1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/TargetParser/TargetParser.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "si-insert-waitcnts" 42 43 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 44 "Force emit s_waitcnt expcnt(0) instrs"); 45 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 46 "Force emit s_waitcnt lgkmcnt(0) instrs"); 47 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 48 "Force emit s_waitcnt vmcnt(0) instrs"); 49 50 static cl::opt<bool> ForceEmitZeroFlag( 51 "amdgpu-waitcnt-forcezero", 52 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 53 cl::init(false), cl::Hidden); 54 55 namespace { 56 // Class of object that encapsulates latest instruction counter score 57 // associated with the operand. Used for determining whether 58 // s_waitcnt instruction needs to be emitted. 59 60 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 61 } // namespace 62 63 namespace llvm { 64 template <> struct enum_iteration_traits<InstCounterType> { 65 static constexpr bool is_iterable = true; 66 }; 67 } // namespace llvm 68 69 namespace { 70 auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); } 71 72 using RegInterval = std::pair<int, int>; 73 74 struct HardwareLimits { 75 unsigned VmcntMax; 76 unsigned ExpcntMax; 77 unsigned LgkmcntMax; 78 unsigned VscntMax; 79 }; 80 81 struct RegisterEncoding { 82 unsigned VGPR0; 83 unsigned VGPRL; 84 unsigned SGPR0; 85 unsigned SGPRL; 86 }; 87 88 enum WaitEventType { 89 VMEM_ACCESS, // vector-memory read & write 90 VMEM_READ_ACCESS, // vector-memory read 91 VMEM_WRITE_ACCESS, // vector-memory write that is not scratch 92 SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch 93 LDS_ACCESS, // lds read & write 94 GDS_ACCESS, // gds read & write 95 SQ_MESSAGE, // send message 96 SMEM_ACCESS, // scalar-memory read & write 97 EXP_GPR_LOCK, // export holding on its data src 98 GDS_GPR_LOCK, // GDS holding on its data and addr src 99 EXP_POS_ACCESS, // write to export position 100 EXP_PARAM_ACCESS, // write to export parameter 101 VMW_GPR_LOCK, // vector-memory write holding on its data src 102 EXP_LDS_ACCESS, // read by ldsdir counting as export 103 NUM_WAIT_EVENTS, 104 }; 105 106 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 107 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 108 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 109 (1 << SQ_MESSAGE), 110 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 111 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS), 112 (1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS)}; 113 114 // The mapping is: 115 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 116 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 117 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 118 // We reserve a fixed number of VGPR slots in the scoring tables for 119 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 120 enum RegisterMapping { 121 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 122 AGPR_OFFSET = 256, // Maximum programmable ArchVGPRs across all targets. 123 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 124 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 125 EXTRA_VGPR_LDS = 0, // An artificial register to track LDS writes. 126 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 127 }; 128 129 // Enumerate different types of result-returning VMEM operations. Although 130 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 131 // s_waitcnt only instructions of the same VmemType are guaranteed to write 132 // their results in order -- so there is no need to insert an s_waitcnt between 133 // two instructions of the same type that write the same vgpr. 134 enum VmemType { 135 // BUF instructions and MIMG instructions without a sampler. 136 VMEM_NOSAMPLER, 137 // MIMG instructions with a sampler. 138 VMEM_SAMPLER, 139 // BVH instructions 140 VMEM_BVH 141 }; 142 143 static bool updateVMCntOnly(const MachineInstr &Inst) { 144 return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) || 145 SIInstrInfo::isFLATScratch(Inst); 146 } 147 148 VmemType getVmemType(const MachineInstr &Inst) { 149 assert(updateVMCntOnly(Inst)); 150 if (!SIInstrInfo::isMIMG(Inst)) 151 return VMEM_NOSAMPLER; 152 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 153 const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = 154 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 155 return BaseInfo->BVH ? VMEM_BVH 156 : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER; 157 } 158 159 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 160 switch (T) { 161 case VM_CNT: 162 Wait.VmCnt = std::min(Wait.VmCnt, Count); 163 break; 164 case EXP_CNT: 165 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 166 break; 167 case LGKM_CNT: 168 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 169 break; 170 case VS_CNT: 171 Wait.VsCnt = std::min(Wait.VsCnt, Count); 172 break; 173 default: 174 llvm_unreachable("bad InstCounterType"); 175 } 176 } 177 178 // This objects maintains the current score brackets of each wait counter, and 179 // a per-register scoreboard for each wait counter. 180 // 181 // We also maintain the latest score for every event type that can change the 182 // waitcnt in order to know if there are multiple types of events within 183 // the brackets. When multiple types of event happen in the bracket, 184 // wait count may get decreased out of order, therefore we need to put in 185 // "s_waitcnt 0" before use. 186 class WaitcntBrackets { 187 public: 188 WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits, 189 RegisterEncoding Encoding) 190 : ST(SubTarget), Limits(Limits), Encoding(Encoding) {} 191 192 unsigned getWaitCountMax(InstCounterType T) const { 193 switch (T) { 194 case VM_CNT: 195 return Limits.VmcntMax; 196 case LGKM_CNT: 197 return Limits.LgkmcntMax; 198 case EXP_CNT: 199 return Limits.ExpcntMax; 200 case VS_CNT: 201 return Limits.VscntMax; 202 default: 203 break; 204 } 205 return 0; 206 } 207 208 unsigned getScoreLB(InstCounterType T) const { 209 assert(T < NUM_INST_CNTS); 210 return ScoreLBs[T]; 211 } 212 213 unsigned getScoreUB(InstCounterType T) const { 214 assert(T < NUM_INST_CNTS); 215 return ScoreUBs[T]; 216 } 217 218 unsigned getScoreRange(InstCounterType T) const { 219 return getScoreUB(T) - getScoreLB(T); 220 } 221 222 // Mapping from event to counter. 223 InstCounterType eventCounter(WaitEventType E) const { 224 for (auto T : inst_counter_types()) { 225 if (WaitEventMaskForInst[T] & (1 << E)) 226 return T; 227 } 228 llvm_unreachable("event type has no associated counter"); 229 } 230 231 unsigned getRegScore(int GprNo, InstCounterType T) const { 232 if (GprNo < NUM_ALL_VGPRS) { 233 return VgprScores[T][GprNo]; 234 } 235 assert(T == LGKM_CNT); 236 return SgprScores[GprNo - NUM_ALL_VGPRS]; 237 } 238 239 bool merge(const WaitcntBrackets &Other); 240 241 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 242 const MachineRegisterInfo *MRI, 243 const SIRegisterInfo *TRI, unsigned OpNo) const; 244 245 bool counterOutOfOrder(InstCounterType T) const; 246 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 247 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 248 void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const; 249 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 250 void applyWaitcnt(InstCounterType T, unsigned Count); 251 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 252 const MachineRegisterInfo *MRI, WaitEventType E, 253 MachineInstr &MI); 254 255 unsigned hasPendingEvent() const { return PendingEvents; } 256 unsigned hasPendingEvent(WaitEventType E) const { 257 return PendingEvents & (1 << E); 258 } 259 unsigned hasPendingEvent(InstCounterType T) const { 260 unsigned HasPending = PendingEvents & WaitEventMaskForInst[T]; 261 assert((HasPending != 0) == (getScoreRange(T) != 0)); 262 return HasPending; 263 } 264 265 bool hasMixedPendingEvents(InstCounterType T) const { 266 unsigned Events = hasPendingEvent(T); 267 // Return true if more than one bit is set in Events. 