1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/CodeGen/MachinePostDominators.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Support/DebugCounter.h" 36 #include "llvm/Support/TargetParser.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "si-insert-waitcnts" 40 41 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 42 "Force emit s_waitcnt expcnt(0) instrs"); 43 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 44 "Force emit s_waitcnt lgkmcnt(0) instrs"); 45 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 46 "Force emit s_waitcnt vmcnt(0) instrs"); 47 48 static cl::opt<bool> ForceEmitZeroFlag( 49 "amdgpu-waitcnt-forcezero", 50 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 51 cl::init(false), cl::Hidden); 52 53 namespace { 54 55 template <typename EnumT> 56 class enum_iterator 57 : public iterator_facade_base<enum_iterator<EnumT>, 58 std::forward_iterator_tag, const EnumT> { 59 EnumT Value; 60 public: 61 enum_iterator() = default; 62 enum_iterator(EnumT Value) : Value(Value) {} 63 64 enum_iterator &operator++() { 65 Value = static_cast<EnumT>(Value + 1); 66 return *this; 67 } 68 69 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 70 71 EnumT operator*() const { return Value; } 72 }; 73 74 // Class of object that encapsulates latest instruction counter score 75 // associated with the operand. Used for determining whether 76 // s_waitcnt instruction needs to be emited. 77 78 #define CNT_MASK(t) (1u << (t)) 79 80 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 81 82 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 83 return make_range(enum_iterator<InstCounterType>(VM_CNT), 84 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 85 } 86 87 using RegInterval = std::pair<int, int>; 88 89 struct { 90 unsigned VmcntMax; 91 unsigned ExpcntMax; 92 unsigned LgkmcntMax; 93 unsigned VscntMax; 94 } HardwareLimits; 95 96 struct { 97 unsigned VGPR0; 98 unsigned VGPRL; 99 unsigned SGPR0; 100 unsigned SGPRL; 101 } RegisterEncoding; 102 103 enum WaitEventType { 104 VMEM_ACCESS, // vector-memory read & write 105 VMEM_READ_ACCESS, // vector-memory read 106 VMEM_WRITE_ACCESS,// vector-memory write 107 LDS_ACCESS, // lds read & write 108 GDS_ACCESS, // gds read & write 109 SQ_MESSAGE, // send message 110 SMEM_ACCESS, // scalar-memory read & write 111 EXP_GPR_LOCK, // export holding on its data src 112 GDS_GPR_LOCK, // GDS holding on its data and addr src 113 EXP_POS_ACCESS, // write to export position 114 EXP_PARAM_ACCESS, // write to export parameter 115 VMW_GPR_LOCK, // vector-memory write holding on its data src 116 NUM_WAIT_EVENTS, 117 }; 118 119 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 120 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 121 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 122 (1 << SQ_MESSAGE), 123 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 124 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 125 (1 << VMEM_WRITE_ACCESS) 126 }; 127 128 // The mapping is: 129 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 130 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 131 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 132 // We reserve a fixed number of VGPR slots in the scoring tables for 133 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 134 enum RegisterMapping { 135 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 136 AGPR_OFFSET = 226, // Maximum programmable ArchVGPRs across all targets. 137 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 138 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 139 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 140 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 141 }; 142 143 // Enumerate different types of result-returning VMEM operations. Although 144 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 145 // s_waitcnt only instructions of the same VmemType are guaranteed to write 146 // their results in order -- so there is no need to insert an s_waitcnt between 147 // two instructions of the same type that write the same vgpr. 148 enum VmemType { 149 // BUF instructions and MIMG instructions without a sampler. 150 VMEM_NOSAMPLER, 151 // MIMG instructions with a sampler. 152 VMEM_SAMPLER, 153 }; 154 155 VmemType getVmemType(const MachineInstr &Inst) { 156 assert(SIInstrInfo::isVMEM(Inst)); 157 if (!SIInstrInfo::isMIMG(Inst)) 158 return VMEM_NOSAMPLER; 159 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 160 return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler 161 ? VMEM_SAMPLER 162 : VMEM_NOSAMPLER; 163 } 164 165 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 166 switch (T) { 167 case VM_CNT: 168 Wait.VmCnt = std::min(Wait.VmCnt, Count); 169 break; 170 case EXP_CNT: 171 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 172 break; 173 case LGKM_CNT: 174 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 175 break; 176 case VS_CNT: 177 Wait.VsCnt = std::min(Wait.VsCnt, Count); 178 break; 179 default: 180 llvm_unreachable("bad InstCounterType"); 181 } 182 } 183 184 // This objects maintains the current score brackets of each wait counter, and 185 // a per-register scoreboard for each wait counter. 186 // 187 // We also maintain the latest score for every event type that can change the 188 // waitcnt in order to know if there are multiple types of events within 189 // the brackets. When multiple types of event happen in the bracket, 190 // wait count may get decreased out of order, therefore we need to put in 191 // "s_waitcnt 0" before use. 192 class WaitcntBrackets { 193 public: 194 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {} 195 196 static unsigned getWaitCountMax(InstCounterType T) { 197 switch (T) { 198 case VM_CNT: 199 return HardwareLimits.VmcntMax; 200 case LGKM_CNT: 201 return HardwareLimits.LgkmcntMax; 202 case EXP_CNT: 203 return HardwareLimits.ExpcntMax; 204 case VS_CNT: 205 return HardwareLimits.VscntMax; 206 default: 207 break; 208 } 209 return 0; 210 } 211 212 unsigned getScoreLB(InstCounterType T) const { 213 assert(T < NUM_INST_CNTS); 214 return ScoreLBs[T]; 215 } 216 217 unsigned getScoreUB(InstCounterType T) const { 218 assert(T < NUM_INST_CNTS); 219 return ScoreUBs[T]; 220 } 221 222 // Mapping from event to counter. 223 InstCounterType eventCounter(WaitEventType E) { 224 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 225 return VM_CNT; 226 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 227 return LGKM_CNT; 228 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 229 return VS_CNT; 230 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 231 return EXP_CNT; 232 } 233 234 unsigned getRegScore(int GprNo, InstCounterType T) { 235 if (GprNo < NUM_ALL_VGPRS) { 236 return VgprScores[T][GprNo]; 237 } 238 assert(T == LGKM_CNT); 239 return SgprScores[GprNo - NUM_ALL_VGPRS]; 240 } 241 242 bool merge(const WaitcntBrackets &Other); 243 244 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 245 const MachineRegisterInfo *MRI, 246 const SIRegisterInfo *TRI, unsigned OpNo) const; 247 248 bool counterOutOfOrder(InstCounterType T) const; 249 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 250 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 251 void determineWait(InstCounterType T, unsigned ScoreToWait, 252 AMDGPU::Waitcnt &Wait) const; 253 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 254 void applyWaitcnt(InstCounterType T, unsigned Count); 255 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 256 const MachineRegisterInfo *MRI, WaitEventType E, 257 MachineInstr &MI); 258 259 bool hasPending() const { return PendingEvents != 0; } 260 bool hasPendingEvent(WaitEventType E) const { 261 return PendingEvents & (1 << E); 262 } 263 264 bool hasMixedPendingEvents(InstCounterType T) const { 265 unsigned Events = PendingEvents & WaitEventMaskForInst[T]; 266 // Return true if more than one bit is set in Events. 