1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/TargetParser/TargetParser.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "si-insert-waitcnts" 42 43 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 44 "Force emit s_waitcnt expcnt(0) instrs"); 45 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 46 "Force emit s_waitcnt lgkmcnt(0) instrs"); 47 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 48 "Force emit s_waitcnt vmcnt(0) instrs"); 49 50 static cl::opt<bool> ForceEmitZeroFlag( 51 "amdgpu-waitcnt-forcezero", 52 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 53 cl::init(false), cl::Hidden); 54 55 namespace { 56 // Class of object that encapsulates latest instruction counter score 57 // associated with the operand. Used for determining whether 58 // s_waitcnt instruction needs to be emitted. 59 60 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 61 } // namespace 62 63 namespace llvm { 64 template <> struct enum_iteration_traits<InstCounterType> { 65 static constexpr bool is_iterable = true; 66 }; 67 } // namespace llvm 68 69 namespace { 70 auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); } 71 72 using RegInterval = std::pair<int, int>; 73 74 struct HardwareLimits { 75 unsigned VmcntMax; 76 unsigned ExpcntMax; 77 unsigned LgkmcntMax; 78 unsigned VscntMax; 79 }; 80 81 struct RegisterEncoding { 82 unsigned VGPR0; 83 unsigned VGPRL; 84 unsigned SGPR0; 85 unsigned SGPRL; 86 }; 87 88 enum WaitEventType { 89 VMEM_ACCESS, // vector-memory read & write 90 VMEM_READ_ACCESS, // vector-memory read 91 VMEM_WRITE_ACCESS, // vector-memory write that is not scratch 92 SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch 93 LDS_ACCESS, // lds read & write 94 GDS_ACCESS, // gds read & write 95 SQ_MESSAGE, // send message 96 SMEM_ACCESS, // scalar-memory read & write 97 EXP_GPR_LOCK, // export holding on its data src 98 GDS_GPR_LOCK, // GDS holding on its data and addr src 99 EXP_POS_ACCESS, // write to export position 100 EXP_PARAM_ACCESS, // write to export parameter 101 VMW_GPR_LOCK, // vector-memory write holding on its data src 102 EXP_LDS_ACCESS, // read by ldsdir counting as export 103 NUM_WAIT_EVENTS, 104 }; 105 106 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 107 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 108 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 109 (1 << SQ_MESSAGE), 110 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 111 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS), 112 (1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS)}; 113 114 // The mapping is: 115 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 116 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 117 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 118 // We reserve a fixed number of VGPR slots in the scoring tables for 119 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 120 enum RegisterMapping { 121 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 122 AGPR_OFFSET = 256, // Maximum programmable ArchVGPRs across all targets. 123 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 124 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 125 EXTRA_VGPR_LDS = 0, // An artificial register to track LDS writes. 126 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 127 }; 128 129 // Enumerate different types of result-returning VMEM operations. Although 130 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 131 // s_waitcnt only instructions of the same VmemType are guaranteed to write 132 // their results in order -- so there is no need to insert an s_waitcnt between 133 // two instructions of the same type that write the same vgpr. 134 enum VmemType { 135 // BUF instructions and MIMG instructions without a sampler. 136 VMEM_NOSAMPLER, 137 // MIMG instructions with a sampler. 138 VMEM_SAMPLER, 139 // BVH instructions 140 VMEM_BVH 141 }; 142 143 static bool updateVMCntOnly(const MachineInstr &Inst) { 144 return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) || 145 SIInstrInfo::isFLATScratch(Inst); 146 } 147 148 VmemType getVmemType(const MachineInstr &Inst) { 149 assert(updateVMCntOnly(Inst)); 150 if (!SIInstrInfo::isMIMG(Inst)) 151 return VMEM_NOSAMPLER; 152 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 153 const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = 154 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 155 return BaseInfo->BVH ? VMEM_BVH 156 : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER; 157 } 158 159 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 160 switch (T) { 161 case VM_CNT: 162 Wait.VmCnt = std::min(Wait.VmCnt, Count); 163 break; 164 case EXP_CNT: 165 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 166 break; 167 case LGKM_CNT: 168 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 169 break; 170 case VS_CNT: 171 Wait.VsCnt = std::min(Wait.VsCnt, Count); 172 break; 173 default: 174 llvm_unreachable("bad InstCounterType"); 175 } 176 } 177 178 // This objects maintains the current score brackets of each wait counter, and 179 // a per-register scoreboard for each wait counter. 180 // 181 // We also maintain the latest score for every event type that can change the 182 // waitcnt in order to know if there are multiple types of events within 183 // the brackets. When multiple types of event happen in the bracket, 184 // wait count may get decreased out of order, therefore we need to put in 185 // "s_waitcnt 0" before use. 186 class WaitcntBrackets { 187 public: 188 WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits, 189 RegisterEncoding Encoding) 190 : ST(SubTarget), Limits(Limits), Encoding(Encoding) {} 191 192 unsigned getWaitCountMax(InstCounterType T) const { 193 switch (T) { 194 case VM_CNT: 195 return Limits.VmcntMax; 196 case LGKM_CNT: 197 return Limits.LgkmcntMax; 198 case EXP_CNT: 199 return Limits.ExpcntMax; 200 case VS_CNT: 201 return Limits.VscntMax; 202 default: 203 break; 204 } 205 return 0; 206 } 207 208 unsigned getScoreLB(InstCounterType T) const { 209 assert(T < NUM_INST_CNTS); 210 return ScoreLBs[T]; 211 } 212 213 unsigned getScoreUB(InstCounterType T) const { 214 assert(T < NUM_INST_CNTS); 215 return ScoreUBs[T]; 216 } 217 218 unsigned getScoreRange(InstCounterType T) const { 219 return getScoreUB(T) - getScoreLB(T); 220 } 221 222 // Mapping from event to counter. 223 InstCounterType eventCounter(WaitEventType E) const { 224 for (auto T : inst_counter_types()) { 225 if (WaitEventMaskForInst[T] & (1 << E)) 226 return T; 227 } 228 llvm_unreachable("event type has no associated counter"); 229 } 230 231 unsigned getRegScore(int GprNo, InstCounterType T) const { 232 if (GprNo < NUM_ALL_VGPRS) { 233 return VgprScores[T][GprNo]; 234 } 235 assert(T == LGKM_CNT); 236 return SgprScores[GprNo - NUM_ALL_VGPRS]; 237 } 238 239 bool merge(const WaitcntBrackets &Other); 240 241 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 242 const MachineRegisterInfo *MRI, 243 const SIRegisterInfo *TRI, unsigned OpNo) const; 244 245 bool counterOutOfOrder(InstCounterType T) const; 246 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 247 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 248 void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const; 249 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 250 void applyWaitcnt(InstCounterType T, unsigned Count); 251 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 252 const MachineRegisterInfo *MRI, WaitEventType E, 253 MachineInstr &MI); 254 255 unsigned hasPendingEvent() const { return PendingEvents; } 256 unsigned hasPendingEvent(WaitEventType E) const { 257 return PendingEvents & (1 << E); 258 } 259 unsigned hasPendingEvent(InstCounterType T) const { 260 unsigned HasPending = PendingEvents & WaitEventMaskForInst[T]; 261 assert((HasPending != 0) == (getScoreRange(T) != 0)); 262 return HasPending; 263 } 264 265 bool hasMixedPendingEvents(InstCounterType T) const { 266 unsigned Events = hasPendingEvent(T); 267 // Return true if more than one bit is set in Events. 