268 return Events & (Events - 1); 269 } 270 271 bool hasPendingFlat() const { 272 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 273 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 274 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 275 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 276 } 277 278 void setPendingFlat() { 279 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 280 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 281 } 282 283 // Return true if there might be pending writes to the specified vgpr by VMEM 284 // instructions with types different from V. 285 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 286 assert(GprNo < NUM_ALL_VGPRS); 287 return VgprVmemTypes[GprNo] & ~(1 << V); 288 } 289 290 void clearVgprVmemTypes(int GprNo) { 291 assert(GprNo < NUM_ALL_VGPRS); 292 VgprVmemTypes[GprNo] = 0; 293 } 294 295 void print(raw_ostream &); 296 void dump() { print(dbgs()); } 297 298 private: 299 struct MergeInfo { 300 unsigned OldLB; 301 unsigned OtherLB; 302 unsigned MyShift; 303 unsigned OtherShift; 304 }; 305 static bool mergeScore(const MergeInfo &M, unsigned &Score, 306 unsigned OtherScore); 307 308 void setScoreLB(InstCounterType T, unsigned Val) { 309 assert(T < NUM_INST_CNTS); 310 ScoreLBs[T] = Val; 311 } 312 313 void setScoreUB(InstCounterType T, unsigned Val) { 314 assert(T < NUM_INST_CNTS); 315 ScoreUBs[T] = Val; 316 317 if (T != EXP_CNT) 318 return; 319 320 if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT)) 321 ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT); 322 } 323 324 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 325 if (GprNo < NUM_ALL_VGPRS) { 326 VgprUB = std::max(VgprUB, GprNo); 327 VgprScores[T][GprNo] = Val; 328 } else { 329 assert(T == LGKM_CNT); 330 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 331 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 332 } 333 } 334 335 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 336 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 337 unsigned OpNo, unsigned Val); 338 339 const GCNSubtarget *ST = nullptr; 340 HardwareLimits Limits = {}; 341 RegisterEncoding Encoding = {}; 342 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 343 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 344 unsigned PendingEvents = 0; 345 // Remember the last flat memory operation. 346 unsigned LastFlat[NUM_INST_CNTS] = {0}; 347 // wait_cnt scores for every vgpr. 348 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 349 int VgprUB = -1; 350 int SgprUB = -1; 351 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 352 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 353 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 354 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 355 // write to each vgpr. 356 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 357 }; 358 359 class SIInsertWaitcnts : public MachineFunctionPass { 360 private: 361 const GCNSubtarget *ST = nullptr; 362 const SIInstrInfo *TII = nullptr; 363 const SIRegisterInfo *TRI = nullptr; 364 const MachineRegisterInfo *MRI = nullptr; 365 AMDGPU::IsaVersion IV; 366 367 DenseSet<MachineInstr *> TrackedWaitcntSet; 368 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 369 DenseMap<MachineBasicBlock *, bool> PreheadersToFlush; 370 MachineLoopInfo *MLI; 371 MachinePostDominatorTree *PDT; 372 373 struct BlockInfo { 374 std::unique_ptr<WaitcntBrackets> Incoming; 375 bool Dirty = true; 376 }; 377 378 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 379 380 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 381 // because of amdgpu-waitcnt-forcezero flag 382 bool ForceEmitZeroWaitcnts; 383 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 384 385 bool OptNone; 386 387 // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS 388 // message. 389 DenseSet<MachineInstr *> ReleaseVGPRInsts; 390 391 public: 392 static char ID; 393 394 SIInsertWaitcnts() : MachineFunctionPass(ID) { 395 (void)ForceExpCounter; 396 (void)ForceLgkmCounter; 397 (void)ForceVMCounter; 398 } 399 400 bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets); 401 bool isPreheaderToFlush(MachineBasicBlock &MBB, 402 WaitcntBrackets &ScoreBrackets); 403 bool isVMEMOrFlatVMEM(const MachineInstr &MI) const; 404 bool runOnMachineFunction(MachineFunction &MF) override; 405 406 StringRef getPassName() const override { 407 return "SI insert wait instructions"; 408 } 409 410 void getAnalysisUsage(AnalysisUsage &AU) const override { 411 AU.setPreservesCFG(); 412 AU.addRequired<MachineLoopInfo>(); 413 AU.addRequired<MachinePostDominatorTree>(); 414 MachineFunctionPass::getAnalysisUsage(AU); 415 } 416 417 bool isForceEmitWaitcnt() const { 418 for (auto T : inst_counter_types()) 419 if (ForceEmitWaitcnt[T]) 420 return true; 421 return false; 422 } 423 424 void setForceEmitWaitcnt() { 425 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 426 // For debug builds, get the debug counter info and adjust if need be 427 #ifndef NDEBUG 428 if (DebugCounter::isCounterSet(ForceExpCounter) && 429 DebugCounter::shouldExecute(ForceExpCounter)) { 430 ForceEmitWaitcnt[EXP_CNT] = true; 431 } else { 432 ForceEmitWaitcnt[EXP_CNT] = false; 433 } 434 435 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 436 DebugCounter::shouldExecute(ForceLgkmCounter)) { 437 ForceEmitWaitcnt[LGKM_CNT] = true; 438 } else { 439 ForceEmitWaitcnt[LGKM_CNT] = false; 440 } 441 442 if (DebugCounter::isCounterSet(ForceVMCounter) && 443 DebugCounter::shouldExecute(ForceVMCounter)) { 444 ForceEmitWaitcnt[VM_CNT] = true; 445 } else { 446 ForceEmitWaitcnt[VM_CNT] = false; 447 } 448 #endif // NDEBUG 449 } 450 451 // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or 452 // FLAT instruction. 453 WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const { 454 assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst)); 455 if (!ST->hasVscnt()) 456 return VMEM_ACCESS; 457 if (Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)) { 458 // FLAT and SCRATCH instructions may access scratch. Other VMEM 459 // instructions do not. 460 if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst)) 461 return SCRATCH_WRITE_ACCESS; 462 return VMEM_WRITE_ACCESS; 463 } 464 return VMEM_READ_ACCESS; 465 } 466 467 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 468 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 469 bool mayAccessScratchThroughFlat(const MachineInstr &MI) const; 470 bool generateWaitcntInstBefore(MachineInstr &MI, 471 WaitcntBrackets &ScoreBrackets, 472 MachineInstr *OldWaitcntInstr, 473 bool FlushVmCnt); 474 bool generateWaitcntBlockEnd(MachineBasicBlock &Block, 475 WaitcntBrackets &ScoreBrackets, 476 MachineInstr *OldWaitcntInstr); 477 bool generateWaitcnt(AMDGPU::Waitcnt Wait, 478 MachineBasicBlock::instr_iterator It, 479 MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, 480 MachineInstr *OldWaitcntInstr); 481 void updateEventWaitcntAfter(MachineInstr &Inst, 482 WaitcntBrackets *ScoreBrackets); 483 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 484 WaitcntBrackets &ScoreBrackets); 485 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 486 MachineInstr &OldWaitcntInstr, 487 AMDGPU::Waitcnt &Wait, 488 MachineBasicBlock::instr_iterator It) const; 489 }; 490 491 } // end anonymous namespace 492 493 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 494 const SIInstrInfo *TII, 495 const MachineRegisterInfo *MRI, 496 const SIRegisterInfo *TRI, 497 unsigned OpNo) const { 498 const MachineOperand &Op = MI->getOperand(OpNo); 499 if (!TRI->isInAllocatableClass(Op.getReg())) 500 return {-1, -1}; 501 502 // A use via a PW operand does not need a waitcnt. 503 // A partial write is not a WAW. 504 assert(!Op.getSubReg() || !Op.isUndef()); 505 506 RegInterval Result; 507 508 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 509 510 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 511 assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL); 512 Result.first = Reg - Encoding.VGPR0; 513 if (TRI->isAGPR(*MRI, Op.getReg())) 514 Result.first += AGPR_OFFSET; 515 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 516 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 517 assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 518 Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS; 519 assert(Result.first >= NUM_ALL_VGPRS && 520 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 521 } 522 // TODO: Handle TTMP 523 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 524 else 525 return {-1, -1}; 526 527 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 528 unsigned Size = TRI->getRegSizeInBits(*RC); 529 Result.second = Result.first + ((Size + 16) / 32); 530 531 return Result; 532 } 533 534 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 535 const SIInstrInfo *TII, 536 const SIRegisterInfo *TRI, 537 const MachineRegisterInfo *MRI, unsigned OpNo, 538 unsigned Val) { 539 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 540 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 541 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 542 setRegScore(RegNo, EXP_CNT, Val); 543 } 544 } 545 546 // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS written 547 // can be accessed. A load from LDS to VMEM does not need a wait. 548 static bool mayWriteLDSThroughDMA(const MachineInstr &MI) { 549 return SIInstrInfo::isVALU(MI) && 550 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)) && 551 MI.getOpcode() != AMDGPU::BUFFER_STORE_LDS_DWORD; 552 } 553 554 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 555 const SIRegisterInfo *TRI, 556 const MachineRegisterInfo *MRI, 557 WaitEventType E, MachineInstr &Inst) { 558 InstCounterType T = eventCounter(E); 559 unsigned CurrScore = getScoreUB(T) + 1; 560 if (CurrScore == 0) 561 report_fatal_error("InsertWaitcnt score wraparound"); 562 // PendingEvents and ScoreUB need to be update regardless if this event 563 // changes the score of a register or not. 564 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 565 PendingEvents |= 1 << E; 566 setScoreUB(T, CurrScore); 567 568 if (T == EXP_CNT) { 569 // Put score on the source vgprs. If this is a store, just use those 570 // specific register(s). 