case AMDGPU::S_ANDN2_B32_term: 2147 // This is only a terminator to get the correct spill code placement during 2148 // register allocation. 2149 MI.setDesc(get(AMDGPU::S_ANDN2_B32)); 2150 break; 2151 2152 case AMDGPU::S_AND_B64_term: 2153 // This is only a terminator to get the correct spill code placement during 2154 // register allocation. 2155 MI.setDesc(get(AMDGPU::S_AND_B64)); 2156 break; 2157 2158 case AMDGPU::S_AND_B32_term: 2159 // This is only a terminator to get the correct spill code placement during 2160 // register allocation. 2161 MI.setDesc(get(AMDGPU::S_AND_B32)); 2162 break; 2163 2164 case AMDGPU::S_AND_SAVEEXEC_B64_term: 2165 // This is only a terminator to get the correct spill code placement during 2166 // register allocation. 2167 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B64)); 2168 break; 2169 2170 case AMDGPU::S_AND_SAVEEXEC_B32_term: 2171 // This is only a terminator to get the correct spill code placement during 2172 // register allocation. 2173 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B32)); 2174 break; 2175 2176 case AMDGPU::SI_SPILL_S32_TO_VGPR: 2177 MI.setDesc(get(AMDGPU::V_WRITELANE_B32)); 2178 break; 2179 2180 case AMDGPU::SI_RESTORE_S32_FROM_VGPR: 2181 MI.setDesc(get(AMDGPU::V_READLANE_B32)); 2182 break; 2183 2184 case AMDGPU::V_MOV_B64_PSEUDO: { 2185 Register Dst = MI.getOperand(0).getReg(); 2186 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 2187 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 2188 2189 const MachineOperand &SrcOp = MI.getOperand(1); 2190 // FIXME: Will this work for 64-bit floating point immediates? 2191 assert(!SrcOp.isFPImm()); 2192 if (ST.hasMovB64()) { 2193 MI.setDesc(get(AMDGPU::V_MOV_B64_e32)); 2194 if (SrcOp.isReg() || isInlineConstant(MI, 1) || 2195 isUInt<32>(SrcOp.getImm())) 2196 break; 2197 } 2198 if (SrcOp.isImm()) { 2199 APInt Imm(64, SrcOp.getImm()); 2200 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 2201 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 2202 if (ST.hasPkMovB32() && Lo == Hi && isInlineConstant(Lo)) { 2203 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 2204 .addImm(SISrcMods::OP_SEL_1) 2205 .addImm(Lo.getSExtValue()) 2206 .addImm(SISrcMods::OP_SEL_1) 2207 .addImm(Lo.getSExtValue()) 2208 .addImm(0) // op_sel_lo 2209 .addImm(0) // op_sel_hi 2210 .addImm(0) // neg_lo 2211 .addImm(0) // neg_hi 2212 .addImm(0); // clamp 2213 } else { 2214 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 2215 .addImm(Lo.getSExtValue()) 2216 .addReg(Dst, RegState::Implicit | RegState::Define); 2217 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 2218 .addImm(Hi.getSExtValue()) 2219 .addReg(Dst, RegState::Implicit | RegState::Define); 2220 } 2221 } else { 2222 assert(SrcOp.isReg()); 2223 if (ST.hasPkMovB32() && 2224 !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) { 2225 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 2226 .addImm(SISrcMods::OP_SEL_1) // src0_mod 2227 .addReg(SrcOp.getReg()) 2228 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod 2229 .addReg(SrcOp.getReg()) 2230 .addImm(0) // op_sel_lo 2231 .addImm(0) // op_sel_hi 2232 .addImm(0) // neg_lo 2233 .addImm(0) // neg_hi 2234 .addImm(0); // clamp 2235 } else { 2236 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 2237 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 2238 .addReg(Dst, RegState::Implicit | RegState::Define); 2239 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 2240 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 2241 .addReg(Dst, RegState::Implicit | RegState::Define); 2242 } 2243 } 2244 MI.eraseFromParent(); 2245 break; 2246 } 2247 case AMDGPU::V_MOV_B64_DPP_PSEUDO: { 2248 expandMovDPP64(MI); 2249 break; 2250 } 2251 case AMDGPU::S_MOV_B64_IMM_PSEUDO: { 2252 const MachineOperand &SrcOp = MI.getOperand(1); 2253 assert(!SrcOp.isFPImm()); 2254 APInt Imm(64, SrcOp.getImm()); 2255 if (Imm.isIntN(32) || isInlineConstant(Imm)) { 2256 MI.setDesc(get(AMDGPU::S_MOV_B64)); 2257 break; 2258 } 2259 2260 Register Dst = MI.getOperand(0).getReg(); 2261 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 2262 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 2263 2264 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 2265 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 2266 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo) 2267 .addImm(Lo.getSExtValue()) 2268 .addReg(Dst, RegState::Implicit | RegState::Define); 2269 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi) 2270 .addImm(Hi.getSExtValue()) 2271 .addReg(Dst, RegState::Implicit | RegState::Define); 2272 MI.eraseFromParent(); 2273 break; 2274 } 2275 case AMDGPU::V_SET_INACTIVE_B32: { 2276 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; 2277 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 2278 // FIXME: We may possibly optimize the COPY once we find ways to make LLVM 2279 // optimizations (mainly Register Coalescer) aware of WWM register liveness. 2280 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) 2281 .add(MI.getOperand(1)); 2282 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); 2283 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten 2284 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) 2285 .add(MI.getOperand(2)); 2286 BuildMI(MBB, MI, DL, get(NotOpc), Exec) 2287 .addReg(Exec); 2288 MI.eraseFromParent(); 2289 break; 2290 } 2291 case AMDGPU::V_SET_INACTIVE_B64: { 2292 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; 2293 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 2294 MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), 2295 MI.getOperand(0).getReg()) 2296 .add(MI.getOperand(1)); 2297 expandPostRAPseudo(*Copy); 2298 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); 2299 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten 2300 Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), 2301 MI.getOperand(0).getReg()) 2302 .add(MI.getOperand(2)); 2303 expandPostRAPseudo(*Copy); 2304 BuildMI(MBB, MI, DL, get(NotOpc), Exec) 2305 .addReg(Exec); 2306 MI.eraseFromParent(); 2307 break; 2308 } 2309 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1: 2310 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2: 2311 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3: 2312 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4: 2313 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5: 2314 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8: 2315 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9: 2316 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10: 2317 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11: 2318 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12: 2319 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16: 2320 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32: 2321 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1: 2322 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2: 2323 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3: 2324 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4: 2325 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5: 2326 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8: 2327 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9: 2328 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10: 2329 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11: 2330 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12: 2331 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16: 2332 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32: 2333 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1: 2334 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2: 2335 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4: 2336 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8: 2337 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: { 2338 const TargetRegisterClass *EltRC = getOpRegClass(MI, 2); 2339 2340 unsigned Opc; 2341 if (RI.hasVGPRs(EltRC)) { 2342 Opc = AMDGPU::V_MOVRELD_B32_e32; 2343 } else { 2344 Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64 2345 : AMDGPU::S_MOVRELD_B32; 2346 } 2347 2348 const MCInstrDesc &OpDesc = get(Opc); 2349 Register VecReg = MI.getOperand(0).getReg(); 2350 bool IsUndef = MI.getOperand(1).isUndef(); 2351 unsigned SubReg = MI.getOperand(3).getImm(); 2352 assert(VecReg == MI.getOperand(1).getReg()); 2353 2354 MachineInstrBuilder MIB = 2355 BuildMI(MBB, MI, DL, OpDesc) 2356 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2357 .add(MI.getOperand(2)) 2358 .addReg(VecReg, RegState::ImplicitDefine) 2359 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2360 2361 const int ImpDefIdx = 2362 OpDesc.getNumOperands() + OpDesc.implicit_uses().size(); 2363 const int ImpUseIdx = ImpDefIdx + 1; 2364 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2365 MI.eraseFromParent(); 2366 break; 2367 } 2368 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1: 2369 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2: 2370 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3: 2371 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4: 2372 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5: 2373 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8: 2374 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9: 2375 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10: 2376 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11: 2377 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12: 2378 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16: 2379 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: { 2380 assert(ST.useVGPRIndexMode()); 2381 Register VecReg = MI.getOperand(0).getReg(); 2382 bool IsUndef = MI.getOperand(1).isUndef(); 2383 Register Idx = MI.getOperand(3).getReg(); 2384 Register SubReg = MI.getOperand(4).getImm(); 2385 2386 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2387 .addReg(Idx) 2388 .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE); 2389 SetOn->getOperand(3).setIsUndef(); 2390 2391 const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write); 2392 MachineInstrBuilder MIB = 2393 BuildMI(MBB, MI, DL, OpDesc) 2394 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2395 .add(MI.getOperand(2)) 2396 .addReg(VecReg, RegState::ImplicitDefine) 2397 .addReg(VecReg, 2398 RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2399 2400 const int ImpDefIdx = 2401 OpDesc.getNumOperands() + OpDesc.implicit_uses().size(); 2402 const int ImpUseIdx = ImpDefIdx + 1; 2403 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2404 2405 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2406 2407 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2408 2409 MI.eraseFromParent(); 2410 break; 2411 } 2412 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1: 2413 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2: 2414 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3: 2415 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4: 2416 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5: 2417 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8: 2418 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9: 2419 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10: 2420 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11: 2421 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12: 2422 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16: 2423 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: { 2424 assert(ST.useVGPRIndexMode()); 2425 Register Dst = MI.getOperand(0).getReg(); 2426 Register VecReg = MI.getOperand(1).getReg(); 2427 bool IsUndef = MI.getOperand(1).isUndef(); 2428 Register Idx = MI.getOperand(2).getReg(); 2429 Register SubReg = MI.getOperand(3).getImm(); 2430 2431 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2432 .addReg(Idx) 2433 .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE); 2434 SetOn->getOperand(3).setIsUndef(); 2435 2436 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read)) 2437 .addDef(Dst) 2438 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2439 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2440 2441 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2442 2443 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2444 2445 MI.eraseFromParent(); 2446 break; 2447 } 2448 case AMDGPU::SI_PC_ADD_REL_OFFSET: { 2449 MachineFunction &MF = *MBB.getParent(); 2450 Register Reg = MI.getOperand(0).getReg(); 2451 Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0); 2452 Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1); 2453 MachineOperand OpLo = MI.getOperand(1); 2454 MachineOperand OpHi = MI.getOperand(2); 2455 2456 // Create a bundle so these instructions won't be re-ordered by the 2457 // post-RA scheduler. 2458 MIBundleBuilder Bundler(MBB, MI); 2459 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 2460 2461 // What we want here is an offset from the value returned by s_getpc (which 2462 // is the address of the s_add_u32 instruction) to the global variable, but 2463 // since the encoding of $symbol starts 4 bytes after the start of the 2464 // s_add_u32 instruction, we end up with an offset that is 4 bytes too 2465 // small. This requires us to add 4 to the global variable offset in order 2466 // to compute the correct address. Similarly for the s_addc_u32 instruction, 2467 // the encoding of $symbol starts 12 bytes after the start of the s_add_u32 2468 // instruction. 2469 2470 int64_t Adjust = 0; 2471 if (ST.hasGetPCZeroExtension()) { 2472 // Fix up hardware that does not sign-extend the 48-bit PC value by 2473 // inserting: s_sext_i32_i16 reghi, reghi 2474 Bundler.append( 2475 BuildMI(MF, DL, get(AMDGPU::S_SEXT_I32_I16), RegHi).addReg(RegHi)); 2476 Adjust += 4; 2477 } 2478 2479 if (OpLo.isGlobal()) 2480 OpLo.setOffset(OpLo.getOffset() + Adjust + 4); 2481 Bundler.append( 2482 BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo).addReg(RegLo).add(OpLo)); 2483 2484 if (OpHi.isGlobal()) 2485 OpHi.setOffset(OpHi.getOffset() + Adjust + 12); 2486 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 2487 .addReg(RegHi) 2488 .add(OpHi)); 2489 2490 finalizeBundle(MBB, Bundler.begin()); 2491 2492 MI.eraseFromParent(); 2493 break; 2494 } 2495 case AMDGPU::ENTER_STRICT_WWM: { 2496 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2497 // Whole Wave Mode is entered. 2498 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 2499 : AMDGPU::S_OR_SAVEEXEC_B64)); 2500 break; 2501 } 2502 case AMDGPU::ENTER_STRICT_WQM: { 2503 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2504 // STRICT_WQM is entered. 2505 const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 2506 const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64; 2507 const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 2508 BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec); 2509 BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec); 2510 2511 MI.eraseFromParent(); 2512 break; 2513 } 2514 case AMDGPU::EXIT_STRICT_WWM: 2515 case AMDGPU::EXIT_STRICT_WQM: { 2516 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2517 // WWM/STICT_WQM is exited. 2518 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64)); 2519 break; 2520 } 2521 case AMDGPU::SI_RETURN: { 2522 const MachineFunction *MF = MBB.getParent(); 2523 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 2524 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2525 // Hiding the return address use with SI_RETURN may lead to extra kills in 2526 // the function and missing live-ins. We are fine in practice because callee 2527 // saved register handling ensures the register value is restored before 2528 // RET, but we need the undef flag here to appease the MachineVerifier 2529 // liveness checks. 2530 MachineInstrBuilder MIB = 2531 BuildMI(MBB, MI, DL, get(AMDGPU::S_SETPC_B64_return)) 2532 .addReg(TRI->getReturnAddressReg(*MF), RegState::Undef); 2533 2534 MIB.copyImplicitOps(MI); 2535 MI.eraseFromParent(); 2536 break; 2537 } 2538 2539 case AMDGPU::S_MUL_U64_U32_PSEUDO: 2540 case AMDGPU::S_MUL_I64_I32_PSEUDO: 2541 MI.setDesc(get(AMDGPU::S_MUL_U64)); 2542 break; 2543 2544 case AMDGPU::S_GETPC_B64_pseudo: 2545 MI.setDesc(get(AMDGPU::S_GETPC_B64)); 2546 if (ST.hasGetPCZeroExtension()) { 2547 Register Dst = MI.getOperand(0).getReg(); 2548 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 2549 // Fix up hardware that does not sign-extend the 48-bit PC value by 2550 // inserting: s_sext_i32_i16 dsthi, dsthi 2551 BuildMI(MBB, std::next(MI.getIterator()), DL, get(AMDGPU::S_SEXT_I32_I16), 2552 DstHi) 2553 .addReg(DstHi); 2554 } 2555 break; 2556 } 2557 return true; 2558 } 2559 2560 void SIInstrInfo::reMaterialize(MachineBasicBlock &MBB, 2561 MachineBasicBlock::iterator I, Register DestReg, 2562 unsigned SubIdx, const MachineInstr &Orig, 2563 const TargetRegisterInfo &RI) const { 2564 2565 // Try shrinking the instruction to remat only the part needed for current 2566 // context. 2567 // TODO: Handle more cases. 2568 unsigned Opcode = Orig.getOpcode(); 2569 switch (Opcode) { 2570 case AMDGPU::S_LOAD_DWORDX16_IMM: 2571 case AMDGPU::S_LOAD_DWORDX8_IMM: { 2572 if (SubIdx != 0) 2573 break; 2574 2575 if (I == MBB.end()) 2576 break; 2577 2578 if (I->isBundled()) 2579 break; 2580 2581 // Look for a single use of the register that is also a subreg. 2582 Register RegToFind = Orig.getOperand(0).getReg(); 2583 MachineOperand *UseMO = nullptr; 2584 for (auto &CandMO : I->operands()) { 2585 if (!CandMO.isReg() || CandMO.getReg() != RegToFind || CandMO.isDef()) 2586 continue; 2587 if (UseMO) { 2588 UseMO = nullptr; 2589 break; 2590 } 2591 UseMO = &CandMO; 2592 } 2593 if (!UseMO || UseMO->getSubReg() == AMDGPU::NoSubRegister) 2594 break; 2595 2596 unsigned Offset = RI.getSubRegIdxOffset(UseMO->getSubReg()); 2597 unsigned SubregSize = RI.getSubRegIdxSize(UseMO->getSubReg()); 2598 2599 MachineFunction *MF = MBB.getParent(); 2600 MachineRegisterInfo &MRI = MF->getRegInfo(); 2601 assert(MRI.use_nodbg_empty(DestReg) && "DestReg should have no users yet."); 2602 2603 unsigned NewOpcode = -1; 2604 if (SubregSize == 256) 2605 NewOpcode = AMDGPU::S_LOAD_DWORDX8_IMM; 2606 else if (SubregSize == 128) 2607 NewOpcode = AMDGPU::S_LOAD_DWORDX4_IMM; 2608 else 2609 break; 2610 2611 const MCInstrDesc &TID = get(NewOpcode); 2612 const TargetRegisterClass *NewRC = 2613 RI.getAllocatableClass(getRegClass(TID, 0, &RI, *MF)); 2614 MRI.setRegClass(DestReg, NewRC); 2615 2616 UseMO->setReg(DestReg); 2617 UseMO->setSubReg(AMDGPU::NoSubRegister); 2618 2619 // Use a smaller load with the desired size, possibly with updated offset. 2620 MachineInstr *MI = MF->CloneMachineInstr(&Orig); 2621 MI->setDesc(TID); 2622 MI->getOperand(0).setReg(DestReg); 2623 MI->getOperand(0).setSubReg(AMDGPU::NoSubRegister); 2624 if (Offset) { 2625 MachineOperand *OffsetMO = getNamedOperand(*MI, AMDGPU::OpName::offset); 2626 int64_t FinalOffset = OffsetMO->getImm() + Offset / 8; 2627 OffsetMO->setImm(FinalOffset); 2628 } 2629 SmallVector<MachineMemOperand *> NewMMOs; 2630 for (const MachineMemOperand *MemOp : Orig.memoperands()) 2631 NewMMOs.push_back(MF->getMachineMemOperand(MemOp, MemOp->getPointerInfo(), 2632 SubregSize / 8)); 2633 MI->setMemRefs(*MF, NewMMOs); 2634 2635 MBB.insert(I, MI); 2636 return; 2637 } 2638 2639 default: 2640 break; 2641 } 2642 2643 TargetInstrInfo::reMaterialize(MBB, I, DestReg, SubIdx, Orig, RI); 2644 } 2645 2646 std::pair<MachineInstr*, MachineInstr*> 2647 SIInstrInfo::expandMovDPP64(MachineInstr &MI) const { 2648 assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO); 2649 2650 if (ST.hasMovB64() && 2651 AMDGPU::isLegalDPALU_DPPControl( 2652 getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl)->getImm())) { 2653 MI.setDesc(get(AMDGPU::V_MOV_B64_dpp)); 2654 return std::pair(&MI, nullptr); 2655 } 2656 2657 MachineBasicBlock &MBB = *MI.getParent(); 2658 DebugLoc DL = MBB.findDebugLoc(MI); 2659 MachineFunction *MF = MBB.getParent(); 2660 MachineRegisterInfo &MRI = MF->getRegInfo(); 2661 Register Dst = MI.getOperand(0).getReg(); 2662 unsigned Part = 0; 2663 MachineInstr *Split[2]; 2664 2665 for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) { 2666 auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp)); 2667 if (Dst.isPhysical()) { 2668 MovDPP.addDef(RI.getSubReg(Dst, Sub)); 2669 } else { 2670 assert(MRI.isSSA()); 2671 auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2672 MovDPP.addDef(Tmp); 2673 } 2674 2675 for (unsigned I = 1; I <= 2; ++I) { // old and src operands. 2676 const MachineOperand &SrcOp = MI.getOperand(I); 2677 assert(!SrcOp.isFPImm()); 2678 if (SrcOp.isImm()) { 2679 APInt Imm(64, SrcOp.getImm()); 2680 Imm.ashrInPlace(Part * 32); 2681 MovDPP.addImm(Imm.getLoBits(32).getZExtValue()); 2682 } else { 2683 assert(SrcOp.isReg()); 2684 Register Src = SrcOp.getReg(); 2685 if (Src.isPhysical()) 2686 MovDPP.addReg(RI.getSubReg(Src, Sub)); 2687 else 2688 MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub); 2689 } 2690 } 2691 2692 for (const MachineOperand &MO : llvm::drop_begin(MI.explicit_operands(), 3)) 2693 MovDPP.addImm(MO.getImm()); 2694 2695 Split[Part] = MovDPP; 2696 ++Part; 2697 } 2698 2699 if (Dst.isVirtual()) 2700 BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst) 2701 .addReg(Split[0]->getOperand(0).getReg()) 2702 .addImm(AMDGPU::sub0) 2703 .addReg(Split[1]->getOperand(0).getReg()) 2704 .addImm(AMDGPU::sub1); 2705 2706 MI.eraseFromParent(); 2707 return std::pair(Split[0], Split[1]); 2708 } 2709 2710 std::optional<DestSourcePair> 2711 SIInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 2712 if (MI.getOpcode() == AMDGPU::WWM_COPY) 2713 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 2714 2715 return std::nullopt; 2716 } 2717 2718 bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI, 2719 MachineOperand &Src0, 2720 unsigned Src0OpName, 2721 MachineOperand &Src1, 2722 unsigned Src1OpName) const { 2723 MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName); 2724 if (!Src0Mods) 2725 return false; 2726 2727 MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName); 2728 assert(Src1Mods && 2729 "All commutable instructions have both src0 and src1 modifiers"); 2730 2731 int Src0ModsVal = Src0Mods->getImm(); 2732 int Src1ModsVal = Src1Mods->getImm(); 2733 2734 Src1Mods->setImm(Src0ModsVal); 2735 Src0Mods->setImm(Src1ModsVal); 2736 return true; 2737 } 2738 2739 static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI, 2740 MachineOperand &RegOp, 2741 MachineOperand &NonRegOp) { 2742 Register Reg = RegOp.getReg(); 2743 unsigned SubReg = RegOp.getSubReg(); 2744 bool IsKill = RegOp.isKill(); 2745 bool IsDead = RegOp.isDead(); 2746 bool IsUndef = RegOp.isUndef(); 2747 bool IsDebug = RegOp.isDebug(); 2748 2749 if (NonRegOp.isImm()) 2750 RegOp.ChangeToImmediate(NonRegOp.getImm()); 2751 else if (NonRegOp.isFI()) 2752 RegOp.ChangeToFrameIndex(NonRegOp.getIndex()); 2753 else if (NonRegOp.isGlobal()) { 2754 RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(), 2755 NonRegOp.getTargetFlags()); 2756 } else 2757 return nullptr; 2758 2759 // Make sure we don't reinterpret a subreg index in the target flags. 2760 RegOp.setTargetFlags(NonRegOp.getTargetFlags()); 2761 2762 NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug); 2763 NonRegOp.setSubReg(SubReg); 2764 2765 return &MI; 2766 } 2767 2768 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2769 unsigned Src0Idx, 2770 unsigned Src1Idx) const { 2771 assert(!NewMI && "this should never be used"); 2772 2773 unsigned Opc = MI.getOpcode(); 2774 int CommutedOpcode = commuteOpcode(Opc); 2775 if (CommutedOpcode == -1) 2776 return nullptr; 2777 2778 if (Src0Idx > Src1Idx) 2779 std::swap(Src0Idx, Src1Idx); 2780 2781 assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) == 2782 static_cast<int>(Src0Idx) && 2783 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) == 2784 static_cast<int>(Src1Idx) && 2785 "inconsistency with findCommutedOpIndices"); 2786 2787 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2788 MachineOperand &Src1 = MI.getOperand(Src1Idx); 2789 2790 MachineInstr *CommutedMI = nullptr; 2791 if (Src0.isReg() && Src1.isReg()) { 2792 if (isOperandLegal(MI, Src1Idx, &Src0)) { 2793 // Be sure to copy the source modifiers to the right place. 2794 CommutedMI 2795 = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx); 2796 } 2797 2798 } else if (Src0.isReg() && !Src1.isReg()) { 2799 // src0 should always be able to support any operand type, so no need to 2800 // check operand legality. 2801 CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1); 2802 } else if (!Src0.isReg() && Src1.isReg()) { 2803 if (isOperandLegal(MI, Src1Idx, &Src0)) 2804 CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0); 2805 } else { 2806 // FIXME: Found two non registers to commute. This does happen. 2807 return nullptr; 2808 } 2809 2810 if (CommutedMI) { 2811 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers, 2812 Src1, AMDGPU::OpName::src1_modifiers); 2813 2814 CommutedMI->setDesc(get(CommutedOpcode)); 2815 } 2816 2817 return CommutedMI; 2818 } 2819 2820 // This needs to be implemented because the source modifiers may be inserted 2821 // between the true commutable operands, and the base 2822 // TargetInstrInfo::commuteInstruction uses it. 2823 bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2824 unsigned &SrcOpIdx0, 2825 unsigned &SrcOpIdx1) const { 2826 return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1); 2827 } 2828 2829 bool SIInstrInfo::findCommutedOpIndices(const MCInstrDesc &Desc, 2830 unsigned &SrcOpIdx0, 2831 unsigned &SrcOpIdx1) const { 2832 if (!Desc.isCommutable()) 2833 return false; 2834 2835 unsigned Opc = Desc.getOpcode(); 2836 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2837 if (Src0Idx == -1) 2838 return false; 2839 2840 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2841 if (Src1Idx == -1) 2842 return false; 2843 2844 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 2845 } 2846 2847 bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp, 2848 int64_t BrOffset) const { 2849 // BranchRelaxation should never have to check s_setpc_b64 because its dest 2850 // block is unanalyzable. 2851 assert(BranchOp != AMDGPU::S_SETPC_B64); 2852 2853 // Convert to dwords. 2854 BrOffset /= 4; 2855 2856 // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is 2857 // from the next instruction. 2858 BrOffset -= 1; 2859 2860 return isIntN(BranchOffsetBits, BrOffset); 2861 } 2862 2863 MachineBasicBlock * 2864 SIInstrInfo::getBranchDestBlock(const MachineInstr &MI) const { 2865 return MI.getOperand(0).getMBB(); 2866 } 2867 2868 bool SIInstrInfo::hasDivergentBranch(const MachineBasicBlock *MBB) const { 2869 for (const MachineInstr &MI : MBB->terminators()) { 2870 if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO || 2871 MI.getOpcode() == AMDGPU::SI_IF || MI.getOpcode() == AMDGPU::SI_ELSE || 2872 MI.getOpcode() == AMDGPU::SI_LOOP) 2873 return true; 2874 } 2875 return false; 2876 } 2877 2878 void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, 2879 MachineBasicBlock &DestBB, 2880 MachineBasicBlock &RestoreBB, 2881 const DebugLoc &DL, int64_t BrOffset, 2882 RegScavenger *RS) const { 2883 assert(RS && "RegScavenger required for long branching"); 2884 assert(MBB.empty() && 2885 "new block should be inserted for expanding unconditional branch"); 2886 assert(MBB.pred_size() == 1); 2887 assert(RestoreBB.empty() && 2888 "restore block should be inserted for restoring clobbered registers"); 2889 2890 MachineFunction *MF = MBB.getParent(); 2891 MachineRegisterInfo &MRI = MF->getRegInfo(); 2892 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 2893 2894 // FIXME: Virtual register workaround for RegScavenger not working with empty 2895 // blocks. 2896 Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2897 2898 auto I = MBB.end(); 2899 2900 // We need to compute the offset relative to the instruction immediately after 2901 // s_getpc_b64. Insert pc arithmetic code before last terminator. 2902 MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg); 2903 2904 auto &MCCtx = MF->getContext(); 2905 MCSymbol *PostGetPCLabel = 2906 MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true); 2907 GetPC->setPostInstrSymbol(*MF, PostGetPCLabel); 2908 2909 MCSymbol *OffsetLo = 2910 MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true); 2911 MCSymbol *OffsetHi = 2912 MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true); 2913 BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32)) 2914 .addReg(PCReg, RegState::Define, AMDGPU::sub0) 2915 .addReg(PCReg, 0, AMDGPU::sub0) 2916 .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET); 2917 BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32)) 2918 .addReg(PCReg, RegState::Define, AMDGPU::sub1) 2919 .addReg(PCReg, 0, AMDGPU::sub1) 2920 .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET); 2921 2922 // Insert the indirect branch after the other terminator. 2923 BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64)) 2924 .addReg(PCReg); 2925 2926 // If a spill is needed for the pc register pair, we need to insert a spill 2927 // restore block right before the destination block, and insert a short branch 2928 // into the old destination block's fallthrough predecessor. 2929 // e.g.: 2930 // 2931 // s_cbranch_scc0 skip_long_branch: 2932 // 2933 // long_branch_bb: 2934 // spill s[8:9] 2935 // s_getpc_b64 s[8:9] 2936 // s_add_u32 s8, s8, restore_bb 2937 // s_addc_u32 s9, s9, 0 2938 // s_setpc_b64 s[8:9] 2939 // 2940 // skip_long_branch: 2941 // foo; 2942 // 2943 // ..... 2944 // 2945 // dest_bb_fallthrough_predecessor: 2946 // bar; 2947 // s_branch dest_bb 2948 // 2949 // restore_bb: 2950 // restore s[8:9] 2951 // fallthrough dest_bb 2952 /// 2953 // dest_bb: 2954 // buzz; 2955 2956 Register LongBranchReservedReg = MFI->getLongBranchReservedReg(); 2957 Register Scav; 2958 2959 // If we've previously reserved a register for long branches 2960 // avoid running the scavenger and just use those registers 2961 if (LongBranchReservedReg) { 2962 RS->enterBasicBlock(MBB); 2963 Scav = LongBranchReservedReg; 2964 } else { 2965 RS->enterBasicBlockEnd(MBB); 2966 Scav = RS->scavengeRegisterBackwards( 2967 AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC), 2968 /* RestoreAfter */ false, 0, /* AllowSpill */ false); 2969 } 2970 if (Scav) { 2971 RS->setRegUsed(Scav); 2972 MRI.replaceRegWith(PCReg, Scav); 2973 MRI.clearVirtRegs(); 2974 } else { 2975 // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for 2976 // SGPR spill. 2977 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 2978 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2979 TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS); 2980 MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1); 2981 MRI.clearVirtRegs(); 2982 } 2983 2984 MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol(); 2985 // Now, the distance could be defined. 2986 auto *Offset = MCBinaryExpr::createSub( 2987 MCSymbolRefExpr::create(DestLabel, MCCtx), 2988 MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx); 2989 // Add offset assignments. 2990 auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx); 2991 OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx)); 2992 auto *ShAmt = MCConstantExpr::create(32, MCCtx); 2993 OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx)); 2994 } 2995 2996 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 2997 switch (Cond) { 2998 case SIInstrInfo::SCC_TRUE: 2999 return AMDGPU::S_CBRANCH_SCC1; 3000 case SIInstrInfo::SCC_FALSE: 3001 return AMDGPU::S_CBRANCH_SCC0; 3002 case SIInstrInfo::VCCNZ: 3003 return AMDGPU::S_CBRANCH_VCCNZ; 3004 case SIInstrInfo::VCCZ: 3005 return AMDGPU::S_CBRANCH_VCCZ; 3006 case SIInstrInfo::EXECNZ: 3007 return AMDGPU::S_CBRANCH_EXECNZ; 3008 case SIInstrInfo::EXECZ: 3009 return AMDGPU::S_CBRANCH_EXECZ; 3010 default: 3011 llvm_unreachable("invalid branch predicate"); 3012 } 3013 } 3014 3015 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 3016 switch (Opcode) { 3017 case AMDGPU::S_CBRANCH_SCC0: 3018 return SCC_FALSE; 3019 case AMDGPU::S_CBRANCH_SCC1: 3020 return SCC_TRUE; 3021 case AMDGPU::S_CBRANCH_VCCNZ: 3022 return VCCNZ; 3023 case AMDGPU::S_CBRANCH_VCCZ: 3024 return VCCZ; 3025 case AMDGPU::S_CBRANCH_EXECNZ: 3026 return EXECNZ; 3027 case AMDGPU::S_CBRANCH_EXECZ: 3028 return EXECZ; 3029 default: 3030 return INVALID_BR; 3031 } 3032 } 3033 3034 bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB, 3035 MachineBasicBlock::iterator I, 3036 MachineBasicBlock *&TBB, 3037 MachineBasicBlock *&FBB, 3038 SmallVectorImpl<MachineOperand> &Cond, 3039 bool AllowModify) const { 3040 if (I->getOpcode() == AMDGPU::S_BRANCH) { 3041 // Unconditional Branch 3042 TBB = I->getOperand(0).getMBB(); 3043 return false; 3044 } 3045 3046 MachineBasicBlock *CondBB = nullptr; 3047 3048 if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 3049 CondBB = I->getOperand(1).getMBB(); 3050 Cond.push_back(I->getOperand(0)); 3051 } else { 3052 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 3053 if (Pred == INVALID_BR) 3054 return true; 3055 3056 CondBB = I->getOperand(0).getMBB(); 3057 Cond.push_back(MachineOperand::CreateImm(Pred)); 3058 Cond.push_back(I->getOperand(1)); // Save the branch register. 3059 } 3060 ++I; 3061 3062 if (I == MBB.end()) { 3063 // Conditional branch followed by fall-through. 3064 TBB = CondBB; 3065 return false; 3066 } 3067 3068 if (I->getOpcode() == AMDGPU::S_BRANCH) { 3069 TBB = CondBB; 3070 FBB = I->getOperand(0).getMBB(); 3071 return false; 3072 } 3073 3074 return true; 3075 } 3076 3077 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 3078 MachineBasicBlock *&FBB, 3079 SmallVectorImpl<MachineOperand> &Cond, 3080 bool AllowModify) const { 3081 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 3082 auto E = MBB.end(); 3083 if (I == E) 3084 return false; 3085 3086 // Skip over the instructions that are artificially terminators for special 3087 // exec management. 3088 while (I != E && !I->isBranch() && !I->isReturn()) { 3089 switch (I->getOpcode()) { 3090 case AMDGPU::S_MOV_B64_term: 3091 case AMDGPU::S_XOR_B64_term: 3092 case AMDGPU::S_OR_B64_term: 3093 case AMDGPU::S_ANDN2_B64_term: 3094 case AMDGPU::S_AND_B64_term: 3095 case AMDGPU::S_AND_SAVEEXEC_B64_term: 3096 case AMDGPU::S_MOV_B32_term: 3097 case AMDGPU::S_XOR_B32_term: 3098 case AMDGPU::S_OR_B32_term: 3099 case AMDGPU::S_ANDN2_B32_term: 3100 case AMDGPU::S_AND_B32_term: 3101 case AMDGPU::S_AND_SAVEEXEC_B32_term: 3102 break; 3103 case AMDGPU::SI_IF: 3104 case AMDGPU::SI_ELSE: 3105 case AMDGPU::SI_KILL_I1_TERMINATOR: 3106 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 3107 // FIXME: It's messy that these need to be considered here at all. 3108 return true; 3109 default: 3110 llvm_unreachable("unexpected non-branch terminator inst"); 3111 } 3112 3113 ++I; 3114 } 3115 3116 if (I == E) 3117 return false; 3118 3119 return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify); 3120 } 3121 3122 unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB, 3123 int *BytesRemoved) const { 3124 unsigned Count = 0; 3125 unsigned RemovedSize = 0; 3126 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.terminators())) { 3127 // Skip over artificial terminators when removing instructions. 