xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInsertWaitcnts.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "GCNSubtarget.h"
28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "Utils/AMDGPUBaseInfo.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/ADT/Sequence.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/DebugCounter.h"
38 #include "llvm/TargetParser/TargetParser.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "si-insert-waitcnts"
42 
43 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
44               "Force emit s_waitcnt expcnt(0) instrs");
45 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
46               "Force emit s_waitcnt lgkmcnt(0) instrs");
47 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
48               "Force emit s_waitcnt vmcnt(0) instrs");
49 
50 static cl::opt<bool> ForceEmitZeroFlag(
51   "amdgpu-waitcnt-forcezero",
52   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
53   cl::init(false), cl::Hidden);
54 
55 namespace {
56 // Class of object that encapsulates latest instruction counter score
57 // associated with the operand.  Used for determining whether
58 // s_waitcnt instruction needs to be emitted.
59 
60 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
61 } // namespace
62 
63 namespace llvm {
64 template <> struct enum_iteration_traits<InstCounterType> {
65   static constexpr bool is_iterable = true;
66 };
67 } // namespace llvm
68 
69 namespace {
70 auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); }
71 
72 using RegInterval = std::pair<int, int>;
73 
74 struct HardwareLimits {
75   unsigned VmcntMax;
76   unsigned ExpcntMax;
77   unsigned LgkmcntMax;
78   unsigned VscntMax;
79 };
80 
81 struct RegisterEncoding {
82   unsigned VGPR0;
83   unsigned VGPRL;
84   unsigned SGPR0;
85   unsigned SGPRL;
86 };
87 
88 enum WaitEventType {
89   VMEM_ACCESS,          // vector-memory read & write
90   VMEM_READ_ACCESS,     // vector-memory read
91   VMEM_WRITE_ACCESS,    // vector-memory write that is not scratch
92   SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch
93   LDS_ACCESS,           // lds read & write
94   GDS_ACCESS,           // gds read & write
95   SQ_MESSAGE,           // send message
96   SMEM_ACCESS,          // scalar-memory read & write
97   EXP_GPR_LOCK,         // export holding on its data src
98   GDS_GPR_LOCK,         // GDS holding on its data and addr src
99   EXP_POS_ACCESS,       // write to export position
100   EXP_PARAM_ACCESS,     // write to export parameter
101   VMW_GPR_LOCK,         // vector-memory write holding on its data src
102   EXP_LDS_ACCESS,       // read by ldsdir counting as export
103   NUM_WAIT_EVENTS,
104 };
105 
106 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
107     (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
108     (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
109         (1 << SQ_MESSAGE),
110     (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
111         (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS),
112     (1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS)};
113 
114 // The mapping is:
115 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
116 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
117 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
118 // We reserve a fixed number of VGPR slots in the scoring tables for
119 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
120 enum RegisterMapping {
121   SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets.
122   AGPR_OFFSET = 256,      // Maximum programmable ArchVGPRs across all targets.
123   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
124   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
125   EXTRA_VGPR_LDS = 0,     // An artificial register to track LDS writes.
126   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
127 };
128 
129 // Enumerate different types of result-returning VMEM operations. Although
130 // s_waitcnt orders them all with a single vmcnt counter, in the absence of
131 // s_waitcnt only instructions of the same VmemType are guaranteed to write
132 // their results in order -- so there is no need to insert an s_waitcnt between
133 // two instructions of the same type that write the same vgpr.
134 enum VmemType {
135   // BUF instructions and MIMG instructions without a sampler.
136   VMEM_NOSAMPLER,
137   // MIMG instructions with a sampler.
138   VMEM_SAMPLER,
139   // BVH instructions
140   VMEM_BVH
141 };
142 
143 static bool updateVMCntOnly(const MachineInstr &Inst) {
144   return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) ||
145          SIInstrInfo::isFLATScratch(Inst);
146 }
147 
148 VmemType getVmemType(const MachineInstr &Inst) {
149   assert(updateVMCntOnly(Inst));
150   if (!SIInstrInfo::isMIMG(Inst))
151     return VMEM_NOSAMPLER;
152   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
153   const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo =
154       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
155   return BaseInfo->BVH ? VMEM_BVH
156                        : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER;
157 }
158 
159 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
160   switch (T) {
161   case VM_CNT:
162     Wait.VmCnt = std::min(Wait.VmCnt, Count);
163     break;
164   case EXP_CNT:
165     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
166     break;
167   case LGKM_CNT:
168     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
169     break;
170   case VS_CNT:
171     Wait.VsCnt = std::min(Wait.VsCnt, Count);
172     break;
173   default:
174     llvm_unreachable("bad InstCounterType");
175   }
176 }
177 
178 // This objects maintains the current score brackets of each wait counter, and
179 // a per-register scoreboard for each wait counter.
180 //
181 // We also maintain the latest score for every event type that can change the
182 // waitcnt in order to know if there are multiple types of events within
183 // the brackets. When multiple types of event happen in the bracket,
184 // wait count may get decreased out of order, therefore we need to put in
185 // "s_waitcnt 0" before use.
186 class WaitcntBrackets {
187 public:
188   WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits,
189                   RegisterEncoding Encoding)
190       : ST(SubTarget), Limits(Limits), Encoding(Encoding) {}
191 
192   unsigned getWaitCountMax(InstCounterType T) const {
193     switch (T) {
194     case VM_CNT:
195       return Limits.VmcntMax;
196     case LGKM_CNT:
197       return Limits.LgkmcntMax;
198     case EXP_CNT:
199       return Limits.ExpcntMax;
200     case VS_CNT:
201       return Limits.VscntMax;
202     default:
203       break;
204     }
205     return 0;
206   }
207 
208   unsigned getScoreLB(InstCounterType T) const {
209     assert(T < NUM_INST_CNTS);
210     return ScoreLBs[T];
211   }
212 
213   unsigned getScoreUB(InstCounterType T) const {
214     assert(T < NUM_INST_CNTS);
215     return ScoreUBs[T];
216   }
217 
218   unsigned getScoreRange(InstCounterType T) const {
219     return getScoreUB(T) - getScoreLB(T);
220   }
221 
222   // Mapping from event to counter.
223   InstCounterType eventCounter(WaitEventType E) const {
224     for (auto T : inst_counter_types()) {
225       if (WaitEventMaskForInst[T] & (1 << E))
226         return T;
227     }
228     llvm_unreachable("event type has no associated counter");
229   }
230 
231   unsigned getRegScore(int GprNo, InstCounterType T) const {
232     if (GprNo < NUM_ALL_VGPRS) {
233       return VgprScores[T][GprNo];
234     }
235     assert(T == LGKM_CNT);
236     return SgprScores[GprNo - NUM_ALL_VGPRS];
237   }
238 
239   bool merge(const WaitcntBrackets &Other);
240 
241   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
242                              const MachineRegisterInfo *MRI,
243                              const SIRegisterInfo *TRI, unsigned OpNo) const;
244 
245   bool counterOutOfOrder(InstCounterType T) const;
246   void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
247   void simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
248   void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const;
249   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
250   void applyWaitcnt(InstCounterType T, unsigned Count);
251   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
252                      const MachineRegisterInfo *MRI, WaitEventType E,
253                      MachineInstr &MI);
254 
255   unsigned hasPendingEvent() const { return PendingEvents; }
256   unsigned hasPendingEvent(WaitEventType E) const {
257     return PendingEvents & (1 << E);
258   }
259   unsigned hasPendingEvent(InstCounterType T) const {
260     unsigned HasPending = PendingEvents & WaitEventMaskForInst[T];
261     assert((HasPending != 0) == (getScoreRange(T) != 0));
262     return HasPending;
263   }
264 
265   bool hasMixedPendingEvents(InstCounterType T) const {
266     unsigned Events = hasPendingEvent(T);
267     // Return true if more than one bit is set in Events.
268     return Events & (Events - 1);
269   }
270 
271   bool hasPendingFlat() const {
272     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
273              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
274             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
275              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
276   }
277 
278   void setPendingFlat() {
279     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
280     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
281   }
282 
283   // Return true if there might be pending writes to the specified vgpr by VMEM
284   // instructions with types different from V.