268 return Events & (Events - 1); 269 } 270 271 bool hasPendingFlat() const { 272 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 273 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 274 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 275 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 276 } 277 278 void setPendingFlat() { 279 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 280 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 281 } 282 283 // Return true if there might be pending writes to the specified vgpr by VMEM 284 // instructions with types different from V. 285 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 286 assert(GprNo < NUM_ALL_VGPRS); 287 return VgprVmemTypes[GprNo] & ~(1 << V); 288 } 289 290 void clearVgprVmemTypes(int GprNo) { 291 assert(GprNo < NUM_ALL_VGPRS); 292 VgprVmemTypes[GprNo] = 0; 293 } 294 295 void print(raw_ostream &); 296 void dump() { print(dbgs()); } 297 298 private: 299 struct MergeInfo { 300 unsigned OldLB; 301 unsigned OtherLB; 302 unsigned MyShift; 303 unsigned OtherShift; 304 }; 305 static bool mergeScore(const MergeInfo &M, unsigned &Score, 306 unsigned OtherScore); 307 308 void setScoreLB(InstCounterType T, unsigned Val) { 309 assert(T < NUM_INST_CNTS); 310 ScoreLBs[T] = Val; 311 } 312 313 void setScoreUB(InstCounterType T, unsigned Val) { 314 assert(T < NUM_INST_CNTS); 315 ScoreUBs[T] = Val; 316 317 if (T != EXP_CNT) 318 return; 319 320 if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT)) 321 ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT); 322 } 323 324 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 325 if (GprNo < NUM_ALL_VGPRS) { 326 VgprUB = std::max(VgprUB, GprNo); 327 VgprScores[T][GprNo] = Val; 328 } else { 329 assert(T == LGKM_CNT); 330 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 331 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 332 } 333 } 334 335 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 336 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 337 unsigned OpNo, unsigned Val); 338 339 const GCNSubtarget *ST = nullptr; 340 HardwareLimits Limits = {}; 341 RegisterEncoding Encoding = {}; 342 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 343 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 344 unsigned PendingEvents = 0; 345 // Remember the last flat memory operation. 346 unsigned LastFlat[NUM_INST_CNTS] = {0}; 347 // wait_cnt scores for every vgpr. 348 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 349 int VgprUB = -1; 350 int SgprUB = -1; 351 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 352 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 353 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 354 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 355 // write to each vgpr. 356 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 357 }; 358 359 class SIInsertWaitcnts : public MachineFunctionPass { 360 private: 361 const GCNSubtarget *ST = nullptr; 362 const SIInstrInfo *TII = nullptr; 363 const SIRegisterInfo *TRI = nullptr; 364 const MachineRegisterInfo *MRI = nullptr; 365 AMDGPU::IsaVersion IV; 366 367 DenseSet<MachineInstr *> TrackedWaitcntSet; 368 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 369 DenseMap<MachineBasicBlock *, bool> PreheadersToFlush; 370 MachineLoopInfo *MLI; 371 MachinePostDominatorTree *PDT; 372 373 struct BlockInfo { 374 std::unique_ptr<WaitcntBrackets> Incoming; 375 bool Dirty = true; 376 }; 377 378 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 379 380 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 381 // because of amdgpu-waitcnt-forcezero flag 382 bool ForceEmitZeroWaitcnts; 383 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 384 385 // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS 386 // message. 387 DenseSet<MachineInstr *> ReleaseVGPRInsts; 388 389 public: 390 static char ID; 391 392 SIInsertWaitcnts() : MachineFunctionPass(ID) { 393 (void)ForceExpCounter; 394 (void)ForceLgkmCounter; 395 (void)ForceVMCounter; 396 } 397 398 bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets); 399 bool isPreheaderToFlush(MachineBasicBlock &MBB, 400 WaitcntBrackets &ScoreBrackets); 401 bool isVMEMOrFlatVMEM(const MachineInstr &MI) const; 402 bool runOnMachineFunction(MachineFunction &MF) override; 403 404 StringRef getPassName() const override { 405 return "SI insert wait instructions"; 406 } 407 408 void getAnalysisUsage(AnalysisUsage &AU) const override { 409 AU.setPreservesCFG(); 410 AU.addRequired<MachineLoopInfo>(); 411 AU.addRequired<MachinePostDominatorTree>(); 412 MachineFunctionPass::getAnalysisUsage(AU); 413 } 414 415 bool isForceEmitWaitcnt() const { 416 for (auto T : inst_counter_types()) 417 if (ForceEmitWaitcnt[T]) 418 return true; 419 return false; 420 } 421 422 void setForceEmitWaitcnt() { 423 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 424 // For debug builds, get the debug counter info and adjust if need be 425 #ifndef NDEBUG 426 if (DebugCounter::isCounterSet(ForceExpCounter) && 427 DebugCounter::shouldExecute(ForceExpCounter)) { 428 ForceEmitWaitcnt[EXP_CNT] = true; 429 } else { 430 ForceEmitWaitcnt[EXP_CNT] = false; 431 } 432 433 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 434 DebugCounter::shouldExecute(ForceLgkmCounter)) { 435 ForceEmitWaitcnt[LGKM_CNT] = true; 436 } else { 437 ForceEmitWaitcnt[LGKM_CNT] = false; 438 } 439 440 if (DebugCounter::isCounterSet(ForceVMCounter) && 441 DebugCounter::shouldExecute(ForceVMCounter)) { 442 ForceEmitWaitcnt[VM_CNT] = true; 443 } else { 444 ForceEmitWaitcnt[VM_CNT] = false; 445 } 446 #endif // NDEBUG 447 } 448 449 // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or 450 // FLAT instruction. 451 WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const { 452 assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst)); 453 if (!ST->hasVscnt()) 454 return VMEM_ACCESS; 455 if (Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)) { 456 // FLAT and SCRATCH instructions may access scratch. Other VMEM 457 // instructions do not. 458 if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst)) 459 return SCRATCH_WRITE_ACCESS; 460 return VMEM_WRITE_ACCESS; 461 } 462 return VMEM_READ_ACCESS; 463 } 464 465 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 466 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 467 bool mayAccessScratchThroughFlat(const MachineInstr &MI) const; 468 bool generateWaitcntInstBefore(MachineInstr &MI, 469 WaitcntBrackets &ScoreBrackets, 470 MachineInstr *OldWaitcntInstr, 471 bool FlushVmCnt); 472 bool generateWaitcntBlockEnd(MachineBasicBlock &Block, 473 WaitcntBrackets &ScoreBrackets, 474 MachineInstr *OldWaitcntInstr); 475 bool generateWaitcnt(AMDGPU::Waitcnt Wait, 476 MachineBasicBlock::instr_iterator It, 477 MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, 478 MachineInstr *OldWaitcntInstr); 479 void updateEventWaitcntAfter(MachineInstr &Inst, 480 WaitcntBrackets *ScoreBrackets); 481 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 482 WaitcntBrackets &ScoreBrackets); 483 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 484 MachineInstr &OldWaitcntInstr, 485 AMDGPU::Waitcnt &Wait, 486 MachineBasicBlock::instr_iterator It) const; 487 }; 488 489 } // end anonymous namespace 490 491 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 492 const SIInstrInfo *TII, 493 const MachineRegisterInfo *MRI, 494 const SIRegisterInfo *TRI, 495 unsigned OpNo) const { 496 const MachineOperand &Op = MI->getOperand(OpNo); 497 if (!TRI->isInAllocatableClass(Op.getReg())) 498 return {-1, -1}; 499 500 // A use via a PW operand does not need a waitcnt. 501 // A partial write is not a WAW. 502 assert(!Op.getSubReg() || !Op.isUndef()); 503 504 RegInterval Result; 505 506 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 507 508 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 509 assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL); 510 Result.first = Reg - Encoding.VGPR0; 511 if (TRI->isAGPR(*MRI, Op.getReg())) 512 Result.first += AGPR_OFFSET; 513 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 514 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 515 assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 516 Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS; 517 assert(Result.first >= NUM_ALL_VGPRS && 518 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 519 } 520 // TODO: Handle TTMP 521 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 522 else 523 return {-1, -1}; 524 525 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 526 unsigned Size = TRI->getRegSizeInBits(*RC); 527 Result.second = Result.first + ((Size + 16) / 32); 528 529 return Result; 530 } 531 532 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 533 const SIInstrInfo *TII, 534 const SIRegisterInfo *TRI, 535 const MachineRegisterInfo *MRI, unsigned OpNo, 536 unsigned Val) { 537 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 538 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 539 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 540 setRegScore(RegNo, EXP_CNT, Val); 541 } 542 } 543 544 // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS written 545 // can be accessed. A load from LDS to VMEM does not need a wait. 546 static bool mayWriteLDSThroughDMA(const MachineInstr &MI) { 547 return SIInstrInfo::isVALU(MI) && 548 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)) && 549 MI.getOpcode() != AMDGPU::BUFFER_STORE_LDS_DWORD; 550 } 551 552 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 553 const SIRegisterInfo *TRI, 554 const MachineRegisterInfo *MRI, 555 WaitEventType E, MachineInstr &Inst) { 556 InstCounterType T = eventCounter(E); 557 unsigned CurrScore = getScoreUB(T) + 1; 558 if (CurrScore == 0) 559 report_fatal_error("InsertWaitcnt score wraparound"); 560 // PendingEvents and ScoreUB need to be update regardless if this event 561 // changes the score of a register or not. 562 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 563 PendingEvents |= 1 << E; 564 setScoreUB(T, CurrScore); 565 566 if (T == EXP_CNT) { 567 // Put score on the source vgprs. If this is a store, just use those 568 // specific register(s). 