1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/BinaryFormat/ELF.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/IntrinsicsAMDGPU.h" 35 #include "llvm/IR/IntrinsicsR600.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "si-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 static cl::opt<bool> DisableLoopAlignment( 46 "amdgpu-disable-loop-alignment", 47 cl::desc("Do not align and prefetch loops"), 48 cl::init(false)); 49 50 static cl::opt<bool> UseDivergentRegisterIndexing( 51 "amdgpu-use-divergent-register-indexing", 52 cl::Hidden, 53 cl::desc("Use indirect register addressing for divergent indexes"), 54 cl::init(false)); 55 56 static bool hasFP32Denormals(const MachineFunction &MF) { 57 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 58 return Info->getMode().allFP32Denormals(); 59 } 60 61 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 62 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 63 return Info->getMode().allFP64FP16Denormals(); 64 } 65 66 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 67 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 68 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 69 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 70 return AMDGPU::SGPR0 + Reg; 71 } 72 } 73 llvm_unreachable("Cannot allocate sgpr"); 74 } 75 76 SITargetLowering::SITargetLowering(const TargetMachine &TM, 77 const GCNSubtarget &STI) 78 : AMDGPUTargetLowering(TM, STI), 79 Subtarget(&STI) { 80 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 81 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 82 83 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 84 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 85 86 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 87 88 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 89 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 90 91 addRegisterClass(MVT::f64, V64RegClass); 92 addRegisterClass(MVT::v2f32, V64RegClass); 93 94 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 95 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 96 97 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 98 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 99 100 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 101 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 102 103 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 104 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 105 106 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 107 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 108 109 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 110 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 111 112 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 113 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 114 115 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 116 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 117 118 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 119 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 120 121 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 122 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 123 124 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 125 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 126 127 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 128 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 129 130 if (Subtarget->has16BitInsts()) { 131 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 132 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 133 134 // Unless there are also VOP3P operations, not operations are really legal. 135 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 136 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 137 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 138 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 139 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 140 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 141 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); 142 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); 143 } 144 145 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 146 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 147 148 computeRegisterProperties(Subtarget->getRegisterInfo()); 149 150 // The boolean content concept here is too inflexible. Compares only ever 151 // really produce a 1-bit result. Any copy/extend from these will turn into a 152 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 153 // it's what most targets use. 154 setBooleanContents(ZeroOrOneBooleanContent); 155 setBooleanVectorContents(ZeroOrOneBooleanContent); 156 157 // We need to custom lower vector stores from local memory 158 setOperationAction(ISD::LOAD, 159 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 160 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1, 161 MVT::v32i32}, 162 Custom); 163 164 setOperationAction(ISD::STORE, 165 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 166 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1, 167 MVT::v32i32}, 168 Custom); 169 170 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 171 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 172 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 173 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 174 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 175 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 177 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 178 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 179 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 180 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 181 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 182 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 183 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 184 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 185 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 186 187 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 188 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 189 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 190 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 191 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 192 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 193 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 194 195 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); 196 197 setOperationAction(ISD::SELECT, MVT::i1, Promote); 198 setOperationAction(ISD::SELECT, MVT::i64, Custom); 199 setOperationAction(ISD::SELECT, MVT::f64, Promote); 200 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 201 202 setOperationAction(ISD::SELECT_CC, 203 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); 204 205 setOperationAction(ISD::SETCC, MVT::i1, Promote); 206 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); 207 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 208 209 setOperationAction(ISD::TRUNCATE, 210 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 211 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32}, 212 Expand); 213 setOperationAction(ISD::FP_ROUND, 214 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, 215 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32}, 216 Expand); 217 218 setOperationAction(ISD::SIGN_EXTEND_INREG, 219 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, 220 MVT::v3i16, MVT::v4i16, MVT::Other}, 221 Custom); 222 223 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 224 setOperationAction(ISD::BR_CC, 225 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); 226 227 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); 228 229 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal); 230 231 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, 232 Expand); 233 234 #if 0 235 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal); 236 #endif 237 238 // We only support LOAD/STORE and vector manipulation ops for vectors 239 // with > 4 elements. 240 for (MVT VT : 241 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, 242 MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v3i64, MVT::v3f64, 243 MVT::v6i32, MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, 244 MVT::v8f64, MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16, 245 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32}) { 246 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 247 switch (Op) { 248 case ISD::LOAD: 249 case ISD::STORE: 250 case ISD::BUILD_VECTOR: 251 case ISD::BITCAST: 252 case ISD::EXTRACT_VECTOR_ELT: 253 case ISD::INSERT_VECTOR_ELT: 254 case ISD::EXTRACT_SUBVECTOR: 255 case ISD::SCALAR_TO_VECTOR: 256 break; 257 case ISD::INSERT_SUBVECTOR: 258 case ISD::CONCAT_VECTORS: 259 setOperationAction(Op, VT, Custom); 260 break; 261 default: 262 setOperationAction(Op, VT, Expand); 263 break; 264 } 265 } 266 } 267 268 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 269 270 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 271 // is expanded to avoid having two separate loops in case the index is a VGPR. 272 273 // Most operations are naturally 32-bit vector operations. We only support 274 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 275 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 276 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 277 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 278 279 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 280 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 281 282 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 283 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 284 285 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 286 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 287 } 288 289 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 290 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 291 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 292 293 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 294 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 295 296 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 297 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 298 299 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 300 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 301 } 302 303 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 304 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 305 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 306 307 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 308 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 309 310 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 311 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 312 313 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 314 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 315 } 316 317 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 318 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 319 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 320 321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 322 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 323 324 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 325 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 326 327 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 328 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 329 } 330 331 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 332 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 333 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 334 335 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 336 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 337 338 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 339 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 340 341 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 342 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 343 } 344 345 setOperationAction(ISD::VECTOR_SHUFFLE, 346 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, 347 Expand); 348 349 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); 350 351 // Avoid stack access for these. 352 // TODO: Generalize to more vector types. 353 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, 354 {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 355 MVT::v4i16, MVT::v4f16}, 356 Custom); 357 358 // Deal with vec3 vector operations when widened to vec4. 359 setOperationAction(ISD::INSERT_SUBVECTOR, 360 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); 361 362 // Deal with vec5/6/7 vector operations when widened to vec8. 363 setOperationAction(ISD::INSERT_SUBVECTOR, 364 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, 365 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32}, 366 Custom); 367 368 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 369 // and output demarshalling 370 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); 371 372 // We can't return success/failure, only the old value, 373 // let LLVM add the comparison 374 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, 375 Expand); 376 377 if (Subtarget->hasFlatAddressSpace()) 378 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); 379 380 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); 381 382 // FIXME: This should be narrowed to i32, but that only happens if i64 is 383 // illegal. 384 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 385 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); 386 387 // On SI this is s_memtime and s_memrealtime on VI. 388 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 389 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); 390 391 if (Subtarget->has16BitInsts()) { 392 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); 393 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); 394 } 395 396 if (Subtarget->hasMadMacF32Insts()) 397 setOperationAction(ISD::FMAD, MVT::f32, Legal); 398 399 if (!Subtarget->hasBFI()) 400 // fcopysign can be done in a single instruction with BFI. 401 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 402 403 if (!Subtarget->hasBCNT(32)) 404 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 405 406 if (!Subtarget->hasBCNT(64)) 407 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 408 409 if (Subtarget->hasFFBH()) 410 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 411 412 if (Subtarget->hasFFBL()) 413 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 414 415 // We only really have 32-bit BFE instructions (and 16-bit on VI). 416 // 417 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 418 // effort to match them now. We want this to be false for i64 cases when the 419 // extraction isn't restricted to the upper or lower half. Ideally we would 420 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 421 // span the midpoint are probably relatively rare, so don't worry about them 422 // for now. 423 if (Subtarget->hasBFE()) 424 setHasExtractBitsInsn(true); 425 426 // Clamp modifier on add/sub 427 if (Subtarget->hasIntClamp()) 428 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); 429 430 if (Subtarget->hasAddNoCarry()) 431 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, 432 Legal); 433 434 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, 435 Custom); 436 437 // These are really only legal for ieee_mode functions. We should be avoiding 438 // them for functions that don't have ieee_mode enabled, so just say they are 439 // legal. 440 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 441 {MVT::f32, MVT::f64}, Legal); 442 443 if (Subtarget->haveRoundOpsF64()) 444 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); 445 else 446 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, 447 MVT::f64, Custom); 448 449 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 450 451 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); 452 setOperationAction(ISD::FDIV, MVT::f64, Custom); 453 454 if (Subtarget->has16BitInsts()) { 455 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, 456 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, 457 MVT::i16, Legal); 458 459 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 460 461 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, 462 MVT::i16, Expand); 463 464 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, 465 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, 466 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 467 ISD::CTPOP}, 468 MVT::i16, Promote); 469 470 setOperationAction(ISD::LOAD, MVT::i16, Custom); 471 472 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 473 474 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 475 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 476 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 477 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 478 479 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); 480 481 // F16 - Constant Actions. 482 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 483 484 // F16 - Load/Store Actions. 485 setOperationAction(ISD::LOAD, MVT::f16, Promote); 486 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 487 setOperationAction(ISD::STORE, MVT::f16, Promote); 488 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 489 490 // F16 - VOP1 Actions. 491 setOperationAction( 492 {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, 493 MVT::f16, Custom); 494 495 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 496 497 setOperationAction( 498 {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, 499 MVT::f16, Promote); 500 501 // F16 - VOP2 Actions. 502 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); 503 504 setOperationAction(ISD::FDIV, MVT::f16, Custom); 505 506 // F16 - VOP3 Actions. 507 setOperationAction(ISD::FMA, MVT::f16, Legal); 508 if (STI.hasMadF16()) 509 setOperationAction(ISD::FMAD, MVT::f16, Legal); 510 511 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, 512 MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 513 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 514 switch (Op) { 515 case ISD::LOAD: 516 case ISD::STORE: 517 case ISD::BUILD_VECTOR: 518 case ISD::BITCAST: 519 case ISD::EXTRACT_VECTOR_ELT: 520 case ISD::INSERT_VECTOR_ELT: 521 case ISD::INSERT_SUBVECTOR: 522 case ISD::EXTRACT_SUBVECTOR: 523 case ISD::SCALAR_TO_VECTOR: 524 break; 525 case ISD::CONCAT_VECTORS: 526 setOperationAction(Op, VT, Custom); 527 break; 528 default: 529 setOperationAction(Op, VT, Expand); 530 break; 531 } 532 } 533 } 534 535 // v_perm_b32 can handle either of these. 536 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); 537 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 538 539 // XXX - Do these do anything? Vector constants turn into build_vector. 540 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); 541 542 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); 543 544 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 545 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 546 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 547 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 548 549 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 550 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 551 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 552 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 553 554 setOperationAction(ISD::AND, MVT::v2i16, Promote); 555 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 556 setOperationAction(ISD::OR, MVT::v2i16, Promote); 557 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 558 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 559 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 560 561 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 562 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 563 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 564 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 565 566 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 567 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 568 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 569 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 570 571 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 572 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 573 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 574 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 575 576 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 577 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 578 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 579 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 580 581 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 582 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 583 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 584 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 585 586 setOperationAction(ISD::LOAD, MVT::v16i16, Promote); 587 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); 588 setOperationAction(ISD::LOAD, MVT::v16f16, Promote); 589 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); 590 591 setOperationAction(ISD::STORE, MVT::v16i16, Promote); 592 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); 593 setOperationAction(ISD::STORE, MVT::v16f16, Promote); 594 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); 595 596 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 597 MVT::v2i32, Expand); 598 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 599 600 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 601 MVT::v4i32, Expand); 602 603 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 604 MVT::v8i32, Expand); 605 606 if (!Subtarget->hasVOP3PInsts()) 607 setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); 608 609 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 610 // This isn't really legal, but this avoids the legalizer unrolling it (and 611 // allows matching fneg (fabs x) patterns) 612 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 613 614 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); 615 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); 616 617 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 618 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); 619 620 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, 621 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); 622 623 for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 624 setOperationAction( 625 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, 626 Vec16, Custom); 627 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 628 } 629 } 630 631 if (Subtarget->hasVOP3PInsts()) { 632 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, 633 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 634 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, 635 MVT::v2i16, Legal); 636 637 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, 638 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, 639 MVT::v2f16, Legal); 640 641 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, 642 Custom); 643 644 setOperationAction(ISD::VECTOR_SHUFFLE, 645 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, 646 MVT::v16f16, MVT::v16i16}, 647 Custom); 648 649 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) 650 // Split vector operations. 651 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, 652 ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, 653 ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, 654 ISD::SSUBSAT}, 655 VT, Custom); 656 657 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) 658 // Split vector operations. 659 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, 660 VT, Custom); 661 662 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, 663 Custom); 664 665 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 666 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); 667 668 if (Subtarget->hasPackedFP32Ops()) { 669 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, 670 MVT::v2f32, Legal); 671 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, 672 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, 673 Custom); 674 } 675 } 676 677 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); 678 679 if (Subtarget->has16BitInsts()) { 680 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 681 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 682 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 683 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 684 } else { 685 // Legalization hack. 686 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); 687 688 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); 689 } 690 691 setOperationAction(ISD::SELECT, 692 {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 693 MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, 694 Custom); 695 696 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); 697 698 if (Subtarget->hasMad64_32()) 699 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); 700 701 setOperationAction(ISD::INTRINSIC_WO_CHAIN, 702 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, 703 MVT::v2i16, MVT::v2f16}, 704 Custom); 705 706 setOperationAction(ISD::INTRINSIC_W_CHAIN, 707 {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, 708 MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, 709 MVT::i16, MVT::i8}, 710 Custom); 711 712 setOperationAction(ISD::INTRINSIC_VOID, 713 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, 714 MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, 715 MVT::i8}, 716 Custom); 717 718 setTargetDAGCombine({ISD::ADD, 719 ISD::ADDCARRY, 720 ISD::SUB, 721 ISD::SUBCARRY, 722 ISD::FADD, 723 ISD::FSUB, 724 ISD::FMINNUM, 725 ISD::FMAXNUM, 726 ISD::FMINNUM_IEEE, 727 ISD::FMAXNUM_IEEE, 728 ISD::FMA, 729 ISD::SMIN, 730 ISD::SMAX, 731 ISD::UMIN, 732 ISD::UMAX, 733 ISD::SETCC, 734 ISD::AND, 735 ISD::OR, 736 ISD::XOR, 737 ISD::SINT_TO_FP, 738 ISD::UINT_TO_FP, 739 ISD::FCANONICALIZE, 740 ISD::SCALAR_TO_VECTOR, 741 ISD::ZERO_EXTEND, 742 ISD::SIGN_EXTEND_INREG, 743 ISD::EXTRACT_VECTOR_ELT, 744 ISD::INSERT_VECTOR_ELT}); 745 746 // All memory operations. Some folding on the pointer operand is done to help 747 // matching the constant offsets in the addressing modes. 