571 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 572 int AddrOpIdx = 573 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 574 // All GDS operations must protect their address register (same as 575 // export.) 576 if (AddrOpIdx != -1) { 577 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 578 } 579 580 if (Inst.mayStore()) { 581 if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) { 582 setExpScore( 583 &Inst, TII, TRI, MRI, 584 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 585 CurrScore); 586 } 587 if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) { 588 setExpScore(&Inst, TII, TRI, MRI, 589 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 590 AMDGPU::OpName::data1), 591 CurrScore); 592 } 593 } else if (SIInstrInfo::isAtomicRet(Inst) && 594 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 595 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 596 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 597 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 598 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 599 Inst.getOpcode() != AMDGPU::DS_APPEND && 600 Inst.getOpcode() != AMDGPU::DS_CONSUME && 601 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 602 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 603 const MachineOperand &Op = Inst.getOperand(I); 604 if (Op.isReg() && !Op.isDef() && 605 TRI->isVectorRegister(*MRI, Op.getReg())) { 606 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 607 } 608 } 609 } 610 } else if (TII->isFLAT(Inst)) { 611 if (Inst.mayStore()) { 612 setExpScore( 613 &Inst, TII, TRI, MRI, 614 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 615 CurrScore); 616 } else if (SIInstrInfo::isAtomicRet(Inst)) { 617 setExpScore( 618 &Inst, TII, TRI, MRI, 619 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 620 CurrScore); 621 } 622 } else if (TII->isMIMG(Inst)) { 623 if (Inst.mayStore()) { 624 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 625 } else if (SIInstrInfo::isAtomicRet(Inst)) { 626 setExpScore( 627 &Inst, TII, TRI, MRI, 628 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 629 CurrScore); 630 } 631 } else if (TII->isMTBUF(Inst)) { 632 if (Inst.mayStore()) { 633 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 634 } 635 } else if (TII->isMUBUF(Inst)) { 636 if (Inst.mayStore()) { 637 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 638 } else if (SIInstrInfo::isAtomicRet(Inst)) { 639 setExpScore( 640 &Inst, TII, TRI, MRI, 641 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 642 CurrScore); 643 } 644 } else if (TII->isLDSDIR(Inst)) { 645 // LDSDIR instructions attach the score to the destination. 646 setExpScore( 647 &Inst, TII, TRI, MRI, 648 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst), 649 CurrScore); 650 } else { 651 if (TII->isEXP(Inst)) { 652 // For export the destination registers are really temps that 653 // can be used as the actual source after export patching, so 654 // we need to treat them like sources and set the EXP_CNT 655 // score. 656 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 657 MachineOperand &DefMO = Inst.getOperand(I); 658 if (DefMO.isReg() && DefMO.isDef() && 659 TRI->isVGPR(*MRI, DefMO.getReg())) { 660 setRegScore( 661 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 662 EXP_CNT, CurrScore); 663 } 664 } 665 } 666 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 667 MachineOperand &MO = Inst.getOperand(I); 668 if (MO.isReg() && !MO.isDef() && 669 TRI->isVectorRegister(*MRI, MO.getReg())) { 670 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 671 } 672 } 673 } 674 #if 0 // TODO: check if this is handled by MUBUF code above. 675 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 676 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 677 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 678 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 679 unsigned OpNo;//TODO: find the OpNo for this operand; 680 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 681 for (int RegNo = Interval.first; RegNo < Interval.second; 682 ++RegNo) { 683 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 684 } 685 #endif 686 } else { 687 // Match the score to the destination registers. 688 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 689 auto &Op = Inst.getOperand(I); 690 if (!Op.isReg() || !Op.isDef()) 691 continue; 692 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 693 if (T == VM_CNT) { 694 if (Interval.first >= NUM_ALL_VGPRS) 695 continue; 696 if (updateVMCntOnly(Inst)) { 697 VmemType V = getVmemType(Inst); 698 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 699 VgprVmemTypes[RegNo] |= 1 << V; 700 } 701 } 702 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 703 setRegScore(RegNo, T, CurrScore); 704 } 705 } 706 if (Inst.mayStore() && (TII->isDS(Inst) || mayWriteLDSThroughDMA(Inst))) { 707 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 708 } 709 } 710 } 711 712 void WaitcntBrackets::print(raw_ostream &OS) { 713 OS << '\n'; 714 for (auto T : inst_counter_types()) { 715 unsigned SR = getScoreRange(T); 716 717 switch (T) { 718 case VM_CNT: 719 OS << " VM_CNT(" << SR << "): "; 720 break; 721 case LGKM_CNT: 722 OS << " LGKM_CNT(" << SR << "): "; 723 break; 724 case EXP_CNT: 725 OS << " EXP_CNT(" << SR << "): "; 726 break; 727 case VS_CNT: 728 OS << " VS_CNT(" << SR << "): "; 729 break; 730 default: 731 OS << " UNKNOWN(" << SR << "): "; 732 break; 733 } 734 735 if (SR != 0) { 736 // Print vgpr scores. 737 unsigned LB = getScoreLB(T); 738 739 for (int J = 0; J <= VgprUB; J++) { 740 unsigned RegScore = getRegScore(J, T); 741 if (RegScore <= LB) 742 continue; 743 unsigned RelScore = RegScore - LB - 1; 744 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 745 OS << RelScore << ":v" << J << " "; 746 } else { 747 OS << RelScore << ":ds "; 748 } 749 } 750 // Also need to print sgpr scores for lgkm_cnt. 751 if (T == LGKM_CNT) { 752 for (int J = 0; J <= SgprUB; J++) { 753 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 754 if (RegScore <= LB) 755 continue; 756 unsigned RelScore = RegScore - LB - 1; 757 OS << RelScore << ":s" << J << " "; 758 } 759 } 760 } 761 OS << '\n'; 762 } 763 OS << '\n'; 764 } 765 766 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 767 /// whether a waitcnt instruction is needed at all. 768 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 769 simplifyWaitcnt(VM_CNT, Wait.VmCnt); 770 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 771 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 772 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 773 } 774 775 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 776 unsigned &Count) const { 777 // The number of outstanding events for this type, T, can be calculated 778 // as (UB - LB). If the current Count is greater than or equal to the number 779 // of outstanding events, then the wait for this counter is redundant. 780 if (Count >= getScoreRange(T)) 781 Count = ~0u; 782 } 783 784 void WaitcntBrackets::determineWait(InstCounterType T, int RegNo, 785 AMDGPU::Waitcnt &Wait) const { 786 unsigned ScoreToWait = getRegScore(RegNo, T); 787 788 // If the score of src_operand falls within the bracket, we need an 789 // s_waitcnt instruction. 