569 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 570 int AddrOpIdx = 571 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 572 // All GDS operations must protect their address register (same as 573 // export.) 574 if (AddrOpIdx != -1) { 575 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 576 } 577 578 if (Inst.mayStore()) { 579 if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) { 580 setExpScore( 581 &Inst, TII, TRI, MRI, 582 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 583 CurrScore); 584 } 585 if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) { 586 setExpScore(&Inst, TII, TRI, MRI, 587 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 588 AMDGPU::OpName::data1), 589 CurrScore); 590 } 591 } else if (SIInstrInfo::isAtomicRet(Inst) && 592 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 593 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 594 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 595 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 596 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 597 Inst.getOpcode() != AMDGPU::DS_APPEND && 598 Inst.getOpcode() != AMDGPU::DS_CONSUME && 599 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 600 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 601 const MachineOperand &Op = Inst.getOperand(I); 602 if (Op.isReg() && !Op.isDef() && 603 TRI->isVectorRegister(*MRI, Op.getReg())) { 604 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 605 } 606 } 607 } 608 } else if (TII->isFLAT(Inst)) { 609 if (Inst.mayStore()) { 610 setExpScore( 611 &Inst, TII, TRI, MRI, 612 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 613 CurrScore); 614 } else if (SIInstrInfo::isAtomicRet(Inst)) { 615 setExpScore( 616 &Inst, TII, TRI, MRI, 617 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 618 CurrScore); 619 } 620 } else if (TII->isMIMG(Inst)) { 621 if (Inst.mayStore()) { 622 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 623 } else if (SIInstrInfo::isAtomicRet(Inst)) { 624 setExpScore( 625 &Inst, TII, TRI, MRI, 626 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 627 CurrScore); 628 } 629 } else if (TII->isMTBUF(Inst)) { 630 if (Inst.mayStore()) { 631 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 632 } 633 } else if (TII->isMUBUF(Inst)) { 634 if (Inst.mayStore()) { 635 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 636 } else if (SIInstrInfo::isAtomicRet(Inst)) { 637 setExpScore( 638 &Inst, TII, TRI, MRI, 639 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 640 CurrScore); 641 } 642 } else if (TII->isLDSDIR(Inst)) { 643 // LDSDIR instructions attach the score to the destination. 644 setExpScore( 645 &Inst, TII, TRI, MRI, 646 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst), 647 CurrScore); 648 } else { 649 if (TII->isEXP(Inst)) { 650 // For export the destination registers are really temps that 651 // can be used as the actual source after export patching, so 652 // we need to treat them like sources and set the EXP_CNT 653 // score. 654 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 655 MachineOperand &DefMO = Inst.getOperand(I); 656 if (DefMO.isReg() && DefMO.isDef() && 657 TRI->isVGPR(*MRI, DefMO.getReg())) { 658 setRegScore( 659 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 660 EXP_CNT, CurrScore); 661 } 662 } 663 } 664 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 665 MachineOperand &MO = Inst.getOperand(I); 666 if (MO.isReg() && !MO.isDef() && 667 TRI->isVectorRegister(*MRI, MO.getReg())) { 668 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 669 } 670 } 671 } 672 #if 0 // TODO: check if this is handled by MUBUF code above. 673 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 674 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 675 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 676 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 677 unsigned OpNo;//TODO: find the OpNo for this operand; 678 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 679 for (int RegNo = Interval.first; RegNo < Interval.second; 680 ++RegNo) { 681 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 682 } 683 #endif 684 } else { 685 // Match the score to the destination registers. 686 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 687 auto &Op = Inst.getOperand(I); 688 if (!Op.isReg() || !Op.isDef()) 689 continue; 690 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 691 if (T == VM_CNT) { 692 if (Interval.first >= NUM_ALL_VGPRS) 693 continue; 694 if (updateVMCntOnly(Inst)) { 695 VmemType V = getVmemType(Inst); 696 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 697 VgprVmemTypes[RegNo] |= 1 << V; 698 } 699 } 700 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 701 setRegScore(RegNo, T, CurrScore); 702 } 703 } 704 if (Inst.mayStore() && (TII->isDS(Inst) || mayWriteLDSThroughDMA(Inst))) { 705 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 706 } 707 } 708 } 709 710 void WaitcntBrackets::print(raw_ostream &OS) { 711 OS << '\n'; 712 for (auto T : inst_counter_types()) { 713 unsigned SR = getScoreRange(T); 714 715 switch (T) { 716 case VM_CNT: 717 OS << " VM_CNT(" << SR << "): "; 718 break; 719 case LGKM_CNT: 720 OS << " LGKM_CNT(" << SR << "): "; 721 break; 722 case EXP_CNT: 723 OS << " EXP_CNT(" << SR << "): "; 724 break; 725 case VS_CNT: 726 OS << " VS_CNT(" << SR << "): "; 727 break; 728 default: 729 OS << " UNKNOWN(" << SR << "): "; 730 break; 731 } 732 733 if (SR != 0) { 734 // Print vgpr scores. 735 unsigned LB = getScoreLB(T); 736 737 for (int J = 0; J <= VgprUB; J++) { 738 unsigned RegScore = getRegScore(J, T); 739 if (RegScore <= LB) 740 continue; 741 unsigned RelScore = RegScore - LB - 1; 742 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 743 OS << RelScore << ":v" << J << " "; 744 } else { 745 OS << RelScore << ":ds "; 746 } 747 } 748 // Also need to print sgpr scores for lgkm_cnt. 749 if (T == LGKM_CNT) { 750 for (int J = 0; J <= SgprUB; J++) { 751 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 752 if (RegScore <= LB) 753 continue; 754 unsigned RelScore = RegScore - LB - 1; 755 OS << RelScore << ":s" << J << " "; 756 } 757 } 758 } 759 OS << '\n'; 760 } 761 OS << '\n'; 762 } 763 764 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 765 /// whether a waitcnt instruction is needed at all. 766 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 767 simplifyWaitcnt(VM_CNT, Wait.VmCnt); 768 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 769 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 770 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 771 } 772 773 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 774 unsigned &Count) const { 775 // The number of outstanding events for this type, T, can be calculated 776 // as (UB - LB). If the current Count is greater than or equal to the number 777 // of outstanding events, then the wait for this counter is redundant. 778 if (Count >= getScoreRange(T)) 779 Count = ~0u; 780 } 781 782 void WaitcntBrackets::determineWait(InstCounterType T, int RegNo, 783 AMDGPU::Waitcnt &Wait) const { 784 unsigned ScoreToWait = getRegScore(RegNo, T); 785 786 // If the score of src_operand falls within the bracket, we need an 787 // s_waitcnt instruction. 