3128 if (MI.isBranch() || MI.isReturn()) { 3129 RemovedSize += getInstSizeInBytes(MI); 3130 MI.eraseFromParent(); 3131 ++Count; 3132 } 3133 } 3134 3135 if (BytesRemoved) 3136 *BytesRemoved = RemovedSize; 3137 3138 return Count; 3139 } 3140 3141 // Copy the flags onto the implicit condition register operand. 3142 static void preserveCondRegFlags(MachineOperand &CondReg, 3143 const MachineOperand &OrigCond) { 3144 CondReg.setIsUndef(OrigCond.isUndef()); 3145 CondReg.setIsKill(OrigCond.isKill()); 3146 } 3147 3148 unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB, 3149 MachineBasicBlock *TBB, 3150 MachineBasicBlock *FBB, 3151 ArrayRef<MachineOperand> Cond, 3152 const DebugLoc &DL, 3153 int *BytesAdded) const { 3154 if (!FBB && Cond.empty()) { 3155 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 3156 .addMBB(TBB); 3157 if (BytesAdded) 3158 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 3159 return 1; 3160 } 3161 3162 if(Cond.size() == 1 && Cond[0].isReg()) { 3163 BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO)) 3164 .add(Cond[0]) 3165 .addMBB(TBB); 3166 return 1; 3167 } 3168 3169 assert(TBB && Cond[0].isImm()); 3170 3171 unsigned Opcode 3172 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 3173 3174 if (!FBB) { 3175 MachineInstr *CondBr = 3176 BuildMI(&MBB, DL, get(Opcode)) 3177 .addMBB(TBB); 3178 3179 // Copy the flags onto the implicit condition register operand. 3180 preserveCondRegFlags(CondBr->getOperand(1), Cond[1]); 3181 fixImplicitOperands(*CondBr); 3182 3183 if (BytesAdded) 3184 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 3185 return 1; 3186 } 3187 3188 assert(TBB && FBB); 3189 3190 MachineInstr *CondBr = 3191 BuildMI(&MBB, DL, get(Opcode)) 3192 .addMBB(TBB); 3193 fixImplicitOperands(*CondBr); 3194 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 3195 .addMBB(FBB); 3196 3197 MachineOperand &CondReg = CondBr->getOperand(1); 3198 CondReg.setIsUndef(Cond[1].isUndef()); 3199 CondReg.setIsKill(Cond[1].isKill()); 3200 3201 if (BytesAdded) 3202 *BytesAdded = ST.hasOffset3fBug() ? 16 : 8; 3203 3204 return 2; 3205 } 3206 3207 bool SIInstrInfo::reverseBranchCondition( 3208 SmallVectorImpl<MachineOperand> &Cond) const { 3209 if (Cond.size() != 2) { 3210 return true; 3211 } 3212 3213 if (Cond[0].isImm()) { 3214 Cond[0].setImm(-Cond[0].getImm()); 3215 return false; 3216 } 3217 3218 return true; 3219 } 3220 3221 bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 3222 ArrayRef<MachineOperand> Cond, 3223 Register DstReg, Register TrueReg, 3224 Register FalseReg, int &CondCycles, 3225 int &TrueCycles, int &FalseCycles) const { 3226 switch (Cond[0].getImm()) { 3227 case VCCNZ: 3228 case VCCZ: { 3229 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3230 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 3231 if (MRI.getRegClass(FalseReg) != RC) 3232 return false; 3233 3234 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32; 3235 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 3236 3237 // Limit to equal cost for branch vs. N v_cndmask_b32s. 3238 return RI.hasVGPRs(RC) && NumInsts <= 6; 3239 } 3240 case SCC_TRUE: 3241 case SCC_FALSE: { 3242 // FIXME: We could insert for VGPRs if we could replace the original compare 3243 // with a vector one. 3244 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3245 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 3246 if (MRI.getRegClass(FalseReg) != RC) 3247 return false; 3248 3249 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32; 3250 3251 // Multiples of 8 can do s_cselect_b64 3252 if (NumInsts % 2 == 0) 3253 NumInsts /= 2; 3254 3255 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 3256 return RI.isSGPRClass(RC); 3257 } 3258 default: 3259 return false; 3260 } 3261 } 3262 3263 void SIInstrInfo::insertSelect(MachineBasicBlock &MBB, 3264 MachineBasicBlock::iterator I, const DebugLoc &DL, 3265 Register DstReg, ArrayRef<MachineOperand> Cond, 3266 Register TrueReg, Register FalseReg) const { 3267 BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm()); 3268 if (Pred == VCCZ || Pred == SCC_FALSE) { 3269 Pred = static_cast<BranchPredicate>(-Pred); 3270 std::swap(TrueReg, FalseReg); 3271 } 3272 3273 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3274 const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg); 3275 unsigned DstSize = RI.getRegSizeInBits(*DstRC); 3276 3277 if (DstSize == 32) { 3278 MachineInstr *Select; 3279 if (Pred == SCC_TRUE) { 3280 Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg) 3281 .addReg(TrueReg) 3282 .addReg(FalseReg); 3283 } else { 3284 // Instruction's operands are backwards from what is expected. 3285 Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg) 3286 .addReg(FalseReg) 3287 .addReg(TrueReg); 3288 } 3289 3290 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 3291 return; 3292 } 3293 3294 if (DstSize == 64 && Pred == SCC_TRUE) { 3295 MachineInstr *Select = 3296 BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg) 3297 .addReg(TrueReg) 3298 .addReg(FalseReg); 3299 3300 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 3301 return; 3302 } 3303 3304 static const int16_t Sub0_15[] = { 3305 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 3306 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 3307 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 3308 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 3309 }; 3310 3311 static const int16_t Sub0_15_64[] = { 3312 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 3313 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 3314 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 3315 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 3316 }; 3317 3318 unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32; 3319 const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass; 3320 const int16_t *SubIndices = Sub0_15; 3321 int NElts = DstSize / 32; 3322 3323 // 64-bit select is only available for SALU. 3324 // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit. 3325 if (Pred == SCC_TRUE) { 3326 if (NElts % 2) { 3327 SelOp = AMDGPU::S_CSELECT_B32; 3328 EltRC = &AMDGPU::SGPR_32RegClass; 3329 } else { 3330 SelOp = AMDGPU::S_CSELECT_B64; 3331 EltRC = &AMDGPU::SGPR_64RegClass; 3332 SubIndices = Sub0_15_64; 3333 NElts /= 2; 3334 } 3335 } 3336 3337 MachineInstrBuilder MIB = BuildMI( 3338 MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg); 3339 3340 I = MIB->getIterator(); 3341 3342 SmallVector<Register, 8> Regs; 3343 for (int Idx = 0; Idx != NElts; ++Idx) { 3344 Register DstElt = MRI.createVirtualRegister(EltRC); 3345 Regs.push_back(DstElt); 3346 3347 unsigned SubIdx = SubIndices[Idx]; 3348 3349 MachineInstr *Select; 3350 if (SelOp == AMDGPU::V_CNDMASK_B32_e32) { 3351 Select = 3352 BuildMI(MBB, I, DL, get(SelOp), DstElt) 3353 .addReg(FalseReg, 0, SubIdx) 3354 .addReg(TrueReg, 0, SubIdx); 3355 } else { 3356 Select = 3357 BuildMI(MBB, I, DL, get(SelOp), DstElt) 3358 .addReg(TrueReg, 0, SubIdx) 3359 .addReg(FalseReg, 0, SubIdx); 3360 } 3361 3362 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 3363 fixImplicitOperands(*Select); 3364 3365 MIB.addReg(DstElt) 3366 .addImm(SubIdx); 3367 } 3368 } 3369 3370 bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) { 3371 switch (MI.getOpcode()) { 3372 case AMDGPU::V_MOV_B32_e32: 3373 case AMDGPU::V_MOV_B32_e64: 3374 case AMDGPU::V_MOV_B64_PSEUDO: 3375 case AMDGPU::V_MOV_B64_e32: 3376 case AMDGPU::V_MOV_B64_e64: 3377 case AMDGPU::S_MOV_B32: 3378 case AMDGPU::S_MOV_B64: 3379 case AMDGPU::S_MOV_B64_IMM_PSEUDO: 3380 case AMDGPU::COPY: 3381 case AMDGPU::WWM_COPY: 3382 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 3383 case AMDGPU::V_ACCVGPR_READ_B32_e64: 3384 case AMDGPU::V_ACCVGPR_MOV_B32: 3385 return true; 3386 default: 3387 return false; 3388 } 3389 } 3390 3391 static constexpr unsigned ModifierOpNames[] = { 3392 AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers, 3393 AMDGPU::OpName::src2_modifiers, AMDGPU::OpName::clamp, 3394 AMDGPU::OpName::omod, AMDGPU::OpName::op_sel}; 3395 3396 void SIInstrInfo::removeModOperands(MachineInstr &MI) const { 3397 unsigned Opc = MI.getOpcode(); 3398 for (unsigned Name : reverse(ModifierOpNames)) { 3399 int Idx = AMDGPU::getNamedOperandIdx(Opc, Name); 3400 if (Idx >= 0) 3401 MI.removeOperand(Idx); 3402 } 3403 } 3404 3405 bool SIInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3406 Register Reg, MachineRegisterInfo *MRI) const { 3407 if (!MRI->hasOneNonDBGUse(Reg)) 3408 return false; 3409 3410 switch (DefMI.getOpcode()) { 3411 default: 3412 return false; 3413 case AMDGPU::V_MOV_B64_e32: 3414 case AMDGPU::S_MOV_B64: 3415 case AMDGPU::V_MOV_B64_PSEUDO: 3416 case AMDGPU::S_MOV_B64_IMM_PSEUDO: 3417 case AMDGPU::V_MOV_B32_e32: 3418 case AMDGPU::S_MOV_B32: 3419 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 3420 break; 3421 } 3422 3423 const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0); 3424 assert(ImmOp); 3425 // FIXME: We could handle FrameIndex values here. 3426 if (!ImmOp->isImm()) 3427 return false; 3428 3429 auto getImmFor = [ImmOp](const MachineOperand &UseOp) -> int64_t { 3430 int64_t Imm = ImmOp->getImm(); 3431 switch (UseOp.getSubReg()) { 3432 default: 3433 return Imm; 3434 case AMDGPU::sub0: 3435 return Lo_32(Imm); 3436 case AMDGPU::sub1: 3437 return Hi_32(Imm); 3438 case AMDGPU::lo16: 3439 return APInt(16, Imm).getSExtValue(); 3440 case AMDGPU::hi16: 3441 return APInt(32, Imm).ashr(16).getSExtValue(); 3442 case AMDGPU::sub1_lo16: 3443 return APInt(16, Hi_32(Imm)).getSExtValue(); 3444 case AMDGPU::sub1_hi16: 3445 return APInt(32, Hi_32(Imm)).ashr(16).getSExtValue(); 3446 } 3447 }; 3448 3449 assert(!DefMI.getOperand(0).getSubReg() && "Expected SSA form"); 3450 3451 unsigned Opc = UseMI.getOpcode(); 3452 if (Opc == AMDGPU::COPY) { 3453 assert(!UseMI.getOperand(0).getSubReg() && "Expected SSA form"); 3454 3455 Register DstReg = UseMI.getOperand(0).getReg(); 3456 unsigned OpSize = getOpSize(UseMI, 0); 3457 bool Is16Bit = OpSize == 2; 3458 bool Is64Bit = OpSize == 8; 3459 bool isVGPRCopy = RI.isVGPR(*MRI, DstReg); 3460 unsigned NewOpc = isVGPRCopy ? Is64Bit ? AMDGPU::V_MOV_B64_PSEUDO 3461 : AMDGPU::V_MOV_B32_e32 3462 : Is64Bit ? AMDGPU::S_MOV_B64_IMM_PSEUDO 3463 : AMDGPU::S_MOV_B32; 3464 APInt Imm(Is64Bit ? 64 : 32, getImmFor(UseMI.getOperand(1))); 3465 3466 if (RI.isAGPR(*MRI, DstReg)) { 3467 if (Is64Bit || !isInlineConstant(Imm)) 3468 return false; 3469 NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 3470 } 3471 3472 if (Is16Bit) { 3473 if (isVGPRCopy) 3474 return false; // Do not clobber vgpr_hi16 3475 3476 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16) 3477 return false; 3478 3479 UseMI.getOperand(0).setSubReg(0); 3480 if (DstReg.isPhysical()) { 3481 DstReg = RI.get32BitRegister(DstReg); 3482 UseMI.getOperand(0).setReg(DstReg); 3483 } 3484 assert(UseMI.getOperand(1).getReg().isVirtual()); 3485 } 3486 3487 const MCInstrDesc &NewMCID = get(NewOpc); 3488 if (DstReg.isPhysical() && 3489 !RI.getRegClass(NewMCID.operands()[0].RegClass)->contains(DstReg)) 3490 return false; 3491 3492 UseMI.setDesc(NewMCID); 3493 UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue()); 3494 UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent()); 3495 return true; 3496 } 3497 3498 if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 3499 Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 3500 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 3501 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 || 3502 Opc == AMDGPU::V_FMAC_F16_t16_e64) { 3503 // Don't fold if we are using source or output modifiers. The new VOP2 3504 // instructions don't have them. 3505 if (hasAnyModifiersSet(UseMI)) 3506 return false; 3507 3508 // If this is a free constant, there's no reason to do this. 3509 // TODO: We could fold this here instead of letting SIFoldOperands do it 3510 // later. 3511 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); 3512 3513 // Any src operand can be used for the legality check. 3514 if (isInlineConstant(UseMI, *Src0, *ImmOp)) 3515 return false; 3516 3517 bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 3518 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64; 3519 bool IsFMA = 3520 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 3521 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 || 3522 Opc == AMDGPU::V_FMAC_F16_t16_e64; 3523 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); 3524 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); 3525 3526 // Multiplied part is the constant: Use v_madmk_{f16, f32}. 3527 if ((Src0->isReg() && Src0->getReg() == Reg) || 3528 (Src1->isReg() && Src1->getReg() == Reg)) { 3529 MachineOperand *RegSrc = 3530 Src1->isReg() && Src1->getReg() == Reg ? Src0 : Src1; 3531 if (!RegSrc->isReg()) 3532 return false; 3533 if (RI.isSGPRClass(MRI->getRegClass(RegSrc->getReg())) && 3534 ST.getConstantBusLimit(Opc) < 2) 3535 return false; 3536 3537 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 3538 return false; 3539 3540 // If src2 is also a literal constant then we have to choose which one to 3541 // fold. In general it is better to choose madak so that the other literal 3542 // can be materialized in an sgpr instead of a vgpr: 3543 // s_mov_b32 s0, literal 3544 // v_madak_f32 v0, s0, v0, literal 3545 // Instead of: 3546 // v_mov_b32 v1, literal 3547 // v_madmk_f32 v0, v0, literal, v1 3548 MachineInstr *Def = MRI->getUniqueVRegDef(Src2->getReg()); 3549 if (Def && Def->isMoveImmediate() && 3550 !isInlineConstant(Def->getOperand(1))) 3551 return false; 3552 3553 unsigned NewOpc = 3554 IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 3555 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16 3556 : AMDGPU::V_FMAMK_F16) 3557 : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16); 3558 if (pseudoToMCOpcode(NewOpc) == -1) 3559 return false; 3560 3561 // V_FMAMK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite 3562 // would also require restricting their register classes. For now 3563 // just bail out. 3564 if (NewOpc == AMDGPU::V_FMAMK_F16_t16) 3565 return false; 3566 3567 const int64_t Imm = getImmFor(RegSrc == Src1 ? *Src0 : *Src1); 3568 3569 // FIXME: This would be a lot easier if we could return a new instruction 3570 // instead of having to modify in place. 3571 3572 Register SrcReg = RegSrc->getReg(); 3573 unsigned SrcSubReg = RegSrc->getSubReg(); 3574 Src0->setReg(SrcReg); 3575 Src0->setSubReg(SrcSubReg); 3576 Src0->setIsKill(RegSrc->isKill()); 3577 3578 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 3579 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 || 3580 Opc == AMDGPU::V_FMAC_F16_e64) 3581 UseMI.untieRegOperand( 3582 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3583 3584 Src1->ChangeToImmediate(Imm); 3585 3586 removeModOperands(UseMI); 3587 UseMI.setDesc(get(NewOpc)); 3588 3589 bool DeleteDef = MRI->use_nodbg_empty(Reg); 3590 if (DeleteDef) 3591 DefMI.eraseFromParent(); 3592 3593 return true; 3594 } 3595 3596 // Added part is the constant: Use v_madak_{f16, f32}. 3597 if (Src2->isReg() && Src2->getReg() == Reg) { 3598 if (ST.getConstantBusLimit(Opc) < 2) { 3599 // Not allowed to use constant bus for another operand. 3600 // We can however allow an inline immediate as src0. 3601 bool Src0Inlined = false; 3602 if (Src0->isReg()) { 3603 // Try to inline constant if possible. 3604 // If the Def moves immediate and the use is single 3605 // We are saving VGPR here. 3606 MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg()); 3607 if (Def && Def->isMoveImmediate() && 3608 isInlineConstant(Def->getOperand(1)) && 3609 MRI->hasOneUse(Src0->getReg())) { 3610 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3611 Src0Inlined = true; 3612 } else if (ST.getConstantBusLimit(Opc) <= 1 && 3613 RI.isSGPRReg(*MRI, Src0->getReg())) { 3614 return false; 3615 } 3616 // VGPR is okay as Src0 - fallthrough 3617 } 3618 3619 if (Src1->isReg() && !Src0Inlined) { 3620 // We have one slot for inlinable constant so far - try to fill it 3621 MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg()); 3622 if (Def && Def->isMoveImmediate() && 3623 isInlineConstant(Def->getOperand(1)) && 3624 MRI->hasOneUse(Src1->getReg()) && commuteInstruction(UseMI)) 3625 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3626 else if (RI.isSGPRReg(*MRI, Src1->getReg())) 3627 return false; 3628 // VGPR is okay as Src1 - fallthrough 3629 } 3630 } 3631 3632 unsigned NewOpc = 3633 IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 3634 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16 3635 : AMDGPU::V_FMAAK_F16) 3636 : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16); 3637 if (pseudoToMCOpcode(NewOpc) == -1) 3638 return false; 3639 3640 // V_FMAAK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite 3641 // would also require restricting their register classes. For now 3642 // just bail out. 3643 if (NewOpc == AMDGPU::V_FMAAK_F16_t16) 3644 return false; 3645 3646 // FIXME: This would be a lot easier if we could return a new instruction 3647 // instead of having to modify in place. 3648 3649 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 3650 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 || 3651 Opc == AMDGPU::V_FMAC_F16_e64) 3652 UseMI.untieRegOperand( 3653 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3654 3655 // ChangingToImmediate adds Src2 back to the instruction. 3656 Src2->ChangeToImmediate(getImmFor(*Src2)); 3657 3658 // These come before src2. 3659 removeModOperands(UseMI); 3660 UseMI.setDesc(get(NewOpc)); 3661 // It might happen that UseMI was commuted 3662 // and we now have SGPR as SRC1. If so 2 inlined 3663 // constant and SGPR are illegal. 3664 legalizeOperands(UseMI); 3665 3666 bool DeleteDef = MRI->use_nodbg_empty(Reg); 3667 if (DeleteDef) 3668 DefMI.eraseFromParent(); 3669 3670 return true; 3671 } 3672 } 3673 3674 return false; 3675 } 3676 3677 static bool 3678 memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1, 3679 ArrayRef<const MachineOperand *> BaseOps2) { 3680 if (BaseOps1.size() != BaseOps2.size()) 3681 return false; 3682 for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) { 3683 if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I])) 3684 return false; 3685 } 3686 return true; 3687 } 3688 3689 static bool offsetsDoNotOverlap(LocationSize WidthA, int OffsetA, 3690 LocationSize WidthB, int OffsetB) { 3691 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 3692 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 3693 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 3694 return LowWidth.hasValue() && 3695 LowOffset + (int)LowWidth.getValue() <= HighOffset; 3696 } 3697 3698 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa, 3699 const MachineInstr &MIb) const { 3700 SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1; 3701 int64_t Offset0, Offset1; 3702 LocationSize Dummy0 = 0, Dummy1 = 0; 3703 bool Offset0IsScalable, Offset1IsScalable; 3704 if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable, 3705 Dummy0, &RI) || 3706 !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable, 3707 Dummy1, &RI)) 3708 return false; 3709 3710 if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1)) 3711 return false; 3712 3713 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { 3714 // FIXME: Handle ds_read2 / ds_write2. 3715 return false; 3716 } 3717 LocationSize Width0 = MIa.memoperands().front()->getSize(); 3718 LocationSize Width1 = MIb.memoperands().front()->getSize(); 3719 return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1); 3720 } 3721 3722 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 3723 const MachineInstr &MIb) const { 3724 assert(MIa.mayLoadOrStore() && 3725 "MIa must load from or modify a memory location"); 3726 assert(MIb.mayLoadOrStore() && 3727 "MIb must load from or modify a memory location"); 3728 3729 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) 3730 return false; 3731 3732 // XXX - Can we relax this between address spaces? 3733 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 3734 return false; 3735 3736 if (isLDSDMA(MIa) || isLDSDMA(MIb)) 3737 return false; 3738 3739 // TODO: Should we check the address space from the MachineMemOperand? That 3740 // would allow us to distinguish objects we know don't alias based on the 3741 // underlying address space, even if it was lowered to a different one, 3742 // e.g. private accesses lowered to use MUBUF instructions on a scratch 3743 // buffer. 3744 if (isDS(MIa)) { 3745 if (isDS(MIb)) 3746 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3747 3748 return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb); 3749 } 3750 3751 if (isMUBUF(MIa) || isMTBUF(MIa)) { 3752 if (isMUBUF(MIb) || isMTBUF(MIb)) 3753 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3754 3755 if (isFLAT(MIb)) 3756 return isFLATScratch(MIb); 3757 3758 return !isSMRD(MIb); 3759 } 3760 3761 if (isSMRD(MIa)) { 3762 if (isSMRD(MIb)) 3763 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3764 3765 if (isFLAT(MIb)) 3766 return isFLATScratch(MIb); 3767 3768 return !isMUBUF(MIb) && !isMTBUF(MIb); 3769 } 3770 3771 if (isFLAT(MIa)) { 3772 if (isFLAT(MIb)) { 3773 if ((isFLATScratch(MIa) && isFLATGlobal(MIb)) || 3774 (isFLATGlobal(MIa) && isFLATScratch(MIb))) 3775 return true; 3776 3777 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3778 } 3779 3780 return false; 3781 } 3782 3783 return false; 3784 } 3785 3786 static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI, 3787 int64_t &Imm, MachineInstr **DefMI = nullptr) { 3788 if (Reg.isPhysical()) 3789 return false; 3790 auto *Def = MRI.getUniqueVRegDef(Reg); 3791 if (Def && SIInstrInfo::isFoldableCopy(*Def) && Def->getOperand(1).isImm()) { 3792 Imm = Def->getOperand(1).getImm(); 3793 if (DefMI) 3794 *DefMI = Def; 3795 return true; 3796 } 3797 return false; 3798 } 3799 3800 static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm, 3801 MachineInstr **DefMI = nullptr) { 3802 if (!MO->isReg()) 3803 return false; 3804 const MachineFunction *MF = MO->getParent()->getParent()->getParent(); 3805 const MachineRegisterInfo &MRI = MF->getRegInfo(); 3806 return getFoldableImm(MO->getReg(), MRI, Imm, DefMI); 3807 } 3808 3809 static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI, 3810 MachineInstr &NewMI) { 3811 if (LV) { 3812 unsigned NumOps = MI.getNumOperands(); 3813 for (unsigned I = 1; I < NumOps; ++I) { 3814 MachineOperand &Op = MI.getOperand(I); 3815 if (Op.isReg() && Op.isKill()) 3816 LV->replaceKillInstruction(Op.getReg(), MI, NewMI); 3817 } 3818 } 3819 } 3820 3821 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI, 3822 LiveVariables *LV, 3823 LiveIntervals *LIS) const { 3824 MachineBasicBlock &MBB = *MI.getParent(); 3825 unsigned Opc = MI.getOpcode(); 3826 3827 // Handle MFMA. 3828 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opc); 3829 if (NewMFMAOpc != -1) { 3830 MachineInstrBuilder MIB = 3831 BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc)); 3832 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3833 MIB.add(MI.getOperand(I)); 3834 updateLiveVariables(LV, MI, *MIB); 3835 if (LIS) { 3836 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3837 // SlotIndex of defs needs to be updated when converting to early-clobber 3838 MachineOperand &Def = MIB->getOperand(0); 3839 if (Def.isEarlyClobber() && Def.isReg() && 3840 LIS->hasInterval(Def.getReg())) { 3841 SlotIndex OldIndex = LIS->getInstructionIndex(*MIB).getRegSlot(false); 3842 SlotIndex NewIndex = LIS->getInstructionIndex(*MIB).getRegSlot(true); 3843 auto &LI = LIS->getInterval(Def.getReg()); 3844 auto UpdateDefIndex = [&](LiveRange &LR) { 3845 auto S = LR.find(OldIndex); 3846 if (S != LR.end() && S->start == OldIndex) { 3847 assert(S->valno && S->valno->def == OldIndex); 3848 S->start = NewIndex; 3849 S->valno->def = NewIndex; 3850 } 3851 }; 3852 UpdateDefIndex(LI); 3853 for (auto &SR : LI.subranges()) 3854 UpdateDefIndex(SR); 3855 } 3856 } 3857 return MIB; 3858 } 3859 3860 if (SIInstrInfo::isWMMA(MI)) { 3861 unsigned NewOpc = AMDGPU::mapWMMA2AddrTo3AddrOpcode(MI.getOpcode()); 3862 MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3863 .setMIFlags(MI.getFlags()); 3864 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3865 MIB->addOperand(MI.getOperand(I)); 3866 3867 updateLiveVariables(LV, MI, *MIB); 3868 if (LIS) 3869 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3870 3871 return MIB; 3872 } 3873 3874 assert(Opc != AMDGPU::V_FMAC_F16_t16_e32 && 3875 "V_FMAC_F16_t16_e32 is not supported and not expected to be present " 3876 "pre-RA"); 3877 3878 // Handle MAC/FMAC. 3879 bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 || 3880 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || 3881 Opc == AMDGPU::V_FMAC_F16_t16_e64; 3882 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 || 3883 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3884 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 || 3885 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || 3886 Opc == AMDGPU::V_FMAC_F16_t16_e64 || 3887 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3888 bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3889 bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 || 3890 Opc == AMDGPU::V_MAC_LEGACY_F32_e64 || 3891 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3892 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64; 3893 bool Src0Literal = false; 3894 3895 switch (Opc) { 3896 default: 3897 return nullptr; 3898 case AMDGPU::V_MAC_F16_e64: 3899 case AMDGPU::V_FMAC_F16_e64: 3900 case AMDGPU::V_FMAC_F16_t16_e64: 3901 case AMDGPU::V_MAC_F32_e64: 3902 case AMDGPU::V_MAC_LEGACY_F32_e64: 3903 case AMDGPU::V_FMAC_F32_e64: 3904 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3905 case AMDGPU::V_FMAC_F64_e64: 3906 break; 3907 case AMDGPU::V_MAC_F16_e32: 3908 case AMDGPU::V_FMAC_F16_e32: 3909 case AMDGPU::V_MAC_F32_e32: 3910 case AMDGPU::V_MAC_LEGACY_F32_e32: 3911 case AMDGPU::V_FMAC_F32_e32: 3912 case AMDGPU::V_FMAC_LEGACY_F32_e32: 3913 case AMDGPU::V_FMAC_F64_e32: { 3914 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 3915 AMDGPU::OpName::src0); 3916 const MachineOperand *Src0 = &MI.getOperand(Src0Idx); 3917 if (!Src0->isReg() && !Src0->isImm()) 3918 return nullptr; 3919 3920 if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0)) 3921 Src0Literal = true; 3922 3923 break; 3924 } 3925 } 3926 3927 MachineInstrBuilder MIB; 3928 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 3929 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 3930 const MachineOperand *Src0Mods = 3931 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); 3932 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3933 const MachineOperand *Src1Mods = 3934 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); 3935 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3936 const MachineOperand *Src2Mods = 3937 getNamedOperand(MI, AMDGPU::OpName::src2_modifiers); 3938 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 3939 const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod); 3940 const MachineOperand *OpSel = getNamedOperand(MI, AMDGPU::OpName::op_sel); 3941 3942 if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 && 3943 !IsLegacy && 3944 // If we have an SGPR input, we will violate the constant bus restriction. 3945 (ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() || 3946 !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) { 3947 MachineInstr *DefMI; 3948 const auto killDef = [&]() -> void { 3949 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3950 // The only user is the instruction which will be killed. 3951 Register DefReg = DefMI->getOperand(0).getReg(); 3952 if (!MRI.hasOneNonDBGUse(DefReg)) 3953 return; 3954 // We cannot just remove the DefMI here, calling pass will crash. 3955 DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF)); 3956 for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I) 3957 DefMI->removeOperand(I); 3958 if (LV) 3959 LV->getVarInfo(DefReg).AliveBlocks.clear(); 3960 }; 3961 3962 int64_t Imm; 3963 if (!Src0Literal && getFoldableImm(Src2, Imm, &DefMI)) { 3964 unsigned NewOpc = 3965 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16 3966 : AMDGPU::V_FMAAK_F16) 3967 : AMDGPU::V_FMAAK_F32) 3968 : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32); 3969 if (pseudoToMCOpcode(NewOpc) != -1) { 3970 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3971 .add(*Dst) 3972 .add(*Src0) 3973 .add(*Src1) 3974 .addImm(Imm) 3975 .setMIFlags(MI.getFlags()); 3976 updateLiveVariables(LV, MI, *MIB); 3977 if (LIS) 3978 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3979 killDef(); 3980 return MIB; 3981 } 3982 } 3983 unsigned NewOpc = 3984 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16 3985 : AMDGPU::V_FMAMK_F16) 3986 : AMDGPU::V_FMAMK_F32) 3987 : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32); 3988 if (!Src0Literal && getFoldableImm(Src1, Imm, &DefMI)) { 3989 if (pseudoToMCOpcode(NewOpc) != -1) { 3990 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3991 .add(*Dst) 3992 .add(*Src0) 3993 .addImm(Imm) 3994 .add(*Src2) 3995 .setMIFlags(MI.getFlags()); 3996 updateLiveVariables(LV, MI, *MIB); 3997 if (LIS) 3998 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3999 killDef(); 4000 return MIB; 4001 } 4002 } 4003 if (Src0Literal || getFoldableImm(Src0, Imm, &DefMI)) { 4004 if (Src0Literal) { 4005 Imm = Src0->getImm(); 4006 DefMI = nullptr; 4007 } 4008 if (pseudoToMCOpcode(NewOpc) != -1 && 4009 isOperandLegal( 4010 MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0), 4011 Src1)) { 4012 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 4013 .add(*Dst) 4014 .add(*Src1) 4015 .addImm(Imm) 4016 .add(*Src2) 4017 .setMIFlags(MI.getFlags()); 4018 updateLiveVariables(LV, MI, *MIB); 4019 if (LIS) 4020 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 4021 if (DefMI) 4022 killDef(); 4023 return MIB; 4024 } 4025 } 4026 } 4027 4028 // VOP2 mac/fmac with a literal operand cannot be converted to VOP3 mad/fma 4029 // if VOP3 does not allow a literal operand. 4030 if (Src0Literal && !ST.hasVOP3Literal()) 4031 return nullptr; 4032 4033 unsigned NewOpc = IsFMA ? IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64 4034 : IsF64 ? AMDGPU::V_FMA_F64_e64 4035 : IsLegacy 4036 ? AMDGPU::V_FMA_LEGACY_F32_e64 4037 : AMDGPU::V_FMA_F32_e64 4038 : IsF16 ? AMDGPU::V_MAD_F16_e64 4039 : IsLegacy ? AMDGPU::V_MAD_LEGACY_F32_e64 4040 : AMDGPU::V_MAD_F32_e64; 4041 if (pseudoToMCOpcode(NewOpc) == -1) 4042 return nullptr; 4043 4044 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 4045 .add(*Dst) 4046 .addImm(Src0Mods ? Src0Mods->getImm() : 0) 4047 .add(*Src0) 4048 .addImm(Src1Mods ? Src1Mods->getImm() : 0) 4049 .add(*Src1) 4050 .addImm(Src2Mods ? Src2Mods->getImm() : 0) 4051 .add(*Src2) 4052 .addImm(Clamp ? Clamp->getImm() : 0) 4053 .addImm(Omod ? Omod->getImm() : 0) 4054 .setMIFlags(MI.getFlags()); 4055 if (AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel)) 4056 MIB.addImm(OpSel ? OpSel->getImm() : 0); 4057 updateLiveVariables(LV, MI, *MIB); 4058 if (LIS) 4059 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 4060 return MIB; 4061 } 4062 4063 // It's not generally safe to move VALU instructions across these since it will 4064 // start using the register as a base index rather than directly. 4065 // XXX - Why isn't hasSideEffects sufficient for these? 4066 static bool changesVGPRIndexingMode(const MachineInstr &MI) { 4067 switch (MI.getOpcode()) { 4068 case AMDGPU::S_SET_GPR_IDX_ON: 4069 case AMDGPU::S_SET_GPR_IDX_MODE: 4070 case AMDGPU::S_SET_GPR_IDX_OFF: 4071 return true; 4072 default: 4073 return false; 4074 } 4075 } 4076 4077 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 4078 const MachineBasicBlock *MBB, 4079 const MachineFunction &MF) const { 4080 // Skipping the check for SP writes in the base implementation. The reason it 4081 // was added was apparently due to compile time concerns. 4082 // 4083 // TODO: Do we really want this barrier? It triggers unnecessary hazard nops 4084 // but is probably avoidable. 4085 4086 // Copied from base implementation. 4087 // Terminators and labels can't be scheduled around. 4088 if (MI.isTerminator() || MI.isPosition()) 4089 return true; 4090 4091 // INLINEASM_BR can jump to another block 4092 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 4093 return true; 4094 4095 if (MI.getOpcode() == AMDGPU::SCHED_BARRIER && MI.getOperand(0).getImm() == 0) 4096 return true; 4097 4098 // Target-independent instructions do not have an implicit-use of EXEC, even 4099 // when they operate on VGPRs. Treating EXEC modifications as scheduling 4100 // boundaries prevents incorrect movements of such instructions. 4101 return MI.modifiesRegister(AMDGPU::EXEC, &RI) || 4102 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || 4103 MI.getOpcode() == AMDGPU::S_SETREG_B32 || 4104 MI.getOpcode() == AMDGPU::S_SETPRIO || 4105 changesVGPRIndexingMode(MI); 4106 } 4107 4108 bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const { 4109 return Opcode == AMDGPU::DS_ORDERED_COUNT || isGWS(Opcode); 4110 } 4111 4112 bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) { 4113 // Skip the full operand and register alias search modifiesRegister 4114 // does. There's only a handful of instructions that touch this, it's only an 4115 // implicit def, and doesn't alias any other registers. 4116 return is_contained(MI.getDesc().implicit_defs(), AMDGPU::MODE); 4117 } 4118 4119 bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const { 4120 unsigned Opcode = MI.getOpcode(); 4121 4122 if (MI.mayStore() && isSMRD(MI)) 4123 return true; // scalar store or atomic 4124 4125 // This will terminate the function when other lanes may need to continue. 4126 if (MI.isReturn()) 4127 return true; 4128 4129 // These instructions cause shader I/O that may cause hardware lockups 4130 // when executed with an empty EXEC mask. 4131 // 4132 // Note: exp with VM = DONE = 0 is automatically skipped by hardware when 4133 // EXEC = 0, but checking for that case here seems not worth it 4134 // given the typical code patterns. 