285   bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
286     assert(GprNo < NUM_ALL_VGPRS);
287     return VgprVmemTypes[GprNo] & ~(1 << V);
288   }
289 
290   void clearVgprVmemTypes(int GprNo) {
291     assert(GprNo < NUM_ALL_VGPRS);
292     VgprVmemTypes[GprNo] = 0;
293   }
294 
295   void print(raw_ostream &);
296   void dump() { print(dbgs()); }
297 
298 private:
299   struct MergeInfo {
300     unsigned OldLB;
301     unsigned OtherLB;
302     unsigned MyShift;
303     unsigned OtherShift;
304   };
305   static bool mergeScore(const MergeInfo &M, unsigned &Score,
306                          unsigned OtherScore);
307 
308   void setScoreLB(InstCounterType T, unsigned Val) {
309     assert(T < NUM_INST_CNTS);
310     ScoreLBs[T] = Val;
311   }
312 
313   void setScoreUB(InstCounterType T, unsigned Val) {
314     assert(T < NUM_INST_CNTS);
315     ScoreUBs[T] = Val;
316 
317     if (T != EXP_CNT)
318       return;
319 
320     if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT))
321       ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT);
322   }
323 
324   void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
325     if (GprNo < NUM_ALL_VGPRS) {
326       VgprUB = std::max(VgprUB, GprNo);
327       VgprScores[T][GprNo] = Val;
328     } else {
329       assert(T == LGKM_CNT);
330       SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
331       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
332     }
333   }
334 
335   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
336                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
337                    unsigned OpNo, unsigned Val);
338 
339   const GCNSubtarget *ST = nullptr;
340   HardwareLimits Limits = {};
341   RegisterEncoding Encoding = {};
342   unsigned ScoreLBs[NUM_INST_CNTS] = {0};
343   unsigned ScoreUBs[NUM_INST_CNTS] = {0};
344   unsigned PendingEvents = 0;
345   // Remember the last flat memory operation.
346   unsigned LastFlat[NUM_INST_CNTS] = {0};
347   // wait_cnt scores for every vgpr.
348   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
349   int VgprUB = -1;
350   int SgprUB = -1;
351   unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
352   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
353   unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
354   // Bitmask of the VmemTypes of VMEM instructions that might have a pending
355   // write to each vgpr.
356   unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
357 };
358 
359 class SIInsertWaitcnts : public MachineFunctionPass {
360 private:
361   const GCNSubtarget *ST = nullptr;
362   const SIInstrInfo *TII = nullptr;
363   const SIRegisterInfo *TRI = nullptr;
364   const MachineRegisterInfo *MRI = nullptr;
365   AMDGPU::IsaVersion IV;
366 
367   DenseSet<MachineInstr *> TrackedWaitcntSet;
368   DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
369   DenseMap<MachineBasicBlock *, bool> PreheadersToFlush;
370   MachineLoopInfo *MLI;
371   MachinePostDominatorTree *PDT;
372 
373   struct BlockInfo {
374     std::unique_ptr<WaitcntBrackets> Incoming;
375     bool Dirty = true;
376   };
377 
378   MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;
379 
380   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
381   // because of amdgpu-waitcnt-forcezero flag
382   bool ForceEmitZeroWaitcnts;
383   bool ForceEmitWaitcnt[NUM_INST_CNTS];
384 
385   bool OptNone;
386 
387   // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS
388   // message.
389   DenseSet<MachineInstr *> ReleaseVGPRInsts;
390 
391 public:
392   static char ID;
393 
394   SIInsertWaitcnts() : MachineFunctionPass(ID) {
395     (void)ForceExpCounter;
396     (void)ForceLgkmCounter;
397     (void)ForceVMCounter;
398   }
399 
400   bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets);
401   bool isPreheaderToFlush(MachineBasicBlock &MBB,
402                           WaitcntBrackets &ScoreBrackets);
403   bool isVMEMOrFlatVMEM(const MachineInstr &MI) const;
404   bool runOnMachineFunction(MachineFunction &MF) override;
405 
406   StringRef getPassName() const override {
407     return "SI insert wait instructions";
408   }
409 
410   void getAnalysisUsage(AnalysisUsage &AU) const override {
411     AU.setPreservesCFG();
412     AU.addRequired<MachineLoopInfo>();
413     AU.addRequired<MachinePostDominatorTree>();
414     MachineFunctionPass::getAnalysisUsage(AU);
415   }
416 
417   bool isForceEmitWaitcnt() const {
418     for (auto T : inst_counter_types())
419       if (ForceEmitWaitcnt[T])
420         return true;
421     return false;
422   }
423 
424   void setForceEmitWaitcnt() {
425 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
426 // For debug builds, get the debug counter info and adjust if need be
427 #ifndef NDEBUG
428     if (DebugCounter::isCounterSet(ForceExpCounter) &&
429         DebugCounter::shouldExecute(ForceExpCounter)) {
430       ForceEmitWaitcnt[EXP_CNT] = true;
431     } else {
432       ForceEmitWaitcnt[EXP_CNT] = false;
433     }
434 
435     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
436         DebugCounter::shouldExecute(ForceLgkmCounter)) {
437       ForceEmitWaitcnt[LGKM_CNT] = true;
438     } else {
439       ForceEmitWaitcnt[LGKM_CNT] = false;
440     }
441 
442     if (DebugCounter::isCounterSet(ForceVMCounter) &&
443         DebugCounter::shouldExecute(ForceVMCounter)) {
444       ForceEmitWaitcnt[VM_CNT] = true;
445     } else {
446       ForceEmitWaitcnt[VM_CNT] = false;
447     }
448 #endif // NDEBUG
449   }
450 
451   // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or
452   // FLAT instruction.
453   WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const {
454     assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst));
455     if (!ST->hasVscnt())
456       return VMEM_ACCESS;
457     if (Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)) {
458       // FLAT and SCRATCH instructions may access scratch. Other VMEM
459       // instructions do not.
460       if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst))
461         return SCRATCH_WRITE_ACCESS;
462       return VMEM_WRITE_ACCESS;
463     }
464     return VMEM_READ_ACCESS;
465   }
466 
467   bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const;
468   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
469   bool mayAccessScratchThroughFlat(const MachineInstr &MI) const;
470   bool generateWaitcntInstBefore(MachineInstr &MI,
471                                  WaitcntBrackets &ScoreBrackets,
472                                  MachineInstr *OldWaitcntInstr,
473                                  bool FlushVmCnt);
474   bool generateWaitcntBlockEnd(MachineBasicBlock &Block,
475                                WaitcntBrackets &ScoreBrackets,
476                                MachineInstr *OldWaitcntInstr);
477   bool generateWaitcnt(AMDGPU::Waitcnt Wait,
478                        MachineBasicBlock::instr_iterator It,
479                        MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets,
480                        MachineInstr *OldWaitcntInstr);
481   void updateEventWaitcntAfter(MachineInstr &Inst,
482                                WaitcntBrackets *ScoreBrackets);
483   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
484                             WaitcntBrackets &ScoreBrackets);
485   bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
486                                MachineInstr &OldWaitcntInstr,
487                                AMDGPU::Waitcnt &Wait,
488                                MachineBasicBlock::instr_iterator It) const;
489 };
490 
491 } // end anonymous namespace
492 
493 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
494                                             const SIInstrInfo *TII,
495                                             const MachineRegisterInfo *MRI,
496                                             const SIRegisterInfo *TRI,
497                                             unsigned OpNo) const {
498   const MachineOperand &Op = MI->getOperand(OpNo);
499   if (!TRI->isInAllocatableClass(Op.getReg()))
500     return {-1, -1};
501 
502   // A use via a PW operand does not need a waitcnt.
503   // A partial write is not a WAW.
504   assert(!Op.getSubReg() || !Op.isUndef());
505 
506   RegInterval Result;
507 
508   unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST));
509 
510   if (TRI->isVectorRegister(*MRI, Op.getReg())) {
511     assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL);
512     Result.first = Reg - Encoding.VGPR0;
513     if (TRI->isAGPR(*MRI, Op.getReg()))
514       Result.first += AGPR_OFFSET;
515     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
516   } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
517     assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
518     Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS;
519     assert(Result.first >= NUM_ALL_VGPRS &&
520            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
521   }
522   // TODO: Handle TTMP
523   // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
524   else
525     return {-1, -1};
526 
527   const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
528   unsigned Size = TRI->getRegSizeInBits(*RC);
529   Result.second = Result.first + ((Size + 16) / 32);
530 
531   return Result;
532 }
533 
534 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
535                                   const SIInstrInfo *TII,
536                                   const SIRegisterInfo *TRI,
537                                   const MachineRegisterInfo *MRI, unsigned OpNo,
538                                   unsigned Val) {
539   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
540   assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg()));
541   for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
542     setRegScore(RegNo, EXP_CNT, Val);
543   }
544 }
545 
546 // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS written
547 // can be accessed. A load from LDS to VMEM does not need a wait.
