1 //===- SIInsertHardClauses.cpp - Insert Hard Clauses ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert s_clause instructions to form hard clauses. 11 /// 12 /// Clausing load instructions can give cache coherency benefits. Before gfx10, 13 /// the hardware automatically detected "soft clauses", which were sequences of 14 /// memory instructions of the same type. In gfx10 this detection was removed, 15 /// and the s_clause instruction was introduced to explicitly mark "hard 16 /// clauses". 17 /// 18 /// It's the scheduler's job to form the clauses by putting similar memory 19 /// instructions next to each other. Our job is just to insert an s_clause 20 /// instruction to mark the start of each clause. 21 /// 22 /// Note that hard clauses are very similar to, but logically distinct from, the 23 /// groups of instructions that have to be restartable when XNACK is enabled. 24 /// The rules are slightly different in each case. For example an s_nop 25 /// instruction breaks a restartable group, but can appear in the middle of a 26 /// hard clause. (Before gfx10 there wasn't a distinction, and both were called 27 /// "soft clauses" or just "clauses".) 28 /// 29 /// The SIFormMemoryClauses pass and GCNHazardRecognizer deal with restartable 30 /// groups, not hard clauses. 31 // 32 //===----------------------------------------------------------------------===// 33 34 #include "AMDGPU.h" 35 #include "GCNSubtarget.h" 36 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 37 #include "llvm/ADT/SmallVector.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "si-insert-hard-clauses" 42 43 namespace { 44 45 enum HardClauseType { 46 // Texture, buffer, global or scratch memory instructions. 47 HARDCLAUSE_VMEM, 48 // Flat (not global or scratch) memory instructions. 49 HARDCLAUSE_FLAT, 50 // Instructions that access LDS. 51 HARDCLAUSE_LDS, 52 // Scalar memory instructions. 53 HARDCLAUSE_SMEM, 54 // VALU instructions. 55 HARDCLAUSE_VALU, 56 LAST_REAL_HARDCLAUSE_TYPE = HARDCLAUSE_VALU, 57 58 // Internal instructions, which are allowed in the middle of a hard clause, 59 // except for s_waitcnt. 60 HARDCLAUSE_INTERNAL, 61 // Meta instructions that do not result in any ISA like KILL. 62 HARDCLAUSE_IGNORE, 63 // Instructions that are not allowed in a hard clause: SALU, export, branch, 64 // message, GDS, s_waitcnt and anything else not mentioned above. 65 HARDCLAUSE_ILLEGAL, 66 }; 67 68 class SIInsertHardClauses : public MachineFunctionPass { 69 public: 70 static char ID; 71 const GCNSubtarget *ST = nullptr; 72 73 SIInsertHardClauses() : MachineFunctionPass(ID) {} 74 75 void getAnalysisUsage(AnalysisUsage &AU) const override { 76 AU.setPreservesCFG(); 77 MachineFunctionPass::getAnalysisUsage(AU); 78 } 79 80 HardClauseType getHardClauseType(const MachineInstr &MI) { 81 82 // On current architectures we only get a benefit from clausing loads. 83 if (MI.mayLoad()) { 84 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) { 85 if (ST->hasNSAClauseBug()) { 86 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 87 if (Info && Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA) 88 return HARDCLAUSE_ILLEGAL; 89 } 90 return HARDCLAUSE_VMEM; 91 } 92 if (SIInstrInfo::isFLAT(MI)) 93 return HARDCLAUSE_FLAT; 94 // TODO: LDS 95 if (SIInstrInfo::isSMRD(MI)) 96 return HARDCLAUSE_SMEM; 97 } 98 99 // Don't form VALU clauses. It's not clear what benefit they give, if any. 100 101 // In practice s_nop is the only internal instruction we're likely to see. 102 // It's safe to treat the rest as illegal. 103 if (MI.getOpcode() == AMDGPU::S_NOP) 104 return HARDCLAUSE_INTERNAL; 105 if (MI.isMetaInstruction()) 106 return HARDCLAUSE_IGNORE; 107 return HARDCLAUSE_ILLEGAL; 108 } 109 110 // Track information about a clause as we discover it. 111 struct ClauseInfo { 112 // The type of all (non-internal) instructions in the clause. 