4135 if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT || 4136 isEXP(Opcode) || Opcode == AMDGPU::DS_ORDERED_COUNT || 4137 Opcode == AMDGPU::S_TRAP || Opcode == AMDGPU::S_WAIT_EVENT) 4138 return true; 4139 4140 if (MI.isCall() || MI.isInlineAsm()) 4141 return true; // conservative assumption 4142 4143 // Assume that barrier interactions are only intended with active lanes. 4144 if (isBarrier(Opcode)) 4145 return true; 4146 4147 // A mode change is a scalar operation that influences vector instructions. 4148 if (modifiesModeRegister(MI)) 4149 return true; 4150 4151 // These are like SALU instructions in terms of effects, so it's questionable 4152 // whether we should return true for those. 4153 // 4154 // However, executing them with EXEC = 0 causes them to operate on undefined 4155 // data, which we avoid by returning true here. 4156 if (Opcode == AMDGPU::V_READFIRSTLANE_B32 || 4157 Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32 || 4158 Opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR || 4159 Opcode == AMDGPU::SI_SPILL_S32_TO_VGPR) 4160 return true; 4161 4162 return false; 4163 } 4164 4165 bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI, 4166 const MachineInstr &MI) const { 4167 if (MI.isMetaInstruction()) 4168 return false; 4169 4170 // This won't read exec if this is an SGPR->SGPR copy. 4171 if (MI.isCopyLike()) { 4172 if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg())) 4173 return true; 4174 4175 // Make sure this isn't copying exec as a normal operand 4176 return MI.readsRegister(AMDGPU::EXEC, &RI); 4177 } 4178 4179 // Make a conservative assumption about the callee. 4180 if (MI.isCall()) 4181 return true; 4182 4183 // Be conservative with any unhandled generic opcodes. 4184 if (!isTargetSpecificOpcode(MI.getOpcode())) 4185 return true; 4186 4187 return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI); 4188 } 4189 4190 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 4191 switch (Imm.getBitWidth()) { 4192 case 1: // This likely will be a condition code mask. 4193 return true; 4194 4195 case 32: 4196 return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(), 4197 ST.hasInv2PiInlineImm()); 4198 case 64: 4199 return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(), 4200 ST.hasInv2PiInlineImm()); 4201 case 16: 4202 return ST.has16BitInsts() && 4203 AMDGPU::isInlinableLiteralI16(Imm.getSExtValue(), 4204 ST.hasInv2PiInlineImm()); 4205 default: 4206 llvm_unreachable("invalid bitwidth"); 4207 } 4208 } 4209 4210 bool SIInstrInfo::isInlineConstant(const APFloat &Imm) const { 4211 APInt IntImm = Imm.bitcastToAPInt(); 4212 int64_t IntImmVal = IntImm.getSExtValue(); 4213 bool HasInv2Pi = ST.hasInv2PiInlineImm(); 4214 switch (APFloat::SemanticsToEnum(Imm.getSemantics())) { 4215 default: 4216 llvm_unreachable("invalid fltSemantics"); 4217 case APFloatBase::S_IEEEsingle: 4218 case APFloatBase::S_IEEEdouble: 4219 return isInlineConstant(IntImm); 4220 case APFloatBase::S_BFloat: 4221 return ST.has16BitInsts() && 4222 AMDGPU::isInlinableLiteralBF16(IntImmVal, HasInv2Pi); 4223 case APFloatBase::S_IEEEhalf: 4224 return ST.has16BitInsts() && 4225 AMDGPU::isInlinableLiteralFP16(IntImmVal, HasInv2Pi); 4226 } 4227 } 4228 4229 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 4230 uint8_t OperandType) const { 4231 assert(!MO.isReg() && "isInlineConstant called on register operand!"); 4232 if (!MO.isImm()) 4233 return false; 4234 4235 // MachineOperand provides no way to tell the true operand size, since it only 4236 // records a 64-bit value. We need to know the size to determine if a 32-bit 4237 // floating point immediate bit pattern is legal for an integer immediate. It 4238 // would be for any 32-bit integer operand, but would not be for a 64-bit one. 4239 4240 int64_t Imm = MO.getImm(); 4241 switch (OperandType) { 4242 case AMDGPU::OPERAND_REG_IMM_INT32: 4243 case AMDGPU::OPERAND_REG_IMM_FP32: 4244 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 4245 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 4246 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 4247 case AMDGPU::OPERAND_REG_IMM_V2FP32: 4248 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 4249 case AMDGPU::OPERAND_REG_IMM_V2INT32: 4250 case AMDGPU::OPERAND_REG_INLINE_C_V2INT32: 4251 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 4252 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 4253 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: { 4254 int32_t Trunc = static_cast<int32_t>(Imm); 4255 return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm()); 4256 } 4257 case AMDGPU::OPERAND_REG_IMM_INT64: 4258 case AMDGPU::OPERAND_REG_IMM_FP64: 4259 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 4260 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 4261 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 4262 return AMDGPU::isInlinableLiteral64(MO.getImm(), 4263 ST.hasInv2PiInlineImm()); 4264 case AMDGPU::OPERAND_REG_IMM_INT16: 4265 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 4266 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 4267 // We would expect inline immediates to not be concerned with an integer/fp 4268 // distinction. However, in the case of 16-bit integer operations, the 4269 // "floating point" values appear to not work. It seems read the low 16-bits 4270 // of 32-bit immediates, which happens to always work for the integer 4271 // values. 4272 // 4273 // See llvm bugzilla 46302. 4274 // 4275 // TODO: Theoretically we could use op-sel to use the high bits of the 4276 // 32-bit FP values. 4277 return AMDGPU::isInlinableIntLiteral(Imm); 4278 case AMDGPU::OPERAND_REG_IMM_V2INT16: 4279 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 4280 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 4281 return AMDGPU::isInlinableLiteralV2I16(Imm); 4282 case AMDGPU::OPERAND_REG_IMM_V2FP16: 4283 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 4284 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 4285 return AMDGPU::isInlinableLiteralV2F16(Imm); 4286 case AMDGPU::OPERAND_REG_IMM_V2BF16: 4287 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: 4288 case AMDGPU::OPERAND_REG_INLINE_AC_V2BF16: 4289 return AMDGPU::isInlinableLiteralV2BF16(Imm); 4290 case AMDGPU::OPERAND_REG_IMM_FP16: 4291 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 4292 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 4293 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: { 4294 if (isInt<16>(Imm) || isUInt<16>(Imm)) { 4295 // A few special case instructions have 16-bit operands on subtargets 4296 // where 16-bit instructions are not legal. 4297 // TODO: Do the 32-bit immediates work? We shouldn't really need to handle 4298 // constants in these cases 4299 int16_t Trunc = static_cast<int16_t>(Imm); 4300 return ST.has16BitInsts() && 4301 AMDGPU::isInlinableLiteralFP16(Trunc, ST.hasInv2PiInlineImm()); 4302 } 4303 4304 return false; 4305 } 4306 case AMDGPU::OPERAND_REG_IMM_BF16: 4307 case AMDGPU::OPERAND_REG_IMM_BF16_DEFERRED: 4308 case AMDGPU::OPERAND_REG_INLINE_C_BF16: 4309 case AMDGPU::OPERAND_REG_INLINE_AC_BF16: { 4310 if (isInt<16>(Imm) || isUInt<16>(Imm)) { 4311 int16_t Trunc = static_cast<int16_t>(Imm); 4312 return ST.has16BitInsts() && 4313 AMDGPU::isInlinableLiteralBF16(Trunc, ST.hasInv2PiInlineImm()); 4314 } 4315 return false; 4316 } 4317 case AMDGPU::OPERAND_KIMM32: 4318 case AMDGPU::OPERAND_KIMM16: 4319 return false; 4320 case AMDGPU::OPERAND_INPUT_MODS: 4321 case MCOI::OPERAND_IMMEDIATE: 4322 // Always embedded in the instruction for free. 4323 return true; 4324 case MCOI::OPERAND_UNKNOWN: 4325 case MCOI::OPERAND_REGISTER: 4326 case MCOI::OPERAND_PCREL: 4327 case MCOI::OPERAND_GENERIC_0: 4328 case MCOI::OPERAND_GENERIC_1: 4329 case MCOI::OPERAND_GENERIC_2: 4330 case MCOI::OPERAND_GENERIC_3: 4331 case MCOI::OPERAND_GENERIC_4: 4332 case MCOI::OPERAND_GENERIC_5: 4333 // Just ignore anything else. 4334 return true; 4335 default: 4336 llvm_unreachable("invalid operand type"); 4337 } 4338 } 4339 4340 static bool compareMachineOp(const MachineOperand &Op0, 4341 const MachineOperand &Op1) { 4342 if (Op0.getType() != Op1.getType()) 4343 return false; 4344 4345 switch (Op0.getType()) { 4346 case MachineOperand::MO_Register: 4347 return Op0.getReg() == Op1.getReg(); 4348 case MachineOperand::MO_Immediate: 4349 return Op0.getImm() == Op1.getImm(); 4350 default: 4351 llvm_unreachable("Didn't expect to be comparing these operand types"); 4352 } 4353 } 4354 4355 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, 4356 const MachineOperand &MO) const { 4357 const MCInstrDesc &InstDesc = MI.getDesc(); 4358 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 4359 4360 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 4361 4362 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 4363 return true; 4364 4365 if (OpInfo.RegClass < 0) 4366 return false; 4367 4368 if (MO.isImm() && isInlineConstant(MO, OpInfo)) { 4369 if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() && 4370 OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(), 4371 AMDGPU::OpName::src2)) 4372 return false; 4373 return RI.opCanUseInlineConstant(OpInfo.OperandType); 4374 } 4375 4376 if (!RI.opCanUseLiteralConstant(OpInfo.OperandType)) 4377 return false; 4378 4379 if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo)) 4380 return true; 4381 4382 return ST.hasVOP3Literal(); 4383 } 4384 4385 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 4386 // GFX90A does not have V_MUL_LEGACY_F32_e32. 4387 if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts()) 4388 return false; 4389 4390 int Op32 = AMDGPU::getVOPe32(Opcode); 4391 if (Op32 == -1) 4392 return false; 4393 4394 return pseudoToMCOpcode(Op32) != -1; 4395 } 4396 4397 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 4398 // The src0_modifier operand is present on all instructions 4399 // that have modifiers. 4400 4401 return AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src0_modifiers); 4402 } 4403 4404 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 4405 unsigned OpName) const { 4406 const MachineOperand *Mods = getNamedOperand(MI, OpName); 4407 return Mods && Mods->getImm(); 4408 } 4409 4410 bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const { 4411 return any_of(ModifierOpNames, 4412 [&](unsigned Name) { return hasModifiersSet(MI, Name); }); 4413 } 4414 4415 bool SIInstrInfo::canShrink(const MachineInstr &MI, 4416 const MachineRegisterInfo &MRI) const { 4417 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 4418 // Can't shrink instruction with three operands. 4419 if (Src2) { 4420 switch (MI.getOpcode()) { 4421 default: return false; 4422 4423 case AMDGPU::V_ADDC_U32_e64: 4424 case AMDGPU::V_SUBB_U32_e64: 4425 case AMDGPU::V_SUBBREV_U32_e64: { 4426 const MachineOperand *Src1 4427 = getNamedOperand(MI, AMDGPU::OpName::src1); 4428 if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg())) 4429 return false; 4430 // Additional verification is needed for sdst/src2. 4431 return true; 4432 } 4433 case AMDGPU::V_MAC_F16_e64: 4434 case AMDGPU::V_MAC_F32_e64: 4435 case AMDGPU::V_MAC_LEGACY_F32_e64: 4436 case AMDGPU::V_FMAC_F16_e64: 4437 case AMDGPU::V_FMAC_F16_t16_e64: 4438 case AMDGPU::V_FMAC_F32_e64: 4439 case AMDGPU::V_FMAC_F64_e64: 4440 case AMDGPU::V_FMAC_LEGACY_F32_e64: 4441 if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) || 4442 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers)) 4443 return false; 4444 break; 4445 4446 case AMDGPU::V_CNDMASK_B32_e64: 4447 break; 4448 } 4449 } 4450 4451 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 4452 if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) || 4453 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))) 4454 return false; 4455 4456 // We don't need to check src0, all input types are legal, so just make sure 4457 // src0 isn't using any modifiers. 4458 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers)) 4459 return false; 4460 4461 // Can it be shrunk to a valid 32 bit opcode? 4462 if (!hasVALU32BitEncoding(MI.getOpcode())) 4463 return false; 4464 4465 // Check output modifiers 4466 return !hasModifiersSet(MI, AMDGPU::OpName::omod) && 4467 !hasModifiersSet(MI, AMDGPU::OpName::clamp) && 4468 !hasModifiersSet(MI, AMDGPU::OpName::byte_sel); 4469 } 4470 4471 // Set VCC operand with all flags from \p Orig, except for setting it as 4472 // implicit. 4473 static void copyFlagsToImplicitVCC(MachineInstr &MI, 4474 const MachineOperand &Orig) { 4475 4476 for (MachineOperand &Use : MI.implicit_operands()) { 4477 if (Use.isUse() && 4478 (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) { 4479 Use.setIsUndef(Orig.isUndef()); 4480 Use.setIsKill(Orig.isKill()); 4481 return; 4482 } 4483 } 4484 } 4485 4486 MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI, 4487 unsigned Op32) const { 4488 MachineBasicBlock *MBB = MI.getParent(); 4489 4490 const MCInstrDesc &Op32Desc = get(Op32); 4491 MachineInstrBuilder Inst32 = 4492 BuildMI(*MBB, MI, MI.getDebugLoc(), Op32Desc) 4493 .setMIFlags(MI.getFlags()); 4494 4495 // Add the dst operand if the 32-bit encoding also has an explicit $vdst. 4496 // For VOPC instructions, this is replaced by an implicit def of vcc. 4497 4498 // We assume the defs of the shrunk opcode are in the same order, and the 4499 // shrunk opcode loses the last def (SGPR def, in the VOP3->VOPC case). 4500 for (int I = 0, E = Op32Desc.getNumDefs(); I != E; ++I) 4501 Inst32.add(MI.getOperand(I)); 4502 4503 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 4504 4505 int Idx = MI.getNumExplicitDefs(); 4506 for (const MachineOperand &Use : MI.explicit_uses()) { 4507 int OpTy = MI.getDesc().operands()[Idx++].OperandType; 4508 if (OpTy == AMDGPU::OPERAND_INPUT_MODS || OpTy == MCOI::OPERAND_IMMEDIATE) 4509 continue; 4510 4511 if (&Use == Src2) { 4512 if (AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2) == -1) { 4513 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is 4514 // replaced with an implicit read of vcc or vcc_lo. The implicit read 4515 // of vcc was already added during the initial BuildMI, but we 4516 // 1) may need to change vcc to vcc_lo to preserve the original register 4517 // 2) have to preserve the original flags. 4518 fixImplicitOperands(*Inst32); 4519 copyFlagsToImplicitVCC(*Inst32, *Src2); 4520 continue; 4521 } 4522 } 4523 4524 Inst32.add(Use); 4525 } 4526 4527 // FIXME: Losing implicit operands 4528 4529 return Inst32; 4530 } 4531 4532 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 4533 const MachineOperand &MO, 4534 const MCOperandInfo &OpInfo) const { 4535 // Literal constants use the constant bus. 4536 if (!MO.isReg()) 4537 return !isInlineConstant(MO, OpInfo); 4538 4539 if (!MO.isUse()) 4540 return false; 4541 4542 if (MO.getReg().isVirtual()) 4543 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 4544 4545 // Null is free 4546 if (MO.getReg() == AMDGPU::SGPR_NULL || MO.getReg() == AMDGPU::SGPR_NULL64) 4547 return false; 4548 4549 // SGPRs use the constant bus 4550 if (MO.isImplicit()) { 4551 return MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC || 4552 MO.getReg() == AMDGPU::VCC_LO; 4553 } 4554 return AMDGPU::SReg_32RegClass.contains(MO.getReg()) || 4555 AMDGPU::SReg_64RegClass.contains(MO.getReg()); 4556 } 4557 4558 static Register findImplicitSGPRRead(const MachineInstr &MI) { 4559 for (const MachineOperand &MO : MI.implicit_operands()) { 4560 // We only care about reads. 4561 if (MO.isDef()) 4562 continue; 4563 4564 switch (MO.getReg()) { 4565 case AMDGPU::VCC: 4566 case AMDGPU::VCC_LO: 4567 case AMDGPU::VCC_HI: 4568 case AMDGPU::M0: 4569 case AMDGPU::FLAT_SCR: 4570 return MO.getReg(); 4571 4572 default: 4573 break; 4574 } 4575 } 4576 4577 return Register(); 4578 } 4579 4580 static bool shouldReadExec(const MachineInstr &MI) { 4581 if (SIInstrInfo::isVALU(MI)) { 4582 switch (MI.getOpcode()) { 4583 case AMDGPU::V_READLANE_B32: 4584 case AMDGPU::SI_RESTORE_S32_FROM_VGPR: 4585 case AMDGPU::V_WRITELANE_B32: 4586 case AMDGPU::SI_SPILL_S32_TO_VGPR: 4587 return false; 4588 } 4589 4590 return true; 4591 } 4592 4593 if (MI.isPreISelOpcode() || 4594 SIInstrInfo::isGenericOpcode(MI.getOpcode()) || 4595 SIInstrInfo::isSALU(MI) || 4596 SIInstrInfo::isSMRD(MI)) 4597 return false; 4598 4599 return true; 4600 } 4601 4602 static bool isSubRegOf(const SIRegisterInfo &TRI, 4603 const MachineOperand &SuperVec, 4604 const MachineOperand &SubReg) { 4605 if (SubReg.getReg().isPhysical()) 4606 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg()); 4607 4608 return SubReg.getSubReg() != AMDGPU::NoSubRegister && 4609 SubReg.getReg() == SuperVec.getReg(); 4610 } 4611 4612 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, 4613 StringRef &ErrInfo) const { 4614 uint16_t Opcode = MI.getOpcode(); 4615 if (SIInstrInfo::isGenericOpcode(MI.getOpcode())) 4616 return true; 4617 4618 const MachineFunction *MF = MI.getParent()->getParent(); 4619 const MachineRegisterInfo &MRI = MF->getRegInfo(); 4620 4621 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 4622 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 4623 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 4624 int Src3Idx = -1; 4625 if (Src0Idx == -1) { 4626 // VOPD V_DUAL_* instructions use different operand names. 4627 Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0X); 4628 Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1X); 4629 Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0Y); 4630 Src3Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1Y); 4631 } 4632 4633 // Make sure the number of operands is correct. 4634 const MCInstrDesc &Desc = get(Opcode); 4635 if (!Desc.isVariadic() && 4636 Desc.getNumOperands() != MI.getNumExplicitOperands()) { 4637 ErrInfo = "Instruction has wrong number of operands."; 4638 return false; 4639 } 4640 4641 if (MI.isInlineAsm()) { 4642 // Verify register classes for inlineasm constraints. 4643 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands(); 4644 I != E; ++I) { 4645 const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI); 4646 if (!RC) 4647 continue; 4648 4649 const MachineOperand &Op = MI.getOperand(I); 4650 if (!Op.isReg()) 4651 continue; 4652 4653 Register Reg = Op.getReg(); 4654 if (!Reg.isVirtual() && !RC->contains(Reg)) { 4655 ErrInfo = "inlineasm operand has incorrect register class."; 4656 return false; 4657 } 4658 } 4659 4660 return true; 4661 } 4662 4663 if (isImage(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) { 4664 ErrInfo = "missing memory operand from image instruction."; 4665 return false; 4666 } 4667 4668 // Make sure the register classes are correct. 4669 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 4670 const MachineOperand &MO = MI.getOperand(i); 4671 if (MO.isFPImm()) { 4672 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 4673 "all fp values to integers."; 4674 return false; 4675 } 4676 4677 int RegClass = Desc.operands()[i].RegClass; 4678 4679 switch (Desc.operands()[i].OperandType) { 4680 case MCOI::OPERAND_REGISTER: 4681 if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) { 4682 ErrInfo = "Illegal immediate value for operand."; 4683 return false; 4684 } 4685 break; 4686 case AMDGPU::OPERAND_REG_IMM_INT32: 4687 case AMDGPU::OPERAND_REG_IMM_FP32: 4688 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 4689 case AMDGPU::OPERAND_REG_IMM_V2FP32: 4690 break; 4691 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 4692 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 4693 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 4694 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 4695 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 4696 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 4697 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 4698 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 4699 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 4700 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 4701 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: { 4702 if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) { 4703 ErrInfo = "Illegal immediate value for operand."; 4704 return false; 4705 } 4706 break; 4707 } 4708 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: 4709 if (!MI.getOperand(i).isImm() || !isInlineConstant(MI, i)) { 4710 ErrInfo = "Expected inline constant for operand."; 4711 return false; 4712 } 4713 break; 4714 case MCOI::OPERAND_IMMEDIATE: 4715 case AMDGPU::OPERAND_KIMM32: 4716 // Check if this operand is an immediate. 4717 // FrameIndex operands will be replaced by immediates, so they are 4718 // allowed. 4719 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { 4720 ErrInfo = "Expected immediate, but got non-immediate"; 4721 return false; 4722 } 4723 [[fallthrough]]; 4724 default: 4725 continue; 4726 } 4727 4728 if (!MO.isReg()) 4729 continue; 4730 Register Reg = MO.getReg(); 4731 if (!Reg) 4732 continue; 4733 4734 // FIXME: Ideally we would have separate instruction definitions with the 4735 // aligned register constraint. 4736 // FIXME: We do not verify inline asm operands, but custom inline asm 4737 // verification is broken anyway 4738 if (ST.needsAlignedVGPRs()) { 4739 const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg); 4740 if (RI.hasVectorRegisters(RC) && MO.getSubReg()) { 4741 const TargetRegisterClass *SubRC = 4742 RI.getSubRegisterClass(RC, MO.getSubReg()); 4743 RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg()); 4744 if (RC) 4745 RC = SubRC; 4746 } 4747 4748 // Check that this is the aligned version of the class. 4749 if (!RC || !RI.isProperlyAlignedRC(*RC)) { 4750 ErrInfo = "Subtarget requires even aligned vector registers"; 4751 return false; 4752 } 4753 } 4754 4755 if (RegClass != -1) { 4756 if (Reg.isVirtual()) 4757 continue; 4758 4759 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 4760 if (!RC->contains(Reg)) { 4761 ErrInfo = "Operand has incorrect register class."; 4762 return false; 4763 } 4764 } 4765 } 4766 4767 // Verify SDWA 4768 if (isSDWA(MI)) { 4769 if (!ST.hasSDWA()) { 4770 ErrInfo = "SDWA is not supported on this target"; 4771 return false; 4772 } 4773 4774 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); 4775 4776 for (int OpIdx : {DstIdx, Src0Idx, Src1Idx, Src2Idx}) { 4777 if (OpIdx == -1) 4778 continue; 4779 const MachineOperand &MO = MI.getOperand(OpIdx); 4780 4781 if (!ST.hasSDWAScalar()) { 4782 // Only VGPRS on VI 4783 if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) { 4784 ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI"; 4785 return false; 4786 } 4787 } else { 4788 // No immediates on GFX9 4789 if (!MO.isReg()) { 4790 ErrInfo = 4791 "Only reg allowed as operands in SDWA instructions on GFX9+"; 4792 return false; 4793 } 4794 } 4795 } 4796 4797 if (!ST.hasSDWAOmod()) { 4798 // No omod allowed on VI 4799 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4800 if (OMod != nullptr && 4801 (!OMod->isImm() || OMod->getImm() != 0)) { 4802 ErrInfo = "OMod not allowed in SDWA instructions on VI"; 4803 return false; 4804 } 4805 } 4806 4807 if (Opcode == AMDGPU::V_CVT_F32_FP8_sdwa || 4808 Opcode == AMDGPU::V_CVT_F32_BF8_sdwa || 4809 Opcode == AMDGPU::V_CVT_PK_F32_FP8_sdwa || 4810 Opcode == AMDGPU::V_CVT_PK_F32_BF8_sdwa) { 4811 const MachineOperand *Src0ModsMO = 4812 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); 4813 unsigned Mods = Src0ModsMO->getImm(); 4814 if (Mods & SISrcMods::ABS || Mods & SISrcMods::NEG || 4815 Mods & SISrcMods::SEXT) { 4816 ErrInfo = "sext, abs and neg are not allowed on this instruction"; 4817 return false; 4818 } 4819 } 4820 4821 uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode); 4822 if (isVOPC(BasicOpcode)) { 4823 if (!ST.hasSDWASdst() && DstIdx != -1) { 4824 // Only vcc allowed as dst on VI for VOPC 4825 const MachineOperand &Dst = MI.getOperand(DstIdx); 4826 if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) { 4827 ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI"; 4828 return false; 4829 } 4830 } else if (!ST.hasSDWAOutModsVOPC()) { 4831 // No clamp allowed on GFX9 for VOPC 4832 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 4833 if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) { 4834 ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI"; 4835 return false; 4836 } 4837 4838 // No omod allowed on GFX9 for VOPC 4839 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4840 if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) { 4841 ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI"; 4842 return false; 4843 } 4844 } 4845 } 4846 4847 const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused); 4848 if (DstUnused && DstUnused->isImm() && 4849 DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) { 4850 const MachineOperand &Dst = MI.getOperand(DstIdx); 4851 if (!Dst.isReg() || !Dst.isTied()) { 4852 ErrInfo = "Dst register should have tied register"; 4853 return false; 4854 } 4855 4856 const MachineOperand &TiedMO = 4857 MI.getOperand(MI.findTiedOperandIdx(DstIdx)); 4858 if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) { 4859 ErrInfo = 4860 "Dst register should be tied to implicit use of preserved register"; 4861 return false; 4862 } 4863 if (TiedMO.getReg().isPhysical() && Dst.getReg() != TiedMO.getReg()) { 4864 ErrInfo = "Dst register should use same physical register as preserved"; 4865 return false; 4866 } 4867 } 4868 } 4869 4870 // Verify MIMG / VIMAGE / VSAMPLE 4871 if (isImage(MI.getOpcode()) && !MI.mayStore()) { 4872 // Ensure that the return type used is large enough for all the options 4873 // being used TFE/LWE require an extra result register. 4874 const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask); 4875 if (DMask) { 4876 uint64_t DMaskImm = DMask->getImm(); 4877 uint32_t RegCount = 4878 isGather4(MI.getOpcode()) ? 4 : llvm::popcount(DMaskImm); 4879 const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe); 4880 const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe); 4881 const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16); 4882 4883 // Adjust for packed 16 bit values 4884 if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem()) 4885 RegCount = divideCeil(RegCount, 2); 4886 4887 // Adjust if using LWE or TFE 4888 if ((LWE && LWE->getImm()) || (TFE && TFE->getImm())) 4889 RegCount += 1; 4890 4891 const uint32_t DstIdx = 4892 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 4893 const MachineOperand &Dst = MI.getOperand(DstIdx); 4894 if (Dst.isReg()) { 4895 const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx); 4896 uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32; 4897 if (RegCount > DstSize) { 4898 ErrInfo = "Image instruction returns too many registers for dst " 4899 "register class"; 4900 return false; 4901 } 4902 } 4903 } 4904 } 4905 4906 // Verify VOP*. Ignore multiple sgpr operands on writelane. 4907 if (isVALU(MI) && Desc.getOpcode() != AMDGPU::V_WRITELANE_B32) { 4908 unsigned ConstantBusCount = 0; 4909 bool UsesLiteral = false; 4910 const MachineOperand *LiteralVal = nullptr; 4911 4912 int ImmIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm); 4913 if (ImmIdx != -1) { 4914 ++ConstantBusCount; 4915 UsesLiteral = true; 4916 LiteralVal = &MI.getOperand(ImmIdx); 4917 } 4918 4919 SmallVector<Register, 2> SGPRsUsed; 4920 Register SGPRUsed; 4921 4922 // Only look at the true operands. Only a real operand can use the constant 4923 // bus, and we don't want to check pseudo-operands like the source modifier 4924 // flags. 4925 for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx, Src3Idx}) { 4926 if (OpIdx == -1) 4927 continue; 4928 const MachineOperand &MO = MI.getOperand(OpIdx); 4929 if (usesConstantBus(MRI, MO, MI.getDesc().operands()[OpIdx])) { 4930 if (MO.isReg()) { 4931 SGPRUsed = MO.getReg(); 4932 if (!llvm::is_contained(SGPRsUsed, SGPRUsed)) { 4933 ++ConstantBusCount; 4934 SGPRsUsed.push_back(SGPRUsed); 4935 } 4936 } else { 4937 if (!UsesLiteral) { 4938 ++ConstantBusCount; 4939 UsesLiteral = true; 4940 LiteralVal = &MO; 4941 } else if (!MO.isIdenticalTo(*LiteralVal)) { 4942 assert(isVOP2(MI) || isVOP3(MI)); 4943 ErrInfo = "VOP2/VOP3 instruction uses more than one literal"; 4944 return false; 4945 } 4946 } 4947 } 4948 } 4949 4950 SGPRUsed = findImplicitSGPRRead(MI); 4951 if (SGPRUsed) { 4952 // Implicit uses may safely overlap true operands 4953 if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) { 4954 return !RI.regsOverlap(SGPRUsed, SGPR); 4955 })) { 4956 ++ConstantBusCount; 4957 SGPRsUsed.push_back(SGPRUsed); 4958 } 4959 } 4960 4961 // v_writelane_b32 is an exception from constant bus restriction: 4962 // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const 4963 if (ConstantBusCount > ST.getConstantBusLimit(Opcode) && 4964 Opcode != AMDGPU::V_WRITELANE_B32) { 4965 ErrInfo = "VOP* instruction violates constant bus restriction"; 4966 return false; 4967 } 4968 4969 if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) { 4970 ErrInfo = "VOP3 instruction uses literal"; 4971 return false; 4972 } 4973 } 4974 4975 // Special case for writelane - this can break the multiple constant bus rule, 4976 // but still can't use more than one SGPR register 4977 if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) { 4978 unsigned SGPRCount = 0; 4979 Register SGPRUsed; 4980 4981 for (int OpIdx : {Src0Idx, Src1Idx}) { 4982 if (OpIdx == -1) 4983 break; 4984 4985 const MachineOperand &MO = MI.getOperand(OpIdx); 4986 4987 if (usesConstantBus(MRI, MO, MI.getDesc().operands()[OpIdx])) { 4988 if (MO.isReg() && MO.getReg() != AMDGPU::M0) { 4989 if (MO.getReg() != SGPRUsed) 4990 ++SGPRCount; 4991 SGPRUsed = MO.getReg(); 4992 } 4993 } 4994 if (SGPRCount > ST.getConstantBusLimit(Opcode)) { 4995 ErrInfo = "WRITELANE instruction violates constant bus restriction"; 4996 return false; 4997 } 4998 } 4999 } 5000 5001 // Verify misc. restrictions on specific instructions. 5002 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 || 5003 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) { 5004 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 5005 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 5006 const MachineOperand &Src2 = MI.getOperand(Src2Idx); 5007 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 5008 if (!compareMachineOp(Src0, Src1) && 5009 !compareMachineOp(Src0, Src2)) { 5010 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 5011 return false; 5012 } 5013 } 5014 if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() & 5015 SISrcMods::ABS) || 5016 (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() & 5017 SISrcMods::ABS) || 5018 (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() & 5019 SISrcMods::ABS)) { 5020 ErrInfo = "ABS not allowed in VOP3B instructions"; 5021 return false; 5022 } 5023 } 5024 5025 if (isSOP2(MI) || isSOPC(MI)) { 5026 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 5027 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 5028 5029 if (!Src0.isReg() && !Src1.isReg() && 5030 !isInlineConstant(Src0, Desc.operands()[Src0Idx]) && 5031 !isInlineConstant(Src1, Desc.operands()[Src1Idx]) && 5032 !Src0.isIdenticalTo(Src1)) { 5033 ErrInfo = "SOP2/SOPC instruction requires too many immediate constants"; 5034 return false; 5035 } 5036 } 5037 5038 if (isSOPK(MI)) { 5039 auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16); 5040 if (Desc.isBranch()) { 5041 if (!Op->isMBB()) { 5042 ErrInfo = "invalid branch target for SOPK instruction"; 5043 return false; 5044 } 5045 } else { 5046 uint64_t Imm = Op->getImm(); 5047 if (sopkIsZext(Opcode)) { 5048 if (!isUInt<16>(Imm)) { 5049 ErrInfo = "invalid immediate for SOPK instruction"; 5050 return false; 5051 } 5052 } else { 5053 if (!isInt<16>(Imm)) { 5054 ErrInfo = "invalid immediate for SOPK instruction"; 5055 return false; 5056 } 5057 } 5058 } 5059 } 5060 5061 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 || 5062 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 || 5063 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 5064 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) { 5065 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 5066 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64; 5067 5068 const unsigned StaticNumOps = 5069 Desc.getNumOperands() + Desc.implicit_uses().size(); 5070 const unsigned NumImplicitOps = IsDst ? 2 : 1; 5071 5072 // Allow additional implicit operands. This allows a fixup done by the post 5073 // RA scheduler where the main implicit operand is killed and implicit-defs 5074 // are added for sub-registers that remain live after this instruction. 5075 if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) { 5076 ErrInfo = "missing implicit register operands"; 5077 return false; 5078 } 5079 5080 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 5081 if (IsDst) { 5082 if (!Dst->isUse()) { 5083 ErrInfo = "v_movreld_b32 vdst should be a use operand"; 5084 return false; 5085 } 5086 5087 unsigned UseOpIdx; 5088 if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) || 5089 UseOpIdx != StaticNumOps + 1) { 5090 ErrInfo = "movrel implicit operands should be tied"; 5091 return false; 5092 } 5093 } 5094 5095 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 5096 const MachineOperand &ImpUse 5097 = MI.getOperand(StaticNumOps + NumImplicitOps - 1); 5098 if (!ImpUse.isReg() || !ImpUse.isUse() || 5099 !isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) { 5100 ErrInfo = "src0 should be subreg of implicit vector use"; 5101 return false; 5102 } 5103 } 5104 5105 // Make sure we aren't losing exec uses in the td files. This mostly requires 5106 // being careful when using let Uses to try to add other use registers. 5107 if (shouldReadExec(MI)) { 5108 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 5109 ErrInfo = "VALU instruction does not implicitly read exec mask"; 5110 return false; 5111 } 5112 } 5113 5114 if (isSMRD(MI)) { 5115 if (MI.mayStore() && 5116 ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) { 5117 // The register offset form of scalar stores may only use m0 as the 5118 // soffset register. 