xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInsertWaitcnts.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "GCNSubtarget.h"
28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "Utils/AMDGPUBaseInfo.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/DebugCounter.h"
36 #include "llvm/Support/TargetParser.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "si-insert-waitcnts"
40 
41 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
42               "Force emit s_waitcnt expcnt(0) instrs");
43 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
44               "Force emit s_waitcnt lgkmcnt(0) instrs");
45 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
46               "Force emit s_waitcnt vmcnt(0) instrs");
47 
48 static cl::opt<bool> ForceEmitZeroFlag(
49   "amdgpu-waitcnt-forcezero",
50   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
51   cl::init(false), cl::Hidden);
52 
53 namespace {
54 
55 template <typename EnumT>
56 class enum_iterator
57     : public iterator_facade_base<enum_iterator<EnumT>,
58                                   std::forward_iterator_tag, const EnumT> {
59   EnumT Value;
60 public:
61   enum_iterator() = default;
62   enum_iterator(EnumT Value) : Value(Value) {}
63 
64   enum_iterator &operator++() {
65     Value = static_cast<EnumT>(Value + 1);
66     return *this;
67   }
68 
69   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
70 
71   EnumT operator*() const { return Value; }
72 };
73 
74 // Class of object that encapsulates latest instruction counter score
75 // associated with the operand.  Used for determining whether
76 // s_waitcnt instruction needs to be emited.
77 
78 #define CNT_MASK(t) (1u << (t))
79 
80 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
81 
82 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
83   return make_range(enum_iterator<InstCounterType>(VM_CNT),
84                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
85 }
86 
87 using RegInterval = std::pair<int, int>;
88 
89 struct {
90   unsigned VmcntMax;
91   unsigned ExpcntMax;
92   unsigned LgkmcntMax;
93   unsigned VscntMax;
94 } HardwareLimits;
95 
96 struct {
97   unsigned VGPR0;
98   unsigned VGPRL;
99   unsigned SGPR0;
100   unsigned SGPRL;
101 } RegisterEncoding;
102 
103 enum WaitEventType {
104   VMEM_ACCESS,      // vector-memory read & write
105   VMEM_READ_ACCESS, // vector-memory read
106   VMEM_WRITE_ACCESS,// vector-memory write
107   LDS_ACCESS,       // lds read & write
108   GDS_ACCESS,       // gds read & write
109   SQ_MESSAGE,       // send message
110   SMEM_ACCESS,      // scalar-memory read & write
111   EXP_GPR_LOCK,     // export holding on its data src
112   GDS_GPR_LOCK,     // GDS holding on its data and addr src
113   EXP_POS_ACCESS,   // write to export position
114   EXP_PARAM_ACCESS, // write to export parameter
115   VMW_GPR_LOCK,     // vector-memory write holding on its data src
116   NUM_WAIT_EVENTS,
117 };
118 
119 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
120   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
121   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
122       (1 << SQ_MESSAGE),
123   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
124       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
125   (1 << VMEM_WRITE_ACCESS)
126 };
127 
128 // The mapping is:
129 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
130 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
131 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
132 // We reserve a fixed number of VGPR slots in the scoring tables for
133 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
134 enum RegisterMapping {
135   SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets.
136   AGPR_OFFSET = 226, // Maximum programmable ArchVGPRs across all targets.
137   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
138   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
139   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
140   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
141 };
142 
143 // Enumerate different types of result-returning VMEM operations. Although
144 // s_waitcnt orders them all with a single vmcnt counter, in the absence of
145 // s_waitcnt only instructions of the same VmemType are guaranteed to write
146 // their results in order -- so there is no need to insert an s_waitcnt between
147 // two instructions of the same type that write the same vgpr.
148 enum VmemType {
149   // BUF instructions and MIMG instructions without a sampler.
150   VMEM_NOSAMPLER,
151   // MIMG instructions with a sampler.
152   VMEM_SAMPLER,
153 };
154 
155 VmemType getVmemType(const MachineInstr &Inst) {
156   assert(SIInstrInfo::isVMEM(Inst));
157   if (!SIInstrInfo::isMIMG(Inst))
158     return VMEM_NOSAMPLER;
159   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
160   return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler
161              ? VMEM_SAMPLER
162              : VMEM_NOSAMPLER;
163 }
164 
165 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
166   switch (T) {
167   case VM_CNT:
168     Wait.VmCnt = std::min(Wait.VmCnt, Count);
169     break;
170   case EXP_CNT:
171     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
172     break;
173   case LGKM_CNT:
174     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
175     break;
176   case VS_CNT:
177     Wait.VsCnt = std::min(Wait.VsCnt, Count);
178     break;
179   default:
180     llvm_unreachable("bad InstCounterType");
181   }
182 }
183 
184 // This objects maintains the current score brackets of each wait counter, and
185 // a per-register scoreboard for each wait counter.
186 //
187 // We also maintain the latest score for every event type that can change the
188 // waitcnt in order to know if there are multiple types of events within
189 // the brackets. When multiple types of event happen in the bracket,
190 // wait count may get decreased out of order, therefore we need to put in
191 // "s_waitcnt 0" before use.
192 class WaitcntBrackets {
193 public:
194   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {}
195 
196   static unsigned getWaitCountMax(InstCounterType T) {
197     switch (T) {
198     case VM_CNT:
199       return HardwareLimits.VmcntMax;
200     case LGKM_CNT:
201       return HardwareLimits.LgkmcntMax;
202     case EXP_CNT:
203       return HardwareLimits.ExpcntMax;
204     case VS_CNT:
205       return HardwareLimits.VscntMax;
206     default:
207       break;
208     }
209     return 0;
210   }
211 
212   unsigned getScoreLB(InstCounterType T) const {
213     assert(T < NUM_INST_CNTS);
214     return ScoreLBs[T];
215   }
216 
217   unsigned getScoreUB(InstCounterType T) const {
218     assert(T < NUM_INST_CNTS);
219     return ScoreUBs[T];
220   }
221 
222   // Mapping from event to counter.
223   InstCounterType eventCounter(WaitEventType E) {
224     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
225       return VM_CNT;
226     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
227       return LGKM_CNT;
228     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
229       return VS_CNT;
230     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
231     return EXP_CNT;
232   }
233 
234   unsigned getRegScore(int GprNo, InstCounterType T) {
235     if (GprNo < NUM_ALL_VGPRS) {
236       return VgprScores[T][GprNo];
237     }
238     assert(T == LGKM_CNT);
239     return SgprScores[GprNo - NUM_ALL_VGPRS];
240   }
241 
242   bool merge(const WaitcntBrackets &Other);
243 
244   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
245                              const MachineRegisterInfo *MRI,
246                              const SIRegisterInfo *TRI, unsigned OpNo) const;
247 
248   bool counterOutOfOrder(InstCounterType T) const;
249   void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
250   void simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
251   void determineWait(InstCounterType T, unsigned ScoreToWait,
252                      AMDGPU::Waitcnt &Wait) const;
253   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
254   void applyWaitcnt(InstCounterType T, unsigned Count);
255   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
256                      const MachineRegisterInfo *MRI, WaitEventType E,
257                      MachineInstr &MI);
258 
259   bool hasPending() const { return PendingEvents != 0; }
260   bool hasPendingEvent(WaitEventType E) const {
261     return PendingEvents & (1 << E);
262   }
263 
264   bool hasMixedPendingEvents(InstCounterType T) const {
265     unsigned Events = PendingEvents & WaitEventMaskForInst[T];
266     // Return true if more than one bit is set in Events.