748 setTargetDAGCombine({ISD::LOAD, 749 ISD::STORE, 750 ISD::ATOMIC_LOAD, 751 ISD::ATOMIC_STORE, 752 ISD::ATOMIC_CMP_SWAP, 753 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 754 ISD::ATOMIC_SWAP, 755 ISD::ATOMIC_LOAD_ADD, 756 ISD::ATOMIC_LOAD_SUB, 757 ISD::ATOMIC_LOAD_AND, 758 ISD::ATOMIC_LOAD_OR, 759 ISD::ATOMIC_LOAD_XOR, 760 ISD::ATOMIC_LOAD_NAND, 761 ISD::ATOMIC_LOAD_MIN, 762 ISD::ATOMIC_LOAD_MAX, 763 ISD::ATOMIC_LOAD_UMIN, 764 ISD::ATOMIC_LOAD_UMAX, 765 ISD::ATOMIC_LOAD_FADD, 766 ISD::INTRINSIC_VOID, 767 ISD::INTRINSIC_W_CHAIN}); 768 769 // FIXME: In other contexts we pretend this is a per-function property. 770 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 771 772 setSchedulingPreference(Sched::RegPressure); 773 } 774 775 const GCNSubtarget *SITargetLowering::getSubtarget() const { 776 return Subtarget; 777 } 778 779 //===----------------------------------------------------------------------===// 780 // TargetLowering queries 781 //===----------------------------------------------------------------------===// 782 783 // v_mad_mix* support a conversion from f16 to f32. 784 // 785 // There is only one special case when denormals are enabled we don't currently, 786 // where this is OK to use. 787 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 788 EVT DestVT, EVT SrcVT) const { 789 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 790 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 791 DestVT.getScalarType() == MVT::f32 && 792 SrcVT.getScalarType() == MVT::f16 && 793 // TODO: This probably only requires no input flushing? 794 !hasFP32Denormals(DAG.getMachineFunction()); 795 } 796 797 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 798 LLT DestTy, LLT SrcTy) const { 799 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 800 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 801 DestTy.getScalarSizeInBits() == 32 && 802 SrcTy.getScalarSizeInBits() == 16 && 803 // TODO: This probably only requires no input flushing? 804 !hasFP32Denormals(*MI.getMF()); 805 } 806 807 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 808 // SI has some legal vector types, but no legal vector operations. Say no 809 // shuffles are legal in order to prefer scalarizing some vector operations. 810 return false; 811 } 812 813 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 814 CallingConv::ID CC, 815 EVT VT) const { 816 if (CC == CallingConv::AMDGPU_KERNEL) 817 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 818 819 if (VT.isVector()) { 820 EVT ScalarVT = VT.getScalarType(); 821 unsigned Size = ScalarVT.getSizeInBits(); 822 if (Size == 16) { 823 if (Subtarget->has16BitInsts()) 824 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 825 return VT.isInteger() ? MVT::i32 : MVT::f32; 826 } 827 828 if (Size < 16) 829 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 830 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 831 } 832 833 if (VT.getSizeInBits() > 32) 834 return MVT::i32; 835 836 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 837 } 838 839 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 840 CallingConv::ID CC, 841 EVT VT) const { 842 if (CC == CallingConv::AMDGPU_KERNEL) 843 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 844 845 if (VT.isVector()) { 846 unsigned NumElts = VT.getVectorNumElements(); 847 EVT ScalarVT = VT.getScalarType(); 848 unsigned Size = ScalarVT.getSizeInBits(); 849 850 // FIXME: Should probably promote 8-bit vectors to i16. 851 if (Size == 16 && Subtarget->has16BitInsts()) 852 return (NumElts + 1) / 2; 853 854 if (Size <= 32) 855 return NumElts; 856 857 if (Size > 32) 858 return NumElts * ((Size + 31) / 32); 859 } else if (VT.getSizeInBits() > 32) 860 return (VT.getSizeInBits() + 31) / 32; 861 862 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 863 } 864 865 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 866 LLVMContext &Context, CallingConv::ID CC, 867 EVT VT, EVT &IntermediateVT, 868 unsigned &NumIntermediates, MVT &RegisterVT) const { 869 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 870 unsigned NumElts = VT.getVectorNumElements(); 871 EVT ScalarVT = VT.getScalarType(); 872 unsigned Size = ScalarVT.getSizeInBits(); 873 // FIXME: We should fix the ABI to be the same on targets without 16-bit 874 // support, but unless we can properly handle 3-vectors, it will be still be 875 // inconsistent. 876 if (Size == 16 && Subtarget->has16BitInsts()) { 877 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 878 IntermediateVT = RegisterVT; 879 NumIntermediates = (NumElts + 1) / 2; 880 return NumIntermediates; 881 } 882 883 if (Size == 32) { 884 RegisterVT = ScalarVT.getSimpleVT(); 885 IntermediateVT = RegisterVT; 886 NumIntermediates = NumElts; 887 return NumIntermediates; 888 } 889 890 if (Size < 16 && Subtarget->has16BitInsts()) { 891 // FIXME: Should probably form v2i16 pieces 892 RegisterVT = MVT::i16; 893 IntermediateVT = ScalarVT; 894 NumIntermediates = NumElts; 895 return NumIntermediates; 896 } 897 898 899 if (Size != 16 && Size <= 32) { 900 RegisterVT = MVT::i32; 901 IntermediateVT = ScalarVT; 902 NumIntermediates = NumElts; 903 return NumIntermediates; 904 } 905 906 if (Size > 32) { 907 RegisterVT = MVT::i32; 908 IntermediateVT = RegisterVT; 909 NumIntermediates = NumElts * ((Size + 31) / 32); 910 return NumIntermediates; 911 } 912 } 913 914 return TargetLowering::getVectorTypeBreakdownForCallingConv( 915 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 916 } 917 918 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 919 assert(DMaskLanes != 0); 920 921 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 922 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 923 return EVT::getVectorVT(Ty->getContext(), 924 EVT::getEVT(VT->getElementType()), 925 NumElts); 926 } 927 928 return EVT::getEVT(Ty); 929 } 930 931 // Peek through TFE struct returns to only use the data size. 932 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 933 auto *ST = dyn_cast<StructType>(Ty); 934 if (!ST) 935 return memVTFromImageData(Ty, DMaskLanes); 936 937 // Some intrinsics return an aggregate type - special case to work out the 938 // correct memVT. 939 // 940 // Only limited forms of aggregate type currently expected. 941 if (ST->getNumContainedTypes() != 2 || 942 !ST->getContainedType(1)->isIntegerTy(32)) 943 return EVT(); 944 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 945 } 946 947 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 948 const CallInst &CI, 949 MachineFunction &MF, 950 unsigned IntrID) const { 951 Info.flags = MachineMemOperand::MONone; 952 if (CI.hasMetadata(LLVMContext::MD_invariant_load)) 953 Info.flags |= MachineMemOperand::MOInvariant; 954 955 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 956 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 957 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 958 (Intrinsic::ID)IntrID); 959 if (Attr.hasFnAttr(Attribute::ReadNone)) 960 return false; 961 962 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 963 964 const GCNTargetMachine &TM = 965 static_cast<const GCNTargetMachine &>(getTargetMachine()); 966 967 if (RsrcIntr->IsImage) { 968 Info.ptrVal = MFI->getImagePSV(TM); 969 Info.align.reset(); 970 } else { 971 Info.ptrVal = MFI->getBufferPSV(TM); 972 } 973 974 Info.flags |= MachineMemOperand::MODereferenceable; 975 if (Attr.hasFnAttr(Attribute::ReadOnly)) { 976 unsigned DMaskLanes = 4; 977 978 if (RsrcIntr->IsImage) { 979 const AMDGPU::ImageDimIntrinsicInfo *Intr 980 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 981 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 982 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 983 984 if (!BaseOpcode->Gather4) { 985 // If this isn't a gather, we may have excess loaded elements in the 986 // IR type. Check the dmask for the real number of elements loaded. 987 unsigned DMask 988 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 989 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 990 } 991 992 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 993 } else 994 Info.memVT = EVT::getEVT(CI.getType()); 995 996 // FIXME: What does alignment mean for an image? 997 Info.opc = ISD::INTRINSIC_W_CHAIN; 998 Info.flags |= MachineMemOperand::MOLoad; 999 } else if (Attr.hasFnAttr(Attribute::WriteOnly)) { 1000 Info.opc = ISD::INTRINSIC_VOID; 1001 1002 Type *DataTy = CI.getArgOperand(0)->getType(); 1003 if (RsrcIntr->IsImage) { 1004 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1005 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1006 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1007 } else 1008 Info.memVT = EVT::getEVT(DataTy); 1009 1010 Info.flags |= MachineMemOperand::MOStore; 1011 } else { 1012 // Atomic 1013 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1014 ISD::INTRINSIC_W_CHAIN; 1015 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1016 Info.flags |= MachineMemOperand::MOLoad | 1017 MachineMemOperand::MOStore | 1018 MachineMemOperand::MODereferenceable; 1019 1020 // XXX - Should this be volatile without known ordering? 1021 Info.flags |= MachineMemOperand::MOVolatile; 1022 1023 switch (IntrID) { 1024 default: 1025 break; 1026 case Intrinsic::amdgcn_raw_buffer_load_lds: 1027 case Intrinsic::amdgcn_struct_buffer_load_lds: { 1028 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1029 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1030 return true; 1031 } 1032 } 1033 } 1034 return true; 1035 } 1036 1037 switch (IntrID) { 1038 case Intrinsic::amdgcn_atomic_inc: 1039 case Intrinsic::amdgcn_atomic_dec: 1040 case Intrinsic::amdgcn_ds_ordered_add: 1041 case Intrinsic::amdgcn_ds_ordered_swap: 1042 case Intrinsic::amdgcn_ds_fadd: 1043 case Intrinsic::amdgcn_ds_fmin: 1044 case Intrinsic::amdgcn_ds_fmax: { 1045 Info.opc = ISD::INTRINSIC_W_CHAIN; 1046 Info.memVT = MVT::getVT(CI.getType()); 1047 Info.ptrVal = CI.getOperand(0); 1048 Info.align.reset(); 1049 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1050 1051 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1052 if (!Vol->isZero()) 1053 Info.flags |= MachineMemOperand::MOVolatile; 1054 1055 return true; 1056 } 1057 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1058 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1059 1060 const GCNTargetMachine &TM = 1061 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1062 1063 Info.opc = ISD::INTRINSIC_W_CHAIN; 1064 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1065 Info.ptrVal = MFI->getBufferPSV(TM); 1066 Info.align.reset(); 1067 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1068 1069 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1070 if (!Vol || !Vol->isZero()) 1071 Info.flags |= MachineMemOperand::MOVolatile; 1072 1073 return true; 1074 } 1075 case Intrinsic::amdgcn_ds_append: 1076 case Intrinsic::amdgcn_ds_consume: { 1077 Info.opc = ISD::INTRINSIC_W_CHAIN; 1078 Info.memVT = MVT::getVT(CI.getType()); 1079 Info.ptrVal = CI.getOperand(0); 1080 Info.align.reset(); 1081 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1082 1083 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1084 if (!Vol->isZero()) 1085 Info.flags |= MachineMemOperand::MOVolatile; 1086 1087 return true; 1088 } 1089 case Intrinsic::amdgcn_global_atomic_csub: { 1090 Info.opc = ISD::INTRINSIC_W_CHAIN; 1091 Info.memVT = MVT::getVT(CI.getType()); 1092 Info.ptrVal = CI.getOperand(0); 1093 Info.align.reset(); 1094 Info.flags |= MachineMemOperand::MOLoad | 1095 MachineMemOperand::MOStore | 1096 MachineMemOperand::MOVolatile; 1097 return true; 1098 } 1099 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1100 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1101 Info.opc = ISD::INTRINSIC_W_CHAIN; 1102 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1103 1104 const GCNTargetMachine &TM = 1105 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1106 1107 Info.ptrVal = MFI->getImagePSV(TM); 1108 Info.align.reset(); 1109 Info.flags |= MachineMemOperand::MOLoad | 1110 MachineMemOperand::MODereferenceable; 1111 return true; 1112 } 1113 case Intrinsic::amdgcn_global_atomic_fadd: 1114 case Intrinsic::amdgcn_global_atomic_fmin: 1115 case Intrinsic::amdgcn_global_atomic_fmax: 1116 case Intrinsic::amdgcn_flat_atomic_fadd: 1117 case Intrinsic::amdgcn_flat_atomic_fmin: 1118 case Intrinsic::amdgcn_flat_atomic_fmax: 1119 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1120 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { 1121 Info.opc = ISD::INTRINSIC_W_CHAIN; 1122 Info.memVT = MVT::getVT(CI.getType()); 1123 Info.ptrVal = CI.getOperand(0); 1124 Info.align.reset(); 1125 Info.flags |= MachineMemOperand::MOLoad | 1126 MachineMemOperand::MOStore | 1127 MachineMemOperand::MODereferenceable | 1128 MachineMemOperand::MOVolatile; 1129 return true; 1130 } 1131 case Intrinsic::amdgcn_ds_gws_init: 1132 case Intrinsic::amdgcn_ds_gws_barrier: 1133 case Intrinsic::amdgcn_ds_gws_sema_v: 1134 case Intrinsic::amdgcn_ds_gws_sema_br: 1135 case Intrinsic::amdgcn_ds_gws_sema_p: 1136 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1137 Info.opc = ISD::INTRINSIC_VOID; 1138 1139 const GCNTargetMachine &TM = 1140 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1141 1142 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1143 Info.ptrVal = MFI->getGWSPSV(TM); 1144 1145 // This is an abstract access, but we need to specify a type and size. 1146 Info.memVT = MVT::i32; 1147 Info.size = 4; 1148 Info.align = Align(4); 1149 1150 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1151 Info.flags |= MachineMemOperand::MOLoad; 1152 else 1153 Info.flags |= MachineMemOperand::MOStore; 1154 return true; 1155 } 1156 case Intrinsic::amdgcn_global_load_lds: { 1157 Info.opc = ISD::INTRINSIC_VOID; 1158 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1159 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1160 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1161 MachineMemOperand::MOVolatile; 1162 return true; 1163 } 1164 default: 1165 return false; 1166 } 1167 } 1168 1169 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1170 SmallVectorImpl<Value*> &Ops, 1171 Type *&AccessTy) const { 1172 switch (II->getIntrinsicID()) { 1173 case Intrinsic::amdgcn_atomic_inc: 1174 case Intrinsic::amdgcn_atomic_dec: 1175 case Intrinsic::amdgcn_ds_ordered_add: 1176 case Intrinsic::amdgcn_ds_ordered_swap: 1177 case Intrinsic::amdgcn_ds_append: 1178 case Intrinsic::amdgcn_ds_consume: 1179 case Intrinsic::amdgcn_ds_fadd: 1180 case Intrinsic::amdgcn_ds_fmin: 1181 case Intrinsic::amdgcn_ds_fmax: 1182 case Intrinsic::amdgcn_global_atomic_fadd: 1183 case Intrinsic::amdgcn_flat_atomic_fadd: 1184 case Intrinsic::amdgcn_flat_atomic_fmin: 1185 case Intrinsic::amdgcn_flat_atomic_fmax: 1186 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1187 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: 1188 case Intrinsic::amdgcn_global_atomic_csub: { 1189 Value *Ptr = II->getArgOperand(0); 1190 AccessTy = II->getType(); 1191 Ops.push_back(Ptr); 1192 return true; 1193 } 1194 default: 1195 return false; 1196 } 1197 } 1198 1199 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1200 if (!Subtarget->hasFlatInstOffsets()) { 1201 // Flat instructions do not have offsets, and only have the register 1202 // address. 1203 return AM.BaseOffs == 0 && AM.Scale == 0; 1204 } 1205 1206 return AM.Scale == 0 && 1207 (AM.BaseOffs == 0 || 1208 Subtarget->getInstrInfo()->isLegalFLATOffset( 1209 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); 1210 } 1211 1212 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1213 if (Subtarget->hasFlatGlobalInsts()) 1214 return AM.Scale == 0 && 1215 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1216 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1217 SIInstrFlags::FlatGlobal)); 1218 1219 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1220 // Assume the we will use FLAT for all global memory accesses 1221 // on VI. 1222 // FIXME: This assumption is currently wrong. On VI we still use 1223 // MUBUF instructions for the r + i addressing mode. As currently 1224 // implemented, the MUBUF instructions only work on buffer < 4GB. 1225 // It may be possible to support > 4GB buffers with MUBUF instructions, 1226 // by setting the stride value in the resource descriptor which would 1227 // increase the size limit to (stride * 4GB). However, this is risky, 1228 // because it has never been validated. 1229 return isLegalFlatAddressingMode(AM); 1230 } 1231 1232 return isLegalMUBUFAddressingMode(AM); 1233 } 1234 1235 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1236 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1237 // additionally can do r + r + i with addr64. 32-bit has more addressing 1238 // mode options. Depending on the resource constant, it can also do 1239 // (i64 r0) + (i32 r1) * (i14 i). 1240 // 1241 // Private arrays end up using a scratch buffer most of the time, so also 1242 // assume those use MUBUF instructions. Scratch loads / stores are currently 1243 // implemented as mubuf instructions with offen bit set, so slightly 1244 // different than the normal addr64. 1245 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1246 return false; 1247 1248 // FIXME: Since we can split immediate into soffset and immediate offset, 1249 // would it make sense to allow any immediate? 1250 1251 switch (AM.Scale) { 1252 case 0: // r + i or just i, depending on HasBaseReg. 1253 return true; 1254 case 1: 1255 return true; // We have r + r or r + i. 1256 case 2: 1257 if (AM.HasBaseReg) { 1258 // Reject 2 * r + r. 1259 return false; 1260 } 1261 1262 // Allow 2 * r as r + r 1263 // Or 2 * r + i is allowed as r + r + i. 1264 return true; 1265 default: // Don't allow n * r 1266 return false; 1267 } 1268 } 1269 1270 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1271 const AddrMode &AM, Type *Ty, 1272 unsigned AS, Instruction *I) const { 1273 // No global is ever allowed as a base. 1274 if (AM.BaseGV) 1275 return false; 1276 1277 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1278 return isLegalGlobalAddressingMode(AM); 1279 1280 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1281 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1282 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1283 // If the offset isn't a multiple of 4, it probably isn't going to be 1284 // correctly aligned. 1285 // FIXME: Can we get the real alignment here? 1286 if (AM.BaseOffs % 4 != 0) 1287 return isLegalMUBUFAddressingMode(AM); 1288 1289 // There are no SMRD extloads, so if we have to do a small type access we 1290 // will use a MUBUF load. 1291 // FIXME?: We also need to do this if unaligned, but we don't know the 1292 // alignment here. 1293 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1294 return isLegalGlobalAddressingMode(AM); 1295 1296 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1297 // SMRD instructions have an 8-bit, dword offset on SI. 1298 if (!isUInt<8>(AM.BaseOffs / 4)) 1299 return false; 1300 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1301 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1302 // in 8-bits, it can use a smaller encoding. 1303 if (!isUInt<32>(AM.BaseOffs / 4)) 1304 return false; 1305 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1306 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1307 if (!isUInt<20>(AM.BaseOffs)) 1308 return false; 1309 } else 1310 llvm_unreachable("unhandled generation"); 1311 1312 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1313 return true; 1314 1315 if (AM.Scale == 1 && AM.HasBaseReg) 1316 return true; 1317 1318 return false; 1319 1320 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1321 return isLegalMUBUFAddressingMode(AM); 1322 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1323 AS == AMDGPUAS::REGION_ADDRESS) { 1324 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1325 // field. 1326 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1327 // an 8-bit dword offset but we don't know the alignment here. 1328 if (!isUInt<16>(AM.BaseOffs)) 1329 return false; 1330 1331 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1332 return true; 1333 1334 if (AM.Scale == 1 && AM.HasBaseReg) 1335 return true; 1336 1337 return false; 1338 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1339 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1340 // For an unknown address space, this usually means that this is for some 1341 // reason being used for pure arithmetic, and not based on some addressing 1342 // computation. We don't have instructions that compute pointers with any 1343 // addressing modes, so treat them as having no offset like flat 1344 // instructions. 1345 return isLegalFlatAddressingMode(AM); 1346 } 1347 1348 // Assume a user alias of global for unknown address spaces. 1349 return isLegalGlobalAddressingMode(AM); 1350 } 1351 1352 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1353 const MachineFunction &MF) const { 1354 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1355 return (MemVT.getSizeInBits() <= 4 * 32); 1356 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1357 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1358 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1359 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1360 return (MemVT.getSizeInBits() <= 2 * 32); 1361 } 1362 return true; 1363 } 1364 1365 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1366 unsigned Size, unsigned AddrSpace, Align Alignment, 1367 MachineMemOperand::Flags Flags, bool *IsFast) const { 1368 if (IsFast) 1369 *IsFast = false; 1370 1371 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1372 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1373 // Check if alignment requirements for ds_read/write instructions are 1374 // disabled. 1375 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) 1376 return false; 1377 1378 Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. 1379 if (Subtarget->hasLDSMisalignedBug() && Size > 32 && 1380 Alignment < RequiredAlignment) 1381 return false; 1382 1383 // Either, the alignment requirements are "enabled", or there is an 1384 // unaligned LDS access related hardware bug though alignment requirements 1385 // are "disabled". In either case, we need to check for proper alignment 1386 // requirements. 1387 // 1388 switch (Size) { 1389 case 64: 1390 // SI has a hardware bug in the LDS / GDS bounds checking: if the base 1391 // address is negative, then the instruction is incorrectly treated as 1392 // out-of-bounds even if base + offsets is in bounds. Split vectorized 1393 // loads here to avoid emitting ds_read2_b32. We may re-combine the 1394 // load later in the SILoadStoreOptimizer. 1395 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) 1396 return false; 1397 1398 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1399 // can do a 4 byte aligned, 8 byte access in a single operation using 1400 // ds_read2/write2_b32 with adjacent offsets. 1401 RequiredAlignment = Align(4); 1402 1403 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1404 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ 1405 // ds_write2_b32 depending on the alignment. In either case with either 1406 // alignment there is no faster way of doing this. 1407 if (IsFast) 1408 *IsFast = true; 1409 return true; 1410 } 1411 1412 break; 1413 case 96: 1414 if (!Subtarget->hasDS96AndDS128()) 1415 return false; 1416 1417 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1418 // gfx8 and older. 1419 1420 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1421 // Naturally aligned access is fastest. However, also report it is Fast 1422 // if memory is aligned less than DWORD. A narrow load or store will be 1423 // be equally slow as a single ds_read_b96/ds_write_b96, but there will 1424 // be more of them, so overall we will pay less penalty issuing a single 1425 // instruction. 1426 if (IsFast) 1427 *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4); 1428 return true; 1429 } 1430 1431 break; 1432 case 128: 1433 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) 1434 return false; 1435 1436 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1437 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1438 // single operation using ds_read2/write2_b64. 1439 RequiredAlignment = Align(8); 1440 1441 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1442 // Naturally aligned access is fastest. However, also report it is Fast 1443 // if memory is aligned less than DWORD. A narrow load or store will be 1444 // be equally slow as a single ds_read_b128/ds_write_b128, but there 1445 // will be more of them, so overall we will pay less penalty issuing a 1446 // single instruction. 1447 if (IsFast) 1448 *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4); 1449 return true; 1450 } 1451 1452 break; 1453 default: 1454 if (Size > 32) 1455 return false; 1456 1457 break; 1458 } 1459 1460 if (IsFast) 1461 *IsFast = Alignment >= RequiredAlignment; 1462 1463 return Alignment >= RequiredAlignment || 1464 Subtarget->hasUnalignedDSAccessEnabled(); 1465 } 1466 1467 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1468 bool AlignedBy4 = Alignment >= Align(4); 1469 if (IsFast) 1470 *IsFast = AlignedBy4; 1471 1472 return AlignedBy4 || 1473 Subtarget->enableFlatScratch() || 1474 Subtarget->hasUnalignedScratchAccess(); 1475 } 1476 1477 // FIXME: We have to be conservative here and assume that flat operations 1478 // will access scratch. If we had access to the IR function, then we 1479 // could determine if any private memory was used in the function. 1480 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1481 !Subtarget->hasUnalignedScratchAccess()) { 1482 bool AlignedBy4 = Alignment >= Align(4); 1483 if (IsFast) 1484 *IsFast = AlignedBy4; 1485 1486 return AlignedBy4; 1487 } 1488 1489 if (Subtarget->hasUnalignedBufferAccessEnabled()) { 1490 // If we have a uniform constant load, it still requires using a slow 1491 // buffer instruction if unaligned. 1492 if (IsFast) { 1493 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1494 // 2-byte alignment is worse than 1 unless doing a 2-byte access. 