548 static bool mayWriteLDSThroughDMA(const MachineInstr &MI) {
549   return SIInstrInfo::isVALU(MI) &&
550          (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)) &&
551          MI.getOpcode() != AMDGPU::BUFFER_STORE_LDS_DWORD;
552 }
553 
554 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
555                                     const SIRegisterInfo *TRI,
556                                     const MachineRegisterInfo *MRI,
557                                     WaitEventType E, MachineInstr &Inst) {
558   InstCounterType T = eventCounter(E);
559   unsigned CurrScore = getScoreUB(T) + 1;
560   if (CurrScore == 0)
561     report_fatal_error("InsertWaitcnt score wraparound");
562   // PendingEvents and ScoreUB need to be update regardless if this event
563   // changes the score of a register or not.
564   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
565   PendingEvents |= 1 << E;
566   setScoreUB(T, CurrScore);
567 
568   if (T == EXP_CNT) {
569     // Put score on the source vgprs. If this is a store, just use those
570     // specific register(s).
571     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
572       int AddrOpIdx =
573           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
574       // All GDS operations must protect their address register (same as
575       // export.)
576       if (AddrOpIdx != -1) {
577         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
578       }
579 
580       if (Inst.mayStore()) {
581         if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) {
582           setExpScore(
583               &Inst, TII, TRI, MRI,
584               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
585               CurrScore);
586         }
587         if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) {
588           setExpScore(&Inst, TII, TRI, MRI,
589                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
590                                                  AMDGPU::OpName::data1),
591                       CurrScore);
592         }
593       } else if (SIInstrInfo::isAtomicRet(Inst) &&
594                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
595                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
596                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
597                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
598                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
599                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
600                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
601                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
602         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
603           const MachineOperand &Op = Inst.getOperand(I);
604           if (Op.isReg() && !Op.isDef() &&
605               TRI->isVectorRegister(*MRI, Op.getReg())) {
606             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
607           }
608         }
609       }
610     } else if (TII->isFLAT(Inst)) {
611       if (Inst.mayStore()) {
612         setExpScore(
613             &Inst, TII, TRI, MRI,
614             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
615             CurrScore);
616       } else if (SIInstrInfo::isAtomicRet(Inst)) {
617         setExpScore(
618             &Inst, TII, TRI, MRI,
619             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
620             CurrScore);
621       }
622     } else if (TII->isMIMG(Inst)) {
623       if (Inst.mayStore()) {
624         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
625       } else if (SIInstrInfo::isAtomicRet(Inst)) {
626         setExpScore(
627             &Inst, TII, TRI, MRI,
628             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
629             CurrScore);
630       }
631     } else if (TII->isMTBUF(Inst)) {
632       if (Inst.mayStore()) {
633         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
634       }
635     } else if (TII->isMUBUF(Inst)) {
636       if (Inst.mayStore()) {
637         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
638       } else if (SIInstrInfo::isAtomicRet(Inst)) {
639         setExpScore(
640             &Inst, TII, TRI, MRI,
641             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
642             CurrScore);
643       }
644     } else if (TII->isLDSDIR(Inst)) {
645       // LDSDIR instructions attach the score to the destination.
646       setExpScore(
647           &Inst, TII, TRI, MRI,
648           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst),
649           CurrScore);
650     } else {
651       if (TII->isEXP(Inst)) {
652         // For export the destination registers are really temps that
653         // can be used as the actual source after export patching, so
654         // we need to treat them like sources and set the EXP_CNT
655         // score.
656         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
657           MachineOperand &DefMO = Inst.getOperand(I);
658           if (DefMO.isReg() && DefMO.isDef() &&
659               TRI->isVGPR(*MRI, DefMO.getReg())) {
660             setRegScore(
661                 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)),
662                 EXP_CNT, CurrScore);
663           }
664         }
665       }
666       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
667         MachineOperand &MO = Inst.getOperand(I);
668         if (MO.isReg() && !MO.isDef() &&
669             TRI->isVectorRegister(*MRI, MO.getReg())) {
670           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
671         }
672       }
673     }
674 #if 0 // TODO: check if this is handled by MUBUF code above.
675   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
676        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
677        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
678     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
679     unsigned OpNo;//TODO: find the OpNo for this operand;
680     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
681     for (int RegNo = Interval.first; RegNo < Interval.second;
682     ++RegNo) {
683       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
684     }
685 #endif
686   } else {
687     // Match the score to the destination registers.
688     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
689       auto &Op = Inst.getOperand(I);
690       if (!Op.isReg() || !Op.isDef())
691         continue;
692       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
693       if (T == VM_CNT) {
694         if (Interval.first >= NUM_ALL_VGPRS)
695           continue;
696         if (updateVMCntOnly(Inst)) {
697           VmemType V = getVmemType(Inst);
698           for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
699             VgprVmemTypes[RegNo] |= 1 << V;
700         }
701       }
702       for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
703         setRegScore(RegNo, T, CurrScore);
704       }
705     }
706     if (Inst.mayStore() && (TII->isDS(Inst) || mayWriteLDSThroughDMA(Inst))) {
707       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
708     }
709   }
710 }
711 
712 void WaitcntBrackets::print(raw_ostream &OS) {
713   OS << '\n';
714   for (auto T : inst_counter_types()) {
715     unsigned SR = getScoreRange(T);
716 
717     switch (T) {
718     case VM_CNT:
719       OS << "    VM_CNT(" << SR << "): ";
720       break;
721     case LGKM_CNT:
722       OS << "    LGKM_CNT(" << SR << "): ";
723       break;
724     case EXP_CNT:
725       OS << "    EXP_CNT(" << SR << "): ";
726       break;
727     case VS_CNT:
728       OS << "    VS_CNT(" << SR << "): ";
729       break;
730     default:
731       OS << "    UNKNOWN(" << SR << "): ";
732       break;
733     }
734 
735     if (SR != 0) {
736       // Print vgpr scores.
737       unsigned LB = getScoreLB(T);
738 
739       for (int J = 0; J <= VgprUB; J++) {
740         unsigned RegScore = getRegScore(J, T);
741         if (RegScore <= LB)
742           continue;
743         unsigned RelScore = RegScore - LB - 1;
744         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
745           OS << RelScore << ":v" << J << " ";
746         } else {
747           OS << RelScore << ":ds ";
748         }
749       }
750       // Also need to print sgpr scores for lgkm_cnt.
751       if (T == LGKM_CNT) {
752         for (int J = 0; J <= SgprUB; J++) {
753           unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
754           if (RegScore <= LB)
755             continue;
756           unsigned RelScore = RegScore - LB - 1;
757           OS << RelScore << ":s" << J << " ";
758         }
759       }
760     }
761     OS << '\n';
762   }
763   OS << '\n';
764 }
765 
766 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
767 /// whether a waitcnt instruction is needed at all.
768 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
769   simplifyWaitcnt(VM_CNT, Wait.VmCnt);
770   simplifyWaitcnt(EXP_CNT, Wait.ExpCnt);
771   simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
772   simplifyWaitcnt(VS_CNT, Wait.VsCnt);
773 }
774 
775 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
776                                       unsigned &Count) const {
777   // The number of outstanding events for this type, T, can be calculated
778   // as (UB - LB). If the current Count is greater than or equal to the number
779   // of outstanding events, then the wait for this counter is redundant.
780   if (Count >= getScoreRange(T))
781     Count = ~0u;
782 }
783 
784 void WaitcntBrackets::determineWait(InstCounterType T, int RegNo,
785                                     AMDGPU::Waitcnt &Wait) const {
786   unsigned ScoreToWait = getRegScore(RegNo, T);
787 
788   // If the score of src_operand falls within the bracket, we need an
789   // s_waitcnt instruction.
