1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <cstring> 56 #include <memory> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "si-insert-waitcnts" 63 64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 65 "Force emit s_waitcnt expcnt(0) instrs"); 66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 67 "Force emit s_waitcnt lgkmcnt(0) instrs"); 68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 69 "Force emit s_waitcnt vmcnt(0) instrs"); 70 71 static cl::opt<bool> ForceEmitZeroFlag( 72 "amdgpu-waitcnt-forcezero", 73 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 74 cl::init(false), cl::Hidden); 75 76 namespace { 77 78 template <typename EnumT> 79 class enum_iterator 80 : public iterator_facade_base<enum_iterator<EnumT>, 81 std::forward_iterator_tag, const EnumT> { 82 EnumT Value; 83 public: 84 enum_iterator() = default; 85 enum_iterator(EnumT Value) : Value(Value) {} 86 87 enum_iterator &operator++() { 88 Value = static_cast<EnumT>(Value + 1); 89 return *this; 90 } 91 92 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 93 94 EnumT operator*() const { return Value; } 95 }; 96 97 // Class of object that encapsulates latest instruction counter score 98 // associated with the operand. Used for determining whether 99 // s_waitcnt instruction needs to be emited. 100 101 #define CNT_MASK(t) (1u << (t)) 102 103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 104 105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 106 return make_range(enum_iterator<InstCounterType>(VM_CNT), 107 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 108 } 109 110 using RegInterval = std::pair<signed, signed>; 111 112 struct { 113 uint32_t VmcntMax; 114 uint32_t ExpcntMax; 115 uint32_t LgkmcntMax; 116 uint32_t VscntMax; 117 int32_t NumVGPRsMax; 118 int32_t NumSGPRsMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 VMEM_READ_ACCESS, // vector-memory read 131 VMEM_WRITE_ACCESS,// vector-memory write 132 LDS_ACCESS, // lds read & write 133 GDS_ACCESS, // gds read & write 134 SQ_MESSAGE, // send message 135 SMEM_ACCESS, // scalar-memory read & write 136 EXP_GPR_LOCK, // export holding on its data src 137 GDS_GPR_LOCK, // GDS holding on its data and addr src 138 EXP_POS_ACCESS, // write to export position 139 EXP_PARAM_ACCESS, // write to export parameter 140 VMW_GPR_LOCK, // vector-memory write holding on its data src 141 NUM_WAIT_EVENTS, 142 }; 143 144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 145 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 146 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 147 (1 << SQ_MESSAGE), 148 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 149 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 150 (1 << VMEM_WRITE_ACCESS) 151 }; 152 153 // The mapping is: 154 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 155 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 156 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 157 // We reserve a fixed number of VGPR slots in the scoring tables for 158 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 159 enum RegisterMapping { 160 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 161 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 162 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 163 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 164 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 165 }; 166 167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 168 switch (T) { 169 case VM_CNT: 170 Wait.VmCnt = std::min(Wait.VmCnt, Count); 171 break; 172 case EXP_CNT: 173 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 174 break; 175 case LGKM_CNT: 176 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 177 break; 178 case VS_CNT: 179 Wait.VsCnt = std::min(Wait.VsCnt, Count); 180 break; 181 default: 182 llvm_unreachable("bad InstCounterType"); 183 } 184 } 185 186 // This objects maintains the current score brackets of each wait counter, and 187 // a per-register scoreboard for each wait counter. 188 // 189 // We also maintain the latest score for every event type that can change the 190 // waitcnt in order to know if there are multiple types of events within 191 // the brackets. When multiple types of event happen in the bracket, 192 // wait count may get decreased out of order, therefore we need to put in 193 // "s_waitcnt 0" before use. 194 class WaitcntBrackets { 195 public: 196 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 197 for (auto T : inst_counter_types()) 198 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 199 } 200 201 static uint32_t getWaitCountMax(InstCounterType T) { 202 switch (T) { 203 case VM_CNT: 204 return HardwareLimits.VmcntMax; 205 case LGKM_CNT: 206 return HardwareLimits.LgkmcntMax; 207 case EXP_CNT: 208 return HardwareLimits.ExpcntMax; 209 case VS_CNT: 210 return HardwareLimits.VscntMax; 211 default: 212 break; 213 } 214 return 0; 215 } 216 217 uint32_t getScoreLB(InstCounterType T) const { 218 assert(T < NUM_INST_CNTS); 219 if (T >= NUM_INST_CNTS) 220 return 0; 221 return ScoreLBs[T]; 222 } 223 224 uint32_t getScoreUB(InstCounterType T) const { 225 assert(T < NUM_INST_CNTS); 226 if (T >= NUM_INST_CNTS) 227 return 0; 228 return ScoreUBs[T]; 229 } 230 231 // Mapping from event to counter. 232 InstCounterType eventCounter(WaitEventType E) { 233 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 234 return VM_CNT; 235 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 236 return LGKM_CNT; 237 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 238 return VS_CNT; 239 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 240 return EXP_CNT; 241 } 242 243 uint32_t getRegScore(int GprNo, InstCounterType T) { 244 if (GprNo < NUM_ALL_VGPRS) { 245 return VgprScores[T][GprNo]; 246 } 247 assert(T == LGKM_CNT); 248 return SgprScores[GprNo - NUM_ALL_VGPRS]; 249 } 250 251 void clear() { 252 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 253 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 254 PendingEvents = 0; 255 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 256 for (auto T : inst_counter_types()) 257 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 258 memset(SgprScores, 0, sizeof(SgprScores)); 259 } 260 261 bool merge(const WaitcntBrackets &Other); 262 263 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 264 const MachineRegisterInfo *MRI, 265 const SIRegisterInfo *TRI, unsigned OpNo, 266 bool Def) const; 267 268 int32_t getMaxVGPR() const { return VgprUB; } 269 int32_t