788 const unsigned LB = getScoreLB(T); 789 const unsigned UB = getScoreUB(T); 790 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 791 if ((T == VM_CNT || T == LGKM_CNT) && 792 hasPendingFlat() && 793 !ST->hasFlatLgkmVMemCountInOrder()) { 794 // If there is a pending FLAT operation, and this is a VMem or LGKM 795 // waitcnt and the target can report early completion, then we need 796 // to force a waitcnt 0. 797 addWait(Wait, T, 0); 798 } else if (counterOutOfOrder(T)) { 799 // Counter can get decremented out-of-order when there 800 // are multiple types event in the bracket. Also emit an s_wait counter 801 // with a conservative value of 0 for the counter. 802 addWait(Wait, T, 0); 803 } else { 804 // If a counter has been maxed out avoid overflow by waiting for 805 // MAX(CounterType) - 1 instead. 806 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 807 addWait(Wait, T, NeededWait); 808 } 809 } 810 } 811 812 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 813 applyWaitcnt(VM_CNT, Wait.VmCnt); 814 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 815 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 816 applyWaitcnt(VS_CNT, Wait.VsCnt); 817 } 818 819 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 820 const unsigned UB = getScoreUB(T); 821 if (Count >= UB) 822 return; 823 if (Count != 0) { 824 if (counterOutOfOrder(T)) 825 return; 826 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 827 } else { 828 setScoreLB(T, UB); 829 PendingEvents &= ~WaitEventMaskForInst[T]; 830 } 831 } 832 833 // Where there are multiple types of event in the bracket of a counter, 834 // the decrement may go out of order. 835 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 836 // Scalar memory read always can go out of order. 837 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 838 return true; 839 return hasMixedPendingEvents(T); 840 } 841 842 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 843 false) 844 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 845 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 846 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 847 false) 848 849 char SIInsertWaitcnts::ID = 0; 850 851 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 852 853 FunctionPass *llvm::createSIInsertWaitcntsPass() { 854 return new SIInsertWaitcnts(); 855 } 856 857 static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName, 858 unsigned NewEnc) { 859 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); 860 assert(OpIdx >= 0); 861 862 MachineOperand &MO = MI.getOperand(OpIdx); 863 864 if (NewEnc == MO.getImm()) 865 return false; 866 867 MO.setImm(NewEnc); 868 return true; 869 } 870 871 /// Combine consecutive waitcnt instructions that precede \p It and follow 872 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added 873 /// by previous passes. Currently this pass conservatively assumes that these 874 /// preexisting waitcnt are required for correctness. 875 bool SIInsertWaitcnts::applyPreexistingWaitcnt( 876 WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, 877 AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { 878 bool Modified = false; 879 MachineInstr *WaitcntInstr = nullptr; 880 MachineInstr *WaitcntVsCntInstr = nullptr; 881 882 for (auto &II : 883 make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) { 884 if (II.isMetaInstruction()) 885 continue; 886 887 if (II.getOpcode() == AMDGPU::S_WAITCNT) { 888 // Conservatively update required wait if this waitcnt was added in an 889 // earlier pass. In this case it will not exist in the tracked waitcnt 890 // set. 891 if (!TrackedWaitcntSet.count(&II)) { 892 unsigned IEnc = II.getOperand(0).getImm(); 893 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 894 Wait = Wait.combined(OldWait); 895 } 896 897 // Merge consecutive waitcnt of the same type by erasing multiples. 898 if (!WaitcntInstr) { 899 WaitcntInstr = &II; 900 } else { 901 II.eraseFromParent(); 902 Modified = true; 903 } 904 905 } else { 906 assert(II.getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 907 assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 908 if (!TrackedWaitcntSet.count(&II)) { 909 unsigned OldVSCnt = 910 TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); 911 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt); 912 } 913 914 if (!WaitcntVsCntInstr) { 915 WaitcntVsCntInstr = &II; 916 } else { 917 II.eraseFromParent(); 918 Modified = true; 919 } 920 } 921 } 922 923 // Updated encoding of merged waitcnt with the required wait. 924 if (WaitcntInstr) { 925 if (Wait.hasWaitExceptVsCnt()) { 926 Modified |= 927 updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16, 928 AMDGPU::encodeWaitcnt(IV, Wait)); 929 ScoreBrackets.applyWaitcnt(Wait); 930 Wait.VmCnt = ~0u; 931 Wait.LgkmCnt = ~0u; 932 Wait.ExpCnt = ~0u; 933 934 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 935 ? dbgs() << "applyPreexistingWaitcnt\n" 936 << "New Instr at block end: " << *WaitcntInstr 937 << '\n' 938 : dbgs() << "applyPreexistingWaitcnt\n" 939 << "Old Instr: " << *It 940 << "New Instr: " << *WaitcntInstr << '\n'); 941 942 } else { 943 WaitcntInstr->eraseFromParent(); 944 Modified = true; 945 } 946 } 947 948 if (WaitcntVsCntInstr) { 949 if (Wait.hasWaitVsCnt()) { 950 assert(ST->hasVscnt()); 951 Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr, 952 AMDGPU::OpName::simm16, Wait.VsCnt); 953 ScoreBrackets.applyWaitcnt(Wait); 954 Wait.VsCnt = ~0u; 955 956 LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() 957 ? dbgs() << "applyPreexistingWaitcnt\n" 958 << "New Instr at block end: " 959 << *WaitcntVsCntInstr << '\n' 960 : dbgs() << "applyPreexistingWaitcnt\n" 961 << "Old Instr: " << *It 962 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 963 } else { 964 WaitcntVsCntInstr->eraseFromParent(); 965 Modified = true; 966 } 967 } 968 969 return Modified; 970 } 971 972 static bool readsVCCZ(const MachineInstr &MI) { 973 unsigned Opc = MI.getOpcode(); 974 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 975 !MI.getOperand(1).isUndef(); 976 } 977 978 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 979 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 980 // Currently all conventions wait, but this may not always be the case. 981 // 982 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 983 // senses to omit the wait and do it in the caller. 984 return true; 985 } 986 987 /// \returns true if the callee is expected to wait for any outstanding waits 988 /// before returning. 989 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 990 return true; 991 } 992 993 /// Generate s_waitcnt instruction to be placed before cur_Inst. 994 /// Instructions of a given type are returned in order, 995 /// but instructions of different types can complete out of order. 996 /// We rely on this in-order completion 997 /// and simply assign a score to the memory access instructions. 998 /// We keep track of the active "score bracket" to determine 999 /// if an access of a memory read requires an s_waitcnt 1000 /// and if so what the value of each counter is. 1001 /// The "score bracket" is bound by the lower bound and upper bound 1002 /// scores (*_score_LB and *_score_ub respectively). 1003 /// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to 1004 /// flush the vmcnt counter here. 1005 bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI, 1006 WaitcntBrackets &ScoreBrackets, 1007 MachineInstr *OldWaitcntInstr, 1008 bool FlushVmCnt) { 1009 setForceEmitWaitcnt(); 1010 1011 if (MI.isMetaInstruction()) 1012 return false; 1013 1014 AMDGPU::Waitcnt Wait; 1015 1016 // FIXME: This should have already been handled by the memory legalizer. 1017 // Removing this currently doesn't affect any lit tests, but we need to 1018 // verify that nothing was relying on this. The number of buffer invalidates 1019 // being handled here should not be expanded. 1020 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 1021 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 1022 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 1023 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 1024 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 1025 Wait.VmCnt = 0; 1026 } 1027 1028 // All waits must be resolved at call return. 1029 // NOTE: this could be improved with knowledge of all call sites or 1030 // with knowledge of the called routines. 1031 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 1032 MI.getOpcode() == AMDGPU::SI_RETURN || 1033 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 1034 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 1035 Wait = Wait.combined(AMDGPU::Waitcnt::allZeroExceptVsCnt()); 1036 } 1037 // Identify S_ENDPGM instructions which may have to wait for outstanding VMEM 1038 // stores. In this case it can be useful to send a message to explicitly 1039 // release all VGPRs before the stores have completed, but it is only safe to 1040 // do this if there are no outstanding scratch stores. 