790 const unsigned LB = getScoreLB(T); 791 const unsigned UB = getScoreUB(T); 792 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 793 if ((T == VM_CNT || T == LGKM_CNT) && 794 hasPendingFlat() && 795 !ST->hasFlatLgkmVMemCountInOrder()) { 796 // If there is a pending FLAT operation, and this is a VMem or LGKM 797 // waitcnt and the target can report early completion, then we need 798 // to force a waitcnt 0. 799 addWait(Wait, T, 0); 800 } else if (counterOutOfOrder(T)) { 801 // Counter can get decremented out-of-order when there 802 // are multiple types event in the bracket. Also emit an s_wait counter 803 // with a conservative value of 0 for the counter. 804 addWait(Wait, T, 0); 805 } else { 806 // If a counter has been maxed out avoid overflow by waiting for 807 // MAX(CounterType) - 1 instead. 808 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 809 addWait(Wait, T, NeededWait); 810 } 811 } 812 } 813 814 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 815 applyWaitcnt(VM_CNT, Wait.VmCnt); 816 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 817 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 818 applyWaitcnt(VS_CNT, Wait.VsCnt); 819 } 820 821 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 822 const unsigned UB = getScoreUB(T); 823 if (Count >= UB) 824 return; 825 if (Count != 0) { 826 if (counterOutOfOrder(T)) 827 return; 828 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 829 } else { 830 setScoreLB(T, UB); 831 PendingEvents &= ~WaitEventMaskForInst[T]; 832 } 833 } 834 835 // Where there are multiple types of event in the bracket of a counter, 836 // the decrement may go out of order. 837 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 838 // Scalar memory read always can go out of order. 839 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 840 return true; 841 return hasMixedPendingEvents(T); 842 } 843 844 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 845 false) 846 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 847 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 848 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 849 false) 850 851 char SIInsertWaitcnts::ID = 0; 852 853 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 854 855 FunctionPass *llvm::createSIInsertWaitcntsPass() { 856 return new SIInsertWaitcnts(); 857 } 858 859 static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName, 860 unsigned NewEnc) { 861 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); 862 assert(OpIdx >= 0); 863 864 MachineOperand &MO = MI.getOperand(OpIdx); 865 866 if (NewEnc == MO.getImm()) 867 return false; 868 869 MO.setImm(NewEnc); 870 return true; 871 } 872 873 /// Combine consecutive waitcnt instructions that precede \p It and follow 874 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added 875 /// by previous passes. Currently this pass conservatively assumes that these 876 /// preexisting waitcnt are required for correctness. 877 bool SIInsertWaitcnts::applyPreexistingWaitcnt( 878 WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, 879 AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { 880 bool Modified = false; 881 MachineInstr *WaitcntInstr = nullptr; 882 MachineInstr *WaitcntVsCntInstr = nullptr; 883 884 for (auto &II : 885 make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) { 886 if (II.isMetaInstruction()) 887 continue; 888 889 if (II.getOpcode() == AMDGPU::S_WAITCNT) { 890 // Conservatively update required wait if this waitcnt was added in an 891 // earlier pass. In this case it will not exist in the tracked waitcnt 892 // set. 893 if (!TrackedWaitcntSet.count(&II)) { 894 unsigned IEnc = II.getOperand(0).getImm(); 895 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 896 Wait = Wait.combined(OldWait); 897 } 898 899 // Merge consecutive waitcnt of the same type by erasing multiples. 900 if (!WaitcntInstr) { 901 WaitcntInstr = &II; 902 } else { 903 II.eraseFromParent(); 904 Modified = true; 905 } 906 907 } else { 908 assert(II.getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 909 assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 910 if (!TrackedWaitcntSet.count(&II)) { 911 unsigned OldVSCnt = 912 TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); 913 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt); 914 } 915 916 if (!WaitcntVsCntInstr) { 917 WaitcntVsCntInstr = &II; 918 } else { 919 II.eraseFromParent(); 920 Modified = true; 921 } 922 } 923 } 924 925 // Updated encoding of merged waitcnt with the required wait. 926 if (WaitcntInstr) { 927 if (Wait.hasWaitExceptVsCnt()) { 928 Modified |= 929 updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16, 930 AMDGPU::encodeWaitcnt(IV, Wait)); 931 ScoreBrackets.applyWaitcnt(Wait); 932 Wait.VmCnt = ~0u; 933 Wait.LgkmCnt = ~0u; 934 Wait.ExpCnt = ~0u; 935 936 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 937 ? dbgs() << "applyPreexistingWaitcnt\n" 938 << "New Instr at block end: " << *WaitcntInstr 939 << '\n' 940 : dbgs() << "applyPreexistingWaitcnt\n" 941 << "Old Instr: " << *It 942 << "New Instr: " << *WaitcntInstr << '\n'); 943 944 } else { 945 WaitcntInstr->eraseFromParent(); 946 Modified = true; 947 } 948 } 949 950 if (WaitcntVsCntInstr) { 951 if (Wait.hasWaitVsCnt()) { 952 assert(ST->hasVscnt()); 953 Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr, 954 AMDGPU::OpName::simm16, Wait.VsCnt); 955 ScoreBrackets.applyWaitcnt(Wait); 956 Wait.VsCnt = ~0u; 957 958 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 959 ? dbgs() << "applyPreexistingWaitcnt\n" 960 << "New Instr at block end: " 961 << *WaitcntVsCntInstr << '\n' 962 : dbgs() << "applyPreexistingWaitcnt\n" 963 << "Old Instr: " << *It 964 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 965 } else { 966 WaitcntVsCntInstr->eraseFromParent(); 967 Modified = true; 968 } 969 } 970 971 return Modified; 972 } 973 974 static bool readsVCCZ(const MachineInstr &MI) { 975 unsigned Opc = MI.getOpcode(); 976 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 977 !MI.getOperand(1).isUndef(); 978 } 979 980 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 981 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 982 // Currently all conventions wait, but this may not always be the case. 983 // 984 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 985 // senses to omit the wait and do it in the caller. 986 return true; 987 } 988 989 /// \returns true if the callee is expected to wait for any outstanding waits 990 /// before returning. 991 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 992 return true; 993 } 994 995 /// Generate s_waitcnt instruction to be placed before cur_Inst. 996 /// Instructions of a given type are returned in order, 997 /// but instructions of different types can complete out of order. 998 /// We rely on this in-order completion 999 /// and simply assign a score to the memory access instructions. 1000 /// We keep track of the active "score bracket" to determine 1001 /// if an access of a memory read requires an s_waitcnt 1002 /// and if so what the value of each counter is. 1003 /// The "score bracket" is bound by the lower bound and upper bound 1004 /// scores (*_score_LB and *_score_ub respectively). 1005 /// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to 1006 /// flush the vmcnt counter here. 1007 bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI, 1008 WaitcntBrackets &ScoreBrackets, 1009 MachineInstr *OldWaitcntInstr, 1010 bool FlushVmCnt) { 1011 setForceEmitWaitcnt(); 1012 1013 if (MI.isMetaInstruction()) 1014 return false; 1015 1016 AMDGPU::Waitcnt Wait; 1017 1018 // FIXME: This should have already been handled by the memory legalizer. 1019 // Removing this currently doesn't affect any lit tests, but we need to 1020 // verify that nothing was relying on this. The number of buffer invalidates 1021 // being handled here should not be expanded. 1022 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 1023 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 1024 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 1025 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 1026 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 1027 Wait.VmCnt = 0; 1028 } 1029 1030 // All waits must be resolved at call return. 1031 // NOTE: this could be improved with knowledge of all call sites or 1032 // with knowledge of the called routines. 1033 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 1034 MI.getOpcode() == AMDGPU::SI_RETURN || 1035 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 1036 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 1037 Wait = Wait.combined(AMDGPU::Waitcnt::allZeroExceptVsCnt()); 1038 } 1039 // Identify S_ENDPGM instructions which may have to wait for outstanding VMEM 1040 // stores. In this case it can be useful to send a message to explicitly 1041 // release all VGPRs before the stores have completed, but it is only safe to 1042 // do this if there are no outstanding scratch stores. 