267     return Events & (Events - 1);
268   }
269 
270   bool hasPendingFlat() const {
271     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
272              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
273             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
274              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
275   }
276 
277   void setPendingFlat() {
278     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
279     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
280   }
281 
282   // Return true if there might be pending writes to the specified vgpr by VMEM
283   // instructions with types different from V.
284   bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
285     assert(GprNo < NUM_ALL_VGPRS);
286     return VgprVmemTypes[GprNo] & ~(1 << V);
287   }
288 
289   void clearVgprVmemTypes(int GprNo) {
290     assert(GprNo < NUM_ALL_VGPRS);
291     VgprVmemTypes[GprNo] = 0;
292   }
293 
294   void print(raw_ostream &);
295   void dump() { print(dbgs()); }
296 
297 private:
298   struct MergeInfo {
299     unsigned OldLB;
300     unsigned OtherLB;
301     unsigned MyShift;
302     unsigned OtherShift;
303   };
304   static bool mergeScore(const MergeInfo &M, unsigned &Score,
305                          unsigned OtherScore);
306 
307   void setScoreLB(InstCounterType T, unsigned Val) {
308     assert(T < NUM_INST_CNTS);
309     ScoreLBs[T] = Val;
310   }
311 
312   void setScoreUB(InstCounterType T, unsigned Val) {
313     assert(T < NUM_INST_CNTS);
314     ScoreUBs[T] = Val;
315     if (T == EXP_CNT) {
316       unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
317       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
318         ScoreLBs[T] = UB;
319     }
320   }
321 
322   void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
323     if (GprNo < NUM_ALL_VGPRS) {
324       VgprUB = std::max(VgprUB, GprNo);
325       VgprScores[T][GprNo] = Val;
326     } else {
327       assert(T == LGKM_CNT);
328       SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
329       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
330     }
331   }
332 
333   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
334                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
335                    unsigned OpNo, unsigned Val);
336 
337   const GCNSubtarget *ST = nullptr;
338   unsigned ScoreLBs[NUM_INST_CNTS] = {0};
339   unsigned ScoreUBs[NUM_INST_CNTS] = {0};
340   unsigned PendingEvents = 0;
341   // Remember the last flat memory operation.
342   unsigned LastFlat[NUM_INST_CNTS] = {0};
343   // wait_cnt scores for every vgpr.
344   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
345   int VgprUB = -1;
346   int SgprUB = -1;
347   unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
348   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
349   unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
350   // Bitmask of the VmemTypes of VMEM instructions that might have a pending
351   // write to each vgpr.
352   unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
353 };
354 
355 class SIInsertWaitcnts : public MachineFunctionPass {
356 private:
357   const GCNSubtarget *ST = nullptr;
358   const SIInstrInfo *TII = nullptr;
359   const SIRegisterInfo *TRI = nullptr;
360   const MachineRegisterInfo *MRI = nullptr;
361   AMDGPU::IsaVersion IV;
362 
363   DenseSet<MachineInstr *> TrackedWaitcntSet;
364   DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
365   MachinePostDominatorTree *PDT;
366 
367   struct BlockInfo {
368     MachineBasicBlock *MBB;
369     std::unique_ptr<WaitcntBrackets> Incoming;
370     bool Dirty = true;
371 
372     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
373   };
374 
375   MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;
376 
377   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
378   // because of amdgpu-waitcnt-forcezero flag
379   bool ForceEmitZeroWaitcnts;
380   bool ForceEmitWaitcnt[NUM_INST_CNTS];
381 
382 public:
383   static char ID;
384 
385   SIInsertWaitcnts() : MachineFunctionPass(ID) {
386     (void)ForceExpCounter;
387     (void)ForceLgkmCounter;
388     (void)ForceVMCounter;
389   }
390 
391   bool runOnMachineFunction(MachineFunction &MF) override;
392 
393   StringRef getPassName() const override {
394     return "SI insert wait instructions";
395   }
396 
397   void getAnalysisUsage(AnalysisUsage &AU) const override {
398     AU.setPreservesCFG();
399     AU.addRequired<MachinePostDominatorTree>();
400     MachineFunctionPass::getAnalysisUsage(AU);
401   }
402 
403   bool isForceEmitWaitcnt() const {
404     for (auto T : inst_counter_types())
405       if (ForceEmitWaitcnt[T])
406         return true;
407     return false;
408   }
409 
410   void setForceEmitWaitcnt() {
411 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
412 // For debug builds, get the debug counter info and adjust if need be
413 #ifndef NDEBUG
414     if (DebugCounter::isCounterSet(ForceExpCounter) &&
415         DebugCounter::shouldExecute(ForceExpCounter)) {
416       ForceEmitWaitcnt[EXP_CNT] = true;
417     } else {
418       ForceEmitWaitcnt[EXP_CNT] = false;
419     }
420 
421     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
422         DebugCounter::shouldExecute(ForceLgkmCounter)) {
423       ForceEmitWaitcnt[LGKM_CNT] = true;
424     } else {
425       ForceEmitWaitcnt[LGKM_CNT] = false;
426     }
427 
428     if (DebugCounter::isCounterSet(ForceVMCounter) &&
429         DebugCounter::shouldExecute(ForceVMCounter)) {
430       ForceEmitWaitcnt[VM_CNT] = true;
431     } else {
432       ForceEmitWaitcnt[VM_CNT] = false;
433     }
434 #endif // NDEBUG
435   }
436 
437   bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const;
438   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
439   bool generateWaitcntInstBefore(MachineInstr &MI,
440                                  WaitcntBrackets &ScoreBrackets,
441                                  MachineInstr *OldWaitcntInstr);
442   void updateEventWaitcntAfter(MachineInstr &Inst,
443                                WaitcntBrackets *ScoreBrackets);
444   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
445                             WaitcntBrackets &ScoreBrackets);
446   bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
447                                MachineInstr &OldWaitcntInstr,
448                                AMDGPU::Waitcnt &Wait, const MachineInstr *MI);
449 };
450 
451 } // end anonymous namespace
452 
453 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
454                                             const SIInstrInfo *TII,
455                                             const MachineRegisterInfo *MRI,
456                                             const SIRegisterInfo *TRI,
457                                             unsigned OpNo) const {
458   const MachineOperand &Op = MI->getOperand(OpNo);
459   if (!TRI->isInAllocatableClass(Op.getReg()))
460     return {-1, -1};
461 
462   // A use via a PW operand does not need a waitcnt.