getMaxSGPR() const { return SgprUB; } 270 271 bool counterOutOfOrder(InstCounterType T) const; 272 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 273 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 274 void determineWait(InstCounterType T, uint32_t ScoreToWait, 275 AMDGPU::Waitcnt &Wait) const; 276 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 277 void applyWaitcnt(InstCounterType T, unsigned Count); 278 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 279 const MachineRegisterInfo *MRI, WaitEventType E, 280 MachineInstr &MI); 281 282 bool hasPending() const { return PendingEvents != 0; } 283 bool hasPendingEvent(WaitEventType E) const { 284 return PendingEvents & (1 << E); 285 } 286 287 bool hasPendingFlat() const { 288 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 289 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 290 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 291 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 292 } 293 294 void setPendingFlat() { 295 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 296 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 297 } 298 299 void print(raw_ostream &); 300 void dump() { print(dbgs()); } 301 302 private: 303 struct MergeInfo { 304 uint32_t OldLB; 305 uint32_t OtherLB; 306 uint32_t MyShift; 307 uint32_t OtherShift; 308 }; 309 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 310 uint32_t OtherScore); 311 312 void setScoreLB(InstCounterType T, uint32_t Val) { 313 assert(T < NUM_INST_CNTS); 314 if (T >= NUM_INST_CNTS) 315 return; 316 ScoreLBs[T] = Val; 317 } 318 319 void setScoreUB(InstCounterType T, uint32_t Val) { 320 assert(T < NUM_INST_CNTS); 321 if (T >= NUM_INST_CNTS) 322 return; 323 ScoreUBs[T] = Val; 324 if (T == EXP_CNT) { 325 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 326 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 327 ScoreLBs[T] = UB; 328 } 329 } 330 331 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 332 if (GprNo < NUM_ALL_VGPRS) { 333 if (GprNo > VgprUB) { 334 VgprUB = GprNo; 335 } 336 VgprScores[T][GprNo] = Val; 337 } else { 338 assert(T == LGKM_CNT); 339 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 340 SgprUB = GprNo - NUM_ALL_VGPRS; 341 } 342 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 343 } 344 } 345 346 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 347 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 348 unsigned OpNo, uint32_t Val); 349 350 const GCNSubtarget *ST = nullptr; 351 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 352 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 353 uint32_t PendingEvents = 0; 354 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 355 // Remember the last flat memory operation. 356 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 357 // wait_cnt scores for every vgpr. 358 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 359 int32_t VgprUB = 0; 360 int32_t SgprUB = 0; 361 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 362 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 363 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 364 }; 365 366 class SIInsertWaitcnts : public MachineFunctionPass { 367 private: 368 const GCNSubtarget *ST = nullptr; 369 const SIInstrInfo *TII = nullptr; 370 const SIRegisterInfo *TRI = nullptr; 371 const MachineRegisterInfo *MRI = nullptr; 372 AMDGPU::IsaVersion IV; 373 374 DenseSet<MachineInstr *> TrackedWaitcntSet; 375 DenseSet<MachineInstr *> VCCZBugHandledSet; 376 377 struct BlockInfo { 378 MachineBasicBlock *MBB; 379 std::unique_ptr<WaitcntBrackets> Incoming; 380 bool Dirty = true; 381 382 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 383 }; 384 385 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 386 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 387 388 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 389 // because of amdgpu-waitcnt-forcezero flag 390 bool ForceEmitZeroWaitcnts; 391 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 392 393 public: 394 static char ID; 395 396 SIInsertWaitcnts() : MachineFunctionPass(ID) { 397 (void)ForceExpCounter; 398 (void)ForceLgkmCounter; 399 (void)ForceVMCounter; 400 } 401 402 bool runOnMachineFunction(MachineFunction &MF) override; 403 404 StringRef getPassName() const override { 405 return "SI insert wait instructions"; 406 } 407 408 void getAnalysisUsage(AnalysisUsage &AU) const override { 409 AU.setPreservesCFG(); 410 MachineFunctionPass::getAnalysisUsage(AU); 411 } 412 413 bool isForceEmitWaitcnt() const { 414 for (auto T : inst_counter_types()) 415 if (ForceEmitWaitcnt[T]) 416 return true; 417 return false; 418 } 419 420 void setForceEmitWaitcnt() { 421 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 422 // For debug builds, get the debug counter info and adjust if need be 423 #ifndef NDEBUG 424 if (DebugCounter::isCounterSet(ForceExpCounter) && 425 DebugCounter::shouldExecute(ForceExpCounter)) { 426 ForceEmitWaitcnt[EXP_CNT] = true; 427 } else { 428 ForceEmitWaitcnt[EXP_CNT] = false; 429 } 430 431 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 432 DebugCounter::shouldExecute(ForceLgkmCounter)) { 433 ForceEmitWaitcnt[LGKM_CNT] = true; 434 } else { 435 ForceEmitWaitcnt[LGKM_CNT] = false; 436 } 437 438 if (DebugCounter::isCounterSet(ForceVMCounter) && 439 DebugCounter::shouldExecute(ForceVMCounter)) { 440 ForceEmitWaitcnt[VM_CNT] = true; 441 } else { 442 ForceEmitWaitcnt[VM_CNT] = false; 443 } 444 #endif // NDEBUG 445 } 446 447 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 448 bool generateWaitcntInstBefore(MachineInstr &MI, 449 WaitcntBrackets &ScoreBrackets, 450 MachineInstr *OldWaitcntInstr); 451 void updateEventWaitcntAfter(MachineInstr &Inst, 452 WaitcntBrackets *ScoreBrackets); 453 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 454 WaitcntBrackets &ScoreBrackets); 455 }; 456 457 } // end anonymous namespace 458 459 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 460 const SIInstrInfo *TII, 461 const MachineRegisterInfo *MRI, 462 const SIRegisterInfo *TRI, 463 unsigned OpNo, bool Def) const { 464 const MachineOperand &Op = MI->getOperand(OpNo); 465 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 466 (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg())) 467 return {-1, -1}; 468 469 // A use via a PW operand does not need a waitcnt. 