1043 else if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1044 MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) { 1045 if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && !OptNone && 1046 ScoreBrackets.getScoreRange(VS_CNT) != 0 && 1047 !ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS)) 1048 ReleaseVGPRInsts.insert(&MI); 1049 } 1050 // Resolve vm waits before gs-done. 1051 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 1052 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 1053 ST->hasLegacyGeometry() && 1054 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) == 1055 AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) { 1056 Wait.VmCnt = 0; 1057 } 1058 #if 0 // TODO: the following blocks of logic when we have fence. 1059 else if (MI.getOpcode() == SC_FENCE) { 1060 const unsigned int group_size = 1061 context->shader_info->GetMaxThreadGroupSize(); 1062 // group_size == 0 means thread group size is unknown at compile time 1063 const bool group_is_multi_wave = 1064 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 1065 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 1066 1067 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 1068 SCRegType src_type = Inst->GetSrcType(i); 1069 switch (src_type) { 1070 case SCMEM_LDS: 1071 if (group_is_multi_wave || 1072 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 1073 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1074 ScoreBrackets->getScoreUB(LGKM_CNT)); 1075 // LDS may have to wait for VM_CNT after buffer load to LDS 1076 if (target_info->HasBufferLoadToLDS()) { 1077 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1078 ScoreBrackets->getScoreUB(VM_CNT)); 1079 } 1080 } 1081 break; 1082 1083 case SCMEM_GDS: 1084 if (group_is_multi_wave || fence_is_global) { 1085 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1086 ScoreBrackets->getScoreUB(EXP_CNT)); 1087 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1088 ScoreBrackets->getScoreUB(LGKM_CNT)); 1089 } 1090 break; 1091 1092 case SCMEM_UAV: 1093 case SCMEM_TFBUF: 1094 case SCMEM_RING: 1095 case SCMEM_SCATTER: 1096 if (group_is_multi_wave || fence_is_global) { 1097 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1098 ScoreBrackets->getScoreUB(EXP_CNT)); 1099 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1100 ScoreBrackets->getScoreUB(VM_CNT)); 1101 } 1102 break; 1103 1104 case SCMEM_SCRATCH: 1105 default: 1106 break; 1107 } 1108 } 1109 } 1110 #endif 1111 1112 // Export & GDS instructions do not read the EXEC mask until after the export 1113 // is granted (which can occur well after the instruction is issued). 1114 // The shader program must flush all EXP operations on the export-count 1115 // before overwriting the EXEC mask. 1116 else { 1117 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1118 // Export and GDS are tracked individually, either may trigger a waitcnt 1119 // for EXEC. 1120 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1121 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1122 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1123 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1124 Wait.ExpCnt = 0; 1125 } 1126 } 1127 1128 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1129 // The function is going to insert a wait on everything in its prolog. 1130 // This still needs to be careful if the call target is a load (e.g. a GOT 1131 // load). We also need to check WAW dependency with saved PC. 1132 Wait = AMDGPU::Waitcnt(); 1133 1134 int CallAddrOpIdx = 1135 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1136 1137 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1138 RegInterval CallAddrOpInterval = 1139 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 1140 1141 for (int RegNo = CallAddrOpInterval.first; 1142 RegNo < CallAddrOpInterval.second; ++RegNo) 1143 ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait); 1144 1145 int RtnAddrOpIdx = 1146 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1147 if (RtnAddrOpIdx != -1) { 1148 RegInterval RtnAddrOpInterval = 1149 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 1150 1151 for (int RegNo = RtnAddrOpInterval.first; 1152 RegNo < RtnAddrOpInterval.second; ++RegNo) 1153 ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait); 1154 } 1155 } 1156 } else { 1157 // FIXME: Should not be relying on memoperands. 1158 // Look at the source operands of every instruction to see if 1159 // any of them results from a previous memory operation that affects 1160 // its current usage. If so, an s_waitcnt instruction needs to be 1161 // emitted. 1162 // If the source operand was defined by a load, add the s_waitcnt 1163 // instruction. 1164 // 1165 // Two cases are handled for destination operands: 1166 // 1) If the destination operand was defined by a load, add the s_waitcnt 1167 // instruction to guarantee the right WAW order. 1168 // 2) If a destination operand that was used by a recent export/store ins, 1169 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1170 for (const MachineMemOperand *Memop : MI.memoperands()) { 1171 const Value *Ptr = Memop->getValue(); 1172 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1173 addWait(Wait, LGKM_CNT, 0); 1174 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1175 SLoadAddresses.erase(Ptr); 1176 } 1177 unsigned AS = Memop->getAddrSpace(); 1178 if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) 1179 continue; 1180 // No need to wait before load from VMEM to LDS. 1181 if (mayWriteLDSThroughDMA(MI)) 1182 continue; 1183 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1184 // VM_CNT is only relevant to vgpr or LDS. 1185 ScoreBrackets.determineWait(VM_CNT, RegNo, Wait); 1186 if (Memop->isStore()) { 1187 ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); 1188 } 1189 } 1190 1191 // Loop over use and def operands. 1192 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1193 MachineOperand &Op = MI.getOperand(I); 1194 if (!Op.isReg()) 1195 continue; 1196 1197 // If the instruction does not read tied source, skip the operand. 1198 if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI)) 1199 continue; 1200 1201 RegInterval Interval = 1202 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1203 1204 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1205 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1206 if (IsVGPR) { 1207 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1208 // previous write and this write are the same type of VMEM 1209 // instruction, in which case they're guaranteed to write their 1210 // results in order anyway. 1211 if (Op.isUse() || !updateVMCntOnly(MI) || 1212 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1213 getVmemType(MI))) { 1214 ScoreBrackets.determineWait(VM_CNT, RegNo, Wait); 1215 ScoreBrackets.clearVgprVmemTypes(RegNo); 1216 } 1217 if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) { 1218 ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); 1219 } 1220 } 1221 ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait); 1222 } 1223 } 1224 } 1225 } 1226 1227 // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does 1228 // not, we need to ensure the subtarget is capable of backing off barrier 1229 // instructions in case there are any outstanding memory operations that may 1230 // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here. 1231 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1232 !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) { 1233 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1234 } 1235 1236 // TODO: Remove this work-around, enable the assert for Bug 457939 1237 // after fixing the scheduler. Also, the Shader Compiler code is 1238 // independent of target. 1239 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1240 if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1241 Wait.LgkmCnt = 0; 1242 } 1243 } 1244 1245 // Verify that the wait is actually needed. 1246 ScoreBrackets.simplifyWaitcnt(Wait); 1247 1248 if (ForceEmitZeroWaitcnts) 1249 Wait = AMDGPU::Waitcnt::allZeroExceptVsCnt(); 1250 1251 if (ForceEmitWaitcnt[VM_CNT]) 1252 Wait.VmCnt = 0; 1253 if (ForceEmitWaitcnt[EXP_CNT]) 1254 Wait.ExpCnt = 0; 1255 if (ForceEmitWaitcnt[LGKM_CNT]) 1256 Wait.LgkmCnt = 0; 1257 1258 if (FlushVmCnt) { 1259 if (ScoreBrackets.hasPendingEvent(VM_CNT)) 1260 Wait.VmCnt = 0; 1261 } 1262 1263 return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets, 1264 OldWaitcntInstr); 1265 } 1266 1267 // Add a waitcnt to flush the vmcnt counter at the end of the given block if 1268 // needed. 