1041 else if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1042 MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) { 1043 if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && 1044 ScoreBrackets.getScoreRange(VS_CNT) != 0 && 1045 !ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS)) 1046 ReleaseVGPRInsts.insert(&MI); 1047 } 1048 // Resolve vm waits before gs-done. 1049 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 1050 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 1051 ST->hasLegacyGeometry() && 1052 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) == 1053 AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) { 1054 Wait.VmCnt = 0; 1055 } 1056 #if 0 // TODO: the following blocks of logic when we have fence. 1057 else if (MI.getOpcode() == SC_FENCE) { 1058 const unsigned int group_size = 1059 context->shader_info->GetMaxThreadGroupSize(); 1060 // group_size == 0 means thread group size is unknown at compile time 1061 const bool group_is_multi_wave = 1062 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 1063 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 1064 1065 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 1066 SCRegType src_type = Inst->GetSrcType(i); 1067 switch (src_type) { 1068 case SCMEM_LDS: 1069 if (group_is_multi_wave || 1070 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 1071 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1072 ScoreBrackets->getScoreUB(LGKM_CNT)); 1073 // LDS may have to wait for VM_CNT after buffer load to LDS 1074 if (target_info->HasBufferLoadToLDS()) { 1075 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1076 ScoreBrackets->getScoreUB(VM_CNT)); 1077 } 1078 } 1079 break; 1080 1081 case SCMEM_GDS: 1082 if (group_is_multi_wave || fence_is_global) { 1083 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1084 ScoreBrackets->getScoreUB(EXP_CNT)); 1085 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1086 ScoreBrackets->getScoreUB(LGKM_CNT)); 1087 } 1088 break; 1089 1090 case SCMEM_UAV: 1091 case SCMEM_TFBUF: 1092 case SCMEM_RING: 1093 case SCMEM_SCATTER: 1094 if (group_is_multi_wave || fence_is_global) { 1095 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1096 ScoreBrackets->getScoreUB(EXP_CNT)); 1097 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1098 ScoreBrackets->getScoreUB(VM_CNT)); 1099 } 1100 break; 1101 1102 case SCMEM_SCRATCH: 1103 default: 1104 break; 1105 } 1106 } 1107 } 1108 #endif 1109 1110 // Export & GDS instructions do not read the EXEC mask until after the export 1111 // is granted (which can occur well after the instruction is issued). 1112 // The shader program must flush all EXP operations on the export-count 1113 // before overwriting the EXEC mask. 1114 else { 1115 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1116 // Export and GDS are tracked individually, either may trigger a waitcnt 1117 // for EXEC. 1118 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1119 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1120 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1121 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1122 Wait.ExpCnt = 0; 1123 } 1124 } 1125 1126 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1127 // The function is going to insert a wait on everything in its prolog. 1128 // This still needs to be careful if the call target is a load (e.g. a GOT 1129 // load). We also need to check WAW dependency with saved PC. 1130 Wait = AMDGPU::Waitcnt(); 1131 1132 int CallAddrOpIdx = 1133 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1134 1135 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1136 RegInterval CallAddrOpInterval = 1137 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 1138 1139 for (int RegNo = CallAddrOpInterval.first; 1140 RegNo < CallAddrOpInterval.second; ++RegNo) 1141 ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait); 1142 1143 int RtnAddrOpIdx = 1144 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1145 if (RtnAddrOpIdx != -1) { 1146 RegInterval RtnAddrOpInterval = 1147 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 1148 1149 for (int RegNo = RtnAddrOpInterval.first; 1150 RegNo < RtnAddrOpInterval.second; ++RegNo) 1151 ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait); 1152 } 1153 } 1154 } else { 1155 // FIXME: Should not be relying on memoperands. 1156 // Look at the source operands of every instruction to see if 1157 // any of them results from a previous memory operation that affects 1158 // its current usage. If so, an s_waitcnt instruction needs to be 1159 // emitted. 1160 // If the source operand was defined by a load, add the s_waitcnt 1161 // instruction. 1162 // 1163 // Two cases are handled for destination operands: 1164 // 1) If the destination operand was defined by a load, add the s_waitcnt 1165 // instruction to guarantee the right WAW order. 1166 // 2) If a destination operand that was used by a recent export/store ins, 1167 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1168 for (const MachineMemOperand *Memop : MI.memoperands()) { 1169 const Value *Ptr = Memop->getValue(); 1170 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1171 addWait(Wait, LGKM_CNT, 0); 1172 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1173 SLoadAddresses.erase(Ptr); 1174 } 1175 unsigned AS = Memop->getAddrSpace(); 1176 if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) 1177 continue; 1178 // No need to wait before load from VMEM to LDS. 1179 if (mayWriteLDSThroughDMA(MI)) 1180 continue; 1181 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1182 // VM_CNT is only relevant to vgpr or LDS. 1183 ScoreBrackets.determineWait(VM_CNT, RegNo, Wait); 1184 if (Memop->isStore()) { 1185 ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); 1186 } 1187 } 1188 1189 // Loop over use and def operands. 1190 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1191 MachineOperand &Op = MI.getOperand(I); 1192 if (!Op.isReg()) 1193 continue; 1194 1195 // If the instruction does not read tied source, skip the operand. 1196 if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI)) 1197 continue; 1198 1199 RegInterval Interval = 1200 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1201 1202 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1203 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1204 if (IsVGPR) { 1205 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1206 // previous write and this write are the same type of VMEM 1207 // instruction, in which case they're guaranteed to write their 1208 // results in order anyway. 1209 if (Op.isUse() || !updateVMCntOnly(MI) || 1210 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1211 getVmemType(MI))) { 1212 ScoreBrackets.determineWait(VM_CNT, RegNo, Wait); 1213 ScoreBrackets.clearVgprVmemTypes(RegNo); 1214 } 1215 if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) { 1216 ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); 1217 } 1218 } 1219 ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait); 1220 } 1221 } 1222 } 1223 } 1224 1225 // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does 1226 // not, we need to ensure the subtarget is capable of backing off barrier 1227 // instructions in case there are any outstanding memory operations that may 1228 // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here. 1229 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1230 !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) { 1231 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1232 } 1233 1234 // TODO: Remove this work-around, enable the assert for Bug 457939 1235 // after fixing the scheduler. Also, the Shader Compiler code is 1236 // independent of target. 1237 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1238 if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1239 Wait.LgkmCnt = 0; 1240 } 1241 } 1242 1243 // Verify that the wait is actually needed. 1244 ScoreBrackets.simplifyWaitcnt(Wait); 1245 1246 if (ForceEmitZeroWaitcnts) 1247 Wait = AMDGPU::Waitcnt::allZeroExceptVsCnt(); 1248 1249 if (ForceEmitWaitcnt[VM_CNT]) 1250 Wait.VmCnt = 0; 1251 if (ForceEmitWaitcnt[EXP_CNT]) 1252 Wait.ExpCnt = 0; 1253 if (ForceEmitWaitcnt[LGKM_CNT]) 1254 Wait.LgkmCnt = 0; 1255 1256 if (FlushVmCnt) { 1257 if (ScoreBrackets.hasPendingEvent(VM_CNT)) 1258 Wait.VmCnt = 0; 1259 } 1260 1261 return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets, 1262 OldWaitcntInstr); 1263 } 1264 1265 // Add a waitcnt to flush the vmcnt counter at the end of the given block if 1266 // needed. 