470 // A partial write is not a WAW. 471 assert(!Op.getSubReg() || !Op.isUndef()); 472 473 RegInterval Result; 474 const MachineRegisterInfo &MRIA = *MRI; 475 476 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 477 478 if (TRI->isVGPR(MRIA, Op.getReg())) { 479 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 480 Result.first = Reg - RegisterEncoding.VGPR0; 481 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 482 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 483 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 484 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 485 assert(Result.first >= NUM_ALL_VGPRS && 486 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 487 } 488 // TODO: Handle TTMP 489 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 490 else 491 return {-1, -1}; 492 493 const MachineInstr &MIA = *MI; 494 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 495 unsigned Size = TRI->getRegSizeInBits(*RC); 496 Result.second = Result.first + (Size / 32); 497 498 return Result; 499 } 500 501 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 502 const SIInstrInfo *TII, 503 const SIRegisterInfo *TRI, 504 const MachineRegisterInfo *MRI, unsigned OpNo, 505 uint32_t Val) { 506 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 507 LLVM_DEBUG({ 508 const MachineOperand &Opnd = MI->getOperand(OpNo); 509 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 510 }); 511 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 512 setRegScore(RegNo, EXP_CNT, Val); 513 } 514 } 515 516 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 517 const SIRegisterInfo *TRI, 518 const MachineRegisterInfo *MRI, 519 WaitEventType E, MachineInstr &Inst) { 520 const MachineRegisterInfo &MRIA = *MRI; 521 InstCounterType T = eventCounter(E); 522 uint32_t CurrScore = getScoreUB(T) + 1; 523 if (CurrScore == 0) 524 report_fatal_error("InsertWaitcnt score wraparound"); 525 // PendingEvents and ScoreUB need to be update regardless if this event 526 // changes the score of a register or not. 527 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 528 if (!hasPendingEvent(E)) { 529 if (PendingEvents & WaitEventMaskForInst[T]) 530 MixedPendingEvents[T] = true; 531 PendingEvents |= 1 << E; 532 } 533 setScoreUB(T, CurrScore); 534 535 if (T == EXP_CNT) { 536 // Put score on the source vgprs. If this is a store, just use those 537 // specific register(s). 538 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 539 int AddrOpIdx = 540 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 541 // All GDS operations must protect their address register (same as 542 // export.) 543 if (AddrOpIdx != -1) { 544 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 545 } 546 547 if (Inst.mayStore()) { 548 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 549 AMDGPU::OpName::data0) != -1) { 550 setExpScore( 551 &Inst, TII, TRI, MRI, 552 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 553 CurrScore); 554 } 555 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 556 AMDGPU::OpName::data1) != -1) { 557 setExpScore(&Inst, TII, TRI, MRI, 558 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 559 AMDGPU::OpName::data1), 560 CurrScore); 561 } 562 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 563 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 564 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 565 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 566 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 567 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 568 Inst.getOpcode() != AMDGPU::DS_APPEND && 569 Inst.getOpcode() != AMDGPU::DS_CONSUME && 570 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 571 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 572 const MachineOperand &Op = Inst.getOperand(I); 573 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 574 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 575 } 576 } 577 } 578 } else if (TII->isFLAT(Inst)) { 579 if (Inst.mayStore()) { 580 setExpScore( 581 &Inst, TII, TRI, MRI, 582 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 583 CurrScore); 584 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 585 setExpScore( 586 &Inst, TII, TRI, MRI, 587 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 588 CurrScore); 589 } 590 } else if (TII->isMIMG(Inst)) { 591 if (Inst.mayStore()) { 592 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 593 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 594 setExpScore( 595 &Inst, TII, TRI, MRI, 596 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 597 CurrScore); 598 } 599 } else if (TII->isMTBUF(Inst)) { 600 if (Inst.mayStore()) { 601 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 602 } 603 } else if (TII->isMUBUF(Inst)) { 604 if (Inst.mayStore()) { 605 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 606 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 607 setExpScore( 608 &Inst, TII, TRI, MRI, 609 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 610 CurrScore); 611 } 612 } else { 613 if (TII->isEXP(Inst)) { 614 // For export the destination registers are really temps that 615 // can be used as the actual source after export patching, so 616 // we need to treat them like sources and set the EXP_CNT 617 // score. 618 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 619 MachineOperand &DefMO = Inst.getOperand(I); 620 if (DefMO.isReg() && DefMO.isDef() && 621 TRI->isVGPR(MRIA, DefMO.getReg())) { 622 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 623 CurrScore); 624 } 625 } 626 } 627 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 628 MachineOperand &MO = Inst.getOperand(I); 629 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 630 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 631 } 632 } 633 } 634 #if 0 // TODO: check if this is handled by MUBUF code above. 635 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 636 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 637 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 638 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 639 unsigned OpNo;//TODO: find the OpNo for this operand; 640 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 641 for (signed RegNo = Interval.first; RegNo < Interval.second; 642 ++RegNo) { 643 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 644 } 645 #endif 646 } else { 647 // Match the score to the destination registers. 