267 return Events & (Events - 1); 268 } 269 270 bool hasPendingFlat() const { 271 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 272 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 273 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 274 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 275 } 276 277 void setPendingFlat() { 278 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 279 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 280 } 281 282 // Return true if there might be pending writes to the specified vgpr by VMEM 283 // instructions with types different from V. 284 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 285 assert(GprNo < NUM_ALL_VGPRS); 286 return VgprVmemTypes[GprNo] & ~(1 << V); 287 } 288 289 void clearVgprVmemTypes(int GprNo) { 290 assert(GprNo < NUM_ALL_VGPRS); 291 VgprVmemTypes[GprNo] = 0; 292 } 293 294 void print(raw_ostream &); 295 void dump() { print(dbgs()); } 296 297 private: 298 struct MergeInfo { 299 unsigned OldLB; 300 unsigned OtherLB; 301 unsigned MyShift; 302 unsigned OtherShift; 303 }; 304 static bool mergeScore(const MergeInfo &M, unsigned &Score, 305 unsigned OtherScore); 306 307 void setScoreLB(InstCounterType T, unsigned Val) { 308 assert(T < NUM_INST_CNTS); 309 ScoreLBs[T] = Val; 310 } 311 312 void setScoreUB(InstCounterType T, unsigned Val) { 313 assert(T < NUM_INST_CNTS); 314 ScoreUBs[T] = Val; 315 if (T == EXP_CNT) { 316 unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 317 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 318 ScoreLBs[T] = UB; 319 } 320 } 321 322 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 323 if (GprNo < NUM_ALL_VGPRS) { 324 VgprUB = std::max(VgprUB, GprNo); 325 VgprScores[T][GprNo] = Val; 326 } else { 327 assert(T == LGKM_CNT); 328 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 329 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 330 } 331 } 332 333 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 334 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 335 unsigned OpNo, unsigned Val); 336 337 const GCNSubtarget *ST = nullptr; 338 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 339 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 340 unsigned PendingEvents = 0; 341 // Remember the last flat memory operation. 342 unsigned LastFlat[NUM_INST_CNTS] = {0}; 343 // wait_cnt scores for every vgpr. 344 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 345 int VgprUB = -1; 346 int SgprUB = -1; 347 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 348 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 349 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 350 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 351 // write to each vgpr. 352 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 353 }; 354 355 class SIInsertWaitcnts : public MachineFunctionPass { 356 private: 357 const GCNSubtarget *ST = nullptr; 358 const SIInstrInfo *TII = nullptr; 359 const SIRegisterInfo *TRI = nullptr; 360 const MachineRegisterInfo *MRI = nullptr; 361 AMDGPU::IsaVersion IV; 362 363 DenseSet<MachineInstr *> TrackedWaitcntSet; 364 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 365 MachinePostDominatorTree *PDT; 366 367 struct BlockInfo { 368 MachineBasicBlock *MBB; 369 std::unique_ptr<WaitcntBrackets> Incoming; 370 bool Dirty = true; 371 372 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 373 }; 374 375 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 376 377 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 378 // because of amdgpu-waitcnt-forcezero flag 379 bool ForceEmitZeroWaitcnts; 380 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 381 382 public: 383 static char ID; 384 385 SIInsertWaitcnts() : MachineFunctionPass(ID) { 386 (void)ForceExpCounter; 387 (void)ForceLgkmCounter; 388 (void)ForceVMCounter; 389 } 390 391 bool runOnMachineFunction(MachineFunction &MF) override; 392 393 StringRef getPassName() const override { 394 return "SI insert wait instructions"; 395 } 396 397 void getAnalysisUsage(AnalysisUsage &AU) const override { 398 AU.setPreservesCFG(); 399 AU.addRequired<MachinePostDominatorTree>(); 400 MachineFunctionPass::getAnalysisUsage(AU); 401 } 402 403 bool isForceEmitWaitcnt() const { 404 for (auto T : inst_counter_types()) 405 if (ForceEmitWaitcnt[T]) 406 return true; 407 return false; 408 } 409 410 void setForceEmitWaitcnt() { 411 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 412 // For debug builds, get the debug counter info and adjust if need be 413 #ifndef NDEBUG 414 if (DebugCounter::isCounterSet(ForceExpCounter) && 415 DebugCounter::shouldExecute(ForceExpCounter)) { 416 ForceEmitWaitcnt[EXP_CNT] = true; 417 } else { 418 ForceEmitWaitcnt[EXP_CNT] = false; 419 } 420 421 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 422 DebugCounter::shouldExecute(ForceLgkmCounter)) { 423 ForceEmitWaitcnt[LGKM_CNT] = true; 424 } else { 425 ForceEmitWaitcnt[LGKM_CNT] = false; 426 } 427 428 if (DebugCounter::isCounterSet(ForceVMCounter) && 429 DebugCounter::shouldExecute(ForceVMCounter)) { 430 ForceEmitWaitcnt[VM_CNT] = true; 431 } else { 432 ForceEmitWaitcnt[VM_CNT] = false; 433 } 434 #endif // NDEBUG 435 } 436 437 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 438 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 439 bool generateWaitcntInstBefore(MachineInstr &MI, 440 WaitcntBrackets &ScoreBrackets, 441 MachineInstr *OldWaitcntInstr); 442 void updateEventWaitcntAfter(MachineInstr &Inst, 443 WaitcntBrackets *ScoreBrackets); 444 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 445 WaitcntBrackets &ScoreBrackets); 446 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 447 MachineInstr &OldWaitcntInstr, 448 AMDGPU::Waitcnt &Wait, const MachineInstr *MI); 449 }; 450 451 } // end anonymous namespace 452 453 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 454 const SIInstrInfo *TII, 455 const MachineRegisterInfo *MRI, 456 const SIRegisterInfo *TRI, 457 unsigned OpNo) const { 458 const MachineOperand &Op = MI->getOperand(OpNo); 459 if (!TRI->isInAllocatableClass(Op.getReg())) 460 return {-1, -1}; 461 462 // A use via a PW operand does not need a waitcnt. 