5119 const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soffset); 5120 if (Soff && Soff->getReg() != AMDGPU::M0) { 5121 ErrInfo = "scalar stores must use m0 as offset register"; 5122 return false; 5123 } 5124 } 5125 } 5126 5127 if (isFLAT(MI) && !ST.hasFlatInstOffsets()) { 5128 const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 5129 if (Offset->getImm() != 0) { 5130 ErrInfo = "subtarget does not support offsets in flat instructions"; 5131 return false; 5132 } 5133 } 5134 5135 if (isDS(MI) && !ST.hasGDS()) { 5136 const MachineOperand *GDSOp = getNamedOperand(MI, AMDGPU::OpName::gds); 5137 if (GDSOp && GDSOp->getImm() != 0) { 5138 ErrInfo = "GDS is not supported on this subtarget"; 5139 return false; 5140 } 5141 } 5142 5143 if (isImage(MI)) { 5144 const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim); 5145 if (DimOp) { 5146 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode, 5147 AMDGPU::OpName::vaddr0); 5148 int RSrcOpName = 5149 isMIMG(MI) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc; 5150 int RsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, RSrcOpName); 5151 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode); 5152 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5153 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 5154 const AMDGPU::MIMGDimInfo *Dim = 5155 AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm()); 5156 5157 if (!Dim) { 5158 ErrInfo = "dim is out of range"; 5159 return false; 5160 } 5161 5162 bool IsA16 = false; 5163 if (ST.hasR128A16()) { 5164 const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128); 5165 IsA16 = R128A16->getImm() != 0; 5166 } else if (ST.hasA16()) { 5167 const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16); 5168 IsA16 = A16->getImm() != 0; 5169 } 5170 5171 bool IsNSA = RsrcIdx - VAddr0Idx > 1; 5172 5173 unsigned AddrWords = 5174 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16()); 5175 5176 unsigned VAddrWords; 5177 if (IsNSA) { 5178 VAddrWords = RsrcIdx - VAddr0Idx; 5179 if (ST.hasPartialNSAEncoding() && 5180 AddrWords > ST.getNSAMaxSize(isVSAMPLE(MI))) { 5181 unsigned LastVAddrIdx = RsrcIdx - 1; 5182 VAddrWords += getOpSize(MI, LastVAddrIdx) / 4 - 1; 5183 } 5184 } else { 5185 VAddrWords = getOpSize(MI, VAddr0Idx) / 4; 5186 if (AddrWords > 12) 5187 AddrWords = 16; 5188 } 5189 5190 if (VAddrWords != AddrWords) { 5191 LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords 5192 << " but got " << VAddrWords << "\n"); 5193 ErrInfo = "bad vaddr size"; 5194 return false; 5195 } 5196 } 5197 } 5198 5199 const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl); 5200 if (DppCt) { 5201 using namespace AMDGPU::DPP; 5202 5203 unsigned DC = DppCt->getImm(); 5204 if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 || 5205 DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST || 5206 (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) || 5207 (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) || 5208 (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) || 5209 (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) || 5210 (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) { 5211 ErrInfo = "Invalid dpp_ctrl value"; 5212 return false; 5213 } 5214 if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 && 5215 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 5216 ErrInfo = "Invalid dpp_ctrl value: " 5217 "wavefront shifts are not supported on GFX10+"; 5218 return false; 5219 } 5220 if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 && 5221 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 5222 ErrInfo = "Invalid dpp_ctrl value: " 5223 "broadcasts are not supported on GFX10+"; 5224 return false; 5225 } 5226 if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST && 5227 ST.getGeneration() < AMDGPUSubtarget::GFX10) { 5228 if (DC >= DppCtrl::ROW_NEWBCAST_FIRST && 5229 DC <= DppCtrl::ROW_NEWBCAST_LAST && 5230 !ST.hasGFX90AInsts()) { 5231 ErrInfo = "Invalid dpp_ctrl value: " 5232 "row_newbroadcast/row_share is not supported before " 5233 "GFX90A/GFX10"; 5234 return false; 5235 } 5236 if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) { 5237 ErrInfo = "Invalid dpp_ctrl value: " 5238 "row_share and row_xmask are not supported before GFX10"; 5239 return false; 5240 } 5241 } 5242 5243 if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO && 5244 !AMDGPU::isLegalDPALU_DPPControl(DC) && AMDGPU::isDPALU_DPP(Desc)) { 5245 ErrInfo = "Invalid dpp_ctrl value: " 5246 "DP ALU dpp only support row_newbcast"; 5247 return false; 5248 } 5249 } 5250 5251 if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) { 5252 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 5253 uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0 5254 : AMDGPU::OpName::vdata; 5255 const MachineOperand *Data = getNamedOperand(MI, DataNameIdx); 5256 const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1); 5257 if (Data && !Data->isReg()) 5258 Data = nullptr; 5259 5260 if (ST.hasGFX90AInsts()) { 5261 if (Dst && Data && 5262 (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) { 5263 ErrInfo = "Invalid register class: " 5264 "vdata and vdst should be both VGPR or AGPR"; 5265 return false; 5266 } 5267 if (Data && Data2 && 5268 (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) { 5269 ErrInfo = "Invalid register class: " 5270 "both data operands should be VGPR or AGPR"; 5271 return false; 5272 } 5273 } else { 5274 if ((Dst && RI.isAGPR(MRI, Dst->getReg())) || 5275 (Data && RI.isAGPR(MRI, Data->getReg())) || 5276 (Data2 && RI.isAGPR(MRI, Data2->getReg()))) { 5277 ErrInfo = "Invalid register class: " 5278 "agpr loads and stores not supported on this GPU"; 5279 return false; 5280 } 5281 } 5282 } 5283 5284 if (ST.needsAlignedVGPRs()) { 5285 const auto isAlignedReg = [&MI, &MRI, this](unsigned OpName) -> bool { 5286 const MachineOperand *Op = getNamedOperand(MI, OpName); 5287 if (!Op) 5288 return true; 5289 Register Reg = Op->getReg(); 5290 if (Reg.isPhysical()) 5291 return !(RI.getHWRegIndex(Reg) & 1); 5292 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 5293 return RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) && 5294 !(RI.getChannelFromSubReg(Op->getSubReg()) & 1); 5295 }; 5296 5297 if (MI.getOpcode() == AMDGPU::DS_GWS_INIT || 5298 MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 5299 MI.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 5300 5301 if (!isAlignedReg(AMDGPU::OpName::data0)) { 5302 ErrInfo = "Subtarget requires even aligned vector registers " 5303 "for DS_GWS instructions"; 5304 return false; 5305 } 5306 } 5307 5308 if (isMIMG(MI)) { 5309 if (!isAlignedReg(AMDGPU::OpName::vaddr)) { 5310 ErrInfo = "Subtarget requires even aligned vector registers " 5311 "for vaddr operand of image instructions"; 5312 return false; 5313 } 5314 } 5315 } 5316 5317 if (MI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 5318 !ST.hasGFX90AInsts()) { 5319 const MachineOperand *Src = getNamedOperand(MI, AMDGPU::OpName::src0); 5320 if (Src->isReg() && RI.isSGPRReg(MRI, Src->getReg())) { 5321 ErrInfo = "Invalid register class: " 5322 "v_accvgpr_write with an SGPR is not supported on this GPU"; 5323 return false; 5324 } 5325 } 5326 5327 if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) { 5328 const MachineOperand &SrcOp = MI.getOperand(1); 5329 if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) { 5330 ErrInfo = "pseudo expects only physical SGPRs"; 5331 return false; 5332 } 5333 } 5334 5335 return true; 5336 } 5337 5338 // It is more readable to list mapped opcodes on the same line. 5339 // clang-format off 5340 5341 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const { 5342 switch (MI.getOpcode()) { 5343 default: return AMDGPU::INSTRUCTION_LIST_END; 5344 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 5345 case AMDGPU::COPY: return AMDGPU::COPY; 5346 case AMDGPU::PHI: return AMDGPU::PHI; 5347 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 5348 case AMDGPU::WQM: return AMDGPU::WQM; 5349 case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM; 5350 case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM; 5351 case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM; 5352 case AMDGPU::S_MOV_B32: { 5353 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 5354 return MI.getOperand(1).isReg() || 5355 RI.isAGPR(MRI, MI.getOperand(0).getReg()) ? 5356 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 5357 } 5358 case AMDGPU::S_ADD_I32: 5359 return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 5360 case AMDGPU::S_ADDC_U32: 5361 return AMDGPU::V_ADDC_U32_e32; 5362 case AMDGPU::S_SUB_I32: 5363 return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32; 5364 // FIXME: These are not consistently handled, and selected when the carry is 5365 // used. 5366 case AMDGPU::S_ADD_U32: 5367 return AMDGPU::V_ADD_CO_U32_e32; 5368 case AMDGPU::S_SUB_U32: 5369 return AMDGPU::V_SUB_CO_U32_e32; 5370 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 5371 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64; 5372 case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64; 5373 case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64; 5374 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64; 5375 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64; 5376 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64; 5377 case AMDGPU::S_XNOR_B32: 5378 return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END; 5379 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64; 5380 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64; 5381 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64; 5382 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64; 5383 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 5384 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64; 5385 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 5386 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64; 5387 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 5388 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64; 5389 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64; 5390 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64; 5391 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64; 5392 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64; 5393 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 5394 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 5395 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 5396 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 5397 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64; 5398 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64; 5399 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64; 5400 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64; 5401 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64; 5402 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64; 5403 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64; 5404 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64; 5405 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64; 5406 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64; 5407 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64; 5408 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64; 5409 case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64; 5410 case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64; 5411 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 5412 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 5413 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 5414 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 5415 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 5416 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 5417 case AMDGPU::S_CVT_F32_I32: return AMDGPU::V_CVT_F32_I32_e64; 5418 case AMDGPU::S_CVT_F32_U32: return AMDGPU::V_CVT_F32_U32_e64; 5419 case AMDGPU::S_CVT_I32_F32: return AMDGPU::V_CVT_I32_F32_e64; 5420 case AMDGPU::S_CVT_U32_F32: return AMDGPU::V_CVT_U32_F32_e64; 5421 case AMDGPU::S_CVT_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64; 5422 case AMDGPU::S_CVT_HI_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64; 5423 case AMDGPU::S_CVT_F16_F32: return AMDGPU::V_CVT_F16_F32_t16_e64; 5424 case AMDGPU::S_CEIL_F32: return AMDGPU::V_CEIL_F32_e64; 5425 case AMDGPU::S_FLOOR_F32: return AMDGPU::V_FLOOR_F32_e64; 5426 case AMDGPU::S_TRUNC_F32: return AMDGPU::V_TRUNC_F32_e64; 5427 case AMDGPU::S_RNDNE_F32: return AMDGPU::V_RNDNE_F32_e64; 5428 case AMDGPU::S_CEIL_F16: 5429 return ST.useRealTrue16Insts() ? AMDGPU::V_CEIL_F16_t16_e64 5430 : AMDGPU::V_CEIL_F16_fake16_e64; 5431 case AMDGPU::S_FLOOR_F16: 5432 return ST.useRealTrue16Insts() ? AMDGPU::V_FLOOR_F16_t16_e64 5433 : AMDGPU::V_FLOOR_F16_fake16_e64; 5434 case AMDGPU::S_TRUNC_F16: 5435 return AMDGPU::V_TRUNC_F16_fake16_e64; 5436 case AMDGPU::S_RNDNE_F16: 5437 return AMDGPU::V_RNDNE_F16_fake16_e64; 5438 case AMDGPU::S_ADD_F32: return AMDGPU::V_ADD_F32_e64; 5439 case AMDGPU::S_SUB_F32: return AMDGPU::V_SUB_F32_e64; 5440 case AMDGPU::S_MIN_F32: return AMDGPU::V_MIN_F32_e64; 5441 case AMDGPU::S_MAX_F32: return AMDGPU::V_MAX_F32_e64; 5442 case AMDGPU::S_MINIMUM_F32: return AMDGPU::V_MINIMUM_F32_e64; 5443 case AMDGPU::S_MAXIMUM_F32: return AMDGPU::V_MAXIMUM_F32_e64; 5444 case AMDGPU::S_MUL_F32: return AMDGPU::V_MUL_F32_e64; 5445 case AMDGPU::S_ADD_F16: return AMDGPU::V_ADD_F16_fake16_e64; 5446 case AMDGPU::S_SUB_F16: return AMDGPU::V_SUB_F16_fake16_e64; 5447 case AMDGPU::S_MIN_F16: return AMDGPU::V_MIN_F16_fake16_e64; 5448 case AMDGPU::S_MAX_F16: return AMDGPU::V_MAX_F16_fake16_e64; 5449 case AMDGPU::S_MINIMUM_F16: return AMDGPU::V_MINIMUM_F16_e64; 5450 case AMDGPU::S_MAXIMUM_F16: return AMDGPU::V_MAXIMUM_F16_e64; 5451 case AMDGPU::S_MUL_F16: return AMDGPU::V_MUL_F16_fake16_e64; 5452 case AMDGPU::S_CVT_PK_RTZ_F16_F32: return AMDGPU::V_CVT_PKRTZ_F16_F32_e64; 5453 case AMDGPU::S_FMAC_F32: return AMDGPU::V_FMAC_F32_e64; 5454 case AMDGPU::S_FMAC_F16: return AMDGPU::V_FMAC_F16_t16_e64; 5455 case AMDGPU::S_FMAMK_F32: return AMDGPU::V_FMAMK_F32; 5456 case AMDGPU::S_FMAAK_F32: return AMDGPU::V_FMAAK_F32; 5457 case AMDGPU::S_CMP_LT_F32: return AMDGPU::V_CMP_LT_F32_e64; 5458 case AMDGPU::S_CMP_EQ_F32: return AMDGPU::V_CMP_EQ_F32_e64; 5459 case AMDGPU::S_CMP_LE_F32: return AMDGPU::V_CMP_LE_F32_e64; 5460 case AMDGPU::S_CMP_GT_F32: return AMDGPU::V_CMP_GT_F32_e64; 5461 case AMDGPU::S_CMP_LG_F32: return AMDGPU::V_CMP_LG_F32_e64; 5462 case AMDGPU::S_CMP_GE_F32: return AMDGPU::V_CMP_GE_F32_e64; 5463 case AMDGPU::S_CMP_O_F32: return AMDGPU::V_CMP_O_F32_e64; 5464 case AMDGPU::S_CMP_U_F32: return AMDGPU::V_CMP_U_F32_e64; 5465 case AMDGPU::S_CMP_NGE_F32: return AMDGPU::V_CMP_NGE_F32_e64; 5466 case AMDGPU::S_CMP_NLG_F32: return AMDGPU::V_CMP_NLG_F32_e64; 5467 case AMDGPU::S_CMP_NGT_F32: return AMDGPU::V_CMP_NGT_F32_e64; 5468 case AMDGPU::S_CMP_NLE_F32: return AMDGPU::V_CMP_NLE_F32_e64; 5469 case AMDGPU::S_CMP_NEQ_F32: return AMDGPU::V_CMP_NEQ_F32_e64; 5470 case AMDGPU::S_CMP_NLT_F32: return AMDGPU::V_CMP_NLT_F32_e64; 5471 case AMDGPU::S_CMP_LT_F16: return AMDGPU::V_CMP_LT_F16_t16_e64; 5472 case AMDGPU::S_CMP_EQ_F16: return AMDGPU::V_CMP_EQ_F16_t16_e64; 5473 case AMDGPU::S_CMP_LE_F16: return AMDGPU::V_CMP_LE_F16_t16_e64; 5474 case AMDGPU::S_CMP_GT_F16: return AMDGPU::V_CMP_GT_F16_t16_e64; 5475 case AMDGPU::S_CMP_LG_F16: return AMDGPU::V_CMP_LG_F16_t16_e64; 5476 case AMDGPU::S_CMP_GE_F16: return AMDGPU::V_CMP_GE_F16_t16_e64; 5477 case AMDGPU::S_CMP_O_F16: return AMDGPU::V_CMP_O_F16_t16_e64; 5478 case AMDGPU::S_CMP_U_F16: return AMDGPU::V_CMP_U_F16_t16_e64; 5479 case AMDGPU::S_CMP_NGE_F16: return AMDGPU::V_CMP_NGE_F16_t16_e64; 5480 case AMDGPU::S_CMP_NLG_F16: return AMDGPU::V_CMP_NLG_F16_t16_e64; 5481 case AMDGPU::S_CMP_NGT_F16: return AMDGPU::V_CMP_NGT_F16_t16_e64; 5482 case AMDGPU::S_CMP_NLE_F16: return AMDGPU::V_CMP_NLE_F16_t16_e64; 5483 case AMDGPU::S_CMP_NEQ_F16: return AMDGPU::V_CMP_NEQ_F16_t16_e64; 5484 case AMDGPU::S_CMP_NLT_F16: return AMDGPU::V_CMP_NLT_F16_t16_e64; 5485 case AMDGPU::V_S_EXP_F32_e64: return AMDGPU::V_EXP_F32_e64; 5486 case AMDGPU::V_S_EXP_F16_e64: return AMDGPU::V_EXP_F16_fake16_e64; 5487 case AMDGPU::V_S_LOG_F32_e64: return AMDGPU::V_LOG_F32_e64; 5488 case AMDGPU::V_S_LOG_F16_e64: return AMDGPU::V_LOG_F16_fake16_e64; 5489 case AMDGPU::V_S_RCP_F32_e64: return AMDGPU::V_RCP_F32_e64; 5490 case AMDGPU::V_S_RCP_F16_e64: return AMDGPU::V_RCP_F16_fake16_e64; 5491 case AMDGPU::V_S_RSQ_F32_e64: return AMDGPU::V_RSQ_F32_e64; 5492 case AMDGPU::V_S_RSQ_F16_e64: return AMDGPU::V_RSQ_F16_fake16_e64; 5493 case AMDGPU::V_S_SQRT_F32_e64: return AMDGPU::V_SQRT_F32_e64; 5494 case AMDGPU::V_S_SQRT_F16_e64: return AMDGPU::V_SQRT_F16_fake16_e64; 5495 } 5496 llvm_unreachable( 5497 "Unexpected scalar opcode without corresponding vector one!"); 5498 } 5499 5500 // clang-format on 5501 5502 void SIInstrInfo::insertScratchExecCopy(MachineFunction &MF, 5503 MachineBasicBlock &MBB, 5504 MachineBasicBlock::iterator MBBI, 5505 const DebugLoc &DL, Register Reg, 5506 bool IsSCCLive, 5507 SlotIndexes *Indexes) const { 5508 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5509 const SIInstrInfo *TII = ST.getInstrInfo(); 5510 bool IsWave32 = ST.isWave32(); 5511 if (IsSCCLive) { 5512 // Insert two move instructions, one to save the original value of EXEC and 5513 // the other to turn on all bits in EXEC. This is required as we can't use 5514 // the single instruction S_OR_SAVEEXEC that clobbers SCC. 5515 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 5516 MCRegister Exec = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5517 auto StoreExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Reg) 5518 .addReg(Exec, RegState::Kill); 5519 auto FlipExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Exec).addImm(-1); 5520 if (Indexes) { 5521 Indexes->insertMachineInstrInMaps(*StoreExecMI); 5522 Indexes->insertMachineInstrInMaps(*FlipExecMI); 5523 } 5524 } else { 5525 const unsigned OrSaveExec = 5526 IsWave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64; 5527 auto SaveExec = 5528 BuildMI(MBB, MBBI, DL, TII->get(OrSaveExec), Reg).addImm(-1); 5529 SaveExec->getOperand(3).setIsDead(); // Mark SCC as dead. 5530 if (Indexes) 5531 Indexes->insertMachineInstrInMaps(*SaveExec); 5532 } 5533 } 5534 5535 void SIInstrInfo::restoreExec(MachineFunction &MF, MachineBasicBlock &MBB, 5536 MachineBasicBlock::iterator MBBI, 5537 const DebugLoc &DL, Register Reg, 5538 SlotIndexes *Indexes) const { 5539 unsigned ExecMov = isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 5540 MCRegister Exec = isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5541 auto ExecRestoreMI = 5542 BuildMI(MBB, MBBI, DL, get(ExecMov), Exec).addReg(Reg, RegState::Kill); 5543 if (Indexes) 5544 Indexes->insertMachineInstrInMaps(*ExecRestoreMI); 5545 } 5546 5547 static const TargetRegisterClass * 5548 adjustAllocatableRegClass(const GCNSubtarget &ST, const SIRegisterInfo &RI, 5549 const MachineRegisterInfo &MRI, 5550 const MCInstrDesc &TID, unsigned RCID, 5551 bool IsAllocatable) { 5552 if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 5553 (((TID.mayLoad() || TID.mayStore()) && 5554 !(TID.TSFlags & SIInstrFlags::Spill)) || 5555 (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) { 5556 switch (RCID) { 5557 case AMDGPU::AV_32RegClassID: 5558 RCID = AMDGPU::VGPR_32RegClassID; 5559 break; 5560 case AMDGPU::AV_64RegClassID: 5561 RCID = AMDGPU::VReg_64RegClassID; 5562 break; 5563 case AMDGPU::AV_96RegClassID: 5564 RCID = AMDGPU::VReg_96RegClassID; 5565 break; 5566 case AMDGPU::AV_128RegClassID: 5567 RCID = AMDGPU::VReg_128RegClassID; 5568 break; 5569 case AMDGPU::AV_160RegClassID: 5570 RCID = AMDGPU::VReg_160RegClassID; 5571 break; 5572 case AMDGPU::AV_512RegClassID: 5573 RCID = AMDGPU::VReg_512RegClassID; 5574 break; 5575 default: 5576 break; 5577 } 5578 } 5579 5580 return RI.getProperlyAlignedRC(RI.getRegClass(RCID)); 5581 } 5582 5583 const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID, 5584 unsigned OpNum, const TargetRegisterInfo *TRI, 5585 const MachineFunction &MF) 5586 const { 5587 if (OpNum >= TID.getNumOperands()) 5588 return nullptr; 5589 auto RegClass = TID.operands()[OpNum].RegClass; 5590 bool IsAllocatable = false; 5591 if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) { 5592 // vdst and vdata should be both VGPR or AGPR, same for the DS instructions 5593 // with two data operands. Request register class constrained to VGPR only 5594 // of both operands present as Machine Copy Propagation can not check this 5595 // constraint and possibly other passes too. 5596 // 5597 // The check is limited to FLAT and DS because atomics in non-flat encoding 5598 // have their vdst and vdata tied to be the same register. 5599 const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 5600 AMDGPU::OpName::vdst); 5601 const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 5602 (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 5603 : AMDGPU::OpName::vdata); 5604 if (DataIdx != -1) { 5605 IsAllocatable = VDstIdx != -1 || AMDGPU::hasNamedOperand( 5606 TID.Opcode, AMDGPU::OpName::data1); 5607 } 5608 } 5609 return adjustAllocatableRegClass(ST, RI, MF.getRegInfo(), TID, RegClass, 5610 IsAllocatable); 5611 } 5612 5613 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 5614 unsigned OpNo) const { 5615 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 5616 const MCInstrDesc &Desc = get(MI.getOpcode()); 5617 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 5618 Desc.operands()[OpNo].RegClass == -1) { 5619 Register Reg = MI.getOperand(OpNo).getReg(); 5620 5621 if (Reg.isVirtual()) 5622 return MRI.getRegClass(Reg); 5623 return RI.getPhysRegBaseClass(Reg); 5624 } 5625 5626 unsigned RCID = Desc.operands()[OpNo].RegClass; 5627 return adjustAllocatableRegClass(ST, RI, MRI, Desc, RCID, true); 5628 } 5629 5630 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { 5631 MachineBasicBlock::iterator I = MI; 5632 MachineBasicBlock *MBB = MI.getParent(); 5633 MachineOperand &MO = MI.getOperand(OpIdx); 5634 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 5635 unsigned RCID = get(MI.getOpcode()).operands()[OpIdx].RegClass; 5636 const TargetRegisterClass *RC = RI.getRegClass(RCID); 5637 unsigned Size = RI.getRegSizeInBits(*RC); 5638 unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32; 5639 if (MO.isReg()) 5640 Opcode = AMDGPU::COPY; 5641 else if (RI.isSGPRClass(RC)) 5642 Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32; 5643 5644 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 5645 Register Reg = MRI.createVirtualRegister(VRC); 5646 DebugLoc DL = MBB->findDebugLoc(I); 5647 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO); 5648 MO.ChangeToRegister(Reg, false); 5649 } 5650 5651 unsigned SIInstrInfo::buildExtractSubReg( 5652 MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, 5653 const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, 5654 unsigned SubIdx, const TargetRegisterClass *SubRC) const { 5655 MachineBasicBlock *MBB = MI->getParent(); 5656 DebugLoc DL = MI->getDebugLoc(); 5657 Register SubReg = MRI.createVirtualRegister(SubRC); 5658 5659 unsigned NewSubIdx = RI.composeSubRegIndices(SuperReg.getSubReg(), SubIdx); 5660 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 5661 .addReg(SuperReg.getReg(), 0, NewSubIdx); 5662 return SubReg; 5663 } 5664 5665 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 5666 MachineBasicBlock::iterator MII, MachineRegisterInfo &MRI, 5667 const MachineOperand &Op, const TargetRegisterClass *SuperRC, 5668 unsigned SubIdx, const TargetRegisterClass *SubRC) const { 5669 if (Op.isImm()) { 5670 if (SubIdx == AMDGPU::sub0) 5671 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm())); 5672 if (SubIdx == AMDGPU::sub1) 5673 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm() >> 32)); 5674 5675 llvm_unreachable("Unhandled register index for immediate"); 5676 } 5677 5678 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 5679 SubIdx, SubRC); 5680 return MachineOperand::CreateReg(SubReg, false); 5681 } 5682 5683 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 5684 void SIInstrInfo::swapOperands(MachineInstr &Inst) const { 5685 assert(Inst.getNumExplicitOperands() == 3); 5686 MachineOperand Op1 = Inst.getOperand(1); 5687 Inst.removeOperand(1); 5688 Inst.addOperand(Op1); 5689 } 5690 5691 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 5692 const MCOperandInfo &OpInfo, 5693 const MachineOperand &MO) const { 5694 if (!MO.isReg()) 5695 return false; 5696 5697 Register Reg = MO.getReg(); 5698 5699 const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass); 5700 if (Reg.isPhysical()) 5701 return DRC->contains(Reg); 5702 5703 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 5704 5705 if (MO.getSubReg()) { 5706 const MachineFunction *MF = MO.getParent()->getParent()->getParent(); 5707 const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF); 5708 if (!SuperRC) 5709 return false; 5710 5711 DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg()); 5712 if (!DRC) 5713 return false; 5714 } 5715 return RC->hasSuperClassEq(DRC); 5716 } 5717 5718 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 5719 const MCOperandInfo &OpInfo, 5720 const MachineOperand &MO) const { 5721 if (MO.isReg()) 5722 return isLegalRegOperand(MRI, OpInfo, MO); 5723 5724 // Handle non-register types that are treated like immediates. 5725 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 5726 return true; 5727 } 5728 5729 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, 5730 const MachineOperand *MO) const { 5731 const MachineFunction &MF = *MI.getParent()->getParent(); 5732 const MachineRegisterInfo &MRI = MF.getRegInfo(); 5733 const MCInstrDesc &InstDesc = MI.getDesc(); 5734 const MCOperandInfo &OpInfo = InstDesc.operands()[OpIdx]; 5735 const TargetRegisterClass *DefinedRC = 5736 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 5737 if (!MO) 5738 MO = &MI.getOperand(OpIdx); 5739 5740 int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode()); 5741 int LiteralLimit = !isVOP3(MI) || ST.hasVOP3Literal() ? 1 : 0; 5742 if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) { 5743 if (!MO->isReg() && !isInlineConstant(*MO, OpInfo) && !LiteralLimit--) 5744 return false; 5745 5746 SmallDenseSet<RegSubRegPair> SGPRsUsed; 5747 if (MO->isReg()) 5748 SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg())); 5749 5750 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5751 if (i == OpIdx) 5752 continue; 5753 const MachineOperand &Op = MI.getOperand(i); 5754 if (Op.isReg()) { 5755 RegSubRegPair SGPR(Op.getReg(), Op.getSubReg()); 5756 if (!SGPRsUsed.count(SGPR) && 5757 // FIXME: This can access off the end of the operands() array. 5758 usesConstantBus(MRI, Op, InstDesc.operands().begin()[i])) { 5759 if (--ConstantBusLimit <= 0) 5760 return false; 5761 SGPRsUsed.insert(SGPR); 5762 } 5763 } else if (AMDGPU::isSISrcOperand(InstDesc, i) && 5764 !isInlineConstant(Op, InstDesc.operands()[i])) { 5765 if (!LiteralLimit--) 5766 return false; 5767 if (--ConstantBusLimit <= 0) 5768 return false; 5769 } 5770 } 5771 } else if (ST.hasNoF16PseudoScalarTransInlineConstants() && !MO->isReg() && 5772 isF16PseudoScalarTrans(MI.getOpcode()) && 5773 isInlineConstant(*MO, OpInfo)) { 5774 return false; 5775 } 5776 5777 if (MO->isReg()) { 5778 if (!DefinedRC) 5779 return OpInfo.OperandType == MCOI::OPERAND_UNKNOWN; 5780 if (!isLegalRegOperand(MRI, OpInfo, *MO)) 5781 return false; 5782 bool IsAGPR = RI.isAGPR(MRI, MO->getReg()); 5783 if (IsAGPR && !ST.hasMAIInsts()) 5784 return false; 5785 unsigned Opc = MI.getOpcode(); 5786 if (IsAGPR && 5787 (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 5788 (MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc))) 5789 return false; 5790 // Atomics should have both vdst and vdata either vgpr or agpr. 5791 const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 5792 const int DataIdx = AMDGPU::getNamedOperandIdx(Opc, 5793 isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata); 5794 if ((int)OpIdx == VDstIdx && DataIdx != -1 && 5795 MI.getOperand(DataIdx).isReg() && 5796 RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR) 5797 return false; 5798 if ((int)OpIdx == DataIdx) { 5799 if (VDstIdx != -1 && 5800 RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR) 5801 return false; 5802 // DS instructions with 2 src operands also must have tied RC. 5803 const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc, 5804 AMDGPU::OpName::data1); 5805 if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() && 5806 RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR) 5807 return false; 5808 } 5809 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && !ST.hasGFX90AInsts() && 5810 (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) && 5811 RI.isSGPRReg(MRI, MO->getReg())) 5812 return false; 5813 return true; 5814 } 5815 5816 if (MO->isImm()) { 5817 uint64_t Imm = MO->getImm(); 5818 bool Is64BitFPOp = OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_FP64; 5819 bool Is64BitOp = Is64BitFPOp || 5820 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_INT64 || 5821 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2INT32 || 5822 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2FP32; 5823 if (Is64BitOp && 5824 !AMDGPU::isInlinableLiteral64(Imm, ST.hasInv2PiInlineImm())) { 5825 if (!AMDGPU::isValid32BitLiteral(Imm, Is64BitFPOp)) 5826 return false; 5827 5828 // FIXME: We can use sign extended 64-bit literals, but only for signed 5829 // operands. At the moment we do not know if an operand is signed. 5830 // Such operand will be encoded as its low 32 bits and then either 5831 // correctly sign extended or incorrectly zero extended by HW. 5832 if (!Is64BitFPOp && (int32_t)Imm < 0) 5833 return false; 5834 } 5835 } 5836 5837 // Handle non-register types that are treated like immediates. 5838 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal()); 5839 5840 if (!DefinedRC) { 5841 // This operand expects an immediate. 5842 return true; 5843 } 5844 5845 return isImmOperandLegal(MI, OpIdx, *MO); 5846 } 5847 5848 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 5849 MachineInstr &MI) const { 5850 unsigned Opc = MI.getOpcode(); 5851 const MCInstrDesc &InstrDesc = get(Opc); 5852 5853 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 5854 MachineOperand &Src0 = MI.getOperand(Src0Idx); 5855 5856 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 5857 MachineOperand &Src1 = MI.getOperand(Src1Idx); 5858 5859 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 5860 // we need to only have one constant bus use before GFX10. 5861 bool HasImplicitSGPR = findImplicitSGPRRead(MI); 5862 if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 && Src0.isReg() && 5863 RI.isSGPRReg(MRI, Src0.getReg())) 5864 legalizeOpWithMove(MI, Src0Idx); 5865 5866 // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for 5867 // both the value to write (src0) and lane select (src1). Fix up non-SGPR 5868 // src0/src1 with V_READFIRSTLANE. 5869 if (Opc == AMDGPU::V_WRITELANE_B32) { 5870 const DebugLoc &DL = MI.getDebugLoc(); 5871 if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) { 5872 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5873 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5874 .add(Src0); 5875 Src0.ChangeToRegister(Reg, false); 5876 } 5877 if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) { 5878 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5879 const DebugLoc &DL = MI.getDebugLoc(); 5880 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5881 .add(Src1); 5882 Src1.ChangeToRegister(Reg, false); 5883 } 5884 return; 5885 } 5886 5887 // No VOP2 instructions support AGPRs. 5888 if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg())) 5889 legalizeOpWithMove(MI, Src0Idx); 5890 5891 if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg())) 5892 legalizeOpWithMove(MI, Src1Idx); 5893 5894 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2. 5895 if (Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F16_e32) { 5896 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 5897 if (!RI.isVGPR(MRI, MI.getOperand(Src2Idx).getReg())) 5898 legalizeOpWithMove(MI, Src2Idx); 5899 } 5900 5901 // VOP2 src0 instructions support all operand types, so we don't need to check 5902 // their legality. If src1 is already legal, we don't need to do anything. 5903 if (isLegalRegOperand(MRI, InstrDesc.operands()[Src1Idx], Src1)) 5904 return; 5905 5906 // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for 5907 // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane 5908 // select is uniform. 5909 if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() && 5910 RI.isVGPR(MRI, Src1.getReg())) { 5911 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5912 const DebugLoc &DL = MI.getDebugLoc(); 5913 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5914 .add(Src1); 5915 Src1.ChangeToRegister(Reg, false); 5916 return; 5917 } 5918 5919 // We do not use commuteInstruction here because it is too aggressive and will 5920 // commute if it is possible. We only want to commute here if it improves 5921 // legality. This can be called a fairly large number of times so don't waste 5922 // compile time pointlessly swapping and checking legality again. 5923 if (HasImplicitSGPR || !MI.isCommutable()) { 5924 legalizeOpWithMove(MI, Src1Idx); 5925 return; 5926 } 5927 5928 // If src0 can be used as src1, commuting will make the operands legal. 5929 // Otherwise we have to give up and insert a move. 5930 // 5931 // TODO: Other immediate-like operand kinds could be commuted if there was a 5932 // MachineOperand::ChangeTo* for them. 5933 if ((!Src1.isImm() && !Src1.isReg()) || 5934 !isLegalRegOperand(MRI, InstrDesc.operands()[Src1Idx], Src0)) { 5935 legalizeOpWithMove(MI, Src1Idx); 5936 return; 5937 } 5938 5939 int CommutedOpc = commuteOpcode(MI); 5940 if (CommutedOpc == -1) { 5941 legalizeOpWithMove(MI, Src1Idx); 5942 return; 5943 } 5944 5945 MI.setDesc(get(CommutedOpc)); 5946 5947 Register Src0Reg = Src0.getReg(); 5948 unsigned Src0SubReg = Src0.getSubReg(); 5949 bool Src0Kill = Src0.isKill(); 5950 5951 if (Src1.isImm()) 5952 Src0.ChangeToImmediate(Src1.getImm()); 5953 else if (Src1.isReg()) { 5954 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 5955 Src0.setSubReg(Src1.getSubReg()); 5956 } else 5957 llvm_unreachable("Should only have register or immediate operands"); 5958 5959 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 5960 Src1.setSubReg(Src0SubReg); 5961 fixImplicitOperands(MI); 5962 } 5963 5964 // Legalize VOP3 operands. All operand types are supported for any operand 5965 // but only one literal constant and only starting from GFX10. 