463   // A partial write is not a WAW.
464   assert(!Op.getSubReg() || !Op.isUndef());
465 
466   RegInterval Result;
467 
468   unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST));
469 
470   if (TRI->isVectorRegister(*MRI, Op.getReg())) {
471     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
472     Result.first = Reg - RegisterEncoding.VGPR0;
473     if (TRI->isAGPR(*MRI, Op.getReg()))
474       Result.first += AGPR_OFFSET;
475     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
476   } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
477     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
478     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
479     assert(Result.first >= NUM_ALL_VGPRS &&
480            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
481   }
482   // TODO: Handle TTMP
483   // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
484   else
485     return {-1, -1};
486 
487   const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
488   unsigned Size = TRI->getRegSizeInBits(*RC);
489   Result.second = Result.first + ((Size + 16) / 32);
490 
491   return Result;
492 }
493 
494 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
495                                   const SIInstrInfo *TII,
496                                   const SIRegisterInfo *TRI,
497                                   const MachineRegisterInfo *MRI, unsigned OpNo,
498                                   unsigned Val) {
499   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
500   assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg()));
501   for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
502     setRegScore(RegNo, EXP_CNT, Val);
503   }
504 }
505 
506 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
507                                     const SIRegisterInfo *TRI,
508                                     const MachineRegisterInfo *MRI,
509                                     WaitEventType E, MachineInstr &Inst) {
510   InstCounterType T = eventCounter(E);
511   unsigned CurrScore = getScoreUB(T) + 1;
512   if (CurrScore == 0)
513     report_fatal_error("InsertWaitcnt score wraparound");
514   // PendingEvents and ScoreUB need to be update regardless if this event
515   // changes the score of a register or not.
516   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
517   PendingEvents |= 1 << E;
518   setScoreUB(T, CurrScore);
519 
520   if (T == EXP_CNT) {
521     // Put score on the source vgprs. If this is a store, just use those
522     // specific register(s).
523     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
524       int AddrOpIdx =
525           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
526       // All GDS operations must protect their address register (same as
527       // export.)
528       if (AddrOpIdx != -1) {
529         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
530       }
531 
532       if (Inst.mayStore()) {
533         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
534                                        AMDGPU::OpName::data0) != -1) {
535           setExpScore(
536               &Inst, TII, TRI, MRI,
537               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
538               CurrScore);
539         }
540         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
541                                        AMDGPU::OpName::data1) != -1) {
542           setExpScore(&Inst, TII, TRI, MRI,
543                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
544                                                  AMDGPU::OpName::data1),
545                       CurrScore);
546         }
547       } else if (SIInstrInfo::isAtomicRet(Inst) &&
548                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
549                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
550                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
551                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
552                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
553                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
554                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
555                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
556         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
557           const MachineOperand &Op = Inst.getOperand(I);
558           if (Op.isReg() && !Op.isDef() &&
559               TRI->isVectorRegister(*MRI, Op.getReg())) {
560             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
561           }
562         }
563       }
564     } else if (TII->isFLAT(Inst)) {
565       if (Inst.mayStore()) {
566         setExpScore(
567             &Inst, TII, TRI, MRI,
568             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
569             CurrScore);
570       } else if (SIInstrInfo::isAtomicRet(Inst)) {
571         setExpScore(
572             &Inst, TII, TRI, MRI,
573             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
574             CurrScore);
575       }
576     } else if (TII->isMIMG(Inst)) {
577       if (Inst.mayStore()) {
578         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
579       } else if (SIInstrInfo::isAtomicRet(Inst)) {
580         setExpScore(
581             &Inst, TII, TRI, MRI,
582             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
583             CurrScore);
584       }
585     } else if (TII->isMTBUF(Inst)) {
586       if (Inst.mayStore()) {
587         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
588       }
589     } else if (TII->isMUBUF(Inst)) {
590       if (Inst.mayStore()) {
591         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
592       } else if (SIInstrInfo::isAtomicRet(Inst)) {
593         setExpScore(
594             &Inst, TII, TRI, MRI,
595             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
596             CurrScore);
597       }
598     } else {
599       if (TII->isEXP(Inst)) {
600         // For export the destination registers are really temps that
601         // can be used as the actual source after export patching, so
602         // we need to treat them like sources and set the EXP_CNT
603         // score.
604         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
605           MachineOperand &DefMO = Inst.getOperand(I);
606           if (DefMO.isReg() && DefMO.isDef() &&
607               TRI->isVGPR(*MRI, DefMO.getReg())) {
608             setRegScore(
609                 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)),
610                 EXP_CNT, CurrScore);
611           }
612         }
613       }
614       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
615         MachineOperand &MO = Inst.getOperand(I);
616         if (MO.isReg() && !MO.isDef() &&
617             TRI->isVectorRegister(*MRI, MO.getReg())) {
618           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
619         }
620       }
621     }
622 #if 0 // TODO: check if this is handled by MUBUF code above.
623   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
624        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
625        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
626     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
627     unsigned OpNo;//TODO: find the OpNo for this operand;
628     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
629     for (int RegNo = Interval.first; RegNo < Interval.second;
630     ++RegNo) {
631       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
632     }
633 #endif
634   } else {
635     // Match the score to the destination registers.
636     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
637       auto &Op = Inst.getOperand(I);
638       if (!Op.isReg() || !Op.isDef())
639         continue;
640       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
641       if (T == VM_CNT) {
642         if (Interval.first >= NUM_ALL_VGPRS)
643           continue;
644         if (SIInstrInfo::isVMEM(Inst)) {
645           VmemType V = getVmemType(Inst);
646           for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
647             VgprVmemTypes[RegNo] |= 1 << V;
648         }
649       }
650       for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
651         setRegScore(RegNo, T, CurrScore);
652       }
653     }
654     if (TII->isDS(Inst) && Inst.mayStore()) {
655       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
656     }
657   }
658 }
659 
660 void WaitcntBrackets::print(raw_ostream &OS) {
661   OS << '\n';
662   for (auto T : inst_counter_types()) {
663     unsigned LB = getScoreLB(T);
664     unsigned UB = getScoreUB(T);
665 
666     switch (T) {
667     case VM_CNT:
668       OS << "    VM_CNT(" << UB - LB << "): ";
669       break;
670     case LGKM_CNT:
671       OS << "    LGKM_CNT(" << UB - LB << "): ";
672       break;
673     case EXP_CNT:
674       OS << "    EXP_CNT(" << UB - LB << "): ";
675       break;
676     case VS_CNT:
677       OS << "    VS_CNT(" << UB - LB << "): ";
678       break;
679     default:
680       OS << "    UNKNOWN(" << UB - LB << "): ";
681       break;
682     }
683 
684     if (LB < UB) {
685       // Print vgpr scores.