463 // A partial write is not a WAW. 464 assert(!Op.getSubReg() || !Op.isUndef()); 465 466 RegInterval Result; 467 468 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 469 470 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 471 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 472 Result.first = Reg - RegisterEncoding.VGPR0; 473 if (TRI->isAGPR(*MRI, Op.getReg())) 474 Result.first += AGPR_OFFSET; 475 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 476 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 477 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 478 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 479 assert(Result.first >= NUM_ALL_VGPRS && 480 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 481 } 482 // TODO: Handle TTMP 483 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 484 else 485 return {-1, -1}; 486 487 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 488 unsigned Size = TRI->getRegSizeInBits(*RC); 489 Result.second = Result.first + ((Size + 16) / 32); 490 491 return Result; 492 } 493 494 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 495 const SIInstrInfo *TII, 496 const SIRegisterInfo *TRI, 497 const MachineRegisterInfo *MRI, unsigned OpNo, 498 unsigned Val) { 499 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 500 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 501 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 502 setRegScore(RegNo, EXP_CNT, Val); 503 } 504 } 505 506 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 507 const SIRegisterInfo *TRI, 508 const MachineRegisterInfo *MRI, 509 WaitEventType E, MachineInstr &Inst) { 510 InstCounterType T = eventCounter(E); 511 unsigned CurrScore = getScoreUB(T) + 1; 512 if (CurrScore == 0) 513 report_fatal_error("InsertWaitcnt score wraparound"); 514 // PendingEvents and ScoreUB need to be update regardless if this event 515 // changes the score of a register or not. 516 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 517 PendingEvents |= 1 << E; 518 setScoreUB(T, CurrScore); 519 520 if (T == EXP_CNT) { 521 // Put score on the source vgprs. If this is a store, just use those 522 // specific register(s). 523 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 524 int AddrOpIdx = 525 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 526 // All GDS operations must protect their address register (same as 527 // export.) 528 if (AddrOpIdx != -1) { 529 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 530 } 531 532 if (Inst.mayStore()) { 533 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 534 AMDGPU::OpName::data0) != -1) { 535 setExpScore( 536 &Inst, TII, TRI, MRI, 537 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 538 CurrScore); 539 } 540 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 541 AMDGPU::OpName::data1) != -1) { 542 setExpScore(&Inst, TII, TRI, MRI, 543 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 544 AMDGPU::OpName::data1), 545 CurrScore); 546 } 547 } else if (SIInstrInfo::isAtomicRet(Inst) && 548 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 549 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 550 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 551 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 552 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 553 Inst.getOpcode() != AMDGPU::DS_APPEND && 554 Inst.getOpcode() != AMDGPU::DS_CONSUME && 555 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 556 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 557 const MachineOperand &Op = Inst.getOperand(I); 558 if (Op.isReg() && !Op.isDef() && 559 TRI->isVectorRegister(*MRI, Op.getReg())) { 560 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 561 } 562 } 563 } 564 } else if (TII->isFLAT(Inst)) { 565 if (Inst.mayStore()) { 566 setExpScore( 567 &Inst, TII, TRI, MRI, 568 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 569 CurrScore); 570 } else if (SIInstrInfo::isAtomicRet(Inst)) { 571 setExpScore( 572 &Inst, TII, TRI, MRI, 573 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 574 CurrScore); 575 } 576 } else if (TII->isMIMG(Inst)) { 577 if (Inst.mayStore()) { 578 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 579 } else if (SIInstrInfo::isAtomicRet(Inst)) { 580 setExpScore( 581 &Inst, TII, TRI, MRI, 582 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 583 CurrScore); 584 } 585 } else if (TII->isMTBUF(Inst)) { 586 if (Inst.mayStore()) { 587 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 588 } 589 } else if (TII->isMUBUF(Inst)) { 590 if (Inst.mayStore()) { 591 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 592 } else if (SIInstrInfo::isAtomicRet(Inst)) { 593 setExpScore( 594 &Inst, TII, TRI, MRI, 595 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 596 CurrScore); 597 } 598 } else { 599 if (TII->isEXP(Inst)) { 600 // For export the destination registers are really temps that 601 // can be used as the actual source after export patching, so 602 // we need to treat them like sources and set the EXP_CNT 603 // score. 604 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 605 MachineOperand &DefMO = Inst.getOperand(I); 606 if (DefMO.isReg() && DefMO.isDef() && 607 TRI->isVGPR(*MRI, DefMO.getReg())) { 608 setRegScore( 609 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 610 EXP_CNT, CurrScore); 611 } 612 } 613 } 614 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 615 MachineOperand &MO = Inst.getOperand(I); 616 if (MO.isReg() && !MO.isDef() && 617 TRI->isVectorRegister(*MRI, MO.getReg())) { 618 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 619 } 620 } 621 } 622 #if 0 // TODO: check if this is handled by MUBUF code above. 623 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 624 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 625 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 626 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 627 unsigned OpNo;//TODO: find the OpNo for this operand; 628 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 629 for (int RegNo = Interval.first; RegNo < Interval.second; 630 ++RegNo) { 631 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 632 } 633 #endif 634 } else { 635 // Match the score to the destination registers. 636 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 637 auto &Op = Inst.getOperand(I); 638 if (!Op.isReg() || !Op.isDef()) 639 continue; 640 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 641 if (T == VM_CNT) { 642 if (Interval.first >= NUM_ALL_VGPRS) 643 continue; 644 if (SIInstrInfo::isVMEM(Inst)) { 645 VmemType V = getVmemType(Inst); 646 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 647 VgprVmemTypes[RegNo] |= 1 << V; 648 } 649 } 650 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 651 setRegScore(RegNo, T, CurrScore); 652 } 653 } 654 if (TII->isDS(Inst) && Inst.mayStore()) { 655 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 656 } 657 } 658 } 659 660 void WaitcntBrackets::print(raw_ostream &OS) { 661 OS << '\n'; 662 for (auto T : inst_counter_types()) { 663 unsigned LB = getScoreLB(T); 664 unsigned UB = getScoreUB(T); 665 666 switch (T) { 667 case VM_CNT: 668 OS << " VM_CNT(" << UB - LB << "): "; 669 break; 670 case LGKM_CNT: 671 OS << " LGKM_CNT(" << UB - LB << "): "; 672 break; 673 case EXP_CNT: 674 OS << " EXP_CNT(" << UB - LB << "): "; 675 break; 676 case VS_CNT: 677 OS << " VS_CNT(" << UB - LB << "): "; 678 break; 679 default: 680 OS << " UNKNOWN(" << UB - LB << "): "; 681 break; 682 } 683 684 if (LB < UB) { 685 // Print vgpr scores. 