648 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 649 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 650 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 651 continue; 652 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 653 setRegScore(RegNo, T, CurrScore); 654 } 655 } 656 if (TII->isDS(Inst) && Inst.mayStore()) { 657 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 658 } 659 } 660 } 661 662 void WaitcntBrackets::print(raw_ostream &OS) { 663 OS << '\n'; 664 for (auto T : inst_counter_types()) { 665 uint32_t LB = getScoreLB(T); 666 uint32_t UB = getScoreUB(T); 667 668 switch (T) { 669 case VM_CNT: 670 OS << " VM_CNT(" << UB - LB << "): "; 671 break; 672 case LGKM_CNT: 673 OS << " LGKM_CNT(" << UB - LB << "): "; 674 break; 675 case EXP_CNT: 676 OS << " EXP_CNT(" << UB - LB << "): "; 677 break; 678 case VS_CNT: 679 OS << " VS_CNT(" << UB - LB << "): "; 680 break; 681 default: 682 OS << " UNKNOWN(" << UB - LB << "): "; 683 break; 684 } 685 686 if (LB < UB) { 687 // Print vgpr scores. 688 for (int J = 0; J <= getMaxVGPR(); J++) { 689 uint32_t RegScore = getRegScore(J, T); 690 if (RegScore <= LB) 691 continue; 692 uint32_t RelScore = RegScore - LB - 1; 693 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 694 OS << RelScore << ":v" << J << " "; 695 } else { 696 OS << RelScore << ":ds "; 697 } 698 } 699 // Also need to print sgpr scores for lgkm_cnt. 700 if (T == LGKM_CNT) { 701 for (int J = 0; J <= getMaxSGPR(); J++) { 702 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 703 if (RegScore <= LB) 704 continue; 705 uint32_t RelScore = RegScore - LB - 1; 706 OS << RelScore << ":s" << J << " "; 707 } 708 } 709 } 710 OS << '\n'; 711 } 712 OS << '\n'; 713 } 714 715 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 716 /// whether a waitcnt instruction is needed at all. 717 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 718 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 719 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 720 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 721 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 722 } 723 724 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 725 unsigned &Count) const { 726 const uint32_t LB = getScoreLB(T); 727 const uint32_t UB = getScoreUB(T); 728 if (Count < UB && UB - Count > LB) 729 return true; 730 731 Count = ~0u; 732 return false; 733 } 734 735 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 736 AMDGPU::Waitcnt &Wait) const { 737 // If the score of src_operand falls within the bracket, we need an 738 // s_waitcnt instruction. 739 const uint32_t LB = getScoreLB(T); 740 const uint32_t UB = getScoreUB(T); 741 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 742 if ((T == VM_CNT || T == LGKM_CNT) && 743 hasPendingFlat() && 744 !ST->hasFlatLgkmVMemCountInOrder()) { 745 // If there is a pending FLAT operation, and this is a VMem or LGKM 746 // waitcnt and the target can report early completion, then we need 747 // to force a waitcnt 0. 748 addWait(Wait, T, 0); 749 } else if (counterOutOfOrder(T)) { 750 // Counter can get decremented out-of-order when there 751 // are multiple types event in the bracket. Also emit an s_wait counter 752 // with a conservative value of 0 for the counter. 753 addWait(Wait, T, 0); 754 } else { 755 addWait(Wait, T, UB - ScoreToWait); 756 } 757 } 758 } 759 760 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 761 applyWaitcnt(VM_CNT, Wait.VmCnt); 762 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 763 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 764 applyWaitcnt(VS_CNT, Wait.VsCnt); 765 } 766 767 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 768 const uint32_t UB = getScoreUB(T); 769 if (Count >= UB) 770 return; 771 if (Count != 0) { 772 if (counterOutOfOrder(T)) 773 return; 774 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 775 } else { 776 setScoreLB(T, UB); 777 MixedPendingEvents[T] = false; 778 PendingEvents &= ~WaitEventMaskForInst[T]; 779 } 780 } 781 782 // Where there are multiple types of event in the bracket of a counter, 783 // the decrement may go out of order. 784 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 785 // Scalar memory read always can go out of order. 786 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 787 return true; 788 return MixedPendingEvents[T]; 789 } 790 791 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 792 false) 793 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 794 false) 795 796 char SIInsertWaitcnts::ID = 0; 797 798 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 799 800 FunctionPass *llvm::createSIInsertWaitcntsPass() { 801 return new SIInsertWaitcnts(); 802 } 803 804 static bool readsVCCZ(const MachineInstr &MI) { 805 unsigned Opc = MI.getOpcode(); 806 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 807 !MI.getOperand(1).isUndef(); 808 } 809 810 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 811 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 812 // Currently all conventions wait, but this may not always be the case. 813 // 814 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 815 // senses to omit the wait and do it in the caller. 816 return true; 817 } 818 819 /// \returns true if the callee is expected to wait for any outstanding waits 820 /// before returning. 821 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 822 return true; 823 } 824 825 /// Generate s_waitcnt instruction to be placed before cur_Inst. 826 /// Instructions of a given type are returned in order, 827 /// but instructions of different types can complete out of order. 828 /// We rely on this in-order completion 829 /// and simply assign a score to the memory access instructions. 830 /// We keep track of the active "score bracket" to determine 831 /// if an access of a memory read requires an s_waitcnt 832 /// and if so what the value of each counter is. 833 /// The "score bracket" is bound by the lower bound and upper bound 834 /// scores (*_score_LB and *_score_ub respectively). 835 bool SIInsertWaitcnts::generateWaitcntInstBefore( 836 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 837 MachineInstr *OldWaitcntInstr) { 838 setForceEmitWaitcnt(); 839 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 840 841 if (MI.isDebugInstr()) 842 return false; 843 844 AMDGPU::Waitcnt Wait; 845 846 // See if this instruction has a forced S_WAITCNT VM. 847 // TODO: Handle other cases of NeedsWaitcntVmBefore() 848 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 849 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 850 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 851 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 852 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 853 Wait.VmCnt = 0; 854 } 855 856 // All waits must be resolved at call return. 