686       for (int J = 0; J <= VgprUB; J++) {
687         unsigned RegScore = getRegScore(J, T);
688         if (RegScore <= LB)
689           continue;
690         unsigned RelScore = RegScore - LB - 1;
691         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
692           OS << RelScore << ":v" << J << " ";
693         } else {
694           OS << RelScore << ":ds ";
695         }
696       }
697       // Also need to print sgpr scores for lgkm_cnt.
698       if (T == LGKM_CNT) {
699         for (int J = 0; J <= SgprUB; J++) {
700           unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
701           if (RegScore <= LB)
702             continue;
703           unsigned RelScore = RegScore - LB - 1;
704           OS << RelScore << ":s" << J << " ";
705         }
706       }
707     }
708     OS << '\n';
709   }
710   OS << '\n';
711 }
712 
713 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
714 /// whether a waitcnt instruction is needed at all.
715 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
716   simplifyWaitcnt(VM_CNT, Wait.VmCnt);
717   simplifyWaitcnt(EXP_CNT, Wait.ExpCnt);
718   simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
719   simplifyWaitcnt(VS_CNT, Wait.VsCnt);
720 }
721 
722 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
723                                       unsigned &Count) const {
724   const unsigned LB = getScoreLB(T);
725   const unsigned UB = getScoreUB(T);
726 
727   // The number of outstanding events for this type, T, can be calculated
728   // as (UB - LB). If the current Count is greater than or equal to the number
729   // of outstanding events, then the wait for this counter is redundant.
730   if (Count >= UB - LB)
731     Count = ~0u;
732 }
733 
734 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait,
735                                     AMDGPU::Waitcnt &Wait) const {
736   // If the score of src_operand falls within the bracket, we need an
737   // s_waitcnt instruction.
738   const unsigned LB = getScoreLB(T);
739   const unsigned UB = getScoreUB(T);
740   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
741     if ((T == VM_CNT || T == LGKM_CNT) &&
742         hasPendingFlat() &&
743         !ST->hasFlatLgkmVMemCountInOrder()) {
744       // If there is a pending FLAT operation, and this is a VMem or LGKM
745       // waitcnt and the target can report early completion, then we need
746       // to force a waitcnt 0.
747       addWait(Wait, T, 0);
748     } else if (counterOutOfOrder(T)) {
749       // Counter can get decremented out-of-order when there
750       // are multiple types event in the bracket. Also emit an s_wait counter
751       // with a conservative value of 0 for the counter.
752       addWait(Wait, T, 0);
753     } else {
754       // If a counter has been maxed out avoid overflow by waiting for
755       // MAX(CounterType) - 1 instead.
756       unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
757       addWait(Wait, T, NeededWait);
758     }
759   }
760 }
761 
762 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
763   applyWaitcnt(VM_CNT, Wait.VmCnt);
764   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
765   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
766   applyWaitcnt(VS_CNT, Wait.VsCnt);
767 }
768 
769 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
770   const unsigned UB = getScoreUB(T);
771   if (Count >= UB)
772     return;
773   if (Count != 0) {
774     if (counterOutOfOrder(T))
775       return;
776     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
777   } else {
778     setScoreLB(T, UB);
779     PendingEvents &= ~WaitEventMaskForInst[T];
780   }
781 }
782 
783 // Where there are multiple types of event in the bracket of a counter,
784 // the decrement may go out of order.
785 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
786   // Scalar memory read always can go out of order.
787   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
788     return true;
789   return hasMixedPendingEvents(T);
790 }
791 
792 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
793                       false)
794 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
795 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
796                     false)
797 
798 char SIInsertWaitcnts::ID = 0;
799 
800 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
801 
802 FunctionPass *llvm::createSIInsertWaitcntsPass() {
803   return new SIInsertWaitcnts();
804 }
805 
806 /// Combine consecutive waitcnt instructions that precede \p MI and follow
807 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added
808 /// by previous passes. Currently this pass conservatively assumes that these
809 /// preexisting waitcnt are required for correctness.
810 bool SIInsertWaitcnts::applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
811                                                MachineInstr &OldWaitcntInstr,
812                                                AMDGPU::Waitcnt &Wait,
813                                                const MachineInstr *MI) {
814   bool Modified = false;
815   MachineInstr *WaitcntInstr = nullptr;
816   MachineInstr *WaitcntVsCntInstr = nullptr;
817   for (auto II = OldWaitcntInstr.getIterator(), NextI = std::next(II);
818        &*II != MI; II = NextI, ++NextI) {
819     if (II->isMetaInstruction())
820       continue;
821 
822     if (II->getOpcode() == AMDGPU::S_WAITCNT) {
823       // Conservatively update required wait if this waitcnt was added in an
824       // earlier pass. In this case it will not exist in the tracked waitcnt
825       // set.
826       if (!TrackedWaitcntSet.count(&*II)) {
827         unsigned IEnc = II->getOperand(0).getImm();
828         AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc);
829         Wait = Wait.combined(OldWait);
830       }
831 
832       // Merge consecutive waitcnt of the same type by erasing multiples.
833       if (!WaitcntInstr) {
834         WaitcntInstr = &*II;
835       } else {
836         II->eraseFromParent();
837         Modified = true;
838       }
839 
840     } else {
841       assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
842       assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
843       if (!TrackedWaitcntSet.count(&*II)) {
844         unsigned OldVSCnt =
845             TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm();
846         Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt);
847       }
848 
849       if (!WaitcntVsCntInstr) {
850         WaitcntVsCntInstr = &*II;
851       } else {
852         II->eraseFromParent();
853         Modified = true;
854       }
855     }
856   }
857 
858   // Updated encoding of merged waitcnt with the required wait.
859   if (WaitcntInstr) {
860     if (Wait.hasWaitExceptVsCnt()) {
861       unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
862       unsigned OldEnc = WaitcntInstr->getOperand(0).getImm();
863       if (OldEnc != NewEnc) {
864         WaitcntInstr->getOperand(0).setImm(NewEnc);
865         Modified = true;
866       }
867       ScoreBrackets.applyWaitcnt(Wait);
868       Wait.VmCnt = ~0u;
869       Wait.LgkmCnt = ~0u;
870       Wait.ExpCnt = ~0u;
871 
872       LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
873                         << "Old Instr: " << MI << "New Instr: " << *WaitcntInstr
874                         << '\n');
875     } else {
876       WaitcntInstr->eraseFromParent();
877       Modified = true;
878     }
879   }
880 
881   if (WaitcntVsCntInstr) {
882     if (Wait.hasWaitVsCnt()) {
883       assert(ST->hasVscnt());
884       unsigned OldVSCnt =
885           TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16)
886               ->getImm();
887       if (Wait.VsCnt != OldVSCnt) {
888         TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16)
889             ->setImm(Wait.VsCnt);
890         Modified = true;
891       }
892       ScoreBrackets.applyWaitcnt(Wait);
893       Wait.VsCnt = ~0u;
894 
895       LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
896                         << "Old Instr: " << MI
897                         << "New Instr: " << *WaitcntVsCntInstr << '\n');
898     } else {
899       WaitcntVsCntInstr->eraseFromParent();
900       Modified = true;
901     }
902   }
903 
904   return Modified;
905 }
906 
907 static bool readsVCCZ(const MachineInstr &MI) {
908   unsigned Opc = MI.getOpcode();
909   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
910          !MI.getOperand(1).isUndef();
911 }
912 
913 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
914 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
915   // Currently all conventions wait, but this may not always be the case.