790   const unsigned LB = getScoreLB(T);
791   const unsigned UB = getScoreUB(T);
792   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
793     if ((T == VM_CNT || T == LGKM_CNT) &&
794         hasPendingFlat() &&
795         !ST->hasFlatLgkmVMemCountInOrder()) {
796       // If there is a pending FLAT operation, and this is a VMem or LGKM
797       // waitcnt and the target can report early completion, then we need
798       // to force a waitcnt 0.
799       addWait(Wait, T, 0);
800     } else if (counterOutOfOrder(T)) {
801       // Counter can get decremented out-of-order when there
802       // are multiple types event in the bracket. Also emit an s_wait counter
803       // with a conservative value of 0 for the counter.
804       addWait(Wait, T, 0);
805     } else {
806       // If a counter has been maxed out avoid overflow by waiting for
807       // MAX(CounterType) - 1 instead.
808       unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
809       addWait(Wait, T, NeededWait);
810     }
811   }
812 }
813 
814 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
815   applyWaitcnt(VM_CNT, Wait.VmCnt);
816   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
817   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
818   applyWaitcnt(VS_CNT, Wait.VsCnt);
819 }
820 
821 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
822   const unsigned UB = getScoreUB(T);
823   if (Count >= UB)
824     return;
825   if (Count != 0) {
826     if (counterOutOfOrder(T))
827       return;
828     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
829   } else {
830     setScoreLB(T, UB);
831     PendingEvents &= ~WaitEventMaskForInst[T];
832   }
833 }
834 
835 // Where there are multiple types of event in the bracket of a counter,
836 // the decrement may go out of order.
837 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
838   // Scalar memory read always can go out of order.
839   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
840     return true;
841   return hasMixedPendingEvents(T);
842 }
843 
844 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
845                       false)
846 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
847 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
848 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
849                     false)
850 
851 char SIInsertWaitcnts::ID = 0;
852 
853 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
854 
855 FunctionPass *llvm::createSIInsertWaitcntsPass() {
856   return new SIInsertWaitcnts();
857 }
858 
859 static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName,
860                                      unsigned NewEnc) {
861   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName);
862   assert(OpIdx >= 0);
863 
864   MachineOperand &MO = MI.getOperand(OpIdx);
865 
866   if (NewEnc == MO.getImm())
867     return false;
868 
869   MO.setImm(NewEnc);
870   return true;
871 }
872 
873 /// Combine consecutive waitcnt instructions that precede \p It and follow
874 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added
875 /// by previous passes. Currently this pass conservatively assumes that these
876 /// preexisting waitcnt are required for correctness.
877 bool SIInsertWaitcnts::applyPreexistingWaitcnt(
878     WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr,
879     AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const {
880   bool Modified = false;
881   MachineInstr *WaitcntInstr = nullptr;
882   MachineInstr *WaitcntVsCntInstr = nullptr;
883 
884   for (auto &II :
885        make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) {
886     if (II.isMetaInstruction())
887       continue;
888 
889     if (II.getOpcode() == AMDGPU::S_WAITCNT) {
890       // Conservatively update required wait if this waitcnt was added in an
891       // earlier pass. In this case it will not exist in the tracked waitcnt
892       // set.
893       if (!TrackedWaitcntSet.count(&II)) {
894         unsigned IEnc = II.getOperand(0).getImm();
895         AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc);
896         Wait = Wait.combined(OldWait);
897       }
898 
899       // Merge consecutive waitcnt of the same type by erasing multiples.
900       if (!WaitcntInstr) {
901         WaitcntInstr = &II;
902       } else {
903         II.eraseFromParent();
904         Modified = true;
905       }
906 
907     } else {
908       assert(II.getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
909       assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
910       if (!TrackedWaitcntSet.count(&II)) {
911         unsigned OldVSCnt =
912             TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm();
913         Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt);
914       }
915 
916       if (!WaitcntVsCntInstr) {
917         WaitcntVsCntInstr = &II;
918       } else {
919         II.eraseFromParent();
920         Modified = true;
921       }
922     }
923   }
924 
925   // Updated encoding of merged waitcnt with the required wait.
926   if (WaitcntInstr) {
927     if (Wait.hasWaitExceptVsCnt()) {
928       Modified |=
929           updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16,
930                                    AMDGPU::encodeWaitcnt(IV, Wait));
931       ScoreBrackets.applyWaitcnt(Wait);
932       Wait.VmCnt = ~0u;
933       Wait.LgkmCnt = ~0u;
934       Wait.ExpCnt = ~0u;
935 
936       LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end()
937                      ? dbgs() << "applyPreexistingWaitcnt\n"
938                               << "New Instr at block end: " << *WaitcntInstr
939                               << '\n'
940                      : dbgs() << "applyPreexistingWaitcnt\n"
941                               << "Old Instr: " << *It
942                               << "New Instr: " << *WaitcntInstr << '\n');
943 
944     } else {
945       WaitcntInstr->eraseFromParent();
946       Modified = true;
947     }
948   }
949 
950   if (WaitcntVsCntInstr) {
951     if (Wait.hasWaitVsCnt()) {
952       assert(ST->hasVscnt());
953       Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr,
954                                            AMDGPU::OpName::simm16, Wait.VsCnt);
955       ScoreBrackets.applyWaitcnt(Wait);
956       Wait.VsCnt = ~0u;
957 
958       LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end()
959                      ? dbgs() << "applyPreexistingWaitcnt\n"
960                               << "New Instr at block end: "
961                               << *WaitcntVsCntInstr << '\n'
962                      : dbgs() << "applyPreexistingWaitcnt\n"
963                               << "Old Instr: " << *It
964                               << "New Instr: " << *WaitcntVsCntInstr << '\n');
965     } else {
966       WaitcntVsCntInstr->eraseFromParent();
967       Modified = true;
968     }
969   }
970 
971   return Modified;
972 }
973 
974 static bool readsVCCZ(const MachineInstr &MI) {
975   unsigned Opc = MI.getOpcode();
976   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
977          !MI.getOperand(1).isUndef();
978 }
979 
980 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
981 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
982   // Currently all conventions wait, but this may not always be the case.
983   //
984   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
985   // senses to omit the wait and do it in the caller.
986   return true;
987 }
988 
989 /// \returns true if the callee is expected to wait for any outstanding waits
990 /// before returning.
991 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
992   return true;
993 }
994 
995 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
996 ///  Instructions of a given type are returned in order,
997 ///  but instructions of different types can complete out of order.
998 ///  We rely on this in-order completion
999 ///  and simply assign a score to the memory access instructions.
1000 ///  We keep track of the active "score bracket" to determine
1001 ///  if an access of a memory read requires an s_waitcnt
1002 ///  and if so what the value of each counter is.
1003 ///  The "score bracket" is bound by the lower bound and upper bound
1004 ///  scores (*_score_LB and *_score_ub respectively).
1005 ///  If FlushVmCnt is true, that means that we want to generate a s_waitcnt to
1006 ///  flush the vmcnt counter here.
1007 bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI,
1008                                                  WaitcntBrackets &ScoreBrackets,
1009                                                  MachineInstr *OldWaitcntInstr,
1010                                                  bool FlushVmCnt) {
1011   setForceEmitWaitcnt();
1012 
1013   if (MI.isMetaInstruction())
1014     return false;
1015 
1016   AMDGPU::Waitcnt Wait;
1017 
1018   // FIXME: This should have already been handled by the memory legalizer.
1019   // Removing this currently doesn't affect any lit tests, but we need to
1020   // verify that nothing was relying on this. The number of buffer invalidates
1021   // being handled here should not be expanded.
1022   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
1023       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
1024       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
1025       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
1026       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
1027     Wait.VmCnt = 0;
1028   }
1029 
1030   // All waits must be resolved at call return.
1031   // NOTE: this could be improved with knowledge of all call sites or
1032   //   with knowledge of the called routines.
1033   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
1034       MI.getOpcode() == AMDGPU::SI_RETURN ||
1035       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
1036       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
1037     Wait = Wait.combined(AMDGPU::Waitcnt::allZeroExceptVsCnt());
1038   }
1039   // Identify S_ENDPGM instructions which may have to wait for outstanding VMEM
1040   // stores. In this case it can be useful to send a message to explicitly
1041   // release all VGPRs before the stores have completed, but it is only safe to
1042   // do this if there are no outstanding scratch stores.