1495 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1496 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1497 Alignment >= Align(4) : Alignment != Align(2); 1498 } 1499 1500 return true; 1501 } 1502 1503 // Smaller than dword value must be aligned. 1504 if (Size < 32) 1505 return false; 1506 1507 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1508 // byte-address are ignored, thus forcing Dword alignment. 1509 // This applies to private, global, and constant memory. 1510 if (IsFast) 1511 *IsFast = true; 1512 1513 return Size >= 32 && Alignment >= Align(4); 1514 } 1515 1516 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1517 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1518 bool *IsFast) const { 1519 bool Allow = allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1520 Alignment, Flags, IsFast); 1521 1522 if (Allow && IsFast && Subtarget->hasUnalignedDSAccessEnabled() && 1523 (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1524 AddrSpace == AMDGPUAS::REGION_ADDRESS)) { 1525 // Lie it is fast if +unaligned-access-mode is passed so that DS accesses 1526 // get vectorized. We could use ds_read2_b*/ds_write2_b* instructions on a 1527 // misaligned data which is faster than a pair of ds_read_b*/ds_write_b* 1528 // which would be equally misaligned. 1529 // This is only used by the common passes, selection always calls the 1530 // allowsMisalignedMemoryAccessesImpl version. 1531 *IsFast = true; 1532 } 1533 1534 return Allow; 1535 } 1536 1537 EVT SITargetLowering::getOptimalMemOpType( 1538 const MemOp &Op, const AttributeList &FuncAttributes) const { 1539 // FIXME: Should account for address space here. 1540 1541 // The default fallback uses the private pointer size as a guess for a type to 1542 // use. Make sure we switch these to 64-bit accesses. 1543 1544 if (Op.size() >= 16 && 1545 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1546 return MVT::v4i32; 1547 1548 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1549 return MVT::v2i32; 1550 1551 // Use the default. 1552 return MVT::Other; 1553 } 1554 1555 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1556 const MemSDNode *MemNode = cast<MemSDNode>(N); 1557 return MemNode->getMemOperand()->getFlags() & MONoClobber; 1558 } 1559 1560 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1561 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1562 AS == AMDGPUAS::PRIVATE_ADDRESS; 1563 } 1564 1565 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1566 unsigned DestAS) const { 1567 // Flat -> private/local is a simple truncate. 1568 // Flat -> global is no-op 1569 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1570 return true; 1571 1572 const GCNTargetMachine &TM = 1573 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1574 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1575 } 1576 1577 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1578 const MemSDNode *MemNode = cast<MemSDNode>(N); 1579 1580 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1581 } 1582 1583 TargetLoweringBase::LegalizeTypeAction 1584 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1585 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1586 VT.getScalarType().bitsLE(MVT::i16)) 1587 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1588 return TargetLoweringBase::getPreferredVectorAction(VT); 1589 } 1590 1591 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1592 Type *Ty) const { 1593 // FIXME: Could be smarter if called for vector constants. 1594 return true; 1595 } 1596 1597 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 1598 unsigned Index) const { 1599 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 1600 return false; 1601 1602 // TODO: Add more cases that are cheap. 1603 return Index == 0; 1604 } 1605 1606 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1607 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1608 switch (Op) { 1609 case ISD::LOAD: 1610 case ISD::STORE: 1611 1612 // These operations are done with 32-bit instructions anyway. 1613 case ISD::AND: 1614 case ISD::OR: 1615 case ISD::XOR: 1616 case ISD::SELECT: 1617 // TODO: Extensions? 1618 return true; 1619 default: 1620 return false; 1621 } 1622 } 1623 1624 // SimplifySetCC uses this function to determine whether or not it should 1625 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1626 if (VT == MVT::i1 && Op == ISD::SETCC) 1627 return false; 1628 1629 return TargetLowering::isTypeDesirableForOp(Op, VT); 1630 } 1631 1632 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1633 const SDLoc &SL, 1634 SDValue Chain, 1635 uint64_t Offset) const { 1636 const DataLayout &DL = DAG.getDataLayout(); 1637 MachineFunction &MF = DAG.getMachineFunction(); 1638 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1639 1640 const ArgDescriptor *InputPtrReg; 1641 const TargetRegisterClass *RC; 1642 LLT ArgTy; 1643 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1644 1645 std::tie(InputPtrReg, RC, ArgTy) = 1646 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1647 1648 // We may not have the kernarg segment argument if we have no kernel 1649 // arguments. 1650 if (!InputPtrReg) 1651 return DAG.getConstant(0, SL, PtrVT); 1652 1653 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1654 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1655 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1656 1657 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1658 } 1659 1660 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1661 const SDLoc &SL) const { 1662 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1663 FIRST_IMPLICIT); 1664 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1665 } 1666 1667 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, 1668 const SDLoc &SL) const { 1669 1670 Function &F = DAG.getMachineFunction().getFunction(); 1671 Optional<uint32_t> KnownSize = 1672 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 1673 if (KnownSize.has_value()) 1674 return DAG.getConstant(KnownSize.value(), SL, MVT::i32); 1675 return SDValue(); 1676 } 1677 1678 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1679 const SDLoc &SL, SDValue Val, 1680 bool Signed, 1681 const ISD::InputArg *Arg) const { 1682 // First, if it is a widened vector, narrow it. 1683 if (VT.isVector() && 1684 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1685 EVT NarrowedVT = 1686 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1687 VT.getVectorNumElements()); 1688 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1689 DAG.getConstant(0, SL, MVT::i32)); 1690 } 1691 1692 // Then convert the vector elements or scalar value. 1693 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1694 VT.bitsLT(MemVT)) { 1695 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1696 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1697 } 1698 1699 if (MemVT.isFloatingPoint()) 1700 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1701 else if (Signed) 1702 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1703 else 1704 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1705 1706 return Val; 1707 } 1708 1709 SDValue SITargetLowering::lowerKernargMemParameter( 1710 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1711 uint64_t Offset, Align Alignment, bool Signed, 1712 const ISD::InputArg *Arg) const { 1713 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1714 1715 // Try to avoid using an extload by loading earlier than the argument address, 1716 // and extracting the relevant bits. The load should hopefully be merged with 1717 // the previous argument. 1718 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1719 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1720 int64_t AlignDownOffset = alignDown(Offset, 4); 1721 int64_t OffsetDiff = Offset - AlignDownOffset; 1722 1723 EVT IntVT = MemVT.changeTypeToInteger(); 1724 1725 // TODO: If we passed in the base kernel offset we could have a better 1726 // alignment than 4, but we don't really need it. 1727 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1728 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1729 MachineMemOperand::MODereferenceable | 1730 MachineMemOperand::MOInvariant); 1731 1732 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1733 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1734 1735 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1736 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1737 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1738 1739 1740 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1741 } 1742 1743 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1744 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1745 MachineMemOperand::MODereferenceable | 1746 MachineMemOperand::MOInvariant); 1747 1748 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1749 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1750 } 1751 1752 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1753 const SDLoc &SL, SDValue Chain, 1754 const ISD::InputArg &Arg) const { 1755 MachineFunction &MF = DAG.getMachineFunction(); 1756 MachineFrameInfo &MFI = MF.getFrameInfo(); 1757 1758 if (Arg.Flags.isByVal()) { 1759 unsigned Size = Arg.Flags.getByValSize(); 1760 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1761 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1762 } 1763 1764 unsigned ArgOffset = VA.getLocMemOffset(); 1765 unsigned ArgSize = VA.getValVT().getStoreSize(); 1766 1767 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1768 1769 // Create load nodes to retrieve arguments from the stack. 1770 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1771 SDValue ArgValue; 1772 1773 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1774 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1775 MVT MemVT = VA.getValVT(); 1776 1777 switch (VA.getLocInfo()) { 1778 default: 1779 break; 1780 case CCValAssign::BCvt: 1781 MemVT = VA.getLocVT(); 1782 break; 1783 case CCValAssign::SExt: 1784 ExtType = ISD::SEXTLOAD; 1785 break; 1786 case CCValAssign::ZExt: 1787 ExtType = ISD::ZEXTLOAD; 1788 break; 1789 case CCValAssign::AExt: 1790 ExtType = ISD::EXTLOAD; 1791 break; 1792 } 1793 1794 ArgValue = DAG.getExtLoad( 1795 ExtType, SL, VA.getLocVT(), Chain, FIN, 1796 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1797 MemVT); 1798 return ArgValue; 1799 } 1800 1801 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1802 const SIMachineFunctionInfo &MFI, 1803 EVT VT, 1804 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1805 const ArgDescriptor *Reg; 1806 const TargetRegisterClass *RC; 1807 LLT Ty; 1808 1809 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1810 if (!Reg) { 1811 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 1812 // It's possible for a kernarg intrinsic call to appear in a kernel with 1813 // no allocated segment, in which case we do not add the user sgpr 1814 // argument, so just return null. 1815 return DAG.getConstant(0, SDLoc(), VT); 1816 } 1817 1818 // It's undefined behavior if a function marked with the amdgpu-no-* 1819 // attributes uses the corresponding intrinsic. 1820 return DAG.getUNDEF(VT); 1821 } 1822 1823 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1824 } 1825 1826 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1827 CallingConv::ID CallConv, 1828 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1829 FunctionType *FType, 1830 SIMachineFunctionInfo *Info) { 1831 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1832 const ISD::InputArg *Arg = &Ins[I]; 1833 1834 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1835 "vector type argument should have been split"); 1836 1837 // First check if it's a PS input addr. 1838 if (CallConv == CallingConv::AMDGPU_PS && 1839 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1840 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1841 1842 // Inconveniently only the first part of the split is marked as isSplit, 1843 // so skip to the end. We only want to increment PSInputNum once for the 1844 // entire split argument. 1845 if (Arg->Flags.isSplit()) { 1846 while (!Arg->Flags.isSplitEnd()) { 1847 assert((!Arg->VT.isVector() || 1848 Arg->VT.getScalarSizeInBits() == 16) && 1849 "unexpected vector split in ps argument type"); 1850 if (!SkipArg) 1851 Splits.push_back(*Arg); 1852 Arg = &Ins[++I]; 1853 } 1854 } 1855 1856 if (SkipArg) { 1857 // We can safely skip PS inputs. 1858 Skipped.set(Arg->getOrigArgIndex()); 1859 ++PSInputNum; 1860 continue; 1861 } 1862 1863 Info->markPSInputAllocated(PSInputNum); 1864 if (Arg->Used) 1865 Info->markPSInputEnabled(PSInputNum); 1866 1867 ++PSInputNum; 1868 } 1869 1870 Splits.push_back(*Arg); 1871 } 1872 } 1873 1874 // Allocate special inputs passed in VGPRs. 1875 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1876 MachineFunction &MF, 1877 const SIRegisterInfo &TRI, 1878 SIMachineFunctionInfo &Info) const { 1879 const LLT S32 = LLT::scalar(32); 1880 MachineRegisterInfo &MRI = MF.getRegInfo(); 1881 1882 if (Info.hasWorkItemIDX()) { 1883 Register Reg = AMDGPU::VGPR0; 1884 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1885 1886 CCInfo.AllocateReg(Reg); 1887 unsigned Mask = (Subtarget->hasPackedTID() && 1888 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 1889 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1890 } 1891 1892 if (Info.hasWorkItemIDY()) { 1893 assert(Info.hasWorkItemIDX()); 1894 if (Subtarget->hasPackedTID()) { 1895 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1896 0x3ff << 10)); 1897 } else { 1898 unsigned Reg = AMDGPU::VGPR1; 1899 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1900 1901 CCInfo.AllocateReg(Reg); 1902 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1903 } 1904 } 1905 1906 if (Info.hasWorkItemIDZ()) { 1907 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 1908 if (Subtarget->hasPackedTID()) { 1909 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1910 0x3ff << 20)); 1911 } else { 1912 unsigned Reg = AMDGPU::VGPR2; 1913 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1914 1915 CCInfo.AllocateReg(Reg); 1916 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1917 } 1918 } 1919 } 1920 1921 // Try to allocate a VGPR at the end of the argument list, or if no argument 1922 // VGPRs are left allocating a stack slot. 1923 // If \p Mask is is given it indicates bitfield position in the register. 1924 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1925 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1926 ArgDescriptor Arg = ArgDescriptor()) { 1927 if (Arg.isSet()) 1928 return ArgDescriptor::createArg(Arg, Mask); 1929 1930 ArrayRef<MCPhysReg> ArgVGPRs 1931 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1932 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1933 if (RegIdx == ArgVGPRs.size()) { 1934 // Spill to stack required. 1935 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 1936 1937 return ArgDescriptor::createStack(Offset, Mask); 1938 } 1939 1940 unsigned Reg = ArgVGPRs[RegIdx]; 1941 Reg = CCInfo.AllocateReg(Reg); 1942 assert(Reg != AMDGPU::NoRegister); 1943 1944 MachineFunction &MF = CCInfo.getMachineFunction(); 1945 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1946 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1947 return ArgDescriptor::createRegister(Reg, Mask); 1948 } 1949 1950 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1951 const TargetRegisterClass *RC, 1952 unsigned NumArgRegs) { 1953 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1954 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1955 if (RegIdx == ArgSGPRs.size()) 1956 report_fatal_error("ran out of SGPRs for arguments"); 1957 1958 unsigned Reg = ArgSGPRs[RegIdx]; 1959 Reg = CCInfo.AllocateReg(Reg); 1960 assert(Reg != AMDGPU::NoRegister); 1961 1962 MachineFunction &MF = CCInfo.getMachineFunction(); 1963 MF.addLiveIn(Reg, RC); 1964 return ArgDescriptor::createRegister(Reg); 1965 } 1966 1967 // If this has a fixed position, we still should allocate the register in the 1968 // CCInfo state. Technically we could get away with this for values passed 1969 // outside of the normal argument range. 1970 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 1971 const TargetRegisterClass *RC, 1972 MCRegister Reg) { 1973 Reg = CCInfo.AllocateReg(Reg); 1974 assert(Reg != AMDGPU::NoRegister); 1975 MachineFunction &MF = CCInfo.getMachineFunction(); 1976 MF.addLiveIn(Reg, RC); 1977 } 1978 1979 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 1980 if (Arg) { 1981 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 1982 Arg.getRegister()); 1983 } else 1984 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1985 } 1986 1987 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 1988 if (Arg) { 1989 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 1990 Arg.getRegister()); 1991 } else 1992 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1993 } 1994 1995 /// Allocate implicit function VGPR arguments at the end of allocated user 1996 /// arguments. 1997 void SITargetLowering::allocateSpecialInputVGPRs( 1998 CCState &CCInfo, MachineFunction &MF, 1999 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2000 const unsigned Mask = 0x3ff; 2001 ArgDescriptor Arg; 2002 2003 if (Info.hasWorkItemIDX()) { 2004 Arg = allocateVGPR32Input(CCInfo, Mask); 2005 Info.setWorkItemIDX(Arg); 2006 } 2007 2008 if (Info.hasWorkItemIDY()) { 2009 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2010 Info.setWorkItemIDY(Arg); 2011 } 2012 2013 if (Info.hasWorkItemIDZ()) 2014 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2015 } 2016 2017 /// Allocate implicit function VGPR arguments in fixed registers. 2018 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2019 CCState &CCInfo, MachineFunction &MF, 2020 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2021 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2022 if (!Reg) 2023 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2024 2025 const unsigned Mask = 0x3ff; 2026 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2027 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2028 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2029 } 2030 2031 void SITargetLowering::allocateSpecialInputSGPRs( 2032 CCState &CCInfo, 2033 MachineFunction &MF, 2034 const SIRegisterInfo &TRI, 2035 SIMachineFunctionInfo &Info) const { 2036 auto &ArgInfo = Info.getArgInfo(); 2037 2038 // TODO: Unify handling with private memory pointers. 2039 if (Info.hasDispatchPtr()) 2040 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2041 2042 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) 2043 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2044 2045 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2046 // constant offset from the kernarg segment. 2047 if (Info.hasImplicitArgPtr()) 2048 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2049 2050 if (Info.hasDispatchID()) 2051 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2052 2053 // flat_scratch_init is not applicable for non-kernel functions. 2054 2055 if (Info.hasWorkGroupIDX()) 2056 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2057 2058 if (Info.hasWorkGroupIDY()) 2059 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2060 2061 if (Info.hasWorkGroupIDZ()) 2062 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2063 2064 if (Info.hasLDSKernelId()) 2065 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); 2066 } 2067 2068 // Allocate special inputs passed in user SGPRs. 2069 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2070 MachineFunction &MF, 2071 const SIRegisterInfo &TRI, 2072 SIMachineFunctionInfo &Info) const { 2073 if (Info.hasImplicitBufferPtr()) { 2074 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2075 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2076 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2077 } 2078 2079 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2080 if (Info.hasPrivateSegmentBuffer()) { 2081 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2082 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2083 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2084 } 2085 2086 if (Info.hasDispatchPtr()) { 2087 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2088 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2089 CCInfo.AllocateReg(DispatchPtrReg); 2090 } 2091 2092 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) { 2093 Register QueuePtrReg = Info.addQueuePtr(TRI); 2094 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2095 CCInfo.AllocateReg(QueuePtrReg); 2096 } 2097 2098 if (Info.hasKernargSegmentPtr()) { 2099 MachineRegisterInfo &MRI = MF.getRegInfo(); 2100 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2101 CCInfo.AllocateReg(InputPtrReg); 2102 2103 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2104 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2105 } 2106 2107 if (Info.hasDispatchID()) { 2108 Register DispatchIDReg = Info.addDispatchID(TRI); 2109 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2110 CCInfo.AllocateReg(DispatchIDReg); 2111 } 2112 2113 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2114 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2115 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2116 CCInfo.AllocateReg(FlatScratchInitReg); 2117 } 2118 2119 if (Info.hasLDSKernelId()) { 2120 Register Reg = Info.addLDSKernelId(); 2121 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2122 CCInfo.AllocateReg(Reg); 2123 } 2124 2125 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2126 // these from the dispatch pointer. 2127 } 2128 2129 // Allocate special input registers that are initialized per-wave. 2130 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2131 MachineFunction &MF, 2132 SIMachineFunctionInfo &Info, 2133 CallingConv::ID CallConv, 2134 bool IsShader) const { 2135 if (Subtarget->hasUserSGPRInit16Bug()) { 2136 // Pad up the used user SGPRs with dead inputs. 2137 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); 2138 2139 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to 2140 // rely on it to reach 16 since if we end up having no stack usage, it will 2141 // not really be added. 2142 unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + 2143 Info.hasWorkGroupIDY() + 2144 Info.hasWorkGroupIDZ() + 2145 Info.hasWorkGroupInfo(); 2146 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { 2147 Register Reg = Info.addReservedUserSGPR(); 2148 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2149 CCInfo.AllocateReg(Reg); 2150 } 2151 } 2152 2153 if (Info.hasWorkGroupIDX()) { 2154 Register Reg = Info.addWorkGroupIDX(); 2155 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2156 CCInfo.AllocateReg(Reg); 2157 } 2158 2159 if (Info.hasWorkGroupIDY()) { 2160 Register Reg = Info.addWorkGroupIDY(); 2161 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2162 CCInfo.AllocateReg(Reg); 2163 } 2164 2165 if (Info.hasWorkGroupIDZ()) { 2166 Register Reg = Info.addWorkGroupIDZ(); 2167 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2168 CCInfo.AllocateReg(Reg); 2169 } 2170 2171 if (Info.hasWorkGroupInfo()) { 2172 Register Reg = Info.addWorkGroupInfo(); 2173 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2174 CCInfo.AllocateReg(Reg); 2175 } 2176 2177 if (Info.hasPrivateSegmentWaveByteOffset()) { 2178 // Scratch wave offset passed in system SGPR. 2179 unsigned PrivateSegmentWaveByteOffsetReg; 2180 2181 if (IsShader) { 2182 PrivateSegmentWaveByteOffsetReg = 2183 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2184 2185 // This is true if the scratch wave byte offset doesn't have a fixed 2186 // location. 2187 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2188 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2189 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2190 } 2191 } else 2192 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2193 2194 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2195 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2196 } 2197 2198 assert(!Subtarget->hasUserSGPRInit16Bug() || Info.getNumPreloadedSGPRs() >= 16); 2199 } 2200 2201 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2202 MachineFunction &MF, 2203 const SIRegisterInfo &TRI, 2204 SIMachineFunctionInfo &Info) { 2205 // Now that we've figured out where the scratch register inputs are, see if 2206 // should reserve the arguments and use them directly. 2207 MachineFrameInfo &MFI = MF.getFrameInfo(); 2208 bool HasStackObjects = MFI.hasStackObjects(); 2209 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2210 2211 // Record that we know we have non-spill stack objects so we don't need to 2212 // check all stack objects later. 2213 if (HasStackObjects) 2214 Info.setHasNonSpillStackObjects(true); 2215 2216 // Everything live out of a block is spilled with fast regalloc, so it's 2217 // almost certain that spilling will be required. 2218 if (TM.getOptLevel() == CodeGenOpt::None) 2219 HasStackObjects = true; 2220 2221 // For now assume stack access is needed in any callee functions, so we need 2222 // the scratch registers to pass in. 2223 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2224 2225 if (!ST.enableFlatScratch()) { 2226 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2227 // If we have stack objects, we unquestionably need the private buffer 2228 // resource. For the Code Object V2 ABI, this will be the first 4 user 2229 // SGPR inputs. We can reserve those and use them directly. 2230 2231 Register PrivateSegmentBufferReg = 2232 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2233 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2234 } else { 2235 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2236 // We tentatively reserve the last registers (skipping the last registers 2237 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2238 // we'll replace these with the ones immediately after those which were 2239 // really allocated. In the prologue copies will be inserted from the 2240 // argument to these reserved registers. 