916   //
917   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
918   // senses to omit the wait and do it in the caller.
919   return true;
920 }
921 
922 /// \returns true if the callee is expected to wait for any outstanding waits
923 /// before returning.
924 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
925   return true;
926 }
927 
928 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
929 ///  Instructions of a given type are returned in order,
930 ///  but instructions of different types can complete out of order.
931 ///  We rely on this in-order completion
932 ///  and simply assign a score to the memory access instructions.
933 ///  We keep track of the active "score bracket" to determine
934 ///  if an access of a memory read requires an s_waitcnt
935 ///  and if so what the value of each counter is.
936 ///  The "score bracket" is bound by the lower bound and upper bound
937 ///  scores (*_score_LB and *_score_ub respectively).
938 bool SIInsertWaitcnts::generateWaitcntInstBefore(
939     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
940     MachineInstr *OldWaitcntInstr) {
941   setForceEmitWaitcnt();
942 
943   if (MI.isMetaInstruction())
944     return false;
945 
946   AMDGPU::Waitcnt Wait;
947   bool Modified = false;
948 
949   // FIXME: This should have already been handled by the memory legalizer.
950   // Removing this currently doesn't affect any lit tests, but we need to
951   // verify that nothing was relying on this. The number of buffer invalidates
952   // being handled here should not be expanded.
953   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
954       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
955       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
956       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
957       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
958     Wait.VmCnt = 0;
959   }
960 
961   // All waits must be resolved at call return.
962   // NOTE: this could be improved with knowledge of all call sites or
963   //   with knowledge of the called routines.
964   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
965       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
966       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
967     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
968   }
969   // Resolve vm waits before gs-done.
970   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
971             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
972            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
973             AMDGPU::SendMsg::ID_GS_DONE)) {
974     Wait.VmCnt = 0;
975   }
976 #if 0 // TODO: the following blocks of logic when we have fence.
977   else if (MI.getOpcode() == SC_FENCE) {
978     const unsigned int group_size =
979       context->shader_info->GetMaxThreadGroupSize();
980     // group_size == 0 means thread group size is unknown at compile time
981     const bool group_is_multi_wave =
982       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
983     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
984 
985     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
986       SCRegType src_type = Inst->GetSrcType(i);
987       switch (src_type) {
988         case SCMEM_LDS:
989           if (group_is_multi_wave ||
990             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
991             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
992                                ScoreBrackets->getScoreUB(LGKM_CNT));
993             // LDS may have to wait for VM_CNT after buffer load to LDS
994             if (target_info->HasBufferLoadToLDS()) {
995               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
996                                  ScoreBrackets->getScoreUB(VM_CNT));
997             }
998           }
999           break;
1000 
1001         case SCMEM_GDS:
1002           if (group_is_multi_wave || fence_is_global) {
1003             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
1004               ScoreBrackets->getScoreUB(EXP_CNT));
1005             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
1006               ScoreBrackets->getScoreUB(LGKM_CNT));
1007           }
1008           break;
1009 
1010         case SCMEM_UAV:
1011         case SCMEM_TFBUF:
1012         case SCMEM_RING:
1013         case SCMEM_SCATTER:
1014           if (group_is_multi_wave || fence_is_global) {
1015             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
1016               ScoreBrackets->getScoreUB(EXP_CNT));
1017             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
1018               ScoreBrackets->getScoreUB(VM_CNT));
1019           }
1020           break;
1021 
1022         case SCMEM_SCRATCH:
1023         default:
1024           break;
1025       }
1026     }
1027   }
1028 #endif
1029 
1030   // Export & GDS instructions do not read the EXEC mask until after the export
1031   // is granted (which can occur well after the instruction is issued).
1032   // The shader program must flush all EXP operations on the export-count
1033   // before overwriting the EXEC mask.
1034   else {
1035     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
1036       // Export and GDS are tracked individually, either may trigger a waitcnt
1037       // for EXEC.
1038       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
1039           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
1040           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
1041           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
1042         Wait.ExpCnt = 0;
1043       }
1044     }
1045 
1046     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
1047       // The function is going to insert a wait on everything in its prolog.
1048       // This still needs to be careful if the call target is a load (e.g. a GOT
1049       // load). We also need to check WAW depenancy with saved PC.
1050       Wait = AMDGPU::Waitcnt();
1051 
1052       int CallAddrOpIdx =
1053           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
1054 
1055       if (MI.getOperand(CallAddrOpIdx).isReg()) {
1056         RegInterval CallAddrOpInterval =
1057           ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);
1058 
1059         for (int RegNo = CallAddrOpInterval.first;
1060              RegNo < CallAddrOpInterval.second; ++RegNo)
1061           ScoreBrackets.determineWait(
1062             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1063 
1064         int RtnAddrOpIdx =
1065           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
1066         if (RtnAddrOpIdx != -1) {
1067           RegInterval RtnAddrOpInterval =
1068             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);
1069 
1070           for (int RegNo = RtnAddrOpInterval.first;
1071                RegNo < RtnAddrOpInterval.second; ++RegNo)
1072             ScoreBrackets.determineWait(
1073               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1074         }
1075       }
1076     } else {
1077       // FIXME: Should not be relying on memoperands.
1078       // Look at the source operands of every instruction to see if
1079       // any of them results from a previous memory operation that affects
1080       // its current usage. If so, an s_waitcnt instruction needs to be
1081       // emitted.
1082       // If the source operand was defined by a load, add the s_waitcnt
1083       // instruction.
1084       //
1085       // Two cases are handled for destination operands:
1086       // 1) If the destination operand was defined by a load, add the s_waitcnt
1087       // instruction to guarantee the right WAW order.
1088       // 2) If a destination operand that was used by a recent export/store ins,
1089       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1090       for (const MachineMemOperand *Memop : MI.memoperands()) {
1091         const Value *Ptr = Memop->getValue();
1092         if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
1093           addWait(Wait, LGKM_CNT, 0);
1094           if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
1095             SLoadAddresses.erase(Ptr);
1096         }
1097         unsigned AS = Memop->getAddrSpace();
1098         if (AS != AMDGPUAS::LOCAL_ADDRESS)
1099           continue;
1100         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1101         // VM_CNT is only relevant to vgpr or LDS.