1267 bool SIInsertWaitcnts::generateWaitcntBlockEnd(MachineBasicBlock &Block, 1268 WaitcntBrackets &ScoreBrackets, 1269 MachineInstr *OldWaitcntInstr) { 1270 AMDGPU::Waitcnt Wait; 1271 1272 if (!ScoreBrackets.hasPendingEvent(VM_CNT)) 1273 return false; 1274 1275 Wait.VmCnt = 0; 1276 1277 return generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets, 1278 OldWaitcntInstr); 1279 } 1280 1281 bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait, 1282 MachineBasicBlock::instr_iterator It, 1283 MachineBasicBlock &Block, 1284 WaitcntBrackets &ScoreBrackets, 1285 MachineInstr *OldWaitcntInstr) { 1286 bool Modified = false; 1287 const DebugLoc &DL = Block.findDebugLoc(It); 1288 1289 if (OldWaitcntInstr) 1290 // Try to merge the required wait with preexisting waitcnt instructions. 1291 // Also erase redundant waitcnt. 1292 Modified = 1293 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It); 1294 else 1295 ScoreBrackets.applyWaitcnt(Wait); 1296 1297 // ExpCnt can be merged into VINTERP. 1298 if (Wait.ExpCnt != ~0u && It != Block.instr_end() && 1299 SIInstrInfo::isVINTERP(*It)) { 1300 MachineOperand *WaitExp = 1301 TII->getNamedOperand(*It, AMDGPU::OpName::waitexp); 1302 if (Wait.ExpCnt < WaitExp->getImm()) { 1303 WaitExp->setImm(Wait.ExpCnt); 1304 Modified = true; 1305 } 1306 Wait.ExpCnt = ~0u; 1307 1308 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1309 << "Update Instr: " << *It); 1310 } 1311 1312 // Build new waitcnt instructions unless no wait is needed or the old waitcnt 1313 // instruction was modified to handle the required wait. 1314 if (Wait.hasWaitExceptVsCnt()) { 1315 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1316 auto SWaitInst = 1317 BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc); 1318 TrackedWaitcntSet.insert(SWaitInst); 1319 Modified = true; 1320 1321 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1322 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1323 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1324 } 1325 1326 if (Wait.hasWaitVsCnt()) { 1327 assert(ST->hasVscnt()); 1328 1329 auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1330 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1331 .addImm(Wait.VsCnt); 1332 TrackedWaitcntSet.insert(SWaitInst); 1333 Modified = true; 1334 1335 LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; 1336 if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; 1337 dbgs() << "New Instr: " << *SWaitInst << '\n'); 1338 } 1339 return Modified; 1340 } 1341 1342 // This is a flat memory operation. Check to see if it has memory tokens other 1343 // than LDS. Other address spaces supported by flat memory operations involve 1344 // global memory. 1345 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1346 assert(TII->isFLAT(MI)); 1347 1348 // All flat instructions use the VMEM counter. 1349 assert(TII->usesVM_CNT(MI)); 1350 1351 // If there are no memory operands then conservatively assume the flat 1352 // operation may access VMEM. 1353 if (MI.memoperands_empty()) 1354 return true; 1355 1356 // See if any memory operand specifies an address space that involves VMEM. 1357 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1358 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1359 // (GDS) address space is not supported by flat operations. Therefore, simply 1360 // return true unless only the LDS address space is found. 1361 for (const MachineMemOperand *Memop : MI.memoperands()) { 1362 unsigned AS = Memop->getAddrSpace(); 1363 assert(AS != AMDGPUAS::REGION_ADDRESS); 1364 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1365 return true; 1366 } 1367 1368 return false; 1369 } 1370 1371 // This is a flat memory operation. Check to see if it has memory tokens for 1372 // either LDS or FLAT. 1373 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1374 assert(TII->isFLAT(MI)); 1375 1376 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1377 if (!TII->usesLGKM_CNT(MI)) 1378 return false; 1379 1380 // If in tgsplit mode then there can be no use of LDS. 1381 if (ST->isTgSplitEnabled()) 1382 return false; 1383 1384 // If there are no memory operands then conservatively assume the flat 1385 // operation may access LDS. 1386 if (MI.memoperands_empty()) 1387 return true; 1388 1389 // See if any memory operand specifies an address space that involves LDS. 1390 for (const MachineMemOperand *Memop : MI.memoperands()) { 1391 unsigned AS = Memop->getAddrSpace(); 1392 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1393 return true; 1394 } 1395 1396 return false; 1397 } 1398 1399 // This is a flat memory operation. Check to see if it has memory tokens for 1400 // either scratch or FLAT. 1401 bool SIInsertWaitcnts::mayAccessScratchThroughFlat( 1402 const MachineInstr &MI) const { 1403 assert(TII->isFLAT(MI)); 1404 1405 // SCRATCH instructions always access scratch. 1406 if (TII->isFLATScratch(MI)) 1407 return true; 1408 1409 // GLOBAL instructions never access scratch. 1410 if (TII->isFLATGlobal(MI)) 1411 return false; 1412 1413 // If there are no memory operands then conservatively assume the flat 1414 // operation may access scratch. 1415 if (MI.memoperands_empty()) 1416 return true; 1417 1418 // See if any memory operand specifies an address space that involves scratch. 1419 return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) { 1420 unsigned AS = Memop->getAddrSpace(); 1421 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 1422 }); 1423 } 1424 1425 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1426 WaitcntBrackets *ScoreBrackets) { 1427 // Now look at the instruction opcode. If it is a memory access 1428 // instruction, update the upper-bound of the appropriate counter's 1429 // bracket and the destination operand scores. 1430 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1431 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1432 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1433 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1434 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1435 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1436 } else { 1437 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1438 } 1439 } else if (TII->isFLAT(Inst)) { 1440 assert(Inst.mayLoadOrStore()); 1441 1442 int FlatASCount = 0; 1443 1444 if (mayAccessVMEMThroughFlat(Inst)) { 1445 ++FlatASCount; 1446 ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), 1447 Inst); 1448 } 1449 1450 if (mayAccessLDSThroughFlat(Inst)) { 1451 ++FlatASCount; 1452 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1453 } 1454 1455 // A Flat memory operation must access at least one address space. 1456 assert(FlatASCount); 1457 1458 // This is a flat memory operation that access both VMEM and LDS, so note it 1459 // - it will require that both the VM and LGKM be flushed to zero if it is 1460 // pending when a VM or LGKM dependency occurs. 1461 if (FlatASCount > 1) 1462 ScoreBrackets->setPendingFlat(); 1463 } else if (SIInstrInfo::isVMEM(Inst) && 1464 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { 1465 ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), 1466 Inst); 1467 1468 if (ST->vmemWriteNeedsExpWaitcnt() && 1469 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1470 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1471 } 1472 } else if (TII->isSMRD(Inst)) { 1473 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1474 } else if (Inst.isCall()) { 1475 if (callWaitsOnFunctionReturn(Inst)) { 1476 // Act as a wait on everything 1477 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt()); 1478 } else { 1479 // May need to way wait for anything. 