1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachinePostDominators.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/TargetParser/TargetParser.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "si-insert-waitcnts" 43 44 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 45 "Force emit s_waitcnt expcnt(0) instrs"); 46 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 47 "Force emit s_waitcnt lgkmcnt(0) instrs"); 48 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 49 "Force emit s_waitcnt vmcnt(0) instrs"); 50 51 static cl::opt<bool> ForceEmitZeroFlag( 52 "amdgpu-waitcnt-forcezero", 53 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 54 cl::init(false), cl::Hidden); 55 56 namespace { 57 // Class of object that encapsulates latest instruction counter score 58 // associated with the operand. Used for determining whether 59 // s_waitcnt instruction needs to be emitted. 60 61 enum InstCounterType { 62 LOAD_CNT = 0, // VMcnt prior to gfx12. 63 DS_CNT, // LKGMcnt prior to gfx12. 64 EXP_CNT, // 65 STORE_CNT, // VScnt in gfx10/gfx11. 66 NUM_NORMAL_INST_CNTS, 67 SAMPLE_CNT = NUM_NORMAL_INST_CNTS, // gfx12+ only. 68 BVH_CNT, // gfx12+ only. 69 KM_CNT, // gfx12+ only. 70 NUM_EXTENDED_INST_CNTS, 71 NUM_INST_CNTS = NUM_EXTENDED_INST_CNTS 72 }; 73 } // namespace 74 75 namespace llvm { 76 template <> struct enum_iteration_traits<InstCounterType> { 77 static constexpr bool is_iterable = true; 78 }; 79 } // namespace llvm 80 81 namespace { 82 // Return an iterator over all counters between LOAD_CNT (the first counter) 83 // and \c MaxCounter (exclusive, default value yields an enumeration over 84 // all counters). 85 auto inst_counter_types(InstCounterType MaxCounter = NUM_INST_CNTS) { 86 return enum_seq(LOAD_CNT, MaxCounter); 87 } 88 89 using RegInterval = std::pair<int, int>; 90 91 struct HardwareLimits { 92 unsigned LoadcntMax; // Corresponds to VMcnt prior to gfx12. 93 unsigned ExpcntMax; 94 unsigned DscntMax; // Corresponds to LGKMcnt prior to gfx12. 95 unsigned StorecntMax; // Corresponds to VScnt in gfx10/gfx11. 96 unsigned SamplecntMax; // gfx12+ only. 97 unsigned BvhcntMax; // gfx12+ only. 98 unsigned KmcntMax; // gfx12+ only. 99 }; 100 101 struct RegisterEncoding { 102 unsigned VGPR0; 103 unsigned VGPRL; 104 unsigned SGPR0; 105 unsigned SGPRL; 106 }; 107 108 enum WaitEventType { 109 VMEM_ACCESS, // vector-memory read & write 110 VMEM_READ_ACCESS, // vector-memory read 111 VMEM_SAMPLER_READ_ACCESS, // vector-memory SAMPLER read (gfx12+ only) 112 VMEM_BVH_READ_ACCESS, // vector-memory BVH read (gfx12+ only) 113 VMEM_WRITE_ACCESS, // vector-memory write that is not scratch 114 SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch 115 LDS_ACCESS, // lds read & write 116 GDS_ACCESS, // gds read & write 117 SQ_MESSAGE, // send message 118 SMEM_ACCESS, // scalar-memory read & write 119 EXP_GPR_LOCK, // export holding on its data src 120 GDS_GPR_LOCK, // GDS holding on its data and addr src 121 EXP_POS_ACCESS, // write to export position 122 EXP_PARAM_ACCESS, // write to export parameter 123 VMW_GPR_LOCK, // vector-memory write holding on its data src 124 EXP_LDS_ACCESS, // read by ldsdir counting as export 125 NUM_WAIT_EVENTS, 126 }; 127 128 // The mapping is: 129 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 130 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 131 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 132 // We reserve a fixed number of VGPR slots in the scoring tables for 133 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 134 enum RegisterMapping { 135 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 136 AGPR_OFFSET = 256, // Maximum programmable ArchVGPRs across all targets. 137 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 138 NUM_EXTRA_VGPRS = 9, // Reserved slots for DS. 139 // Artificial register slots to track LDS writes into specific LDS locations 140 // if a location is known. When slots are exhausted or location is 141 // unknown use the first slot. The first slot is also always updated in 142 // addition to known location's slot to properly generate waits if dependent 143 // instruction's location is unknown. 144 EXTRA_VGPR_LDS = 0, 145 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 146 }; 147 148 // Enumerate different types of result-returning VMEM operations. Although 149 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 150 // s_waitcnt only instructions of the same VmemType are guaranteed to write 151 // their results in order -- so there is no need to insert an s_waitcnt between 152 // two instructions of the same type that write the same vgpr. 153 enum VmemType { 154 // BUF instructions and MIMG instructions without a sampler. 155 VMEM_NOSAMPLER, 156 // MIMG instructions with a sampler. 157 VMEM_SAMPLER, 158 // BVH instructions 159 VMEM_BVH, 160 NUM_VMEM_TYPES 161 }; 162 163 // Maps values of InstCounterType to the instruction that waits on that 164 // counter. Only used if GCNSubtarget::hasExtendedWaitCounts() 165 // returns true. 166 static const unsigned instrsForExtendedCounterTypes[NUM_EXTENDED_INST_CNTS] = { 167 AMDGPU::S_WAIT_LOADCNT, AMDGPU::S_WAIT_DSCNT, AMDGPU::S_WAIT_EXPCNT, 168 AMDGPU::S_WAIT_STORECNT, AMDGPU::S_WAIT_SAMPLECNT, AMDGPU::S_WAIT_BVHCNT, 169 AMDGPU::S_WAIT_KMCNT}; 170 171 static bool updateVMCntOnly(const MachineInstr &Inst) { 172 return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) || 173 SIInstrInfo::isFLATScratch(Inst); 174 } 175 176 #ifndef NDEBUG 177 static bool isNormalMode(InstCounterType MaxCounter) { 178 return MaxCounter == NUM_NORMAL_INST_CNTS; 179 } 180 #endif // NDEBUG 181 182 VmemType getVmemType(const MachineInstr &Inst) { 183 assert(updateVMCntOnly(Inst)); 184 if (!SIInstrInfo::isMIMG(Inst) && !SIInstrInfo::isVIMAGE(Inst) && 185 !SIInstrInfo::isVSAMPLE(Inst)) 186 return VMEM_NOSAMPLER; 187 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 188 const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = 189 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 190 // We have to make an additional check for isVSAMPLE here since some 191 // instructions don't have a sampler, but are still classified as sampler 192 // instructions for the purposes of e.g. waitcnt. 193 return BaseInfo->BVH ? VMEM_BVH 194 : (BaseInfo->Sampler || SIInstrInfo::isVSAMPLE(Inst)) ? VMEM_SAMPLER 195 : VMEM_NOSAMPLER; 196 } 197 198 unsigned &getCounterRef(AMDGPU::Waitcnt &Wait, InstCounterType T) { 199 switch (T) { 200 case LOAD_CNT: 201 return Wait.LoadCnt; 202 case EXP_CNT: 203 return Wait.ExpCnt; 204 case DS_CNT: 205 return Wait.DsCnt; 206 case STORE_CNT: 207 return Wait.StoreCnt; 208 case SAMPLE_CNT: 209 return Wait.SampleCnt; 210 case BVH_CNT: 211 return Wait.BvhCnt; 212 case KM_CNT: 213 return Wait.KmCnt; 214 default: 215 llvm_unreachable("bad InstCounterType"); 216 } 217 } 218 219 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 220 unsigned &WC = getCounterRef(Wait, T); 221 WC = std::min(WC, Count); 222 } 223 224 void setNoWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { 225 getCounterRef(Wait, T) = ~0u; 226 } 227 228 unsigned getWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { 229 return getCounterRef(Wait, T); 230 } 231 232 // Mapping from event to counter according to the table masks. 233 InstCounterType eventCounter(const unsigned *masks, WaitEventType E) { 234 for (auto T : inst_counter_types()) { 235 if (masks[T] & (1 << E)) 236 return T; 237 } 238 llvm_unreachable("event type has no associated counter"); 239 } 240 241 // This objects maintains the current score brackets of each wait counter, and 242 // a per-register scoreboard for each wait counter. 243 // 244 // We also maintain the latest score for every event type that can change the 245 // waitcnt in order to know if there are multiple types of events within 246 // the brackets. When multiple types of event happen in the bracket, 247 // wait count may get decreased out of order, therefore we need to put in 248 // "s_waitcnt 0" before use. 249 class WaitcntBrackets { 250 public: 251 WaitcntBrackets(const GCNSubtarget *SubTarget, InstCounterType MaxCounter, 252 HardwareLimits Limits, RegisterEncoding Encoding, 253 const unsigned *WaitEventMaskForInst, 254 InstCounterType SmemAccessCounter) 255 : ST(SubTarget), MaxCounter(MaxCounter), Limits(Limits), 256 Encoding(Encoding), WaitEventMaskForInst(WaitEventMaskForInst), 257 SmemAccessCounter(SmemAccessCounter) {} 258 259 unsigned getWaitCountMax(InstCounterType T) const { 260 switch (T) { 261 case LOAD_CNT: 262 return Limits.LoadcntMax; 263 case DS_CNT: 264 return Limits.DscntMax; 265 case EXP_CNT: 266 return Limits.ExpcntMax; 267 case STORE_CNT: 268 return Limits.StorecntMax; 269 case SAMPLE_CNT: 270 return Limits.SamplecntMax; 271 case BVH_CNT: 272 return Limits.BvhcntMax; 273 case KM_CNT: 274 return Limits.KmcntMax; 275 default: 276 break; 277 } 278 return 0; 279 } 280 281 unsigned getScoreLB(InstCounterType T) const { 282 assert(T < NUM_INST_CNTS); 283 return ScoreLBs[T]; 284 } 285 286 unsigned getScoreUB(InstCounterType T) const { 287 assert(T < NUM_INST_CNTS); 288 return ScoreUBs[T]; 289 } 290 291 unsigned getScoreRange(InstCounterType T) const { 292 return getScoreUB(T) - getScoreLB(T); 293 } 294 295 unsigned getRegScore(int GprNo, InstCounterType T) const { 296 if (GprNo < NUM_ALL_VGPRS) { 297 return VgprScores[T][GprNo]; 298 } 299 assert(T == SmemAccessCounter); 300 return SgprScores[GprNo - NUM_ALL_VGPRS]; 301 } 302 303 bool merge(const WaitcntBrackets &Other); 304 305 RegInterval getRegInterval(const MachineInstr *MI, 306 const MachineRegisterInfo *MRI, 307 const SIRegisterInfo *TRI, unsigned OpNo) const; 308 309 bool counterOutOfOrder(InstCounterType T) const; 310 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 311 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 312 void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const; 313 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 314 void applyWaitcnt(InstCounterType T, unsigned Count); 315 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 316 const MachineRegisterInfo *MRI, WaitEventType E, 317 MachineInstr &MI); 318 319 unsigned hasPendingEvent() const { return PendingEvents; } 320 unsigned hasPendingEvent(WaitEventType E) const { 321 return PendingEvents & (1 << E); 322 } 323 unsigned hasPendingEvent(InstCounterType T) const { 324 unsigned HasPending = PendingEvents & WaitEventMaskForInst[T]; 325 assert((HasPending != 0) == (getScoreRange(T) != 0)); 326 return HasPending; 327 } 328 329 bool hasMixedPendingEvents(InstCounterType T) const { 330 unsigned Events = hasPendingEvent(T); 331 // Return true if more than one bit is set in Events. 