xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInsertHardClauses.cpp (revision 5956d97f4b3204318ceb6aa9c77bd0bc6ea87a41)
1 //===- SIInsertHardClauses.cpp - Insert Hard Clauses ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert s_clause instructions to form hard clauses.
11 ///
12 /// Clausing load instructions can give cache coherency benefits. Before gfx10,
13 /// the hardware automatically detected "soft clauses", which were sequences of
14 /// memory instructions of the same type. In gfx10 this detection was removed,
15 /// and the s_clause instruction was introduced to explicitly mark "hard
16 /// clauses".
17 ///
18 /// It's the scheduler's job to form the clauses by putting similar memory
19 /// instructions next to each other. Our job is just to insert an s_clause
20 /// instruction to mark the start of each clause.
21 ///
22 /// Note that hard clauses are very similar to, but logically distinct from, the
23 /// groups of instructions that have to be restartable when XNACK is enabled.
24 /// The rules are slightly different in each case. For example an s_nop
25 /// instruction breaks a restartable group, but can appear in the middle of a
26 /// hard clause. (Before gfx10 there wasn't a distinction, and both were called
27 /// "soft clauses" or just "clauses".)
28 ///
29 /// The SIFormMemoryClauses pass and GCNHazardRecognizer deal with restartable
30 /// groups, not hard clauses.
31 //
32 //===----------------------------------------------------------------------===//
33 
34 #include "AMDGPU.h"
35 #include "GCNSubtarget.h"
36 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
37 #include "llvm/ADT/SmallVector.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "si-insert-hard-clauses"
42 
43 namespace {
44 
45 enum HardClauseType {
46   // Texture, buffer, global or scratch memory instructions.
47   HARDCLAUSE_VMEM,
48   // Flat (not global or scratch) memory instructions.
49   HARDCLAUSE_FLAT,
50   // Instructions that access LDS.
51   HARDCLAUSE_LDS,
52   // Scalar memory instructions.
53   HARDCLAUSE_SMEM,
54   // VALU instructions.
55   HARDCLAUSE_VALU,
56   LAST_REAL_HARDCLAUSE_TYPE = HARDCLAUSE_VALU,
57 
58   // Internal instructions, which are allowed in the middle of a hard clause,
59   // except for s_waitcnt.
60   HARDCLAUSE_INTERNAL,
61   // Meta instructions that do not result in any ISA like KILL.
62   HARDCLAUSE_IGNORE,
63   // Instructions that are not allowed in a hard clause: SALU, export, branch,
64   // message, GDS, s_waitcnt and anything else not mentioned above.
65   HARDCLAUSE_ILLEGAL,
66 };
67 
68 class SIInsertHardClauses : public MachineFunctionPass {
69 public:
70   static char ID;
71   const GCNSubtarget *ST = nullptr;
72 
73   SIInsertHardClauses() : MachineFunctionPass(ID) {}
74 
75   void getAnalysisUsage(AnalysisUsage &AU) const override {
76     AU.setPreservesCFG();
77     MachineFunctionPass::getAnalysisUsage(AU);
78   }
79 
80   HardClauseType getHardClauseType(const MachineInstr &MI) {
81 
82     // On current architectures we only get a benefit from clausing loads.
83     if (MI.mayLoad()) {
84       if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) {
85         if (ST->hasNSAClauseBug()) {
86           const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
87           if (Info && Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA)
88             return HARDCLAUSE_ILLEGAL;
89         }
90         return HARDCLAUSE_VMEM;
91       }
92       if (SIInstrInfo::isFLAT(MI))
93         return HARDCLAUSE_FLAT;
94       // TODO: LDS
95       if (SIInstrInfo::isSMRD(MI))
96         return HARDCLAUSE_SMEM;
97     }
98 
99     // Don't form VALU clauses. It's not clear what benefit they give, if any.
100 
101     // In practice s_nop is the only internal instruction we're likely to see.
102     // It's safe to treat the rest as illegal.
103     if (MI.getOpcode() == AMDGPU::S_NOP)
104       return HARDCLAUSE_INTERNAL;
105     if (MI.isMetaInstruction())
106       return HARDCLAUSE_IGNORE;
107     return HARDCLAUSE_ILLEGAL;
108   }
109 
110   // Track information about a clause as we discover it.
111   struct ClauseInfo {
112     // The type of all (non-internal) instructions in the clause.
113     HardClauseType Type = HARDCLAUSE_ILLEGAL;
114     // The first (necessarily non-internal) instruction in the clause.