2241 2242 // Without HSA, relocations are used for the scratch pointer and the 2243 // buffer resource setup is always inserted in the prologue. Scratch wave 2244 // offset is still in an input SGPR. 2245 Info.setScratchRSrcReg(ReservedBufferReg); 2246 } 2247 } 2248 2249 MachineRegisterInfo &MRI = MF.getRegInfo(); 2250 2251 // For entry functions we have to set up the stack pointer if we use it, 2252 // whereas non-entry functions get this "for free". This means there is no 2253 // intrinsic advantage to using S32 over S34 in cases where we do not have 2254 // calls but do need a frame pointer (i.e. if we are requested to have one 2255 // because frame pointer elimination is disabled). To keep things simple we 2256 // only ever use S32 as the call ABI stack pointer, and so using it does not 2257 // imply we need a separate frame pointer. 2258 // 2259 // Try to use s32 as the SP, but move it if it would interfere with input 2260 // arguments. This won't work with calls though. 2261 // 2262 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2263 // registers. 2264 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2265 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2266 } else { 2267 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2268 2269 if (MFI.hasCalls()) 2270 report_fatal_error("call in graphics shader with too many input SGPRs"); 2271 2272 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2273 if (!MRI.isLiveIn(Reg)) { 2274 Info.setStackPtrOffsetReg(Reg); 2275 break; 2276 } 2277 } 2278 2279 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2280 report_fatal_error("failed to find register for SP"); 2281 } 2282 2283 // hasFP should be accurate for entry functions even before the frame is 2284 // finalized, because it does not rely on the known stack size, only 2285 // properties like whether variable sized objects are present. 2286 if (ST.getFrameLowering()->hasFP(MF)) { 2287 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2288 } 2289 } 2290 2291 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2292 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2293 return !Info->isEntryFunction(); 2294 } 2295 2296 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2297 2298 } 2299 2300 void SITargetLowering::insertCopiesSplitCSR( 2301 MachineBasicBlock *Entry, 2302 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2303 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2304 2305 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2306 if (!IStart) 2307 return; 2308 2309 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2310 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2311 MachineBasicBlock::iterator MBBI = Entry->begin(); 2312 for (const MCPhysReg *I = IStart; *I; ++I) { 2313 const TargetRegisterClass *RC = nullptr; 2314 if (AMDGPU::SReg_64RegClass.contains(*I)) 2315 RC = &AMDGPU::SGPR_64RegClass; 2316 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2317 RC = &AMDGPU::SGPR_32RegClass; 2318 else 2319 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2320 2321 Register NewVR = MRI->createVirtualRegister(RC); 2322 // Create copy from CSR to a virtual register. 2323 Entry->addLiveIn(*I); 2324 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2325 .addReg(*I); 2326 2327 // Insert the copy-back instructions right before the terminator. 2328 for (auto *Exit : Exits) 2329 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2330 TII->get(TargetOpcode::COPY), *I) 2331 .addReg(NewVR); 2332 } 2333 } 2334 2335 SDValue SITargetLowering::LowerFormalArguments( 2336 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2337 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2338 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2339 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2340 2341 MachineFunction &MF = DAG.getMachineFunction(); 2342 const Function &Fn = MF.getFunction(); 2343 FunctionType *FType = MF.getFunction().getFunctionType(); 2344 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2345 2346 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2347 DiagnosticInfoUnsupported NoGraphicsHSA( 2348 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2349 DAG.getContext()->diagnose(NoGraphicsHSA); 2350 return DAG.getEntryNode(); 2351 } 2352 2353 Info->allocateModuleLDSGlobal(Fn); 2354 2355 SmallVector<ISD::InputArg, 16> Splits; 2356 SmallVector<CCValAssign, 16> ArgLocs; 2357 BitVector Skipped(Ins.size()); 2358 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2359 *DAG.getContext()); 2360 2361 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2362 bool IsKernel = AMDGPU::isKernel(CallConv); 2363 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2364 2365 if (IsGraphics) { 2366 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2367 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && 2368 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2369 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2370 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && 2371 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); 2372 } 2373 2374 if (CallConv == CallingConv::AMDGPU_PS) { 2375 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2376 2377 // At least one interpolation mode must be enabled or else the GPU will 2378 // hang. 2379 // 2380 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2381 // set PSInputAddr, the user wants to enable some bits after the compilation 2382 // based on run-time states. Since we can't know what the final PSInputEna 2383 // will look like, so we shouldn't do anything here and the user should take 2384 // responsibility for the correct programming. 2385 // 2386 // Otherwise, the following restrictions apply: 2387 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2388 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2389 // enabled too. 2390 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2391 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2392 CCInfo.AllocateReg(AMDGPU::VGPR0); 2393 CCInfo.AllocateReg(AMDGPU::VGPR1); 2394 Info->markPSInputAllocated(0); 2395 Info->markPSInputEnabled(0); 2396 } 2397 if (Subtarget->isAmdPalOS()) { 2398 // For isAmdPalOS, the user does not enable some bits after compilation 2399 // based on run-time states; the register values being generated here are 2400 // the final ones set in hardware. Therefore we need to apply the 2401 // workaround to PSInputAddr and PSInputEnable together. (The case where 2402 // a bit is set in PSInputAddr but not PSInputEnable is where the 2403 // frontend set up an input arg for a particular interpolation mode, but 2404 // nothing uses that input arg. Really we should have an earlier pass 2405 // that removes such an arg.) 2406 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2407 if ((PsInputBits & 0x7F) == 0 || 2408 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2409 Info->markPSInputEnabled( 2410 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2411 } 2412 } else if (IsKernel) { 2413 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2414 } else { 2415 Splits.append(Ins.begin(), Ins.end()); 2416 } 2417 2418 if (IsEntryFunc) { 2419 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2420 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2421 } else if (!IsGraphics) { 2422 // For the fixed ABI, pass workitem IDs in the last argument register. 2423 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2424 } 2425 2426 if (IsKernel) { 2427 analyzeFormalArgumentsCompute(CCInfo, Ins); 2428 } else { 2429 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2430 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2431 } 2432 2433 SmallVector<SDValue, 16> Chains; 2434 2435 // FIXME: This is the minimum kernel argument alignment. We should improve 2436 // this to the maximum alignment of the arguments. 2437 // 2438 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2439 // kern arg offset. 2440 const Align KernelArgBaseAlign = Align(16); 2441 2442 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2443 const ISD::InputArg &Arg = Ins[i]; 2444 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2445 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2446 continue; 2447 } 2448 2449 CCValAssign &VA = ArgLocs[ArgIdx++]; 2450 MVT VT = VA.getLocVT(); 2451 2452 if (IsEntryFunc && VA.isMemLoc()) { 2453 VT = Ins[i].VT; 2454 EVT MemVT = VA.getLocVT(); 2455 2456 const uint64_t Offset = VA.getLocMemOffset(); 2457 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2458 2459 if (Arg.Flags.isByRef()) { 2460 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2461 2462 const GCNTargetMachine &TM = 2463 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2464 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2465 Arg.Flags.getPointerAddrSpace())) { 2466 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2467 Arg.Flags.getPointerAddrSpace()); 2468 } 2469 2470 InVals.push_back(Ptr); 2471 continue; 2472 } 2473 2474 SDValue Arg = lowerKernargMemParameter( 2475 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2476 Chains.push_back(Arg.getValue(1)); 2477 2478 auto *ParamTy = 2479 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2480 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2481 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2482 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2483 // On SI local pointers are just offsets into LDS, so they are always 2484 // less than 16-bits. On CI and newer they could potentially be 2485 // real pointers, so we can't guarantee their size. 2486 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2487 DAG.getValueType(MVT::i16)); 2488 } 2489 2490 InVals.push_back(Arg); 2491 continue; 2492 } else if (!IsEntryFunc && VA.isMemLoc()) { 2493 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2494 InVals.push_back(Val); 2495 if (!Arg.Flags.isByVal()) 2496 Chains.push_back(Val.getValue(1)); 2497 continue; 2498 } 2499 2500 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2501 2502 Register Reg = VA.getLocReg(); 2503 const TargetRegisterClass *RC = nullptr; 2504 if (AMDGPU::VGPR_32RegClass.contains(Reg)) 2505 RC = &AMDGPU::VGPR_32RegClass; 2506 else if (AMDGPU::SGPR_32RegClass.contains(Reg)) 2507 RC = &AMDGPU::SGPR_32RegClass; 2508 else 2509 llvm_unreachable("Unexpected register class in LowerFormalArguments!"); 2510 EVT ValVT = VA.getValVT(); 2511 2512 Reg = MF.addLiveIn(Reg, RC); 2513 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2514 2515 if (Arg.Flags.isSRet()) { 2516 // The return object should be reasonably addressable. 2517 2518 // FIXME: This helps when the return is a real sret. If it is a 2519 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2520 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2521 unsigned NumBits 2522 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2523 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2524 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2525 } 2526 2527 // If this is an 8 or 16-bit value, it is really passed promoted 2528 // to 32 bits. Insert an assert[sz]ext to capture this, then 2529 // truncate to the right size. 2530 switch (VA.getLocInfo()) { 2531 case CCValAssign::Full: 2532 break; 2533 case CCValAssign::BCvt: 2534 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2535 break; 2536 case CCValAssign::SExt: 2537 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2538 DAG.getValueType(ValVT)); 2539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2540 break; 2541 case CCValAssign::ZExt: 2542 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2543 DAG.getValueType(ValVT)); 2544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2545 break; 2546 case CCValAssign::AExt: 2547 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2548 break; 2549 default: 2550 llvm_unreachable("Unknown loc info!"); 2551 } 2552 2553 InVals.push_back(Val); 2554 } 2555 2556 // Start adding system SGPRs. 2557 if (IsEntryFunc) { 2558 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2559 } else { 2560 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2561 if (!IsGraphics) 2562 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2563 } 2564 2565 auto &ArgUsageInfo = 2566 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2567 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2568 2569 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2570 Info->setBytesInStackArgArea(StackArgSize); 2571 2572 return Chains.empty() ? Chain : 2573 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2574 } 2575 2576 // TODO: If return values can't fit in registers, we should return as many as 2577 // possible in registers before passing on stack. 2578 bool SITargetLowering::CanLowerReturn( 2579 CallingConv::ID CallConv, 2580 MachineFunction &MF, bool IsVarArg, 2581 const SmallVectorImpl<ISD::OutputArg> &Outs, 2582 LLVMContext &Context) const { 2583 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2584 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2585 // for shaders. Vector types should be explicitly handled by CC. 2586 if (AMDGPU::isEntryFunctionCC(CallConv)) 2587 return true; 2588 2589 SmallVector<CCValAssign, 16> RVLocs; 2590 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2591 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2592 } 2593 2594 SDValue 2595 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2596 bool isVarArg, 2597 const SmallVectorImpl<ISD::OutputArg> &Outs, 2598 const SmallVectorImpl<SDValue> &OutVals, 2599 const SDLoc &DL, SelectionDAG &DAG) const { 2600 MachineFunction &MF = DAG.getMachineFunction(); 2601 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2602 2603 if (AMDGPU::isKernel(CallConv)) { 2604 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2605 OutVals, DL, DAG); 2606 } 2607 2608 bool IsShader = AMDGPU::isShader(CallConv); 2609 2610 Info->setIfReturnsVoid(Outs.empty()); 2611 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2612 2613 // CCValAssign - represent the assignment of the return value to a location. 2614 SmallVector<CCValAssign, 48> RVLocs; 2615 SmallVector<ISD::OutputArg, 48> Splits; 2616 2617 // CCState - Info about the registers and stack slots. 2618 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2619 *DAG.getContext()); 2620 2621 // Analyze outgoing return values. 2622 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2623 2624 SDValue Flag; 2625 SmallVector<SDValue, 48> RetOps; 2626 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2627 2628 // Copy the result values into the output registers. 2629 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2630 ++I, ++RealRVLocIdx) { 2631 CCValAssign &VA = RVLocs[I]; 2632 assert(VA.isRegLoc() && "Can only return in registers!"); 2633 // TODO: Partially return in registers if return values don't fit. 2634 SDValue Arg = OutVals[RealRVLocIdx]; 2635 2636 // Copied from other backends. 2637 switch (VA.getLocInfo()) { 2638 case CCValAssign::Full: 2639 break; 2640 case CCValAssign::BCvt: 2641 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2642 break; 2643 case CCValAssign::SExt: 2644 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2645 break; 2646 case CCValAssign::ZExt: 2647 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2648 break; 2649 case CCValAssign::AExt: 2650 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2651 break; 2652 default: 2653 llvm_unreachable("Unknown loc info!"); 2654 } 2655 2656 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2657 Flag = Chain.getValue(1); 2658 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2659 } 2660 2661 // FIXME: Does sret work properly? 2662 if (!Info->isEntryFunction()) { 2663 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2664 const MCPhysReg *I = 2665 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2666 if (I) { 2667 for (; *I; ++I) { 2668 if (AMDGPU::SReg_64RegClass.contains(*I)) 2669 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2670 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2671 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2672 else 2673 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2674 } 2675 } 2676 } 2677 2678 // Update chain and glue. 2679 RetOps[0] = Chain; 2680 if (Flag.getNode()) 2681 RetOps.push_back(Flag); 2682 2683 unsigned Opc = AMDGPUISD::ENDPGM; 2684 if (!IsWaveEnd) 2685 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2686 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2687 } 2688 2689 SDValue SITargetLowering::LowerCallResult( 2690 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2691 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2692 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2693 SDValue ThisVal) const { 2694 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2695 2696 // Assign locations to each value returned by this call. 2697 SmallVector<CCValAssign, 16> RVLocs; 2698 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2699 *DAG.getContext()); 2700 CCInfo.AnalyzeCallResult(Ins, RetCC); 2701 2702 // Copy all of the result registers out of their specified physreg. 2703 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2704 CCValAssign VA = RVLocs[i]; 2705 SDValue Val; 2706 2707 if (VA.isRegLoc()) { 2708 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2709 Chain = Val.getValue(1); 2710 InFlag = Val.getValue(2); 2711 } else if (VA.isMemLoc()) { 2712 report_fatal_error("TODO: return values in memory"); 2713 } else 2714 llvm_unreachable("unknown argument location type"); 2715 2716 switch (VA.getLocInfo()) { 2717 case CCValAssign::Full: 2718 break; 2719 case CCValAssign::BCvt: 2720 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2721 break; 2722 case CCValAssign::ZExt: 2723 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2724 DAG.getValueType(VA.getValVT())); 2725 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2726 break; 2727 case CCValAssign::SExt: 2728 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2729 DAG.getValueType(VA.getValVT())); 2730 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2731 break; 2732 case CCValAssign::AExt: 2733 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2734 break; 2735 default: 2736 llvm_unreachable("Unknown loc info!"); 2737 } 2738 2739 InVals.push_back(Val); 2740 } 2741 2742 return Chain; 2743 } 2744 2745 // Add code to pass special inputs required depending on used features separate 2746 // from the explicit user arguments present in the IR. 2747 void SITargetLowering::passSpecialInputs( 2748 CallLoweringInfo &CLI, 2749 CCState &CCInfo, 2750 const SIMachineFunctionInfo &Info, 2751 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2752 SmallVectorImpl<SDValue> &MemOpChains, 2753 SDValue Chain) const { 2754 // If we don't have a call site, this was a call inserted by 2755 // legalization. These can never use special inputs. 2756 if (!CLI.CB) 2757 return; 2758 2759 SelectionDAG &DAG = CLI.DAG; 2760 const SDLoc &DL = CLI.DL; 2761 const Function &F = DAG.getMachineFunction().getFunction(); 2762 2763 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2764 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2765 2766 const AMDGPUFunctionArgInfo *CalleeArgInfo 2767 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2768 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2769 auto &ArgUsageInfo = 2770 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2771 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2772 } 2773 2774 // TODO: Unify with private memory register handling. This is complicated by 2775 // the fact that at least in kernels, the input argument is not necessarily 2776 // in the same location as the input. 2777 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 2778 StringLiteral> ImplicitAttrs[] = { 2779 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 2780 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 2781 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 2782 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 2783 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 2784 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 2785 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, 2786 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, 2787 }; 2788 2789 for (auto Attr : ImplicitAttrs) { 2790 const ArgDescriptor *OutgoingArg; 2791 const TargetRegisterClass *ArgRC; 2792 LLT ArgTy; 2793 2794 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 2795 2796 // If the callee does not use the attribute value, skip copying the value. 2797 if (CLI.CB->hasFnAttr(Attr.second)) 2798 continue; 2799 2800 std::tie(OutgoingArg, ArgRC, ArgTy) = 2801 CalleeArgInfo->getPreloadedValue(InputID); 2802 if (!OutgoingArg) 2803 continue; 2804 2805 const ArgDescriptor *IncomingArg; 2806 const TargetRegisterClass *IncomingArgRC; 2807 LLT Ty; 2808 std::tie(IncomingArg, IncomingArgRC, Ty) = 2809 CallerArgInfo.getPreloadedValue(InputID); 2810 assert(IncomingArgRC == ArgRC); 2811 2812 // All special arguments are ints for now. 2813 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2814 SDValue InputReg; 2815 2816 if (IncomingArg) { 2817 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2818 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 2819 // The implicit arg ptr is special because it doesn't have a corresponding 2820 // input for kernels, and is computed from the kernarg segment pointer. 2821 InputReg = getImplicitArgPtr(DAG, DL); 2822 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 2823 Optional<uint32_t> Id = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 2824 if (Id.has_value()) { 2825 InputReg = DAG.getConstant(Id.value(), DL, ArgVT); 2826 } else { 2827 InputReg = DAG.getUNDEF(ArgVT); 2828 } 2829 } else { 2830 // We may have proven the input wasn't needed, although the ABI is 2831 // requiring it. We just need to allocate the register appropriately. 2832 InputReg = DAG.getUNDEF(ArgVT); 2833 } 2834 2835 if (OutgoingArg->isRegister()) { 2836 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2837 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2838 report_fatal_error("failed to allocate implicit input argument"); 2839 } else { 2840 unsigned SpecialArgOffset = 2841 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2842 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2843 SpecialArgOffset); 2844 MemOpChains.push_back(ArgStore); 2845 } 2846 } 2847 2848 // Pack workitem IDs into a single register or pass it as is if already 2849 // packed. 2850 const ArgDescriptor *OutgoingArg; 2851 const TargetRegisterClass *ArgRC; 2852 LLT Ty; 2853 2854 std::tie(OutgoingArg, ArgRC, Ty) = 2855 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2856 if (!OutgoingArg) 2857 std::tie(OutgoingArg, ArgRC, Ty) = 2858 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2859 if (!OutgoingArg) 2860 std::tie(OutgoingArg, ArgRC, Ty) = 2861 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2862 if (!OutgoingArg) 2863 return; 2864 2865 const ArgDescriptor *IncomingArgX = std::get<0>( 2866 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2867 const ArgDescriptor *IncomingArgY = std::get<0>( 2868 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2869 const ArgDescriptor *IncomingArgZ = std::get<0>( 2870 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2871 2872 SDValue InputReg; 2873 SDLoc SL; 2874 2875 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 2876 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 2877 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 2878 2879 // If incoming ids are not packed we need to pack them. 2880 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 2881 NeedWorkItemIDX) { 2882 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 2883 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2884 } else { 2885 InputReg = DAG.getConstant(0, DL, MVT::i32); 2886 } 2887 } 2888 2889 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 2890 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 2891 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2892 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2893 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2894 InputReg = InputReg.getNode() ? 2895 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2896 } 2897 2898 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 2899 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 2900 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2901 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2902 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2903 InputReg = InputReg.getNode() ? 2904 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2905 } 2906 2907 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 2908 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 2909 // We're in a situation where the outgoing function requires the workitem 2910 // ID, but the calling function does not have it (e.g a graphics function 2911 // calling a C calling convention function). This is illegal, but we need 2912 // to produce something. 2913 InputReg = DAG.getUNDEF(MVT::i32); 2914 } else { 2915 // Workitem ids are already packed, any of present incoming arguments 2916 // will carry all required fields. 2917 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2918 IncomingArgX ? *IncomingArgX : 2919 IncomingArgY ? *IncomingArgY : 2920 *IncomingArgZ, ~0u); 2921 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2922 } 2923 } 2924 2925 if (OutgoingArg->isRegister()) { 2926 if (InputReg) 2927 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2928 2929 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2930 } else { 2931 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2932 if (InputReg) { 2933 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2934 SpecialArgOffset); 2935 MemOpChains.push_back(ArgStore); 2936 } 2937 } 2938 } 2939 2940 static bool canGuaranteeTCO(CallingConv::ID CC) { 2941 return CC == CallingConv::Fast; 2942 } 2943 2944 /// Return true if we might ever do TCO for calls with this calling convention. 