1269 bool SIInsertWaitcnts::generateWaitcntBlockEnd(MachineBasicBlock &Block, 1270 WaitcntBrackets &ScoreBrackets, 1271 MachineInstr *OldWaitcntInstr) { 1272 AMDGPU::Waitcnt Wait; 1273 1274 if (!ScoreBrackets.hasPendingEvent(VM_CNT)) 1275 return false; 1276 1277 Wait.VmCnt = 0; 1278 1279 return generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets, 1280 OldWaitcntInstr); 1281 } 1282 1283 bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait, 1284 MachineBasicBlock::instr_iterator It, 1285 MachineBasicBlock &Block, 1286 WaitcntBrackets &ScoreBrackets, 1287 MachineInstr *OldWaitcntInstr) { 1288 bool Modified = false; 1289 const DebugLoc &DL = Block.findDebugLoc(It); 1290 1291 if (OldWaitcntInstr) 1292 // Try to merge the required wait with preexisting waitcnt instructions. 1293 // Also erase redundant waitcnt. 1294 Modified = 1295 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It); 1296 else 1297 ScoreBrackets.applyWaitcnt(Wait); 1298 1299 // ExpCnt can be merged into VINTERP. 1300 if (Wait.ExpCnt != ~0u && It != Block.instr_end() && 1301 SIInstrInfo::isVINTERP(*It)) { 1302 MachineOperand *WaitExp = 1303 TII->getNamedOperand(*It, AMDGPU::OpName::waitexp); 1304 if (Wait.ExpCnt < WaitExp->getImm()) { 1305 WaitExp->setImm(Wait.ExpCnt); 1306 Modified = true; 1307 } 1308 Wait.ExpCnt = ~0u; 1309 1310 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1311 << "Update Instr: " << *It); 1312 } 1313 1314 // Build new waitcnt instructions unless no wait is needed or the old waitcnt 1315 // instruction was modified to handle the required wait. 1316 if (Wait.hasWaitExceptVsCnt()) { 1317 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1318 auto SWaitInst = 1319 BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc); 1320 TrackedWaitcntSet.insert(SWaitInst); 1321 Modified = true; 1322 1323 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1324 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1325 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1326 } 1327 1328 if (Wait.hasWaitVsCnt()) { 1329 assert(ST->hasVscnt()); 1330 1331 auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1332 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1333 .addImm(Wait.VsCnt); 1334 TrackedWaitcntSet.insert(SWaitInst); 1335 Modified = true; 1336 1337 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1338 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1339 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1340 } 1341 return Modified; 1342 } 1343 1344 // This is a flat memory operation. Check to see if it has memory tokens other 1345 // than LDS. Other address spaces supported by flat memory operations involve 1346 // global memory. 1347 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1348 assert(TII->isFLAT(MI)); 1349 1350 // All flat instructions use the VMEM counter. 1351 assert(TII->usesVM_CNT(MI)); 1352 1353 // If there are no memory operands then conservatively assume the flat 1354 // operation may access VMEM. 1355 if (MI.memoperands_empty()) 1356 return true; 1357 1358 // See if any memory operand specifies an address space that involves VMEM. 1359 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1360 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1361 // (GDS) address space is not supported by flat operations. Therefore, simply 1362 // return true unless only the LDS address space is found. 1363 for (const MachineMemOperand *Memop : MI.memoperands()) { 1364 unsigned AS = Memop->getAddrSpace(); 1365 assert(AS != AMDGPUAS::REGION_ADDRESS); 1366 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1367 return true; 1368 } 1369 1370 return false; 1371 } 1372 1373 // This is a flat memory operation. Check to see if it has memory tokens for 1374 // either LDS or FLAT. 1375 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1376 assert(TII->isFLAT(MI)); 1377 1378 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1379 if (!TII->usesLGKM_CNT(MI)) 1380 return false; 1381 1382 // If in tgsplit mode then there can be no use of LDS. 1383 if (ST->isTgSplitEnabled()) 1384 return false; 1385 1386 // If there are no memory operands then conservatively assume the flat 1387 // operation may access LDS. 1388 if (MI.memoperands_empty()) 1389 return true; 1390 1391 // See if any memory operand specifies an address space that involves LDS. 1392 for (const MachineMemOperand *Memop : MI.memoperands()) { 1393 unsigned AS = Memop->getAddrSpace(); 1394 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1395 return true; 1396 } 1397 1398 return false; 1399 } 1400 1401 // This is a flat memory operation. Check to see if it has memory tokens for 1402 // either scratch or FLAT. 1403 bool SIInsertWaitcnts::mayAccessScratchThroughFlat( 1404 const MachineInstr &MI) const { 1405 assert(TII->isFLAT(MI)); 1406 1407 // SCRATCH instructions always access scratch. 1408 if (TII->isFLATScratch(MI)) 1409 return true; 1410 1411 // GLOBAL instructions never access scratch. 1412 if (TII->isFLATGlobal(MI)) 1413 return false; 1414 1415 // If there are no memory operands then conservatively assume the flat 1416 // operation may access scratch. 1417 if (MI.memoperands_empty()) 1418 return true; 1419 1420 // See if any memory operand specifies an address space that involves scratch. 1421 return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) { 1422 unsigned AS = Memop->getAddrSpace(); 1423 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 1424 }); 1425 } 1426 1427 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1428 WaitcntBrackets *ScoreBrackets) { 1429 // Now look at the instruction opcode. If it is a memory access 1430 // instruction, update the upper-bound of the appropriate counter's 1431 // bracket and the destination operand scores. 1432 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1433 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1434 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1435 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1436 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1437 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1438 } else { 1439 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1440 } 1441 } else if (TII->isFLAT(Inst)) { 1442 assert(Inst.mayLoadOrStore()); 1443 1444 int FlatASCount = 0; 1445 1446 if (mayAccessVMEMThroughFlat(Inst)) { 1447 ++FlatASCount; 1448 ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), 1449 Inst); 1450 } 1451 1452 if (mayAccessLDSThroughFlat(Inst)) { 1453 ++FlatASCount; 1454 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1455 } 1456 1457 // A Flat memory operation must access at least one address space. 1458 assert(FlatASCount); 1459 1460 // This is a flat memory operation that access both VMEM and LDS, so note it 1461 // - it will require that both the VM and LGKM be flushed to zero if it is 1462 // pending when a VM or LGKM dependency occurs. 1463 if (FlatASCount > 1) 1464 ScoreBrackets->setPendingFlat(); 1465 } else if (SIInstrInfo::isVMEM(Inst) && 1466 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { 1467 ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), 1468 Inst); 1469 1470 if (ST->vmemWriteNeedsExpWaitcnt() && 1471 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1472 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1473 } 1474 } else if (TII->isSMRD(Inst)) { 1475 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1476 } else if (Inst.isCall()) { 1477 if (callWaitsOnFunctionReturn(Inst)) { 1478 // Act as a wait on everything 1479 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt()); 1480 } else { 1481 // May need to way wait for anything. 