5966 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, 5967 MachineInstr &MI) const { 5968 unsigned Opc = MI.getOpcode(); 5969 5970 int VOP3Idx[3] = { 5971 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 5972 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 5973 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 5974 }; 5975 5976 if (Opc == AMDGPU::V_PERMLANE16_B32_e64 || 5977 Opc == AMDGPU::V_PERMLANEX16_B32_e64) { 5978 // src1 and src2 must be scalar 5979 MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]); 5980 MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]); 5981 const DebugLoc &DL = MI.getDebugLoc(); 5982 if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) { 5983 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5984 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5985 .add(Src1); 5986 Src1.ChangeToRegister(Reg, false); 5987 } 5988 if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) { 5989 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5990 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5991 .add(Src2); 5992 Src2.ChangeToRegister(Reg, false); 5993 } 5994 } 5995 5996 // Find the one SGPR operand we are allowed to use. 5997 int ConstantBusLimit = ST.getConstantBusLimit(Opc); 5998 int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; 5999 SmallDenseSet<unsigned> SGPRsUsed; 6000 Register SGPRReg = findUsedSGPR(MI, VOP3Idx); 6001 if (SGPRReg) { 6002 SGPRsUsed.insert(SGPRReg); 6003 --ConstantBusLimit; 6004 } 6005 6006 for (int Idx : VOP3Idx) { 6007 if (Idx == -1) 6008 break; 6009 MachineOperand &MO = MI.getOperand(Idx); 6010 6011 if (!MO.isReg()) { 6012 if (isInlineConstant(MO, get(Opc).operands()[Idx])) 6013 continue; 6014 6015 if (LiteralLimit > 0 && ConstantBusLimit > 0) { 6016 --LiteralLimit; 6017 --ConstantBusLimit; 6018 continue; 6019 } 6020 6021 --LiteralLimit; 6022 --ConstantBusLimit; 6023 legalizeOpWithMove(MI, Idx); 6024 continue; 6025 } 6026 6027 if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) && 6028 !isOperandLegal(MI, Idx, &MO)) { 6029 legalizeOpWithMove(MI, Idx); 6030 continue; 6031 } 6032 6033 if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg()))) 6034 continue; // VGPRs are legal 6035 6036 // We can use one SGPR in each VOP3 instruction prior to GFX10 6037 // and two starting from GFX10. 6038 if (SGPRsUsed.count(MO.getReg())) 6039 continue; 6040 if (ConstantBusLimit > 0) { 6041 SGPRsUsed.insert(MO.getReg()); 6042 --ConstantBusLimit; 6043 continue; 6044 } 6045 6046 // If we make it this far, then the operand is not legal and we must 6047 // legalize it. 6048 legalizeOpWithMove(MI, Idx); 6049 } 6050 6051 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2 tied to vdst. 6052 if ((Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 6053 !RI.isVGPR(MRI, MI.getOperand(VOP3Idx[2]).getReg())) 6054 legalizeOpWithMove(MI, VOP3Idx[2]); 6055 } 6056 6057 Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI, 6058 MachineRegisterInfo &MRI) const { 6059 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 6060 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 6061 Register DstReg = MRI.createVirtualRegister(SRC); 6062 unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32; 6063 6064 if (RI.hasAGPRs(VRC)) { 6065 VRC = RI.getEquivalentVGPRClass(VRC); 6066 Register NewSrcReg = MRI.createVirtualRegister(VRC); 6067 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6068 get(TargetOpcode::COPY), NewSrcReg) 6069 .addReg(SrcReg); 6070 SrcReg = NewSrcReg; 6071 } 6072 6073 if (SubRegs == 1) { 6074 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6075 get(AMDGPU::V_READFIRSTLANE_B32), DstReg) 6076 .addReg(SrcReg); 6077 return DstReg; 6078 } 6079 6080 SmallVector<Register, 8> SRegs; 6081 for (unsigned i = 0; i < SubRegs; ++i) { 6082 Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6083 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6084 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 6085 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 6086 SRegs.push_back(SGPR); 6087 } 6088 6089 MachineInstrBuilder MIB = 6090 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6091 get(AMDGPU::REG_SEQUENCE), DstReg); 6092 for (unsigned i = 0; i < SubRegs; ++i) { 6093 MIB.addReg(SRegs[i]); 6094 MIB.addImm(RI.getSubRegFromChannel(i)); 6095 } 6096 return DstReg; 6097 } 6098 6099 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 6100 MachineInstr &MI) const { 6101 6102 // If the pointer is store in VGPRs, then we need to move them to 6103 // SGPRs using v_readfirstlane. This is safe because we only select 6104 // loads with uniform pointers to SMRD instruction so we know the 6105 // pointer value is uniform. 6106 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); 6107 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 6108 Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 6109 SBase->setReg(SGPR); 6110 } 6111 MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soffset); 6112 if (SOff && !RI.isSGPRClass(MRI.getRegClass(SOff->getReg()))) { 6113 Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI); 6114 SOff->setReg(SGPR); 6115 } 6116 } 6117 6118 bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const { 6119 unsigned Opc = Inst.getOpcode(); 6120 int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 6121 if (OldSAddrIdx < 0) 6122 return false; 6123 6124 assert(isSegmentSpecificFLAT(Inst)); 6125 6126 int NewOpc = AMDGPU::getGlobalVaddrOp(Opc); 6127 if (NewOpc < 0) 6128 NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc); 6129 if (NewOpc < 0) 6130 return false; 6131 6132 MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); 6133 MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx); 6134 if (RI.isSGPRReg(MRI, SAddr.getReg())) 6135 return false; 6136 6137 int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr); 6138 if (NewVAddrIdx < 0) 6139 return false; 6140 6141 int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 6142 6143 // Check vaddr, it shall be zero or absent. 6144 MachineInstr *VAddrDef = nullptr; 6145 if (OldVAddrIdx >= 0) { 6146 MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx); 6147 VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg()); 6148 if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 || 6149 !VAddrDef->getOperand(1).isImm() || 6150 VAddrDef->getOperand(1).getImm() != 0) 6151 return false; 6152 } 6153 6154 const MCInstrDesc &NewDesc = get(NewOpc); 6155 Inst.setDesc(NewDesc); 6156 6157 // Callers expect iterator to be valid after this call, so modify the 6158 // instruction in place. 6159 if (OldVAddrIdx == NewVAddrIdx) { 6160 MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx); 6161 // Clear use list from the old vaddr holding a zero register. 6162 MRI.removeRegOperandFromUseList(&NewVAddr); 6163 MRI.moveOperands(&NewVAddr, &SAddr, 1); 6164 Inst.removeOperand(OldSAddrIdx); 6165 // Update the use list with the pointer we have just moved from vaddr to 6166 // saddr position. Otherwise new vaddr will be missing from the use list. 6167 MRI.removeRegOperandFromUseList(&NewVAddr); 6168 MRI.addRegOperandToUseList(&NewVAddr); 6169 } else { 6170 assert(OldSAddrIdx == NewVAddrIdx); 6171 6172 if (OldVAddrIdx >= 0) { 6173 int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc, 6174 AMDGPU::OpName::vdst_in); 6175 6176 // removeOperand doesn't try to fixup tied operand indexes at it goes, so 6177 // it asserts. Untie the operands for now and retie them afterwards. 6178 if (NewVDstIn != -1) { 6179 int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in); 6180 Inst.untieRegOperand(OldVDstIn); 6181 } 6182 6183 Inst.removeOperand(OldVAddrIdx); 6184 6185 if (NewVDstIn != -1) { 6186 int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst); 6187 Inst.tieOperands(NewVDst, NewVDstIn); 6188 } 6189 } 6190 } 6191 6192 if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg())) 6193 VAddrDef->eraseFromParent(); 6194 6195 return true; 6196 } 6197 6198 // FIXME: Remove this when SelectionDAG is obsoleted. 6199 void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI, 6200 MachineInstr &MI) const { 6201 if (!isSegmentSpecificFLAT(MI)) 6202 return; 6203 6204 // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence 6205 // thinks they are uniform, so a readfirstlane should be valid. 6206 MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr); 6207 if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg()))) 6208 return; 6209 6210 if (moveFlatAddrToVGPR(MI)) 6211 return; 6212 6213 Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI); 6214 SAddr->setReg(ToSGPR); 6215 } 6216 6217 void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB, 6218 MachineBasicBlock::iterator I, 6219 const TargetRegisterClass *DstRC, 6220 MachineOperand &Op, 6221 MachineRegisterInfo &MRI, 6222 const DebugLoc &DL) const { 6223 Register OpReg = Op.getReg(); 6224 unsigned OpSubReg = Op.getSubReg(); 6225 6226 const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg( 6227 RI.getRegClassForReg(MRI, OpReg), OpSubReg); 6228 6229 // Check if operand is already the correct register class. 6230 if (DstRC == OpRC) 6231 return; 6232 6233 Register DstReg = MRI.createVirtualRegister(DstRC); 6234 auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op); 6235 6236 Op.setReg(DstReg); 6237 Op.setSubReg(0); 6238 6239 MachineInstr *Def = MRI.getVRegDef(OpReg); 6240 if (!Def) 6241 return; 6242 6243 // Try to eliminate the copy if it is copying an immediate value. 6244 if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass) 6245 foldImmediate(*Copy, *Def, OpReg, &MRI); 6246 6247 bool ImpDef = Def->isImplicitDef(); 6248 while (!ImpDef && Def && Def->isCopy()) { 6249 if (Def->getOperand(1).getReg().isPhysical()) 6250 break; 6251 Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg()); 6252 ImpDef = Def && Def->isImplicitDef(); 6253 } 6254 if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) && 6255 !ImpDef) 6256 Copy.addReg(AMDGPU::EXEC, RegState::Implicit); 6257 } 6258 6259 // Emit the actual waterfall loop, executing the wrapped instruction for each 6260 // unique value of \p ScalarOps across all lanes. In the best case we execute 1 6261 // iteration, in the worst case we execute 64 (once per lane). 6262 static void emitLoadScalarOpsFromVGPRLoop( 6263 const SIInstrInfo &TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, 6264 MachineBasicBlock &LoopBB, MachineBasicBlock &BodyBB, const DebugLoc &DL, 6265 ArrayRef<MachineOperand *> ScalarOps) { 6266 MachineFunction &MF = *OrigBB.getParent(); 6267 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 6268 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 6269 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 6270 unsigned SaveExecOpc = 6271 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; 6272 unsigned XorTermOpc = 6273 ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; 6274 unsigned AndOpc = 6275 ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 6276 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6277 6278 MachineBasicBlock::iterator I = LoopBB.begin(); 6279 6280 SmallVector<Register, 8> ReadlanePieces; 6281 Register CondReg; 6282 6283 for (MachineOperand *ScalarOp : ScalarOps) { 6284 unsigned RegSize = TRI->getRegSizeInBits(ScalarOp->getReg(), MRI); 6285 unsigned NumSubRegs = RegSize / 32; 6286 Register VScalarOp = ScalarOp->getReg(); 6287 6288 if (NumSubRegs == 1) { 6289 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6290 6291 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurReg) 6292 .addReg(VScalarOp); 6293 6294 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); 6295 6296 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U32_e64), NewCondReg) 6297 .addReg(CurReg) 6298 .addReg(VScalarOp); 6299 6300 // Combine the comparison results with AND. 6301 if (!CondReg) // First. 6302 CondReg = NewCondReg; 6303 else { // If not the first, we create an AND. 6304 Register AndReg = MRI.createVirtualRegister(BoolXExecRC); 6305 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) 6306 .addReg(CondReg) 6307 .addReg(NewCondReg); 6308 CondReg = AndReg; 6309 } 6310 6311 // Update ScalarOp operand to use the SGPR ScalarOp. 6312 ScalarOp->setReg(CurReg); 6313 ScalarOp->setIsKill(); 6314 } else { 6315 unsigned VScalarOpUndef = getUndefRegState(ScalarOp->isUndef()); 6316 assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && 6317 "Unhandled register size"); 6318 6319 for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) { 6320 Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6321 Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6322 6323 // Read the next variant <- also loop target. 6324 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo) 6325 .addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx)); 6326 6327 // Read the next variant <- also loop target. 6328 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi) 6329 .addReg(VScalarOp, VScalarOpUndef, 6330 TRI->getSubRegFromChannel(Idx + 1)); 6331 6332 ReadlanePieces.push_back(CurRegLo); 6333 ReadlanePieces.push_back(CurRegHi); 6334 6335 // Comparison is to be done as 64-bit. 6336 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); 6337 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg) 6338 .addReg(CurRegLo) 6339 .addImm(AMDGPU::sub0) 6340 .addReg(CurRegHi) 6341 .addImm(AMDGPU::sub1); 6342 6343 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); 6344 auto Cmp = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), 6345 NewCondReg) 6346 .addReg(CurReg); 6347 if (NumSubRegs <= 2) 6348 Cmp.addReg(VScalarOp); 6349 else 6350 Cmp.addReg(VScalarOp, VScalarOpUndef, 6351 TRI->getSubRegFromChannel(Idx, 2)); 6352 6353 // Combine the comparison results with AND. 6354 if (!CondReg) // First. 6355 CondReg = NewCondReg; 6356 else { // If not the first, we create an AND. 6357 Register AndReg = MRI.createVirtualRegister(BoolXExecRC); 6358 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) 6359 .addReg(CondReg) 6360 .addReg(NewCondReg); 6361 CondReg = AndReg; 6362 } 6363 } // End for loop. 6364 6365 auto SScalarOpRC = 6366 TRI->getEquivalentSGPRClass(MRI.getRegClass(VScalarOp)); 6367 Register SScalarOp = MRI.createVirtualRegister(SScalarOpRC); 6368 6369 // Build scalar ScalarOp. 6370 auto Merge = 6371 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SScalarOp); 6372 unsigned Channel = 0; 6373 for (Register Piece : ReadlanePieces) { 6374 Merge.addReg(Piece).addImm(TRI->getSubRegFromChannel(Channel++)); 6375 } 6376 6377 // Update ScalarOp operand to use the SGPR ScalarOp. 6378 ScalarOp->setReg(SScalarOp); 6379 ScalarOp->setIsKill(); 6380 } 6381 } 6382 6383 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 6384 MRI.setSimpleHint(SaveExec, CondReg); 6385 6386 // Update EXEC to matching lanes, saving original to SaveExec. 6387 BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec) 6388 .addReg(CondReg, RegState::Kill); 6389 6390 // The original instruction is here; we insert the terminators after it. 6391 I = BodyBB.end(); 6392 6393 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 6394 BuildMI(BodyBB, I, DL, TII.get(XorTermOpc), Exec) 6395 .addReg(Exec) 6396 .addReg(SaveExec); 6397 6398 BuildMI(BodyBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB); 6399 } 6400 6401 // Build a waterfall loop around \p MI, replacing the VGPR \p ScalarOp register 6402 // with SGPRs by iterating over all unique values across all lanes. 6403 // Returns the loop basic block that now contains \p MI. 6404 static MachineBasicBlock * 6405 loadMBUFScalarOperandsFromVGPR(const SIInstrInfo &TII, MachineInstr &MI, 6406 ArrayRef<MachineOperand *> ScalarOps, 6407 MachineDominatorTree *MDT, 6408 MachineBasicBlock::iterator Begin = nullptr, 6409 MachineBasicBlock::iterator End = nullptr) { 6410 MachineBasicBlock &MBB = *MI.getParent(); 6411 MachineFunction &MF = *MBB.getParent(); 6412 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 6413 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 6414 MachineRegisterInfo &MRI = MF.getRegInfo(); 6415 if (!Begin.isValid()) 6416 Begin = &MI; 6417 if (!End.isValid()) { 6418 End = &MI; 6419 ++End; 6420 } 6421 const DebugLoc &DL = MI.getDebugLoc(); 6422 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 6423 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 6424 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6425 6426 // Save SCC. Waterfall Loop may overwrite SCC. 6427 Register SaveSCCReg; 6428 6429 // FIXME: We should maintain SCC liveness while doing the FixSGPRCopies walk 6430 // rather than unlimited scan everywhere 6431 bool SCCNotDead = 6432 MBB.computeRegisterLiveness(TRI, AMDGPU::SCC, MI, 6433 std::numeric_limits<unsigned>::max()) != 6434 MachineBasicBlock::LQR_Dead; 6435 if (SCCNotDead) { 6436 SaveSCCReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6437 BuildMI(MBB, Begin, DL, TII.get(AMDGPU::S_CSELECT_B32), SaveSCCReg) 6438 .addImm(1) 6439 .addImm(0); 6440 } 6441 6442 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 6443 6444 // Save the EXEC mask 6445 BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec); 6446 6447 // Killed uses in the instruction we are waterfalling around will be 6448 // incorrect due to the added control-flow. 6449 MachineBasicBlock::iterator AfterMI = MI; 6450 ++AfterMI; 6451 for (auto I = Begin; I != AfterMI; I++) { 6452 for (auto &MO : I->all_uses()) 6453 MRI.clearKillFlags(MO.getReg()); 6454 } 6455 6456 // To insert the loop we need to split the block. Move everything after this 6457 // point to a new block, and insert a new empty block between the two. 6458 MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock(); 6459 MachineBasicBlock *BodyBB = MF.CreateMachineBasicBlock(); 6460 MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock(); 6461 MachineFunction::iterator MBBI(MBB); 6462 ++MBBI; 6463 6464 MF.insert(MBBI, LoopBB); 6465 MF.insert(MBBI, BodyBB); 6466 MF.insert(MBBI, RemainderBB); 6467 6468 LoopBB->addSuccessor(BodyBB); 6469 BodyBB->addSuccessor(LoopBB); 6470 BodyBB->addSuccessor(RemainderBB); 6471 6472 // Move Begin to MI to the BodyBB, and the remainder of the block to 6473 // RemainderBB. 6474 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 6475 RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end()); 6476 BodyBB->splice(BodyBB->begin(), &MBB, Begin, MBB.end()); 6477 6478 MBB.addSuccessor(LoopBB); 6479 6480 // Update dominators. We know that MBB immediately dominates LoopBB, that 6481 // LoopBB immediately dominates BodyBB, and BodyBB immediately dominates 6482 // RemainderBB. RemainderBB immediately dominates all of the successors 6483 // transferred to it from MBB that MBB used to properly dominate. 6484 if (MDT) { 6485 MDT->addNewBlock(LoopBB, &MBB); 6486 MDT->addNewBlock(BodyBB, LoopBB); 6487 MDT->addNewBlock(RemainderBB, BodyBB); 6488 for (auto &Succ : RemainderBB->successors()) { 6489 if (MDT->properlyDominates(&MBB, Succ)) { 6490 MDT->changeImmediateDominator(Succ, RemainderBB); 6491 } 6492 } 6493 } 6494 6495 emitLoadScalarOpsFromVGPRLoop(TII, MRI, MBB, *LoopBB, *BodyBB, DL, ScalarOps); 6496 6497 MachineBasicBlock::iterator First = RemainderBB->begin(); 6498 // Restore SCC 6499 if (SCCNotDead) { 6500 BuildMI(*RemainderBB, First, DL, TII.get(AMDGPU::S_CMP_LG_U32)) 6501 .addReg(SaveSCCReg, RegState::Kill) 6502 .addImm(0); 6503 } 6504 6505 // Restore the EXEC mask 6506 BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec); 6507 return BodyBB; 6508 } 6509 6510 // Extract pointer from Rsrc and return a zero-value Rsrc replacement. 6511 static std::tuple<unsigned, unsigned> 6512 extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) { 6513 MachineBasicBlock &MBB = *MI.getParent(); 6514 MachineFunction &MF = *MBB.getParent(); 6515 MachineRegisterInfo &MRI = MF.getRegInfo(); 6516 6517 // Extract the ptr from the resource descriptor. 6518 unsigned RsrcPtr = 6519 TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass, 6520 AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 6521 6522 // Create an empty resource descriptor 6523 Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 6524 Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6525 Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6526 Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass); 6527 uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat(); 6528 6529 // Zero64 = 0 6530 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64) 6531 .addImm(0); 6532 6533 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 6534 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo) 6535 .addImm(RsrcDataFormat & 0xFFFFFFFF); 6536 6537 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 6538 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi) 6539 .addImm(RsrcDataFormat >> 32); 6540 6541 // NewSRsrc = {Zero64, SRsrcFormat} 6542 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc) 6543 .addReg(Zero64) 6544 .addImm(AMDGPU::sub0_sub1) 6545 .addReg(SRsrcFormatLo) 6546 .addImm(AMDGPU::sub2) 6547 .addReg(SRsrcFormatHi) 6548 .addImm(AMDGPU::sub3); 6549 6550 return std::tuple(RsrcPtr, NewSRsrc); 6551 } 6552 6553 MachineBasicBlock * 6554 SIInstrInfo::legalizeOperands(MachineInstr &MI, 6555 MachineDominatorTree *MDT) const { 6556 MachineFunction &MF = *MI.getParent()->getParent(); 6557 MachineRegisterInfo &MRI = MF.getRegInfo(); 6558 MachineBasicBlock *CreatedBB = nullptr; 6559 6560 // Legalize VOP2 6561 if (isVOP2(MI) || isVOPC(MI)) { 6562 legalizeOperandsVOP2(MRI, MI); 6563 return CreatedBB; 6564 } 6565 6566 // Legalize VOP3 6567 if (isVOP3(MI)) { 6568 legalizeOperandsVOP3(MRI, MI); 6569 return CreatedBB; 6570 } 6571 6572 // Legalize SMRD 6573 if (isSMRD(MI)) { 6574 legalizeOperandsSMRD(MRI, MI); 6575 return CreatedBB; 6576 } 6577 6578 // Legalize FLAT 6579 if (isFLAT(MI)) { 6580 legalizeOperandsFLAT(MRI, MI); 6581 return CreatedBB; 6582 } 6583 6584 // Legalize REG_SEQUENCE and PHI 6585 // The register class of the operands much be the same type as the register 6586 // class of the output. 6587 if (MI.getOpcode() == AMDGPU::PHI) { 6588 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 6589 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 6590 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual()) 6591 continue; 6592 const TargetRegisterClass *OpRC = 6593 MRI.getRegClass(MI.getOperand(i).getReg()); 6594 if (RI.hasVectorRegisters(OpRC)) { 6595 VRC = OpRC; 6596 } else { 6597 SRC = OpRC; 6598 } 6599 } 6600 6601 // If any of the operands are VGPR registers, then they all most be 6602 // otherwise we will create illegal VGPR->SGPR copies when legalizing 6603 // them. 6604 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { 6605 if (!VRC) { 6606 assert(SRC); 6607 if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) { 6608 VRC = &AMDGPU::VReg_1RegClass; 6609 } else 6610 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 6611 ? RI.getEquivalentAGPRClass(SRC) 6612 : RI.getEquivalentVGPRClass(SRC); 6613 } else { 6614 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 6615 ? RI.getEquivalentAGPRClass(VRC) 6616 : RI.getEquivalentVGPRClass(VRC); 6617 } 6618 RC = VRC; 6619 } else { 6620 RC = SRC; 6621 } 6622 6623 // Update all the operands so they have the same type. 6624 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 6625 MachineOperand &Op = MI.getOperand(I); 6626 if (!Op.isReg() || !Op.getReg().isVirtual()) 6627 continue; 6628 6629 // MI is a PHI instruction. 6630 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); 6631 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 6632 6633 // Avoid creating no-op copies with the same src and dst reg class. These 6634 // confuse some of the machine passes. 6635 legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc()); 6636 } 6637 } 6638 6639 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 6640 // VGPR dest type and SGPR sources, insert copies so all operands are 6641 // VGPRs. This seems to help operand folding / the register coalescer. 6642 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { 6643 MachineBasicBlock *MBB = MI.getParent(); 6644 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); 6645 if (RI.hasVGPRs(DstRC)) { 6646 // Update all the operands so they are VGPR register classes. These may 6647 // not be the same register class because REG_SEQUENCE supports mixing 6648 // subregister index types e.g. sub0_sub1 + sub2 + sub3 6649 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 6650 MachineOperand &Op = MI.getOperand(I); 6651 if (!Op.isReg() || !Op.getReg().isVirtual()) 6652 continue; 6653 6654 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 6655 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 6656 if (VRC == OpRC) 6657 continue; 6658 6659 legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc()); 6660 Op.setIsKill(); 6661 } 6662 } 6663 6664 return CreatedBB; 6665 } 6666 6667 // Legalize INSERT_SUBREG 6668 // src0 must have the same register class as dst 6669 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { 6670 Register Dst = MI.getOperand(0).getReg(); 6671 Register Src0 = MI.getOperand(1).getReg(); 6672 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 6673 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 6674 if (DstRC != Src0RC) { 6675 MachineBasicBlock *MBB = MI.getParent(); 6676 MachineOperand &Op = MI.getOperand(1); 6677 legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc()); 6678 } 6679 return CreatedBB; 6680 } 6681 6682 // Legalize SI_INIT_M0 6683 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) { 6684 MachineOperand &Src = MI.getOperand(0); 6685 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) 6686 Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); 6687 return CreatedBB; 6688 } 6689 6690 // Legalize S_BITREPLICATE, S_QUADMASK and S_WQM 6691 if (MI.getOpcode() == AMDGPU::S_BITREPLICATE_B64_B32 || 6692 MI.getOpcode() == AMDGPU::S_QUADMASK_B32 || 6693 MI.getOpcode() == AMDGPU::S_QUADMASK_B64 || 6694 MI.getOpcode() == AMDGPU::S_WQM_B32 || 6695 MI.getOpcode() == AMDGPU::S_WQM_B64 || 6696 MI.getOpcode() == AMDGPU::S_INVERSE_BALLOT_U32 || 6697 MI.getOpcode() == AMDGPU::S_INVERSE_BALLOT_U64) { 6698 MachineOperand &Src = MI.getOperand(1); 6699 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) 6700 Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); 6701 return CreatedBB; 6702 } 6703 6704 // Legalize MIMG/VIMAGE/VSAMPLE and MUBUF/MTBUF for shaders. 6705 // 6706 // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via 6707 // scratch memory access. In both cases, the legalization never involves 6708 // conversion to the addr64 form. 6709 if (isImage(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) && 6710 (isMUBUF(MI) || isMTBUF(MI)))) { 6711 int RSrcOpName = (isVIMAGE(MI) || isVSAMPLE(MI)) ? AMDGPU::OpName::rsrc 6712 : AMDGPU::OpName::srsrc; 6713 MachineOperand *SRsrc = getNamedOperand(MI, RSrcOpName); 6714 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) 6715 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {SRsrc}, MDT); 6716 6717 int SampOpName = isMIMG(MI) ? AMDGPU::OpName::ssamp : AMDGPU::OpName::samp; 6718 MachineOperand *SSamp = getNamedOperand(MI, SampOpName); 6719 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) 6720 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {SSamp}, MDT); 6721 6722 return CreatedBB; 6723 } 6724 6725 // Legalize SI_CALL 6726 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { 6727 MachineOperand *Dest = &MI.getOperand(0); 6728 if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) { 6729 // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and 6730 // following copies, we also need to move copies from and to physical 6731 // registers into the loop block. 6732 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 6733 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 6734 6735 // Also move the copies to physical registers into the loop block 6736 MachineBasicBlock &MBB = *MI.getParent(); 6737 MachineBasicBlock::iterator Start(&MI); 6738 while (Start->getOpcode() != FrameSetupOpcode) 6739 --Start; 6740 MachineBasicBlock::iterator End(&MI); 6741 while (End->getOpcode() != FrameDestroyOpcode) 6742 ++End; 6743 // Also include following copies of the return value 6744 ++End; 6745 while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() && 6746 MI.definesRegister(End->getOperand(1).getReg(), /*TRI=*/nullptr)) 6747 ++End; 6748 CreatedBB = 6749 loadMBUFScalarOperandsFromVGPR(*this, MI, {Dest}, MDT, Start, End); 6750 } 6751 } 6752 6753 // Legalize s_sleep_var. 6754 if (MI.getOpcode() == AMDGPU::S_SLEEP_VAR) { 6755 const DebugLoc &DL = MI.getDebugLoc(); 6756 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6757 int Src0Idx = 6758 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 6759 MachineOperand &Src0 = MI.getOperand(Src0Idx); 6760 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6761 .add(Src0); 6762 Src0.ChangeToRegister(Reg, false); 6763 return nullptr; 6764 } 6765 6766 // Legalize MUBUF instructions. 6767 bool isSoffsetLegal = true; 6768 int SoffsetIdx = 6769 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::soffset); 6770 if (SoffsetIdx != -1) { 6771 MachineOperand *Soffset = &MI.getOperand(SoffsetIdx); 6772 if (Soffset->isReg() && Soffset->getReg().isVirtual() && 6773 !RI.isSGPRClass(MRI.getRegClass(Soffset->getReg()))) { 6774 isSoffsetLegal = false; 6775 } 6776 } 6777 6778 bool isRsrcLegal = true; 6779 int RsrcIdx = 6780 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 6781 if (RsrcIdx != -1) { 6782 MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); 6783 if (Rsrc->isReg() && !RI.isSGPRClass(MRI.getRegClass(Rsrc->getReg()))) { 6784 isRsrcLegal = false; 6785 } 6786 } 6787 6788 // The operands are legal. 6789 if (isRsrcLegal && isSoffsetLegal) 6790 return CreatedBB; 6791 6792 if (!isRsrcLegal) { 6793 // Legalize a VGPR Rsrc 6794 // 6795 // If the instruction is _ADDR64, we can avoid a waterfall by extracting 6796 // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using 6797 // a zero-value SRsrc. 6798 // 6799 // If the instruction is _OFFSET (both idxen and offen disabled), and we 6800 // support ADDR64 instructions, we can convert to ADDR64 and do the same as 6801 // above. 6802 // 6803 // Otherwise we are on non-ADDR64 hardware, and/or we have 6804 // idxen/offen/bothen and we fall back to a waterfall loop. 6805 6806 MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); 6807 MachineBasicBlock &MBB = *MI.getParent(); 6808 6809 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 6810 if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) { 6811 // This is already an ADDR64 instruction so we need to add the pointer 6812 // extracted from the resource descriptor to the current value of VAddr. 6813 Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6814 Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6815 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6816 6817 const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6818 Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC); 6819 Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC); 6820 6821 unsigned RsrcPtr, NewSRsrc; 6822 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 6823 6824 // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0 6825 const DebugLoc &DL = MI.getDebugLoc(); 6826 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo) 6827 .addDef(CondReg0) 6828 .addReg(RsrcPtr, 0, AMDGPU::sub0) 6829 .addReg(VAddr->getReg(), 0, AMDGPU::sub0) 6830 .addImm(0); 6831 6832 // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1 6833 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi) 6834 .addDef(CondReg1, RegState::Dead) 6835 .addReg(RsrcPtr, 0, AMDGPU::sub1) 6836 .addReg(VAddr->getReg(), 0, AMDGPU::sub1) 6837 .addReg(CondReg0, RegState::Kill) 6838 .addImm(0); 6839 6840 // NewVaddr = {NewVaddrHi, NewVaddrLo} 6841 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 6842 .addReg(NewVAddrLo) 6843 .addImm(AMDGPU::sub0) 6844 .addReg(NewVAddrHi) 6845 .addImm(AMDGPU::sub1); 6846 6847 VAddr->setReg(NewVAddr); 6848 Rsrc->setReg(NewSRsrc); 6849 } else if (!VAddr && ST.hasAddr64()) { 6850 // This instructions is the _OFFSET variant, so we need to convert it to 6851 // ADDR64. 6852 assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS && 6853 "FIXME: Need to emit flat atomics here"); 6854 6855 unsigned RsrcPtr, NewSRsrc; 6856 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 6857 6858 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6859 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); 6860 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 6861 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 6862 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); 6863 6864 // Atomics with return have an additional tied operand and are 6865 // missing some of the special bits. 6866 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); 6867 MachineInstr *Addr64; 6868 6869 if (!VDataIn) { 6870 // Regular buffer load / store. 6871 MachineInstrBuilder MIB = 6872 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 6873 .add(*VData) 6874 .addReg(NewVAddr) 6875 .addReg(NewSRsrc) 6876 .add(*SOffset) 6877 .add(*Offset); 6878 6879 if (const MachineOperand *CPol = 6880 getNamedOperand(MI, AMDGPU::OpName::cpol)) { 6881 MIB.addImm(CPol->getImm()); 6882 } 6883 6884 if (const MachineOperand *TFE = 6885 getNamedOperand(MI, AMDGPU::OpName::tfe)) { 6886 MIB.addImm(TFE->getImm()); 6887 } 6888 6889 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz)); 6890 6891 MIB.cloneMemRefs(MI); 6892 Addr64 = MIB; 6893 } else { 6894 // Atomics with return. 6895 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 6896 .add(*VData) 6897 .add(*VDataIn) 6898 .addReg(NewVAddr) 6899 .addReg(NewSRsrc) 6900 .add(*SOffset) 6901 .add(*Offset) 6902 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol)) 6903 .cloneMemRefs(MI); 6904 } 6905 6906 MI.removeFromParent(); 6907 6908 // NewVaddr = {NewVaddrHi, NewVaddrLo} 6909 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), 6910 NewVAddr) 6911 .addReg(RsrcPtr, 0, AMDGPU::sub0) 6912 .addImm(AMDGPU::sub0) 6913 .addReg(RsrcPtr, 0, AMDGPU::sub1) 6914 .addImm(AMDGPU::sub1); 6915 } else { 6916 // Legalize a VGPR Rsrc and soffset together. 6917 if (!isSoffsetLegal) { 6918 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 6919 CreatedBB = 6920 loadMBUFScalarOperandsFromVGPR(*this, MI, {Rsrc, Soffset}, MDT); 6921 return CreatedBB; 6922 } 6923 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Rsrc}, MDT); 6924 return CreatedBB; 6925 } 6926 } 6927 6928 // Legalize a VGPR soffset. 