2945 static bool mayTailCallThisCC(CallingConv::ID CC) { 2946 switch (CC) { 2947 case CallingConv::C: 2948 case CallingConv::AMDGPU_Gfx: 2949 return true; 2950 default: 2951 return canGuaranteeTCO(CC); 2952 } 2953 } 2954 2955 bool SITargetLowering::isEligibleForTailCallOptimization( 2956 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2957 const SmallVectorImpl<ISD::OutputArg> &Outs, 2958 const SmallVectorImpl<SDValue> &OutVals, 2959 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2960 if (!mayTailCallThisCC(CalleeCC)) 2961 return false; 2962 2963 // For a divergent call target, we need to do a waterfall loop over the 2964 // possible callees which precludes us from using a simple jump. 2965 if (Callee->isDivergent()) 2966 return false; 2967 2968 MachineFunction &MF = DAG.getMachineFunction(); 2969 const Function &CallerF = MF.getFunction(); 2970 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2971 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2972 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2973 2974 // Kernels aren't callable, and don't have a live in return address so it 2975 // doesn't make sense to do a tail call with entry functions. 2976 if (!CallerPreserved) 2977 return false; 2978 2979 bool CCMatch = CallerCC == CalleeCC; 2980 2981 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2982 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2983 return true; 2984 return false; 2985 } 2986 2987 // TODO: Can we handle var args? 2988 if (IsVarArg) 2989 return false; 2990 2991 for (const Argument &Arg : CallerF.args()) { 2992 if (Arg.hasByValAttr()) 2993 return false; 2994 } 2995 2996 LLVMContext &Ctx = *DAG.getContext(); 2997 2998 // Check that the call results are passed in the same way. 2999 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3000 CCAssignFnForCall(CalleeCC, IsVarArg), 3001 CCAssignFnForCall(CallerCC, IsVarArg))) 3002 return false; 3003 3004 // The callee has to preserve all registers the caller needs to preserve. 3005 if (!CCMatch) { 3006 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3007 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3008 return false; 3009 } 3010 3011 // Nothing more to check if the callee is taking no arguments. 3012 if (Outs.empty()) 3013 return true; 3014 3015 SmallVector<CCValAssign, 16> ArgLocs; 3016 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3017 3018 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3019 3020 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3021 // If the stack arguments for this call do not fit into our own save area then 3022 // the call cannot be made tail. 3023 // TODO: Is this really necessary? 3024 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 3025 return false; 3026 3027 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3028 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3029 } 3030 3031 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3032 if (!CI->isTailCall()) 3033 return false; 3034 3035 const Function *ParentFn = CI->getParent()->getParent(); 3036 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3037 return false; 3038 return true; 3039 } 3040 3041 // The wave scratch offset register is used as the global base pointer. 3042 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3043 SmallVectorImpl<SDValue> &InVals) const { 3044 SelectionDAG &DAG = CLI.DAG; 3045 const SDLoc &DL = CLI.DL; 3046 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3047 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3048 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3049 SDValue Chain = CLI.Chain; 3050 SDValue Callee = CLI.Callee; 3051 bool &IsTailCall = CLI.IsTailCall; 3052 CallingConv::ID CallConv = CLI.CallConv; 3053 bool IsVarArg = CLI.IsVarArg; 3054 bool IsSibCall = false; 3055 bool IsThisReturn = false; 3056 MachineFunction &MF = DAG.getMachineFunction(); 3057 3058 if (Callee.isUndef() || isNullConstant(Callee)) { 3059 if (!CLI.IsTailCall) { 3060 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3061 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3062 } 3063 3064 return Chain; 3065 } 3066 3067 if (IsVarArg) { 3068 return lowerUnhandledCall(CLI, InVals, 3069 "unsupported call to variadic function "); 3070 } 3071 3072 if (!CLI.CB) 3073 report_fatal_error("unsupported libcall legalization"); 3074 3075 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3076 return lowerUnhandledCall(CLI, InVals, 3077 "unsupported required tail call to function "); 3078 } 3079 3080 if (AMDGPU::isShader(CallConv)) { 3081 // Note the issue is with the CC of the called function, not of the call 3082 // itself. 3083 return lowerUnhandledCall(CLI, InVals, 3084 "unsupported call to a shader function "); 3085 } 3086 3087 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && 3088 CallConv != CallingConv::AMDGPU_Gfx) { 3089 // Only allow calls with specific calling conventions. 3090 return lowerUnhandledCall(CLI, InVals, 3091 "unsupported calling convention for call from " 3092 "graphics shader of function "); 3093 } 3094 3095 if (IsTailCall) { 3096 IsTailCall = isEligibleForTailCallOptimization( 3097 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3098 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 3099 report_fatal_error("failed to perform tail call elimination on a call " 3100 "site marked musttail"); 3101 } 3102 3103 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3104 3105 // A sibling call is one where we're under the usual C ABI and not planning 3106 // to change that but can still do a tail call: 3107 if (!TailCallOpt && IsTailCall) 3108 IsSibCall = true; 3109 3110 if (IsTailCall) 3111 ++NumTailCalls; 3112 } 3113 3114 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3115 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3116 SmallVector<SDValue, 8> MemOpChains; 3117 3118 // Analyze operands of the call, assigning locations to each operand. 3119 SmallVector<CCValAssign, 16> ArgLocs; 3120 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3121 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3122 3123 if (CallConv != CallingConv::AMDGPU_Gfx) { 3124 // With a fixed ABI, allocate fixed registers before user arguments. 3125 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3126 } 3127 3128 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3129 3130 // Get a count of how many bytes are to be pushed on the stack. 3131 unsigned NumBytes = CCInfo.getNextStackOffset(); 3132 3133 if (IsSibCall) { 3134 // Since we're not changing the ABI to make this a tail call, the memory 3135 // operands are already available in the caller's incoming argument space. 3136 NumBytes = 0; 3137 } 3138 3139 // FPDiff is the byte offset of the call's argument area from the callee's. 3140 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3141 // by this amount for a tail call. In a sibling call it must be 0 because the 3142 // caller will deallocate the entire stack and the callee still expects its 3143 // arguments to begin at SP+0. Completely unused for non-tail calls. 3144 int32_t FPDiff = 0; 3145 MachineFrameInfo &MFI = MF.getFrameInfo(); 3146 3147 // Adjust the stack pointer for the new arguments... 3148 // These operations are automatically eliminated by the prolog/epilog pass 3149 if (!IsSibCall) { 3150 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3151 3152 if (!Subtarget->enableFlatScratch()) { 3153 SmallVector<SDValue, 4> CopyFromChains; 3154 3155 // In the HSA case, this should be an identity copy. 3156 SDValue ScratchRSrcReg 3157 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3158 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 3159 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3160 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3161 } 3162 } 3163 3164 MVT PtrVT = MVT::i32; 3165 3166 // Walk the register/memloc assignments, inserting copies/loads. 3167 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3168 CCValAssign &VA = ArgLocs[i]; 3169 SDValue Arg = OutVals[i]; 3170 3171 // Promote the value if needed. 3172 switch (VA.getLocInfo()) { 3173 case CCValAssign::Full: 3174 break; 3175 case CCValAssign::BCvt: 3176 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3177 break; 3178 case CCValAssign::ZExt: 3179 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3180 break; 3181 case CCValAssign::SExt: 3182 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3183 break; 3184 case CCValAssign::AExt: 3185 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3186 break; 3187 case CCValAssign::FPExt: 3188 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3189 break; 3190 default: 3191 llvm_unreachable("Unknown loc info!"); 3192 } 3193 3194 if (VA.isRegLoc()) { 3195 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3196 } else { 3197 assert(VA.isMemLoc()); 3198 3199 SDValue DstAddr; 3200 MachinePointerInfo DstInfo; 3201 3202 unsigned LocMemOffset = VA.getLocMemOffset(); 3203 int32_t Offset = LocMemOffset; 3204 3205 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3206 MaybeAlign Alignment; 3207 3208 if (IsTailCall) { 3209 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3210 unsigned OpSize = Flags.isByVal() ? 3211 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3212 3213 // FIXME: We can have better than the minimum byval required alignment. 3214 Alignment = 3215 Flags.isByVal() 3216 ? Flags.getNonZeroByValAlign() 3217 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3218 3219 Offset = Offset + FPDiff; 3220 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3221 3222 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3223 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3224 3225 // Make sure any stack arguments overlapping with where we're storing 3226 // are loaded before this eventual operation. Otherwise they'll be 3227 // clobbered. 3228 3229 // FIXME: Why is this really necessary? This seems to just result in a 3230 // lot of code to copy the stack and write them back to the same 3231 // locations, which are supposed to be immutable? 3232 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3233 } else { 3234 // Stores to the argument stack area are relative to the stack pointer. 3235 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3236 MVT::i32); 3237 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3238 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3239 Alignment = 3240 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3241 } 3242 3243 if (Outs[i].Flags.isByVal()) { 3244 SDValue SizeNode = 3245 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3246 SDValue Cpy = 3247 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3248 Outs[i].Flags.getNonZeroByValAlign(), 3249 /*isVol = */ false, /*AlwaysInline = */ true, 3250 /*isTailCall = */ false, DstInfo, 3251 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3252 3253 MemOpChains.push_back(Cpy); 3254 } else { 3255 SDValue Store = 3256 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3257 MemOpChains.push_back(Store); 3258 } 3259 } 3260 } 3261 3262 if (!MemOpChains.empty()) 3263 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3264 3265 // Build a sequence of copy-to-reg nodes chained together with token chain 3266 // and flag operands which copy the outgoing args into the appropriate regs. 3267 SDValue InFlag; 3268 for (auto &RegToPass : RegsToPass) { 3269 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3270 RegToPass.second, InFlag); 3271 InFlag = Chain.getValue(1); 3272 } 3273 3274 3275 // We don't usually want to end the call-sequence here because we would tidy 3276 // the frame up *after* the call, however in the ABI-changing tail-call case 3277 // we've carefully laid out the parameters so that when sp is reset they'll be 3278 // in the correct location. 3279 if (IsTailCall && !IsSibCall) { 3280 Chain = DAG.getCALLSEQ_END(Chain, 3281 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3282 DAG.getTargetConstant(0, DL, MVT::i32), 3283 InFlag, DL); 3284 InFlag = Chain.getValue(1); 3285 } 3286 3287 std::vector<SDValue> Ops; 3288 Ops.push_back(Chain); 3289 Ops.push_back(Callee); 3290 // Add a redundant copy of the callee global which will not be legalized, as 3291 // we need direct access to the callee later. 3292 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3293 const GlobalValue *GV = GSD->getGlobal(); 3294 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3295 } else { 3296 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3297 } 3298 3299 if (IsTailCall) { 3300 // Each tail call may have to adjust the stack by a different amount, so 3301 // this information must travel along with the operation for eventual 3302 // consumption by emitEpilogue. 3303 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3304 } 3305 3306 // Add argument registers to the end of the list so that they are known live 3307 // into the call. 3308 for (auto &RegToPass : RegsToPass) { 3309 Ops.push_back(DAG.getRegister(RegToPass.first, 3310 RegToPass.second.getValueType())); 3311 } 3312 3313 // Add a register mask operand representing the call-preserved registers. 3314 3315 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3316 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3317 assert(Mask && "Missing call preserved mask for calling convention"); 3318 Ops.push_back(DAG.getRegisterMask(Mask)); 3319 3320 if (InFlag.getNode()) 3321 Ops.push_back(InFlag); 3322 3323 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3324 3325 // If we're doing a tall call, use a TC_RETURN here rather than an 3326 // actual call instruction. 3327 if (IsTailCall) { 3328 MFI.setHasTailCall(); 3329 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3330 } 3331 3332 // Returns a chain and a flag for retval copy to use. 3333 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3334 Chain = Call.getValue(0); 3335 InFlag = Call.getValue(1); 3336 3337 uint64_t CalleePopBytes = NumBytes; 3338 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3339 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3340 InFlag, DL); 3341 if (!Ins.empty()) 3342 InFlag = Chain.getValue(1); 3343 3344 // Handle result values, copying them out of physregs into vregs that we 3345 // return. 3346 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3347 InVals, IsThisReturn, 3348 IsThisReturn ? OutVals[0] : SDValue()); 3349 } 3350 3351 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3352 // except for applying the wave size scale to the increment amount. 3353 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3354 SDValue Op, SelectionDAG &DAG) const { 3355 const MachineFunction &MF = DAG.getMachineFunction(); 3356 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3357 3358 SDLoc dl(Op); 3359 EVT VT = Op.getValueType(); 3360 SDValue Tmp1 = Op; 3361 SDValue Tmp2 = Op.getValue(1); 3362 SDValue Tmp3 = Op.getOperand(2); 3363 SDValue Chain = Tmp1.getOperand(0); 3364 3365 Register SPReg = Info->getStackPtrOffsetReg(); 3366 3367 // Chain the dynamic stack allocation so that it doesn't modify the stack 3368 // pointer when other instructions are using the stack. 3369 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3370 3371 SDValue Size = Tmp2.getOperand(1); 3372 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3373 Chain = SP.getValue(1); 3374 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3375 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3376 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3377 unsigned Opc = 3378 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3379 ISD::ADD : ISD::SUB; 3380 3381 SDValue ScaledSize = DAG.getNode( 3382 ISD::SHL, dl, VT, Size, 3383 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3384 3385 Align StackAlign = TFL->getStackAlign(); 3386 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3387 if (Alignment && *Alignment > StackAlign) { 3388 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3389 DAG.getConstant(-(uint64_t)Alignment->value() 3390 << ST.getWavefrontSizeLog2(), 3391 dl, VT)); 3392 } 3393 3394 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3395 Tmp2 = DAG.getCALLSEQ_END( 3396 Chain, DAG.getIntPtrConstant(0, dl, true), 3397 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3398 3399 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3400 } 3401 3402 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3403 SelectionDAG &DAG) const { 3404 // We only handle constant sizes here to allow non-entry block, static sized 3405 // allocas. A truly dynamic value is more difficult to support because we 3406 // don't know if the size value is uniform or not. If the size isn't uniform, 3407 // we would need to do a wave reduction to get the maximum size to know how 3408 // much to increment the uniform stack pointer. 3409 SDValue Size = Op.getOperand(1); 3410 if (isa<ConstantSDNode>(Size)) 3411 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3412 3413 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3414 } 3415 3416 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3417 const MachineFunction &MF) const { 3418 Register Reg = StringSwitch<Register>(RegName) 3419 .Case("m0", AMDGPU::M0) 3420 .Case("exec", AMDGPU::EXEC) 3421 .Case("exec_lo", AMDGPU::EXEC_LO) 3422 .Case("exec_hi", AMDGPU::EXEC_HI) 3423 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3424 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3425 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3426 .Default(Register()); 3427 3428 if (Reg == AMDGPU::NoRegister) { 3429 report_fatal_error(Twine("invalid register name \"" 3430 + StringRef(RegName) + "\".")); 3431 3432 } 3433 3434 if (!Subtarget->hasFlatScrRegister() && 3435 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3436 report_fatal_error(Twine("invalid register \"" 3437 + StringRef(RegName) + "\" for subtarget.")); 3438 } 3439 3440 switch (Reg) { 3441 case AMDGPU::M0: 3442 case AMDGPU::EXEC_LO: 3443 case AMDGPU::EXEC_HI: 3444 case AMDGPU::FLAT_SCR_LO: 3445 case AMDGPU::FLAT_SCR_HI: 3446 if (VT.getSizeInBits() == 32) 3447 return Reg; 3448 break; 3449 case AMDGPU::EXEC: 3450 case AMDGPU::FLAT_SCR: 3451 if (VT.getSizeInBits() == 64) 3452 return Reg; 3453 break; 3454 default: 3455 llvm_unreachable("missing register type checking"); 3456 } 3457 3458 report_fatal_error(Twine("invalid type for register \"" 3459 + StringRef(RegName) + "\".")); 3460 } 3461 3462 // If kill is not the last instruction, split the block so kill is always a 3463 // proper terminator. 3464 MachineBasicBlock * 3465 SITargetLowering::splitKillBlock(MachineInstr &MI, 3466 MachineBasicBlock *BB) const { 3467 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3468 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3469 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3470 return SplitBB; 3471 } 3472 3473 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3474 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3475 // be the first instruction in the remainder block. 3476 // 3477 /// \returns { LoopBody, Remainder } 3478 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3479 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3480 MachineFunction *MF = MBB.getParent(); 3481 MachineBasicBlock::iterator I(&MI); 3482 3483 // To insert the loop we need to split the block. Move everything after this 3484 // point to a new block, and insert a new empty block between the two. 3485 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3486 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3487 MachineFunction::iterator MBBI(MBB); 3488 ++MBBI; 3489 3490 MF->insert(MBBI, LoopBB); 3491 MF->insert(MBBI, RemainderBB); 3492 3493 LoopBB->addSuccessor(LoopBB); 3494 LoopBB->addSuccessor(RemainderBB); 3495 3496 // Move the rest of the block into a new block. 3497 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3498 3499 if (InstInLoop) { 3500 auto Next = std::next(I); 3501 3502 // Move instruction to loop body. 3503 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3504 3505 // Move the rest of the block. 3506 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3507 } else { 3508 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3509 } 3510 3511 MBB.addSuccessor(LoopBB); 3512 3513 return std::make_pair(LoopBB, RemainderBB); 3514 } 3515 3516 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3517 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3518 MachineBasicBlock *MBB = MI.getParent(); 3519 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3520 auto I = MI.getIterator(); 3521 auto E = std::next(I); 3522 3523 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3524 .addImm(0); 3525 3526 MIBundleBuilder Bundler(*MBB, I, E); 3527 finalizeBundle(*MBB, Bundler.begin()); 3528 } 3529 3530 MachineBasicBlock * 3531 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3532 MachineBasicBlock *BB) const { 3533 const DebugLoc &DL = MI.getDebugLoc(); 3534 3535 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3536 3537 MachineBasicBlock *LoopBB; 3538 MachineBasicBlock *RemainderBB; 3539 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3540 3541 // Apparently kill flags are only valid if the def is in the same block? 3542 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3543 Src->setIsKill(false); 3544 3545 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3546 3547 MachineBasicBlock::iterator I = LoopBB->end(); 3548 3549 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3550 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3551 3552 // Clear TRAP_STS.MEM_VIOL 3553 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3554 .addImm(0) 3555 .addImm(EncodedReg); 3556 3557 bundleInstWithWaitcnt(MI); 3558 3559 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3560 3561 // Load and check TRAP_STS.MEM_VIOL 3562 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3563 .addImm(EncodedReg); 3564 3565 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3566 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3567 .addReg(Reg, RegState::Kill) 3568 .addImm(0); 3569 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3570 .addMBB(LoopBB); 3571 3572 return RemainderBB; 3573 } 3574 3575 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3576 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3577 // will only do one iteration. In the worst case, this will loop 64 times. 3578 // 3579 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3580 static MachineBasicBlock::iterator 3581 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3582 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3583 const DebugLoc &DL, const MachineOperand &Idx, 3584 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3585 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3586 Register &SGPRIdxReg) { 3587 3588 MachineFunction *MF = OrigBB.getParent(); 3589 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3590 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3591 MachineBasicBlock::iterator I = LoopBB.begin(); 3592 3593 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3594 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3595 Register NewExec = MRI.createVirtualRegister(BoolRC); 3596 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3597 Register CondReg = MRI.createVirtualRegister(BoolRC); 3598 3599 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3600 .addReg(InitReg) 3601 .addMBB(&OrigBB) 3602 .addReg(ResultReg) 3603 .addMBB(&LoopBB); 3604 3605 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3606 .addReg(InitSaveExecReg) 3607 .addMBB(&OrigBB) 3608 .addReg(NewExec) 3609 .addMBB(&LoopBB); 3610 3611 // Read the next variant <- also loop target. 3612 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3613 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3614 3615 // Compare the just read M0 value to all possible Idx values. 3616 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3617 .addReg(CurrentIdxReg) 3618 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3619 3620 // Update EXEC, save the original EXEC value to VCC. 3621 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3622 : AMDGPU::S_AND_SAVEEXEC_B64), 3623 NewExec) 3624 .addReg(CondReg, RegState::Kill); 3625 3626 MRI.setSimpleHint(NewExec, CondReg); 3627 3628 if (UseGPRIdxMode) { 3629 if (Offset == 0) { 3630 SGPRIdxReg = CurrentIdxReg; 3631 } else { 3632 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3633 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3634 .addReg(CurrentIdxReg, RegState::Kill) 3635 .addImm(Offset); 3636 } 3637 } else { 3638 // Move index from VCC into M0 3639 if (Offset == 0) { 3640 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3641 .addReg(CurrentIdxReg, RegState::Kill); 3642 } else { 3643 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3644 .addReg(CurrentIdxReg, RegState::Kill) 3645 .addImm(Offset); 3646 } 3647 } 3648 3649 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3650 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3651 MachineInstr *InsertPt = 3652 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3653 : AMDGPU::S_XOR_B64_term), Exec) 3654 .addReg(Exec) 3655 .addReg(NewExec); 3656 3657 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3658 // s_cbranch_scc0? 3659 3660 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3661 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3662 .addMBB(&LoopBB); 3663 3664 return InsertPt->getIterator(); 3665 } 3666 3667 // This has slightly sub-optimal regalloc when the source vector is killed by 3668 // the read. The register allocator does not understand that the kill is 3669 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3670 // subregister from it, using 1 more VGPR than necessary. This was saved when 3671 // this was expanded after register allocation. 