857 // NOTE: this could be improved with knowledge of all call sites or 858 // with knowledge of the called routines. 859 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 860 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 861 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 862 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 863 } 864 // Resolve vm waits before gs-done. 865 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 866 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 867 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 868 AMDGPU::SendMsg::ID_GS_DONE)) { 869 Wait.VmCnt = 0; 870 } 871 #if 0 // TODO: the following blocks of logic when we have fence. 872 else if (MI.getOpcode() == SC_FENCE) { 873 const unsigned int group_size = 874 context->shader_info->GetMaxThreadGroupSize(); 875 // group_size == 0 means thread group size is unknown at compile time 876 const bool group_is_multi_wave = 877 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 878 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 879 880 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 881 SCRegType src_type = Inst->GetSrcType(i); 882 switch (src_type) { 883 case SCMEM_LDS: 884 if (group_is_multi_wave || 885 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 886 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 887 ScoreBrackets->getScoreUB(LGKM_CNT)); 888 // LDS may have to wait for VM_CNT after buffer load to LDS 889 if (target_info->HasBufferLoadToLDS()) { 890 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 891 ScoreBrackets->getScoreUB(VM_CNT)); 892 } 893 } 894 break; 895 896 case SCMEM_GDS: 897 if (group_is_multi_wave || fence_is_global) { 898 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 899 ScoreBrackets->getScoreUB(EXP_CNT)); 900 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 901 ScoreBrackets->getScoreUB(LGKM_CNT)); 902 } 903 break; 904 905 case SCMEM_UAV: 906 case SCMEM_TFBUF: 907 case SCMEM_RING: 908 case SCMEM_SCATTER: 909 if (group_is_multi_wave || fence_is_global) { 910 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 911 ScoreBrackets->getScoreUB(EXP_CNT)); 912 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 913 ScoreBrackets->getScoreUB(VM_CNT)); 914 } 915 break; 916 917 case SCMEM_SCRATCH: 918 default: 919 break; 920 } 921 } 922 } 923 #endif 924 925 // Export & GDS instructions do not read the EXEC mask until after the export 926 // is granted (which can occur well after the instruction is issued). 927 // The shader program must flush all EXP operations on the export-count 928 // before overwriting the EXEC mask. 929 else { 930 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 931 // Export and GDS are tracked individually, either may trigger a waitcnt 932 // for EXEC. 933 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 934 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 935 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 936 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 937 Wait.ExpCnt = 0; 938 } 939 } 940 941 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 942 // Don't bother waiting on anything except the call address. The function 943 // is going to insert a wait on everything in its prolog. This still needs 944 // to be careful if the call target is a load (e.g. a GOT load). 945 Wait = AMDGPU::Waitcnt(); 946 947 int CallAddrOpIdx = 948 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 949 RegInterval Interval = ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, 950 CallAddrOpIdx, false); 951 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 952 ScoreBrackets.determineWait( 953 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 954 } 955 } else { 956 // FIXME: Should not be relying on memoperands. 957 // Look at the source operands of every instruction to see if 958 // any of them results from a previous memory operation that affects 959 // its current usage. If so, an s_waitcnt instruction needs to be 960 // emitted. 961 // If the source operand was defined by a load, add the s_waitcnt 962 // instruction. 963 for (const MachineMemOperand *Memop : MI.memoperands()) { 964 unsigned AS = Memop->getAddrSpace(); 965 if (AS != AMDGPUAS::LOCAL_ADDRESS) 966 continue; 967 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 968 // VM_CNT is only relevant to vgpr or LDS. 969 ScoreBrackets.determineWait( 970 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 971 } 972 973 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 974 const MachineOperand &Op = MI.getOperand(I); 975 const MachineRegisterInfo &MRIA = *MRI; 976 RegInterval Interval = 977 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 978 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 979 if (TRI->isVGPR(MRIA, Op.getReg())) { 980 // VM_CNT is only relevant to vgpr or LDS. 981 ScoreBrackets.determineWait( 982 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 983 } 984 ScoreBrackets.determineWait( 985 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 986 } 987 } 988 // End of for loop that looks at all source operands to decide vm_wait_cnt 989 // and lgk_wait_cnt. 990 991 // Two cases are handled for destination operands: 992 // 1) If the destination operand was defined by a load, add the s_waitcnt 993 // instruction to guarantee the right WAW order. 994 // 2) If a destination operand that was used by a recent export/store ins, 995 // add s_waitcnt on exp_cnt to guarantee the WAR order. 996 if (MI.mayStore()) { 997 // FIXME: Should not be relying on memoperands. 998 for (const MachineMemOperand *Memop : MI.memoperands()) { 999 unsigned AS = Memop->getAddrSpace(); 1000 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1001 continue; 1002 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1003 ScoreBrackets.determineWait( 1004 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1005 ScoreBrackets.determineWait( 1006 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1007 } 1008 } 1009 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1010 MachineOperand &Def = MI.getOperand(I); 1011 const MachineRegisterInfo &MRIA = *MRI; 1012 RegInterval Interval = 1013 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 1014 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1015 if (TRI->isVGPR(MRIA, Def.getReg())) { 1016 ScoreBrackets.determineWait( 1017 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1018 ScoreBrackets.determineWait( 1019 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1020 } 1021 ScoreBrackets.determineWait( 1022 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1023 } 1024 } // End of for loop that looks at all dest operands. 