332 return Events & (Events - 1); 333 } 334 335 bool hasPendingFlat() const { 336 return ((LastFlat[DS_CNT] > ScoreLBs[DS_CNT] && 337 LastFlat[DS_CNT] <= ScoreUBs[DS_CNT]) || 338 (LastFlat[LOAD_CNT] > ScoreLBs[LOAD_CNT] && 339 LastFlat[LOAD_CNT] <= ScoreUBs[LOAD_CNT])); 340 } 341 342 void setPendingFlat() { 343 LastFlat[LOAD_CNT] = ScoreUBs[LOAD_CNT]; 344 LastFlat[DS_CNT] = ScoreUBs[DS_CNT]; 345 } 346 347 // Return true if there might be pending writes to the specified vgpr by VMEM 348 // instructions with types different from V. 349 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 350 assert(GprNo < NUM_ALL_VGPRS); 351 return VgprVmemTypes[GprNo] & ~(1 << V); 352 } 353 354 void clearVgprVmemTypes(int GprNo) { 355 assert(GprNo < NUM_ALL_VGPRS); 356 VgprVmemTypes[GprNo] = 0; 357 } 358 359 void setStateOnFunctionEntryOrReturn() { 360 setScoreUB(STORE_CNT, getScoreUB(STORE_CNT) + getWaitCountMax(STORE_CNT)); 361 PendingEvents |= WaitEventMaskForInst[STORE_CNT]; 362 } 363 364 ArrayRef<const MachineInstr *> getLDSDMAStores() const { 365 return LDSDMAStores; 366 } 367 368 void print(raw_ostream &); 369 void dump() { print(dbgs()); } 370 371 private: 372 struct MergeInfo { 373 unsigned OldLB; 374 unsigned OtherLB; 375 unsigned MyShift; 376 unsigned OtherShift; 377 }; 378 static bool mergeScore(const MergeInfo &M, unsigned &Score, 379 unsigned OtherScore); 380 381 void setScoreLB(InstCounterType T, unsigned Val) { 382 assert(T < NUM_INST_CNTS); 383 ScoreLBs[T] = Val; 384 } 385 386 void setScoreUB(InstCounterType T, unsigned Val) { 387 assert(T < NUM_INST_CNTS); 388 ScoreUBs[T] = Val; 389 390 if (T != EXP_CNT) 391 return; 392 393 if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT)) 394 ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT); 395 } 396 397 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 398 if (GprNo < NUM_ALL_VGPRS) { 399 VgprUB = std::max(VgprUB, GprNo); 400 VgprScores[T][GprNo] = Val; 401 } else { 402 assert(T == SmemAccessCounter); 403 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 404 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 405 } 406 } 407 408 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 409 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 410 unsigned OpNo, unsigned Val); 411 412 const GCNSubtarget *ST = nullptr; 413 InstCounterType MaxCounter = NUM_EXTENDED_INST_CNTS; 414 HardwareLimits Limits = {}; 415 RegisterEncoding Encoding = {}; 416 const unsigned *WaitEventMaskForInst; 417 InstCounterType SmemAccessCounter; 418 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 419 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 420 unsigned PendingEvents = 0; 421 // Remember the last flat memory operation. 422 unsigned LastFlat[NUM_INST_CNTS] = {0}; 423 // wait_cnt scores for every vgpr. 424 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 425 int VgprUB = -1; 426 int SgprUB = -1; 427 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 428 // Wait cnt scores for every sgpr, only DS_CNT (corresponding to LGKMcnt 429 // pre-gfx12) or KM_CNT (gfx12+ only) are relevant. 430 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 431 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 432 // write to each vgpr. 433 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 434 // Store representative LDS DMA operations. The only useful info here is 435 // alias info. One store is kept per unique AAInfo. 436 SmallVector<const MachineInstr *, NUM_EXTRA_VGPRS - 1> LDSDMAStores; 437 }; 438 439 // This abstracts the logic for generating and updating S_WAIT* instructions 440 // away from the analysis that determines where they are needed. This was 441 // done because the set of counters and instructions for waiting on them 442 // underwent a major shift with gfx12, sufficiently so that having this 443 // abstraction allows the main analysis logic to be simpler than it would 444 // otherwise have had to become. 445 class WaitcntGenerator { 446 protected: 447 const GCNSubtarget *ST = nullptr; 448 const SIInstrInfo *TII = nullptr; 449 AMDGPU::IsaVersion IV; 450 InstCounterType MaxCounter; 451 bool OptNone; 452 453 public: 454 WaitcntGenerator() = default; 455 WaitcntGenerator(const MachineFunction &MF, InstCounterType MaxCounter) 456 : ST(&MF.getSubtarget<GCNSubtarget>()), TII(ST->getInstrInfo()), 457 IV(AMDGPU::getIsaVersion(ST->getCPU())), MaxCounter(MaxCounter), 458 OptNone(MF.getFunction().hasOptNone() || 459 MF.getTarget().getOptLevel() == CodeGenOptLevel::None) {} 460 461 // Return true if the current function should be compiled with no 462 // optimization. 463 bool isOptNone() const { return OptNone; } 464 465 // Edits an existing sequence of wait count instructions according 466 // to an incoming Waitcnt value, which is itself updated to reflect 467 // any new wait count instructions which may need to be generated by 468 // WaitcntGenerator::createNewWaitcnt(). It will return true if any edits 469 // were made. 470 // 471 // This editing will usually be merely updated operands, but it may also 472 // delete instructions if the incoming Wait value indicates they are not 473 // needed. It may also remove existing instructions for which a wait 474 // is needed if it can be determined that it is better to generate new 475 // instructions later, as can happen on gfx12. 476 virtual bool 477 applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 478 MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, 479 MachineBasicBlock::instr_iterator It) const = 0; 480 481 // Transform a soft waitcnt into a normal one. 482 bool promoteSoftWaitCnt(MachineInstr *Waitcnt) const; 483 484 // Generates new wait count instructions according to the value of 485 // Wait, returning true if any new instructions were created. 486 virtual bool createNewWaitcnt(MachineBasicBlock &Block, 487 MachineBasicBlock::instr_iterator It, 488 AMDGPU::Waitcnt Wait) = 0; 489 490 // Returns an array of bit masks which can be used to map values in 491 // WaitEventType to corresponding counter values in InstCounterType. 492 virtual const unsigned *getWaitEventMask() const = 0; 493 494 // Returns a new waitcnt with all counters except VScnt set to 0. If 495 // IncludeVSCnt is true, VScnt is set to 0, otherwise it is set to ~0u. 496 virtual AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const = 0; 497 498 virtual ~WaitcntGenerator() = default; 499 500 // Create a mask value from the initializer list of wait event types. 501 static constexpr unsigned 502 eventMask(std::initializer_list<WaitEventType> Events) { 503 unsigned Mask = 0; 504 for (auto &E : Events) 505 Mask |= 1 << E; 506 507 return Mask; 508 } 509 }; 510 511 class WaitcntGeneratorPreGFX12 : public WaitcntGenerator { 512 public: 513 WaitcntGeneratorPreGFX12() = default; 514 WaitcntGeneratorPreGFX12(const MachineFunction &MF) 515 : WaitcntGenerator(MF, NUM_NORMAL_INST_CNTS) {} 516 517 bool 518 applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 519 MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, 520 MachineBasicBlock::instr_iterator It) const override; 521 522 bool createNewWaitcnt(MachineBasicBlock &Block, 523 MachineBasicBlock::instr_iterator It, 524 AMDGPU::Waitcnt Wait) override; 525 526 const unsigned *getWaitEventMask() const override { 527 assert(ST); 528 529 static const unsigned WaitEventMaskForInstPreGFX12[NUM_INST_CNTS] = { 530 eventMask({VMEM_ACCESS, VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, 531 VMEM_BVH_READ_ACCESS}), 532 eventMask({SMEM_ACCESS, LDS_ACCESS, GDS_ACCESS, SQ_MESSAGE}), 533 eventMask({EXP_GPR_LOCK, GDS_GPR_LOCK, VMW_GPR_LOCK, EXP_PARAM_ACCESS, 534 EXP_POS_ACCESS, EXP_LDS_ACCESS}), 535 eventMask({VMEM_WRITE_ACCESS, SCRATCH_WRITE_ACCESS}), 536 0, 537 0, 538 0}; 539 540 return WaitEventMaskForInstPreGFX12; 541 } 542 543 AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const override; 544 }; 545 546 class WaitcntGeneratorGFX12Plus : public WaitcntGenerator { 547 public: 548 WaitcntGeneratorGFX12Plus() = default; 549 WaitcntGeneratorGFX12Plus(const MachineFunction &MF, 550 InstCounterType MaxCounter) 551 : WaitcntGenerator(MF, MaxCounter) {} 552 553 bool 554 applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 555 MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, 556 MachineBasicBlock::instr_iterator It) const override; 557 558 bool createNewWaitcnt(MachineBasicBlock &Block, 559 MachineBasicBlock::instr_iterator It, 560 AMDGPU::Waitcnt Wait) override; 561 562 const unsigned *getWaitEventMask() const override { 563 assert(ST); 564 565 static const unsigned WaitEventMaskForInstGFX12Plus[NUM_INST_CNTS] = { 566 eventMask({VMEM_ACCESS, VMEM_READ_ACCESS}), 567 eventMask({LDS_ACCESS, GDS_ACCESS}), 568 eventMask({EXP_GPR_LOCK, GDS_GPR_LOCK, VMW_GPR_LOCK, EXP_PARAM_ACCESS, 569 EXP_POS_ACCESS, EXP_LDS_ACCESS}), 570 eventMask({VMEM_WRITE_ACCESS, SCRATCH_WRITE_ACCESS}), 571 eventMask({VMEM_SAMPLER_READ_ACCESS}), 572 eventMask({VMEM_BVH_READ_ACCESS}), 573 eventMask({SMEM_ACCESS, SQ_MESSAGE})}; 574 575 return WaitEventMaskForInstGFX12Plus; 576 } 577 578 AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const override; 579 }; 580 581 class SIInsertWaitcnts : public MachineFunctionPass { 582 private: 583 const GCNSubtarget *ST = nullptr; 584 const SIInstrInfo *TII = nullptr; 585 const SIRegisterInfo *TRI = nullptr; 586 const MachineRegisterInfo *MRI = nullptr; 587 588 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 589 DenseMap<MachineBasicBlock *, bool> PreheadersToFlush; 590 MachineLoopInfo *MLI; 591 MachinePostDominatorTree *PDT; 592 AliasAnalysis *AA = nullptr; 593 594 struct BlockInfo { 595 std::unique_ptr<WaitcntBrackets> Incoming; 596 bool Dirty = true; 597 }; 598 599 InstCounterType SmemAccessCounter; 600 601 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 602 603 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 604 // because of amdgpu-waitcnt-forcezero flag 605 bool ForceEmitZeroWaitcnts; 606 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 607 608 // In any given run of this pass, WCG will point to one of these two 609 // generator objects, which must have been re-initialised before use 610 // from a value made using a subtarget constructor. 611 WaitcntGeneratorPreGFX12 WCGPreGFX12; 612 WaitcntGeneratorGFX12Plus WCGGFX12Plus; 613 614 WaitcntGenerator *WCG = nullptr; 615 616 // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS 617 // message. 618 DenseSet<MachineInstr *> ReleaseVGPRInsts; 619 620 InstCounterType MaxCounter = NUM_NORMAL_INST_CNTS; 621 622 public: 623 static char ID; 624 625 SIInsertWaitcnts() : MachineFunctionPass(ID) { 626 (void)ForceExpCounter; 627 (void)ForceLgkmCounter; 628 (void)ForceVMCounter; 629 } 630 631 bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets); 632 bool isPreheaderToFlush(MachineBasicBlock &MBB, 633 WaitcntBrackets &ScoreBrackets); 634 bool isVMEMOrFlatVMEM(const MachineInstr &MI) const; 635 bool runOnMachineFunction(MachineFunction &MF) override; 636 637 StringRef getPassName() const override { 638 return "SI insert wait instructions"; 639 } 640 641 void getAnalysisUsage(AnalysisUsage &AU) const override { 642 AU.setPreservesCFG(); 643 AU.addRequired<MachineLoopInfoWrapperPass>(); 644 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 645 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 646 AU.addPreserved<AAResultsWrapperPass>(); 647 MachineFunctionPass::getAnalysisUsage(AU); 648 } 649 650 bool isForceEmitWaitcnt() const { 651 for (auto T : inst_counter_types()) 652 if (ForceEmitWaitcnt[T]) 653 return true; 654 return false; 655 } 656 657 void setForceEmitWaitcnt() { 658 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 659 // For debug builds, get the debug counter info and adjust if need be 660 #ifndef NDEBUG 661 if (DebugCounter::isCounterSet(ForceExpCounter) && 662 DebugCounter::shouldExecute(ForceExpCounter)) { 663 ForceEmitWaitcnt[EXP_CNT] = true; 664 } else { 665 ForceEmitWaitcnt[EXP_CNT] = false; 666 } 667 668 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 669 DebugCounter::shouldExecute(ForceLgkmCounter)) { 670 ForceEmitWaitcnt[DS_CNT] = true; 671 ForceEmitWaitcnt[KM_CNT] = true; 672 } else { 673 ForceEmitWaitcnt[DS_CNT] = false; 674 ForceEmitWaitcnt[KM_CNT] = false; 675 } 676 677 if (DebugCounter::isCounterSet(ForceVMCounter) && 678 DebugCounter::shouldExecute(ForceVMCounter)) { 679 ForceEmitWaitcnt[LOAD_CNT] = true; 680 ForceEmitWaitcnt[SAMPLE_CNT] = true; 681 ForceEmitWaitcnt[BVH_CNT] = true; 682 } else { 683 ForceEmitWaitcnt[LOAD_CNT] = false; 684 ForceEmitWaitcnt[SAMPLE_CNT] = false; 685 ForceEmitWaitcnt[BVH_CNT] = false; 686 } 687 #endif // NDEBUG 688 } 689 690 // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or 691 // FLAT instruction. 