1043   else if (MI.getOpcode() == AMDGPU::S_ENDPGM ||
1044            MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) {
1045     if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && !OptNone &&
1046         ScoreBrackets.getScoreRange(VS_CNT) != 0 &&
1047         !ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS))
1048       ReleaseVGPRInsts.insert(&MI);
1049   }
1050   // Resolve vm waits before gs-done.
1051   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
1052             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
1053            ST->hasLegacyGeometry() &&
1054            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) ==
1055             AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) {
1056     Wait.VmCnt = 0;
1057   }
1058 #if 0 // TODO: the following blocks of logic when we have fence.
1059   else if (MI.getOpcode() == SC_FENCE) {
1060     const unsigned int group_size =
1061       context->shader_info->GetMaxThreadGroupSize();
1062     // group_size == 0 means thread group size is unknown at compile time
1063     const bool group_is_multi_wave =
1064       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
1065     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
1066 
1067     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
1068       SCRegType src_type = Inst->GetSrcType(i);
1069       switch (src_type) {
1070         case SCMEM_LDS:
1071           if (group_is_multi_wave ||
1072             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
1073             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
1074                                ScoreBrackets->getScoreUB(LGKM_CNT));
1075             // LDS may have to wait for VM_CNT after buffer load to LDS
1076             if (target_info->HasBufferLoadToLDS()) {
1077               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
1078                                  ScoreBrackets->getScoreUB(VM_CNT));
1079             }
1080           }
1081           break;
1082 
1083         case SCMEM_GDS:
1084           if (group_is_multi_wave || fence_is_global) {
1085             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
1086               ScoreBrackets->getScoreUB(EXP_CNT));
1087             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
1088               ScoreBrackets->getScoreUB(LGKM_CNT));
1089           }
1090           break;
1091 
1092         case SCMEM_UAV:
1093         case SCMEM_TFBUF:
1094         case SCMEM_RING:
1095         case SCMEM_SCATTER:
1096           if (group_is_multi_wave || fence_is_global) {
1097             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
1098               ScoreBrackets->getScoreUB(EXP_CNT));
1099             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
1100               ScoreBrackets->getScoreUB(VM_CNT));
1101           }
1102           break;
1103 
1104         case SCMEM_SCRATCH:
1105         default:
1106           break;
1107       }
1108     }
1109   }
1110 #endif
1111 
1112   // Export & GDS instructions do not read the EXEC mask until after the export
1113   // is granted (which can occur well after the instruction is issued).
1114   // The shader program must flush all EXP operations on the export-count
1115   // before overwriting the EXEC mask.
1116   else {
1117     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
1118       // Export and GDS are tracked individually, either may trigger a waitcnt
1119       // for EXEC.
1120       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
1121           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
1122           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
1123           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
1124         Wait.ExpCnt = 0;
1125       }
1126     }
1127 
1128     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
1129       // The function is going to insert a wait on everything in its prolog.
1130       // This still needs to be careful if the call target is a load (e.g. a GOT
1131       // load). We also need to check WAW dependency with saved PC.
1132       Wait = AMDGPU::Waitcnt();
1133 
1134       int CallAddrOpIdx =
1135           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
1136 
1137       if (MI.getOperand(CallAddrOpIdx).isReg()) {
1138         RegInterval CallAddrOpInterval =
1139           ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);
1140 
1141         for (int RegNo = CallAddrOpInterval.first;
1142              RegNo < CallAddrOpInterval.second; ++RegNo)
1143           ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
1144 
1145         int RtnAddrOpIdx =
1146           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
1147         if (RtnAddrOpIdx != -1) {
1148           RegInterval RtnAddrOpInterval =
1149             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);
1150 
1151           for (int RegNo = RtnAddrOpInterval.first;
1152                RegNo < RtnAddrOpInterval.second; ++RegNo)
1153             ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
1154         }
1155       }
1156     } else {
1157       // FIXME: Should not be relying on memoperands.
1158       // Look at the source operands of every instruction to see if
1159       // any of them results from a previous memory operation that affects
1160       // its current usage. If so, an s_waitcnt instruction needs to be
1161       // emitted.
1162       // If the source operand was defined by a load, add the s_waitcnt
1163       // instruction.
1164       //
1165       // Two cases are handled for destination operands:
1166       // 1) If the destination operand was defined by a load, add the s_waitcnt
1167       // instruction to guarantee the right WAW order.
1168       // 2) If a destination operand that was used by a recent export/store ins,
1169       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1170       for (const MachineMemOperand *Memop : MI.memoperands()) {
1171         const Value *Ptr = Memop->getValue();
1172         if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
1173           addWait(Wait, LGKM_CNT, 0);
1174           if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
1175             SLoadAddresses.erase(Ptr);
1176         }
1177         unsigned AS = Memop->getAddrSpace();
1178         if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS)
1179           continue;
1180         // No need to wait before load from VMEM to LDS.
1181         if (mayWriteLDSThroughDMA(MI))
1182           continue;
1183         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1184         // VM_CNT is only relevant to vgpr or LDS.
1185         ScoreBrackets.determineWait(VM_CNT, RegNo, Wait);
1186         if (Memop->isStore()) {
1187           ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait);
1188         }
1189       }
1190 
1191       // Loop over use and def operands.
1192       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1193         MachineOperand &Op = MI.getOperand(I);
1194         if (!Op.isReg())
1195           continue;
1196 
1197         // If the instruction does not read tied source, skip the operand.
1198         if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI))
1199           continue;
1200 
1201         RegInterval Interval =
1202             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);
1203 
1204         const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg());
1205         for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1206           if (IsVGPR) {
1207             // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
1208             // previous write and this write are the same type of VMEM
1209             // instruction, in which case they're guaranteed to write their
1210             // results in order anyway.
1211             if (Op.isUse() || !updateVMCntOnly(MI) ||
1212                 ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
1213                                                        getVmemType(MI))) {
1214               ScoreBrackets.determineWait(VM_CNT, RegNo, Wait);
1215               ScoreBrackets.clearVgprVmemTypes(RegNo);
1216             }
1217             if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) {
1218               ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait);
1219             }
1220           }
1221           ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
1222         }
1223       }
1224     }
1225   }
1226 
1227   // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does
1228   // not, we need to ensure the subtarget is capable of backing off barrier
1229   // instructions in case there are any outstanding memory operations that may
1230   // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here.
1231   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1232       !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) {
1233     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1234   }
1235 
1236   // TODO: Remove this work-around, enable the assert for Bug 457939
1237   //       after fixing the scheduler. Also, the Shader Compiler code is
1238   //       independent of target.
1239   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1240     if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1241       Wait.LgkmCnt = 0;
1242     }
1243   }
1244 
1245   // Verify that the wait is actually needed.
1246   ScoreBrackets.simplifyWaitcnt(Wait);
1247 
1248   if (ForceEmitZeroWaitcnts)
1249     Wait = AMDGPU::Waitcnt::allZeroExceptVsCnt();
1250 
1251   if (ForceEmitWaitcnt[VM_CNT])
1252     Wait.VmCnt = 0;
1253   if (ForceEmitWaitcnt[EXP_CNT])
1254     Wait.ExpCnt = 0;
1255   if (ForceEmitWaitcnt[LGKM_CNT])
1256     Wait.LgkmCnt = 0;
1257 
1258   if (FlushVmCnt) {
1259     if (ScoreBrackets.hasPendingEvent(VM_CNT))
1260       Wait.VmCnt = 0;
1261   }
1262 
1263   return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets,
1264                          OldWaitcntInstr);
1265 }
1266 
1267 // Add a waitcnt to flush the vmcnt counter at the end of the given block if
1268 // needed.
1269 bool SIInsertWaitcnts::generateWaitcntBlockEnd(MachineBasicBlock &Block,
1270                                                WaitcntBrackets &ScoreBrackets,
1271                                                MachineInstr *OldWaitcntInstr) {
1272   AMDGPU::Waitcnt Wait;
1273 
1274   if (!ScoreBrackets.hasPendingEvent(VM_CNT))
1275     return false;
1276 
1277   Wait.VmCnt = 0;
1278 
1279   return generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets,
1280                          OldWaitcntInstr);
1281 }
1282 
1283 bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait,
1284                                        MachineBasicBlock::instr_iterator It,
1285                                        MachineBasicBlock &Block,
1286                                        WaitcntBrackets &ScoreBrackets,
1287                                        MachineInstr *OldWaitcntInstr) {
1288   bool Modified = false;
1289   const DebugLoc &DL = Block.findDebugLoc(It);
1290 
1291   if (OldWaitcntInstr)
1292     // Try to merge the required wait with preexisting waitcnt instructions.