1025 } 1026 } 1027 1028 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1029 // occurs before the instruction. Doing it here prevents any additional 1030 // S_WAITCNTs from being emitted if the instruction was marked as 1031 // requiring a WAITCNT beforehand. 1032 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1033 !ST->hasAutoWaitcntBeforeBarrier()) { 1034 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 1035 } 1036 1037 // TODO: Remove this work-around, enable the assert for Bug 457939 1038 // after fixing the scheduler. Also, the Shader Compiler code is 1039 // independent of target. 1040 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1041 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1042 ScoreBrackets.getScoreUB(LGKM_CNT) && 1043 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1044 Wait.LgkmCnt = 0; 1045 } 1046 } 1047 1048 // Early-out if no wait is indicated. 1049 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1050 bool Modified = false; 1051 if (OldWaitcntInstr) { 1052 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1053 &*II != &MI; II = NextI, ++NextI) { 1054 if (II->isDebugInstr()) 1055 continue; 1056 1057 if (TrackedWaitcntSet.count(&*II)) { 1058 TrackedWaitcntSet.erase(&*II); 1059 II->eraseFromParent(); 1060 Modified = true; 1061 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1062 int64_t Imm = II->getOperand(0).getImm(); 1063 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1064 } else { 1065 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1066 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1067 ScoreBrackets.applyWaitcnt( 1068 AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm())); 1069 } 1070 } 1071 } 1072 return Modified; 1073 } 1074 1075 if (ForceEmitZeroWaitcnts) 1076 Wait = AMDGPU::Waitcnt::allZero(IV); 1077 1078 if (ForceEmitWaitcnt[VM_CNT]) 1079 Wait.VmCnt = 0; 1080 if (ForceEmitWaitcnt[EXP_CNT]) 1081 Wait.ExpCnt = 0; 1082 if (ForceEmitWaitcnt[LGKM_CNT]) 1083 Wait.LgkmCnt = 0; 1084 if (ForceEmitWaitcnt[VS_CNT]) 1085 Wait.VsCnt = 0; 1086 1087 ScoreBrackets.applyWaitcnt(Wait); 1088 1089 AMDGPU::Waitcnt OldWait; 1090 bool Modified = false; 1091 1092 if (OldWaitcntInstr) { 1093 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1094 &*II != &MI; II = NextI, NextI++) { 1095 if (II->isDebugInstr()) 1096 continue; 1097 1098 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1099 unsigned IEnc = II->getOperand(0).getImm(); 1100 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1101 OldWait = OldWait.combined(IWait); 1102 if (!TrackedWaitcntSet.count(&*II)) 1103 Wait = Wait.combined(IWait); 1104 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1105 if (IEnc != NewEnc) { 1106 II->getOperand(0).setImm(NewEnc); 1107 Modified = true; 1108 } 1109 Wait.VmCnt = ~0u; 1110 Wait.LgkmCnt = ~0u; 1111 Wait.ExpCnt = ~0u; 1112 } else { 1113 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1114 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1115 1116 unsigned ICnt = II->getOperand(1).getImm(); 1117 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1118 if (!TrackedWaitcntSet.count(&*II)) 1119 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1120 if (Wait.VsCnt != ICnt) { 1121 II->getOperand(1).setImm(Wait.VsCnt); 1122 Modified = true; 1123 } 1124 Wait.VsCnt = ~0u; 1125 } 1126 1127 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1128 << "Old Instr: " << MI << '\n' 1129 << "New Instr: " << *II << '\n'); 1130 1131 if (!Wait.hasWait()) 1132 return Modified; 1133 } 1134 } 1135 1136 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1137 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1138 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1139 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1140 .addImm(Enc); 1141 TrackedWaitcntSet.insert(SWaitInst); 1142 Modified = true; 1143 1144 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1145 << "Old Instr: " << MI << '\n' 1146 << "New Instr: " << *SWaitInst << '\n'); 1147 } 1148 1149 if (Wait.VsCnt != ~0u) { 1150 assert(ST->hasVscnt()); 1151 1152 auto SWaitInst = 1153 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1154 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1155 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1156 .addImm(Wait.VsCnt); 1157 TrackedWaitcntSet.insert(SWaitInst); 1158 Modified = true; 1159 1160 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1161 << "Old Instr: " << MI << '\n' 1162 << "New Instr: " << *SWaitInst << '\n'); 1163 } 1164 1165 return Modified; 1166 } 1167 1168 // This is a flat memory operation. Check to see if it has memory 1169 // tokens for both LDS and Memory, and if so mark it as a flat. 1170 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1171 if (MI.memoperands_empty()) 1172 return true; 1173 1174 for (const MachineMemOperand *Memop : MI.memoperands()) { 1175 unsigned AS = Memop->getAddrSpace(); 1176 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1177 return true; 1178 } 1179 1180 return false; 1181 } 1182 1183 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1184 WaitcntBrackets *ScoreBrackets) { 1185 // Now look at the instruction opcode. If it is a memory access 1186 // instruction, update the upper-bound of the appropriate counter's 1187 // bracket and the destination operand scores. 1188 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1189 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1190 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1191 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1192 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1193 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1194 } else { 1195 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1196 } 1197 } else if (TII->isFLAT(Inst)) { 1198 assert(Inst.mayLoad() || Inst.mayStore()); 1199 1200 if (TII->usesVM_CNT(Inst)) { 1201 if (!ST->hasVscnt()) 1202 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1203 else if (Inst.mayLoad() && 1204 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) 1205 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1206 else 1207 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1208 } 1209 1210 if (TII->usesLGKM_CNT(Inst)) { 1211 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1212 1213 // This is a flat memory operation, so note it - it will require 1214 // that both the VM and LGKM be flushed to zero if it is pending when 1215 // a VM or LGKM dependency occurs. 