692 WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const { 693 // Maps VMEM access types to their corresponding WaitEventType. 694 static const WaitEventType VmemReadMapping[NUM_VMEM_TYPES] = { 695 VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, VMEM_BVH_READ_ACCESS}; 696 697 assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst)); 698 // LDS DMA loads are also stores, but on the LDS side. On the VMEM side 699 // these should use VM_CNT. 700 if (!ST->hasVscnt() || SIInstrInfo::mayWriteLDSThroughDMA(Inst)) 701 return VMEM_ACCESS; 702 if (Inst.mayStore() && 703 (!Inst.mayLoad() || SIInstrInfo::isAtomicNoRet(Inst))) { 704 // FLAT and SCRATCH instructions may access scratch. Other VMEM 705 // instructions do not. 706 if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst)) 707 return SCRATCH_WRITE_ACCESS; 708 return VMEM_WRITE_ACCESS; 709 } 710 if (!ST->hasExtendedWaitCounts() || SIInstrInfo::isFLAT(Inst)) 711 return VMEM_READ_ACCESS; 712 return VmemReadMapping[getVmemType(Inst)]; 713 } 714 715 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 716 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 717 bool mayAccessScratchThroughFlat(const MachineInstr &MI) const; 718 bool generateWaitcntInstBefore(MachineInstr &MI, 719 WaitcntBrackets &ScoreBrackets, 720 MachineInstr *OldWaitcntInstr, 721 bool FlushVmCnt); 722 bool generateWaitcnt(AMDGPU::Waitcnt Wait, 723 MachineBasicBlock::instr_iterator It, 724 MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, 725 MachineInstr *OldWaitcntInstr); 726 void updateEventWaitcntAfter(MachineInstr &Inst, 727 WaitcntBrackets *ScoreBrackets); 728 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 729 WaitcntBrackets &ScoreBrackets); 730 }; 731 732 } // end anonymous namespace 733 734 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 735 const MachineRegisterInfo *MRI, 736 const SIRegisterInfo *TRI, 737 unsigned OpNo) const { 738 const MachineOperand &Op = MI->getOperand(OpNo); 739 if (!TRI->isInAllocatableClass(Op.getReg())) 740 return {-1, -1}; 741 742 // A use via a PW operand does not need a waitcnt. 743 // A partial write is not a WAW. 744 assert(!Op.getSubReg() || !Op.isUndef()); 745 746 RegInterval Result; 747 748 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)) & 749 AMDGPU::HWEncoding::REG_IDX_MASK; 750 751 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 752 assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL); 753 Result.first = Reg - Encoding.VGPR0; 754 if (TRI->isAGPR(*MRI, Op.getReg())) 755 Result.first += AGPR_OFFSET; 756 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 757 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 758 assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 759 Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS; 760 assert(Result.first >= NUM_ALL_VGPRS && 761 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 762 } 763 // TODO: Handle TTMP 764 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 765 else 766 return {-1, -1}; 767 768 const TargetRegisterClass *RC = TRI->getPhysRegBaseClass(Op.getReg()); 769 unsigned Size = TRI->getRegSizeInBits(*RC); 770 Result.second = Result.first + ((Size + 16) / 32); 771 772 return Result; 773 } 774 775 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 776 const SIInstrInfo *TII, 777 const SIRegisterInfo *TRI, 778 const MachineRegisterInfo *MRI, unsigned OpNo, 779 unsigned Val) { 780 RegInterval Interval = getRegInterval(MI, MRI, TRI, OpNo); 781 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 782 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 783 setRegScore(RegNo, EXP_CNT, Val); 784 } 785 } 786 787 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 788 const SIRegisterInfo *TRI, 789 const MachineRegisterInfo *MRI, 790 WaitEventType E, MachineInstr &Inst) { 791 InstCounterType T = eventCounter(WaitEventMaskForInst, E); 792 793 unsigned UB = getScoreUB(T); 794 unsigned CurrScore = UB + 1; 795 if (CurrScore == 0) 796 report_fatal_error("InsertWaitcnt score wraparound"); 797 // PendingEvents and ScoreUB need to be update regardless if this event 798 // changes the score of a register or not. 799 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 800 PendingEvents |= 1 << E; 801 setScoreUB(T, CurrScore); 802 803 if (T == EXP_CNT) { 804 // Put score on the source vgprs. If this is a store, just use those 805 // specific register(s). 806 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 807 int AddrOpIdx = 808 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 809 // All GDS operations must protect their address register (same as 810 // export.) 811 if (AddrOpIdx != -1) { 812 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 813 } 814 815 if (Inst.mayStore()) { 816 if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) { 817 setExpScore( 818 &Inst, TII, TRI, MRI, 819 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 820 CurrScore); 821 } 822 if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) { 823 setExpScore(&Inst, TII, TRI, MRI, 824 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 825 AMDGPU::OpName::data1), 826 CurrScore); 827 } 828 } else if (SIInstrInfo::isAtomicRet(Inst) && !SIInstrInfo::isGWS(Inst) && 829 Inst.getOpcode() != AMDGPU::DS_APPEND && 830 Inst.getOpcode() != AMDGPU::DS_CONSUME && 831 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 832 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 833 const MachineOperand &Op = Inst.getOperand(I); 834 if (Op.isReg() && !Op.isDef() && 835 TRI->isVectorRegister(*MRI, Op.getReg())) { 836 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 837 } 838 } 839 } 840 } else if (TII->isFLAT(Inst)) { 841 if (Inst.mayStore()) { 842 setExpScore( 843 &Inst, TII, TRI, MRI, 844 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 845 CurrScore); 846 } else if (SIInstrInfo::isAtomicRet(Inst)) { 847 setExpScore( 848 &Inst, TII, TRI, MRI, 849 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 850 CurrScore); 851 } 852 } else if (TII->isMIMG(Inst)) { 853 if (Inst.mayStore()) { 854 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 855 } else if (SIInstrInfo::isAtomicRet(Inst)) { 856 setExpScore( 857 &Inst, TII, TRI, MRI, 858 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 859 CurrScore); 860 } 861 } else if (TII->isMTBUF(Inst)) { 862 if (Inst.mayStore()) { 863 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 864 } 865 } else if (TII->isMUBUF(Inst)) { 866 if (Inst.mayStore()) { 867 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 868 } else if (SIInstrInfo::isAtomicRet(Inst)) { 869 setExpScore( 870 &Inst, TII, TRI, MRI, 871 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 872 CurrScore); 873 } 874 } else if (TII->isLDSDIR(Inst)) { 875 // LDSDIR instructions attach the score to the destination. 876 setExpScore( 877 &Inst, TII, TRI, MRI, 878 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst), 879 CurrScore); 880 } else { 881 if (TII->isEXP(Inst)) { 882 // For export the destination registers are really temps that 883 // can be used as the actual source after export patching, so 884 // we need to treat them like sources and set the EXP_CNT 885 // score. 886 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 887 MachineOperand &DefMO = Inst.getOperand(I); 888 if (DefMO.isReg() && DefMO.isDef() && 889 TRI->isVGPR(*MRI, DefMO.getReg())) { 890 setRegScore( 891 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 892 EXP_CNT, CurrScore); 893 } 894 } 895 } 896 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 897 MachineOperand &MO = Inst.getOperand(I); 898 if (MO.isReg() && !MO.isDef() && 899 TRI->isVectorRegister(*MRI, MO.getReg())) { 900 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 901 } 902 } 903 } 904 } else /* LGKM_CNT || EXP_CNT || VS_CNT || NUM_INST_CNTS */ { 905 // Match the score to the destination registers. 906 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 907 auto &Op = Inst.getOperand(I); 908 if (!Op.isReg() || !Op.isDef()) 909 continue; 910 RegInterval Interval = getRegInterval(&Inst, MRI, TRI, I); 911 if (T == LOAD_CNT || T == SAMPLE_CNT || T == BVH_CNT) { 912 if (Interval.first >= NUM_ALL_VGPRS) 913 continue; 914 if (updateVMCntOnly(Inst)) { 915 // updateVMCntOnly should only leave us with VGPRs 916 // MUBUF, MTBUF, MIMG, FlatGlobal, and FlatScratch only have VGPR/AGPR 917 // defs. That's required for a sane index into `VgprMemTypes` below 918 assert(TRI->isVectorRegister(*MRI, Op.getReg())); 919 VmemType V = getVmemType(Inst); 920 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 921 VgprVmemTypes[RegNo] |= 1 << V; 922 } 923 } 924 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 925 setRegScore(RegNo, T, CurrScore); 926 } 927 } 928 if (Inst.mayStore() && 929 (TII->isDS(Inst) || TII->mayWriteLDSThroughDMA(Inst))) { 930 // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS 931 // written can be accessed. A load from LDS to VMEM does not need a wait. 932 unsigned Slot = 0; 933 for (const auto *MemOp : Inst.memoperands()) { 934 if (!MemOp->isStore() || 935 MemOp->getAddrSpace() != AMDGPUAS::LOCAL_ADDRESS) 936 continue; 937 // Comparing just AA info does not guarantee memoperands are equal 938 // in general, but this is so for LDS DMA in practice. 939 auto AAI = MemOp->getAAInfo(); 940 // Alias scope information gives a way to definitely identify an 941 // original memory object and practically produced in the module LDS 942 // lowering pass. If there is no scope available we will not be able 943 // to disambiguate LDS aliasing as after the module lowering all LDS 944 // is squashed into a single big object. Do not attempt to use one of 945 // the limited LDSDMAStores for something we will not be able to use 946 // anyway. 947 if (!AAI || !AAI.Scope) 948 break; 949 for (unsigned I = 0, E = LDSDMAStores.size(); I != E && !Slot; ++I) { 950 for (const auto *MemOp : LDSDMAStores[I]->memoperands()) { 951 if (MemOp->isStore() && AAI == MemOp->getAAInfo()) { 952 Slot = I + 1; 953 break; 954 } 955 } 956 } 957 if (Slot || LDSDMAStores.size() == NUM_EXTRA_VGPRS - 1) 958 break; 959 LDSDMAStores.push_back(&Inst); 960 Slot = LDSDMAStores.size(); 961 break; 962 } 963 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS + Slot, T, CurrScore); 964 if (Slot) 965 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 966 } 967 } 968 } 969 970 void WaitcntBrackets::print(raw_ostream &OS) { 971 OS << '\n'; 972 for (auto T : inst_counter_types(MaxCounter)) { 973 unsigned SR = getScoreRange(T); 974 975 switch (T) { 976 case LOAD_CNT: 977 OS << " " << (ST->hasExtendedWaitCounts() ? "LOAD" : "VM") << "_CNT(" 978 << SR << "): "; 979 break; 980 case DS_CNT: 981 OS << " " << (ST->hasExtendedWaitCounts() ? "DS" : "LGKM") << "_CNT(" 982 << SR << "): "; 983 break; 984 case EXP_CNT: 985 OS << " EXP_CNT(" << SR << "): "; 986 break; 987 case STORE_CNT: 988 OS << " " << (ST->hasExtendedWaitCounts() ? "STORE" : "VS") << "_CNT(" 989 << SR << "): "; 990 break; 991 case SAMPLE_CNT: 992 OS << " SAMPLE_CNT(" << SR << "): "; 993 break; 994 case BVH_CNT: 995 OS << " BVH_CNT(" << SR << "): "; 996 break; 997 case KM_CNT: 998 OS << " KM_CNT(" << SR << "): "; 999 break; 1000 default: 1001 OS << " UNKNOWN(" << SR << "): "; 1002 break; 1003 } 1004 1005 if (SR != 0) { 1006 // Print vgpr scores. 