1293     // Also erase redundant waitcnt.
1294     Modified =
1295         applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It);
1296   else
1297     ScoreBrackets.applyWaitcnt(Wait);
1298 
1299   // ExpCnt can be merged into VINTERP.
1300   if (Wait.ExpCnt != ~0u && It != Block.instr_end() &&
1301       SIInstrInfo::isVINTERP(*It)) {
1302     MachineOperand *WaitExp =
1303         TII->getNamedOperand(*It, AMDGPU::OpName::waitexp);
1304     if (Wait.ExpCnt < WaitExp->getImm()) {
1305       WaitExp->setImm(Wait.ExpCnt);
1306       Modified = true;
1307     }
1308     Wait.ExpCnt = ~0u;
1309 
1310     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1311                       << "Update Instr: " << *It);
1312   }
1313 
1314   // Build new waitcnt instructions unless no wait is needed or the old waitcnt
1315   // instruction was modified to handle the required wait.
1316   if (Wait.hasWaitExceptVsCnt()) {
1317     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1318     auto SWaitInst =
1319         BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc);
1320     TrackedWaitcntSet.insert(SWaitInst);
1321     Modified = true;
1322 
1323     LLVM_DEBUG(dbgs() << "generateWaitcnt\n";
1324                if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It;
1325                dbgs() << "New Instr: " << *SWaitInst << '\n');
1326   }
1327 
1328   if (Wait.hasWaitVsCnt()) {
1329     assert(ST->hasVscnt());
1330 
1331     auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT))
1332                          .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1333                          .addImm(Wait.VsCnt);
1334     TrackedWaitcntSet.insert(SWaitInst);
1335     Modified = true;
1336 
1337     LLVM_DEBUG(dbgs() << "generateWaitcnt\n";
1338                if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It;
1339                dbgs() << "New Instr: " << *SWaitInst << '\n');
1340   }
1341   return Modified;
1342 }
1343 
1344 // This is a flat memory operation. Check to see if it has memory tokens other
1345 // than LDS. Other address spaces supported by flat memory operations involve
1346 // global memory.
1347 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const {
1348   assert(TII->isFLAT(MI));
1349 
1350   // All flat instructions use the VMEM counter.
1351   assert(TII->usesVM_CNT(MI));
1352 
1353   // If there are no memory operands then conservatively assume the flat
1354   // operation may access VMEM.
1355   if (MI.memoperands_empty())
1356     return true;
1357 
1358   // See if any memory operand specifies an address space that involves VMEM.
1359   // Flat operations only supported FLAT, LOCAL (LDS), or address spaces
1360   // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION
1361   // (GDS) address space is not supported by flat operations. Therefore, simply
1362   // return true unless only the LDS address space is found.
1363   for (const MachineMemOperand *Memop : MI.memoperands()) {
1364     unsigned AS = Memop->getAddrSpace();
1365     assert(AS != AMDGPUAS::REGION_ADDRESS);
1366     if (AS != AMDGPUAS::LOCAL_ADDRESS)
1367       return true;
1368   }
1369 
1370   return false;
1371 }
1372 
1373 // This is a flat memory operation. Check to see if it has memory tokens for
1374 // either LDS or FLAT.
1375 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1376   assert(TII->isFLAT(MI));
1377 
1378   // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter.
1379   if (!TII->usesLGKM_CNT(MI))
1380     return false;
1381 
1382   // If in tgsplit mode then there can be no use of LDS.
1383   if (ST->isTgSplitEnabled())
1384     return false;
1385 
1386   // If there are no memory operands then conservatively assume the flat
1387   // operation may access LDS.
1388   if (MI.memoperands_empty())
1389     return true;
1390 
1391   // See if any memory operand specifies an address space that involves LDS.
1392   for (const MachineMemOperand *Memop : MI.memoperands()) {
1393     unsigned AS = Memop->getAddrSpace();
1394     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1395       return true;
1396   }
1397 
1398   return false;
1399 }
1400 
1401 // This is a flat memory operation. Check to see if it has memory tokens for
1402 // either scratch or FLAT.
1403 bool SIInsertWaitcnts::mayAccessScratchThroughFlat(
1404     const MachineInstr &MI) const {
1405   assert(TII->isFLAT(MI));
1406 
1407   // SCRATCH instructions always access scratch.
1408   if (TII->isFLATScratch(MI))
1409     return true;
1410 
1411   // GLOBAL instructions never access scratch.
1412   if (TII->isFLATGlobal(MI))
1413     return false;
1414 
1415   // If there are no memory operands then conservatively assume the flat
1416   // operation may access scratch.
1417   if (MI.memoperands_empty())
1418     return true;
1419 
1420   // See if any memory operand specifies an address space that involves scratch.
1421   return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) {
1422     unsigned AS = Memop->getAddrSpace();
1423     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
1424   });
1425 }
1426 
1427 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1428                                                WaitcntBrackets *ScoreBrackets) {
1429   // Now look at the instruction opcode. If it is a memory access
1430   // instruction, update the upper-bound of the appropriate counter's
1431   // bracket and the destination operand scores.
1432   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1433   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1434     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1435         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1436       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1437       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1438     } else {
1439       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1440     }
1441   } else if (TII->isFLAT(Inst)) {
1442     assert(Inst.mayLoadOrStore());
1443 
1444     int FlatASCount = 0;
1445 
1446     if (mayAccessVMEMThroughFlat(Inst)) {
1447       ++FlatASCount;
1448       ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst),
1449                                    Inst);
1450     }
1451 
1452     if (mayAccessLDSThroughFlat(Inst)) {
1453       ++FlatASCount;
1454       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1455     }
1456 
1457     // A Flat memory operation must access at least one address space.
1458     assert(FlatASCount);
1459 
1460     // This is a flat memory operation that access both VMEM and LDS, so note it
1461     // - it will require that both the VM and LGKM be flushed to zero if it is
1462     // pending when a VM or LGKM dependency occurs.
1463     if (FlatASCount > 1)
1464       ScoreBrackets->setPendingFlat();
1465   } else if (SIInstrInfo::isVMEM(Inst) &&
1466              !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) {
1467     ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst),
1468                                  Inst);
1469 
1470     if (ST->vmemWriteNeedsExpWaitcnt() &&
1471         (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) {
1472       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1473     }
1474   } else if (TII->isSMRD(Inst)) {
1475     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1476   } else if (Inst.isCall()) {
1477     if (callWaitsOnFunctionReturn(Inst)) {
1478       // Act as a wait on everything
1479       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt());
1480     } else {
1481       // May need to way wait for anything.
1482       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1483     }
1484   } else if (SIInstrInfo::isLDSDIR(Inst)) {
1485     ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst);
1486   } else if (TII->isVINTERP(Inst)) {
1487     int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm();
1488     ScoreBrackets->applyWaitcnt(EXP_CNT, Imm);
1489   } else if (SIInstrInfo::isEXP(Inst)) {
1490     unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1491     if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31)
1492       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1493     else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST)
1494       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1495     else
1496       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1497   } else {
1498     switch (Inst.getOpcode()) {
1499     case AMDGPU::S_SENDMSG:
1500     case AMDGPU::S_SENDMSG_RTN_B32:
1501     case AMDGPU::S_SENDMSG_RTN_B64:
1502     case AMDGPU::S_SENDMSGHALT:
1503       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1504       break;
1505     case AMDGPU::S_MEMTIME:
1506     case AMDGPU::S_MEMREALTIME:
1507       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1508       break;
1509     }
1510   }
1511 }
1512 
1513 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
1514                                  unsigned OtherScore) {
1515   unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1516   unsigned OtherShifted =
1517       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1518   Score = std::max(MyShifted, OtherShifted);
1519   return OtherShifted > MyShifted;
1520 }
1521 
1522 /// Merge the pending events and associater score brackets of \p Other into
1523 /// this brackets status.
1524 ///
1525 /// Returns whether the merge resulted in a change that requires tighter waits
1526 /// (i.e. the merged brackets strictly dominate the original brackets).