1482 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1483 } 1484 } else if (SIInstrInfo::isLDSDIR(Inst)) { 1485 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst); 1486 } else if (TII->isVINTERP(Inst)) { 1487 int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm(); 1488 ScoreBrackets->applyWaitcnt(EXP_CNT, Imm); 1489 } else if (SIInstrInfo::isEXP(Inst)) { 1490 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1491 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1492 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1493 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1494 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1495 else 1496 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1497 } else { 1498 switch (Inst.getOpcode()) { 1499 case AMDGPU::S_SENDMSG: 1500 case AMDGPU::S_SENDMSG_RTN_B32: 1501 case AMDGPU::S_SENDMSG_RTN_B64: 1502 case AMDGPU::S_SENDMSGHALT: 1503 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1504 break; 1505 case AMDGPU::S_MEMTIME: 1506 case AMDGPU::S_MEMREALTIME: 1507 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1508 break; 1509 } 1510 } 1511 } 1512 1513 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1514 unsigned OtherScore) { 1515 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1516 unsigned OtherShifted = 1517 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1518 Score = std::max(MyShifted, OtherShifted); 1519 return OtherShifted > MyShifted; 1520 } 1521 1522 /// Merge the pending events and associater score brackets of \p Other into 1523 /// this brackets status. 1524 /// 1525 /// Returns whether the merge resulted in a change that requires tighter waits 1526 /// (i.e. the merged brackets strictly dominate the original brackets). 1527 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1528 bool StrictDom = false; 1529 1530 VgprUB = std::max(VgprUB, Other.VgprUB); 1531 SgprUB = std::max(SgprUB, Other.SgprUB); 1532 1533 for (auto T : inst_counter_types()) { 1534 // Merge event flags for this counter 1535 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1536 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1537 if (OtherEvents & ~OldEvents) 1538 StrictDom = true; 1539 PendingEvents |= OtherEvents; 1540 1541 // Merge scores for this counter 1542 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1543 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1544 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1545 if (NewUB < ScoreLBs[T]) 1546 report_fatal_error("waitcnt score overflow"); 1547 1548 MergeInfo M; 1549 M.OldLB = ScoreLBs[T]; 1550 M.OtherLB = Other.ScoreLBs[T]; 1551 M.MyShift = NewUB - ScoreUBs[T]; 1552 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1553 1554 ScoreUBs[T] = NewUB; 1555 1556 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1557 1558 for (int J = 0; J <= VgprUB; J++) 1559 StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1560 1561 if (T == LGKM_CNT) { 1562 for (int J = 0; J <= SgprUB; J++) 1563 StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1564 } 1565 } 1566 1567 for (int J = 0; J <= VgprUB; J++) { 1568 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1569 StrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1570 VgprVmemTypes[J] = NewVmemTypes; 1571 } 1572 1573 return StrictDom; 1574 } 1575 1576 static bool isWaitInstr(MachineInstr &Inst) { 1577 return Inst.getOpcode() == AMDGPU::S_WAITCNT || 1578 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1579 Inst.getOperand(0).isReg() && 1580 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1581 } 1582 1583 // Generate s_waitcnt instructions where needed. 1584 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1585 MachineBasicBlock &Block, 1586 WaitcntBrackets &ScoreBrackets) { 1587 bool Modified = false; 1588 1589 LLVM_DEBUG({ 1590 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1591 ScoreBrackets.dump(); 1592 }); 1593 1594 // Track the correctness of vccz through this basic block. There are two 1595 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1596 // ST->partialVCCWritesUpdateVCCZ(). 1597 bool VCCZCorrect = true; 1598 if (ST->hasReadVCCZBug()) { 1599 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1600 // to vcc and then issued an smem load. 1601 VCCZCorrect = false; 1602 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1603 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1604 // to vcc_lo or vcc_hi. 1605 VCCZCorrect = false; 1606 } 1607 1608 // Walk over the instructions. 1609 MachineInstr *OldWaitcntInstr = nullptr; 1610 1611 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1612 E = Block.instr_end(); 1613 Iter != E;) { 1614 MachineInstr &Inst = *Iter; 1615 1616 // Track pre-existing waitcnts that were added in earlier iterations or by 1617 // the memory legalizer. 1618 if (isWaitInstr(Inst)) { 1619 if (!OldWaitcntInstr) 1620 OldWaitcntInstr = &Inst; 1621 ++Iter; 1622 continue; 1623 } 1624 1625 bool FlushVmCnt = Block.getFirstTerminator() == Inst && 1626 isPreheaderToFlush(Block, ScoreBrackets); 1627 1628 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1629 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr, 1630 FlushVmCnt); 1631 OldWaitcntInstr = nullptr; 1632 1633 // Restore vccz if it's not known to be correct already. 1634 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1635 1636 // Don't examine operands unless we need to track vccz correctness. 1637 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1638 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1639 Inst.definesRegister(AMDGPU::VCC_HI)) { 1640 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1641 if (!ST->partialVCCWritesUpdateVCCZ()) 1642 VCCZCorrect = false; 1643 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1644 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1645 // vccz bit, so when we detect that an instruction may read from a 1646 // corrupt vccz bit, we need to: 1647 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1648 // operations to complete. 1649 // 2. Restore the correct value of vccz by writing the current value 1650 // of vcc back to vcc. 1651 if (ST->hasReadVCCZBug() && 1652 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1653 // Writes to vcc while there's an outstanding smem read may get 1654 // clobbered as soon as any read completes. 1655 VCCZCorrect = false; 1656 } else { 1657 // Writes to vcc will fix any incorrect value in vccz. 1658 VCCZCorrect = true; 1659 } 1660 } 1661 } 1662 1663 if (TII->isSMRD(Inst)) { 1664 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1665 // No need to handle invariant loads when avoiding WAR conflicts, as 1666 // there cannot be a vector store to the same memory location. 1667 if (!Memop->isInvariant()) { 1668 const Value *Ptr = Memop->getValue(); 1669 SLoadAddresses.insert(std::pair(Ptr, Inst.getParent())); 1670 } 1671 } 1672 if (ST->hasReadVCCZBug()) { 1673 // This smem read could complete and clobber vccz at any time. 1674 VCCZCorrect = false; 1675 } 1676 } 1677 1678 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1679 1680 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1681 // If this instruction generates a S_SETVSKIP because it is an 1682 // indexed resource, and we are on Tahiti, then it will also force 1683 // an S_WAITCNT vmcnt(0) 1684 if (RequireCheckResourceType(Inst, context)) { 1685 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1686 ScoreBrackets->setScoreLB(VM_CNT, 1687 ScoreBrackets->getScoreUB(VM_CNT)); 1688 } 1689 #endif 1690 1691 LLVM_DEBUG({ 1692 Inst.print(dbgs()); 1693 ScoreBrackets.dump(); 1694 }); 1695 1696 // TODO: Remove this work-around after fixing the scheduler and enable the 1697 // assert above. 1698 if (RestoreVCCZ) { 1699 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1700 // bit is updated, so we can restore the bit by reading the value of 1701 // vcc and then writing it back to the register. 1702 BuildMI(Block, Inst, Inst.getDebugLoc(), 1703 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1704 TRI->getVCC()) 1705 .addReg(TRI->getVCC()); 1706 VCCZCorrect = true; 1707 Modified = true; 1708 } 1709 1710 ++Iter; 1711 } 1712 1713 if (Block.getFirstTerminator() == Block.end() && 1714 isPreheaderToFlush(Block, ScoreBrackets)) 1715 Modified |= generateWaitcntBlockEnd(Block, ScoreBrackets, OldWaitcntInstr); 1716 1717 return Modified; 1718 } 1719 1720 // Return true if the given machine basic block is a preheader of a loop in 1721 // which we want to flush the vmcnt counter, and false otherwise. 1722 bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB, 1723 WaitcntBrackets &ScoreBrackets) { 1724 if (PreheadersToFlush.count(&MBB)) 1725 return PreheadersToFlush[&MBB]; 1726 1727 auto UpdateCache = [&](bool val) { 1728 PreheadersToFlush[&MBB] = val; 1729 return val; 1730 }; 1731 1732 MachineBasicBlock *Succ = MBB.getSingleSuccessor(); 1733 if (!Succ) 1734 return UpdateCache(false); 1735 1736 MachineLoop *Loop = MLI->getLoopFor(Succ); 1737 if (!Loop) 1738 return UpdateCache(false); 1739 1740 if (Loop->getLoopPreheader() == &MBB && shouldFlushVmCnt(Loop, ScoreBrackets)) 1741 return UpdateCache(true); 1742 1743 return UpdateCache(false); 1744 } 1745 1746 bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const { 1747 return SIInstrInfo::isVMEM(MI) || 1748 (SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI)); 1749 } 1750 1751 // Return true if it is better to flush the vmcnt counter in the preheader of 1752 // the given loop. We currently decide to flush in two situations: 1753 // 1. The loop contains vmem store(s), no vmem load and at least one use of a 1754 // vgpr containing a value that is loaded outside of the loop. (Only on 1755 // targets with no vscnt counter). 