6929 if (!isSoffsetLegal) { 6930 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 6931 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Soffset}, MDT); 6932 return CreatedBB; 6933 } 6934 return CreatedBB; 6935 } 6936 6937 void SIInstrWorklist::insert(MachineInstr *MI) { 6938 InstrList.insert(MI); 6939 // Add MBUF instructiosn to deferred list. 6940 int RsrcIdx = 6941 AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc); 6942 if (RsrcIdx != -1) { 6943 DeferredList.insert(MI); 6944 } 6945 } 6946 6947 bool SIInstrWorklist::isDeferred(MachineInstr *MI) { 6948 return DeferredList.contains(MI); 6949 } 6950 6951 void SIInstrInfo::moveToVALU(SIInstrWorklist &Worklist, 6952 MachineDominatorTree *MDT) const { 6953 6954 while (!Worklist.empty()) { 6955 MachineInstr &Inst = *Worklist.top(); 6956 Worklist.erase_top(); 6957 // Skip MachineInstr in the deferred list. 6958 if (Worklist.isDeferred(&Inst)) 6959 continue; 6960 moveToVALUImpl(Worklist, MDT, Inst); 6961 } 6962 6963 // Deferred list of instructions will be processed once 6964 // all the MachineInstr in the worklist are done. 6965 for (MachineInstr *Inst : Worklist.getDeferredList()) { 6966 moveToVALUImpl(Worklist, MDT, *Inst); 6967 assert(Worklist.empty() && 6968 "Deferred MachineInstr are not supposed to re-populate worklist"); 6969 } 6970 } 6971 6972 void SIInstrInfo::moveToVALUImpl(SIInstrWorklist &Worklist, 6973 MachineDominatorTree *MDT, 6974 MachineInstr &Inst) const { 6975 6976 MachineBasicBlock *MBB = Inst.getParent(); 6977 if (!MBB) 6978 return; 6979 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 6980 unsigned Opcode = Inst.getOpcode(); 6981 unsigned NewOpcode = getVALUOp(Inst); 6982 // Handle some special cases 6983 switch (Opcode) { 6984 default: 6985 break; 6986 case AMDGPU::S_ADD_U64_PSEUDO: 6987 NewOpcode = AMDGPU::V_ADD_U64_PSEUDO; 6988 break; 6989 case AMDGPU::S_SUB_U64_PSEUDO: 6990 NewOpcode = AMDGPU::V_SUB_U64_PSEUDO; 6991 break; 6992 case AMDGPU::S_ADD_I32: 6993 case AMDGPU::S_SUB_I32: { 6994 // FIXME: The u32 versions currently selected use the carry. 6995 bool Changed; 6996 MachineBasicBlock *CreatedBBTmp = nullptr; 6997 std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT); 6998 if (Changed) 6999 return; 7000 7001 // Default handling 7002 break; 7003 } 7004 7005 case AMDGPU::S_MUL_U64: 7006 // Split s_mul_u64 in 32-bit vector multiplications. 7007 splitScalarSMulU64(Worklist, Inst, MDT); 7008 Inst.eraseFromParent(); 7009 return; 7010 7011 case AMDGPU::S_MUL_U64_U32_PSEUDO: 7012 case AMDGPU::S_MUL_I64_I32_PSEUDO: 7013 // This is a special case of s_mul_u64 where all the operands are either 7014 // zero extended or sign extended. 7015 splitScalarSMulPseudo(Worklist, Inst, MDT); 7016 Inst.eraseFromParent(); 7017 return; 7018 7019 case AMDGPU::S_AND_B64: 7020 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT); 7021 Inst.eraseFromParent(); 7022 return; 7023 7024 case AMDGPU::S_OR_B64: 7025 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT); 7026 Inst.eraseFromParent(); 7027 return; 7028 7029 case AMDGPU::S_XOR_B64: 7030 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT); 7031 Inst.eraseFromParent(); 7032 return; 7033 7034 case AMDGPU::S_NAND_B64: 7035 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT); 7036 Inst.eraseFromParent(); 7037 return; 7038 7039 case AMDGPU::S_NOR_B64: 7040 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT); 7041 Inst.eraseFromParent(); 7042 return; 7043 7044 case AMDGPU::S_XNOR_B64: 7045 if (ST.hasDLInsts()) 7046 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT); 7047 else 7048 splitScalar64BitXnor(Worklist, Inst, MDT); 7049 Inst.eraseFromParent(); 7050 return; 7051 7052 case AMDGPU::S_ANDN2_B64: 7053 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT); 7054 Inst.eraseFromParent(); 7055 return; 7056 7057 case AMDGPU::S_ORN2_B64: 7058 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT); 7059 Inst.eraseFromParent(); 7060 return; 7061 7062 case AMDGPU::S_BREV_B64: 7063 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true); 7064 Inst.eraseFromParent(); 7065 return; 7066 7067 case AMDGPU::S_NOT_B64: 7068 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32); 7069 Inst.eraseFromParent(); 7070 return; 7071 7072 case AMDGPU::S_BCNT1_I32_B64: 7073 splitScalar64BitBCNT(Worklist, Inst); 7074 Inst.eraseFromParent(); 7075 return; 7076 7077 case AMDGPU::S_BFE_I64: 7078 splitScalar64BitBFE(Worklist, Inst); 7079 Inst.eraseFromParent(); 7080 return; 7081 7082 case AMDGPU::S_FLBIT_I32_B64: 7083 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBH_U32_e32); 7084 Inst.eraseFromParent(); 7085 return; 7086 case AMDGPU::S_FF1_I32_B64: 7087 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBL_B32_e32); 7088 Inst.eraseFromParent(); 7089 return; 7090 7091 case AMDGPU::S_LSHL_B32: 7092 if (ST.hasOnlyRevVALUShifts()) { 7093 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 7094 swapOperands(Inst); 7095 } 7096 break; 7097 case AMDGPU::S_ASHR_I32: 7098 if (ST.hasOnlyRevVALUShifts()) { 7099 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 7100 swapOperands(Inst); 7101 } 7102 break; 7103 case AMDGPU::S_LSHR_B32: 7104 if (ST.hasOnlyRevVALUShifts()) { 7105 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 7106 swapOperands(Inst); 7107 } 7108 break; 7109 case AMDGPU::S_LSHL_B64: 7110 if (ST.hasOnlyRevVALUShifts()) { 7111 NewOpcode = ST.getGeneration() >= AMDGPUSubtarget::GFX12 7112 ? AMDGPU::V_LSHLREV_B64_pseudo_e64 7113 : AMDGPU::V_LSHLREV_B64_e64; 7114 swapOperands(Inst); 7115 } 7116 break; 7117 case AMDGPU::S_ASHR_I64: 7118 if (ST.hasOnlyRevVALUShifts()) { 7119 NewOpcode = AMDGPU::V_ASHRREV_I64_e64; 7120 swapOperands(Inst); 7121 } 7122 break; 7123 case AMDGPU::S_LSHR_B64: 7124 if (ST.hasOnlyRevVALUShifts()) { 7125 NewOpcode = AMDGPU::V_LSHRREV_B64_e64; 7126 swapOperands(Inst); 7127 } 7128 break; 7129 7130 case AMDGPU::S_ABS_I32: 7131 lowerScalarAbs(Worklist, Inst); 7132 Inst.eraseFromParent(); 7133 return; 7134 7135 case AMDGPU::S_CBRANCH_SCC0: 7136 case AMDGPU::S_CBRANCH_SCC1: { 7137 // Clear unused bits of vcc 7138 Register CondReg = Inst.getOperand(1).getReg(); 7139 bool IsSCC = CondReg == AMDGPU::SCC; 7140 Register VCC = RI.getVCC(); 7141 Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 7142 unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 7143 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC) 7144 .addReg(EXEC) 7145 .addReg(IsSCC ? VCC : CondReg); 7146 Inst.removeOperand(1); 7147 } break; 7148 7149 case AMDGPU::S_BFE_U64: 7150 case AMDGPU::S_BFM_B64: 7151 llvm_unreachable("Moving this op to VALU not implemented"); 7152 7153 case AMDGPU::S_PACK_LL_B32_B16: 7154 case AMDGPU::S_PACK_LH_B32_B16: 7155 case AMDGPU::S_PACK_HL_B32_B16: 7156 case AMDGPU::S_PACK_HH_B32_B16: 7157 movePackToVALU(Worklist, MRI, Inst); 7158 Inst.eraseFromParent(); 7159 return; 7160 7161 case AMDGPU::S_XNOR_B32: 7162 lowerScalarXnor(Worklist, Inst); 7163 Inst.eraseFromParent(); 7164 return; 7165 7166 case AMDGPU::S_NAND_B32: 7167 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32); 7168 Inst.eraseFromParent(); 7169 return; 7170 7171 case AMDGPU::S_NOR_B32: 7172 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32); 7173 Inst.eraseFromParent(); 7174 return; 7175 7176 case AMDGPU::S_ANDN2_B32: 7177 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32); 7178 Inst.eraseFromParent(); 7179 return; 7180 7181 case AMDGPU::S_ORN2_B32: 7182 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32); 7183 Inst.eraseFromParent(); 7184 return; 7185 7186 // TODO: remove as soon as everything is ready 7187 // to replace VGPR to SGPR copy with V_READFIRSTLANEs. 7188 // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO 7189 // can only be selected from the uniform SDNode. 7190 case AMDGPU::S_ADD_CO_PSEUDO: 7191 case AMDGPU::S_SUB_CO_PSEUDO: { 7192 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 7193 ? AMDGPU::V_ADDC_U32_e64 7194 : AMDGPU::V_SUBB_U32_e64; 7195 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 7196 7197 Register CarryInReg = Inst.getOperand(4).getReg(); 7198 if (!MRI.constrainRegClass(CarryInReg, CarryRC)) { 7199 Register NewCarryReg = MRI.createVirtualRegister(CarryRC); 7200 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg) 7201 .addReg(CarryInReg); 7202 } 7203 7204 Register CarryOutReg = Inst.getOperand(1).getReg(); 7205 7206 Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass( 7207 MRI.getRegClass(Inst.getOperand(0).getReg()))); 7208 MachineInstr *CarryOp = 7209 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg) 7210 .addReg(CarryOutReg, RegState::Define) 7211 .add(Inst.getOperand(2)) 7212 .add(Inst.getOperand(3)) 7213 .addReg(CarryInReg) 7214 .addImm(0); 7215 legalizeOperands(*CarryOp); 7216 MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg); 7217 addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist); 7218 Inst.eraseFromParent(); 7219 } 7220 return; 7221 case AMDGPU::S_UADDO_PSEUDO: 7222 case AMDGPU::S_USUBO_PSEUDO: { 7223 const DebugLoc &DL = Inst.getDebugLoc(); 7224 MachineOperand &Dest0 = Inst.getOperand(0); 7225 MachineOperand &Dest1 = Inst.getOperand(1); 7226 MachineOperand &Src0 = Inst.getOperand(2); 7227 MachineOperand &Src1 = Inst.getOperand(3); 7228 7229 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 7230 ? AMDGPU::V_ADD_CO_U32_e64 7231 : AMDGPU::V_SUB_CO_U32_e64; 7232 const TargetRegisterClass *NewRC = 7233 RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg())); 7234 Register DestReg = MRI.createVirtualRegister(NewRC); 7235 MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg) 7236 .addReg(Dest1.getReg(), RegState::Define) 7237 .add(Src0) 7238 .add(Src1) 7239 .addImm(0); // clamp bit 7240 7241 legalizeOperands(*NewInstr, MDT); 7242 MRI.replaceRegWith(Dest0.getReg(), DestReg); 7243 addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI, 7244 Worklist); 7245 Inst.eraseFromParent(); 7246 } 7247 return; 7248 7249 case AMDGPU::S_CSELECT_B32: 7250 case AMDGPU::S_CSELECT_B64: 7251 lowerSelect(Worklist, Inst, MDT); 7252 Inst.eraseFromParent(); 7253 return; 7254 case AMDGPU::S_CMP_EQ_I32: 7255 case AMDGPU::S_CMP_LG_I32: 7256 case AMDGPU::S_CMP_GT_I32: 7257 case AMDGPU::S_CMP_GE_I32: 7258 case AMDGPU::S_CMP_LT_I32: 7259 case AMDGPU::S_CMP_LE_I32: 7260 case AMDGPU::S_CMP_EQ_U32: 7261 case AMDGPU::S_CMP_LG_U32: 7262 case AMDGPU::S_CMP_GT_U32: 7263 case AMDGPU::S_CMP_GE_U32: 7264 case AMDGPU::S_CMP_LT_U32: 7265 case AMDGPU::S_CMP_LE_U32: 7266 case AMDGPU::S_CMP_EQ_U64: 7267 case AMDGPU::S_CMP_LG_U64: 7268 case AMDGPU::S_CMP_LT_F32: 7269 case AMDGPU::S_CMP_EQ_F32: 7270 case AMDGPU::S_CMP_LE_F32: 7271 case AMDGPU::S_CMP_GT_F32: 7272 case AMDGPU::S_CMP_LG_F32: 7273 case AMDGPU::S_CMP_GE_F32: 7274 case AMDGPU::S_CMP_O_F32: 7275 case AMDGPU::S_CMP_U_F32: 7276 case AMDGPU::S_CMP_NGE_F32: 7277 case AMDGPU::S_CMP_NLG_F32: 7278 case AMDGPU::S_CMP_NGT_F32: 7279 case AMDGPU::S_CMP_NLE_F32: 7280 case AMDGPU::S_CMP_NEQ_F32: 7281 case AMDGPU::S_CMP_NLT_F32: 7282 case AMDGPU::S_CMP_LT_F16: 7283 case AMDGPU::S_CMP_EQ_F16: 7284 case AMDGPU::S_CMP_LE_F16: 7285 case AMDGPU::S_CMP_GT_F16: 7286 case AMDGPU::S_CMP_LG_F16: 7287 case AMDGPU::S_CMP_GE_F16: 7288 case AMDGPU::S_CMP_O_F16: 7289 case AMDGPU::S_CMP_U_F16: 7290 case AMDGPU::S_CMP_NGE_F16: 7291 case AMDGPU::S_CMP_NLG_F16: 7292 case AMDGPU::S_CMP_NGT_F16: 7293 case AMDGPU::S_CMP_NLE_F16: 7294 case AMDGPU::S_CMP_NEQ_F16: 7295 case AMDGPU::S_CMP_NLT_F16: { 7296 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass()); 7297 auto NewInstr = 7298 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode), CondReg) 7299 .setMIFlags(Inst.getFlags()); 7300 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7301 AMDGPU::OpName::src0_modifiers) >= 0) { 7302 NewInstr 7303 .addImm(0) // src0_modifiers 7304 .add(Inst.getOperand(0)) // src0 7305 .addImm(0) // src1_modifiers 7306 .add(Inst.getOperand(1)) // src1 7307 .addImm(0); // clamp 7308 } else { 7309 NewInstr 7310 .add(Inst.getOperand(0)) 7311 .add(Inst.getOperand(1)); 7312 } 7313 legalizeOperands(*NewInstr, MDT); 7314 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC, /*TRI=*/nullptr); 7315 MachineOperand SCCOp = Inst.getOperand(SCCIdx); 7316 addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg); 7317 Inst.eraseFromParent(); 7318 return; 7319 } 7320 case AMDGPU::S_CVT_HI_F32_F16: { 7321 const DebugLoc &DL = Inst.getDebugLoc(); 7322 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7323 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7324 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 7325 .addImm(16) 7326 .add(Inst.getOperand(1)); 7327 BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) 7328 .addImm(0) // src0_modifiers 7329 .addReg(TmpReg) 7330 .addImm(0) // clamp 7331 .addImm(0); // omod 7332 7333 MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); 7334 addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); 7335 Inst.eraseFromParent(); 7336 return; 7337 } 7338 case AMDGPU::S_MINIMUM_F32: 7339 case AMDGPU::S_MAXIMUM_F32: 7340 case AMDGPU::S_MINIMUM_F16: 7341 case AMDGPU::S_MAXIMUM_F16: { 7342 const DebugLoc &DL = Inst.getDebugLoc(); 7343 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7344 MachineInstr *NewInstr = BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) 7345 .addImm(0) // src0_modifiers 7346 .add(Inst.getOperand(1)) 7347 .addImm(0) // src1_modifiers 7348 .add(Inst.getOperand(2)) 7349 .addImm(0) // clamp 7350 .addImm(0); // omod 7351 MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); 7352 7353 legalizeOperands(*NewInstr, MDT); 7354 addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); 7355 Inst.eraseFromParent(); 7356 return; 7357 } 7358 } 7359 7360 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 7361 // We cannot move this instruction to the VALU, so we should try to 7362 // legalize its operands instead. 7363 legalizeOperands(Inst, MDT); 7364 return; 7365 } 7366 // Handle converting generic instructions like COPY-to-SGPR into 7367 // COPY-to-VGPR. 7368 if (NewOpcode == Opcode) { 7369 Register DstReg = Inst.getOperand(0).getReg(); 7370 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); 7371 7372 // If it's a copy of a VGPR to a physical SGPR, insert a V_READFIRSTLANE and 7373 // hope for the best. 7374 if (Inst.isCopy() && DstReg.isPhysical() && 7375 RI.isVGPR(MRI, Inst.getOperand(1).getReg())) { 7376 // TODO: Only works for 32 bit registers. 7377 BuildMI(*Inst.getParent(), &Inst, Inst.getDebugLoc(), 7378 get(AMDGPU::V_READFIRSTLANE_B32), Inst.getOperand(0).getReg()) 7379 .add(Inst.getOperand(1)); 7380 Inst.eraseFromParent(); 7381 return; 7382 } 7383 7384 if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() && 7385 NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) { 7386 // Instead of creating a copy where src and dst are the same register 7387 // class, we just replace all uses of dst with src. These kinds of 7388 // copies interfere with the heuristics MachineSink uses to decide 7389 // whether or not to split a critical edge. Since the pass assumes 7390 // that copies will end up as machine instructions and not be 7391 // eliminated. 7392 addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist); 7393 MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg()); 7394 MRI.clearKillFlags(Inst.getOperand(1).getReg()); 7395 Inst.getOperand(0).setReg(DstReg); 7396 // Make sure we don't leave around a dead VGPR->SGPR copy. Normally 7397 // these are deleted later, but at -O0 it would leave a suspicious 7398 // looking illegal copy of an undef register. 7399 for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I) 7400 Inst.removeOperand(I); 7401 Inst.setDesc(get(AMDGPU::IMPLICIT_DEF)); 7402 return; 7403 } 7404 Register NewDstReg = MRI.createVirtualRegister(NewDstRC); 7405 MRI.replaceRegWith(DstReg, NewDstReg); 7406 legalizeOperands(Inst, MDT); 7407 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 7408 return; 7409 } 7410 7411 // Use the new VALU Opcode. 7412 auto NewInstr = BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode)) 7413 .setMIFlags(Inst.getFlags()); 7414 if (isVOP3(NewOpcode) && !isVOP3(Opcode)) { 7415 // Intersperse VOP3 modifiers among the SALU operands. 7416 NewInstr->addOperand(Inst.getOperand(0)); 7417 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7418 AMDGPU::OpName::src0_modifiers) >= 0) 7419 NewInstr.addImm(0); 7420 if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::src0)) { 7421 MachineOperand Src = Inst.getOperand(1); 7422 if (AMDGPU::isTrue16Inst(NewOpcode) && ST.useRealTrue16Insts() && 7423 Src.isReg() && RI.isVGPR(MRI, Src.getReg())) 7424 NewInstr.addReg(Src.getReg(), 0, AMDGPU::lo16); 7425 else 7426 NewInstr->addOperand(Src); 7427 } 7428 7429 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 7430 // We are converting these to a BFE, so we need to add the missing 7431 // operands for the size and offset. 7432 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 7433 NewInstr.addImm(0); 7434 NewInstr.addImm(Size); 7435 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 7436 // The VALU version adds the second operand to the result, so insert an 7437 // extra 0 operand. 7438 NewInstr.addImm(0); 7439 } else if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 7440 const MachineOperand &OffsetWidthOp = Inst.getOperand(2); 7441 // If we need to move this to VGPRs, we need to unpack the second 7442 // operand back into the 2 separate ones for bit offset and width. 7443 assert(OffsetWidthOp.isImm() && 7444 "Scalar BFE is only implemented for constant width and offset"); 7445 uint32_t Imm = OffsetWidthOp.getImm(); 7446 7447 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 7448 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 7449 NewInstr.addImm(Offset); 7450 NewInstr.addImm(BitWidth); 7451 } else { 7452 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7453 AMDGPU::OpName::src1_modifiers) >= 0) 7454 NewInstr.addImm(0); 7455 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1) >= 0) 7456 NewInstr->addOperand(Inst.getOperand(2)); 7457 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7458 AMDGPU::OpName::src2_modifiers) >= 0) 7459 NewInstr.addImm(0); 7460 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src2) >= 0) 7461 NewInstr->addOperand(Inst.getOperand(3)); 7462 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) >= 0) 7463 NewInstr.addImm(0); 7464 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::omod) >= 0) 7465 NewInstr.addImm(0); 7466 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::op_sel) >= 0) 7467 NewInstr.addImm(0); 7468 } 7469 } else { 7470 // Just copy the SALU operands. 7471 for (const MachineOperand &Op : Inst.explicit_operands()) 7472 NewInstr->addOperand(Op); 7473 } 7474 7475 // Remove any references to SCC. Vector instructions can't read from it, and 7476 // We're just about to add the implicit use / defs of VCC, and we don't want 7477 // both. 7478 for (MachineOperand &Op : Inst.implicit_operands()) { 7479 if (Op.getReg() == AMDGPU::SCC) { 7480 // Only propagate through live-def of SCC. 7481 if (Op.isDef() && !Op.isDead()) 7482 addSCCDefUsersToVALUWorklist(Op, Inst, Worklist); 7483 if (Op.isUse()) 7484 addSCCDefsToVALUWorklist(NewInstr, Worklist); 7485 } 7486 } 7487 Inst.eraseFromParent(); 7488 Register NewDstReg; 7489 if (NewInstr->getOperand(0).isReg() && NewInstr->getOperand(0).isDef()) { 7490 Register DstReg = NewInstr->getOperand(0).getReg(); 7491 assert(DstReg.isVirtual()); 7492 // Update the destination register class. 7493 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*NewInstr); 7494 assert(NewDstRC); 7495 NewDstReg = MRI.createVirtualRegister(NewDstRC); 7496 MRI.replaceRegWith(DstReg, NewDstReg); 7497 } 7498 fixImplicitOperands(*NewInstr); 7499 // Legalize the operands 7500 legalizeOperands(*NewInstr, MDT); 7501 if (NewDstReg) 7502 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 7503 } 7504 7505 // Add/sub require special handling to deal with carry outs. 7506 std::pair<bool, MachineBasicBlock *> 7507 SIInstrInfo::moveScalarAddSub(SIInstrWorklist &Worklist, MachineInstr &Inst, 7508 MachineDominatorTree *MDT) const { 7509 if (ST.hasAddNoCarry()) { 7510 // Assume there is no user of scc since we don't select this in that case. 7511 // Since scc isn't used, it doesn't really matter if the i32 or u32 variant 7512 // is used. 7513 7514 MachineBasicBlock &MBB = *Inst.getParent(); 7515 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7516 7517 Register OldDstReg = Inst.getOperand(0).getReg(); 7518 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7519 7520 unsigned Opc = Inst.getOpcode(); 7521 assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32); 7522 7523 unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ? 7524 AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64; 7525 7526 assert(Inst.getOperand(3).getReg() == AMDGPU::SCC); 7527 Inst.removeOperand(3); 7528 7529 Inst.setDesc(get(NewOpc)); 7530 Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit 7531 Inst.addImplicitDefUseOperands(*MBB.getParent()); 7532 MRI.replaceRegWith(OldDstReg, ResultReg); 7533 MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT); 7534 7535 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7536 return std::pair(true, NewBB); 7537 } 7538 7539 return std::pair(false, nullptr); 7540 } 7541 7542 void SIInstrInfo::lowerSelect(SIInstrWorklist &Worklist, MachineInstr &Inst, 7543 MachineDominatorTree *MDT) const { 7544 7545 MachineBasicBlock &MBB = *Inst.getParent(); 7546 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7547 MachineBasicBlock::iterator MII = Inst; 7548 DebugLoc DL = Inst.getDebugLoc(); 7549 7550 MachineOperand &Dest = Inst.getOperand(0); 7551 MachineOperand &Src0 = Inst.getOperand(1); 7552 MachineOperand &Src1 = Inst.getOperand(2); 7553 MachineOperand &Cond = Inst.getOperand(3); 7554 7555 Register CondReg = Cond.getReg(); 7556 bool IsSCC = (CondReg == AMDGPU::SCC); 7557 7558 // If this is a trivial select where the condition is effectively not SCC 7559 // (CondReg is a source of copy to SCC), then the select is semantically 7560 // equivalent to copying CondReg. Hence, there is no need to create 7561 // V_CNDMASK, we can just use that and bail out. 7562 if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() && 7563 (Src1.getImm() == 0)) { 7564 MRI.replaceRegWith(Dest.getReg(), CondReg); 7565 return; 7566 } 7567 7568 Register NewCondReg = CondReg; 7569 if (IsSCC) { 7570 const TargetRegisterClass *TC = 7571 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 7572 NewCondReg = MRI.createVirtualRegister(TC); 7573 7574 // Now look for the closest SCC def if it is a copy 7575 // replacing the CondReg with the COPY source register 7576 bool CopyFound = false; 7577 for (MachineInstr &CandI : 7578 make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)), 7579 Inst.getParent()->rend())) { 7580 if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, &RI, false, false) != 7581 -1) { 7582 if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) { 7583 BuildMI(MBB, MII, DL, get(AMDGPU::COPY), NewCondReg) 7584 .addReg(CandI.getOperand(1).getReg()); 7585 CopyFound = true; 7586 } 7587 break; 7588 } 7589 } 7590 if (!CopyFound) { 7591 // SCC def is not a copy 7592 // Insert a trivial select instead of creating a copy, because a copy from 7593 // SCC would semantically mean just copying a single bit, but we may need 7594 // the result to be a vector condition mask that needs preserving. 7595 unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64 7596 : AMDGPU::S_CSELECT_B32; 7597 auto NewSelect = 7598 BuildMI(MBB, MII, DL, get(Opcode), NewCondReg).addImm(-1).addImm(0); 7599 NewSelect->getOperand(3).setIsUndef(Cond.isUndef()); 7600 } 7601 } 7602 7603 Register NewDestReg = MRI.createVirtualRegister( 7604 RI.getEquivalentVGPRClass(MRI.getRegClass(Dest.getReg()))); 7605 MachineInstr *NewInst; 7606 if (Inst.getOpcode() == AMDGPU::S_CSELECT_B32) { 7607 NewInst = BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), NewDestReg) 7608 .addImm(0) 7609 .add(Src1) // False 7610 .addImm(0) 7611 .add(Src0) // True 7612 .addReg(NewCondReg); 7613 } else { 7614 NewInst = 7615 BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B64_PSEUDO), NewDestReg) 7616 .add(Src1) // False 7617 .add(Src0) // True 7618 .addReg(NewCondReg); 7619 } 7620 MRI.replaceRegWith(Dest.getReg(), NewDestReg); 7621 legalizeOperands(*NewInst, MDT); 7622 addUsersToMoveToVALUWorklist(NewDestReg, MRI, Worklist); 7623 } 7624 7625 void SIInstrInfo::lowerScalarAbs(SIInstrWorklist &Worklist, 7626 MachineInstr &Inst) const { 7627 MachineBasicBlock &MBB = *Inst.getParent(); 7628 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7629 MachineBasicBlock::iterator MII = Inst; 7630 DebugLoc DL = Inst.getDebugLoc(); 7631 7632 MachineOperand &Dest = Inst.getOperand(0); 7633 MachineOperand &Src = Inst.getOperand(1); 7634 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7635 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7636 7637 unsigned SubOp = ST.hasAddNoCarry() ? 7638 AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32; 7639 7640 BuildMI(MBB, MII, DL, get(SubOp), TmpReg) 7641 .addImm(0) 7642 .addReg(Src.getReg()); 7643 7644 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 7645 .addReg(Src.getReg()) 7646 .addReg(TmpReg); 7647 7648 MRI.replaceRegWith(Dest.getReg(), ResultReg); 7649 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7650 } 7651 7652 void SIInstrInfo::lowerScalarXnor(SIInstrWorklist &Worklist, 7653 MachineInstr &Inst) const { 7654 MachineBasicBlock &MBB = *Inst.getParent(); 7655 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7656 MachineBasicBlock::iterator MII = Inst; 7657 const DebugLoc &DL = Inst.getDebugLoc(); 7658 7659 MachineOperand &Dest = Inst.getOperand(0); 7660 MachineOperand &Src0 = Inst.getOperand(1); 7661 MachineOperand &Src1 = Inst.getOperand(2); 7662 7663 if (ST.hasDLInsts()) { 7664 Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7665 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL); 7666 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL); 7667 7668 BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest) 7669 .add(Src0) 7670 .add(Src1); 7671 7672 MRI.replaceRegWith(Dest.getReg(), NewDest); 7673 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7674 } else { 7675 // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can 7676 // invert either source and then perform the XOR. If either source is a 7677 // scalar register, then we can leave the inversion on the scalar unit to 7678 // achieve a better distribution of scalar and vector instructions. 7679 bool Src0IsSGPR = Src0.isReg() && 7680 RI.isSGPRClass(MRI.getRegClass(Src0.getReg())); 7681 bool Src1IsSGPR = Src1.isReg() && 7682 RI.isSGPRClass(MRI.getRegClass(Src1.getReg())); 7683 MachineInstr *Xor; 7684 Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7685 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7686 7687 // Build a pair of scalar instructions and add them to the work list. 7688 // The next iteration over the work list will lower these to the vector 7689 // unit as necessary. 7690 if (Src0IsSGPR) { 7691 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0); 7692 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 7693 .addReg(Temp) 7694 .add(Src1); 7695 } else if (Src1IsSGPR) { 7696 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1); 7697 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 7698 .add(Src0) 7699 .addReg(Temp); 7700 } else { 7701 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp) 7702 .add(Src0) 7703 .add(Src1); 7704 MachineInstr *Not = 7705 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp); 7706 Worklist.insert(Not); 7707 } 7708 7709 MRI.replaceRegWith(Dest.getReg(), NewDest); 7710 7711 Worklist.insert(Xor); 7712 7713 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7714 } 7715 } 7716 7717 void SIInstrInfo::splitScalarNotBinop(SIInstrWorklist &Worklist, 7718 MachineInstr &Inst, 7719 unsigned Opcode) const { 7720 MachineBasicBlock &MBB = *Inst.getParent(); 7721 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7722 MachineBasicBlock::iterator MII = Inst; 7723 const DebugLoc &DL = Inst.getDebugLoc(); 7724 7725 MachineOperand &Dest = Inst.getOperand(0); 7726 MachineOperand &Src0 = Inst.getOperand(1); 7727 MachineOperand &Src1 = Inst.getOperand(2); 7728 7729 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7730 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7731 7732 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm) 7733 .add(Src0) 7734 .add(Src1); 7735 7736 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest) 7737 .addReg(Interm); 7738 7739 Worklist.insert(&Op); 7740 Worklist.insert(&Not); 7741 7742 MRI.replaceRegWith(Dest.getReg(), NewDest); 7743 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7744 } 7745 7746 void SIInstrInfo::splitScalarBinOpN2(SIInstrWorklist &Worklist, 7747 MachineInstr &Inst, 7748 unsigned Opcode) const { 7749 MachineBasicBlock &MBB = *Inst.getParent(); 7750 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7751 MachineBasicBlock::iterator MII = Inst; 7752 const DebugLoc &DL = Inst.getDebugLoc(); 7753 7754 MachineOperand &Dest = Inst.getOperand(0); 7755 MachineOperand &Src0 = Inst.getOperand(1); 7756 MachineOperand &Src1 = Inst.getOperand(2); 7757 7758 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 7759 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 7760 7761 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm) 7762 .add(Src1); 7763 7764 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest) 7765 .add(Src0) 7766 .addReg(Interm); 7767 7768 Worklist.insert(&Not); 7769 Worklist.insert(&Op); 7770 7771 MRI.replaceRegWith(Dest.getReg(), NewDest); 7772 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7773 } 7774 7775 void SIInstrInfo::splitScalar64BitUnaryOp(SIInstrWorklist &Worklist, 7776 MachineInstr &Inst, unsigned Opcode, 7777 bool Swap) const { 7778 MachineBasicBlock &MBB = *Inst.getParent(); 7779 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7780 7781 MachineOperand &Dest = Inst.getOperand(0); 7782 MachineOperand &Src0 = Inst.getOperand(1); 7783 DebugLoc DL = Inst.getDebugLoc(); 7784 7785 MachineBasicBlock::iterator MII = Inst; 7786 7787 const MCInstrDesc &InstDesc = get(Opcode); 7788 const TargetRegisterClass *Src0RC = Src0.isReg() ? 7789 MRI.getRegClass(Src0.getReg()) : 7790 &AMDGPU::SGPR_32RegClass; 7791 7792 const TargetRegisterClass *Src0SubRC = 7793 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 7794 7795 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 7796 AMDGPU::sub0, Src0SubRC); 7797 7798 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 7799 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 7800 const TargetRegisterClass *NewDestSubRC = 7801 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0); 7802 7803 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 7804 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0); 7805 7806 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 7807 AMDGPU::sub1, Src0SubRC); 7808 7809 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 7810 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1); 7811 7812 if (Swap) 7813 std::swap(DestSub0, DestSub1); 7814 7815 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 7816 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 7817 .addReg(DestSub0) 7818 .addImm(AMDGPU::sub0) 7819 .addReg(DestSub1) 7820 .addImm(AMDGPU::sub1); 7821 7822 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 7823 7824 Worklist.insert(&LoHalf); 7825 Worklist.insert(&HiHalf); 7826 7827 // We don't need to legalizeOperands here because for a single operand, src0 7828 // will support any kind of input. 7829 7830 // Move all users of this moved value. 7831 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 7832 } 7833 7834 // There is not a vector equivalent of s_mul_u64. For this reason, we need to 7835 // split the s_mul_u64 in 32-bit vector multiplications. 7836 void SIInstrInfo::splitScalarSMulU64(SIInstrWorklist &Worklist, 7837 MachineInstr &Inst, 7838 MachineDominatorTree *MDT) const { 7839 MachineBasicBlock &MBB = *Inst.getParent(); 7840 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7841 7842 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 7843 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7844 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7845 7846 MachineOperand &Dest = Inst.getOperand(0); 7847 MachineOperand &Src0 = Inst.getOperand(1); 7848 MachineOperand &Src1 = Inst.getOperand(2); 7849 const DebugLoc &DL = Inst.getDebugLoc(); 7850 MachineBasicBlock::iterator MII = Inst; 7851 7852 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); 7853 const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); 7854 const TargetRegisterClass *Src0SubRC = 7855 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 7856 if (RI.isSGPRClass(Src0SubRC)) 7857 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC); 7858 const TargetRegisterClass *Src1SubRC = 7859 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); 7860 if (RI.isSGPRClass(Src1SubRC)) 7861 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC); 7862 7863 // First, we extract the low 32-bit and high 32-bit values from each of the 7864 // operands. 7865 MachineOperand Op0L = 7866 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 7867 MachineOperand Op1L = 7868 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 7869 MachineOperand Op0H = 7870 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 7871 MachineOperand Op1H = 7872 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 7873 7874 // The multilication is done as follows: 7875 // 7876 // Op1H Op1L 7877 // * Op0H Op0L 7878 // -------------------- 7879 // Op1H*Op0L Op1L*Op0L 7880 // + Op1H*Op0H Op1L*Op0H 7881 // ----------------------------------------- 7882 // (Op1H*Op0L + Op1L*Op0H + carry) Op1L*Op0L 7883 // 7884 // We drop Op1H*Op0H because the result of the multiplication is a 64-bit 7885 // value and that would overflow. 7886 // The low 32-bit value is Op1L*Op0L. 7887 // The high 32-bit value is Op1H*Op0L + Op1L*Op0H + carry (from Op1L*Op0L). 7888 7889 Register Op1L_Op0H_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7890 MachineInstr *Op1L_Op0H = 7891 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1L_Op0H_Reg) 7892 .add(Op1L) 7893 .add(Op0H); 7894 7895 Register Op1H_Op0L_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7896 MachineInstr *Op1H_Op0L = 7897 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1H_Op0L_Reg) 7898 .add(Op1H) 7899 .add(Op0L); 7900 7901 Register CarryReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7902 MachineInstr *Carry = 7903 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_HI_U32_e64), CarryReg) 7904 .add(Op1L) 7905 .add(Op0L); 7906 7907 MachineInstr *LoHalf = 7908 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0) 7909 .add(Op1L) 7910 .add(Op0L); 7911 7912 Register AddReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7913 MachineInstr *Add = BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), AddReg) 7914 .addReg(Op1L_Op0H_Reg) 7915 .addReg(Op1H_Op0L_Reg); 7916 7917 MachineInstr *HiHalf = 7918 BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), DestSub1) 7919 .addReg(AddReg) 7920 .addReg(CarryReg); 7921 7922 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 7923 .addReg(DestSub0) 7924 .addImm(AMDGPU::sub0) 7925 .addReg(DestSub1) 7926 .addImm(AMDGPU::sub1); 7927 7928 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 7929 7930 // Try to legalize the operands in case we need to swap the order to keep it 7931 // valid. 