113 HardClauseType Type = HARDCLAUSE_ILLEGAL; 114 // The first (necessarily non-internal) instruction in the clause. 115 MachineInstr *First = nullptr; 116 // The last non-internal instruction in the clause. 117 MachineInstr *Last = nullptr; 118 // The length of the clause including any internal instructions in the 119 // middle (but not at the end) of the clause. 120 unsigned Length = 0; 121 // Internal instructions at the and of a clause should not be included in 122 // the clause. Count them in TrailingInternalLength until a new memory 123 // instruction is added. 124 unsigned TrailingInternalLength = 0; 125 // The base operands of *Last. 126 SmallVector<const MachineOperand *, 4> BaseOps; 127 }; 128 129 bool emitClause(const ClauseInfo &CI, const SIInstrInfo *SII) { 130 if (CI.First == CI.Last) 131 return false; 132 assert(CI.Length <= 64 && "Hard clause is too long!"); 133 134 auto &MBB = *CI.First->getParent(); 135 auto ClauseMI = 136 BuildMI(MBB, *CI.First, DebugLoc(), SII->get(AMDGPU::S_CLAUSE)) 137 .addImm(CI.Length - 1); 138 finalizeBundle(MBB, ClauseMI->getIterator(), 139 std::next(CI.Last->getIterator())); 140 return true; 141 } 142 143 bool runOnMachineFunction(MachineFunction &MF) override { 144 if (skipFunction(MF.getFunction())) 145 return false; 146 147 ST = &MF.getSubtarget<GCNSubtarget>(); 148 if (!ST->hasHardClauses()) 149 return false; 150 151 const SIInstrInfo *SII = ST->getInstrInfo(); 152 const TargetRegisterInfo *TRI = ST->getRegisterInfo(); 153 154 bool Changed = false; 155 for (auto &MBB : MF) { 156 ClauseInfo CI; 157 for (auto &MI : MBB) { 158 HardClauseType Type = getHardClauseType(MI); 159 160 int64_t Dummy1; 161 bool Dummy2; 162 unsigned Dummy3; 163 SmallVector<const MachineOperand *, 4> BaseOps; 164 if (Type <= LAST_REAL_HARDCLAUSE_TYPE) { 165 if (!SII->getMemOperandsWithOffsetWidth(MI, BaseOps, Dummy1, Dummy2, 166 Dummy3, TRI)) { 167 // We failed to get the base operands, so we'll never clause this 168 // instruction with any other, so pretend it's illegal. 169 Type = HARDCLAUSE_ILLEGAL; 170 } 171 } 172 173 if (CI.Length == 64 || 174 (CI.Length && Type != HARDCLAUSE_INTERNAL && 175 Type != HARDCLAUSE_IGNORE && 176 (Type != CI.Type || 177 // Note that we lie to shouldClusterMemOps about the size of the 178 // cluster. When shouldClusterMemOps is called from the machine 179 // scheduler it limits the size of the cluster to avoid increasing 180 // register pressure too much, but this pass runs after register 181 // allocation so there is no need for that kind of limit. 182 !SII->shouldClusterMemOps(CI.BaseOps, BaseOps, 2, 2)))) { 183 // Finish the current clause. 184 Changed |= emitClause(CI, SII); 185 CI = ClauseInfo(); 186 } 187 188 if (CI.Length) { 189 // Extend the current clause. 190 if (Type != HARDCLAUSE_IGNORE) { 191 if (Type == HARDCLAUSE_INTERNAL) { 192 ++CI.TrailingInternalLength; 193 } else { 194 ++CI.Length; 195 CI.Length += CI.TrailingInternalLength; 196 CI.TrailingInternalLength = 0; 197 CI.Last = &MI; 198 CI.BaseOps = std::move(BaseOps); 199 } 200 } 201 } else if (Type <= LAST_REAL_HARDCLAUSE_TYPE) { 202 // Start a new clause. 203 CI = ClauseInfo{Type, &MI, &MI, 1, 0, std::move(BaseOps)}; 204 } 205 } 206 207 // Finish the last clause in the basic block if any. 208 if (CI.Length) 209 Changed |= emitClause(CI, SII); 210 } 211 212 return Changed; 213 } 214 }; 215 216 } // namespace 217 218 char SIInsertHardClauses::ID = 0; 219 220 char &llvm::SIInsertHardClausesID = SIInsertHardClauses::ID; 221 222 INITIALIZE_PASS(SIInsertHardClauses, DEBUG_TYPE, "SI Insert Hard Clauses", 223 false, false) 224