1756 // 2. The loop contains vmem load(s), but the loaded values are not used in the 1757 // loop, and at least one use of a vgpr containing a value that is loaded 1758 // outside of the loop. 1759 bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML, 1760 WaitcntBrackets &Brackets) { 1761 bool HasVMemLoad = false; 1762 bool HasVMemStore = false; 1763 bool UsesVgprLoadedOutside = false; 1764 DenseSet<Register> VgprUse; 1765 DenseSet<Register> VgprDef; 1766 1767 for (MachineBasicBlock *MBB : ML->blocks()) { 1768 for (MachineInstr &MI : *MBB) { 1769 if (isVMEMOrFlatVMEM(MI)) { 1770 if (MI.mayLoad()) 1771 HasVMemLoad = true; 1772 if (MI.mayStore()) 1773 HasVMemStore = true; 1774 } 1775 for (unsigned I = 0; I < MI.getNumOperands(); I++) { 1776 MachineOperand &Op = MI.getOperand(I); 1777 if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg())) 1778 continue; 1779 RegInterval Interval = Brackets.getRegInterval(&MI, TII, MRI, TRI, I); 1780 // Vgpr use 1781 if (Op.isUse()) { 1782 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1783 // If we find a register that is loaded inside the loop, 1. and 2. 1784 // are invalidated and we can exit. 1785 if (VgprDef.contains(RegNo)) 1786 return false; 1787 VgprUse.insert(RegNo); 1788 // If at least one of Op's registers is in the score brackets, the 1789 // value is likely loaded outside of the loop. 1790 if (Brackets.getRegScore(RegNo, VM_CNT) > Brackets.getScoreLB(VM_CNT)) { 1791 UsesVgprLoadedOutside = true; 1792 break; 1793 } 1794 } 1795 } 1796 // VMem load vgpr def 1797 else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef()) 1798 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1799 // If we find a register that is loaded inside the loop, 1. and 2. 1800 // are invalidated and we can exit. 1801 if (VgprUse.contains(RegNo)) 1802 return false; 1803 VgprDef.insert(RegNo); 1804 } 1805 } 1806 } 1807 } 1808 if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside) 1809 return true; 1810 return HasVMemLoad && UsesVgprLoadedOutside; 1811 } 1812 1813 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1814 ST = &MF.getSubtarget<GCNSubtarget>(); 1815 TII = ST->getInstrInfo(); 1816 TRI = &TII->getRegisterInfo(); 1817 MRI = &MF.getRegInfo(); 1818 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1819 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1820 MLI = &getAnalysis<MachineLoopInfo>(); 1821 PDT = &getAnalysis<MachinePostDominatorTree>(); 1822 1823 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1824 for (auto T : inst_counter_types()) 1825 ForceEmitWaitcnt[T] = false; 1826 1827 OptNone = MF.getFunction().hasOptNone() || 1828 MF.getTarget().getOptLevel() == CodeGenOpt::None; 1829 1830 HardwareLimits Limits = {}; 1831 Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1832 Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1833 Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1834 Limits.VscntMax = ST->hasVscnt() ? 63 : 0; 1835 1836 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1837 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1838 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1839 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1840 1841 RegisterEncoding Encoding = {}; 1842 Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1843 Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1; 1844 Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1845 Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1; 1846 1847 TrackedWaitcntSet.clear(); 1848 BlockInfos.clear(); 1849 bool Modified = false; 1850 1851 if (!MFI->isEntryFunction()) { 1852 // Wait for any outstanding memory operations that the input registers may 1853 // depend on. We can't track them and it's better to do the wait after the 1854 // costly call sequence. 1855 1856 // TODO: Could insert earlier and schedule more liberally with operations 1857 // that only use caller preserved registers. 1858 MachineBasicBlock &EntryBB = MF.front(); 1859 MachineBasicBlock::iterator I = EntryBB.begin(); 1860 for (MachineBasicBlock::iterator E = EntryBB.end(); 1861 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1862 ; 1863 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1864 1865 Modified = true; 1866 } 1867 1868 // Keep iterating over the blocks in reverse post order, inserting and 1869 // updating s_waitcnt where needed, until a fix point is reached. 1870 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1871 BlockInfos.insert({MBB, BlockInfo()}); 1872 1873 std::unique_ptr<WaitcntBrackets> Brackets; 1874 bool Repeat; 1875 do { 1876 Repeat = false; 1877 1878 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1879 ++BII) { 1880 MachineBasicBlock *MBB = BII->first; 1881 BlockInfo &BI = BII->second; 1882 if (!BI.Dirty) 1883 continue; 1884 1885 if (BI.Incoming) { 1886 if (!Brackets) 1887 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1888 else 1889 *Brackets = *BI.Incoming; 1890 } else { 1891 if (!Brackets) 1892 Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding); 1893 else 1894 *Brackets = WaitcntBrackets(ST, Limits, Encoding); 1895 } 1896 1897 Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets); 1898 BI.Dirty = false; 1899 1900 if (Brackets->hasPendingEvent()) { 1901 BlockInfo *MoveBracketsToSucc = nullptr; 1902 for (MachineBasicBlock *Succ : MBB->successors()) { 1903 auto SuccBII = BlockInfos.find(Succ); 1904 BlockInfo &SuccBI = SuccBII->second; 1905 if (!SuccBI.Incoming) { 1906 SuccBI.Dirty = true; 1907 if (SuccBII <= BII) 1908 Repeat = true; 1909 if (!MoveBracketsToSucc) { 1910 MoveBracketsToSucc = &SuccBI; 1911 } else { 1912 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1913 } 1914 } else if (SuccBI.Incoming->merge(*Brackets)) { 1915 SuccBI.Dirty = true; 1916 if (SuccBII <= BII) 1917 Repeat = true; 1918 } 1919 } 1920 if (MoveBracketsToSucc) 1921 MoveBracketsToSucc->Incoming = std::move(Brackets); 1922 } 1923 } 1924 } while (Repeat); 1925 1926 if (ST->hasScalarStores()) { 1927 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1928 bool HaveScalarStores = false; 1929 1930 for (MachineBasicBlock &MBB : MF) { 1931 for (MachineInstr &MI : MBB) { 1932 if (!HaveScalarStores && TII->isScalarStore(MI)) 1933 HaveScalarStores = true; 1934 1935 if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1936 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1937 EndPgmBlocks.push_back(&MBB); 1938 } 1939 } 1940 1941 if (HaveScalarStores) { 1942 // If scalar writes are used, the cache must be flushed or else the next 1943 // wave to reuse the same scratch memory can be clobbered. 1944 // 1945 // Insert s_dcache_wb at wave termination points if there were any scalar 1946 // stores, and only if the cache hasn't already been flushed. This could 1947 // be improved by looking across blocks for flushes in postdominating 1948 // blocks from the stores but an explicitly requested flush is probably 1949 // very rare. 1950 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1951 bool SeenDCacheWB = false; 1952 1953 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 1954 I != E; ++I) { 1955 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1956 SeenDCacheWB = true; 1957 else if (TII->isScalarStore(*I)) 1958 SeenDCacheWB = false; 1959 1960 // FIXME: It would be better to insert this before a waitcnt if any. 1961 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1962 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1963 !SeenDCacheWB) { 1964 Modified = true; 1965 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1966 } 1967 } 1968 } 1969 } 1970 } 1971 1972 // Insert DEALLOC_VGPR messages before previously identified S_ENDPGM 1973 // instructions. 1974 for (MachineInstr *MI : ReleaseVGPRInsts) { 1975 if (ST->requiresNopBeforeDeallocVGPRs()) { 1976 BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_NOP)) 1977 .addImm(0); 1978 } 1979 BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_SENDMSG)) 1980 .addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus); 1981 Modified = true; 1982 } 1983 ReleaseVGPRInsts.clear(); 1984 1985 return Modified; 1986 } 1987