1102         ScoreBrackets.determineWait(
1103             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1104         if (Memop->isStore()) {
1105           ScoreBrackets.determineWait(
1106               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1107         }
1108       }
1109 
1110       // Loop over use and def operands.
1111       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1112         MachineOperand &Op = MI.getOperand(I);
1113         if (!Op.isReg())
1114           continue;
1115         RegInterval Interval =
1116             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);
1117 
1118         const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg());
1119         for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1120           if (IsVGPR) {
1121             // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
1122             // previous write and this write are the same type of VMEM
1123             // instruction, in which case they're guaranteed to write their
1124             // results in order anyway.
1125             if (Op.isUse() || !SIInstrInfo::isVMEM(MI) ||
1126                 ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
1127                                                        getVmemType(MI))) {
1128               ScoreBrackets.determineWait(
1129                   VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1130               ScoreBrackets.clearVgprVmemTypes(RegNo);
1131             }
1132             if (Op.isDef()) {
1133               ScoreBrackets.determineWait(
1134                   EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1135             }
1136           }
1137           ScoreBrackets.determineWait(
1138               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1139         }
1140       }
1141     }
1142   }
1143 
1144   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1145   // occurs before the instruction. Doing it here prevents any additional
1146   // S_WAITCNTs from being emitted if the instruction was marked as
1147   // requiring a WAITCNT beforehand.
1148   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1149       !ST->hasAutoWaitcntBeforeBarrier()) {
1150     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1151   }
1152 
1153   // TODO: Remove this work-around, enable the assert for Bug 457939
1154   //       after fixing the scheduler. Also, the Shader Compiler code is
1155   //       independent of target.
1156   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1157     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1158             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1159         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1160       Wait.LgkmCnt = 0;
1161     }
1162   }
1163 
1164   // Verify that the wait is actually needed.
1165   ScoreBrackets.simplifyWaitcnt(Wait);
1166 
1167   if (ForceEmitZeroWaitcnts)
1168     Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt());
1169 
1170   if (ForceEmitWaitcnt[VM_CNT])
1171     Wait.VmCnt = 0;
1172   if (ForceEmitWaitcnt[EXP_CNT])
1173     Wait.ExpCnt = 0;
1174   if (ForceEmitWaitcnt[LGKM_CNT])
1175     Wait.LgkmCnt = 0;
1176   if (ForceEmitWaitcnt[VS_CNT])
1177     Wait.VsCnt = 0;
1178 
1179   if (OldWaitcntInstr) {
1180     // Try to merge the required wait with preexisting waitcnt instructions.
1181     // Also erase redundant waitcnt.
1182     Modified =
1183         applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, &MI);
1184   } else {
1185     // Update waitcnt brackets after determining the required wait.
1186     ScoreBrackets.applyWaitcnt(Wait);
1187   }
1188 
1189   // Build new waitcnt instructions unless no wait is needed or the old waitcnt
1190   // instruction was modified to handle the required wait.
1191   if (Wait.hasWaitExceptVsCnt()) {
1192     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1193     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1194                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1195                          .addImm(Enc);
1196     TrackedWaitcntSet.insert(SWaitInst);
1197     Modified = true;
1198 
1199     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1200                       << "Old Instr: " << MI
1201                       << "New Instr: " << *SWaitInst << '\n');
1202   }
1203 
1204   if (Wait.hasWaitVsCnt()) {
1205     assert(ST->hasVscnt());
1206 
1207     auto SWaitInst =
1208         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1209                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1210             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1211             .addImm(Wait.VsCnt);
1212     TrackedWaitcntSet.insert(SWaitInst);
1213     Modified = true;
1214 
1215     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1216                       << "Old Instr: " << MI
1217                       << "New Instr: " << *SWaitInst << '\n');
1218   }
1219 
1220   return Modified;
1221 }
1222 
1223 // This is a flat memory operation. Check to see if it has memory tokens other
1224 // than LDS. Other address spaces supported by flat memory operations involve
1225 // global memory.
1226 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const {
1227   assert(TII->isFLAT(MI));
1228 
1229   // All flat instructions use the VMEM counter.
1230   assert(TII->usesVM_CNT(MI));
1231 
1232   // If there are no memory operands then conservatively assume the flat
1233   // operation may access VMEM.
1234   if (MI.memoperands_empty())
1235     return true;
1236 
1237   // See if any memory operand specifies an address space that involves VMEM.
1238   // Flat operations only supported FLAT, LOCAL (LDS), or address spaces
1239   // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION
1240   // (GDS) address space is not supported by flat operations. Therefore, simply
1241   // return true unless only the LDS address space is found.
1242   for (const MachineMemOperand *Memop : MI.memoperands()) {
1243     unsigned AS = Memop->getAddrSpace();
1244     assert(AS != AMDGPUAS::REGION_ADDRESS);
1245     if (AS != AMDGPUAS::LOCAL_ADDRESS)
1246       return true;
1247   }
1248 
1249   return false;
1250 }
1251 
1252 // This is a flat memory operation. Check to see if it has memory tokens for
1253 // either LDS or FLAT.
1254 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1255   assert(TII->isFLAT(MI));
1256 
1257   // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter.
1258   if (!TII->usesLGKM_CNT(MI))
1259     return false;
1260 
1261   // If in tgsplit mode then there can be no use of LDS.
1262   if (ST->isTgSplitEnabled())
1263     return false;
1264 
1265   // If there are no memory operands then conservatively assume the flat
1266   // operation may access LDS.
1267   if (MI.memoperands_empty())
1268     return true;
1269 
1270   // See if any memory operand specifies an address space that involves LDS.
1271   for (const MachineMemOperand *Memop : MI.memoperands()) {
1272     unsigned AS = Memop->getAddrSpace();
1273     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1274       return true;
1275   }
1276 
1277   return false;
1278 }
1279 
1280 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1281                                                WaitcntBrackets *ScoreBrackets) {
1282   // Now look at the instruction opcode. If it is a memory access
1283   // instruction, update the upper-bound of the appropriate counter's
1284   // bracket and the destination operand scores.
1285   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1286   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1287     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1288         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1289       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1290       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1291     } else {
1292       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1293     }
1294   } else if (TII->isFLAT(Inst)) {
1295     assert(Inst.mayLoadOrStore());
1296 
1297     int FlatASCount = 0;
1298 
1299     if (mayAccessVMEMThroughFlat(Inst)) {
1300       ++FlatASCount;
1301       if (!ST->hasVscnt())
1302         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1303       else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst))
1304         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1305       else
1306         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1307     }
1308 
1309     if (mayAccessLDSThroughFlat(Inst)) {
1310       ++FlatASCount;
1311       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1312     }
1313 
1314     // A Flat memory operation must access at least one address space.