3672 static MachineBasicBlock::iterator 3673 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3674 unsigned InitResultReg, unsigned PhiReg, int Offset, 3675 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3676 MachineFunction *MF = MBB.getParent(); 3677 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3678 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3679 MachineRegisterInfo &MRI = MF->getRegInfo(); 3680 const DebugLoc &DL = MI.getDebugLoc(); 3681 MachineBasicBlock::iterator I(&MI); 3682 3683 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3684 Register DstReg = MI.getOperand(0).getReg(); 3685 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3686 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3687 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3688 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3689 3690 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3691 3692 // Save the EXEC mask 3693 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3694 .addReg(Exec); 3695 3696 MachineBasicBlock *LoopBB; 3697 MachineBasicBlock *RemainderBB; 3698 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3699 3700 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3701 3702 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3703 InitResultReg, DstReg, PhiReg, TmpExec, 3704 Offset, UseGPRIdxMode, SGPRIdxReg); 3705 3706 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3707 MachineFunction::iterator MBBI(LoopBB); 3708 ++MBBI; 3709 MF->insert(MBBI, LandingPad); 3710 LoopBB->removeSuccessor(RemainderBB); 3711 LandingPad->addSuccessor(RemainderBB); 3712 LoopBB->addSuccessor(LandingPad); 3713 MachineBasicBlock::iterator First = LandingPad->begin(); 3714 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3715 .addReg(SaveExec); 3716 3717 return InsPt; 3718 } 3719 3720 // Returns subreg index, offset 3721 static std::pair<unsigned, int> 3722 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3723 const TargetRegisterClass *SuperRC, 3724 unsigned VecReg, 3725 int Offset) { 3726 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3727 3728 // Skip out of bounds offsets, or else we would end up using an undefined 3729 // register. 3730 if (Offset >= NumElts || Offset < 0) 3731 return std::make_pair(AMDGPU::sub0, Offset); 3732 3733 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3734 } 3735 3736 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3737 MachineRegisterInfo &MRI, MachineInstr &MI, 3738 int Offset) { 3739 MachineBasicBlock *MBB = MI.getParent(); 3740 const DebugLoc &DL = MI.getDebugLoc(); 3741 MachineBasicBlock::iterator I(&MI); 3742 3743 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3744 3745 assert(Idx->getReg() != AMDGPU::NoRegister); 3746 3747 if (Offset == 0) { 3748 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3749 } else { 3750 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3751 .add(*Idx) 3752 .addImm(Offset); 3753 } 3754 } 3755 3756 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3757 MachineRegisterInfo &MRI, MachineInstr &MI, 3758 int Offset) { 3759 MachineBasicBlock *MBB = MI.getParent(); 3760 const DebugLoc &DL = MI.getDebugLoc(); 3761 MachineBasicBlock::iterator I(&MI); 3762 3763 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3764 3765 if (Offset == 0) 3766 return Idx->getReg(); 3767 3768 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3769 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3770 .add(*Idx) 3771 .addImm(Offset); 3772 return Tmp; 3773 } 3774 3775 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3776 MachineBasicBlock &MBB, 3777 const GCNSubtarget &ST) { 3778 const SIInstrInfo *TII = ST.getInstrInfo(); 3779 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3780 MachineFunction *MF = MBB.getParent(); 3781 MachineRegisterInfo &MRI = MF->getRegInfo(); 3782 3783 Register Dst = MI.getOperand(0).getReg(); 3784 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3785 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3786 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3787 3788 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3789 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3790 3791 unsigned SubReg; 3792 std::tie(SubReg, Offset) 3793 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3794 3795 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3796 3797 // Check for a SGPR index. 3798 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3799 MachineBasicBlock::iterator I(&MI); 3800 const DebugLoc &DL = MI.getDebugLoc(); 3801 3802 if (UseGPRIdxMode) { 3803 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3804 // to avoid interfering with other uses, so probably requires a new 3805 // optimization pass. 3806 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3807 3808 const MCInstrDesc &GPRIDXDesc = 3809 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3810 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3811 .addReg(SrcReg) 3812 .addReg(Idx) 3813 .addImm(SubReg); 3814 } else { 3815 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3816 3817 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3818 .addReg(SrcReg, 0, SubReg) 3819 .addReg(SrcReg, RegState::Implicit); 3820 } 3821 3822 MI.eraseFromParent(); 3823 3824 return &MBB; 3825 } 3826 3827 // Control flow needs to be inserted if indexing with a VGPR. 3828 const DebugLoc &DL = MI.getDebugLoc(); 3829 MachineBasicBlock::iterator I(&MI); 3830 3831 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3832 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3833 3834 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3835 3836 Register SGPRIdxReg; 3837 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3838 UseGPRIdxMode, SGPRIdxReg); 3839 3840 MachineBasicBlock *LoopBB = InsPt->getParent(); 3841 3842 if (UseGPRIdxMode) { 3843 const MCInstrDesc &GPRIDXDesc = 3844 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3845 3846 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3847 .addReg(SrcReg) 3848 .addReg(SGPRIdxReg) 3849 .addImm(SubReg); 3850 } else { 3851 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3852 .addReg(SrcReg, 0, SubReg) 3853 .addReg(SrcReg, RegState::Implicit); 3854 } 3855 3856 MI.eraseFromParent(); 3857 3858 return LoopBB; 3859 } 3860 3861 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3862 MachineBasicBlock &MBB, 3863 const GCNSubtarget &ST) { 3864 const SIInstrInfo *TII = ST.getInstrInfo(); 3865 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3866 MachineFunction *MF = MBB.getParent(); 3867 MachineRegisterInfo &MRI = MF->getRegInfo(); 3868 3869 Register Dst = MI.getOperand(0).getReg(); 3870 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3871 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3872 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3873 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3874 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3875 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3876 3877 // This can be an immediate, but will be folded later. 3878 assert(Val->getReg()); 3879 3880 unsigned SubReg; 3881 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3882 SrcVec->getReg(), 3883 Offset); 3884 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3885 3886 if (Idx->getReg() == AMDGPU::NoRegister) { 3887 MachineBasicBlock::iterator I(&MI); 3888 const DebugLoc &DL = MI.getDebugLoc(); 3889 3890 assert(Offset == 0); 3891 3892 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3893 .add(*SrcVec) 3894 .add(*Val) 3895 .addImm(SubReg); 3896 3897 MI.eraseFromParent(); 3898 return &MBB; 3899 } 3900 3901 // Check for a SGPR index. 3902 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3903 MachineBasicBlock::iterator I(&MI); 3904 const DebugLoc &DL = MI.getDebugLoc(); 3905 3906 if (UseGPRIdxMode) { 3907 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3908 3909 const MCInstrDesc &GPRIDXDesc = 3910 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3911 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3912 .addReg(SrcVec->getReg()) 3913 .add(*Val) 3914 .addReg(Idx) 3915 .addImm(SubReg); 3916 } else { 3917 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3918 3919 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3920 TRI.getRegSizeInBits(*VecRC), 32, false); 3921 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3922 .addReg(SrcVec->getReg()) 3923 .add(*Val) 3924 .addImm(SubReg); 3925 } 3926 MI.eraseFromParent(); 3927 return &MBB; 3928 } 3929 3930 // Control flow needs to be inserted if indexing with a VGPR. 3931 if (Val->isReg()) 3932 MRI.clearKillFlags(Val->getReg()); 3933 3934 const DebugLoc &DL = MI.getDebugLoc(); 3935 3936 Register PhiReg = MRI.createVirtualRegister(VecRC); 3937 3938 Register SGPRIdxReg; 3939 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 3940 UseGPRIdxMode, SGPRIdxReg); 3941 MachineBasicBlock *LoopBB = InsPt->getParent(); 3942 3943 if (UseGPRIdxMode) { 3944 const MCInstrDesc &GPRIDXDesc = 3945 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3946 3947 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3948 .addReg(PhiReg) 3949 .add(*Val) 3950 .addReg(SGPRIdxReg) 3951 .addImm(AMDGPU::sub0); 3952 } else { 3953 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3954 TRI.getRegSizeInBits(*VecRC), 32, false); 3955 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3956 .addReg(PhiReg) 3957 .add(*Val) 3958 .addImm(AMDGPU::sub0); 3959 } 3960 3961 MI.eraseFromParent(); 3962 return LoopBB; 3963 } 3964 3965 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3966 MachineInstr &MI, MachineBasicBlock *BB) const { 3967 3968 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3969 MachineFunction *MF = BB->getParent(); 3970 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3971 3972 switch (MI.getOpcode()) { 3973 case AMDGPU::S_UADDO_PSEUDO: 3974 case AMDGPU::S_USUBO_PSEUDO: { 3975 const DebugLoc &DL = MI.getDebugLoc(); 3976 MachineOperand &Dest0 = MI.getOperand(0); 3977 MachineOperand &Dest1 = MI.getOperand(1); 3978 MachineOperand &Src0 = MI.getOperand(2); 3979 MachineOperand &Src1 = MI.getOperand(3); 3980 3981 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3982 ? AMDGPU::S_ADD_I32 3983 : AMDGPU::S_SUB_I32; 3984 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3985 3986 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3987 .addImm(1) 3988 .addImm(0); 3989 3990 MI.eraseFromParent(); 3991 return BB; 3992 } 3993 case AMDGPU::S_ADD_U64_PSEUDO: 3994 case AMDGPU::S_SUB_U64_PSEUDO: { 3995 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3996 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3997 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3998 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3999 const DebugLoc &DL = MI.getDebugLoc(); 4000 4001 MachineOperand &Dest = MI.getOperand(0); 4002 MachineOperand &Src0 = MI.getOperand(1); 4003 MachineOperand &Src1 = MI.getOperand(2); 4004 4005 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4006 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4007 4008 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4009 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4010 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4011 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4012 4013 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4014 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4015 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4016 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4017 4018 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4019 4020 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4021 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4022 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 4023 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 4024 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4025 .addReg(DestSub0) 4026 .addImm(AMDGPU::sub0) 4027 .addReg(DestSub1) 4028 .addImm(AMDGPU::sub1); 4029 MI.eraseFromParent(); 4030 return BB; 4031 } 4032 case AMDGPU::V_ADD_U64_PSEUDO: 4033 case AMDGPU::V_SUB_U64_PSEUDO: { 4034 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4035 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4036 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4037 const DebugLoc &DL = MI.getDebugLoc(); 4038 4039 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4040 4041 MachineOperand &Dest = MI.getOperand(0); 4042 MachineOperand &Src0 = MI.getOperand(1); 4043 MachineOperand &Src1 = MI.getOperand(2); 4044 4045 if (IsAdd && ST.hasLshlAddB64()) { 4046 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), 4047 Dest.getReg()) 4048 .add(Src0) 4049 .addImm(0) 4050 .add(Src1); 4051 TII->legalizeOperands(*Add); 4052 MI.eraseFromParent(); 4053 return BB; 4054 } 4055 4056 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4057 4058 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4059 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4060 4061 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4062 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4063 4064 const TargetRegisterClass *Src0RC = Src0.isReg() 4065 ? MRI.getRegClass(Src0.getReg()) 4066 : &AMDGPU::VReg_64RegClass; 4067 const TargetRegisterClass *Src1RC = Src1.isReg() 4068 ? MRI.getRegClass(Src1.getReg()) 4069 : &AMDGPU::VReg_64RegClass; 4070 4071 const TargetRegisterClass *Src0SubRC = 4072 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 4073 const TargetRegisterClass *Src1SubRC = 4074 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 4075 4076 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4077 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4078 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4079 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4080 4081 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4082 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4083 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4084 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4085 4086 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4087 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4088 .addReg(CarryReg, RegState::Define) 4089 .add(SrcReg0Sub0) 4090 .add(SrcReg1Sub0) 4091 .addImm(0); // clamp bit 4092 4093 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4094 MachineInstr *HiHalf = 4095 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4096 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4097 .add(SrcReg0Sub1) 4098 .add(SrcReg1Sub1) 4099 .addReg(CarryReg, RegState::Kill) 4100 .addImm(0); // clamp bit 4101 4102 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4103 .addReg(DestSub0) 4104 .addImm(AMDGPU::sub0) 4105 .addReg(DestSub1) 4106 .addImm(AMDGPU::sub1); 4107 TII->legalizeOperands(*LoHalf); 4108 TII->legalizeOperands(*HiHalf); 4109 MI.eraseFromParent(); 4110 return BB; 4111 } 4112 case AMDGPU::S_ADD_CO_PSEUDO: 4113 case AMDGPU::S_SUB_CO_PSEUDO: { 4114 // This pseudo has a chance to be selected 4115 // only from uniform add/subcarry node. All the VGPR operands 4116 // therefore assumed to be splat vectors. 4117 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4118 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4119 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4120 MachineBasicBlock::iterator MII = MI; 4121 const DebugLoc &DL = MI.getDebugLoc(); 4122 MachineOperand &Dest = MI.getOperand(0); 4123 MachineOperand &CarryDest = MI.getOperand(1); 4124 MachineOperand &Src0 = MI.getOperand(2); 4125 MachineOperand &Src1 = MI.getOperand(3); 4126 MachineOperand &Src2 = MI.getOperand(4); 4127 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4128 ? AMDGPU::S_ADDC_U32 4129 : AMDGPU::S_SUBB_U32; 4130 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4131 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4132 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4133 .addReg(Src0.getReg()); 4134 Src0.setReg(RegOp0); 4135 } 4136 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4137 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4138 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4139 .addReg(Src1.getReg()); 4140 Src1.setReg(RegOp1); 4141 } 4142 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4143 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4144 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4145 .addReg(Src2.getReg()); 4146 Src2.setReg(RegOp2); 4147 } 4148 4149 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4150 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4151 assert(WaveSize == 64 || WaveSize == 32); 4152 4153 if (WaveSize == 64) { 4154 if (ST.hasScalarCompareEq64()) { 4155 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4156 .addReg(Src2.getReg()) 4157 .addImm(0); 4158 } else { 4159 const TargetRegisterClass *SubRC = 4160 TRI->getSubRegClass(Src2RC, AMDGPU::sub0); 4161 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4162 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4163 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4164 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4165 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4166 4167 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4168 .add(Src2Sub0) 4169 .add(Src2Sub1); 4170 4171 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4172 .addReg(Src2_32, RegState::Kill) 4173 .addImm(0); 4174 } 4175 } else { 4176 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 4177 .addReg(Src2.getReg()) 4178 .addImm(0); 4179 } 4180 4181 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4182 4183 unsigned SelOpc = 4184 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4185 4186 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4187 .addImm(-1) 4188 .addImm(0); 4189 4190 MI.eraseFromParent(); 4191 return BB; 4192 } 4193 case AMDGPU::SI_INIT_M0: { 4194 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4195 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4196 .add(MI.getOperand(0)); 4197 MI.eraseFromParent(); 4198 return BB; 4199 } 4200 case AMDGPU::GET_GROUPSTATICSIZE: { 4201 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4202 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4203 DebugLoc DL = MI.getDebugLoc(); 4204 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4205 .add(MI.getOperand(0)) 4206 .addImm(MFI->getLDSSize()); 4207 MI.eraseFromParent(); 4208 return BB; 4209 } 4210 case AMDGPU::SI_INDIRECT_SRC_V1: 4211 case AMDGPU::SI_INDIRECT_SRC_V2: 4212 case AMDGPU::SI_INDIRECT_SRC_V4: 4213 case AMDGPU::SI_INDIRECT_SRC_V8: 4214 case AMDGPU::SI_INDIRECT_SRC_V16: 4215 case AMDGPU::SI_INDIRECT_SRC_V32: 4216 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4217 case AMDGPU::SI_INDIRECT_DST_V1: 4218 case AMDGPU::SI_INDIRECT_DST_V2: 4219 case AMDGPU::SI_INDIRECT_DST_V4: 4220 case AMDGPU::SI_INDIRECT_DST_V8: 4221 case AMDGPU::SI_INDIRECT_DST_V16: 4222 case AMDGPU::SI_INDIRECT_DST_V32: 4223 return emitIndirectDst(MI, *BB, *getSubtarget()); 4224 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4225 case AMDGPU::SI_KILL_I1_PSEUDO: 4226 return splitKillBlock(MI, BB); 4227 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4228 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4229 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4230 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4231 4232 Register Dst = MI.getOperand(0).getReg(); 4233 Register Src0 = MI.getOperand(1).getReg(); 4234 Register Src1 = MI.getOperand(2).getReg(); 4235 const DebugLoc &DL = MI.getDebugLoc(); 4236 Register SrcCond = MI.getOperand(3).getReg(); 4237 4238 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4239 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4240 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4241 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4242 4243 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4244 .addReg(SrcCond); 4245 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4246 .addImm(0) 4247 .addReg(Src0, 0, AMDGPU::sub0) 4248 .addImm(0) 4249 .addReg(Src1, 0, AMDGPU::sub0) 4250 .addReg(SrcCondCopy); 4251 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4252 .addImm(0) 4253 .addReg(Src0, 0, AMDGPU::sub1) 4254 .addImm(0) 4255 .addReg(Src1, 0, AMDGPU::sub1) 4256 .addReg(SrcCondCopy); 4257 4258 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4259 .addReg(DstLo) 4260 .addImm(AMDGPU::sub0) 4261 .addReg(DstHi) 4262 .addImm(AMDGPU::sub1); 4263 MI.eraseFromParent(); 4264 return BB; 4265 } 4266 case AMDGPU::SI_BR_UNDEF: { 4267 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4268 const DebugLoc &DL = MI.getDebugLoc(); 4269 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4270 .add(MI.getOperand(0)); 4271 Br->getOperand(1).setIsUndef(true); // read undef SCC 4272 MI.eraseFromParent(); 4273 return BB; 4274 } 4275 case AMDGPU::ADJCALLSTACKUP: 4276 case AMDGPU::ADJCALLSTACKDOWN: { 4277 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4278 MachineInstrBuilder MIB(*MF, &MI); 4279 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4280 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4281 return BB; 4282 } 4283 case AMDGPU::SI_CALL_ISEL: { 4284 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4285 const DebugLoc &DL = MI.getDebugLoc(); 4286 4287 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4288 4289 MachineInstrBuilder MIB; 4290 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4291 4292 for (const MachineOperand &MO : MI.operands()) 4293 MIB.add(MO); 4294 4295 MIB.cloneMemRefs(MI); 4296 MI.eraseFromParent(); 4297 return BB; 4298 } 4299 case AMDGPU::V_ADD_CO_U32_e32: 4300 case AMDGPU::V_SUB_CO_U32_e32: 4301 case AMDGPU::V_SUBREV_CO_U32_e32: { 4302 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4303 const DebugLoc &DL = MI.getDebugLoc(); 4304 unsigned Opc = MI.getOpcode(); 4305 4306 bool NeedClampOperand = false; 4307 if (TII->pseudoToMCOpcode(Opc) == -1) { 4308 Opc = AMDGPU::getVOPe64(Opc); 4309 NeedClampOperand = true; 4310 } 4311 4312 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4313 if (TII->isVOP3(*I)) { 4314 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4315 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4316 I.addReg(TRI->getVCC(), RegState::Define); 4317 } 4318 I.add(MI.getOperand(1)) 4319 .add(MI.getOperand(2)); 4320 if (NeedClampOperand) 4321 I.addImm(0); // clamp bit for e64 encoding 4322 4323 TII->legalizeOperands(*I); 4324 4325 MI.eraseFromParent(); 4326 return BB; 4327 } 4328 case AMDGPU::V_ADDC_U32_e32: 4329 case AMDGPU::V_SUBB_U32_e32: 4330 case AMDGPU::V_SUBBREV_U32_e32: 4331 // These instructions have an implicit use of vcc which counts towards the 4332 // constant bus limit. 4333 TII->legalizeOperands(MI); 4334 return BB; 4335 case AMDGPU::DS_GWS_INIT: 4336 case AMDGPU::DS_GWS_SEMA_BR: 4337 case AMDGPU::DS_GWS_BARRIER: 4338 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); 4339 LLVM_FALLTHROUGH; 4340 case AMDGPU::DS_GWS_SEMA_V: 4341 case AMDGPU::DS_GWS_SEMA_P: 4342 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4343 // A s_waitcnt 0 is required to be the instruction immediately following. 4344 if (getSubtarget()->hasGWSAutoReplay()) { 4345 bundleInstWithWaitcnt(MI); 4346 return BB; 4347 } 4348 4349 return emitGWSMemViolTestLoop(MI, BB); 4350 case AMDGPU::S_SETREG_B32: { 4351 // Try to optimize cases that only set the denormal mode or rounding mode. 4352 // 4353 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4354 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4355 // instead. 4356 // 4357 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4358 // allow you to have a no side effect instruction in the output of a 4359 // sideeffecting pattern. 4360 unsigned ID, Offset, Width; 4361 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4362 if (ID != AMDGPU::Hwreg::ID_MODE) 4363 return BB; 4364 4365 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4366 const unsigned SetMask = WidthMask << Offset; 4367 4368 if (getSubtarget()->hasDenormModeInst()) { 4369 unsigned SetDenormOp = 0; 4370 unsigned SetRoundOp = 0; 4371 4372 // The dedicated instructions can only set the whole denorm or round mode 4373 // at once, not a subset of bits in either. 4374 if (SetMask == 4375 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4376 // If this fully sets both the round and denorm mode, emit the two 4377 // dedicated instructions for these. 4378 SetRoundOp = AMDGPU::S_ROUND_MODE; 4379 SetDenormOp = AMDGPU::S_DENORM_MODE; 4380 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4381 SetRoundOp = AMDGPU::S_ROUND_MODE; 4382 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4383 SetDenormOp = AMDGPU::S_DENORM_MODE; 4384 } 4385 4386 if (SetRoundOp || SetDenormOp) { 4387 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4388 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4389 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4390 unsigned ImmVal = Def->getOperand(1).getImm(); 4391 if (SetRoundOp) { 4392 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4393 .addImm(ImmVal & 0xf); 4394 4395 // If we also have the denorm mode, get just the denorm mode bits. 4396 ImmVal >>= 4; 4397 } 4398 4399 if (SetDenormOp) { 4400 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4401 .addImm(ImmVal & 0xf); 4402 } 4403 4404 MI.eraseFromParent(); 4405 return BB; 4406 } 4407 } 4408 } 4409 4410 // If only FP bits are touched, used the no side effects pseudo. 4411 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4412 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4413 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4414 4415 return BB; 4416 } 4417 default: 4418 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4419 } 4420 } 4421 4422 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4423 return isTypeLegal(VT.getScalarType()); 4424 } 4425 4426 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { 4427 switch (Op.getValue(0).getSimpleValueType().SimpleTy) { 4428 case MVT::f32: 4429 return Subtarget->hasAtomicFaddRtnInsts(); 4430 case MVT::v2f16: 4431 case MVT::f64: 4432 return Subtarget->hasGFX90AInsts(); 4433 default: 4434 return false; 4435 } 4436 } 4437 4438 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4439 // This currently forces unfolding various combinations of fsub into fma with 4440 // free fneg'd operands. As long as we have fast FMA (controlled by 4441 // isFMAFasterThanFMulAndFAdd), we should perform these. 