1007 unsigned LB = getScoreLB(T); 1008 1009 for (int J = 0; J <= VgprUB; J++) { 1010 unsigned RegScore = getRegScore(J, T); 1011 if (RegScore <= LB) 1012 continue; 1013 unsigned RelScore = RegScore - LB - 1; 1014 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 1015 OS << RelScore << ":v" << J << " "; 1016 } else { 1017 OS << RelScore << ":ds "; 1018 } 1019 } 1020 // Also need to print sgpr scores for lgkm_cnt. 1021 if (T == SmemAccessCounter) { 1022 for (int J = 0; J <= SgprUB; J++) { 1023 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, T); 1024 if (RegScore <= LB) 1025 continue; 1026 unsigned RelScore = RegScore - LB - 1; 1027 OS << RelScore << ":s" << J << " "; 1028 } 1029 } 1030 } 1031 OS << '\n'; 1032 } 1033 OS << '\n'; 1034 } 1035 1036 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 1037 /// whether a waitcnt instruction is needed at all. 1038 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 1039 simplifyWaitcnt(LOAD_CNT, Wait.LoadCnt); 1040 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 1041 simplifyWaitcnt(DS_CNT, Wait.DsCnt); 1042 simplifyWaitcnt(STORE_CNT, Wait.StoreCnt); 1043 simplifyWaitcnt(SAMPLE_CNT, Wait.SampleCnt); 1044 simplifyWaitcnt(BVH_CNT, Wait.BvhCnt); 1045 simplifyWaitcnt(KM_CNT, Wait.KmCnt); 1046 } 1047 1048 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 1049 unsigned &Count) const { 1050 // The number of outstanding events for this type, T, can be calculated 1051 // as (UB - LB). If the current Count is greater than or equal to the number 1052 // of outstanding events, then the wait for this counter is redundant. 1053 if (Count >= getScoreRange(T)) 1054 Count = ~0u; 1055 } 1056 1057 void WaitcntBrackets::determineWait(InstCounterType T, int RegNo, 1058 AMDGPU::Waitcnt &Wait) const { 1059 unsigned ScoreToWait = getRegScore(RegNo, T); 1060 1061 // If the score of src_operand falls within the bracket, we need an 1062 // s_waitcnt instruction. 1063 const unsigned LB = getScoreLB(T); 1064 const unsigned UB = getScoreUB(T); 1065 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 1066 if ((T == LOAD_CNT || T == DS_CNT) && hasPendingFlat() && 1067 !ST->hasFlatLgkmVMemCountInOrder()) { 1068 // If there is a pending FLAT operation, and this is a VMem or LGKM 1069 // waitcnt and the target can report early completion, then we need 1070 // to force a waitcnt 0. 1071 addWait(Wait, T, 0); 1072 } else if (counterOutOfOrder(T)) { 1073 // Counter can get decremented out-of-order when there 1074 // are multiple types event in the bracket. Also emit an s_wait counter 1075 // with a conservative value of 0 for the counter. 1076 addWait(Wait, T, 0); 1077 } else { 1078 // If a counter has been maxed out avoid overflow by waiting for 1079 // MAX(CounterType) - 1 instead. 1080 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 1081 addWait(Wait, T, NeededWait); 1082 } 1083 } 1084 } 1085 1086 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 1087 applyWaitcnt(LOAD_CNT, Wait.LoadCnt); 1088 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 1089 applyWaitcnt(DS_CNT, Wait.DsCnt); 1090 applyWaitcnt(STORE_CNT, Wait.StoreCnt); 1091 applyWaitcnt(SAMPLE_CNT, Wait.SampleCnt); 1092 applyWaitcnt(BVH_CNT, Wait.BvhCnt); 1093 applyWaitcnt(KM_CNT, Wait.KmCnt); 1094 } 1095 1096 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 1097 const unsigned UB = getScoreUB(T); 1098 if (Count >= UB) 1099 return; 1100 if (Count != 0) { 1101 if (counterOutOfOrder(T)) 1102 return; 1103 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 1104 } else { 1105 setScoreLB(T, UB); 1106 PendingEvents &= ~WaitEventMaskForInst[T]; 1107 } 1108 } 1109 1110 // Where there are multiple types of event in the bracket of a counter, 1111 // the decrement may go out of order. 1112 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 1113 // Scalar memory read always can go out of order. 1114 if (T == SmemAccessCounter && hasPendingEvent(SMEM_ACCESS)) 1115 return true; 1116 return hasMixedPendingEvents(T); 1117 } 1118 1119 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 1120 false) 1121 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 1122 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 1123 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 1124 false) 1125 1126 char SIInsertWaitcnts::ID = 0; 1127 1128 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 1129 1130 FunctionPass *llvm::createSIInsertWaitcntsPass() { 1131 return new SIInsertWaitcnts(); 1132 } 1133 1134 static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName, 1135 unsigned NewEnc) { 1136 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); 1137 assert(OpIdx >= 0); 1138 1139 MachineOperand &MO = MI.getOperand(OpIdx); 1140 1141 if (NewEnc == MO.getImm()) 1142 return false; 1143 1144 MO.setImm(NewEnc); 1145 return true; 1146 } 1147 1148 /// Determine if \p MI is a gfx12+ single-counter S_WAIT_*CNT instruction, 1149 /// and if so, which counter it is waiting on. 1150 static std::optional<InstCounterType> counterTypeForInstr(unsigned Opcode) { 1151 switch (Opcode) { 1152 case AMDGPU::S_WAIT_LOADCNT: 1153 return LOAD_CNT; 1154 case AMDGPU::S_WAIT_EXPCNT: 1155 return EXP_CNT; 1156 case AMDGPU::S_WAIT_STORECNT: 1157 return STORE_CNT; 1158 case AMDGPU::S_WAIT_SAMPLECNT: 1159 return SAMPLE_CNT; 1160 case AMDGPU::S_WAIT_BVHCNT: 1161 return BVH_CNT; 1162 case AMDGPU::S_WAIT_DSCNT: 1163 return DS_CNT; 1164 case AMDGPU::S_WAIT_KMCNT: 1165 return KM_CNT; 1166 default: 1167 return {}; 1168 } 1169 } 1170 1171 bool WaitcntGenerator::promoteSoftWaitCnt(MachineInstr *Waitcnt) const { 1172 unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Waitcnt->getOpcode()); 1173 if (Opcode == Waitcnt->getOpcode()) 1174 return false; 1175 1176 Waitcnt->setDesc(TII->get(Opcode)); 1177 return true; 1178 } 1179 1180 /// Combine consecutive S_WAITCNT and S_WAITCNT_VSCNT instructions that 1181 /// precede \p It and follow \p OldWaitcntInstr and apply any extra waits 1182 /// from \p Wait that were added by previous passes. Currently this pass 1183 /// conservatively assumes that these preexisting waits are required for 1184 /// correctness. 1185 bool WaitcntGeneratorPreGFX12::applyPreexistingWaitcnt( 1186 WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, 1187 AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { 1188 assert(ST); 1189 assert(isNormalMode(MaxCounter)); 1190 1191 bool Modified = false; 1192 MachineInstr *WaitcntInstr = nullptr; 1193 MachineInstr *WaitcntVsCntInstr = nullptr; 1194 1195 for (auto &II : 1196 make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) { 1197 if (II.isMetaInstruction()) 1198 continue; 1199 1200 unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(II.getOpcode()); 1201 bool TrySimplify = Opcode != II.getOpcode() && !OptNone; 1202 1203 // Update required wait count. If this is a soft waitcnt (= it was added 1204 // by an earlier pass), it may be entirely removed. 1205 if (Opcode == AMDGPU::S_WAITCNT) { 1206 unsigned IEnc = II.getOperand(0).getImm(); 1207 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1208 if (TrySimplify) 1209 ScoreBrackets.simplifyWaitcnt(OldWait); 1210 Wait = Wait.combined(OldWait); 1211 1212 // Merge consecutive waitcnt of the same type by erasing multiples. 1213 if (WaitcntInstr || (!Wait.hasWaitExceptStoreCnt() && TrySimplify)) { 1214 II.eraseFromParent(); 1215 Modified = true; 1216 } else 1217 WaitcntInstr = &II; 1218 } else { 1219 assert(Opcode == AMDGPU::S_WAITCNT_VSCNT); 1220 assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1221 1222 unsigned OldVSCnt = 1223 TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); 1224 if (TrySimplify) 1225 ScoreBrackets.simplifyWaitcnt(InstCounterType::STORE_CNT, OldVSCnt); 1226 Wait.StoreCnt = std::min(Wait.StoreCnt, OldVSCnt); 1227 1228 if (WaitcntVsCntInstr || (!Wait.hasWaitStoreCnt() && TrySimplify)) { 1229 II.eraseFromParent(); 1230 Modified = true; 1231 } else 1232 WaitcntVsCntInstr = &II; 1233 } 1234 } 1235 1236 if (WaitcntInstr) { 1237 Modified |= updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16, 1238 AMDGPU::encodeWaitcnt(IV, Wait)); 1239 Modified |= promoteSoftWaitCnt(WaitcntInstr); 1240 1241 ScoreBrackets.applyWaitcnt(LOAD_CNT, Wait.LoadCnt); 1242 ScoreBrackets.applyWaitcnt(EXP_CNT, Wait.ExpCnt); 1243 ScoreBrackets.applyWaitcnt(DS_CNT, Wait.DsCnt); 1244 Wait.LoadCnt = ~0u; 1245 Wait.ExpCnt = ~0u; 1246 Wait.DsCnt = ~0u; 1247 1248 LLVM_DEBUG(It == WaitcntInstr->getParent()->end() 1249 ? dbgs() 1250 << "applyPreexistingWaitcnt\n" 1251 << "New Instr at block end: " << *WaitcntInstr << '\n' 1252 : dbgs() << "applyPreexistingWaitcnt\n" 1253 << "Old Instr: " << *It 1254 << "New Instr: " << *WaitcntInstr << '\n'); 1255 } 1256 1257 if (WaitcntVsCntInstr) { 1258 Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr, 1259 AMDGPU::OpName::simm16, Wait.StoreCnt); 1260 Modified |= promoteSoftWaitCnt(WaitcntVsCntInstr); 1261 1262 ScoreBrackets.applyWaitcnt(STORE_CNT, Wait.StoreCnt); 1263 Wait.StoreCnt = ~0u; 1264 1265 LLVM_DEBUG(It == WaitcntVsCntInstr->getParent()->end() 1266 ? dbgs() << "applyPreexistingWaitcnt\n" 1267 << "New Instr at block end: " << *WaitcntVsCntInstr 1268 << '\n' 1269 : dbgs() << "applyPreexistingWaitcnt\n" 1270 << "Old Instr: " << *It 1271 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 1272 } 1273 1274 return Modified; 1275 } 1276 1277 /// Generate S_WAITCNT and/or S_WAITCNT_VSCNT instructions for any 1278 /// required counters in \p Wait 1279 bool WaitcntGeneratorPreGFX12::createNewWaitcnt( 1280 MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, 1281 AMDGPU::Waitcnt Wait) { 1282 assert(ST); 1283 assert(isNormalMode(MaxCounter)); 1284 1285 bool Modified = false; 1286 const DebugLoc &DL = Block.findDebugLoc(It); 1287 1288 // Waits for VMcnt, LKGMcnt and/or EXPcnt are encoded together into a 1289 // single instruction while VScnt has its own instruction. 1290 if (Wait.hasWaitExceptStoreCnt()) { 1291 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1292 [[maybe_unused]] auto SWaitInst = 1293 BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc); 1294 Modified = true; 1295 1296 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1297 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1298 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1299 } 1300 1301 if (Wait.hasWaitStoreCnt()) { 1302 assert(ST->hasVscnt()); 1303 1304 [[maybe_unused]] auto SWaitInst = 1305 BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1306 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1307 .addImm(Wait.StoreCnt); 1308 Modified = true; 1309 1310 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1311 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1312 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1313 } 1314 1315 return Modified; 1316 } 1317 1318 AMDGPU::Waitcnt 1319 WaitcntGeneratorPreGFX12::getAllZeroWaitcnt(bool IncludeVSCnt) const { 1320 return AMDGPU::Waitcnt(0, 0, 0, IncludeVSCnt && ST->hasVscnt() ? 0 : ~0u); 1321 } 1322 1323 AMDGPU::Waitcnt 1324 WaitcntGeneratorGFX12Plus::getAllZeroWaitcnt(bool IncludeVSCnt) const { 1325 return AMDGPU::Waitcnt(0, 0, 0, IncludeVSCnt ? 0 : ~0u, 0, 0, 0); 1326 } 1327 1328 /// Combine consecutive S_WAIT_*CNT instructions that precede \p It and 1329 /// follow \p OldWaitcntInstr and apply any extra waits from \p Wait that 1330 /// were added by previous passes. Currently this pass conservatively 1331 /// assumes that these preexisting waits are required for correctness. 1332 bool WaitcntGeneratorGFX12Plus::applyPreexistingWaitcnt( 1333 WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, 1334 AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { 1335 assert(ST); 1336 assert(!isNormalMode(MaxCounter)); 1337 1338 bool Modified = false; 1339 MachineInstr *CombinedLoadDsCntInstr = nullptr; 1340 MachineInstr *CombinedStoreDsCntInstr = nullptr; 1341 MachineInstr *WaitInstrs[NUM_EXTENDED_INST_CNTS] = {}; 1342 1343 for (auto &II : 1344 make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) { 1345 if (II.isMetaInstruction()) 1346 continue; 1347 1348 MachineInstr **UpdatableInstr; 1349 1350 // Update required wait count. If this is a soft waitcnt (= it was added 1351 // by an earlier pass), it may be entirely removed. 