115     MachineInstr *First = nullptr;
116     // The last non-internal instruction in the clause.
117     MachineInstr *Last = nullptr;
118     // The length of the clause including any internal instructions in the
119     // middle (but not at the end) of the clause.
120     unsigned Length = 0;
121     // Internal instructions at the and of a clause should not be included in
122     // the clause. Count them in TrailingInternalLength until a new memory
123     // instruction is added.
124     unsigned TrailingInternalLength = 0;
125     // The base operands of *Last.
126     SmallVector<const MachineOperand *, 4> BaseOps;
127   };
128 
129   bool emitClause(const ClauseInfo &CI, const SIInstrInfo *SII) {
130     if (CI.First == CI.Last)
131       return false;
132     assert(CI.Length <= 64 && "Hard clause is too long!");
133 
134     auto &MBB = *CI.First->getParent();
135     auto ClauseMI =
136         BuildMI(MBB, *CI.First, DebugLoc(), SII->get(AMDGPU::S_CLAUSE))
137             .addImm(CI.Length - 1);
138     finalizeBundle(MBB, ClauseMI->getIterator(),
139                    std::next(CI.Last->getIterator()));
140     return true;
141   }
142 
143   bool runOnMachineFunction(MachineFunction &MF) override {
144     if (skipFunction(MF.getFunction()))
145       return false;
146 
147     ST = &MF.getSubtarget<GCNSubtarget>();
148     if (!ST->hasHardClauses())
149       return false;
150 
151     const SIInstrInfo *SII = ST->getInstrInfo();
152     const TargetRegisterInfo *TRI = ST->getRegisterInfo();
153 
154     bool Changed = false;
155     for (auto &MBB : MF) {
156       ClauseInfo CI;
157       for (auto &MI : MBB) {
158         HardClauseType Type = getHardClauseType(MI);
159 
160         int64_t Dummy1;
161         bool Dummy2;
162         unsigned Dummy3;
163         SmallVector<const MachineOperand *, 4> BaseOps;
164         if (Type <= LAST_REAL_HARDCLAUSE_TYPE) {
165           if (!SII->getMemOperandsWithOffsetWidth(MI, BaseOps, Dummy1, Dummy2,
166                                                   Dummy3, TRI)) {
167             // We failed to get the base operands, so we'll never clause this
168             // instruction with any other, so pretend it's illegal.
169             Type = HARDCLAUSE_ILLEGAL;
170           }
171         }
172 
173         if (CI.Length == 64 ||
174             (CI.Length && Type != HARDCLAUSE_INTERNAL &&
175              Type != HARDCLAUSE_IGNORE &&
176              (Type != CI.Type ||
177               // Note that we lie to shouldClusterMemOps about the size of the
178               // cluster. When shouldClusterMemOps is called from the machine
179               // scheduler it limits the size of the cluster to avoid increasing
180               // register pressure too much, but this pass runs after register
181               // allocation so there is no need for that kind of limit.
182               !SII->shouldClusterMemOps(CI.BaseOps, BaseOps, 2, 2)))) {
183           // Finish the current clause.
184           Changed |= emitClause(CI, SII);
185           CI = ClauseInfo();
186         }
187 
188         if (CI.Length) {
189           // Extend the current clause.
190           if (Type != HARDCLAUSE_IGNORE) {
191             if (Type == HARDCLAUSE_INTERNAL) {
192               ++CI.TrailingInternalLength;
193             } else {
194               ++CI.Length;
195               CI.Length += CI.TrailingInternalLength;
196               CI.TrailingInternalLength = 0;
197               CI.Last = &MI;
198               CI.BaseOps = std::move(BaseOps);
199             }
200           }
201         } else if (Type <= LAST_REAL_HARDCLAUSE_TYPE) {
202           // Start a new clause.
203           CI = ClauseInfo{Type, &MI, &MI, 1, 0, std::move(BaseOps)};
204         }
205       }
206 
207       // Finish the last clause in the basic block if any.
208       if (CI.Length)
209         Changed |= emitClause(CI, SII);
210     }
211 
212     return Changed;
213   }
214 };
215 
216 } // namespace
217 
218 char SIInsertHardClauses::ID = 0;
219 
220 char &llvm::SIInsertHardClausesID = SIInsertHardClauses::ID;
221 
222 INITIALIZE_PASS(SIInsertHardClauses, DEBUG_TYPE, "SI Insert Hard Clauses",
223                 false, false)
224