686 for (int J = 0; J <= VgprUB; J++) { 687 unsigned RegScore = getRegScore(J, T); 688 if (RegScore <= LB) 689 continue; 690 unsigned RelScore = RegScore - LB - 1; 691 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 692 OS << RelScore << ":v" << J << " "; 693 } else { 694 OS << RelScore << ":ds "; 695 } 696 } 697 // Also need to print sgpr scores for lgkm_cnt. 698 if (T == LGKM_CNT) { 699 for (int J = 0; J <= SgprUB; J++) { 700 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 701 if (RegScore <= LB) 702 continue; 703 unsigned RelScore = RegScore - LB - 1; 704 OS << RelScore << ":s" << J << " "; 705 } 706 } 707 } 708 OS << '\n'; 709 } 710 OS << '\n'; 711 } 712 713 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 714 /// whether a waitcnt instruction is needed at all. 715 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 716 simplifyWaitcnt(VM_CNT, Wait.VmCnt); 717 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 718 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 719 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 720 } 721 722 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 723 unsigned &Count) const { 724 const unsigned LB = getScoreLB(T); 725 const unsigned UB = getScoreUB(T); 726 727 // The number of outstanding events for this type, T, can be calculated 728 // as (UB - LB). If the current Count is greater than or equal to the number 729 // of outstanding events, then the wait for this counter is redundant. 730 if (Count >= UB - LB) 731 Count = ~0u; 732 } 733 734 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait, 735 AMDGPU::Waitcnt &Wait) const { 736 // If the score of src_operand falls within the bracket, we need an 737 // s_waitcnt instruction. 738 const unsigned LB = getScoreLB(T); 739 const unsigned UB = getScoreUB(T); 740 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 741 if ((T == VM_CNT || T == LGKM_CNT) && 742 hasPendingFlat() && 743 !ST->hasFlatLgkmVMemCountInOrder()) { 744 // If there is a pending FLAT operation, and this is a VMem or LGKM 745 // waitcnt and the target can report early completion, then we need 746 // to force a waitcnt 0. 747 addWait(Wait, T, 0); 748 } else if (counterOutOfOrder(T)) { 749 // Counter can get decremented out-of-order when there 750 // are multiple types event in the bracket. Also emit an s_wait counter 751 // with a conservative value of 0 for the counter. 752 addWait(Wait, T, 0); 753 } else { 754 // If a counter has been maxed out avoid overflow by waiting for 755 // MAX(CounterType) - 1 instead. 756 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 757 addWait(Wait, T, NeededWait); 758 } 759 } 760 } 761 762 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 763 applyWaitcnt(VM_CNT, Wait.VmCnt); 764 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 765 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 766 applyWaitcnt(VS_CNT, Wait.VsCnt); 767 } 768 769 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 770 const unsigned UB = getScoreUB(T); 771 if (Count >= UB) 772 return; 773 if (Count != 0) { 774 if (counterOutOfOrder(T)) 775 return; 776 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 777 } else { 778 setScoreLB(T, UB); 779 PendingEvents &= ~WaitEventMaskForInst[T]; 780 } 781 } 782 783 // Where there are multiple types of event in the bracket of a counter, 784 // the decrement may go out of order. 785 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 786 // Scalar memory read always can go out of order. 787 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 788 return true; 789 return hasMixedPendingEvents(T); 790 } 791 792 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 793 false) 794 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 795 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 796 false) 797 798 char SIInsertWaitcnts::ID = 0; 799 800 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 801 802 FunctionPass *llvm::createSIInsertWaitcntsPass() { 803 return new SIInsertWaitcnts(); 804 } 805 806 /// Combine consecutive waitcnt instructions that precede \p MI and follow 807 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added 808 /// by previous passes. Currently this pass conservatively assumes that these 809 /// preexisting waitcnt are required for correctness. 810 bool SIInsertWaitcnts::applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 811 MachineInstr &OldWaitcntInstr, 812 AMDGPU::Waitcnt &Wait, 813 const MachineInstr *MI) { 814 bool Modified = false; 815 MachineInstr *WaitcntInstr = nullptr; 816 MachineInstr *WaitcntVsCntInstr = nullptr; 817 for (auto II = OldWaitcntInstr.getIterator(), NextI = std::next(II); 818 &*II != MI; II = NextI, ++NextI) { 819 if (II->isMetaInstruction()) 820 continue; 821 822 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 823 // Conservatively update required wait if this waitcnt was added in an 824 // earlier pass. In this case it will not exist in the tracked waitcnt 825 // set. 826 if (!TrackedWaitcntSet.count(&*II)) { 827 unsigned IEnc = II->getOperand(0).getImm(); 828 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 829 Wait = Wait.combined(OldWait); 830 } 831 832 // Merge consecutive waitcnt of the same type by erasing multiples. 833 if (!WaitcntInstr) { 834 WaitcntInstr = &*II; 835 } else { 836 II->eraseFromParent(); 837 Modified = true; 838 } 839 840 } else { 841 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 842 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 843 if (!TrackedWaitcntSet.count(&*II)) { 844 unsigned OldVSCnt = 845 TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm(); 846 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt); 847 } 848 849 if (!WaitcntVsCntInstr) { 850 WaitcntVsCntInstr = &*II; 851 } else { 852 II->eraseFromParent(); 853 Modified = true; 854 } 855 } 856 } 857 858 // Updated encoding of merged waitcnt with the required wait. 859 if (WaitcntInstr) { 860 if (Wait.hasWaitExceptVsCnt()) { 861 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 862 unsigned OldEnc = WaitcntInstr->getOperand(0).getImm(); 863 if (OldEnc != NewEnc) { 864 WaitcntInstr->getOperand(0).setImm(NewEnc); 865 Modified = true; 866 } 867 ScoreBrackets.applyWaitcnt(Wait); 868 Wait.VmCnt = ~0u; 869 Wait.LgkmCnt = ~0u; 870 Wait.ExpCnt = ~0u; 871 872 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 873 << "Old Instr: " << MI << "New Instr: " << *WaitcntInstr 874 << '\n'); 875 } else { 876 WaitcntInstr->eraseFromParent(); 877 Modified = true; 878 } 879 } 880 881 if (WaitcntVsCntInstr) { 882 if (Wait.hasWaitVsCnt()) { 883 assert(ST->hasVscnt()); 884 unsigned OldVSCnt = 885 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 886 ->getImm(); 887 if (Wait.VsCnt != OldVSCnt) { 888 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 889 ->setImm(Wait.VsCnt); 890 Modified = true; 891 } 892 ScoreBrackets.applyWaitcnt(Wait); 893 Wait.VsCnt = ~0u; 894 895 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 896 << "Old Instr: " << MI 897 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 898 } else { 899 WaitcntVsCntInstr->eraseFromParent(); 900 Modified = true; 901 } 902 } 903 904 return Modified; 905 } 906 907 static bool readsVCCZ(const MachineInstr &MI) { 908 unsigned Opc = MI.getOpcode(); 909 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 910 !MI.getOperand(1).isUndef(); 911 } 912 913 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 914 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 915 // Currently all conventions wait, but this may not always be the case. 916 // 917 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 918 // senses to omit the wait and do it in the caller. 919 return true; 920 } 921 922 /// \returns true if the callee is expected to wait for any outstanding waits 923 /// before returning. 