1216 if (mayAccessLDSThroughFlat(Inst)) 1217 ScoreBrackets->setPendingFlat(); 1218 } 1219 } else if (SIInstrInfo::isVMEM(Inst) && 1220 // TODO: get a better carve out. 1221 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1222 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1223 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1224 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1225 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1226 if (!ST->hasVscnt()) 1227 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1228 else if ((Inst.mayLoad() && 1229 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || 1230 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1231 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1232 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1233 else if (Inst.mayStore()) 1234 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1235 1236 if (ST->vmemWriteNeedsExpWaitcnt() && 1237 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1238 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1239 } 1240 } else if (TII->isSMRD(Inst)) { 1241 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1242 } else if (Inst.isCall()) { 1243 if (callWaitsOnFunctionReturn(Inst)) { 1244 // Act as a wait on everything 1245 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV)); 1246 } else { 1247 // May need to way wait for anything. 1248 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1249 } 1250 } else { 1251 switch (Inst.getOpcode()) { 1252 case AMDGPU::S_SENDMSG: 1253 case AMDGPU::S_SENDMSGHALT: 1254 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1255 break; 1256 case AMDGPU::EXP: 1257 case AMDGPU::EXP_DONE: { 1258 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1259 if (Imm >= 32 && Imm <= 63) 1260 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1261 else if (Imm >= 12 && Imm <= 15) 1262 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1263 else 1264 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1265 break; 1266 } 1267 case AMDGPU::S_MEMTIME: 1268 case AMDGPU::S_MEMREALTIME: 1269 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1270 break; 1271 default: 1272 break; 1273 } 1274 } 1275 } 1276 1277 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1278 uint32_t OtherScore) { 1279 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1280 uint32_t OtherShifted = 1281 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1282 Score = std::max(MyShifted, OtherShifted); 1283 return OtherShifted > MyShifted; 1284 } 1285 1286 /// Merge the pending events and associater score brackets of \p Other into 1287 /// this brackets status. 1288 /// 1289 /// Returns whether the merge resulted in a change that requires tighter waits 1290 /// (i.e. the merged brackets strictly dominate the original brackets). 1291 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1292 bool StrictDom = false; 1293 1294 for (auto T : inst_counter_types()) { 1295 // Merge event flags for this counter 1296 const bool OldOutOfOrder = counterOutOfOrder(T); 1297 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1298 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1299 if (OtherEvents & ~OldEvents) 1300 StrictDom = true; 1301 if (Other.MixedPendingEvents[T] || 1302 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1303 MixedPendingEvents[T] = true; 1304 PendingEvents |= OtherEvents; 1305 1306 // Merge scores for this counter 1307 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1308 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1309 MergeInfo M; 1310 M.OldLB = ScoreLBs[T]; 1311 M.OtherLB = Other.ScoreLBs[T]; 1312 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1313 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1314 1315 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1316 if (NewUB < ScoreUBs[T]) 1317 report_fatal_error("waitcnt score overflow"); 1318 ScoreUBs[T] = NewUB; 1319 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1320 1321 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1322 1323 bool RegStrictDom = false; 1324 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1325 J++) { 1326 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1327 } 1328 1329 if (T == LGKM_CNT) { 1330 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1331 J != E; J++) { 1332 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1333 } 1334 } 1335 1336 if (RegStrictDom && !OldOutOfOrder) 1337 StrictDom = true; 1338 } 1339 1340 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1341 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1342 1343 return StrictDom; 1344 } 1345 1346 // Generate s_waitcnt instructions where needed. 1347 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1348 MachineBasicBlock &Block, 1349 WaitcntBrackets &ScoreBrackets) { 1350 bool Modified = false; 1351 1352 LLVM_DEBUG({ 1353 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1354 ScoreBrackets.dump(); 1355 }); 1356 1357 // Walk over the instructions. 1358 MachineInstr *OldWaitcntInstr = nullptr; 1359 1360 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1361 E = Block.instr_end(); 1362 Iter != E;) { 1363 MachineInstr &Inst = *Iter; 1364 1365 // Track pre-existing waitcnts from earlier iterations. 1366 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1367 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1368 Inst.getOperand(0).isReg() && 1369 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1370 if (!OldWaitcntInstr) 1371 OldWaitcntInstr = &Inst; 1372 ++Iter; 1373 continue; 1374 } 1375 1376 bool VCCZBugWorkAround = false; 1377 if (readsVCCZ(Inst) && 1378 (!VCCZBugHandledSet.count(&Inst))) { 1379 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1380 ScoreBrackets.getScoreUB(LGKM_CNT) && 1381 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1382 if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1383 VCCZBugWorkAround = true; 1384 } 1385 } 1386 1387 // Generate an s_waitcnt instruction to be placed before 1388 // cur_Inst, if needed. 