1352 1353 unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(II.getOpcode()); 1354 bool TrySimplify = Opcode != II.getOpcode() && !OptNone; 1355 1356 // Don't crash if the programmer used legacy waitcnt intrinsics, but don't 1357 // attempt to do more than that either. 1358 if (Opcode == AMDGPU::S_WAITCNT) 1359 continue; 1360 1361 if (Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT) { 1362 unsigned OldEnc = 1363 TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); 1364 AMDGPU::Waitcnt OldWait = AMDGPU::decodeLoadcntDscnt(IV, OldEnc); 1365 if (TrySimplify) 1366 ScoreBrackets.simplifyWaitcnt(OldWait); 1367 Wait = Wait.combined(OldWait); 1368 UpdatableInstr = &CombinedLoadDsCntInstr; 1369 } else if (Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT) { 1370 unsigned OldEnc = 1371 TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); 1372 AMDGPU::Waitcnt OldWait = AMDGPU::decodeStorecntDscnt(IV, OldEnc); 1373 if (TrySimplify) 1374 ScoreBrackets.simplifyWaitcnt(OldWait); 1375 Wait = Wait.combined(OldWait); 1376 UpdatableInstr = &CombinedStoreDsCntInstr; 1377 } else { 1378 std::optional<InstCounterType> CT = counterTypeForInstr(Opcode); 1379 assert(CT.has_value()); 1380 unsigned OldCnt = 1381 TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); 1382 if (TrySimplify) 1383 ScoreBrackets.simplifyWaitcnt(CT.value(), OldCnt); 1384 addWait(Wait, CT.value(), OldCnt); 1385 UpdatableInstr = &WaitInstrs[CT.value()]; 1386 } 1387 1388 // Merge consecutive waitcnt of the same type by erasing multiples. 1389 if (!*UpdatableInstr) { 1390 *UpdatableInstr = &II; 1391 } else { 1392 II.eraseFromParent(); 1393 Modified = true; 1394 } 1395 } 1396 1397 if (CombinedLoadDsCntInstr) { 1398 // Only keep an S_WAIT_LOADCNT_DSCNT if both counters actually need 1399 // to be waited for. Otherwise, let the instruction be deleted so 1400 // the appropriate single counter wait instruction can be inserted 1401 // instead, when new S_WAIT_*CNT instructions are inserted by 1402 // createNewWaitcnt(). As a side effect, resetting the wait counts will 1403 // cause any redundant S_WAIT_LOADCNT or S_WAIT_DSCNT to be removed by 1404 // the loop below that deals with single counter instructions. 1405 if (Wait.LoadCnt != ~0u && Wait.DsCnt != ~0u) { 1406 unsigned NewEnc = AMDGPU::encodeLoadcntDscnt(IV, Wait); 1407 Modified |= updateOperandIfDifferent(*CombinedLoadDsCntInstr, 1408 AMDGPU::OpName::simm16, NewEnc); 1409 Modified |= promoteSoftWaitCnt(CombinedLoadDsCntInstr); 1410 ScoreBrackets.applyWaitcnt(LOAD_CNT, Wait.LoadCnt); 1411 ScoreBrackets.applyWaitcnt(DS_CNT, Wait.DsCnt); 1412 Wait.LoadCnt = ~0u; 1413 Wait.DsCnt = ~0u; 1414 1415 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 1416 ? dbgs() << "applyPreexistingWaitcnt\n" 1417 << "New Instr at block end: " 1418 << *CombinedLoadDsCntInstr << '\n' 1419 : dbgs() << "applyPreexistingWaitcnt\n" 1420 << "Old Instr: " << *It << "New Instr: " 1421 << *CombinedLoadDsCntInstr << '\n'); 1422 } else { 1423 CombinedLoadDsCntInstr->eraseFromParent(); 1424 Modified = true; 1425 } 1426 } 1427 1428 if (CombinedStoreDsCntInstr) { 1429 // Similarly for S_WAIT_STORECNT_DSCNT. 1430 if (Wait.StoreCnt != ~0u && Wait.DsCnt != ~0u) { 1431 unsigned NewEnc = AMDGPU::encodeStorecntDscnt(IV, Wait); 1432 Modified |= updateOperandIfDifferent(*CombinedStoreDsCntInstr, 1433 AMDGPU::OpName::simm16, NewEnc); 1434 Modified |= promoteSoftWaitCnt(CombinedStoreDsCntInstr); 1435 ScoreBrackets.applyWaitcnt(STORE_CNT, Wait.StoreCnt); 1436 ScoreBrackets.applyWaitcnt(DS_CNT, Wait.DsCnt); 1437 Wait.StoreCnt = ~0u; 1438 Wait.DsCnt = ~0u; 1439 1440 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 1441 ? dbgs() << "applyPreexistingWaitcnt\n" 1442 << "New Instr at block end: " 1443 << *CombinedStoreDsCntInstr << '\n' 1444 : dbgs() << "applyPreexistingWaitcnt\n" 1445 << "Old Instr: " << *It << "New Instr: " 1446 << *CombinedStoreDsCntInstr << '\n'); 1447 } else { 1448 CombinedStoreDsCntInstr->eraseFromParent(); 1449 Modified = true; 1450 } 1451 } 1452 1453 // Look for an opportunity to convert existing S_WAIT_LOADCNT, 1454 // S_WAIT_STORECNT and S_WAIT_DSCNT into new S_WAIT_LOADCNT_DSCNT 1455 // or S_WAIT_STORECNT_DSCNT. This is achieved by selectively removing 1456 // instructions so that createNewWaitcnt() will create new combined 1457 // instructions to replace them. 1458 1459 if (Wait.DsCnt != ~0u) { 1460 // This is a vector of addresses in WaitInstrs pointing to instructions 1461 // that should be removed if they are present. 1462 SmallVector<MachineInstr **, 2> WaitsToErase; 1463 1464 // If it's known that both DScnt and either LOADcnt or STOREcnt (but not 1465 // both) need to be waited for, ensure that there are no existing 1466 // individual wait count instructions for these. 1467 1468 if (Wait.LoadCnt != ~0u) { 1469 WaitsToErase.push_back(&WaitInstrs[LOAD_CNT]); 1470 WaitsToErase.push_back(&WaitInstrs[DS_CNT]); 1471 } else if (Wait.StoreCnt != ~0u) { 1472 WaitsToErase.push_back(&WaitInstrs[STORE_CNT]); 1473 WaitsToErase.push_back(&WaitInstrs[DS_CNT]); 1474 } 1475 1476 for (MachineInstr **WI : WaitsToErase) { 1477 if (!*WI) 1478 continue; 1479 1480 (*WI)->eraseFromParent(); 1481 *WI = nullptr; 1482 Modified = true; 1483 } 1484 } 1485 1486 for (auto CT : inst_counter_types(NUM_EXTENDED_INST_CNTS)) { 1487 if (!WaitInstrs[CT]) 1488 continue; 1489 1490 unsigned NewCnt = getWait(Wait, CT); 1491 if (NewCnt != ~0u) { 1492 Modified |= updateOperandIfDifferent(*WaitInstrs[CT], 1493 AMDGPU::OpName::simm16, NewCnt); 1494 Modified |= promoteSoftWaitCnt(WaitInstrs[CT]); 1495 1496 ScoreBrackets.applyWaitcnt(CT, NewCnt); 1497 setNoWait(Wait, CT); 1498 1499 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 1500 ? dbgs() << "applyPreexistingWaitcnt\n" 1501 << "New Instr at block end: " << *WaitInstrs[CT] 1502 << '\n' 1503 : dbgs() << "applyPreexistingWaitcnt\n" 1504 << "Old Instr: " << *It 1505 << "New Instr: " << *WaitInstrs[CT] << '\n'); 1506 } else { 1507 WaitInstrs[CT]->eraseFromParent(); 1508 Modified = true; 1509 } 1510 } 1511 1512 return Modified; 1513 } 1514 1515 /// Generate S_WAIT_*CNT instructions for any required counters in \p Wait 1516 bool WaitcntGeneratorGFX12Plus::createNewWaitcnt( 1517 MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, 1518 AMDGPU::Waitcnt Wait) { 1519 assert(ST); 1520 assert(!isNormalMode(MaxCounter)); 1521 1522 bool Modified = false; 1523 const DebugLoc &DL = Block.findDebugLoc(It); 1524 1525 // Check for opportunities to use combined wait instructions. 1526 if (Wait.DsCnt != ~0u) { 1527 MachineInstr *SWaitInst = nullptr; 1528 1529 if (Wait.LoadCnt != ~0u) { 1530 unsigned Enc = AMDGPU::encodeLoadcntDscnt(IV, Wait); 1531 1532 SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAIT_LOADCNT_DSCNT)) 1533 .addImm(Enc); 1534 1535 Wait.LoadCnt = ~0u; 1536 Wait.DsCnt = ~0u; 1537 } else if (Wait.StoreCnt != ~0u) { 1538 unsigned Enc = AMDGPU::encodeStorecntDscnt(IV, Wait); 1539 1540 SWaitInst = 1541 BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAIT_STORECNT_DSCNT)) 1542 .addImm(Enc); 1543 1544 Wait.StoreCnt = ~0u; 1545 Wait.DsCnt = ~0u; 1546 } 1547 1548 if (SWaitInst) { 1549 Modified = true; 1550 1551 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1552 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1553 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1554 } 1555 } 1556 1557 // Generate an instruction for any remaining counter that needs 1558 // waiting for. 1559 1560 for (auto CT : inst_counter_types(NUM_EXTENDED_INST_CNTS)) { 1561 unsigned Count = getWait(Wait, CT); 1562 if (Count == ~0u) 1563 continue; 1564 1565 [[maybe_unused]] auto SWaitInst = 1566 BuildMI(Block, It, DL, TII->get(instrsForExtendedCounterTypes[CT])) 1567 .addImm(Count); 1568 1569 Modified = true; 1570 1571 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1572 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1573 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1574 } 1575 1576 return Modified; 1577 } 1578 1579 static bool readsVCCZ(const MachineInstr &MI) { 1580 unsigned Opc = MI.getOpcode(); 1581 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 1582 !MI.getOperand(1).isUndef(); 1583 } 1584 1585 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 1586 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 1587 // Currently all conventions wait, but this may not always be the case. 1588 // 1589 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 1590 // senses to omit the wait and do it in the caller. 1591 return true; 1592 } 1593 1594 /// \returns true if the callee is expected to wait for any outstanding waits 1595 /// before returning. 1596 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 1597 return true; 1598 } 1599 1600 /// Generate s_waitcnt instruction to be placed before cur_Inst. 1601 /// Instructions of a given type are returned in order, 1602 /// but instructions of different types can complete out of order. 1603 /// We rely on this in-order completion 1604 /// and simply assign a score to the memory access instructions. 1605 /// We keep track of the active "score bracket" to determine 1606 /// if an access of a memory read requires an s_waitcnt 1607 /// and if so what the value of each counter is. 1608 /// The "score bracket" is bound by the lower bound and upper bound 1609 /// scores (*_score_LB and *_score_ub respectively). 1610 /// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to 1611 /// flush the vmcnt counter here. 1612 bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI, 1613 WaitcntBrackets &ScoreBrackets, 1614 MachineInstr *OldWaitcntInstr, 1615 bool FlushVmCnt) { 1616 setForceEmitWaitcnt(); 1617 1618 if (MI.isMetaInstruction()) 1619 return false; 1620 1621 AMDGPU::Waitcnt Wait; 1622 1623 // FIXME: This should have already been handled by the memory legalizer. 1624 // Removing this currently doesn't affect any lit tests, but we need to 1625 // verify that nothing was relying on this. The number of buffer invalidates 1626 // being handled here should not be expanded. 1627 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 1628 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 1629 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 1630 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 1631 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 1632 Wait.LoadCnt = 0; 1633 } 1634 1635 // All waits must be resolved at call return. 1636 // NOTE: this could be improved with knowledge of all call sites or 1637 // with knowledge of the called routines. 1638 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 1639 MI.getOpcode() == AMDGPU::SI_RETURN || 1640 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 1641 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 1642 Wait = Wait.combined(WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false)); 1643 } 1644 // Identify S_ENDPGM instructions which may have to wait for outstanding VMEM 1645 // stores. In this case it can be useful to send a message to explicitly 1646 // release all VGPRs before the stores have completed, but it is only safe to 1647 // do this if: 1648 // * there are no outstanding scratch stores 1649 // * we are not in Dynamic VGPR mode 1650 else if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1651 MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) { 1652 if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && !WCG->isOptNone() && 1653 ScoreBrackets.getScoreRange(STORE_CNT) != 0 && 1654 !ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS)) 1655 ReleaseVGPRInsts.insert(&MI); 1656 } 1657 // Resolve vm waits before gs-done. 1658 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 1659 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 1660 ST->hasLegacyGeometry() && 1661 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) == 1662 AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) { 1663 Wait.LoadCnt = 0; 1664 } 1665 1666 // Export & GDS instructions do not read the EXEC mask until after the export 1667 // is granted (which can occur well after the instruction is issued). 1668 // The shader program must flush all EXP operations on the export-count 1669 // before overwriting the EXEC mask. 1670 else { 1671 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1672 // Export and GDS are tracked individually, either may trigger a waitcnt 1673 // for EXEC. 1674 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1675 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1676 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1677 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1678 Wait.ExpCnt = 0; 1679 } 1680 } 1681 1682 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1683 // The function is going to insert a wait on everything in its prolog. 1684 // This still needs to be careful if the call target is a load (e.g. a GOT 1685 // load). We also need to check WAW dependency with saved PC. 1686 Wait = AMDGPU::Waitcnt(); 1687 1688 int CallAddrOpIdx = 1689 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1690 1691 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1692 RegInterval CallAddrOpInterval = 1693 ScoreBrackets.getRegInterval(&MI, MRI, TRI, CallAddrOpIdx); 1694 1695 for (int RegNo = CallAddrOpInterval.first; 1696 RegNo < CallAddrOpInterval.second; ++RegNo) 1697 ScoreBrackets.determineWait(SmemAccessCounter, RegNo, Wait); 1698 1699 int RtnAddrOpIdx = 1700 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1701 if (RtnAddrOpIdx != -1) { 1702 RegInterval RtnAddrOpInterval = 1703 ScoreBrackets.getRegInterval(&MI, MRI, TRI, RtnAddrOpIdx); 1704 1705 for (int RegNo = RtnAddrOpInterval.first; 1706 RegNo < RtnAddrOpInterval.second; ++RegNo) 1707 ScoreBrackets.determineWait(SmemAccessCounter, RegNo, Wait); 1708 } 1709 } 1710 } else { 1711 // FIXME: Should not be relying on memoperands. 1712 // Look at the source operands of every instruction to see if 1713 // any of them results from a previous memory operation that affects 1714 // its current usage. If so, an s_waitcnt instruction needs to be 1715 // emitted. 1716 // If the source operand was defined by a load, add the s_waitcnt 1717 // instruction. 1718 // 1719 // Two cases are handled for destination operands: 1720 // 1) If the destination operand was defined by a load, add the s_waitcnt 1721 // instruction to guarantee the right WAW order. 1722 // 2) If a destination operand that was used by a recent export/store ins, 1723 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1724 1725 for (const MachineMemOperand *Memop : MI.memoperands()) { 1726 const Value *Ptr = Memop->getValue(); 1727 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1728 addWait(Wait, SmemAccessCounter, 0); 1729 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1730 SLoadAddresses.erase(Ptr); 1731 } 1732 unsigned AS = Memop->getAddrSpace(); 1733 if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) 1734 continue; 1735 // No need to wait before load from VMEM to LDS. 1736 if (TII->mayWriteLDSThroughDMA(MI)) 1737 continue; 1738 1739 // LOAD_CNT is only relevant to vgpr or LDS. 1740 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1741 bool FoundAliasingStore = false; 1742 // Only objects with alias scope info were added to LDSDMAScopes array. 1743 // In the absense of the scope info we will not be able to disambiguate 1744 // aliasing here. There is no need to try searching for a corresponding 1745 // store slot. This is conservatively correct because in that case we 1746 // will produce a wait using the first (general) LDS DMA wait slot which 1747 // will wait on all of them anyway. 1748 if (Ptr && Memop->getAAInfo() && Memop->getAAInfo().Scope) { 1749 const auto &LDSDMAStores = ScoreBrackets.getLDSDMAStores(); 1750 for (unsigned I = 0, E = LDSDMAStores.size(); I != E; ++I) { 1751 if (MI.mayAlias(AA, *LDSDMAStores[I], true)) { 1752 FoundAliasingStore = true; 1753 ScoreBrackets.determineWait(LOAD_CNT, RegNo + I + 1, Wait); 1754 } 1755 } 1756 } 1757 if (!FoundAliasingStore) 1758 ScoreBrackets.determineWait(LOAD_CNT, RegNo, Wait); 1759 if (Memop->isStore()) { 1760 ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); 1761 } 1762 } 1763 1764 // Loop over use and def operands. 1765 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1766 MachineOperand &Op = MI.getOperand(I); 1767 if (!Op.isReg()) 1768 continue; 1769 1770 // If the instruction does not read tied source, skip the operand. 1771 if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI)) 1772 continue; 1773 1774 RegInterval Interval = ScoreBrackets.getRegInterval(&MI, MRI, TRI, I); 1775 1776 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1777 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1778 if (IsVGPR) { 1779 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1780 // previous write and this write are the same type of VMEM 1781 // instruction, in which case they are (in some architectures) 1782 // guaranteed to write their results in order anyway. 1783 if (Op.isUse() || !updateVMCntOnly(MI) || 1784 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1785 getVmemType(MI)) || 1786 !ST->hasVmemWriteVgprInOrder()) { 1787 ScoreBrackets.determineWait(LOAD_CNT, RegNo, Wait); 1788 ScoreBrackets.determineWait(SAMPLE_CNT, RegNo, Wait); 1789 ScoreBrackets.determineWait(BVH_CNT, RegNo, Wait); 1790 ScoreBrackets.clearVgprVmemTypes(RegNo); 1791 } 1792 if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) { 1793 ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); 1794 } 1795 ScoreBrackets.determineWait(DS_CNT, RegNo, Wait); 1796 } else { 1797 ScoreBrackets.determineWait(SmemAccessCounter, RegNo, Wait); 1798 } 1799 } 1800 } 1801 } 1802 } 1803 1804 // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does 1805 // not, we need to ensure the subtarget is capable of backing off barrier 1806 // instructions in case there are any outstanding memory operations that may 1807 // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here. 1808 if (TII->isBarrierStart(MI.getOpcode()) && 1809 !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) { 1810 Wait = Wait.combined(WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/true)); 1811 } 1812 1813 // TODO: Remove this work-around, enable the assert for Bug 457939 1814 // after fixing the scheduler. Also, the Shader Compiler code is 1815 // independent of target. 1816 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1817 if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1818 Wait.DsCnt = 0; 1819 } 1820 } 1821 1822 // Verify that the wait is actually needed. 1823 ScoreBrackets.simplifyWaitcnt(Wait); 1824 1825 if (ForceEmitZeroWaitcnts) 1826 Wait = WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false); 1827 1828 if (ForceEmitWaitcnt[LOAD_CNT]) 1829 Wait.LoadCnt = 0; 1830 if (ForceEmitWaitcnt[EXP_CNT]) 1831 Wait.ExpCnt = 0; 1832 if (ForceEmitWaitcnt[DS_CNT]) 1833 Wait.DsCnt = 0; 1834 if (ForceEmitWaitcnt[SAMPLE_CNT]) 1835 Wait.SampleCnt = 0; 1836 if (ForceEmitWaitcnt[BVH_CNT]) 1837 Wait.BvhCnt = 0; 1838 if (ForceEmitWaitcnt[KM_CNT]) 1839 Wait.KmCnt = 0; 1840 1841 if (FlushVmCnt) { 1842 if (ScoreBrackets.hasPendingEvent(LOAD_CNT)) 1843 Wait.LoadCnt = 0; 1844 if (ScoreBrackets.hasPendingEvent(SAMPLE_CNT)) 1845 Wait.SampleCnt = 0; 1846 if (ScoreBrackets.hasPendingEvent(BVH_CNT)) 1847 Wait.BvhCnt = 0; 1848 } 1849 1850 return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets, 1851 OldWaitcntInstr); 1852 } 1853 1854 bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait, 1855 MachineBasicBlock::instr_iterator It, 1856 MachineBasicBlock &Block, 1857 WaitcntBrackets &ScoreBrackets, 1858 MachineInstr *OldWaitcntInstr) { 1859 bool Modified = false; 1860 1861 if (OldWaitcntInstr) 1862 // Try to merge the required wait with preexisting waitcnt instructions. 1863 // Also erase redundant waitcnt. 1864 Modified = 1865 WCG->applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It); 1866 1867 // Any counts that could have been applied to any existing waitcnt 1868 // instructions will have been done so, now deal with any remaining. 1869 ScoreBrackets.applyWaitcnt(Wait); 1870 1871 // ExpCnt can be merged into VINTERP. 1872 if (Wait.ExpCnt != ~0u && It != Block.instr_end() && 1873 SIInstrInfo::isVINTERP(*It)) { 1874 MachineOperand *WaitExp = 1875 TII->getNamedOperand(*It, AMDGPU::OpName::waitexp); 1876 if (Wait.ExpCnt < WaitExp->getImm()) { 1877 WaitExp->setImm(Wait.ExpCnt); 1878 Modified = true; 1879 } 1880 Wait.ExpCnt = ~0u; 1881 1882 LLVM_DEBUG(dbgs() << "generateWaitcnt\n" 1883 << "Update Instr: " << *It); 1884 } 1885 1886 if (WCG->createNewWaitcnt(Block, It, Wait)) 1887 Modified = true; 1888 1889 return Modified; 1890 } 1891 1892 // This is a flat memory operation. Check to see if it has memory tokens other 1893 // than LDS. Other address spaces supported by flat memory operations involve 1894 // global memory. 1895 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1896 assert(TII->isFLAT(MI)); 1897 1898 // All flat instructions use the VMEM counter. 1899 assert(TII->usesVM_CNT(MI)); 1900 1901 // If there are no memory operands then conservatively assume the flat 1902 // operation may access VMEM. 1903 if (MI.memoperands_empty()) 1904 return true; 1905 1906 // See if any memory operand specifies an address space that involves VMEM. 1907 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1908 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1909 // (GDS) address space is not supported by flat operations. Therefore, simply 1910 // return true unless only the LDS address space is found. 1911 for (const MachineMemOperand *Memop : MI.memoperands()) { 1912 unsigned AS = Memop->getAddrSpace(); 1913 assert(AS != AMDGPUAS::REGION_ADDRESS); 1914 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1915 return true; 1916 } 1917 1918 return false; 1919 } 1920 1921 // This is a flat memory operation. Check to see if it has memory tokens for 1922 // either LDS or FLAT. 1923 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1924 assert(TII->isFLAT(MI)); 1925 1926 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1927 if (!TII->usesLGKM_CNT(MI)) 1928 return false; 1929 1930 // If in tgsplit mode then there can be no use of LDS. 1931 if (ST->isTgSplitEnabled()) 1932 return false; 1933 1934 // If there are no memory operands then conservatively assume the flat 1935 // operation may access LDS. 1936 if (MI.memoperands_empty()) 1937 return true; 1938 1939 // See if any memory operand specifies an address space that involves LDS. 1940 for (const MachineMemOperand *Memop : MI.memoperands()) { 1941 unsigned AS = Memop->getAddrSpace(); 1942 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1943 return true; 1944 } 1945 1946 return false; 1947 } 1948 1949 // This is a flat memory operation. Check to see if it has memory tokens for 1950 // either scratch or FLAT. 1951 bool SIInsertWaitcnts::mayAccessScratchThroughFlat( 1952 const MachineInstr &MI) const { 1953 assert(TII->isFLAT(MI)); 1954 1955 // SCRATCH instructions always access scratch. 1956 if (TII->isFLATScratch(MI)) 1957 return true; 1958 1959 // GLOBAL instructions never access scratch. 1960 if (TII->isFLATGlobal(MI)) 1961 return false; 1962 1963 // If there are no memory operands then conservatively assume the flat 1964 // operation may access scratch. 1965 if (MI.memoperands_empty()) 1966 return true; 1967 1968 // See if any memory operand specifies an address space that involves scratch. 