1480 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1481 } 1482 } else if (SIInstrInfo::isLDSDIR(Inst)) { 1483 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst); 1484 } else if (TII->isVINTERP(Inst)) { 1485 int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm(); 1486 ScoreBrackets->applyWaitcnt(EXP_CNT, Imm); 1487 } else if (SIInstrInfo::isEXP(Inst)) { 1488 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1489 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1490 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1491 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1492 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1493 else 1494 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1495 } else { 1496 switch (Inst.getOpcode()) { 1497 case AMDGPU::S_SENDMSG: 1498 case AMDGPU::S_SENDMSG_RTN_B32: 1499 case AMDGPU::S_SENDMSG_RTN_B64: 1500 case AMDGPU::S_SENDMSGHALT: 1501 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1502 break; 1503 case AMDGPU::S_MEMTIME: 1504 case AMDGPU::S_MEMREALTIME: 1505 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1506 break; 1507 } 1508 } 1509 } 1510 1511 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1512 unsigned OtherScore) { 1513 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1514 unsigned OtherShifted = 1515 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1516 Score = std::max(MyShifted, OtherShifted); 1517 return OtherShifted > MyShifted; 1518 } 1519 1520 /// Merge the pending events and associater score brackets of \p Other into 1521 /// this brackets status. 1522 /// 1523 /// Returns whether the merge resulted in a change that requires tighter waits 1524 /// (i.e. the merged brackets strictly dominate the original brackets). 1525 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1526 bool StrictDom = false; 1527 1528 VgprUB = std::max(VgprUB, Other.VgprUB); 1529 SgprUB = std::max(SgprUB, Other.SgprUB); 1530 1531 for (auto T : inst_counter_types()) { 1532 // Merge event flags for this counter 1533 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1534 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1535 if (OtherEvents & ~OldEvents) 1536 StrictDom = true; 1537 PendingEvents |= OtherEvents; 1538 1539 // Merge scores for this counter 1540 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1541 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1542 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1543 if (NewUB < ScoreLBs[T]) 1544 report_fatal_error("waitcnt score overflow"); 1545 1546 MergeInfo M; 1547 M.OldLB = ScoreLBs[T]; 1548 M.OtherLB = Other.ScoreLBs[T]; 1549 M.MyShift = NewUB - ScoreUBs[T]; 1550 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1551 1552 ScoreUBs[T] = NewUB; 1553 1554 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1555 1556 for (int J = 0; J <= VgprUB; J++) 1557 StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1558 1559 if (T == LGKM_CNT) { 1560 for (int J = 0; J <= SgprUB; J++) 1561 StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1562 } 1563 } 1564 1565 for (int J = 0; J <= VgprUB; J++) { 1566 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1567 StrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1568 VgprVmemTypes[J] = NewVmemTypes; 1569 } 1570 1571 return StrictDom; 1572 } 1573 1574 static bool isWaitInstr(MachineInstr &Inst) { 1575 return Inst.getOpcode() == AMDGPU::S_WAITCNT || 1576 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1577 Inst.getOperand(0).isReg() && 1578 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1579 } 1580 1581 // Generate s_waitcnt instructions where needed. 1582 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1583 MachineBasicBlock &Block, 1584 WaitcntBrackets &ScoreBrackets) { 1585 bool Modified = false; 1586 1587 LLVM_DEBUG({ 1588 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1589 ScoreBrackets.dump(); 1590 }); 1591 1592 // Track the correctness of vccz through this basic block. There are two 1593 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1594 // ST->partialVCCWritesUpdateVCCZ(). 1595 bool VCCZCorrect = true; 1596 if (ST->hasReadVCCZBug()) { 1597 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1598 // to vcc and then issued an smem load. 1599 VCCZCorrect = false; 1600 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1601 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1602 // to vcc_lo or vcc_hi. 1603 VCCZCorrect = false; 1604 } 1605 1606 // Walk over the instructions. 1607 MachineInstr *OldWaitcntInstr = nullptr; 1608 1609 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1610 E = Block.instr_end(); 1611 Iter != E;) { 1612 MachineInstr &Inst = *Iter; 1613 1614 // Track pre-existing waitcnts that were added in earlier iterations or by 1615 // the memory legalizer. 1616 if (isWaitInstr(Inst)) { 1617 if (!OldWaitcntInstr) 1618 OldWaitcntInstr = &Inst; 1619 ++Iter; 1620 continue; 1621 } 1622 1623 bool FlushVmCnt = Block.getFirstTerminator() == Inst && 1624 isPreheaderToFlush(Block, ScoreBrackets); 1625 1626 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1627 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr, 1628 FlushVmCnt); 1629 OldWaitcntInstr = nullptr; 1630 1631 // Restore vccz if it's not known to be correct already. 1632 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1633 1634 // Don't examine operands unless we need to track vccz correctness. 1635 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1636 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1637 Inst.definesRegister(AMDGPU::VCC_HI)) { 1638 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1639 if (!ST->partialVCCWritesUpdateVCCZ()) 1640 VCCZCorrect = false; 1641 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1642 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1643 // vccz bit, so when we detect that an instruction may read from a 1644 // corrupt vccz bit, we need to: 1645 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1646 // operations to complete. 1647 // 2. Restore the correct value of vccz by writing the current value 1648 // of vcc back to vcc. 1649 if (ST->hasReadVCCZBug() && 1650 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1651 // Writes to vcc while there's an outstanding smem read may get 1652 // clobbered as soon as any read completes. 1653 VCCZCorrect = false; 1654 } else { 1655 // Writes to vcc will fix any incorrect value in vccz. 1656 VCCZCorrect = true; 1657 } 1658 } 1659 } 1660 1661 if (TII->isSMRD(Inst)) { 1662 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1663 // No need to handle invariant loads when avoiding WAR conflicts, as 1664 // there cannot be a vector store to the same memory location. 1665 if (!Memop->isInvariant()) { 1666 const Value *Ptr = Memop->getValue(); 1667 SLoadAddresses.insert(std::pair(Ptr, Inst.getParent())); 1668 } 1669 } 1670 if (ST->hasReadVCCZBug()) { 1671 // This smem read could complete and clobber vccz at any time. 1672 VCCZCorrect = false; 1673 } 1674 } 1675 1676 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1677 1678 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1679 // If this instruction generates a S_SETVSKIP because it is an 1680 // indexed resource, and we are on Tahiti, then it will also force 1681 // an S_WAITCNT vmcnt(0) 1682 if (RequireCheckResourceType(Inst, context)) { 1683 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1684 ScoreBrackets->setScoreLB(VM_CNT, 1685 ScoreBrackets->getScoreUB(VM_CNT)); 1686 } 1687 #endif 1688 1689 LLVM_DEBUG({ 1690 Inst.print(dbgs()); 1691 ScoreBrackets.dump(); 1692 }); 1693 1694 // TODO: Remove this work-around after fixing the scheduler and enable the 1695 // assert above. 1696 if (RestoreVCCZ) { 1697 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1698 // bit is updated, so we can restore the bit by reading the value of 1699 // vcc and then writing it back to the register. 1700 BuildMI(Block, Inst, Inst.getDebugLoc(), 1701 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1702 TRI->getVCC()) 1703 .addReg(TRI->getVCC()); 1704 VCCZCorrect = true; 1705 Modified = true; 1706 } 1707 1708 ++Iter; 1709 } 1710 1711 if (Block.getFirstTerminator() == Block.end() && 1712 isPreheaderToFlush(Block, ScoreBrackets)) 1713 Modified |= generateWaitcntBlockEnd(Block, ScoreBrackets, OldWaitcntInstr); 1714 1715 return Modified; 1716 } 1717 1718 // Return true if the given machine basic block is a preheader of a loop in 1719 // which we want to flush the vmcnt counter, and false otherwise. 1720 bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB, 1721 WaitcntBrackets &ScoreBrackets) { 1722 if (PreheadersToFlush.count(&MBB)) 1723 return PreheadersToFlush[&MBB]; 1724 1725 auto UpdateCache = [&](bool val) { 1726 PreheadersToFlush[&MBB] = val; 1727 return val; 1728 }; 1729 1730 MachineBasicBlock *Succ = MBB.getSingleSuccessor(); 1731 if (!Succ) 1732 return UpdateCache(false); 1733 1734 MachineLoop *Loop = MLI->getLoopFor(Succ); 1735 if (!Loop) 1736 return UpdateCache(false); 1737 1738 if (Loop->getLoopPreheader() == &MBB && shouldFlushVmCnt(Loop, ScoreBrackets)) 1739 return UpdateCache(true); 1740 1741 return UpdateCache(false); 1742 } 1743 1744 bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const { 1745 return SIInstrInfo::isVMEM(MI) || 1746 (SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI)); 1747 } 1748 1749 // Return true if it is better to flush the vmcnt counter in the preheader of 1750 // the given loop. We currently decide to flush in two situations: 1751 // 1. The loop contains vmem store(s), no vmem load and at least one use of a 1752 // vgpr containing a value that is loaded outside of the loop. (Only on 1753 // targets with no vscnt counter). 