1527 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1528   bool StrictDom = false;
1529 
1530   VgprUB = std::max(VgprUB, Other.VgprUB);
1531   SgprUB = std::max(SgprUB, Other.SgprUB);
1532 
1533   for (auto T : inst_counter_types()) {
1534     // Merge event flags for this counter
1535     const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
1536     const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1537     if (OtherEvents & ~OldEvents)
1538       StrictDom = true;
1539     PendingEvents |= OtherEvents;
1540 
1541     // Merge scores for this counter
1542     const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
1543     const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1544     const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
1545     if (NewUB < ScoreLBs[T])
1546       report_fatal_error("waitcnt score overflow");
1547 
1548     MergeInfo M;
1549     M.OldLB = ScoreLBs[T];
1550     M.OtherLB = Other.ScoreLBs[T];
1551     M.MyShift = NewUB - ScoreUBs[T];
1552     M.OtherShift = NewUB - Other.ScoreUBs[T];
1553 
1554     ScoreUBs[T] = NewUB;
1555 
1556     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1557 
1558     for (int J = 0; J <= VgprUB; J++)
1559       StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1560 
1561     if (T == LGKM_CNT) {
1562       for (int J = 0; J <= SgprUB; J++)
1563         StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1564     }
1565   }
1566 
1567   for (int J = 0; J <= VgprUB; J++) {
1568     unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
1569     StrictDom |= NewVmemTypes != VgprVmemTypes[J];
1570     VgprVmemTypes[J] = NewVmemTypes;
1571   }
1572 
1573   return StrictDom;
1574 }
1575 
1576 static bool isWaitInstr(MachineInstr &Inst) {
1577   return Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1578          (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1579           Inst.getOperand(0).isReg() &&
1580           Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1581 }
1582 
1583 // Generate s_waitcnt instructions where needed.
1584 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1585                                             MachineBasicBlock &Block,
1586                                             WaitcntBrackets &ScoreBrackets) {
1587   bool Modified = false;
1588 
1589   LLVM_DEBUG({
1590     dbgs() << "*** Block" << Block.getNumber() << " ***";
1591     ScoreBrackets.dump();
1592   });
1593 
1594   // Track the correctness of vccz through this basic block. There are two
1595   // reasons why it might be incorrect; see ST->hasReadVCCZBug() and
1596   // ST->partialVCCWritesUpdateVCCZ().
1597   bool VCCZCorrect = true;
1598   if (ST->hasReadVCCZBug()) {
1599     // vccz could be incorrect at a basic block boundary if a predecessor wrote
1600     // to vcc and then issued an smem load.
1601     VCCZCorrect = false;
1602   } else if (!ST->partialVCCWritesUpdateVCCZ()) {
1603     // vccz could be incorrect at a basic block boundary if a predecessor wrote
1604     // to vcc_lo or vcc_hi.
1605     VCCZCorrect = false;
1606   }
1607 
1608   // Walk over the instructions.
1609   MachineInstr *OldWaitcntInstr = nullptr;
1610 
1611   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1612                                          E = Block.instr_end();
1613        Iter != E;) {
1614     MachineInstr &Inst = *Iter;
1615 
1616     // Track pre-existing waitcnts that were added in earlier iterations or by
1617     // the memory legalizer.
1618     if (isWaitInstr(Inst)) {
1619       if (!OldWaitcntInstr)
1620         OldWaitcntInstr = &Inst;
1621       ++Iter;
1622       continue;
1623     }
1624 
1625     bool FlushVmCnt = Block.getFirstTerminator() == Inst &&
1626                       isPreheaderToFlush(Block, ScoreBrackets);
1627 
1628     // Generate an s_waitcnt instruction to be placed before Inst, if needed.
1629     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr,
1630                                           FlushVmCnt);
1631     OldWaitcntInstr = nullptr;
1632 
1633     // Restore vccz if it's not known to be correct already.
1634     bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst);
1635 
1636     // Don't examine operands unless we need to track vccz correctness.
1637     if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) {
1638       if (Inst.definesRegister(AMDGPU::VCC_LO) ||
1639           Inst.definesRegister(AMDGPU::VCC_HI)) {
1640         // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
1641         if (!ST->partialVCCWritesUpdateVCCZ())
1642           VCCZCorrect = false;
1643       } else if (Inst.definesRegister(AMDGPU::VCC)) {
1644         // There is a hardware bug on CI/SI where SMRD instruction may corrupt
1645         // vccz bit, so when we detect that an instruction may read from a
1646         // corrupt vccz bit, we need to:
1647         // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
1648         //    operations to complete.
1649         // 2. Restore the correct value of vccz by writing the current value
1650         //    of vcc back to vcc.
1651         if (ST->hasReadVCCZBug() &&
1652             ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1653           // Writes to vcc while there's an outstanding smem read may get
1654           // clobbered as soon as any read completes.
1655           VCCZCorrect = false;
1656         } else {
1657           // Writes to vcc will fix any incorrect value in vccz.
1658           VCCZCorrect = true;
1659         }
1660       }
1661     }
1662 
1663     if (TII->isSMRD(Inst)) {
1664       for (const MachineMemOperand *Memop : Inst.memoperands()) {
1665         // No need to handle invariant loads when avoiding WAR conflicts, as
1666         // there cannot be a vector store to the same memory location.
1667         if (!Memop->isInvariant()) {
1668           const Value *Ptr = Memop->getValue();
1669           SLoadAddresses.insert(std::pair(Ptr, Inst.getParent()));
1670         }
1671       }
1672       if (ST->hasReadVCCZBug()) {
1673         // This smem read could complete and clobber vccz at any time.
1674         VCCZCorrect = false;
1675       }
1676     }
1677 
1678     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1679 
1680 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1681     // If this instruction generates a S_SETVSKIP because it is an
1682     // indexed resource, and we are on Tahiti, then it will also force
1683     // an S_WAITCNT vmcnt(0)
1684     if (RequireCheckResourceType(Inst, context)) {
1685       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1686       ScoreBrackets->setScoreLB(VM_CNT,
1687       ScoreBrackets->getScoreUB(VM_CNT));
1688     }
1689 #endif
1690 
1691     LLVM_DEBUG({
1692       Inst.print(dbgs());
1693       ScoreBrackets.dump();
1694     });
1695 
1696     // TODO: Remove this work-around after fixing the scheduler and enable the
1697     // assert above.
1698     if (RestoreVCCZ) {
1699       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1700       // bit is updated, so we can restore the bit by reading the value of
1701       // vcc and then writing it back to the register.
1702       BuildMI(Block, Inst, Inst.getDebugLoc(),
1703               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1704               TRI->getVCC())
1705           .addReg(TRI->getVCC());
1706       VCCZCorrect = true;
1707       Modified = true;
1708     }
1709 
1710     ++Iter;
1711   }
1712 
1713   if (Block.getFirstTerminator() == Block.end() &&
1714       isPreheaderToFlush(Block, ScoreBrackets))
1715     Modified |= generateWaitcntBlockEnd(Block, ScoreBrackets, OldWaitcntInstr);
1716 
1717   return Modified;
1718 }
1719 
1720 // Return true if the given machine basic block is a preheader of a loop in
1721 // which we want to flush the vmcnt counter, and false otherwise.
1722 bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB,
1723                                           WaitcntBrackets &ScoreBrackets) {
1724   if (PreheadersToFlush.count(&MBB))
1725     return PreheadersToFlush[&MBB];
1726 
1727   auto UpdateCache = [&](bool val) {
1728     PreheadersToFlush[&MBB] = val;
1729     return val;
1730   };
1731 
1732   MachineBasicBlock *Succ = MBB.getSingleSuccessor();
1733   if (!Succ)
1734     return UpdateCache(false);
1735 
1736   MachineLoop *Loop = MLI->getLoopFor(Succ);
1737   if (!Loop)
1738     return UpdateCache(false);
1739 
1740   if (Loop->getLoopPreheader() == &MBB && shouldFlushVmCnt(Loop, ScoreBrackets))
1741     return UpdateCache(true);
1742 
1743   return UpdateCache(false);
1744 }
1745 
1746 bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const {
1747   return SIInstrInfo::isVMEM(MI) ||
1748          (SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI));
1749 }
1750 
1751 // Return true if it is better to flush the vmcnt counter in the preheader of
1752 // the given loop. We currently decide to flush in two situations:
1753 // 1. The loop contains vmem store(s), no vmem load and at least one use of a
1754 //    vgpr containing a value that is loaded outside of the loop. (Only on
1755 //    targets with no vscnt counter).