4442 4443 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4444 // most of these combines appear to be cycle neutral but save on instruction 4445 // count / code size. 4446 return true; 4447 } 4448 4449 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 4450 4451 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4452 EVT VT) const { 4453 if (!VT.isVector()) { 4454 return MVT::i1; 4455 } 4456 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4457 } 4458 4459 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4460 // TODO: Should i16 be used always if legal? For now it would force VALU 4461 // shifts. 4462 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4463 } 4464 4465 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4466 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4467 ? Ty.changeElementSize(16) 4468 : Ty.changeElementSize(32); 4469 } 4470 4471 // Answering this is somewhat tricky and depends on the specific device which 4472 // have different rates for fma or all f64 operations. 4473 // 4474 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4475 // regardless of which device (although the number of cycles differs between 4476 // devices), so it is always profitable for f64. 4477 // 4478 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4479 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4480 // which we can always do even without fused FP ops since it returns the same 4481 // result as the separate operations and since it is always full 4482 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4483 // however does not support denormals, so we do report fma as faster if we have 4484 // a fast fma device and require denormals. 4485 // 4486 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4487 EVT VT) const { 4488 VT = VT.getScalarType(); 4489 4490 switch (VT.getSimpleVT().SimpleTy) { 4491 case MVT::f32: { 4492 // If mad is not available this depends only on if f32 fma is full rate. 4493 if (!Subtarget->hasMadMacF32Insts()) 4494 return Subtarget->hasFastFMAF32(); 4495 4496 // Otherwise f32 mad is always full rate and returns the same result as 4497 // the separate operations so should be preferred over fma. 4498 // However does not support denormals. 4499 if (hasFP32Denormals(MF)) 4500 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4501 4502 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4503 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4504 } 4505 case MVT::f64: 4506 return true; 4507 case MVT::f16: 4508 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4509 default: 4510 break; 4511 } 4512 4513 return false; 4514 } 4515 4516 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4517 LLT Ty) const { 4518 switch (Ty.getScalarSizeInBits()) { 4519 case 16: 4520 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 4521 case 32: 4522 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 4523 case 64: 4524 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 4525 default: 4526 break; 4527 } 4528 4529 return false; 4530 } 4531 4532 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 4533 if (!Ty.isScalar()) 4534 return false; 4535 4536 if (Ty.getScalarSizeInBits() == 16) 4537 return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); 4538 if (Ty.getScalarSizeInBits() == 32) 4539 return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); 4540 4541 return false; 4542 } 4543 4544 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4545 const SDNode *N) const { 4546 // TODO: Check future ftz flag 4547 // v_mad_f32/v_mac_f32 do not support denormals. 4548 EVT VT = N->getValueType(0); 4549 if (VT == MVT::f32) 4550 return Subtarget->hasMadMacF32Insts() && 4551 !hasFP32Denormals(DAG.getMachineFunction()); 4552 if (VT == MVT::f16) { 4553 return Subtarget->hasMadF16() && 4554 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4555 } 4556 4557 return false; 4558 } 4559 4560 //===----------------------------------------------------------------------===// 4561 // Custom DAG Lowering Operations 4562 //===----------------------------------------------------------------------===// 4563 4564 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4565 // wider vector type is legal. 4566 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4567 SelectionDAG &DAG) const { 4568 unsigned Opc = Op.getOpcode(); 4569 EVT VT = Op.getValueType(); 4570 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4571 4572 SDValue Lo, Hi; 4573 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4574 4575 SDLoc SL(Op); 4576 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4577 Op->getFlags()); 4578 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4579 Op->getFlags()); 4580 4581 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4582 } 4583 4584 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4585 // wider vector type is legal. 4586 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4587 SelectionDAG &DAG) const { 4588 unsigned Opc = Op.getOpcode(); 4589 EVT VT = Op.getValueType(); 4590 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4591 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 4592 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4593 VT == MVT::v32f32); 4594 4595 SDValue Lo0, Hi0; 4596 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4597 SDValue Lo1, Hi1; 4598 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4599 4600 SDLoc SL(Op); 4601 4602 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4603 Op->getFlags()); 4604 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4605 Op->getFlags()); 4606 4607 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4608 } 4609 4610 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4611 SelectionDAG &DAG) const { 4612 unsigned Opc = Op.getOpcode(); 4613 EVT VT = Op.getValueType(); 4614 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 4615 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || 4616 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4617 VT == MVT::v32f32); 4618 4619 SDValue Lo0, Hi0; 4620 SDValue Op0 = Op.getOperand(0); 4621 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 4622 ? DAG.SplitVectorOperand(Op.getNode(), 0) 4623 : std::make_pair(Op0, Op0); 4624 SDValue Lo1, Hi1; 4625 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4626 SDValue Lo2, Hi2; 4627 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4628 4629 SDLoc SL(Op); 4630 auto ResVT = DAG.GetSplitDestVTs(VT); 4631 4632 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 4633 Op->getFlags()); 4634 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 4635 Op->getFlags()); 4636 4637 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4638 } 4639 4640 4641 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4642 switch (Op.getOpcode()) { 4643 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4644 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4645 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4646 case ISD::LOAD: { 4647 SDValue Result = LowerLOAD(Op, DAG); 4648 assert((!Result.getNode() || 4649 Result.getNode()->getNumValues() == 2) && 4650 "Load should return a value and a chain"); 4651 return Result; 4652 } 4653 4654 case ISD::FSIN: 4655 case ISD::FCOS: 4656 return LowerTrig(Op, DAG); 4657 case ISD::SELECT: return LowerSELECT(Op, DAG); 4658 case ISD::FDIV: return LowerFDIV(Op, DAG); 4659 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4660 case ISD::STORE: return LowerSTORE(Op, DAG); 4661 case ISD::GlobalAddress: { 4662 MachineFunction &MF = DAG.getMachineFunction(); 4663 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4664 return LowerGlobalAddress(MFI, Op, DAG); 4665 } 4666 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4667 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4668 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4669 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4670 case ISD::INSERT_SUBVECTOR: 4671 return lowerINSERT_SUBVECTOR(Op, DAG); 4672 case ISD::INSERT_VECTOR_ELT: 4673 return lowerINSERT_VECTOR_ELT(Op, DAG); 4674 case ISD::EXTRACT_VECTOR_ELT: 4675 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4676 case ISD::VECTOR_SHUFFLE: 4677 return lowerVECTOR_SHUFFLE(Op, DAG); 4678 case ISD::SCALAR_TO_VECTOR: 4679 return lowerSCALAR_TO_VECTOR(Op, DAG); 4680 case ISD::BUILD_VECTOR: 4681 return lowerBUILD_VECTOR(Op, DAG); 4682 case ISD::FP_ROUND: 4683 return lowerFP_ROUND(Op, DAG); 4684 case ISD::FPTRUNC_ROUND: { 4685 unsigned Opc; 4686 SDLoc DL(Op); 4687 4688 if (Op.getOperand(0)->getValueType(0) != MVT::f32) 4689 return SDValue(); 4690 4691 // Get the rounding mode from the last operand 4692 int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4693 if (RoundMode == (int)RoundingMode::TowardPositive) 4694 Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; 4695 else if (RoundMode == (int)RoundingMode::TowardNegative) 4696 Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; 4697 else 4698 return SDValue(); 4699 4700 return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); 4701 } 4702 case ISD::TRAP: 4703 return lowerTRAP(Op, DAG); 4704 case ISD::DEBUGTRAP: 4705 return lowerDEBUGTRAP(Op, DAG); 4706 case ISD::FABS: 4707 case ISD::FNEG: 4708 case ISD::FCANONICALIZE: 4709 case ISD::BSWAP: 4710 return splitUnaryVectorOp(Op, DAG); 4711 case ISD::FMINNUM: 4712 case ISD::FMAXNUM: 4713 return lowerFMINNUM_FMAXNUM(Op, DAG); 4714 case ISD::FMA: 4715 return splitTernaryVectorOp(Op, DAG); 4716 case ISD::FP_TO_SINT: 4717 case ISD::FP_TO_UINT: 4718 return LowerFP_TO_INT(Op, DAG); 4719 case ISD::SHL: 4720 case ISD::SRA: 4721 case ISD::SRL: 4722 case ISD::ADD: 4723 case ISD::SUB: 4724 case ISD::MUL: 4725 case ISD::SMIN: 4726 case ISD::SMAX: 4727 case ISD::UMIN: 4728 case ISD::UMAX: 4729 case ISD::FADD: 4730 case ISD::FMUL: 4731 case ISD::FMINNUM_IEEE: 4732 case ISD::FMAXNUM_IEEE: 4733 case ISD::UADDSAT: 4734 case ISD::USUBSAT: 4735 case ISD::SADDSAT: 4736 case ISD::SSUBSAT: 4737 return splitBinaryVectorOp(Op, DAG); 4738 case ISD::SMULO: 4739 case ISD::UMULO: 4740 return lowerXMULO(Op, DAG); 4741 case ISD::SMUL_LOHI: 4742 case ISD::UMUL_LOHI: 4743 return lowerXMUL_LOHI(Op, DAG); 4744 case ISD::DYNAMIC_STACKALLOC: 4745 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4746 } 4747 return SDValue(); 4748 } 4749 4750 // Used for D16: Casts the result of an instruction into the right vector, 4751 // packs values if loads return unpacked values. 4752 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4753 const SDLoc &DL, 4754 SelectionDAG &DAG, bool Unpacked) { 4755 if (!LoadVT.isVector()) 4756 return Result; 4757 4758 // Cast back to the original packed type or to a larger type that is a 4759 // multiple of 32 bit for D16. Widening the return type is a required for 4760 // legalization. 4761 EVT FittingLoadVT = LoadVT; 4762 if ((LoadVT.getVectorNumElements() % 2) == 1) { 4763 FittingLoadVT = 4764 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4765 LoadVT.getVectorNumElements() + 1); 4766 } 4767 4768 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4769 // Truncate to v2i16/v4i16. 4770 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 4771 4772 // Workaround legalizer not scalarizing truncate after vector op 4773 // legalization but not creating intermediate vector trunc. 4774 SmallVector<SDValue, 4> Elts; 4775 DAG.ExtractVectorElements(Result, Elts); 4776 for (SDValue &Elt : Elts) 4777 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4778 4779 // Pad illegal v1i16/v3fi6 to v4i16 4780 if ((LoadVT.getVectorNumElements() % 2) == 1) 4781 Elts.push_back(DAG.getUNDEF(MVT::i16)); 4782 4783 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4784 4785 // Bitcast to original type (v2f16/v4f16). 4786 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4787 } 4788 4789 // Cast back to the original packed type. 4790 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4791 } 4792 4793 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4794 MemSDNode *M, 4795 SelectionDAG &DAG, 4796 ArrayRef<SDValue> Ops, 4797 bool IsIntrinsic) const { 4798 SDLoc DL(M); 4799 4800 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4801 EVT LoadVT = M->getValueType(0); 4802 4803 EVT EquivLoadVT = LoadVT; 4804 if (LoadVT.isVector()) { 4805 if (Unpacked) { 4806 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4807 LoadVT.getVectorNumElements()); 4808 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 4809 // Widen v3f16 to legal type 4810 EquivLoadVT = 4811 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4812 LoadVT.getVectorNumElements() + 1); 4813 } 4814 } 4815 4816 // Change from v4f16/v2f16 to EquivLoadVT. 4817 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4818 4819 SDValue Load 4820 = DAG.getMemIntrinsicNode( 4821 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4822 VTList, Ops, M->getMemoryVT(), 4823 M->getMemOperand()); 4824 4825 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4826 4827 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4828 } 4829 4830 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4831 SelectionDAG &DAG, 4832 ArrayRef<SDValue> Ops) const { 4833 SDLoc DL(M); 4834 EVT LoadVT = M->getValueType(0); 4835 EVT EltType = LoadVT.getScalarType(); 4836 EVT IntVT = LoadVT.changeTypeToInteger(); 4837 4838 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4839 4840 unsigned Opc = 4841 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4842 4843 if (IsD16) { 4844 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4845 } 4846 4847 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4848 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4849 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4850 4851 if (isTypeLegal(LoadVT)) { 4852 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4853 M->getMemOperand(), DAG); 4854 } 4855 4856 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4857 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4858 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4859 M->getMemOperand(), DAG); 4860 return DAG.getMergeValues( 4861 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4862 DL); 4863 } 4864 4865 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4866 SDNode *N, SelectionDAG &DAG) { 4867 EVT VT = N->getValueType(0); 4868 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4869 unsigned CondCode = CD->getZExtValue(); 4870 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4871 return DAG.getUNDEF(VT); 4872 4873 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4874 4875 SDValue LHS = N->getOperand(1); 4876 SDValue RHS = N->getOperand(2); 4877 4878 SDLoc DL(N); 4879 4880 EVT CmpVT = LHS.getValueType(); 4881 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4882 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4883 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4884 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4885 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4886 } 4887 4888 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4889 4890 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4891 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4892 4893 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4894 DAG.getCondCode(CCOpcode)); 4895 if (VT.bitsEq(CCVT)) 4896 return SetCC; 4897 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4898 } 4899 4900 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4901 SDNode *N, SelectionDAG &DAG) { 4902 EVT VT = N->getValueType(0); 4903 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4904 4905 unsigned CondCode = CD->getZExtValue(); 4906 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4907 return DAG.getUNDEF(VT); 4908 4909 SDValue Src0 = N->getOperand(1); 4910 SDValue Src1 = N->getOperand(2); 4911 EVT CmpVT = Src0.getValueType(); 4912 SDLoc SL(N); 4913 4914 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4915 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4916 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4917 } 4918 4919 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4920 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4921 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4922 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4923 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4924 Src1, DAG.getCondCode(CCOpcode)); 4925 if (VT.bitsEq(CCVT)) 4926 return SetCC; 4927 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4928 } 4929 4930 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4931 SelectionDAG &DAG) { 4932 EVT VT = N->getValueType(0); 4933 SDValue Src = N->getOperand(1); 4934 SDLoc SL(N); 4935 4936 if (Src.getOpcode() == ISD::SETCC) { 4937 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4938 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4939 Src.getOperand(1), Src.getOperand(2)); 4940 } 4941 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4942 // (ballot 0) -> 0 4943 if (Arg->isZero()) 4944 return DAG.getConstant(0, SL, VT); 4945 4946 // (ballot 1) -> EXEC/EXEC_LO 4947 if (Arg->isOne()) { 4948 Register Exec; 4949 if (VT.getScalarSizeInBits() == 32) 4950 Exec = AMDGPU::EXEC_LO; 4951 else if (VT.getScalarSizeInBits() == 64) 4952 Exec = AMDGPU::EXEC; 4953 else 4954 return SDValue(); 4955 4956 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4957 } 4958 } 4959 4960 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4961 // ISD::SETNE) 4962 return DAG.getNode( 4963 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4964 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4965 } 4966 4967 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4968 SmallVectorImpl<SDValue> &Results, 4969 SelectionDAG &DAG) const { 4970 switch (N->getOpcode()) { 4971 case ISD::INSERT_VECTOR_ELT: { 4972 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4973 Results.push_back(Res); 4974 return; 4975 } 4976 case ISD::EXTRACT_VECTOR_ELT: { 4977 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4978 Results.push_back(Res); 4979 return; 4980 } 4981 case ISD::INTRINSIC_WO_CHAIN: { 4982 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4983 switch (IID) { 4984 case Intrinsic::amdgcn_cvt_pkrtz: { 4985 SDValue Src0 = N->getOperand(1); 4986 SDValue Src1 = N->getOperand(2); 4987 SDLoc SL(N); 4988 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4989 Src0, Src1); 4990 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4991 return; 4992 } 4993 case Intrinsic::amdgcn_cvt_pknorm_i16: 4994 case Intrinsic::amdgcn_cvt_pknorm_u16: 4995 case Intrinsic::amdgcn_cvt_pk_i16: 4996 case Intrinsic::amdgcn_cvt_pk_u16: { 4997 SDValue Src0 = N->getOperand(1); 4998 SDValue Src1 = N->getOperand(2); 4999 SDLoc SL(N); 5000 unsigned Opcode; 5001 5002 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5003 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5004 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5005 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5006 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5007 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5008 else 5009 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5010 5011 EVT VT = N->getValueType(0); 5012 if (isTypeLegal(VT)) 5013 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5014 else { 5015 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5016 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5017 } 5018 return; 5019 } 5020 } 5021 break; 5022 } 5023 case ISD::INTRINSIC_W_CHAIN: { 5024 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5025 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5026 // FIXME: Hacky 5027 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5028 Results.push_back(Res.getOperand(I)); 5029 } 5030 } else { 5031 Results.push_back(Res); 5032 Results.push_back(Res.getValue(1)); 5033 } 5034 return; 5035 } 5036 5037 break; 5038 } 5039 case ISD::SELECT: { 5040 SDLoc SL(N); 5041 EVT VT = N->getValueType(0); 5042 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 5043 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 5044 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 5045 5046 EVT SelectVT = NewVT; 5047 if (NewVT.bitsLT(MVT::i32)) { 5048 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 5049 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 5050 SelectVT = MVT::i32; 5051 } 5052 5053 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 5054 N->getOperand(0), LHS, RHS); 5055 5056 if (NewVT != SelectVT) 5057 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 5058 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 5059 return; 5060 } 5061 case ISD::FNEG: { 5062 if (N->getValueType(0) != MVT::v2f16) 5063 break; 5064 5065 SDLoc SL(N); 5066 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5067 5068 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 5069 BC, 5070 DAG.getConstant(0x80008000, SL, MVT::i32)); 5071 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5072 return; 5073 } 5074 case ISD::FABS: { 5075 if (N->getValueType(0) != MVT::v2f16) 5076 break; 5077 5078 SDLoc SL(N); 5079 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5080 5081 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 5082 BC, 5083 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 5084 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5085 return; 5086 } 5087 default: 5088 break; 5089 } 5090 } 5091 5092 /// Helper function for LowerBRCOND 5093 static SDNode *findUser(SDValue Value, unsigned Opcode) { 5094 5095 SDNode *Parent = Value.getNode(); 5096 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 5097 I != E; ++I) { 5098 5099 if (I.getUse().get() != Value) 5100 continue; 5101 5102 if (I->getOpcode() == Opcode) 5103 return *I; 5104 } 5105 return nullptr; 5106 } 5107 5108 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 5109 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 5110 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 5111 case Intrinsic::amdgcn_if: 5112 return AMDGPUISD::IF; 5113 case Intrinsic::amdgcn_else: 5114 return AMDGPUISD::ELSE; 5115 case Intrinsic::amdgcn_loop: 5116 return AMDGPUISD::LOOP; 5117 case Intrinsic::amdgcn_end_cf: 5118 llvm_unreachable("should not occur"); 5119 default: 5120 return 0; 5121 } 5122 } 5123 5124 // break, if_break, else_break are all only used as inputs to loop, not 5125 // directly as branch conditions. 5126 return 0; 5127 } 5128 5129 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 5130 const Triple &TT = getTargetMachine().getTargetTriple(); 5131 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5132 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5133 AMDGPU::shouldEmitConstantsToTextSection(TT); 5134 } 5135 5136 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 5137 // FIXME: Either avoid relying on address space here or change the default 5138 // address space for functions to avoid the explicit check. 5139 return (GV->getValueType()->isFunctionTy() || 5140 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 5141 !shouldEmitFixup(GV) && 5142 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 5143 } 5144 5145 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 5146 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 5147 } 5148 5149 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 5150 if (!GV->hasExternalLinkage()) 5151 return true; 5152 5153 const auto OS = getTargetMachine().getTargetTriple().getOS(); 5154 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 5155 } 5156 5157 /// This transforms the control flow intrinsics to get the branch destination as 5158 /// last parameter, also switches branch target with BR if the need arise 5159 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 5160 SelectionDAG &DAG) const { 5161 SDLoc DL(BRCOND); 5162 5163 SDNode *Intr = BRCOND.getOperand(1).getNode(); 5164 SDValue Target = BRCOND.getOperand(2); 5165 SDNode *BR = nullptr; 5166 SDNode *SetCC = nullptr; 5167 5168 if (Intr->getOpcode() == ISD::SETCC) { 5169 // As long as we negate the condition everything is fine 5170 SetCC = Intr; 5171 Intr = SetCC->getOperand(0).getNode(); 5172 5173 } else { 5174 // Get the target from BR if we don't negate the condition 5175 BR = findUser(BRCOND, ISD::BR); 5176 assert(BR && "brcond missing unconditional branch user"); 5177 Target = BR->getOperand(1); 5178 } 5179 5180 unsigned CFNode = isCFIntrinsic(Intr); 5181 if (CFNode == 0) { 5182 // This is a uniform branch so we don't need to legalize. 5183 return BRCOND; 5184 } 5185 5186 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 5187 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 5188 5189 assert(!SetCC || 5190 (SetCC->getConstantOperandVal(1) == 1 && 5191 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 5192 ISD::SETNE)); 5193 5194 // operands of the new intrinsic call 5195 SmallVector<SDValue, 4> Ops; 5196 if (HaveChain) 5197 Ops.push_back(BRCOND.getOperand(0)); 5198 5199 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 5200 Ops.push_back(Target); 5201 5202 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 5203 5204 // build the new intrinsic call 5205 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 5206 5207 if (!HaveChain) { 5208 SDValue Ops[] = { 5209 SDValue(Result, 0), 5210 BRCOND.getOperand(0) 5211 }; 5212 5213 Result = DAG.getMergeValues(Ops, DL).getNode(); 5214 } 5215 5216 if (BR) { 5217 // Give the branch instruction our target 5218 SDValue Ops[] = { 5219 BR->getOperand(0), 5220 BRCOND.getOperand(2) 5221 }; 5222 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 5223 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 5224 } 5225 5226 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 5227 5228 // Copy the intrinsic results to registers 5229 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 5230 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 5231 if (!CopyToReg) 5232 continue; 5233 5234 Chain = DAG.getCopyToReg( 5235 Chain, DL, 5236 CopyToReg->getOperand(1), 5237 SDValue(Result, i - 1), 5238 SDValue()); 5239 5240 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 5241 } 5242 5243 // Remove the old intrinsic from the chain 5244 DAG.ReplaceAllUsesOfValueWith( 5245 SDValue(Intr, Intr->getNumValues() - 1), 5246 Intr->getOperand(0)); 5247 5248 return Chain; 5249 } 5250 5251 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 5252 SelectionDAG &DAG) const { 5253 MVT VT = Op.getSimpleValueType(); 5254 SDLoc DL(Op); 5255 // Checking the depth 5256 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 5257 return DAG.getConstant(0, DL, VT); 5258 5259 MachineFunction &MF = DAG.getMachineFunction(); 5260 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5261 // Check for kernel and shader functions 5262 if (Info->isEntryFunction()) 5263 return DAG.getConstant(0, DL, VT); 5264 5265 MachineFrameInfo &MFI = MF.getFrameInfo(); 5266 // There is a call to @llvm.returnaddress in this function 5267 MFI.setReturnAddressIsTaken(true); 5268 5269 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5270 // Get the return address reg and mark it as an implicit live-in 5271 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5272 5273 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5274 } 5275 5276 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5277 SDValue Op, 5278 const SDLoc &DL, 5279 EVT VT) const { 5280 return Op.getValueType().bitsLE(VT) ? 