924 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 925 return true; 926 } 927 928 /// Generate s_waitcnt instruction to be placed before cur_Inst. 929 /// Instructions of a given type are returned in order, 930 /// but instructions of different types can complete out of order. 931 /// We rely on this in-order completion 932 /// and simply assign a score to the memory access instructions. 933 /// We keep track of the active "score bracket" to determine 934 /// if an access of a memory read requires an s_waitcnt 935 /// and if so what the value of each counter is. 936 /// The "score bracket" is bound by the lower bound and upper bound 937 /// scores (*_score_LB and *_score_ub respectively). 938 bool SIInsertWaitcnts::generateWaitcntInstBefore( 939 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 940 MachineInstr *OldWaitcntInstr) { 941 setForceEmitWaitcnt(); 942 943 if (MI.isMetaInstruction()) 944 return false; 945 946 AMDGPU::Waitcnt Wait; 947 bool Modified = false; 948 949 // FIXME: This should have already been handled by the memory legalizer. 950 // Removing this currently doesn't affect any lit tests, but we need to 951 // verify that nothing was relying on this. The number of buffer invalidates 952 // being handled here should not be expanded. 953 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 954 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 955 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 956 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 957 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 958 Wait.VmCnt = 0; 959 } 960 961 // All waits must be resolved at call return. 962 // NOTE: this could be improved with knowledge of all call sites or 963 // with knowledge of the called routines. 964 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 965 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 966 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 967 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 968 } 969 // Resolve vm waits before gs-done. 970 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 971 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 972 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 973 AMDGPU::SendMsg::ID_GS_DONE)) { 974 Wait.VmCnt = 0; 975 } 976 #if 0 // TODO: the following blocks of logic when we have fence. 977 else if (MI.getOpcode() == SC_FENCE) { 978 const unsigned int group_size = 979 context->shader_info->GetMaxThreadGroupSize(); 980 // group_size == 0 means thread group size is unknown at compile time 981 const bool group_is_multi_wave = 982 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 983 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 984 985 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 986 SCRegType src_type = Inst->GetSrcType(i); 987 switch (src_type) { 988 case SCMEM_LDS: 989 if (group_is_multi_wave || 990 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 991 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 992 ScoreBrackets->getScoreUB(LGKM_CNT)); 993 // LDS may have to wait for VM_CNT after buffer load to LDS 994 if (target_info->HasBufferLoadToLDS()) { 995 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 996 ScoreBrackets->getScoreUB(VM_CNT)); 997 } 998 } 999 break; 1000 1001 case SCMEM_GDS: 1002 if (group_is_multi_wave || fence_is_global) { 1003 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1004 ScoreBrackets->getScoreUB(EXP_CNT)); 1005 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1006 ScoreBrackets->getScoreUB(LGKM_CNT)); 1007 } 1008 break; 1009 1010 case SCMEM_UAV: 1011 case SCMEM_TFBUF: 1012 case SCMEM_RING: 1013 case SCMEM_SCATTER: 1014 if (group_is_multi_wave || fence_is_global) { 1015 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1016 ScoreBrackets->getScoreUB(EXP_CNT)); 1017 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1018 ScoreBrackets->getScoreUB(VM_CNT)); 1019 } 1020 break; 1021 1022 case SCMEM_SCRATCH: 1023 default: 1024 break; 1025 } 1026 } 1027 } 1028 #endif 1029 1030 // Export & GDS instructions do not read the EXEC mask until after the export 1031 // is granted (which can occur well after the instruction is issued). 1032 // The shader program must flush all EXP operations on the export-count 1033 // before overwriting the EXEC mask. 1034 else { 1035 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1036 // Export and GDS are tracked individually, either may trigger a waitcnt 1037 // for EXEC. 1038 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1039 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1040 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1041 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1042 Wait.ExpCnt = 0; 1043 } 1044 } 1045 1046 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1047 // The function is going to insert a wait on everything in its prolog. 1048 // This still needs to be careful if the call target is a load (e.g. a GOT 1049 // load). We also need to check WAW depenancy with saved PC. 1050 Wait = AMDGPU::Waitcnt(); 1051 1052 int CallAddrOpIdx = 1053 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1054 1055 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1056 RegInterval CallAddrOpInterval = 1057 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 1058 1059 for (int RegNo = CallAddrOpInterval.first; 1060 RegNo < CallAddrOpInterval.second; ++RegNo) 1061 ScoreBrackets.determineWait( 1062 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1063 1064 int RtnAddrOpIdx = 1065 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1066 if (RtnAddrOpIdx != -1) { 1067 RegInterval RtnAddrOpInterval = 1068 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 1069 1070 for (int RegNo = RtnAddrOpInterval.first; 1071 RegNo < RtnAddrOpInterval.second; ++RegNo) 1072 ScoreBrackets.determineWait( 1073 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1074 } 1075 } 1076 } else { 1077 // FIXME: Should not be relying on memoperands. 1078 // Look at the source operands of every instruction to see if 1079 // any of them results from a previous memory operation that affects 1080 // its current usage. If so, an s_waitcnt instruction needs to be 1081 // emitted. 1082 // If the source operand was defined by a load, add the s_waitcnt 1083 // instruction. 1084 // 1085 // Two cases are handled for destination operands: 1086 // 1) If the destination operand was defined by a load, add the s_waitcnt 1087 // instruction to guarantee the right WAW order. 1088 // 2) If a destination operand that was used by a recent export/store ins, 1089 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1090 for (const MachineMemOperand *Memop : MI.memoperands()) { 1091 const Value *Ptr = Memop->getValue(); 1092 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1093 addWait(Wait, LGKM_CNT, 0); 1094 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1095 SLoadAddresses.erase(Ptr); 1096 } 1097 unsigned AS = Memop->getAddrSpace(); 1098 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1099 continue; 1100 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1101 // VM_CNT is only relevant to vgpr or LDS. 1102 ScoreBrackets.determineWait( 1103 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1104 if (Memop->isStore()) { 1105 ScoreBrackets.determineWait( 1106 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1107 } 1108 } 1109 1110 // Loop over use and def operands. 