1754 // 2. The loop contains vmem load(s), but the loaded values are not used in the 1755 // loop, and at least one use of a vgpr containing a value that is loaded 1756 // outside of the loop. 1757 bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML, 1758 WaitcntBrackets &Brackets) { 1759 bool HasVMemLoad = false; 1760 bool HasVMemStore = false; 1761 bool UsesVgprLoadedOutside = false; 1762 DenseSet<Register> VgprUse; 1763 DenseSet<Register> VgprDef; 1764 1765 for (MachineBasicBlock *MBB : ML->blocks()) { 1766 for (MachineInstr &MI : *MBB) { 1767 if (isVMEMOrFlatVMEM(MI)) { 1768 if (MI.mayLoad()) 1769 HasVMemLoad = true; 1770 if (MI.mayStore()) 1771 HasVMemStore = true; 1772 } 1773 for (unsigned I = 0; I < MI.getNumOperands(); I++) { 1774 MachineOperand &Op = MI.getOperand(I); 1775 if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg())) 1776 continue; 1777 RegInterval Interval = Brackets.getRegInterval(&MI, TII, MRI, TRI, I); 1778 // Vgpr use 1779 if (Op.isUse()) { 1780 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1781 // If we find a register that is loaded inside the loop, 1. and 2. 1782 // are invalidated and we can exit. 1783 if (VgprDef.contains(RegNo)) 1784 return false; 1785 VgprUse.insert(RegNo); 1786 // If at least one of Op's registers is in the score brackets, the 1787 // value is likely loaded outside of the loop. 1788 if (Brackets.getRegScore(RegNo, VM_CNT) > Brackets.getScoreLB(VM_CNT)) { 1789 UsesVgprLoadedOutside = true; 1790 break; 1791 } 1792 } 1793 } 1794 // VMem load vgpr def 1795 else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef()) 1796 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1797 // If we find a register that is loaded inside the loop, 1. and 2. 1798 // are invalidated and we can exit. 1799 if (VgprUse.contains(RegNo)) 1800 return false; 1801 VgprDef.insert(RegNo); 1802 } 1803 } 1804 } 1805 } 1806 if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside) 1807 return true; 1808 return HasVMemLoad && UsesVgprLoadedOutside; 1809 } 1810 1811 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1812 ST = &MF.getSubtarget<GCNSubtarget>(); 1813 TII = ST->getInstrInfo(); 1814 TRI = &TII->getRegisterInfo(); 1815 MRI = &MF.getRegInfo(); 1816 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1817 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1818 MLI = &getAnalysis<MachineLoopInfo>(); 1819 PDT = &getAnalysis<MachinePostDominatorTree>(); 1820 1821 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1822 for (auto T : inst_counter_types()) 1823 ForceEmitWaitcnt[T] = false; 1824 1825 HardwareLimits Limits = {}; 1826 Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1827 Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1828 Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1829 Limits.VscntMax = ST->hasVscnt() ? 63 : 0; 1830 1831 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1832 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1833 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1834 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1835 1836 RegisterEncoding Encoding = {}; 1837 Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1838 Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1; 1839 Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1840 Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1; 1841 1842 TrackedWaitcntSet.clear(); 1843 BlockInfos.clear(); 1844 bool Modified = false; 1845 1846 if (!MFI->isEntryFunction()) { 1847 // Wait for any outstanding memory operations that the input registers may 1848 // depend on. We can't track them and it's better to do the wait after the 1849 // costly call sequence. 1850 1851 // TODO: Could insert earlier and schedule more liberally with operations 1852 // that only use caller preserved registers. 1853 MachineBasicBlock &EntryBB = MF.front(); 1854 MachineBasicBlock::iterator I = EntryBB.begin(); 1855 for (MachineBasicBlock::iterator E = EntryBB.end(); 1856 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1857 ; 1858 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1859 1860 Modified = true; 1861 } 1862 1863 // Keep iterating over the blocks in reverse post order, inserting and 1864 // updating s_waitcnt where needed, until a fix point is reached. 1865 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1866 BlockInfos.insert({MBB, BlockInfo()}); 1867 1868 std::unique_ptr<WaitcntBrackets> Brackets; 1869 bool Repeat; 1870 do { 1871 Repeat = false; 1872 1873 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1874 ++BII) { 1875 MachineBasicBlock *MBB = BII->first; 1876 BlockInfo &BI = BII->second; 1877 if (!BI.Dirty) 1878 continue; 1879 1880 if (BI.Incoming) { 1881 if (!Brackets) 1882 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1883 else 1884 *Brackets = *BI.Incoming; 1885 } else { 1886 if (!Brackets) 1887 Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding); 1888 else 1889 *Brackets = WaitcntBrackets(ST, Limits, Encoding); 1890 } 1891 1892 Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets); 1893 BI.Dirty = false; 1894 1895 if (Brackets->hasPendingEvent()) { 1896 BlockInfo *MoveBracketsToSucc = nullptr; 1897 for (MachineBasicBlock *Succ : MBB->successors()) { 1898 auto SuccBII = BlockInfos.find(Succ); 1899 BlockInfo &SuccBI = SuccBII->second; 1900 if (!SuccBI.Incoming) { 1901 SuccBI.Dirty = true; 1902 if (SuccBII <= BII) 1903 Repeat = true; 1904 if (!MoveBracketsToSucc) { 1905 MoveBracketsToSucc = &SuccBI; 1906 } else { 1907 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1908 } 1909 } else if (SuccBI.Incoming->merge(*Brackets)) { 1910 SuccBI.Dirty = true; 1911 if (SuccBII <= BII) 1912 Repeat = true; 1913 } 1914 } 1915 if (MoveBracketsToSucc) 1916 MoveBracketsToSucc->Incoming = std::move(Brackets); 1917 } 1918 } 1919 } while (Repeat); 1920 1921 if (ST->hasScalarStores()) { 1922 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1923 bool HaveScalarStores = false; 1924 1925 for (MachineBasicBlock &MBB : MF) { 1926 for (MachineInstr &MI : MBB) { 1927 if (!HaveScalarStores && TII->isScalarStore(MI)) 1928 HaveScalarStores = true; 1929 1930 if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1931 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1932 EndPgmBlocks.push_back(&MBB); 1933 } 1934 } 1935 1936 if (HaveScalarStores) { 1937 // If scalar writes are used, the cache must be flushed or else the next 1938 // wave to reuse the same scratch memory can be clobbered. 1939 // 1940 // Insert s_dcache_wb at wave termination points if there were any scalar 1941 // stores, and only if the cache hasn't already been flushed. This could 1942 // be improved by looking across blocks for flushes in postdominating 1943 // blocks from the stores but an explicitly requested flush is probably 1944 // very rare. 1945 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1946 bool SeenDCacheWB = false; 1947 1948 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 1949 I != E; ++I) { 1950 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1951 SeenDCacheWB = true; 1952 else if (TII->isScalarStore(*I)) 1953 SeenDCacheWB = false; 1954 1955 // FIXME: It would be better to insert this before a waitcnt if any. 1956 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1957 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1958 !SeenDCacheWB) { 1959 Modified = true; 1960 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1961 } 1962 } 1963 } 1964 } 1965 } 1966 1967 // Insert DEALLOC_VGPR messages before previously identified S_ENDPGM 1968 // instructions. 1969 for (MachineInstr *MI : ReleaseVGPRInsts) { 1970 if (ST->requiresNopBeforeDeallocVGPRs()) { 1971 BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_NOP)) 1972 .addImm(0); 1973 } 1974 BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_SENDMSG)) 1975 .addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus); 1976 Modified = true; 1977 } 1978 ReleaseVGPRInsts.clear(); 1979 1980 return Modified; 1981 } 1982