1756 // 2. The loop contains vmem load(s), but the loaded values are not used in the
1757 //    loop, and at least one use of a vgpr containing a value that is loaded
1758 //    outside of the loop.
1759 bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML,
1760                                         WaitcntBrackets &Brackets) {
1761   bool HasVMemLoad = false;
1762   bool HasVMemStore = false;
1763   bool UsesVgprLoadedOutside = false;
1764   DenseSet<Register> VgprUse;
1765   DenseSet<Register> VgprDef;
1766 
1767   for (MachineBasicBlock *MBB : ML->blocks()) {
1768     for (MachineInstr &MI : *MBB) {
1769       if (isVMEMOrFlatVMEM(MI)) {
1770         if (MI.mayLoad())
1771           HasVMemLoad = true;
1772         if (MI.mayStore())
1773           HasVMemStore = true;
1774       }
1775       for (unsigned I = 0; I < MI.getNumOperands(); I++) {
1776         MachineOperand &Op = MI.getOperand(I);
1777         if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg()))
1778           continue;
1779         RegInterval Interval = Brackets.getRegInterval(&MI, TII, MRI, TRI, I);
1780         // Vgpr use
1781         if (Op.isUse()) {
1782           for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1783             // If we find a register that is loaded inside the loop, 1. and 2.
1784             // are invalidated and we can exit.
1785             if (VgprDef.contains(RegNo))
1786               return false;
1787             VgprUse.insert(RegNo);
1788             // If at least one of Op's registers is in the score brackets, the
1789             // value is likely loaded outside of the loop.
1790             if (Brackets.getRegScore(RegNo, VM_CNT) > Brackets.getScoreLB(VM_CNT)) {
1791               UsesVgprLoadedOutside = true;
1792               break;
1793             }
1794           }
1795         }
1796         // VMem load vgpr def
1797         else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef())
1798           for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1799             // If we find a register that is loaded inside the loop, 1. and 2.
1800             // are invalidated and we can exit.
1801             if (VgprUse.contains(RegNo))
1802               return false;
1803             VgprDef.insert(RegNo);
1804           }
1805       }
1806     }
1807   }
1808   if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside)
1809     return true;
1810   return HasVMemLoad && UsesVgprLoadedOutside;
1811 }
1812 
1813 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1814   ST = &MF.getSubtarget<GCNSubtarget>();
1815   TII = ST->getInstrInfo();
1816   TRI = &TII->getRegisterInfo();
1817   MRI = &MF.getRegInfo();
1818   IV = AMDGPU::getIsaVersion(ST->getCPU());
1819   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1820   MLI = &getAnalysis<MachineLoopInfo>();
1821   PDT = &getAnalysis<MachinePostDominatorTree>();
1822 
1823   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1824   for (auto T : inst_counter_types())
1825     ForceEmitWaitcnt[T] = false;
1826 
1827   OptNone = MF.getFunction().hasOptNone() ||
1828             MF.getTarget().getOptLevel() == CodeGenOpt::None;
1829 
1830   HardwareLimits Limits = {};
1831   Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1832   Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1833   Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1834   Limits.VscntMax = ST->hasVscnt() ? 63 : 0;
1835 
1836   unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
1837   unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
1838   assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1839   assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1840 
1841   RegisterEncoding Encoding = {};
1842   Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1843   Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1;
1844   Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1845   Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1;
1846 
1847   TrackedWaitcntSet.clear();
1848   BlockInfos.clear();
1849   bool Modified = false;
1850 
1851   if (!MFI->isEntryFunction()) {
1852     // Wait for any outstanding memory operations that the input registers may
1853     // depend on. We can't track them and it's better to do the wait after the
1854     // costly call sequence.
1855 
1856     // TODO: Could insert earlier and schedule more liberally with operations
1857     // that only use caller preserved registers.
1858     MachineBasicBlock &EntryBB = MF.front();
1859     MachineBasicBlock::iterator I = EntryBB.begin();
1860     for (MachineBasicBlock::iterator E = EntryBB.end();
1861          I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
1862       ;
1863     BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
1864 
1865     Modified = true;
1866   }
1867 
1868   // Keep iterating over the blocks in reverse post order, inserting and
1869   // updating s_waitcnt where needed, until a fix point is reached.
1870   for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
1871     BlockInfos.insert({MBB, BlockInfo()});
1872 
1873   std::unique_ptr<WaitcntBrackets> Brackets;
1874   bool Repeat;
1875   do {
1876     Repeat = false;
1877 
1878     for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
1879          ++BII) {
1880       MachineBasicBlock *MBB = BII->first;
1881       BlockInfo &BI = BII->second;
1882       if (!BI.Dirty)
1883         continue;
1884 
1885       if (BI.Incoming) {
1886         if (!Brackets)
1887           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1888         else
1889           *Brackets = *BI.Incoming;
1890       } else {
1891         if (!Brackets)
1892           Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding);
1893         else
1894           *Brackets = WaitcntBrackets(ST, Limits, Encoding);
1895       }
1896 
1897       Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets);
1898       BI.Dirty = false;
1899 
1900       if (Brackets->hasPendingEvent()) {
1901         BlockInfo *MoveBracketsToSucc = nullptr;
1902         for (MachineBasicBlock *Succ : MBB->successors()) {
1903           auto SuccBII = BlockInfos.find(Succ);
1904           BlockInfo &SuccBI = SuccBII->second;
1905           if (!SuccBI.Incoming) {
1906             SuccBI.Dirty = true;
1907             if (SuccBII <= BII)
1908               Repeat = true;
1909             if (!MoveBracketsToSucc) {
1910               MoveBracketsToSucc = &SuccBI;
1911             } else {
1912               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1913             }
1914           } else if (SuccBI.Incoming->merge(*Brackets)) {
1915             SuccBI.Dirty = true;
1916             if (SuccBII <= BII)
1917               Repeat = true;
1918           }
1919         }
1920         if (MoveBracketsToSucc)
1921           MoveBracketsToSucc->Incoming = std::move(Brackets);
1922       }
1923     }
1924   } while (Repeat);
1925 
1926   if (ST->hasScalarStores()) {
1927     SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1928     bool HaveScalarStores = false;
1929 
1930     for (MachineBasicBlock &MBB : MF) {
1931       for (MachineInstr &MI : MBB) {
1932         if (!HaveScalarStores && TII->isScalarStore(MI))
1933           HaveScalarStores = true;
1934 
1935         if (MI.getOpcode() == AMDGPU::S_ENDPGM ||
1936             MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1937           EndPgmBlocks.push_back(&MBB);
1938       }
1939     }
1940 
1941     if (HaveScalarStores) {
1942       // If scalar writes are used, the cache must be flushed or else the next
1943       // wave to reuse the same scratch memory can be clobbered.
1944       //
1945       // Insert s_dcache_wb at wave termination points if there were any scalar
1946       // stores, and only if the cache hasn't already been flushed. This could
1947       // be improved by looking across blocks for flushes in postdominating
1948       // blocks from the stores but an explicitly requested flush is probably
1949       // very rare.
1950       for (MachineBasicBlock *MBB : EndPgmBlocks) {
1951         bool SeenDCacheWB = false;
1952 
1953         for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
1954              I != E; ++I) {
1955           if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1956             SeenDCacheWB = true;
1957           else if (TII->isScalarStore(*I))
1958             SeenDCacheWB = false;
1959 
1960           // FIXME: It would be better to insert this before a waitcnt if any.
1961           if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1962                I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1963               !SeenDCacheWB) {
1964             Modified = true;
1965             BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1966           }
1967         }
1968       }
1969     }
1970   }
1971 
1972   // Insert DEALLOC_VGPR messages before previously identified S_ENDPGM
1973   // instructions.
1974   for (MachineInstr *MI : ReleaseVGPRInsts) {
1975     if (ST->requiresNopBeforeDeallocVGPRs()) {
1976       BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_NOP))
1977           .addImm(0);
1978     }
1979     BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_SENDMSG))
1980         .addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus);
1981     Modified = true;
1982   }
1983   ReleaseVGPRInsts.clear();
1984 
1985   return Modified;
1986 }
1987