1111 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1112 MachineOperand &Op = MI.getOperand(I); 1113 if (!Op.isReg()) 1114 continue; 1115 RegInterval Interval = 1116 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1117 1118 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1119 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1120 if (IsVGPR) { 1121 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1122 // previous write and this write are the same type of VMEM 1123 // instruction, in which case they're guaranteed to write their 1124 // results in order anyway. 1125 if (Op.isUse() || !SIInstrInfo::isVMEM(MI) || 1126 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1127 getVmemType(MI))) { 1128 ScoreBrackets.determineWait( 1129 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1130 ScoreBrackets.clearVgprVmemTypes(RegNo); 1131 } 1132 if (Op.isDef()) { 1133 ScoreBrackets.determineWait( 1134 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1135 } 1136 } 1137 ScoreBrackets.determineWait( 1138 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1139 } 1140 } 1141 } 1142 } 1143 1144 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1145 // occurs before the instruction. Doing it here prevents any additional 1146 // S_WAITCNTs from being emitted if the instruction was marked as 1147 // requiring a WAITCNT beforehand. 1148 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1149 !ST->hasAutoWaitcntBeforeBarrier()) { 1150 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1151 } 1152 1153 // TODO: Remove this work-around, enable the assert for Bug 457939 1154 // after fixing the scheduler. Also, the Shader Compiler code is 1155 // independent of target. 1156 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1157 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1158 ScoreBrackets.getScoreUB(LGKM_CNT) && 1159 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1160 Wait.LgkmCnt = 0; 1161 } 1162 } 1163 1164 // Verify that the wait is actually needed. 1165 ScoreBrackets.simplifyWaitcnt(Wait); 1166 1167 if (ForceEmitZeroWaitcnts) 1168 Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt()); 1169 1170 if (ForceEmitWaitcnt[VM_CNT]) 1171 Wait.VmCnt = 0; 1172 if (ForceEmitWaitcnt[EXP_CNT]) 1173 Wait.ExpCnt = 0; 1174 if (ForceEmitWaitcnt[LGKM_CNT]) 1175 Wait.LgkmCnt = 0; 1176 if (ForceEmitWaitcnt[VS_CNT]) 1177 Wait.VsCnt = 0; 1178 1179 if (OldWaitcntInstr) { 1180 // Try to merge the required wait with preexisting waitcnt instructions. 1181 // Also erase redundant waitcnt. 1182 Modified = 1183 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, &MI); 1184 } else { 1185 // Update waitcnt brackets after determining the required wait. 1186 ScoreBrackets.applyWaitcnt(Wait); 1187 } 1188 1189 // Build new waitcnt instructions unless no wait is needed or the old waitcnt 1190 // instruction was modified to handle the required wait. 1191 if (Wait.hasWaitExceptVsCnt()) { 1192 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1193 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1194 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1195 .addImm(Enc); 1196 TrackedWaitcntSet.insert(SWaitInst); 1197 Modified = true; 1198 1199 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1200 << "Old Instr: " << MI 1201 << "New Instr: " << *SWaitInst << '\n'); 1202 } 1203 1204 if (Wait.hasWaitVsCnt()) { 1205 assert(ST->hasVscnt()); 1206 1207 auto SWaitInst = 1208 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1209 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1210 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1211 .addImm(Wait.VsCnt); 1212 TrackedWaitcntSet.insert(SWaitInst); 1213 Modified = true; 1214 1215 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1216 << "Old Instr: " << MI 1217 << "New Instr: " << *SWaitInst << '\n'); 1218 } 1219 1220 return Modified; 1221 } 1222 1223 // This is a flat memory operation. Check to see if it has memory tokens other 1224 // than LDS. Other address spaces supported by flat memory operations involve 1225 // global memory. 1226 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1227 assert(TII->isFLAT(MI)); 1228 1229 // All flat instructions use the VMEM counter. 1230 assert(TII->usesVM_CNT(MI)); 1231 1232 // If there are no memory operands then conservatively assume the flat 1233 // operation may access VMEM. 1234 if (MI.memoperands_empty()) 1235 return true; 1236 1237 // See if any memory operand specifies an address space that involves VMEM. 1238 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1239 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1240 // (GDS) address space is not supported by flat operations. Therefore, simply 1241 // return true unless only the LDS address space is found. 1242 for (const MachineMemOperand *Memop : MI.memoperands()) { 1243 unsigned AS = Memop->getAddrSpace(); 1244 assert(AS != AMDGPUAS::REGION_ADDRESS); 1245 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1246 return true; 1247 } 1248 1249 return false; 1250 } 1251 1252 // This is a flat memory operation. Check to see if it has memory tokens for 1253 // either LDS or FLAT. 1254 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1255 assert(TII->isFLAT(MI)); 1256 1257 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1258 if (!TII->usesLGKM_CNT(MI)) 1259 return false; 1260 1261 // If in tgsplit mode then there can be no use of LDS. 1262 if (ST->isTgSplitEnabled()) 1263 return false; 1264 1265 // If there are no memory operands then conservatively assume the flat 1266 // operation may access LDS. 1267 if (MI.memoperands_empty()) 1268 return true; 1269 1270 // See if any memory operand specifies an address space that involves LDS. 1271 for (const MachineMemOperand *Memop : MI.memoperands()) { 1272 unsigned AS = Memop->getAddrSpace(); 1273 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1274 return true; 1275 } 1276 1277 return false; 1278 } 1279 1280 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1281 WaitcntBrackets *ScoreBrackets) { 1282 // Now look at the instruction opcode. If it is a memory access 1283 // instruction, update the upper-bound of the appropriate counter's 1284 // bracket and the destination operand scores. 1285 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1286 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1287 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1288 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1289 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1290 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1291 } else { 1292 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1293 } 1294 } else if (TII->isFLAT(Inst)) { 1295 assert(Inst.mayLoadOrStore()); 1296 1297 int FlatASCount = 0; 1298 1299 if (mayAccessVMEMThroughFlat(Inst)) { 1300 ++FlatASCount; 1301 if (!ST->hasVscnt()) 1302 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1303 else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) 1304 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1305 else 1306 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1307 } 1308 1309 if (mayAccessLDSThroughFlat(Inst)) { 1310 ++FlatASCount; 1311 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1312 } 1313 1314 // A Flat memory operation must access at least one address space. 