1315     assert(FlatASCount);
1316 
1317     // This is a flat memory operation that access both VMEM and LDS, so note it
1318     // - it will require that both the VM and LGKM be flushed to zero if it is
1319     // pending when a VM or LGKM dependency occurs.
1320     if (FlatASCount > 1)
1321       ScoreBrackets->setPendingFlat();
1322   } else if (SIInstrInfo::isVMEM(Inst) &&
1323              !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) {
1324     if (!ST->hasVscnt())
1325       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1326     else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) ||
1327              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1328              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1329       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1330     else if (Inst.mayStore())
1331       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1332 
1333     if (ST->vmemWriteNeedsExpWaitcnt() &&
1334         (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) {
1335       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1336     }
1337   } else if (TII->isSMRD(Inst)) {
1338     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1339   } else if (Inst.isCall()) {
1340     if (callWaitsOnFunctionReturn(Inst)) {
1341       // Act as a wait on everything
1342       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1343     } else {
1344       // May need to way wait for anything.
1345       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1346     }
1347   } else if (SIInstrInfo::isEXP(Inst)) {
1348     unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1349     if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31)
1350       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1351     else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST)
1352       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1353     else
1354       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1355   } else {
1356     switch (Inst.getOpcode()) {
1357     case AMDGPU::S_SENDMSG:
1358     case AMDGPU::S_SENDMSGHALT:
1359       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1360       break;
1361     case AMDGPU::S_MEMTIME:
1362     case AMDGPU::S_MEMREALTIME:
1363       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1364       break;
1365     }
1366   }
1367 }
1368 
1369 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
1370                                  unsigned OtherScore) {
1371   unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1372   unsigned OtherShifted =
1373       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1374   Score = std::max(MyShifted, OtherShifted);
1375   return OtherShifted > MyShifted;
1376 }
1377 
1378 /// Merge the pending events and associater score brackets of \p Other into
1379 /// this brackets status.
1380 ///
1381 /// Returns whether the merge resulted in a change that requires tighter waits
1382 /// (i.e. the merged brackets strictly dominate the original brackets).
1383 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1384   bool StrictDom = false;
1385 
1386   VgprUB = std::max(VgprUB, Other.VgprUB);
1387   SgprUB = std::max(SgprUB, Other.SgprUB);
1388 
1389   for (auto T : inst_counter_types()) {
1390     // Merge event flags for this counter
1391     const bool OldOutOfOrder = counterOutOfOrder(T);
1392     const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
1393     const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1394     if (OtherEvents & ~OldEvents)
1395       StrictDom = true;
1396     PendingEvents |= OtherEvents;
1397 
1398     // Merge scores for this counter
1399     const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
1400     const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1401     const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
1402     if (NewUB < ScoreLBs[T])
1403       report_fatal_error("waitcnt score overflow");
1404 
1405     MergeInfo M;
1406     M.OldLB = ScoreLBs[T];
1407     M.OtherLB = Other.ScoreLBs[T];
1408     M.MyShift = NewUB - ScoreUBs[T];
1409     M.OtherShift = NewUB - Other.ScoreUBs[T];
1410 
1411     ScoreUBs[T] = NewUB;
1412 
1413     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1414 
1415     bool RegStrictDom = false;
1416     for (int J = 0; J <= VgprUB; J++) {
1417       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1418     }
1419 
1420     if (T == VM_CNT) {
1421       for (int J = 0; J <= VgprUB; J++) {
1422         unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
1423         RegStrictDom |= NewVmemTypes != VgprVmemTypes[J];
1424         VgprVmemTypes[J] = NewVmemTypes;
1425       }
1426     }
1427 
1428     if (T == LGKM_CNT) {
1429       for (int J = 0; J <= SgprUB; J++) {
1430         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1431       }
1432     }
1433 
1434     if (RegStrictDom && !OldOutOfOrder)
1435       StrictDom = true;
1436   }
1437 
1438   return StrictDom;
1439 }
1440 
1441 // Generate s_waitcnt instructions where needed.
1442 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1443                                             MachineBasicBlock &Block,
1444                                             WaitcntBrackets &ScoreBrackets) {
1445   bool Modified = false;
1446 
1447   LLVM_DEBUG({
1448     dbgs() << "*** Block" << Block.getNumber() << " ***";
1449     ScoreBrackets.dump();
1450   });
1451 
1452   // Track the correctness of vccz through this basic block. There are two
1453   // reasons why it might be incorrect; see ST->hasReadVCCZBug() and
1454   // ST->partialVCCWritesUpdateVCCZ().
1455   bool VCCZCorrect = true;
1456   if (ST->hasReadVCCZBug()) {
1457     // vccz could be incorrect at a basic block boundary if a predecessor wrote
1458     // to vcc and then issued an smem load.
1459     VCCZCorrect = false;
1460   } else if (!ST->partialVCCWritesUpdateVCCZ()) {
1461     // vccz could be incorrect at a basic block boundary if a predecessor wrote
1462     // to vcc_lo or vcc_hi.
1463     VCCZCorrect = false;
1464   }
1465 
1466   // Walk over the instructions.
1467   MachineInstr *OldWaitcntInstr = nullptr;
1468 
1469   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1470                                          E = Block.instr_end();
1471        Iter != E;) {
1472     MachineInstr &Inst = *Iter;
1473 
1474     // Track pre-existing waitcnts that were added in earlier iterations or by
1475     // the memory legalizer.
1476     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1477         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1478          Inst.getOperand(0).isReg() &&
1479          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1480       if (!OldWaitcntInstr)
1481         OldWaitcntInstr = &Inst;
1482       ++Iter;
1483       continue;
1484     }
1485 
1486     // Generate an s_waitcnt instruction to be placed before Inst, if needed.
1487     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1488     OldWaitcntInstr = nullptr;
1489 
1490     // Restore vccz if it's not known to be correct already.
1491     bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst);
1492 
1493     // Don't examine operands unless we need to track vccz correctness.
1494     if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) {
1495       if (Inst.definesRegister(AMDGPU::VCC_LO) ||
1496           Inst.definesRegister(AMDGPU::VCC_HI)) {
1497         // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
1498         if (!ST->partialVCCWritesUpdateVCCZ())
1499           VCCZCorrect = false;
1500       } else if (Inst.definesRegister(AMDGPU::VCC)) {
1501         // There is a hardware bug on CI/SI where SMRD instruction may corrupt
1502         // vccz bit, so when we detect that an instruction may read from a
1503         // corrupt vccz bit, we need to:
1504         // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
1505         //    operations to complete.
1506         // 2. Restore the correct value of vccz by writing the current value
1507         //    of vcc back to vcc.
1508         if (ST->hasReadVCCZBug() &&
1509             ScoreBrackets.getScoreLB(LGKM_CNT) <
1510                 ScoreBrackets.getScoreUB(LGKM_CNT) &&
1511             ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1512           // Writes to vcc while there's an outstanding smem read may get
1513           // clobbered as soon as any read completes.