1969 return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) { 1970 unsigned AS = Memop->getAddrSpace(); 1971 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 1972 }); 1973 } 1974 1975 static bool isCacheInvOrWBInst(MachineInstr &Inst) { 1976 auto Opc = Inst.getOpcode(); 1977 return Opc == AMDGPU::GLOBAL_INV || Opc == AMDGPU::GLOBAL_WB || 1978 Opc == AMDGPU::GLOBAL_WBINV; 1979 } 1980 1981 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1982 WaitcntBrackets *ScoreBrackets) { 1983 // Now look at the instruction opcode. If it is a memory access 1984 // instruction, update the upper-bound of the appropriate counter's 1985 // bracket and the destination operand scores. 1986 // TODO: Use the (TSFlags & SIInstrFlags::DS_CNT) property everywhere. 1987 1988 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1989 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1990 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1991 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1992 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1993 } else { 1994 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1995 } 1996 } else if (TII->isFLAT(Inst)) { 1997 // TODO: Track this properly. 1998 if (isCacheInvOrWBInst(Inst)) 1999 return; 2000 2001 assert(Inst.mayLoadOrStore()); 2002 2003 int FlatASCount = 0; 2004 2005 if (mayAccessVMEMThroughFlat(Inst)) { 2006 ++FlatASCount; 2007 ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), 2008 Inst); 2009 } 2010 2011 if (mayAccessLDSThroughFlat(Inst)) { 2012 ++FlatASCount; 2013 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 2014 } 2015 2016 // A Flat memory operation must access at least one address space. 2017 assert(FlatASCount); 2018 2019 // This is a flat memory operation that access both VMEM and LDS, so note it 2020 // - it will require that both the VM and LGKM be flushed to zero if it is 2021 // pending when a VM or LGKM dependency occurs. 2022 if (FlatASCount > 1) 2023 ScoreBrackets->setPendingFlat(); 2024 } else if (SIInstrInfo::isVMEM(Inst) && 2025 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { 2026 ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), 2027 Inst); 2028 2029 if (ST->vmemWriteNeedsExpWaitcnt() && 2030 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 2031 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 2032 } 2033 } else if (TII->isSMRD(Inst)) { 2034 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 2035 } else if (Inst.isCall()) { 2036 if (callWaitsOnFunctionReturn(Inst)) { 2037 // Act as a wait on everything 2038 ScoreBrackets->applyWaitcnt( 2039 WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false)); 2040 ScoreBrackets->setStateOnFunctionEntryOrReturn(); 2041 } else { 2042 // May need to way wait for anything. 2043 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 2044 } 2045 } else if (SIInstrInfo::isLDSDIR(Inst)) { 2046 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst); 2047 } else if (TII->isVINTERP(Inst)) { 2048 int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm(); 2049 ScoreBrackets->applyWaitcnt(EXP_CNT, Imm); 2050 } else if (SIInstrInfo::isEXP(Inst)) { 2051 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 2052 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 2053 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 2054 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 2055 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 2056 else 2057 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 2058 } else { 2059 switch (Inst.getOpcode()) { 2060 case AMDGPU::S_SENDMSG: 2061 case AMDGPU::S_SENDMSG_RTN_B32: 2062 case AMDGPU::S_SENDMSG_RTN_B64: 2063 case AMDGPU::S_SENDMSGHALT: 2064 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 2065 break; 2066 case AMDGPU::S_MEMTIME: 2067 case AMDGPU::S_MEMREALTIME: 2068 case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_M0: 2069 case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: 2070 case AMDGPU::S_BARRIER_LEAVE: 2071 case AMDGPU::S_GET_BARRIER_STATE_M0: 2072 case AMDGPU::S_GET_BARRIER_STATE_IMM: 2073 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 2074 break; 2075 } 2076 } 2077 } 2078 2079 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 2080 unsigned OtherScore) { 2081 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 2082 unsigned OtherShifted = 2083 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 2084 Score = std::max(MyShifted, OtherShifted); 2085 return OtherShifted > MyShifted; 2086 } 2087 2088 /// Merge the pending events and associater score brackets of \p Other into 2089 /// this brackets status. 2090 /// 2091 /// Returns whether the merge resulted in a change that requires tighter waits 2092 /// (i.e. the merged brackets strictly dominate the original brackets). 2093 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 2094 bool StrictDom = false; 2095 2096 VgprUB = std::max(VgprUB, Other.VgprUB); 2097 SgprUB = std::max(SgprUB, Other.SgprUB); 2098 2099 for (auto T : inst_counter_types(MaxCounter)) { 2100 // Merge event flags for this counter 2101 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 2102 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 2103 if (OtherEvents & ~OldEvents) 2104 StrictDom = true; 2105 PendingEvents |= OtherEvents; 2106 2107 // Merge scores for this counter 2108 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 2109 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 2110 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 2111 if (NewUB < ScoreLBs[T]) 2112 report_fatal_error("waitcnt score overflow"); 2113 2114 MergeInfo M; 2115 M.OldLB = ScoreLBs[T]; 2116 M.OtherLB = Other.ScoreLBs[T]; 2117 M.MyShift = NewUB - ScoreUBs[T]; 2118 M.OtherShift = NewUB - Other.ScoreUBs[T]; 2119 2120 ScoreUBs[T] = NewUB; 2121 2122 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 2123 2124 for (int J = 0; J <= VgprUB; J++) 2125 StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 2126 2127 if (T == SmemAccessCounter) { 2128 for (int J = 0; J <= SgprUB; J++) 2129 StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 2130 } 2131 } 2132 2133 for (int J = 0; J <= VgprUB; J++) { 2134 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 2135 StrictDom |= NewVmemTypes != VgprVmemTypes[J]; 2136 VgprVmemTypes[J] = NewVmemTypes; 2137 } 2138 2139 return StrictDom; 2140 } 2141 2142 static bool isWaitInstr(MachineInstr &Inst) { 2143 unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Inst.getOpcode()); 2144 return Opcode == AMDGPU::S_WAITCNT || 2145 (Opcode == AMDGPU::S_WAITCNT_VSCNT && Inst.getOperand(0).isReg() && 2146 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL) || 2147 Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT || 2148 Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT || 2149 counterTypeForInstr(Opcode).has_value(); 2150 } 2151 2152 // Generate s_waitcnt instructions where needed. 2153 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 2154 MachineBasicBlock &Block, 2155 WaitcntBrackets &ScoreBrackets) { 2156 bool Modified = false; 2157 2158 LLVM_DEBUG({ 2159 dbgs() << "*** Block" << Block.getNumber() << " ***"; 2160 ScoreBrackets.dump(); 2161 }); 2162 2163 // Track the correctness of vccz through this basic block. There are two 2164 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 2165 // ST->partialVCCWritesUpdateVCCZ(). 2166 bool VCCZCorrect = true; 2167 if (ST->hasReadVCCZBug()) { 2168 // vccz could be incorrect at a basic block boundary if a predecessor wrote 2169 // to vcc and then issued an smem load. 2170 VCCZCorrect = false; 2171 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 2172 // vccz could be incorrect at a basic block boundary if a predecessor wrote 2173 // to vcc_lo or vcc_hi. 2174 VCCZCorrect = false; 2175 } 2176 2177 // Walk over the instructions. 2178 MachineInstr *OldWaitcntInstr = nullptr; 2179 2180 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 2181 E = Block.instr_end(); 2182 Iter != E;) { 2183 MachineInstr &Inst = *Iter; 2184 2185 // Track pre-existing waitcnts that were added in earlier iterations or by 2186 // the memory legalizer. 2187 if (isWaitInstr(Inst)) { 2188 if (!OldWaitcntInstr) 2189 OldWaitcntInstr = &Inst; 2190 ++Iter; 2191 continue; 2192 } 2193 2194 bool FlushVmCnt = Block.getFirstTerminator() == Inst && 2195 isPreheaderToFlush(Block, ScoreBrackets); 2196 2197 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 2198 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr, 2199 FlushVmCnt); 2200 OldWaitcntInstr = nullptr; 2201 2202 // Restore vccz if it's not known to be correct already. 2203 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 2204 2205 // Don't examine operands unless we need to track vccz correctness. 2206 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 2207 if (Inst.definesRegister(AMDGPU::VCC_LO, /*TRI=*/nullptr) || 2208 Inst.definesRegister(AMDGPU::VCC_HI, /*TRI=*/nullptr)) { 2209 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 2210 if (!ST->partialVCCWritesUpdateVCCZ()) 2211 VCCZCorrect = false; 2212 } else if (Inst.definesRegister(AMDGPU::VCC, /*TRI=*/nullptr)) { 2213 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 2214 // vccz bit, so when we detect that an instruction may read from a 2215 // corrupt vccz bit, we need to: 2216 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 2217 // operations to complete. 2218 // 2. Restore the correct value of vccz by writing the current value 2219 // of vcc back to vcc. 2220 if (ST->hasReadVCCZBug() && 2221 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 2222 // Writes to vcc while there's an outstanding smem read may get 2223 // clobbered as soon as any read completes. 2224 VCCZCorrect = false; 2225 } else { 2226 // Writes to vcc will fix any incorrect value in vccz. 2227 VCCZCorrect = true; 2228 } 2229 } 2230 } 2231 2232 if (TII->isSMRD(Inst)) { 2233 for (const MachineMemOperand *Memop : Inst.memoperands()) { 2234 // No need to handle invariant loads when avoiding WAR conflicts, as 2235 // there cannot be a vector store to the same memory location. 2236 if (!Memop->isInvariant()) { 2237 const Value *Ptr = Memop->getValue(); 2238 SLoadAddresses.insert(std::pair(Ptr, Inst.getParent())); 2239 } 2240 } 2241 if (ST->hasReadVCCZBug()) { 2242 // This smem read could complete and clobber vccz at any time. 2243 VCCZCorrect = false; 2244 } 2245 } 2246 2247 updateEventWaitcntAfter(Inst, &ScoreBrackets); 2248 2249 if (ST->isPreciseMemoryEnabled() && Inst.mayLoadOrStore()) { 2250 AMDGPU::Waitcnt Wait = WCG->getAllZeroWaitcnt( 2251 Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)); 2252 ScoreBrackets.simplifyWaitcnt(Wait); 2253 Modified |= generateWaitcnt(Wait, std::next(Inst.getIterator()), Block, 2254 ScoreBrackets, /*OldWaitcntInstr=*/nullptr); 2255 } 2256 2257 LLVM_DEBUG({ 2258 Inst.print(dbgs()); 2259 ScoreBrackets.dump(); 2260 }); 2261 2262 // TODO: Remove this work-around after fixing the scheduler and enable the 2263 // assert above. 2264 if (RestoreVCCZ) { 2265 // Restore the vccz bit. Any time a value is written to vcc, the vcc 2266 // bit is updated, so we can restore the bit by reading the value of 2267 // vcc and then writing it back to the register. 2268 BuildMI(Block, Inst, Inst.getDebugLoc(), 2269 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 2270 TRI->getVCC()) 2271 .addReg(TRI->getVCC()); 2272 VCCZCorrect = true; 2273 Modified = true; 2274 } 2275 2276 ++Iter; 2277 } 2278 2279 // Flush the LOADcnt, SAMPLEcnt and BVHcnt counters at the end of the block if 2280 // needed. 