7932 legalizeOperands(*Op1L_Op0H, MDT); 7933 legalizeOperands(*Op1H_Op0L, MDT); 7934 legalizeOperands(*Carry, MDT); 7935 legalizeOperands(*LoHalf, MDT); 7936 legalizeOperands(*Add, MDT); 7937 legalizeOperands(*HiHalf, MDT); 7938 7939 // Move all users of this moved value. 7940 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 7941 } 7942 7943 // Lower S_MUL_U64_U32_PSEUDO/S_MUL_I64_I32_PSEUDO in two 32-bit vector 7944 // multiplications. 7945 void SIInstrInfo::splitScalarSMulPseudo(SIInstrWorklist &Worklist, 7946 MachineInstr &Inst, 7947 MachineDominatorTree *MDT) const { 7948 MachineBasicBlock &MBB = *Inst.getParent(); 7949 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7950 7951 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 7952 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7953 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7954 7955 MachineOperand &Dest = Inst.getOperand(0); 7956 MachineOperand &Src0 = Inst.getOperand(1); 7957 MachineOperand &Src1 = Inst.getOperand(2); 7958 const DebugLoc &DL = Inst.getDebugLoc(); 7959 MachineBasicBlock::iterator MII = Inst; 7960 7961 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); 7962 const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); 7963 const TargetRegisterClass *Src0SubRC = 7964 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 7965 if (RI.isSGPRClass(Src0SubRC)) 7966 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC); 7967 const TargetRegisterClass *Src1SubRC = 7968 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); 7969 if (RI.isSGPRClass(Src1SubRC)) 7970 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC); 7971 7972 // First, we extract the low 32-bit and high 32-bit values from each of the 7973 // operands. 7974 MachineOperand Op0L = 7975 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 7976 MachineOperand Op1L = 7977 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 7978 7979 unsigned Opc = Inst.getOpcode(); 7980 unsigned NewOpc = Opc == AMDGPU::S_MUL_U64_U32_PSEUDO 7981 ? AMDGPU::V_MUL_HI_U32_e64 7982 : AMDGPU::V_MUL_HI_I32_e64; 7983 MachineInstr *HiHalf = 7984 BuildMI(MBB, MII, DL, get(NewOpc), DestSub1).add(Op1L).add(Op0L); 7985 7986 MachineInstr *LoHalf = 7987 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0) 7988 .add(Op1L) 7989 .add(Op0L); 7990 7991 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 7992 .addReg(DestSub0) 7993 .addImm(AMDGPU::sub0) 7994 .addReg(DestSub1) 7995 .addImm(AMDGPU::sub1); 7996 7997 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 7998 7999 // Try to legalize the operands in case we need to swap the order to keep it 8000 // valid. 8001 legalizeOperands(*HiHalf, MDT); 8002 legalizeOperands(*LoHalf, MDT); 8003 8004 // Move all users of this moved value. 8005 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 8006 } 8007 8008 void SIInstrInfo::splitScalar64BitBinaryOp(SIInstrWorklist &Worklist, 8009 MachineInstr &Inst, unsigned Opcode, 8010 MachineDominatorTree *MDT) const { 8011 MachineBasicBlock &MBB = *Inst.getParent(); 8012 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8013 8014 MachineOperand &Dest = Inst.getOperand(0); 8015 MachineOperand &Src0 = Inst.getOperand(1); 8016 MachineOperand &Src1 = Inst.getOperand(2); 8017 DebugLoc DL = Inst.getDebugLoc(); 8018 8019 MachineBasicBlock::iterator MII = Inst; 8020 8021 const MCInstrDesc &InstDesc = get(Opcode); 8022 const TargetRegisterClass *Src0RC = Src0.isReg() ? 8023 MRI.getRegClass(Src0.getReg()) : 8024 &AMDGPU::SGPR_32RegClass; 8025 8026 const TargetRegisterClass *Src0SubRC = 8027 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 8028 const TargetRegisterClass *Src1RC = Src1.isReg() ? 8029 MRI.getRegClass(Src1.getReg()) : 8030 &AMDGPU::SGPR_32RegClass; 8031 8032 const TargetRegisterClass *Src1SubRC = 8033 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); 8034 8035 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 8036 AMDGPU::sub0, Src0SubRC); 8037 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 8038 AMDGPU::sub0, Src1SubRC); 8039 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 8040 AMDGPU::sub1, Src0SubRC); 8041 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 8042 AMDGPU::sub1, Src1SubRC); 8043 8044 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 8045 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 8046 const TargetRegisterClass *NewDestSubRC = 8047 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0); 8048 8049 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 8050 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) 8051 .add(SrcReg0Sub0) 8052 .add(SrcReg1Sub0); 8053 8054 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 8055 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) 8056 .add(SrcReg0Sub1) 8057 .add(SrcReg1Sub1); 8058 8059 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 8060 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 8061 .addReg(DestSub0) 8062 .addImm(AMDGPU::sub0) 8063 .addReg(DestSub1) 8064 .addImm(AMDGPU::sub1); 8065 8066 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 8067 8068 Worklist.insert(&LoHalf); 8069 Worklist.insert(&HiHalf); 8070 8071 // Move all users of this moved value. 8072 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 8073 } 8074 8075 void SIInstrInfo::splitScalar64BitXnor(SIInstrWorklist &Worklist, 8076 MachineInstr &Inst, 8077 MachineDominatorTree *MDT) const { 8078 MachineBasicBlock &MBB = *Inst.getParent(); 8079 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8080 8081 MachineOperand &Dest = Inst.getOperand(0); 8082 MachineOperand &Src0 = Inst.getOperand(1); 8083 MachineOperand &Src1 = Inst.getOperand(2); 8084 const DebugLoc &DL = Inst.getDebugLoc(); 8085 8086 MachineBasicBlock::iterator MII = Inst; 8087 8088 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 8089 8090 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 8091 8092 MachineOperand* Op0; 8093 MachineOperand* Op1; 8094 8095 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) { 8096 Op0 = &Src0; 8097 Op1 = &Src1; 8098 } else { 8099 Op0 = &Src1; 8100 Op1 = &Src0; 8101 } 8102 8103 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm) 8104 .add(*Op0); 8105 8106 Register NewDest = MRI.createVirtualRegister(DestRC); 8107 8108 MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest) 8109 .addReg(Interm) 8110 .add(*Op1); 8111 8112 MRI.replaceRegWith(Dest.getReg(), NewDest); 8113 8114 Worklist.insert(&Xor); 8115 } 8116 8117 void SIInstrInfo::splitScalar64BitBCNT(SIInstrWorklist &Worklist, 8118 MachineInstr &Inst) const { 8119 MachineBasicBlock &MBB = *Inst.getParent(); 8120 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8121 8122 MachineBasicBlock::iterator MII = Inst; 8123 const DebugLoc &DL = Inst.getDebugLoc(); 8124 8125 MachineOperand &Dest = Inst.getOperand(0); 8126 MachineOperand &Src = Inst.getOperand(1); 8127 8128 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 8129 const TargetRegisterClass *SrcRC = Src.isReg() ? 8130 MRI.getRegClass(Src.getReg()) : 8131 &AMDGPU::SGPR_32RegClass; 8132 8133 Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8134 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8135 8136 const TargetRegisterClass *SrcSubRC = 8137 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0); 8138 8139 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 8140 AMDGPU::sub0, SrcSubRC); 8141 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 8142 AMDGPU::sub1, SrcSubRC); 8143 8144 BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0); 8145 8146 BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg); 8147 8148 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8149 8150 // We don't need to legalize operands here. src0 for either instruction can be 8151 // an SGPR, and the second input is unused or determined here. 8152 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8153 } 8154 8155 void SIInstrInfo::splitScalar64BitBFE(SIInstrWorklist &Worklist, 8156 MachineInstr &Inst) const { 8157 MachineBasicBlock &MBB = *Inst.getParent(); 8158 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8159 MachineBasicBlock::iterator MII = Inst; 8160 const DebugLoc &DL = Inst.getDebugLoc(); 8161 8162 MachineOperand &Dest = Inst.getOperand(0); 8163 uint32_t Imm = Inst.getOperand(2).getImm(); 8164 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 8165 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 8166 8167 (void) Offset; 8168 8169 // Only sext_inreg cases handled. 8170 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && 8171 Offset == 0 && "Not implemented"); 8172 8173 if (BitWidth < 32) { 8174 Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8175 Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8176 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 8177 8178 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo) 8179 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) 8180 .addImm(0) 8181 .addImm(BitWidth); 8182 8183 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 8184 .addImm(31) 8185 .addReg(MidRegLo); 8186 8187 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 8188 .addReg(MidRegLo) 8189 .addImm(AMDGPU::sub0) 8190 .addReg(MidRegHi) 8191 .addImm(AMDGPU::sub1); 8192 8193 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8194 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8195 return; 8196 } 8197 8198 MachineOperand &Src = Inst.getOperand(1); 8199 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8200 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 8201 8202 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 8203 .addImm(31) 8204 .addReg(Src.getReg(), 0, AMDGPU::sub0); 8205 8206 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 8207 .addReg(Src.getReg(), 0, AMDGPU::sub0) 8208 .addImm(AMDGPU::sub0) 8209 .addReg(TmpReg) 8210 .addImm(AMDGPU::sub1); 8211 8212 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8213 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8214 } 8215 8216 void SIInstrInfo::splitScalar64BitCountOp(SIInstrWorklist &Worklist, 8217 MachineInstr &Inst, unsigned Opcode, 8218 MachineDominatorTree *MDT) const { 8219 // (S_FLBIT_I32_B64 hi:lo) -> 8220 // -> (umin (V_FFBH_U32_e32 hi), (uaddsat (V_FFBH_U32_e32 lo), 32)) 8221 // (S_FF1_I32_B64 hi:lo) -> 8222 // ->(umin (uaddsat (V_FFBL_B32_e32 hi), 32) (V_FFBL_B32_e32 lo)) 8223 8224 MachineBasicBlock &MBB = *Inst.getParent(); 8225 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8226 MachineBasicBlock::iterator MII = Inst; 8227 const DebugLoc &DL = Inst.getDebugLoc(); 8228 8229 MachineOperand &Dest = Inst.getOperand(0); 8230 MachineOperand &Src = Inst.getOperand(1); 8231 8232 const MCInstrDesc &InstDesc = get(Opcode); 8233 8234 bool IsCtlz = Opcode == AMDGPU::V_FFBH_U32_e32; 8235 unsigned OpcodeAdd = 8236 ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 8237 8238 const TargetRegisterClass *SrcRC = 8239 Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass; 8240 const TargetRegisterClass *SrcSubRC = 8241 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0); 8242 8243 MachineOperand SrcRegSub0 = 8244 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC); 8245 MachineOperand SrcRegSub1 = 8246 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC); 8247 8248 Register MidReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8249 Register MidReg2 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8250 Register MidReg3 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8251 Register MidReg4 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8252 8253 BuildMI(MBB, MII, DL, InstDesc, MidReg1).add(SrcRegSub0); 8254 8255 BuildMI(MBB, MII, DL, InstDesc, MidReg2).add(SrcRegSub1); 8256 8257 BuildMI(MBB, MII, DL, get(OpcodeAdd), MidReg3) 8258 .addReg(IsCtlz ? MidReg1 : MidReg2) 8259 .addImm(32) 8260 .addImm(1); // enable clamp 8261 8262 BuildMI(MBB, MII, DL, get(AMDGPU::V_MIN_U32_e64), MidReg4) 8263 .addReg(MidReg3) 8264 .addReg(IsCtlz ? MidReg2 : MidReg1); 8265 8266 MRI.replaceRegWith(Dest.getReg(), MidReg4); 8267 8268 addUsersToMoveToVALUWorklist(MidReg4, MRI, Worklist); 8269 } 8270 8271 void SIInstrInfo::addUsersToMoveToVALUWorklist( 8272 Register DstReg, MachineRegisterInfo &MRI, 8273 SIInstrWorklist &Worklist) const { 8274 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 8275 E = MRI.use_end(); I != E;) { 8276 MachineInstr &UseMI = *I->getParent(); 8277 8278 unsigned OpNo = 0; 8279 8280 switch (UseMI.getOpcode()) { 8281 case AMDGPU::COPY: 8282 case AMDGPU::WQM: 8283 case AMDGPU::SOFT_WQM: 8284 case AMDGPU::STRICT_WWM: 8285 case AMDGPU::STRICT_WQM: 8286 case AMDGPU::REG_SEQUENCE: 8287 case AMDGPU::PHI: 8288 case AMDGPU::INSERT_SUBREG: 8289 break; 8290 default: 8291 OpNo = I.getOperandNo(); 8292 break; 8293 } 8294 8295 if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) { 8296 Worklist.insert(&UseMI); 8297 8298 do { 8299 ++I; 8300 } while (I != E && I->getParent() == &UseMI); 8301 } else { 8302 ++I; 8303 } 8304 } 8305 } 8306 8307 void SIInstrInfo::movePackToVALU(SIInstrWorklist &Worklist, 8308 MachineRegisterInfo &MRI, 8309 MachineInstr &Inst) const { 8310 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8311 MachineBasicBlock *MBB = Inst.getParent(); 8312 MachineOperand &Src0 = Inst.getOperand(1); 8313 MachineOperand &Src1 = Inst.getOperand(2); 8314 const DebugLoc &DL = Inst.getDebugLoc(); 8315 8316 switch (Inst.getOpcode()) { 8317 case AMDGPU::S_PACK_LL_B32_B16: { 8318 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8319 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8320 8321 // FIXME: Can do a lot better if we know the high bits of src0 or src1 are 8322 // 0. 8323 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 8324 .addImm(0xffff); 8325 8326 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg) 8327 .addReg(ImmReg, RegState::Kill) 8328 .add(Src0); 8329 8330 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) 8331 .add(Src1) 8332 .addImm(16) 8333 .addReg(TmpReg, RegState::Kill); 8334 break; 8335 } 8336 case AMDGPU::S_PACK_LH_B32_B16: { 8337 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8338 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 8339 .addImm(0xffff); 8340 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg) 8341 .addReg(ImmReg, RegState::Kill) 8342 .add(Src0) 8343 .add(Src1); 8344 break; 8345 } 8346 case AMDGPU::S_PACK_HL_B32_B16: { 8347 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8348 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 8349 .addImm(16) 8350 .add(Src0); 8351 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) 8352 .add(Src1) 8353 .addImm(16) 8354 .addReg(TmpReg, RegState::Kill); 8355 break; 8356 } 8357 case AMDGPU::S_PACK_HH_B32_B16: { 8358 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8359 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8360 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 8361 .addImm(16) 8362 .add(Src0); 8363 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 8364 .addImm(0xffff0000); 8365 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg) 8366 .add(Src1) 8367 .addReg(ImmReg, RegState::Kill) 8368 .addReg(TmpReg, RegState::Kill); 8369 break; 8370 } 8371 default: 8372 llvm_unreachable("unhandled s_pack_* instruction"); 8373 } 8374 8375 MachineOperand &Dest = Inst.getOperand(0); 8376 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8377 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8378 } 8379 8380 void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op, 8381 MachineInstr &SCCDefInst, 8382 SIInstrWorklist &Worklist, 8383 Register NewCond) const { 8384 8385 // Ensure that def inst defines SCC, which is still live. 8386 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() && 8387 !Op.isDead() && Op.getParent() == &SCCDefInst); 8388 SmallVector<MachineInstr *, 4> CopyToDelete; 8389 // This assumes that all the users of SCC are in the same block 8390 // as the SCC def. 8391 for (MachineInstr &MI : // Skip the def inst itself. 8392 make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)), 8393 SCCDefInst.getParent()->end())) { 8394 // Check if SCC is used first. 8395 int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, &RI, false); 8396 if (SCCIdx != -1) { 8397 if (MI.isCopy()) { 8398 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 8399 Register DestReg = MI.getOperand(0).getReg(); 8400 8401 MRI.replaceRegWith(DestReg, NewCond); 8402 CopyToDelete.push_back(&MI); 8403 } else { 8404 8405 if (NewCond.isValid()) 8406 MI.getOperand(SCCIdx).setReg(NewCond); 8407 8408 Worklist.insert(&MI); 8409 } 8410 } 8411 // Exit if we find another SCC def. 8412 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, &RI, false, false) != -1) 8413 break; 8414 } 8415 for (auto &Copy : CopyToDelete) 8416 Copy->eraseFromParent(); 8417 } 8418 8419 // Instructions that use SCC may be converted to VALU instructions. When that 8420 // happens, the SCC register is changed to VCC_LO. The instruction that defines 8421 // SCC must be changed to an instruction that defines VCC. This function makes 8422 // sure that the instruction that defines SCC is added to the moveToVALU 8423 // worklist. 8424 void SIInstrInfo::addSCCDefsToVALUWorklist(MachineInstr *SCCUseInst, 8425 SIInstrWorklist &Worklist) const { 8426 // Look for a preceding instruction that either defines VCC or SCC. If VCC 8427 // then there is nothing to do because the defining instruction has been 8428 // converted to a VALU already. If SCC then that instruction needs to be 8429 // converted to a VALU. 8430 for (MachineInstr &MI : 8431 make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)), 8432 SCCUseInst->getParent()->rend())) { 8433 if (MI.modifiesRegister(AMDGPU::VCC, &RI)) 8434 break; 8435 if (MI.definesRegister(AMDGPU::SCC, &RI)) { 8436 Worklist.insert(&MI); 8437 break; 8438 } 8439 } 8440 } 8441 8442 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 8443 const MachineInstr &Inst) const { 8444 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 8445 8446 switch (Inst.getOpcode()) { 8447 // For target instructions, getOpRegClass just returns the virtual register 8448 // class associated with the operand, so we need to find an equivalent VGPR 8449 // register class in order to move the instruction to the VALU. 8450 case AMDGPU::COPY: 8451 case AMDGPU::PHI: 8452 case AMDGPU::REG_SEQUENCE: 8453 case AMDGPU::INSERT_SUBREG: 8454 case AMDGPU::WQM: 8455 case AMDGPU::SOFT_WQM: 8456 case AMDGPU::STRICT_WWM: 8457 case AMDGPU::STRICT_WQM: { 8458 const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1); 8459 if (RI.isAGPRClass(SrcRC)) { 8460 if (RI.isAGPRClass(NewDstRC)) 8461 return nullptr; 8462 8463 switch (Inst.getOpcode()) { 8464 case AMDGPU::PHI: 8465 case AMDGPU::REG_SEQUENCE: 8466 case AMDGPU::INSERT_SUBREG: 8467 NewDstRC = RI.getEquivalentAGPRClass(NewDstRC); 8468 break; 8469 default: 8470 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 8471 } 8472 8473 if (!NewDstRC) 8474 return nullptr; 8475 } else { 8476 if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass) 8477 return nullptr; 8478 8479 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 8480 if (!NewDstRC) 8481 return nullptr; 8482 } 8483 8484 return NewDstRC; 8485 } 8486 default: 8487 return NewDstRC; 8488 } 8489 } 8490 8491 // Find the one SGPR operand we are allowed to use. 8492 Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI, 8493 int OpIndices[3]) const { 8494 const MCInstrDesc &Desc = MI.getDesc(); 8495 8496 // Find the one SGPR operand we are allowed to use. 8497 // 8498 // First we need to consider the instruction's operand requirements before 8499 // legalizing. Some operands are required to be SGPRs, such as implicit uses 8500 // of VCC, but we are still bound by the constant bus requirement to only use 8501 // one. 8502 // 8503 // If the operand's class is an SGPR, we can never move it. 8504 8505 Register SGPRReg = findImplicitSGPRRead(MI); 8506 if (SGPRReg) 8507 return SGPRReg; 8508 8509 Register UsedSGPRs[3] = {Register()}; 8510 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 8511 8512 for (unsigned i = 0; i < 3; ++i) { 8513 int Idx = OpIndices[i]; 8514 if (Idx == -1) 8515 break; 8516 8517 const MachineOperand &MO = MI.getOperand(Idx); 8518 if (!MO.isReg()) 8519 continue; 8520 8521 // Is this operand statically required to be an SGPR based on the operand 8522 // constraints? 8523 const TargetRegisterClass *OpRC = 8524 RI.getRegClass(Desc.operands()[Idx].RegClass); 8525 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 8526 if (IsRequiredSGPR) 8527 return MO.getReg(); 8528 8529 // If this could be a VGPR or an SGPR, Check the dynamic register class. 8530 Register Reg = MO.getReg(); 8531 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 8532 if (RI.isSGPRClass(RegRC)) 8533 UsedSGPRs[i] = Reg; 8534 } 8535 8536 // We don't have a required SGPR operand, so we have a bit more freedom in 8537 // selecting operands to move. 8538 8539 // Try to select the most used SGPR. If an SGPR is equal to one of the 8540 // others, we choose that. 8541 // 8542 // e.g. 8543 // V_FMA_F32 v0, s0, s0, s0 -> No moves 8544 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 8545 8546 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 8547 // prefer those. 8548 8549 if (UsedSGPRs[0]) { 8550 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 8551 SGPRReg = UsedSGPRs[0]; 8552 } 8553 8554 if (!SGPRReg && UsedSGPRs[1]) { 8555 if (UsedSGPRs[1] == UsedSGPRs[2]) 8556 SGPRReg = UsedSGPRs[1]; 8557 } 8558 8559 return SGPRReg; 8560 } 8561 8562 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 8563 unsigned OperandName) const { 8564 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 8565 if (Idx == -1) 8566 return nullptr; 8567 8568 return &MI.getOperand(Idx); 8569 } 8570 8571 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 8572 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 8573 int64_t Format = ST.getGeneration() >= AMDGPUSubtarget::GFX11 8574 ? (int64_t)AMDGPU::UfmtGFX11::UFMT_32_FLOAT 8575 : (int64_t)AMDGPU::UfmtGFX10::UFMT_32_FLOAT; 8576 return (Format << 44) | 8577 (1ULL << 56) | // RESOURCE_LEVEL = 1 8578 (3ULL << 60); // OOB_SELECT = 3 8579 } 8580 8581 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 8582 if (ST.isAmdHsaOS()) { 8583 // Set ATC = 1. GFX9 doesn't have this bit. 8584 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) 8585 RsrcDataFormat |= (1ULL << 56); 8586 8587 // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this. 8588 // BTW, it disables TC L2 and therefore decreases performance. 8589 if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) 8590 RsrcDataFormat |= (2ULL << 59); 8591 } 8592 8593 return RsrcDataFormat; 8594 } 8595 8596 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 8597 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 8598 AMDGPU::RSRC_TID_ENABLE | 8599 0xffffffff; // Size; 8600 8601 // GFX9 doesn't have ELEMENT_SIZE. 8602 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 8603 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1; 8604 Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT; 8605 } 8606 8607 // IndexStride = 64 / 32. 8608 uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2; 8609 Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT; 8610 8611 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 8612 // Clear them unless we want a huge stride. 8613 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 8614 ST.getGeneration() <= AMDGPUSubtarget::GFX9) 8615 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 8616 8617 return Rsrc23; 8618 } 8619 8620 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { 8621 unsigned Opc = MI.getOpcode(); 8622 8623 return isSMRD(Opc); 8624 } 8625 8626 bool SIInstrInfo::isHighLatencyDef(int Opc) const { 8627 return get(Opc).mayLoad() && 8628 (isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc)); 8629 } 8630 8631 unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI, 8632 int &FrameIndex) const { 8633 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 8634 if (!Addr || !Addr->isFI()) 8635 return Register(); 8636 8637 assert(!MI.memoperands_empty() && 8638 (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS); 8639 8640 FrameIndex = Addr->getIndex(); 8641 return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg(); 8642 } 8643 8644 unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI, 8645 int &FrameIndex) const { 8646 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr); 8647 assert(Addr && Addr->isFI()); 8648 FrameIndex = Addr->getIndex(); 8649 return getNamedOperand(MI, AMDGPU::OpName::data)->getReg(); 8650 } 8651 8652 Register SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 8653 int &FrameIndex) const { 8654 if (!MI.mayLoad()) 8655 return Register(); 8656 8657 if (isMUBUF(MI) || isVGPRSpill(MI)) 8658 return isStackAccess(MI, FrameIndex); 8659 8660 if (isSGPRSpill(MI)) 8661 return isSGPRStackAccess(MI, FrameIndex); 8662 8663 return Register(); 8664 } 8665 8666 Register SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 8667 int &FrameIndex) const { 8668 if (!MI.mayStore()) 8669 return Register(); 8670 8671 if (isMUBUF(MI) || isVGPRSpill(MI)) 8672 return isStackAccess(MI, FrameIndex); 8673 8674 if (isSGPRSpill(MI)) 8675 return isSGPRStackAccess(MI, FrameIndex); 8676 8677 return Register(); 8678 } 8679 8680 unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const { 8681 unsigned Size = 0; 8682 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 8683 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 8684 while (++I != E && I->isInsideBundle()) { 8685 assert(!I->isBundle() && "No nested bundle!"); 8686 Size += getInstSizeInBytes(*I); 8687 } 8688 8689 return Size; 8690 } 8691 8692 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 8693 unsigned Opc = MI.getOpcode(); 8694 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); 8695 unsigned DescSize = Desc.getSize(); 8696 8697 // If we have a definitive size, we can use it. Otherwise we need to inspect 8698 // the operands to know the size. 8699 if (isFixedSize(MI)) { 8700 unsigned Size = DescSize; 8701 8702 // If we hit the buggy offset, an extra nop will be inserted in MC so 8703 // estimate the worst case. 8704 if (MI.isBranch() && ST.hasOffset3fBug()) 8705 Size += 4; 8706 8707 return Size; 8708 } 8709 8710 // Instructions may have a 32-bit literal encoded after them. Check 8711 // operands that could ever be literals. 8712 if (isVALU(MI) || isSALU(MI)) { 8713 if (isDPP(MI)) 8714 return DescSize; 8715 bool HasLiteral = false; 8716 for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) { 8717 const MachineOperand &Op = MI.getOperand(I); 8718 const MCOperandInfo &OpInfo = Desc.operands()[I]; 8719 if (!Op.isReg() && !isInlineConstant(Op, OpInfo)) { 8720 HasLiteral = true; 8721 break; 8722 } 8723 } 8724 return HasLiteral ? DescSize + 4 : DescSize; 8725 } 8726 8727 // Check whether we have extra NSA words. 8728 if (isMIMG(MI)) { 8729 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 8730 if (VAddr0Idx < 0) 8731 return 8; 8732 8733 int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); 8734 return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4); 8735 } 8736 8737 switch (Opc) { 8738 case TargetOpcode::BUNDLE: 8739 return getInstBundleSize(MI); 8740 case TargetOpcode::INLINEASM: 8741 case TargetOpcode::INLINEASM_BR: { 8742 const MachineFunction *MF = MI.getParent()->getParent(); 8743 const char *AsmStr = MI.getOperand(0).getSymbolName(); 8744 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST); 8745 } 8746 default: 8747 if (MI.isMetaInstruction()) 8748 return 0; 8749 return DescSize; 8750 } 8751 } 8752 8753 bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const { 8754 if (!isFLAT(MI)) 8755 return false; 8756 8757 if (MI.memoperands_empty()) 8758 return true; 8759 8760 for (const MachineMemOperand *MMO : MI.memoperands()) { 8761 if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS) 8762 return true; 8763 } 8764 return false; 8765 } 8766 8767 bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const { 8768 return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO; 8769 } 8770 8771 void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry, 8772 MachineBasicBlock *IfEnd) const { 8773 MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator(); 8774 assert(TI != IfEntry->end()); 8775 8776 MachineInstr *Branch = &(*TI); 8777 MachineFunction *MF = IfEntry->getParent(); 8778 MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo(); 8779 8780 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 8781 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); 8782 MachineInstr *SIIF = 8783 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg) 8784 .add(Branch->getOperand(0)) 8785 .add(Branch->getOperand(1)); 8786 MachineInstr *SIEND = 8787 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF)) 8788 .addReg(DstReg); 8789 8790 IfEntry->erase(TI); 8791 IfEntry->insert(IfEntry->end(), SIIF); 8792 IfEnd->insert(IfEnd->getFirstNonPHI(), SIEND); 8793 } 8794 } 8795 8796 void SIInstrInfo::convertNonUniformLoopRegion( 8797 MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const { 8798 MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator(); 8799 // We expect 2 terminators, one conditional and one unconditional. 8800 assert(TI != LoopEnd->end()); 8801 8802 MachineInstr *Branch = &(*TI); 8803 MachineFunction *MF = LoopEnd->getParent(); 8804 MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo(); 8805 8806 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 8807 8808 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); 8809 Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC()); 8810 MachineInstrBuilder HeaderPHIBuilder = 8811 BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg); 8812 for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) { 8813 if (PMBB == LoopEnd) { 8814 HeaderPHIBuilder.addReg(BackEdgeReg); 8815 } else { 8816 Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC()); 8817 materializeImmediate(*PMBB, PMBB->getFirstTerminator(), DebugLoc(), 8818 ZeroReg, 0); 8819 HeaderPHIBuilder.addReg(ZeroReg); 8820 } 8821 HeaderPHIBuilder.addMBB(PMBB); 8822 } 8823 MachineInstr *HeaderPhi = HeaderPHIBuilder; 8824 MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(), 8825 get(AMDGPU::SI_IF_BREAK), BackEdgeReg) 8826 .addReg(DstReg) 8827 .add(Branch->getOperand(0)); 8828 MachineInstr *SILOOP = 8829 BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP)) 8830 .addReg(BackEdgeReg) 8831 .addMBB(LoopEntry); 8832 8833 LoopEntry->insert(LoopEntry->begin(), HeaderPhi); 8834 LoopEnd->erase(TI); 8835 LoopEnd->insert(LoopEnd->end(), SIIFBREAK); 8836 LoopEnd->insert(LoopEnd->end(), SILOOP); 8837 } 8838 } 8839 8840 ArrayRef<std::pair<int, const char *>> 8841 SIInstrInfo::getSerializableTargetIndices() const { 8842 static const std::pair<int, const char *> TargetIndices[] = { 8843 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 8844 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 8845 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 8846 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 8847 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 8848 return ArrayRef(TargetIndices); 8849 } 8850 8851 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 8852 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 8853 ScheduleHazardRecognizer * 8854 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 8855 const ScheduleDAG *DAG) const { 8856 return new GCNHazardRecognizer(DAG->MF); 8857 } 8858 8859 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 8860 /// pass. 8861 ScheduleHazardRecognizer * 8862 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 8863 return new GCNHazardRecognizer(MF); 8864 } 8865 8866 // Called during: 8867 // - pre-RA scheduling and post-RA scheduling 8868 ScheduleHazardRecognizer * 8869 SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 8870 const ScheduleDAGMI *DAG) const { 8871 // Borrowed from Arm Target 8872 // We would like to restrict this hazard recognizer to only 8873 // post-RA scheduling; we can tell that we're post-RA because we don't 8874 // track VRegLiveness. 8875 if (!DAG->hasVRegLiveness()) 8876 return new GCNHazardRecognizer(DAG->MF); 8877 return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 8878 } 8879 8880 std::pair<unsigned, unsigned> 8881 SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 8882 return std::pair(TF & MO_MASK, TF & ~MO_MASK); 8883 } 8884 8885 ArrayRef<std::pair<unsigned, const char *>> 8886 SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 8887 static const std::pair<unsigned, const char *> TargetFlags[] = { 8888 { MO_GOTPCREL, "amdgpu-gotprel" }, 8889 { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" }, 8890 { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" }, 8891 { MO_REL32_LO, "amdgpu-rel32-lo" }, 8892 { MO_REL32_HI, "amdgpu-rel32-hi" }, 8893 { MO_ABS32_LO, "amdgpu-abs32-lo" }, 8894 { MO_ABS32_HI, "amdgpu-abs32-hi" }, 8895 }; 8896 8897 return ArrayRef(TargetFlags); 8898 } 8899 8900 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> 8901 SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const { 8902 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = 8903 { 8904 {MONoClobber, "amdgpu-noclobber"}, 8905 {MOLastUse, "amdgpu-last-use"}, 8906 }; 8907 8908 return ArrayRef(TargetFlags); 8909 } 8910 8911 unsigned SIInstrInfo::getLiveRangeSplitOpcode(Register SrcReg, 8912 const MachineFunction &MF) const { 8913 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8914 assert(SrcReg.isVirtual()); 8915 if (MFI->checkFlag(SrcReg, AMDGPU::VirtRegFlag::WWM_REG)) 8916 return AMDGPU::WWM_COPY; 8917 8918 return AMDGPU::COPY; 8919 } 8920 8921 bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI, 8922 Register Reg) const { 8923 // We need to handle instructions which may be inserted during register 8924 // allocation to handle the prolog. The initial prolog instruction may have 8925 // been separated from the start of the block by spills and copies inserted 8926 // needed by the prolog. However, the insertions for scalar registers can 8927 // always be placed at the BB top as they are independent of the exec mask 8928 // value. 8929 bool IsNullOrVectorRegister = true; 8930 if (Reg) { 8931 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 8932 IsNullOrVectorRegister = !RI.isSGPRClass(RI.getRegClassForReg(MRI, Reg)); 8933 } 8934 8935 uint16_t Opcode = MI.getOpcode(); 8936 // FIXME: Copies inserted in the block prolog for live-range split should also 8937 // be included. 