1315 assert(FlatASCount); 1316 1317 // This is a flat memory operation that access both VMEM and LDS, so note it 1318 // - it will require that both the VM and LGKM be flushed to zero if it is 1319 // pending when a VM or LGKM dependency occurs. 1320 if (FlatASCount > 1) 1321 ScoreBrackets->setPendingFlat(); 1322 } else if (SIInstrInfo::isVMEM(Inst) && 1323 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { 1324 if (!ST->hasVscnt()) 1325 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1326 else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) || 1327 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1328 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1329 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1330 else if (Inst.mayStore()) 1331 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1332 1333 if (ST->vmemWriteNeedsExpWaitcnt() && 1334 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1335 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1336 } 1337 } else if (TII->isSMRD(Inst)) { 1338 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1339 } else if (Inst.isCall()) { 1340 if (callWaitsOnFunctionReturn(Inst)) { 1341 // Act as a wait on everything 1342 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1343 } else { 1344 // May need to way wait for anything. 1345 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1346 } 1347 } else if (SIInstrInfo::isEXP(Inst)) { 1348 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1349 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1350 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1351 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1352 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1353 else 1354 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1355 } else { 1356 switch (Inst.getOpcode()) { 1357 case AMDGPU::S_SENDMSG: 1358 case AMDGPU::S_SENDMSGHALT: 1359 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1360 break; 1361 case AMDGPU::S_MEMTIME: 1362 case AMDGPU::S_MEMREALTIME: 1363 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1364 break; 1365 } 1366 } 1367 } 1368 1369 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1370 unsigned OtherScore) { 1371 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1372 unsigned OtherShifted = 1373 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1374 Score = std::max(MyShifted, OtherShifted); 1375 return OtherShifted > MyShifted; 1376 } 1377 1378 /// Merge the pending events and associater score brackets of \p Other into 1379 /// this brackets status. 1380 /// 1381 /// Returns whether the merge resulted in a change that requires tighter waits 1382 /// (i.e. the merged brackets strictly dominate the original brackets). 1383 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1384 bool StrictDom = false; 1385 1386 VgprUB = std::max(VgprUB, Other.VgprUB); 1387 SgprUB = std::max(SgprUB, Other.SgprUB); 1388 1389 for (auto T : inst_counter_types()) { 1390 // Merge event flags for this counter 1391 const bool OldOutOfOrder = counterOutOfOrder(T); 1392 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1393 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1394 if (OtherEvents & ~OldEvents) 1395 StrictDom = true; 1396 PendingEvents |= OtherEvents; 1397 1398 // Merge scores for this counter 1399 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1400 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1401 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1402 if (NewUB < ScoreLBs[T]) 1403 report_fatal_error("waitcnt score overflow"); 1404 1405 MergeInfo M; 1406 M.OldLB = ScoreLBs[T]; 1407 M.OtherLB = Other.ScoreLBs[T]; 1408 M.MyShift = NewUB - ScoreUBs[T]; 1409 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1410 1411 ScoreUBs[T] = NewUB; 1412 1413 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1414 1415 bool RegStrictDom = false; 1416 for (int J = 0; J <= VgprUB; J++) { 1417 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1418 } 1419 1420 if (T == VM_CNT) { 1421 for (int J = 0; J <= VgprUB; J++) { 1422 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1423 RegStrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1424 VgprVmemTypes[J] = NewVmemTypes; 1425 } 1426 } 1427 1428 if (T == LGKM_CNT) { 1429 for (int J = 0; J <= SgprUB; J++) { 1430 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1431 } 1432 } 1433 1434 if (RegStrictDom && !OldOutOfOrder) 1435 StrictDom = true; 1436 } 1437 1438 return StrictDom; 1439 } 1440 1441 // Generate s_waitcnt instructions where needed. 1442 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1443 MachineBasicBlock &Block, 1444 WaitcntBrackets &ScoreBrackets) { 1445 bool Modified = false; 1446 1447 LLVM_DEBUG({ 1448 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1449 ScoreBrackets.dump(); 1450 }); 1451 1452 // Track the correctness of vccz through this basic block. There are two 1453 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1454 // ST->partialVCCWritesUpdateVCCZ(). 1455 bool VCCZCorrect = true; 1456 if (ST->hasReadVCCZBug()) { 1457 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1458 // to vcc and then issued an smem load. 1459 VCCZCorrect = false; 1460 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1461 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1462 // to vcc_lo or vcc_hi. 1463 VCCZCorrect = false; 1464 } 1465 1466 // Walk over the instructions. 1467 MachineInstr *OldWaitcntInstr = nullptr; 1468 1469 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1470 E = Block.instr_end(); 1471 Iter != E;) { 1472 MachineInstr &Inst = *Iter; 1473 1474 // Track pre-existing waitcnts that were added in earlier iterations or by 1475 // the memory legalizer. 1476 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1477 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1478 Inst.getOperand(0).isReg() && 1479 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1480 if (!OldWaitcntInstr) 1481 OldWaitcntInstr = &Inst; 1482 ++Iter; 1483 continue; 1484 } 1485 1486 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1487 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1488 OldWaitcntInstr = nullptr; 1489 1490 // Restore vccz if it's not known to be correct already. 1491 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1492 1493 // Don't examine operands unless we need to track vccz correctness. 1494 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1495 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1496 Inst.definesRegister(AMDGPU::VCC_HI)) { 1497 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1498 if (!ST->partialVCCWritesUpdateVCCZ()) 1499 VCCZCorrect = false; 1500 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1501 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1502 // vccz bit, so when we detect that an instruction may read from a 1503 // corrupt vccz bit, we need to: 1504 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1505 // operations to complete. 1506 // 2. Restore the correct value of vccz by writing the current value 1507 // of vcc back to vcc. 1508 if (ST->hasReadVCCZBug() && 1509 ScoreBrackets.getScoreLB(LGKM_CNT) < 1510 ScoreBrackets.getScoreUB(LGKM_CNT) && 1511 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1512 // Writes to vcc while there's an outstanding smem read may get 1513 // clobbered as soon as any read completes. 