2281 AMDGPU::Waitcnt Wait; 2282 if (Block.getFirstTerminator() == Block.end() && 2283 isPreheaderToFlush(Block, ScoreBrackets)) { 2284 if (ScoreBrackets.hasPendingEvent(LOAD_CNT)) 2285 Wait.LoadCnt = 0; 2286 if (ScoreBrackets.hasPendingEvent(SAMPLE_CNT)) 2287 Wait.SampleCnt = 0; 2288 if (ScoreBrackets.hasPendingEvent(BVH_CNT)) 2289 Wait.BvhCnt = 0; 2290 } 2291 2292 // Combine or remove any redundant waitcnts at the end of the block. 2293 Modified |= generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets, 2294 OldWaitcntInstr); 2295 2296 return Modified; 2297 } 2298 2299 // Return true if the given machine basic block is a preheader of a loop in 2300 // which we want to flush the vmcnt counter, and false otherwise. 2301 bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB, 2302 WaitcntBrackets &ScoreBrackets) { 2303 auto [Iterator, IsInserted] = PreheadersToFlush.try_emplace(&MBB, false); 2304 if (!IsInserted) 2305 return Iterator->second; 2306 2307 MachineBasicBlock *Succ = MBB.getSingleSuccessor(); 2308 if (!Succ) 2309 return false; 2310 2311 MachineLoop *Loop = MLI->getLoopFor(Succ); 2312 if (!Loop) 2313 return false; 2314 2315 if (Loop->getLoopPreheader() == &MBB && 2316 shouldFlushVmCnt(Loop, ScoreBrackets)) { 2317 Iterator->second = true; 2318 return true; 2319 } 2320 2321 return false; 2322 } 2323 2324 bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const { 2325 return SIInstrInfo::isVMEM(MI) || 2326 (SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI)); 2327 } 2328 2329 // Return true if it is better to flush the vmcnt counter in the preheader of 2330 // the given loop. We currently decide to flush in two situations: 2331 // 1. The loop contains vmem store(s), no vmem load and at least one use of a 2332 // vgpr containing a value that is loaded outside of the loop. (Only on 2333 // targets with no vscnt counter). 2334 // 2. The loop contains vmem load(s), but the loaded values are not used in the 2335 // loop, and at least one use of a vgpr containing a value that is loaded 2336 // outside of the loop. 2337 bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML, 2338 WaitcntBrackets &Brackets) { 2339 bool HasVMemLoad = false; 2340 bool HasVMemStore = false; 2341 bool UsesVgprLoadedOutside = false; 2342 DenseSet<Register> VgprUse; 2343 DenseSet<Register> VgprDef; 2344 2345 for (MachineBasicBlock *MBB : ML->blocks()) { 2346 for (MachineInstr &MI : *MBB) { 2347 if (isVMEMOrFlatVMEM(MI)) { 2348 if (MI.mayLoad()) 2349 HasVMemLoad = true; 2350 if (MI.mayStore()) 2351 HasVMemStore = true; 2352 } 2353 for (unsigned I = 0; I < MI.getNumOperands(); I++) { 2354 MachineOperand &Op = MI.getOperand(I); 2355 if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg())) 2356 continue; 2357 RegInterval Interval = Brackets.getRegInterval(&MI, MRI, TRI, I); 2358 // Vgpr use 2359 if (Op.isUse()) { 2360 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 2361 // If we find a register that is loaded inside the loop, 1. and 2. 2362 // are invalidated and we can exit. 2363 if (VgprDef.contains(RegNo)) 2364 return false; 2365 VgprUse.insert(RegNo); 2366 // If at least one of Op's registers is in the score brackets, the 2367 // value is likely loaded outside of the loop. 2368 if (Brackets.getRegScore(RegNo, LOAD_CNT) > 2369 Brackets.getScoreLB(LOAD_CNT) || 2370 Brackets.getRegScore(RegNo, SAMPLE_CNT) > 2371 Brackets.getScoreLB(SAMPLE_CNT) || 2372 Brackets.getRegScore(RegNo, BVH_CNT) > 2373 Brackets.getScoreLB(BVH_CNT)) { 2374 UsesVgprLoadedOutside = true; 2375 break; 2376 } 2377 } 2378 } 2379 // VMem load vgpr def 2380 else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef()) 2381 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 2382 // If we find a register that is loaded inside the loop, 1. and 2. 2383 // are invalidated and we can exit. 2384 if (VgprUse.contains(RegNo)) 2385 return false; 2386 VgprDef.insert(RegNo); 2387 } 2388 } 2389 } 2390 } 2391 if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside) 2392 return true; 2393 return HasVMemLoad && UsesVgprLoadedOutside && ST->hasVmemWriteVgprInOrder(); 2394 } 2395 2396 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 2397 ST = &MF.getSubtarget<GCNSubtarget>(); 2398 TII = ST->getInstrInfo(); 2399 TRI = &TII->getRegisterInfo(); 2400 MRI = &MF.getRegInfo(); 2401 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2402 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 2403 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 2404 if (auto AAR = getAnalysisIfAvailable<AAResultsWrapperPass>()) 2405 AA = &AAR->getAAResults(); 2406 2407 AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST->getCPU()); 2408 2409 if (ST->hasExtendedWaitCounts()) { 2410 MaxCounter = NUM_EXTENDED_INST_CNTS; 2411 WCGGFX12Plus = WaitcntGeneratorGFX12Plus(MF, MaxCounter); 2412 WCG = &WCGGFX12Plus; 2413 } else { 2414 MaxCounter = NUM_NORMAL_INST_CNTS; 2415 WCGPreGFX12 = WaitcntGeneratorPreGFX12(MF); 2416 WCG = &WCGPreGFX12; 2417 } 2418 2419 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 2420 for (auto T : inst_counter_types()) 2421 ForceEmitWaitcnt[T] = false; 2422 2423 const unsigned *WaitEventMaskForInst = WCG->getWaitEventMask(); 2424 2425 SmemAccessCounter = eventCounter(WaitEventMaskForInst, SMEM_ACCESS); 2426 2427 HardwareLimits Limits = {}; 2428 if (ST->hasExtendedWaitCounts()) { 2429 Limits.LoadcntMax = AMDGPU::getLoadcntBitMask(IV); 2430 Limits.DscntMax = AMDGPU::getDscntBitMask(IV); 2431 } else { 2432 Limits.LoadcntMax = AMDGPU::getVmcntBitMask(IV); 2433 Limits.DscntMax = AMDGPU::getLgkmcntBitMask(IV); 2434 } 2435 Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 2436 Limits.StorecntMax = AMDGPU::getStorecntBitMask(IV); 2437 Limits.SamplecntMax = AMDGPU::getSamplecntBitMask(IV); 2438 Limits.BvhcntMax = AMDGPU::getBvhcntBitMask(IV); 2439 Limits.KmcntMax = AMDGPU::getKmcntBitMask(IV); 2440 2441 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 2442 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 2443 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 2444 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 2445 2446 RegisterEncoding Encoding = {}; 2447 Encoding.VGPR0 = 2448 TRI->getEncodingValue(AMDGPU::VGPR0) & AMDGPU::HWEncoding::REG_IDX_MASK; 2449 Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1; 2450 Encoding.SGPR0 = 2451 TRI->getEncodingValue(AMDGPU::SGPR0) & AMDGPU::HWEncoding::REG_IDX_MASK; 2452 Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1; 2453 2454 BlockInfos.clear(); 2455 bool Modified = false; 2456 2457 MachineBasicBlock &EntryBB = MF.front(); 2458 MachineBasicBlock::iterator I = EntryBB.begin(); 2459 2460 if (!MFI->isEntryFunction()) { 2461 // Wait for any outstanding memory operations that the input registers may 2462 // depend on. We can't track them and it's better to do the wait after the 2463 // costly call sequence. 2464 2465 // TODO: Could insert earlier and schedule more liberally with operations 2466 // that only use caller preserved registers. 2467 for (MachineBasicBlock::iterator E = EntryBB.end(); 2468 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 2469 ; 2470 2471 if (ST->hasExtendedWaitCounts()) { 2472 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAIT_LOADCNT_DSCNT)) 2473 .addImm(0); 2474 for (auto CT : inst_counter_types(NUM_EXTENDED_INST_CNTS)) { 2475 if (CT == LOAD_CNT || CT == DS_CNT || CT == STORE_CNT) 2476 continue; 2477 2478 BuildMI(EntryBB, I, DebugLoc(), 2479 TII->get(instrsForExtendedCounterTypes[CT])) 2480 .addImm(0); 2481 } 2482 } else { 2483 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 2484 } 2485 2486 auto NonKernelInitialState = std::make_unique<WaitcntBrackets>( 2487 ST, MaxCounter, Limits, Encoding, WaitEventMaskForInst, 2488 SmemAccessCounter); 2489 NonKernelInitialState->setStateOnFunctionEntryOrReturn(); 2490 BlockInfos[&EntryBB].Incoming = std::move(NonKernelInitialState); 2491 2492 Modified = true; 2493 } 2494 2495 // Keep iterating over the blocks in reverse post order, inserting and 2496 // updating s_waitcnt where needed, until a fix point is reached. 2497 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 2498 BlockInfos.insert({MBB, BlockInfo()}); 2499 2500 std::unique_ptr<WaitcntBrackets> Brackets; 2501 bool Repeat; 2502 do { 2503 Repeat = false; 2504 2505 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 2506 ++BII) { 2507 MachineBasicBlock *MBB = BII->first; 2508 BlockInfo &BI = BII->second; 2509 if (!BI.Dirty) 2510 continue; 2511 2512 if (BI.Incoming) { 2513 if (!Brackets) 2514 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 2515 else 2516 *Brackets = *BI.Incoming; 2517 } else { 2518 if (!Brackets) 2519 Brackets = std::make_unique<WaitcntBrackets>( 2520 ST, MaxCounter, Limits, Encoding, WaitEventMaskForInst, 2521 SmemAccessCounter); 2522 else 2523 *Brackets = WaitcntBrackets(ST, MaxCounter, Limits, Encoding, 2524 WaitEventMaskForInst, SmemAccessCounter); 2525 } 2526 2527 Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets); 2528 BI.Dirty = false; 2529 2530 if (Brackets->hasPendingEvent()) { 2531 BlockInfo *MoveBracketsToSucc = nullptr; 2532 for (MachineBasicBlock *Succ : MBB->successors()) { 2533 auto SuccBII = BlockInfos.find(Succ); 2534 BlockInfo &SuccBI = SuccBII->second; 2535 if (!SuccBI.Incoming) { 2536 SuccBI.Dirty = true; 2537 if (SuccBII <= BII) 2538 Repeat = true; 2539 if (!MoveBracketsToSucc) { 2540 MoveBracketsToSucc = &SuccBI; 2541 } else { 2542 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 2543 } 2544 } else if (SuccBI.Incoming->merge(*Brackets)) { 2545 SuccBI.Dirty = true; 2546 if (SuccBII <= BII) 2547 Repeat = true; 2548 } 2549 } 2550 if (MoveBracketsToSucc) 2551 MoveBracketsToSucc->Incoming = std::move(Brackets); 2552 } 2553 } 2554 } while (Repeat); 2555 2556 if (ST->hasScalarStores()) { 2557 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 2558 bool HaveScalarStores = false; 2559 2560 for (MachineBasicBlock &MBB : MF) { 2561 for (MachineInstr &MI : MBB) { 2562 if (!HaveScalarStores && TII->isScalarStore(MI)) 2563 HaveScalarStores = true; 2564 2565 if (MI.getOpcode() == AMDGPU::S_ENDPGM || 2566 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 2567 EndPgmBlocks.push_back(&MBB); 2568 } 2569 } 2570 2571 if (HaveScalarStores) { 2572 // If scalar writes are used, the cache must be flushed or else the next 2573 // wave to reuse the same scratch memory can be clobbered. 2574 // 2575 // Insert s_dcache_wb at wave termination points if there were any scalar 2576 // stores, and only if the cache hasn't already been flushed. This could 2577 // be improved by looking across blocks for flushes in postdominating 2578 // blocks from the stores but an explicitly requested flush is probably 2579 // very rare. 2580 for (MachineBasicBlock *MBB : EndPgmBlocks) { 2581 bool SeenDCacheWB = false; 2582 2583 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 2584 I != E; ++I) { 2585 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 2586 SeenDCacheWB = true; 2587 else if (TII->isScalarStore(*I)) 2588 SeenDCacheWB = false; 2589 2590 // FIXME: It would be better to insert this before a waitcnt if any. 2591 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 2592 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 2593 !SeenDCacheWB) { 2594 Modified = true; 2595 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 2596 } 2597 } 2598 } 2599 } 2600 } 2601 2602 // Insert DEALLOC_VGPR messages before previously identified S_ENDPGM 2603 // instructions. 2604 for (MachineInstr *MI : ReleaseVGPRInsts) { 2605 if (ST->requiresNopBeforeDeallocVGPRs()) { 2606 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::S_NOP)) 2607 .addImm(0); 2608 } 2609 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 2610 TII->get(AMDGPU::S_SENDMSG)) 2611 .addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus); 2612 Modified = true; 2613 } 2614 ReleaseVGPRInsts.clear(); 2615 2616 return Modified; 2617 } 2618