8938 return IsNullOrVectorRegister && 8939 (isSpill(Opcode) || (!MI.isTerminator() && Opcode != AMDGPU::COPY && 8940 MI.modifiesRegister(AMDGPU::EXEC, &RI))); 8941 } 8942 8943 MachineInstrBuilder 8944 SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 8945 MachineBasicBlock::iterator I, 8946 const DebugLoc &DL, 8947 Register DestReg) const { 8948 if (ST.hasAddNoCarry()) 8949 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg); 8950 8951 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8952 Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC()); 8953 MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC()); 8954 8955 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 8956 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 8957 } 8958 8959 MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 8960 MachineBasicBlock::iterator I, 8961 const DebugLoc &DL, 8962 Register DestReg, 8963 RegScavenger &RS) const { 8964 if (ST.hasAddNoCarry()) 8965 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg); 8966 8967 // If available, prefer to use vcc. 8968 Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC) 8969 ? Register(RI.getVCC()) 8970 : RS.scavengeRegisterBackwards( 8971 *RI.getBoolRC(), I, /* RestoreAfter */ false, 8972 0, /* AllowSpill */ false); 8973 8974 // TODO: Users need to deal with this. 8975 if (!UnusedCarry.isValid()) 8976 return MachineInstrBuilder(); 8977 8978 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 8979 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 8980 } 8981 8982 bool SIInstrInfo::isKillTerminator(unsigned Opcode) { 8983 switch (Opcode) { 8984 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 8985 case AMDGPU::SI_KILL_I1_TERMINATOR: 8986 return true; 8987 default: 8988 return false; 8989 } 8990 } 8991 8992 const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const { 8993 switch (Opcode) { 8994 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 8995 return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR); 8996 case AMDGPU::SI_KILL_I1_PSEUDO: 8997 return get(AMDGPU::SI_KILL_I1_TERMINATOR); 8998 default: 8999 llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO"); 9000 } 9001 } 9002 9003 bool SIInstrInfo::isLegalMUBUFImmOffset(unsigned Imm) const { 9004 return Imm <= getMaxMUBUFImmOffset(ST); 9005 } 9006 9007 unsigned SIInstrInfo::getMaxMUBUFImmOffset(const GCNSubtarget &ST) { 9008 // GFX12 field is non-negative 24-bit signed byte offset. 9009 const unsigned OffsetBits = 9010 ST.getGeneration() >= AMDGPUSubtarget::GFX12 ? 23 : 12; 9011 return (1 << OffsetBits) - 1; 9012 } 9013 9014 void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const { 9015 if (!ST.isWave32()) 9016 return; 9017 9018 if (MI.isInlineAsm()) 9019 return; 9020 9021 for (auto &Op : MI.implicit_operands()) { 9022 if (Op.isReg() && Op.getReg() == AMDGPU::VCC) 9023 Op.setReg(AMDGPU::VCC_LO); 9024 } 9025 } 9026 9027 bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const { 9028 if (!isSMRD(MI)) 9029 return false; 9030 9031 // Check that it is using a buffer resource. 9032 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase); 9033 if (Idx == -1) // e.g. s_memtime 9034 return false; 9035 9036 const auto RCID = MI.getDesc().operands()[Idx].RegClass; 9037 return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass); 9038 } 9039 9040 // Given Imm, split it into the values to put into the SOffset and ImmOffset 9041 // fields in an MUBUF instruction. Return false if it is not possible (due to a 9042 // hardware bug needing a workaround). 9043 // 9044 // The required alignment ensures that individual address components remain 9045 // aligned if they are aligned to begin with. It also ensures that additional 9046 // offsets within the given alignment can be added to the resulting ImmOffset. 9047 bool SIInstrInfo::splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, 9048 uint32_t &ImmOffset, Align Alignment) const { 9049 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST); 9050 const uint32_t MaxImm = alignDown(MaxOffset, Alignment.value()); 9051 uint32_t Overflow = 0; 9052 9053 if (Imm > MaxImm) { 9054 if (Imm <= MaxImm + 64) { 9055 // Use an SOffset inline constant for 4..64 9056 Overflow = Imm - MaxImm; 9057 Imm = MaxImm; 9058 } else { 9059 // Try to keep the same value in SOffset for adjacent loads, so that 9060 // the corresponding register contents can be re-used. 9061 // 9062 // Load values with all low-bits (except for alignment bits) set into 9063 // SOffset, so that a larger range of values can be covered using 9064 // s_movk_i32. 9065 // 9066 // Atomic operations fail to work correctly when individual address 9067 // components are unaligned, even if their sum is aligned. 9068 uint32_t High = (Imm + Alignment.value()) & ~MaxOffset; 9069 uint32_t Low = (Imm + Alignment.value()) & MaxOffset; 9070 Imm = Low; 9071 Overflow = High - Alignment.value(); 9072 } 9073 } 9074 9075 if (Overflow > 0) { 9076 // There is a hardware bug in SI and CI which prevents address clamping in 9077 // MUBUF instructions from working correctly with SOffsets. The immediate 9078 // offset is unaffected. 9079 if (ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 9080 return false; 9081 9082 // It is not possible to set immediate in SOffset field on some targets. 9083 if (ST.hasRestrictedSOffset()) 9084 return false; 9085 } 9086 9087 ImmOffset = Imm; 9088 SOffset = Overflow; 9089 return true; 9090 } 9091 9092 // Depending on the used address space and instructions, some immediate offsets 9093 // are allowed and some are not. 9094 // Pre-GFX12, flat instruction offsets can only be non-negative, global and 9095 // scratch instruction offsets can also be negative. On GFX12, offsets can be 9096 // negative for all variants. 9097 // 9098 // There are several bugs related to these offsets: 9099 // On gfx10.1, flat instructions that go into the global address space cannot 9100 // use an offset. 9101 // 9102 // For scratch instructions, the address can be either an SGPR or a VGPR. 9103 // The following offsets can be used, depending on the architecture (x means 9104 // cannot be used): 9105 // +----------------------------+------+------+ 9106 // | Address-Mode | SGPR | VGPR | 9107 // +----------------------------+------+------+ 9108 // | gfx9 | | | 9109 // | negative, 4-aligned offset | x | ok | 9110 // | negative, unaligned offset | x | ok | 9111 // +----------------------------+------+------+ 9112 // | gfx10 | | | 9113 // | negative, 4-aligned offset | ok | ok | 9114 // | negative, unaligned offset | ok | x | 9115 // +----------------------------+------+------+ 9116 // | gfx10.3 | | | 9117 // | negative, 4-aligned offset | ok | ok | 9118 // | negative, unaligned offset | ok | ok | 9119 // +----------------------------+------+------+ 9120 // 9121 // This function ignores the addressing mode, so if an offset cannot be used in 9122 // one addressing mode, it is considered illegal. 9123 bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, 9124 uint64_t FlatVariant) const { 9125 // TODO: Should 0 be special cased? 9126 if (!ST.hasFlatInstOffsets()) 9127 return false; 9128 9129 if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT && 9130 (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 9131 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS)) 9132 return false; 9133 9134 if (ST.hasNegativeUnalignedScratchOffsetBug() && 9135 FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 && 9136 (Offset % 4) != 0) { 9137 return false; 9138 } 9139 9140 bool AllowNegative = allowNegativeFlatOffset(FlatVariant); 9141 unsigned N = AMDGPU::getNumFlatOffsetBits(ST); 9142 return isIntN(N, Offset) && (AllowNegative || Offset >= 0); 9143 } 9144 9145 // See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not. 9146 std::pair<int64_t, int64_t> 9147 SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace, 9148 uint64_t FlatVariant) const { 9149 int64_t RemainderOffset = COffsetVal; 9150 int64_t ImmField = 0; 9151 9152 bool AllowNegative = allowNegativeFlatOffset(FlatVariant); 9153 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST) - 1; 9154 9155 if (AllowNegative) { 9156 // Use signed division by a power of two to truncate towards 0. 9157 int64_t D = 1LL << NumBits; 9158 RemainderOffset = (COffsetVal / D) * D; 9159 ImmField = COffsetVal - RemainderOffset; 9160 9161 if (ST.hasNegativeUnalignedScratchOffsetBug() && 9162 FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 && 9163 (ImmField % 4) != 0) { 9164 // Make ImmField a multiple of 4 9165 RemainderOffset += ImmField % 4; 9166 ImmField -= ImmField % 4; 9167 } 9168 } else if (COffsetVal >= 0) { 9169 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits); 9170 RemainderOffset = COffsetVal - ImmField; 9171 } 9172 9173 assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant)); 9174 assert(RemainderOffset + ImmField == COffsetVal); 9175 return {ImmField, RemainderOffset}; 9176 } 9177 9178 bool SIInstrInfo::allowNegativeFlatOffset(uint64_t FlatVariant) const { 9179 if (ST.hasNegativeScratchOffsetBug() && 9180 FlatVariant == SIInstrFlags::FlatScratch) 9181 return false; 9182 9183 return FlatVariant != SIInstrFlags::FLAT || AMDGPU::isGFX12Plus(ST); 9184 } 9185 9186 static unsigned subtargetEncodingFamily(const GCNSubtarget &ST) { 9187 switch (ST.getGeneration()) { 9188 default: 9189 break; 9190 case AMDGPUSubtarget::SOUTHERN_ISLANDS: 9191 case AMDGPUSubtarget::SEA_ISLANDS: 9192 return SIEncodingFamily::SI; 9193 case AMDGPUSubtarget::VOLCANIC_ISLANDS: 9194 case AMDGPUSubtarget::GFX9: 9195 return SIEncodingFamily::VI; 9196 case AMDGPUSubtarget::GFX10: 9197 return SIEncodingFamily::GFX10; 9198 case AMDGPUSubtarget::GFX11: 9199 return SIEncodingFamily::GFX11; 9200 case AMDGPUSubtarget::GFX12: 9201 return SIEncodingFamily::GFX12; 9202 } 9203 llvm_unreachable("Unknown subtarget generation!"); 9204 } 9205 9206 bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const { 9207 switch(MCOp) { 9208 // These opcodes use indirect register addressing so 9209 // they need special handling by codegen (currently missing). 9210 // Therefore it is too risky to allow these opcodes 9211 // to be selected by dpp combiner or sdwa peepholer. 9212 case AMDGPU::V_MOVRELS_B32_dpp_gfx10: 9213 case AMDGPU::V_MOVRELS_B32_sdwa_gfx10: 9214 case AMDGPU::V_MOVRELD_B32_dpp_gfx10: 9215 case AMDGPU::V_MOVRELD_B32_sdwa_gfx10: 9216 case AMDGPU::V_MOVRELSD_B32_dpp_gfx10: 9217 case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10: 9218 case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10: 9219 case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10: 9220 return true; 9221 default: 9222 return false; 9223 } 9224 } 9225 9226 int SIInstrInfo::pseudoToMCOpcode(int Opcode) const { 9227 Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode); 9228 9229 unsigned Gen = subtargetEncodingFamily(ST); 9230 9231 if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 && 9232 ST.getGeneration() == AMDGPUSubtarget::GFX9) 9233 Gen = SIEncodingFamily::GFX9; 9234 9235 // Adjust the encoding family to GFX80 for D16 buffer instructions when the 9236 // subtarget has UnpackedD16VMem feature. 9237 // TODO: remove this when we discard GFX80 encoding. 9238 if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf)) 9239 Gen = SIEncodingFamily::GFX80; 9240 9241 if (get(Opcode).TSFlags & SIInstrFlags::SDWA) { 9242 switch (ST.getGeneration()) { 9243 default: 9244 Gen = SIEncodingFamily::SDWA; 9245 break; 9246 case AMDGPUSubtarget::GFX9: 9247 Gen = SIEncodingFamily::SDWA9; 9248 break; 9249 case AMDGPUSubtarget::GFX10: 9250 Gen = SIEncodingFamily::SDWA10; 9251 break; 9252 } 9253 } 9254 9255 if (isMAI(Opcode)) { 9256 int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode); 9257 if (MFMAOp != -1) 9258 Opcode = MFMAOp; 9259 } 9260 9261 int MCOp = AMDGPU::getMCOpcode(Opcode, Gen); 9262 9263 // -1 means that Opcode is already a native instruction. 9264 if (MCOp == -1) 9265 return Opcode; 9266 9267 if (ST.hasGFX90AInsts()) { 9268 uint16_t NMCOp = (uint16_t)-1; 9269 if (ST.hasGFX940Insts()) 9270 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX940); 9271 if (NMCOp == (uint16_t)-1) 9272 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A); 9273 if (NMCOp == (uint16_t)-1) 9274 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9); 9275 if (NMCOp != (uint16_t)-1) 9276 MCOp = NMCOp; 9277 } 9278 9279 // (uint16_t)-1 means that Opcode is a pseudo instruction that has 9280 // no encoding in the given subtarget generation. 9281 if (MCOp == (uint16_t)-1) 9282 return -1; 9283 9284 if (isAsmOnlyOpcode(MCOp)) 9285 return -1; 9286 9287 return MCOp; 9288 } 9289 9290 static 9291 TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) { 9292 assert(RegOpnd.isReg()); 9293 return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() : 9294 getRegSubRegPair(RegOpnd); 9295 } 9296 9297 TargetInstrInfo::RegSubRegPair 9298 llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) { 9299 assert(MI.isRegSequence()); 9300 for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I) 9301 if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) { 9302 auto &RegOp = MI.getOperand(1 + 2 * I); 9303 return getRegOrUndef(RegOp); 9304 } 9305 return TargetInstrInfo::RegSubRegPair(); 9306 } 9307 9308 // Try to find the definition of reg:subreg in subreg-manipulation pseudos 9309 // Following a subreg of reg:subreg isn't supported 9310 static bool followSubRegDef(MachineInstr &MI, 9311 TargetInstrInfo::RegSubRegPair &RSR) { 9312 if (!RSR.SubReg) 9313 return false; 9314 switch (MI.getOpcode()) { 9315 default: break; 9316 case AMDGPU::REG_SEQUENCE: 9317 RSR = getRegSequenceSubReg(MI, RSR.SubReg); 9318 return true; 9319 // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg 9320 case AMDGPU::INSERT_SUBREG: 9321 if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm()) 9322 // inserted the subreg we're looking for 9323 RSR = getRegOrUndef(MI.getOperand(2)); 9324 else { // the subreg in the rest of the reg 9325 auto R1 = getRegOrUndef(MI.getOperand(1)); 9326 if (R1.SubReg) // subreg of subreg isn't supported 9327 return false; 9328 RSR.Reg = R1.Reg; 9329 } 9330 return true; 9331 } 9332 return false; 9333 } 9334 9335 MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P, 9336 MachineRegisterInfo &MRI) { 9337 assert(MRI.isSSA()); 9338 if (!P.Reg.isVirtual()) 9339 return nullptr; 9340 9341 auto RSR = P; 9342 auto *DefInst = MRI.getVRegDef(RSR.Reg); 9343 while (auto *MI = DefInst) { 9344 DefInst = nullptr; 9345 switch (MI->getOpcode()) { 9346 case AMDGPU::COPY: 9347 case AMDGPU::V_MOV_B32_e32: { 9348 auto &Op1 = MI->getOperand(1); 9349 if (Op1.isReg() && Op1.getReg().isVirtual()) { 9350 if (Op1.isUndef()) 9351 return nullptr; 9352 RSR = getRegSubRegPair(Op1); 9353 DefInst = MRI.getVRegDef(RSR.Reg); 9354 } 9355 break; 9356 } 9357 default: 9358 if (followSubRegDef(*MI, RSR)) { 9359 if (!RSR.Reg) 9360 return nullptr; 9361 DefInst = MRI.getVRegDef(RSR.Reg); 9362 } 9363 } 9364 if (!DefInst) 9365 return MI; 9366 } 9367 return nullptr; 9368 } 9369 9370 bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI, 9371 Register VReg, 9372 const MachineInstr &DefMI, 9373 const MachineInstr &UseMI) { 9374 assert(MRI.isSSA() && "Must be run on SSA"); 9375 9376 auto *TRI = MRI.getTargetRegisterInfo(); 9377 auto *DefBB = DefMI.getParent(); 9378 9379 // Don't bother searching between blocks, although it is possible this block 9380 // doesn't modify exec. 9381 if (UseMI.getParent() != DefBB) 9382 return true; 9383 9384 const int MaxInstScan = 20; 9385 int NumInst = 0; 9386 9387 // Stop scan at the use. 9388 auto E = UseMI.getIterator(); 9389 for (auto I = std::next(DefMI.getIterator()); I != E; ++I) { 9390 if (I->isDebugInstr()) 9391 continue; 9392 9393 if (++NumInst > MaxInstScan) 9394 return true; 9395 9396 if (I->modifiesRegister(AMDGPU::EXEC, TRI)) 9397 return true; 9398 } 9399 9400 return false; 9401 } 9402 9403 bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI, 9404 Register VReg, 9405 const MachineInstr &DefMI) { 9406 assert(MRI.isSSA() && "Must be run on SSA"); 9407 9408 auto *TRI = MRI.getTargetRegisterInfo(); 9409 auto *DefBB = DefMI.getParent(); 9410 9411 const int MaxUseScan = 10; 9412 int NumUse = 0; 9413 9414 for (auto &Use : MRI.use_nodbg_operands(VReg)) { 9415 auto &UseInst = *Use.getParent(); 9416 // Don't bother searching between blocks, although it is possible this block 9417 // doesn't modify exec. 9418 if (UseInst.getParent() != DefBB || UseInst.isPHI()) 9419 return true; 9420 9421 if (++NumUse > MaxUseScan) 9422 return true; 9423 } 9424 9425 if (NumUse == 0) 9426 return false; 9427 9428 const int MaxInstScan = 20; 9429 int NumInst = 0; 9430 9431 // Stop scan when we have seen all the uses. 9432 for (auto I = std::next(DefMI.getIterator()); ; ++I) { 9433 assert(I != DefBB->end()); 9434 9435 if (I->isDebugInstr()) 9436 continue; 9437 9438 if (++NumInst > MaxInstScan) 9439 return true; 9440 9441 for (const MachineOperand &Op : I->operands()) { 9442 // We don't check reg masks here as they're used only on calls: 9443 // 1. EXEC is only considered const within one BB 9444 // 2. Call should be a terminator instruction if present in a BB 9445 9446 if (!Op.isReg()) 9447 continue; 9448 9449 Register Reg = Op.getReg(); 9450 if (Op.isUse()) { 9451 if (Reg == VReg && --NumUse == 0) 9452 return false; 9453 } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC)) 9454 return true; 9455 } 9456 } 9457 } 9458 9459 MachineInstr *SIInstrInfo::createPHIDestinationCopy( 9460 MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt, 9461 const DebugLoc &DL, Register Src, Register Dst) const { 9462 auto Cur = MBB.begin(); 9463 if (Cur != MBB.end()) 9464 do { 9465 if (!Cur->isPHI() && Cur->readsRegister(Dst, /*TRI=*/nullptr)) 9466 return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src); 9467 ++Cur; 9468 } while (Cur != MBB.end() && Cur != LastPHIIt); 9469 9470 return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src, 9471 Dst); 9472 } 9473 9474 MachineInstr *SIInstrInfo::createPHISourceCopy( 9475 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 9476 const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const { 9477 if (InsPt != MBB.end() && 9478 (InsPt->getOpcode() == AMDGPU::SI_IF || 9479 InsPt->getOpcode() == AMDGPU::SI_ELSE || 9480 InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) && 9481 InsPt->definesRegister(Src, /*TRI=*/nullptr)) { 9482 InsPt++; 9483 return BuildMI(MBB, InsPt, DL, 9484 get(ST.isWave32() ? AMDGPU::S_MOV_B32_term 9485 : AMDGPU::S_MOV_B64_term), 9486 Dst) 9487 .addReg(Src, 0, SrcSubReg) 9488 .addReg(AMDGPU::EXEC, RegState::Implicit); 9489 } 9490 return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg, 9491 Dst); 9492 } 9493 9494 bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); } 9495 9496 MachineInstr *SIInstrInfo::foldMemoryOperandImpl( 9497 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 9498 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, 9499 VirtRegMap *VRM) const { 9500 // This is a bit of a hack (copied from AArch64). Consider this instruction: 9501 // 9502 // %0:sreg_32 = COPY $m0 9503 // 9504 // We explicitly chose SReg_32 for the virtual register so such a copy might 9505 // be eliminated by RegisterCoalescer. However, that may not be possible, and 9506 // %0 may even spill. We can't spill $m0 normally (it would require copying to 9507 // a numbered SGPR anyway), and since it is in the SReg_32 register class, 9508 // TargetInstrInfo::foldMemoryOperand() is going to try. 9509 // A similar issue also exists with spilling and reloading $exec registers. 9510 // 9511 // To prevent that, constrain the %0 register class here. 9512 if (isFullCopyInstr(MI)) { 9513 Register DstReg = MI.getOperand(0).getReg(); 9514 Register SrcReg = MI.getOperand(1).getReg(); 9515 if ((DstReg.isVirtual() || SrcReg.isVirtual()) && 9516 (DstReg.isVirtual() != SrcReg.isVirtual())) { 9517 MachineRegisterInfo &MRI = MF.getRegInfo(); 9518 Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg; 9519 const TargetRegisterClass *RC = MRI.getRegClass(VirtReg); 9520 if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) { 9521 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 9522 return nullptr; 9523 } 9524 if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) { 9525 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass); 9526 return nullptr; 9527 } 9528 } 9529 } 9530 9531 return nullptr; 9532 } 9533 9534 unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 9535 const MachineInstr &MI, 9536 unsigned *PredCost) const { 9537 if (MI.isBundle()) { 9538 MachineBasicBlock::const_instr_iterator I(MI.getIterator()); 9539 MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end()); 9540 unsigned Lat = 0, Count = 0; 9541 for (++I; I != E && I->isBundledWithPred(); ++I) { 9542 ++Count; 9543 Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I)); 9544 } 9545 return Lat + Count - 1; 9546 } 9547 9548 return SchedModel.computeInstrLatency(&MI); 9549 } 9550 9551 InstructionUniformity 9552 SIInstrInfo::getGenericInstructionUniformity(const MachineInstr &MI) const { 9553 unsigned opcode = MI.getOpcode(); 9554 if (auto *GI = dyn_cast<GIntrinsic>(&MI)) { 9555 auto IID = GI->getIntrinsicID(); 9556 if (AMDGPU::isIntrinsicSourceOfDivergence(IID)) 9557 return InstructionUniformity::NeverUniform; 9558 if (AMDGPU::isIntrinsicAlwaysUniform(IID)) 9559 return InstructionUniformity::AlwaysUniform; 9560 9561 switch (IID) { 9562 case Intrinsic::amdgcn_if: 9563 case Intrinsic::amdgcn_else: 9564 // FIXME: Uniform if second result 9565 break; 9566 } 9567 9568 return InstructionUniformity::Default; 9569 } 9570 9571 // Loads from the private and flat address spaces are divergent, because 9572 // threads can execute the load instruction with the same inputs and get 9573 // different results. 9574 // 9575 // All other loads are not divergent, because if threads issue loads with the 9576 // same arguments, they will always get the same result. 9577 if (opcode == AMDGPU::G_LOAD) { 9578 if (MI.memoperands_empty()) 9579 return InstructionUniformity::NeverUniform; // conservative assumption 9580 9581 if (llvm::any_of(MI.memoperands(), [](const MachineMemOperand *mmo) { 9582 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS || 9583 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS; 9584 })) { 9585 // At least one MMO in a non-global address space. 9586 return InstructionUniformity::NeverUniform; 9587 } 9588 return InstructionUniformity::Default; 9589 } 9590 9591 if (SIInstrInfo::isGenericAtomicRMWOpcode(opcode) || 9592 opcode == AMDGPU::G_ATOMIC_CMPXCHG || 9593 opcode == AMDGPU::G_ATOMIC_CMPXCHG_WITH_SUCCESS || 9594 AMDGPU::isGenericAtomic(opcode)) { 9595 return InstructionUniformity::NeverUniform; 9596 } 9597 return InstructionUniformity::Default; 9598 } 9599 9600 InstructionUniformity 9601 SIInstrInfo::getInstructionUniformity(const MachineInstr &MI) const { 9602 9603 if (isNeverUniform(MI)) 9604 return InstructionUniformity::NeverUniform; 9605 9606 unsigned opcode = MI.getOpcode(); 9607 if (opcode == AMDGPU::V_READLANE_B32 || 9608 opcode == AMDGPU::V_READFIRSTLANE_B32 || 9609 opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR) 9610 return InstructionUniformity::AlwaysUniform; 9611 9612 if (isCopyInstr(MI)) { 9613 const MachineOperand &srcOp = MI.getOperand(1); 9614 if (srcOp.isReg() && srcOp.getReg().isPhysical()) { 9615 const TargetRegisterClass *regClass = 9616 RI.getPhysRegBaseClass(srcOp.getReg()); 9617 return RI.isSGPRClass(regClass) ? InstructionUniformity::AlwaysUniform 9618 : InstructionUniformity::NeverUniform; 9619 } 9620 return InstructionUniformity::Default; 9621 } 9622 9623 // GMIR handling 9624 if (MI.isPreISelOpcode()) 9625 return SIInstrInfo::getGenericInstructionUniformity(MI); 9626 9627 // Atomics are divergent because they are executed sequentially: when an 9628 // atomic operation refers to the same address in each thread, then each 9629 // thread after the first sees the value written by the previous thread as 9630 // original value. 9631 9632 if (isAtomic(MI)) 9633 return InstructionUniformity::NeverUniform; 9634 9635 // Loads from the private and flat address spaces are divergent, because 9636 // threads can execute the load instruction with the same inputs and get 9637 // different results. 9638 if (isFLAT(MI) && MI.mayLoad()) { 9639 if (MI.memoperands_empty()) 9640 return InstructionUniformity::NeverUniform; // conservative assumption 9641 9642 if (llvm::any_of(MI.memoperands(), [](const MachineMemOperand *mmo) { 9643 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS || 9644 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS; 9645 })) { 9646 // At least one MMO in a non-global address space. 9647 return InstructionUniformity::NeverUniform; 9648 } 9649 9650 return InstructionUniformity::Default; 9651 } 9652 9653 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 9654 const AMDGPURegisterBankInfo *RBI = ST.getRegBankInfo(); 9655 9656 // FIXME: It's conceptually broken to report this for an instruction, and not 9657 // a specific def operand. For inline asm in particular, there could be mixed 9658 // uniform and divergent results. 9659 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 9660 const MachineOperand &SrcOp = MI.getOperand(I); 9661 if (!SrcOp.isReg()) 9662 continue; 9663 9664 Register Reg = SrcOp.getReg(); 9665 if (!Reg || !SrcOp.readsReg()) 9666 continue; 9667 9668 // If RegBank is null, this is unassigned or an unallocatable special 9669 // register, which are all scalars. 9670 const RegisterBank *RegBank = RBI->getRegBank(Reg, MRI, RI); 9671 if (RegBank && RegBank->getID() != AMDGPU::SGPRRegBankID) 9672 return InstructionUniformity::NeverUniform; 9673 } 9674 9675 // TODO: Uniformity check condtions above can be rearranged for more 9676 // redability 9677 9678 // TODO: amdgcn.{ballot, [if]cmp} should be AlwaysUniform, but they are 9679 // currently turned into no-op COPYs by SelectionDAG ISel and are 9680 // therefore no longer recognizable. 9681 9682 return InstructionUniformity::Default; 9683 } 9684 9685 unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) { 9686 switch (MF.getFunction().getCallingConv()) { 9687 case CallingConv::AMDGPU_PS: 9688 return 1; 9689 case CallingConv::AMDGPU_VS: 9690 return 2; 9691 case CallingConv::AMDGPU_GS: 9692 return 3; 9693 case CallingConv::AMDGPU_HS: 9694 case CallingConv::AMDGPU_LS: 9695 case CallingConv::AMDGPU_ES: 9696 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 9697 case CallingConv::AMDGPU_CS: 9698 case CallingConv::AMDGPU_KERNEL: 9699 case CallingConv::C: 9700 case CallingConv::Fast: 9701 default: 9702 // Assume other calling conventions are various compute callable functions 9703 return 0; 9704 } 9705 } 9706 9707 bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 9708 Register &SrcReg2, int64_t &CmpMask, 9709 int64_t &CmpValue) const { 9710 if (!MI.getOperand(0).isReg() || MI.getOperand(0).getSubReg()) 9711 return false; 9712 9713 switch (MI.getOpcode()) { 9714 default: 9715 break; 9716 case AMDGPU::S_CMP_EQ_U32: 9717 case AMDGPU::S_CMP_EQ_I32: 9718 case AMDGPU::S_CMP_LG_U32: 9719 case AMDGPU::S_CMP_LG_I32: 9720 case AMDGPU::S_CMP_LT_U32: 9721 case AMDGPU::S_CMP_LT_I32: 9722 case AMDGPU::S_CMP_GT_U32: 9723 case AMDGPU::S_CMP_GT_I32: 9724 case AMDGPU::S_CMP_LE_U32: 9725 case AMDGPU::S_CMP_LE_I32: 9726 case AMDGPU::S_CMP_GE_U32: 9727 case AMDGPU::S_CMP_GE_I32: 9728 case AMDGPU::S_CMP_EQ_U64: 9729 case AMDGPU::S_CMP_LG_U64: 9730 SrcReg = MI.getOperand(0).getReg(); 9731 if (MI.getOperand(1).isReg()) { 9732 if (MI.getOperand(1).getSubReg()) 9733 return false; 9734 SrcReg2 = MI.getOperand(1).getReg(); 9735 CmpValue = 0; 9736 } else if (MI.getOperand(1).isImm()) { 9737 SrcReg2 = Register(); 9738 CmpValue = MI.getOperand(1).getImm(); 9739 } else { 9740 return false; 9741 } 9742 CmpMask = ~0; 9743 return true; 9744 case AMDGPU::S_CMPK_EQ_U32: 9745 case AMDGPU::S_CMPK_EQ_I32: 9746 case AMDGPU::S_CMPK_LG_U32: 9747 case AMDGPU::S_CMPK_LG_I32: 9748 case AMDGPU::S_CMPK_LT_U32: 9749 case AMDGPU::S_CMPK_LT_I32: 9750 case AMDGPU::S_CMPK_GT_U32: 9751 case AMDGPU::S_CMPK_GT_I32: 9752 case AMDGPU::S_CMPK_LE_U32: 9753 case AMDGPU::S_CMPK_LE_I32: 9754 case AMDGPU::S_CMPK_GE_U32: 9755 case AMDGPU::S_CMPK_GE_I32: 9756 SrcReg = MI.getOperand(0).getReg(); 9757 SrcReg2 = Register(); 9758 CmpValue = MI.getOperand(1).getImm(); 9759 CmpMask = ~0; 9760 return true; 9761 } 9762 9763 return false; 9764 } 9765 9766 bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 9767 Register SrcReg2, int64_t CmpMask, 9768 int64_t CmpValue, 9769 const MachineRegisterInfo *MRI) const { 9770 if (!SrcReg || SrcReg.isPhysical()) 9771 return false; 9772 9773 if (SrcReg2 && !getFoldableImm(SrcReg2, *MRI, CmpValue)) 9774 return false; 9775 9776 const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI, 9777 this](int64_t ExpectedValue, unsigned SrcSize, 9778 bool IsReversible, bool IsSigned) -> bool { 9779 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9780 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9781 // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9782 // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9783 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n 9784 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9785 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9786 // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9787 // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9788 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n 9789 // 9790 // Signed ge/gt are not used for the sign bit. 9791 // 9792 // If result of the AND is unused except in the compare: 9793 // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n 9794 // 9795 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 9796 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 9797 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n 9798 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 9799 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 9800 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n 9801 9802 MachineInstr *Def = MRI->getUniqueVRegDef(SrcReg); 9803 if (!Def || Def->getParent() != CmpInstr.getParent()) 9804 return false; 9805 9806 if (Def->getOpcode() != AMDGPU::S_AND_B32 && 9807 Def->getOpcode() != AMDGPU::S_AND_B64) 9808 return false; 9809 9810 int64_t Mask; 9811 const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool { 9812 if (MO->isImm()) 9813 Mask = MO->getImm(); 9814 else if (!getFoldableImm(MO, Mask)) 9815 return false; 9816 Mask &= maxUIntN(SrcSize); 9817 return isPowerOf2_64(Mask); 9818 }; 9819 9820 MachineOperand *SrcOp = &Def->getOperand(1); 9821 if (isMask(SrcOp)) 9822 SrcOp = &Def->getOperand(2); 9823 else if (isMask(&Def->getOperand(2))) 9824 SrcOp = &Def->getOperand(1); 9825 else 9826 return false; 9827 9828 unsigned BitNo = llvm::countr_zero((uint64_t)Mask); 9829 if (IsSigned && BitNo == SrcSize - 1) 9830 return false; 9831 9832 ExpectedValue <<= BitNo; 9833 9834 bool IsReversedCC = false; 9835 if (CmpValue != ExpectedValue) { 9836 if (!IsReversible) 9837 return false; 9838 IsReversedCC = CmpValue == (ExpectedValue ^ Mask); 9839 if (!IsReversedCC) 9840 return false; 9841 } 9842 9843 Register DefReg = Def->getOperand(0).getReg(); 9844 if (IsReversedCC && !MRI->hasOneNonDBGUse(DefReg)) 9845 return false; 9846 9847 for (auto I = std::next(Def->getIterator()), E = CmpInstr.getIterator(); 9848 I != E; ++I) { 9849 if (I->modifiesRegister(AMDGPU::SCC, &RI) || 9850 I->killsRegister(AMDGPU::SCC, &RI)) 9851 return false; 9852 } 9853 9854 MachineOperand *SccDef = 9855 Def->findRegisterDefOperand(AMDGPU::SCC, /*TRI=*/nullptr); 9856 SccDef->setIsDead(false); 9857 CmpInstr.eraseFromParent(); 9858 9859 if (!MRI->use_nodbg_empty(DefReg)) { 9860 assert(!IsReversedCC); 9861 return true; 9862 } 9863 9864 // Replace AND with unused result with a S_BITCMP. 9865 MachineBasicBlock *MBB = Def->getParent(); 9866 9867 unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32 9868 : AMDGPU::S_BITCMP1_B32 9869 : IsReversedCC ? AMDGPU::S_BITCMP0_B64 9870 : AMDGPU::S_BITCMP1_B64; 9871 9872 BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc)) 9873 .add(*SrcOp) 9874 .addImm(BitNo); 9875 Def->eraseFromParent(); 9876 9877 return true; 9878 }; 9879 9880 switch (CmpInstr.getOpcode()) { 9881 default: 9882 break; 9883 case AMDGPU::S_CMP_EQ_U32: 9884 case AMDGPU::S_CMP_EQ_I32: 9885 case AMDGPU::S_CMPK_EQ_U32: 9886 case AMDGPU::S_CMPK_EQ_I32: 9887 return optimizeCmpAnd(1, 32, true, false); 9888 case AMDGPU::S_CMP_GE_U32: 9889 case AMDGPU::S_CMPK_GE_U32: 9890 return optimizeCmpAnd(1, 32, false, false); 9891 case AMDGPU::S_CMP_GE_I32: 9892 case AMDGPU::S_CMPK_GE_I32: 9893 return optimizeCmpAnd(1, 32, false, true); 9894 case AMDGPU::S_CMP_EQ_U64: 9895 return optimizeCmpAnd(1, 64, true, false); 9896 case AMDGPU::S_CMP_LG_U32: 9897 case AMDGPU::S_CMP_LG_I32: 9898 case AMDGPU::S_CMPK_LG_U32: 9899 case AMDGPU::S_CMPK_LG_I32: 9900 return optimizeCmpAnd(0, 32, true, false); 9901 case AMDGPU::S_CMP_GT_U32: 9902 case AMDGPU::S_CMPK_GT_U32: 9903 return optimizeCmpAnd(0, 32, false, false); 9904 case AMDGPU::S_CMP_GT_I32: 9905 case AMDGPU::S_CMPK_GT_I32: 9906 return optimizeCmpAnd(0, 32, false, true); 9907 case AMDGPU::S_CMP_LG_U64: 9908 return optimizeCmpAnd(0, 64, true, false); 9909 } 9910 9911 return false; 9912 } 9913 9914 void SIInstrInfo::enforceOperandRCAlignment(MachineInstr &MI, 9915 unsigned OpName) const { 9916 if (!ST.needsAlignedVGPRs()) 9917 return; 9918 9919 int OpNo = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); 9920 if (OpNo < 0) 9921 return; 9922 MachineOperand &Op = MI.getOperand(OpNo); 9923 if (getOpSize(MI, OpNo) > 4) 9924 return; 9925 9926 // Add implicit aligned super-reg to force alignment on the data operand. 9927 const DebugLoc &DL = MI.getDebugLoc(); 9928 MachineBasicBlock *BB = MI.getParent(); 9929 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9930 Register DataReg = Op.getReg(); 9931 bool IsAGPR = RI.isAGPR(MRI, DataReg); 9932 Register Undef = MRI.createVirtualRegister( 9933 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass); 9934 BuildMI(*BB, MI, DL, get(AMDGPU::IMPLICIT_DEF), Undef); 9935 Register NewVR = 9936 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass 9937 : &AMDGPU::VReg_64_Align2RegClass); 9938 BuildMI(*BB, MI, DL, get(AMDGPU::REG_SEQUENCE), NewVR) 9939 .addReg(DataReg, 0, Op.getSubReg()) 9940 .addImm(AMDGPU::sub0) 9941 .addReg(Undef) 9942 .addImm(AMDGPU::sub1); 9943 Op.setReg(NewVR); 9944 Op.setSubReg(AMDGPU::sub0); 9945 MI.addOperand(MachineOperand::CreateReg(NewVR, false, true)); 9946 } 9947