1514           VCCZCorrect = false;
1515         } else {
1516           // Writes to vcc will fix any incorrect value in vccz.
1517           VCCZCorrect = true;
1518         }
1519       }
1520     }
1521 
1522     if (TII->isSMRD(Inst)) {
1523       for (const MachineMemOperand *Memop : Inst.memoperands()) {
1524         // No need to handle invariant loads when avoiding WAR conflicts, as
1525         // there cannot be a vector store to the same memory location.
1526         if (!Memop->isInvariant()) {
1527           const Value *Ptr = Memop->getValue();
1528           SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
1529         }
1530       }
1531       if (ST->hasReadVCCZBug()) {
1532         // This smem read could complete and clobber vccz at any time.
1533         VCCZCorrect = false;
1534       }
1535     }
1536 
1537     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1538 
1539 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1540     // If this instruction generates a S_SETVSKIP because it is an
1541     // indexed resource, and we are on Tahiti, then it will also force
1542     // an S_WAITCNT vmcnt(0)
1543     if (RequireCheckResourceType(Inst, context)) {
1544       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1545       ScoreBrackets->setScoreLB(VM_CNT,
1546       ScoreBrackets->getScoreUB(VM_CNT));
1547     }
1548 #endif
1549 
1550     LLVM_DEBUG({
1551       Inst.print(dbgs());
1552       ScoreBrackets.dump();
1553     });
1554 
1555     // TODO: Remove this work-around after fixing the scheduler and enable the
1556     // assert above.
1557     if (RestoreVCCZ) {
1558       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1559       // bit is updated, so we can restore the bit by reading the value of
1560       // vcc and then writing it back to the register.
1561       BuildMI(Block, Inst, Inst.getDebugLoc(),
1562               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1563               TRI->getVCC())
1564           .addReg(TRI->getVCC());
1565       VCCZCorrect = true;
1566       Modified = true;
1567     }
1568 
1569     ++Iter;
1570   }
1571 
1572   return Modified;
1573 }
1574 
1575 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1576   ST = &MF.getSubtarget<GCNSubtarget>();
1577   TII = ST->getInstrInfo();
1578   TRI = &TII->getRegisterInfo();
1579   MRI = &MF.getRegInfo();
1580   IV = AMDGPU::getIsaVersion(ST->getCPU());
1581   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1582   PDT = &getAnalysis<MachinePostDominatorTree>();
1583 
1584   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1585   for (auto T : inst_counter_types())
1586     ForceEmitWaitcnt[T] = false;
1587 
1588   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1589   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1590   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1591   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1592 
1593   unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
1594   unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
1595   assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1596   assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1597 
1598   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1599   RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1;
1600   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1601   RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1;
1602 
1603   TrackedWaitcntSet.clear();
1604   BlockInfos.clear();
1605   bool Modified = false;
1606 
1607   if (!MFI->isEntryFunction()) {
1608     // Wait for any outstanding memory operations that the input registers may
1609     // depend on. We can't track them and it's better to do the wait after the
1610     // costly call sequence.
1611 
1612     // TODO: Could insert earlier and schedule more liberally with operations
1613     // that only use caller preserved registers.
1614     MachineBasicBlock &EntryBB = MF.front();
1615     MachineBasicBlock::iterator I = EntryBB.begin();
1616     for (MachineBasicBlock::iterator E = EntryBB.end();
1617          I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
1618       ;
1619     BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
1620     if (ST->hasVscnt())
1621       BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT))
1622           .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1623           .addImm(0);
1624 
1625     Modified = true;
1626   }
1627 
1628   // Keep iterating over the blocks in reverse post order, inserting and
1629   // updating s_waitcnt where needed, until a fix point is reached.
1630   for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
1631     BlockInfos.insert({MBB, BlockInfo(MBB)});
1632 
1633   std::unique_ptr<WaitcntBrackets> Brackets;
1634   bool Repeat;
1635   do {
1636     Repeat = false;
1637 
1638     for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
1639          ++BII) {
1640       BlockInfo &BI = BII->second;
1641       if (!BI.Dirty)
1642         continue;
1643 
1644       if (BI.Incoming) {
1645         if (!Brackets)
1646           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1647         else
1648           *Brackets = *BI.Incoming;
1649       } else {
1650         if (!Brackets)
1651           Brackets = std::make_unique<WaitcntBrackets>(ST);
1652         else
1653           *Brackets = WaitcntBrackets(ST);
1654       }
1655 
1656       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1657       BI.Dirty = false;
1658 
1659       if (Brackets->hasPending()) {
1660         BlockInfo *MoveBracketsToSucc = nullptr;
1661         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1662           auto SuccBII = BlockInfos.find(Succ);
1663           BlockInfo &SuccBI = SuccBII->second;
1664           if (!SuccBI.Incoming) {
1665             SuccBI.Dirty = true;
1666             if (SuccBII <= BII)
1667               Repeat = true;
1668             if (!MoveBracketsToSucc) {
1669               MoveBracketsToSucc = &SuccBI;
1670             } else {
1671               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1672             }
1673           } else if (SuccBI.Incoming->merge(*Brackets)) {
1674             SuccBI.Dirty = true;
1675             if (SuccBII <= BII)
1676               Repeat = true;
1677           }
1678         }
1679         if (MoveBracketsToSucc)
1680           MoveBracketsToSucc->Incoming = std::move(Brackets);
1681       }
1682     }
1683   } while (Repeat);
1684 
1685   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1686 
1687   bool HaveScalarStores = false;
1688 
1689   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1690        ++BI) {
1691     MachineBasicBlock &MBB = *BI;
1692 
1693     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1694          ++I) {
1695       if (!HaveScalarStores && TII->isScalarStore(*I))
1696         HaveScalarStores = true;
1697 
1698       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1699           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1700         EndPgmBlocks.push_back(&MBB);
1701     }
1702   }
1703 
1704   if (HaveScalarStores) {
1705     // If scalar writes are used, the cache must be flushed or else the next
1706     // wave to reuse the same scratch memory can be clobbered.
1707     //
1708     // Insert s_dcache_wb at wave termination points if there were any scalar
1709     // stores, and only if the cache hasn't already been flushed. This could be
1710     // improved by looking across blocks for flushes in postdominating blocks
1711     // from the stores but an explicitly requested flush is probably very rare.
1712     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1713       bool SeenDCacheWB = false;
1714 
1715       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1716            ++I) {
1717         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1718           SeenDCacheWB = true;
1719         else if (TII->isScalarStore(*I))
1720           SeenDCacheWB = false;
1721 
1722         // FIXME: It would be better to insert this before a waitcnt if any.
1723         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1724              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1725             !SeenDCacheWB) {
1726           Modified = true;
1727           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1728         }
1729       }
1730     }
1731   }
1732 
1733   return Modified;
1734 }
1735