1514 VCCZCorrect = false; 1515 } else { 1516 // Writes to vcc will fix any incorrect value in vccz. 1517 VCCZCorrect = true; 1518 } 1519 } 1520 } 1521 1522 if (TII->isSMRD(Inst)) { 1523 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1524 // No need to handle invariant loads when avoiding WAR conflicts, as 1525 // there cannot be a vector store to the same memory location. 1526 if (!Memop->isInvariant()) { 1527 const Value *Ptr = Memop->getValue(); 1528 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent())); 1529 } 1530 } 1531 if (ST->hasReadVCCZBug()) { 1532 // This smem read could complete and clobber vccz at any time. 1533 VCCZCorrect = false; 1534 } 1535 } 1536 1537 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1538 1539 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1540 // If this instruction generates a S_SETVSKIP because it is an 1541 // indexed resource, and we are on Tahiti, then it will also force 1542 // an S_WAITCNT vmcnt(0) 1543 if (RequireCheckResourceType(Inst, context)) { 1544 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1545 ScoreBrackets->setScoreLB(VM_CNT, 1546 ScoreBrackets->getScoreUB(VM_CNT)); 1547 } 1548 #endif 1549 1550 LLVM_DEBUG({ 1551 Inst.print(dbgs()); 1552 ScoreBrackets.dump(); 1553 }); 1554 1555 // TODO: Remove this work-around after fixing the scheduler and enable the 1556 // assert above. 1557 if (RestoreVCCZ) { 1558 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1559 // bit is updated, so we can restore the bit by reading the value of 1560 // vcc and then writing it back to the register. 1561 BuildMI(Block, Inst, Inst.getDebugLoc(), 1562 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1563 TRI->getVCC()) 1564 .addReg(TRI->getVCC()); 1565 VCCZCorrect = true; 1566 Modified = true; 1567 } 1568 1569 ++Iter; 1570 } 1571 1572 return Modified; 1573 } 1574 1575 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1576 ST = &MF.getSubtarget<GCNSubtarget>(); 1577 TII = ST->getInstrInfo(); 1578 TRI = &TII->getRegisterInfo(); 1579 MRI = &MF.getRegInfo(); 1580 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1581 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1582 PDT = &getAnalysis<MachinePostDominatorTree>(); 1583 1584 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1585 for (auto T : inst_counter_types()) 1586 ForceEmitWaitcnt[T] = false; 1587 1588 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1589 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1590 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1591 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1592 1593 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1594 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1595 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1596 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1597 1598 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1599 RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1; 1600 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1601 RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1; 1602 1603 TrackedWaitcntSet.clear(); 1604 BlockInfos.clear(); 1605 bool Modified = false; 1606 1607 if (!MFI->isEntryFunction()) { 1608 // Wait for any outstanding memory operations that the input registers may 1609 // depend on. We can't track them and it's better to do the wait after the 1610 // costly call sequence. 1611 1612 // TODO: Could insert earlier and schedule more liberally with operations 1613 // that only use caller preserved registers. 1614 MachineBasicBlock &EntryBB = MF.front(); 1615 MachineBasicBlock::iterator I = EntryBB.begin(); 1616 for (MachineBasicBlock::iterator E = EntryBB.end(); 1617 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1618 ; 1619 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1620 if (ST->hasVscnt()) 1621 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1622 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1623 .addImm(0); 1624 1625 Modified = true; 1626 } 1627 1628 // Keep iterating over the blocks in reverse post order, inserting and 1629 // updating s_waitcnt where needed, until a fix point is reached. 1630 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1631 BlockInfos.insert({MBB, BlockInfo(MBB)}); 1632 1633 std::unique_ptr<WaitcntBrackets> Brackets; 1634 bool Repeat; 1635 do { 1636 Repeat = false; 1637 1638 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1639 ++BII) { 1640 BlockInfo &BI = BII->second; 1641 if (!BI.Dirty) 1642 continue; 1643 1644 if (BI.Incoming) { 1645 if (!Brackets) 1646 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1647 else 1648 *Brackets = *BI.Incoming; 1649 } else { 1650 if (!Brackets) 1651 Brackets = std::make_unique<WaitcntBrackets>(ST); 1652 else 1653 *Brackets = WaitcntBrackets(ST); 1654 } 1655 1656 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1657 BI.Dirty = false; 1658 1659 if (Brackets->hasPending()) { 1660 BlockInfo *MoveBracketsToSucc = nullptr; 1661 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1662 auto SuccBII = BlockInfos.find(Succ); 1663 BlockInfo &SuccBI = SuccBII->second; 1664 if (!SuccBI.Incoming) { 1665 SuccBI.Dirty = true; 1666 if (SuccBII <= BII) 1667 Repeat = true; 1668 if (!MoveBracketsToSucc) { 1669 MoveBracketsToSucc = &SuccBI; 1670 } else { 1671 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1672 } 1673 } else if (SuccBI.Incoming->merge(*Brackets)) { 1674 SuccBI.Dirty = true; 1675 if (SuccBII <= BII) 1676 Repeat = true; 1677 } 1678 } 1679 if (MoveBracketsToSucc) 1680 MoveBracketsToSucc->Incoming = std::move(Brackets); 1681 } 1682 } 1683 } while (Repeat); 1684 1685 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1686 1687 bool HaveScalarStores = false; 1688 1689 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1690 ++BI) { 1691 MachineBasicBlock &MBB = *BI; 1692 1693 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1694 ++I) { 1695 if (!HaveScalarStores && TII->isScalarStore(*I)) 1696 HaveScalarStores = true; 1697 1698 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1699 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1700 EndPgmBlocks.push_back(&MBB); 1701 } 1702 } 1703 1704 if (HaveScalarStores) { 1705 // If scalar writes are used, the cache must be flushed or else the next 1706 // wave to reuse the same scratch memory can be clobbered. 1707 // 1708 // Insert s_dcache_wb at wave termination points if there were any scalar 1709 // stores, and only if the cache hasn't already been flushed. This could be 1710 // improved by looking across blocks for flushes in postdominating blocks 1711 // from the stores but an explicitly requested flush is probably very rare. 1712 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1713 bool SeenDCacheWB = false; 1714 1715 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1716 ++I) { 1717 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1718 SeenDCacheWB = true; 1719 else if (TII->isScalarStore(*I)) 1720 SeenDCacheWB = false; 1721 1722 // FIXME: It would be better to insert this before a waitcnt if any. 1723 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1724 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1725 !SeenDCacheWB) { 1726 Modified = true; 1727 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1728 } 1729 } 1730 } 1731 } 1732 1733 return Modified; 1734 } 1735