1389 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1390 OldWaitcntInstr = nullptr; 1391 1392 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1393 1394 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1395 // If this instruction generates a S_SETVSKIP because it is an 1396 // indexed resource, and we are on Tahiti, then it will also force 1397 // an S_WAITCNT vmcnt(0) 1398 if (RequireCheckResourceType(Inst, context)) { 1399 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1400 ScoreBrackets->setScoreLB(VM_CNT, 1401 ScoreBrackets->getScoreUB(VM_CNT)); 1402 } 1403 #endif 1404 1405 LLVM_DEBUG({ 1406 Inst.print(dbgs()); 1407 ScoreBrackets.dump(); 1408 }); 1409 1410 // TODO: Remove this work-around after fixing the scheduler and enable the 1411 // assert above. 1412 if (VCCZBugWorkAround) { 1413 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1414 // bit is updated, so we can restore the bit by reading the value of 1415 // vcc and then writing it back to the register. 1416 BuildMI(Block, Inst, Inst.getDebugLoc(), 1417 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1418 TRI->getVCC()) 1419 .addReg(TRI->getVCC()); 1420 VCCZBugHandledSet.insert(&Inst); 1421 Modified = true; 1422 } 1423 1424 ++Iter; 1425 } 1426 1427 return Modified; 1428 } 1429 1430 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1431 ST = &MF.getSubtarget<GCNSubtarget>(); 1432 TII = ST->getInstrInfo(); 1433 TRI = &TII->getRegisterInfo(); 1434 MRI = &MF.getRegInfo(); 1435 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1436 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1437 1438 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1439 for (auto T : inst_counter_types()) 1440 ForceEmitWaitcnt[T] = false; 1441 1442 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1443 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1444 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1445 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1446 1447 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1448 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1449 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1450 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1451 1452 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1453 RegisterEncoding.VGPRL = 1454 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1455 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1456 RegisterEncoding.SGPRL = 1457 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1458 1459 TrackedWaitcntSet.clear(); 1460 VCCZBugHandledSet.clear(); 1461 RpotIdxMap.clear(); 1462 BlockInfos.clear(); 1463 1464 // Keep iterating over the blocks in reverse post order, inserting and 1465 // updating s_waitcnt where needed, until a fix point is reached. 1466 for (MachineBasicBlock *MBB : 1467 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1468 RpotIdxMap[MBB] = BlockInfos.size(); 1469 BlockInfos.emplace_back(MBB); 1470 } 1471 1472 std::unique_ptr<WaitcntBrackets> Brackets; 1473 bool Modified = false; 1474 bool Repeat; 1475 do { 1476 Repeat = false; 1477 1478 for (BlockInfo &BI : BlockInfos) { 1479 if (!BI.Dirty) 1480 continue; 1481 1482 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1483 1484 if (BI.Incoming) { 1485 if (!Brackets) 1486 Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming); 1487 else 1488 *Brackets = *BI.Incoming; 1489 } else { 1490 if (!Brackets) 1491 Brackets = llvm::make_unique<WaitcntBrackets>(ST); 1492 else 1493 Brackets->clear(); 1494 } 1495 1496 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1497 BI.Dirty = false; 1498 1499 if (Brackets->hasPending()) { 1500 BlockInfo *MoveBracketsToSucc = nullptr; 1501 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1502 unsigned SuccIdx = RpotIdxMap[Succ]; 1503 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1504 if (!SuccBI.Incoming) { 1505 SuccBI.Dirty = true; 1506 if (SuccIdx <= Idx) 1507 Repeat = true; 1508 if (!MoveBracketsToSucc) { 1509 MoveBracketsToSucc = &SuccBI; 1510 } else { 1511 SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets); 1512 } 1513 } else if (SuccBI.Incoming->merge(*Brackets)) { 1514 SuccBI.Dirty = true; 1515 if (SuccIdx <= Idx) 1516 Repeat = true; 1517 } 1518 } 1519 if (MoveBracketsToSucc) 1520 MoveBracketsToSucc->Incoming = std::move(Brackets); 1521 } 1522 } 1523 } while (Repeat); 1524 1525 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1526 1527 bool HaveScalarStores = false; 1528 1529 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1530 ++BI) { 1531 MachineBasicBlock &MBB = *BI; 1532 1533 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1534 ++I) { 1535 if (!HaveScalarStores && TII->isScalarStore(*I)) 1536 HaveScalarStores = true; 1537 1538 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1539 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1540 EndPgmBlocks.push_back(&MBB); 1541 } 1542 } 1543 1544 if (HaveScalarStores) { 1545 // If scalar writes are used, the cache must be flushed or else the next 1546 // wave to reuse the same scratch memory can be clobbered. 1547 // 1548 // Insert s_dcache_wb at wave termination points if there were any scalar 1549 // stores, and only if the cache hasn't already been flushed. This could be 1550 // improved by looking across blocks for flushes in postdominating blocks 1551 // from the stores but an explicitly requested flush is probably very rare. 1552 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1553 bool SeenDCacheWB = false; 1554 1555 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1556 ++I) { 1557 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1558 SeenDCacheWB = true; 1559 else if (TII->isScalarStore(*I)) 1560 SeenDCacheWB = false; 1561 1562 // FIXME: It would be better to insert this before a waitcnt if any. 1563 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1564 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1565 !SeenDCacheWB) { 1566 Modified = true; 1567 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1568 } 1569 } 1570 } 1571 } 1572 1573 if (!MFI->isEntryFunction()) { 1574 // Wait for any outstanding memory operations that the input registers may 1575 // depend on. We can't track them and it's better to the wait after the 1576 // costly call sequence. 1577 1578 // TODO: Could insert earlier and schedule more liberally with operations 1579 // that only use caller preserved registers. 1580 MachineBasicBlock &EntryBB = MF.front(); 1581 if (ST->hasVscnt()) 1582 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), 1583 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1584 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1585 .addImm(0); 1586 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1587 .addImm(0); 1588 1589 Modified = true; 1590 } 1591 1592 return Modified; 1593 } 1594