5281 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5282 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5283 DAG.getTargetConstant(0, DL, MVT::i32)); 5284 } 5285 5286 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5287 assert(Op.getValueType() == MVT::f16 && 5288 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5289 5290 SDValue Src = Op.getOperand(0); 5291 EVT SrcVT = Src.getValueType(); 5292 if (SrcVT != MVT::f64) 5293 return Op; 5294 5295 SDLoc DL(Op); 5296 5297 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5298 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5299 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5300 } 5301 5302 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5303 SelectionDAG &DAG) const { 5304 EVT VT = Op.getValueType(); 5305 const MachineFunction &MF = DAG.getMachineFunction(); 5306 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5307 bool IsIEEEMode = Info->getMode().IEEE; 5308 5309 // FIXME: Assert during selection that this is only selected for 5310 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5311 // mode functions, but this happens to be OK since it's only done in cases 5312 // where there is known no sNaN. 5313 if (IsIEEEMode) 5314 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5315 5316 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) 5317 return splitBinaryVectorOp(Op, DAG); 5318 return Op; 5319 } 5320 5321 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5322 EVT VT = Op.getValueType(); 5323 SDLoc SL(Op); 5324 SDValue LHS = Op.getOperand(0); 5325 SDValue RHS = Op.getOperand(1); 5326 bool isSigned = Op.getOpcode() == ISD::SMULO; 5327 5328 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5329 const APInt &C = RHSC->getAPIntValue(); 5330 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5331 if (C.isPowerOf2()) { 5332 // smulo(x, signed_min) is same as umulo(x, signed_min). 5333 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5334 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5335 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5336 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5337 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5338 SL, VT, Result, ShiftAmt), 5339 LHS, ISD::SETNE); 5340 return DAG.getMergeValues({ Result, Overflow }, SL); 5341 } 5342 } 5343 5344 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5345 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5346 SL, VT, LHS, RHS); 5347 5348 SDValue Sign = isSigned 5349 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5350 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5351 : DAG.getConstant(0, SL, VT); 5352 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5353 5354 return DAG.getMergeValues({ Result, Overflow }, SL); 5355 } 5356 5357 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 5358 if (Op->isDivergent()) { 5359 // Select to V_MAD_[IU]64_[IU]32. 5360 return Op; 5361 } 5362 if (Subtarget->hasSMulHi()) { 5363 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 5364 return SDValue(); 5365 } 5366 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 5367 // calculate the high part, so we might as well do the whole thing with 5368 // V_MAD_[IU]64_[IU]32. 5369 return Op; 5370 } 5371 5372 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5373 if (!Subtarget->isTrapHandlerEnabled() || 5374 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 5375 return lowerTrapEndpgm(Op, DAG); 5376 5377 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { 5378 switch (*HsaAbiVer) { 5379 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 5380 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 5381 return lowerTrapHsaQueuePtr(Op, DAG); 5382 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 5383 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 5384 return Subtarget->supportsGetDoorbellID() ? 5385 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); 5386 } 5387 } 5388 5389 llvm_unreachable("Unknown trap handler"); 5390 } 5391 5392 SDValue SITargetLowering::lowerTrapEndpgm( 5393 SDValue Op, SelectionDAG &DAG) const { 5394 SDLoc SL(Op); 5395 SDValue Chain = Op.getOperand(0); 5396 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5397 } 5398 5399 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, 5400 const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { 5401 MachineFunction &MF = DAG.getMachineFunction(); 5402 uint64_t Offset = getImplicitParameterOffset(MF, Param); 5403 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); 5404 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5405 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, 5406 MachineMemOperand::MODereferenceable | 5407 MachineMemOperand::MOInvariant); 5408 } 5409 5410 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 5411 SDValue Op, SelectionDAG &DAG) const { 5412 SDLoc SL(Op); 5413 SDValue Chain = Op.getOperand(0); 5414 5415 SDValue QueuePtr; 5416 // For code object version 5, QueuePtr is passed through implicit kernarg. 5417 if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { 5418 QueuePtr = 5419 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); 5420 } else { 5421 MachineFunction &MF = DAG.getMachineFunction(); 5422 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5423 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5424 5425 if (UserSGPR == AMDGPU::NoRegister) { 5426 // We probably are in a function incorrectly marked with 5427 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the 5428 // trap, so just use a null pointer. 5429 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 5430 } else { 5431 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, 5432 MVT::i64); 5433 } 5434 } 5435 5436 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5437 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5438 QueuePtr, SDValue()); 5439 5440 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5441 SDValue Ops[] = { 5442 ToReg, 5443 DAG.getTargetConstant(TrapID, SL, MVT::i16), 5444 SGPR01, 5445 ToReg.getValue(1) 5446 }; 5447 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5448 } 5449 5450 SDValue SITargetLowering::lowerTrapHsa( 5451 SDValue Op, SelectionDAG &DAG) const { 5452 SDLoc SL(Op); 5453 SDValue Chain = Op.getOperand(0); 5454 5455 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5456 SDValue Ops[] = { 5457 Chain, 5458 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5459 }; 5460 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5461 } 5462 5463 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5464 SDLoc SL(Op); 5465 SDValue Chain = Op.getOperand(0); 5466 MachineFunction &MF = DAG.getMachineFunction(); 5467 5468 if (!Subtarget->isTrapHandlerEnabled() || 5469 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 5470 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5471 "debugtrap handler not supported", 5472 Op.getDebugLoc(), 5473 DS_Warning); 5474 LLVMContext &Ctx = MF.getFunction().getContext(); 5475 Ctx.diagnose(NoTrap); 5476 return Chain; 5477 } 5478 5479 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 5480 SDValue Ops[] = { 5481 Chain, 5482 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5483 }; 5484 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5485 } 5486 5487 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5488 SelectionDAG &DAG) const { 5489 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5490 if (Subtarget->hasApertureRegs()) { 5491 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5492 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5493 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5494 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5495 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5496 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5497 unsigned Encoding = 5498 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5499 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5500 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5501 5502 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5503 SDValue ApertureReg = SDValue( 5504 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5505 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5506 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5507 } 5508 5509 // For code object version 5, private_base and shared_base are passed through 5510 // implicit kernargs. 5511 if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { 5512 ImplicitParameter Param = 5513 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; 5514 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); 5515 } 5516 5517 MachineFunction &MF = DAG.getMachineFunction(); 5518 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5519 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5520 if (UserSGPR == AMDGPU::NoRegister) { 5521 // We probably are in a function incorrectly marked with 5522 // amdgpu-no-queue-ptr. This is undefined. 5523 return DAG.getUNDEF(MVT::i32); 5524 } 5525 5526 SDValue QueuePtr = CreateLiveInRegister( 5527 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5528 5529 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5530 // private_segment_aperture_base_hi. 5531 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5532 5533 SDValue Ptr = 5534 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5535 5536 // TODO: Use custom target PseudoSourceValue. 5537 // TODO: We should use the value from the IR intrinsic call, but it might not 5538 // be available and how do we get it? 5539 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5540 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5541 commonAlignment(Align(64), StructOffset), 5542 MachineMemOperand::MODereferenceable | 5543 MachineMemOperand::MOInvariant); 5544 } 5545 5546 /// Return true if the value is a known valid address, such that a null check is 5547 /// not necessary. 5548 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 5549 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 5550 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 5551 isa<BasicBlockSDNode>(Val)) 5552 return true; 5553 5554 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 5555 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 5556 5557 // TODO: Search through arithmetic, handle arguments and loads 5558 // marked nonnull. 5559 return false; 5560 } 5561 5562 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5563 SelectionDAG &DAG) const { 5564 SDLoc SL(Op); 5565 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5566 5567 SDValue Src = ASC->getOperand(0); 5568 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5569 unsigned SrcAS = ASC->getSrcAddressSpace(); 5570 5571 const AMDGPUTargetMachine &TM = 5572 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5573 5574 // flat -> local/private 5575 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 5576 unsigned DestAS = ASC->getDestAddressSpace(); 5577 5578 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5579 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5580 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5581 5582 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5583 return Ptr; 5584 5585 unsigned NullVal = TM.getNullPointerValue(DestAS); 5586 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5587 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5588 5589 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 5590 SegmentNullPtr); 5591 } 5592 } 5593 5594 // local/private -> flat 5595 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5596 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5597 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5598 5599 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5600 SDValue CvtPtr = 5601 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5602 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 5603 5604 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5605 return CvtPtr; 5606 5607 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5608 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5609 5610 SDValue NonNull 5611 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5612 5613 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 5614 FlatNullPtr); 5615 } 5616 } 5617 5618 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5619 Op.getValueType() == MVT::i64) { 5620 const SIMachineFunctionInfo *Info = 5621 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); 5622 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); 5623 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); 5624 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 5625 } 5626 5627 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5628 Src.getValueType() == MVT::i64) 5629 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5630 5631 // global <-> flat are no-ops and never emitted. 5632 5633 const MachineFunction &MF = DAG.getMachineFunction(); 5634 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5635 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5636 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5637 5638 return DAG.getUNDEF(ASC->getValueType(0)); 5639 } 5640 5641 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5642 // the small vector and inserting them into the big vector. That is better than 5643 // the default expansion of doing it via a stack slot. Even though the use of 5644 // the stack slot would be optimized away afterwards, the stack slot itself 5645 // remains. 5646 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5647 SelectionDAG &DAG) const { 5648 SDValue Vec = Op.getOperand(0); 5649 SDValue Ins = Op.getOperand(1); 5650 SDValue Idx = Op.getOperand(2); 5651 EVT VecVT = Vec.getValueType(); 5652 EVT InsVT = Ins.getValueType(); 5653 EVT EltVT = VecVT.getVectorElementType(); 5654 unsigned InsNumElts = InsVT.getVectorNumElements(); 5655 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5656 SDLoc SL(Op); 5657 5658 for (unsigned I = 0; I != InsNumElts; ++I) { 5659 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5660 DAG.getConstant(I, SL, MVT::i32)); 5661 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5662 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5663 } 5664 return Vec; 5665 } 5666 5667 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5668 SelectionDAG &DAG) const { 5669 SDValue Vec = Op.getOperand(0); 5670 SDValue InsVal = Op.getOperand(1); 5671 SDValue Idx = Op.getOperand(2); 5672 EVT VecVT = Vec.getValueType(); 5673 EVT EltVT = VecVT.getVectorElementType(); 5674 unsigned VecSize = VecVT.getSizeInBits(); 5675 unsigned EltSize = EltVT.getSizeInBits(); 5676 SDLoc SL(Op); 5677 5678 // Specially handle the case of v4i16 with static indexing. 5679 unsigned NumElts = VecVT.getVectorNumElements(); 5680 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5681 if (NumElts == 4 && EltSize == 16 && KIdx) { 5682 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5683 5684 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5685 DAG.getConstant(0, SL, MVT::i32)); 5686 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5687 DAG.getConstant(1, SL, MVT::i32)); 5688 5689 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5690 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5691 5692 unsigned Idx = KIdx->getZExtValue(); 5693 bool InsertLo = Idx < 2; 5694 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5695 InsertLo ? LoVec : HiVec, 5696 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5697 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5698 5699 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5700 5701 SDValue Concat = InsertLo ? 5702 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5703 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5704 5705 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5706 } 5707 5708 // Static indexing does not lower to stack access, and hence there is no need 5709 // for special custom lowering to avoid stack access. 5710 if (isa<ConstantSDNode>(Idx)) 5711 return SDValue(); 5712 5713 // Avoid stack access for dynamic indexing by custom lowering to 5714 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5715 5716 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); 5717 5718 MVT IntVT = MVT::getIntegerVT(VecSize); 5719 5720 // Convert vector index to bit-index and get the required bit mask. 5721 assert(isPowerOf2_32(EltSize)); 5722 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5723 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5724 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5725 DAG.getConstant(0xffff, SL, IntVT), 5726 ScaledIdx); 5727 5728 // 1. Create a congruent vector with the target value in each element. 5729 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5730 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5731 5732 // 2. Mask off all other indicies except the required index within (1). 5733 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5734 5735 // 3. Mask off the required index within the target vector. 5736 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5737 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5738 DAG.getNOT(SL, BFM, IntVT), BCVec); 5739 5740 // 4. Get (2) and (3) ORed into the target vector. 5741 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5742 5743 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5744 } 5745 5746 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5747 SelectionDAG &DAG) const { 5748 SDLoc SL(Op); 5749 5750 EVT ResultVT = Op.getValueType(); 5751 SDValue Vec = Op.getOperand(0); 5752 SDValue Idx = Op.getOperand(1); 5753 EVT VecVT = Vec.getValueType(); 5754 unsigned VecSize = VecVT.getSizeInBits(); 5755 EVT EltVT = VecVT.getVectorElementType(); 5756 5757 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5758 5759 // Make sure we do any optimizations that will make it easier to fold 5760 // source modifiers before obscuring it with bit operations. 5761 5762 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5763 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5764 return Combined; 5765 5766 if (VecSize == 128 || VecSize == 256) { 5767 SDValue Lo, Hi; 5768 EVT LoVT, HiVT; 5769 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5770 5771 if (VecSize == 128) { 5772 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 5773 Lo = DAG.getBitcast(LoVT, 5774 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5775 DAG.getConstant(0, SL, MVT::i32))); 5776 Hi = DAG.getBitcast(HiVT, 5777 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5778 DAG.getConstant(1, SL, MVT::i32))); 5779 } else { 5780 assert(VecSize == 256); 5781 5782 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); 5783 SDValue Parts[4]; 5784 for (unsigned P = 0; P < 4; ++P) { 5785 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5786 DAG.getConstant(P, SL, MVT::i32)); 5787 } 5788 5789 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 5790 Parts[0], Parts[1])); 5791 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 5792 Parts[2], Parts[3])); 5793 } 5794 5795 EVT IdxVT = Idx.getValueType(); 5796 unsigned NElem = VecVT.getVectorNumElements(); 5797 assert(isPowerOf2_32(NElem)); 5798 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 5799 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 5800 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 5801 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 5802 } 5803 5804 assert(VecSize <= 64); 5805 5806 MVT IntVT = MVT::getIntegerVT(VecSize); 5807 5808 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. 5809 SDValue VecBC = peekThroughBitcasts(Vec); 5810 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5811 SDValue Src = VecBC.getOperand(0); 5812 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); 5813 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); 5814 } 5815 5816 unsigned EltSize = EltVT.getSizeInBits(); 5817 assert(isPowerOf2_32(EltSize)); 5818 5819 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5820 5821 // Convert vector index to bit-index (* EltSize) 5822 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5823 5824 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5825 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5826 5827 if (ResultVT == MVT::f16) { 5828 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5829 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5830 } 5831 5832 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5833 } 5834 5835 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5836 assert(Elt % 2 == 0); 5837 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5838 } 5839 5840 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5841 SelectionDAG &DAG) const { 5842 SDLoc SL(Op); 5843 EVT ResultVT = Op.getValueType(); 5844 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5845 5846 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5847 EVT EltVT = PackVT.getVectorElementType(); 5848 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5849 5850 // vector_shuffle <0,1,6,7> lhs, rhs 5851 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5852 // 5853 // vector_shuffle <6,7,2,3> lhs, rhs 5854 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5855 // 5856 // vector_shuffle <6,7,0,1> lhs, rhs 5857 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5858 5859 // Avoid scalarizing when both halves are reading from consecutive elements. 5860 SmallVector<SDValue, 4> Pieces; 5861 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5862 if (elementPairIsContiguous(SVN->getMask(), I)) { 5863 const int Idx = SVN->getMaskElt(I); 5864 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5865 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5866 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5867 PackVT, SVN->getOperand(VecIdx), 5868 DAG.getConstant(EltIdx, SL, MVT::i32)); 5869 Pieces.push_back(SubVec); 5870 } else { 5871 const int Idx0 = SVN->getMaskElt(I); 5872 const int Idx1 = SVN->getMaskElt(I + 1); 5873 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5874 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5875 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5876 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5877 5878 SDValue Vec0 = SVN->getOperand(VecIdx0); 5879 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5880 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5881 5882 SDValue Vec1 = SVN->getOperand(VecIdx1); 5883 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5884 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5885 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5886 } 5887 } 5888 5889 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5890 } 5891 5892 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5893 SelectionDAG &DAG) const { 5894 SDValue SVal = Op.getOperand(0); 5895 EVT ResultVT = Op.getValueType(); 5896 EVT SValVT = SVal.getValueType(); 5897 SDValue UndefVal = DAG.getUNDEF(SValVT); 5898 SDLoc SL(Op); 5899 5900 SmallVector<SDValue, 8> VElts; 5901 VElts.push_back(SVal); 5902 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) 5903 VElts.push_back(UndefVal); 5904 5905 return DAG.getBuildVector(ResultVT, SL, VElts); 5906 } 5907 5908 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5909 SelectionDAG &DAG) const { 5910 SDLoc SL(Op); 5911 EVT VT = Op.getValueType(); 5912 5913 if (VT == MVT::v4i16 || VT == MVT::v4f16 || 5914 VT == MVT::v8i16 || VT == MVT::v8f16) { 5915 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5916 VT.getVectorNumElements() / 2); 5917 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 5918 5919 // Turn into pair of packed build_vectors. 5920 // TODO: Special case for constants that can be materialized with s_mov_b64. 5921 SmallVector<SDValue, 4> LoOps, HiOps; 5922 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 5923 LoOps.push_back(Op.getOperand(I)); 5924 HiOps.push_back(Op.getOperand(I + E)); 5925 } 5926 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 5927 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 5928 5929 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 5930 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 5931 5932 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 5933 { CastLo, CastHi }); 5934 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5935 } 5936 5937 if (VT == MVT::v16i16 || VT == MVT::v16f16) { 5938 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5939 VT.getVectorNumElements() / 4); 5940 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 5941 5942 SmallVector<SDValue, 4> Parts[4]; 5943 for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { 5944 for (unsigned P = 0; P < 4; ++P) 5945 Parts[P].push_back(Op.getOperand(I + P * E)); 5946 } 5947 SDValue Casts[4]; 5948 for (unsigned P = 0; P < 4; ++P) { 5949 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 5950 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 5951 } 5952 5953 SDValue Blend = 5954 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); 5955 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5956 } 5957 5958 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5959 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5960 5961 SDValue Lo = Op.getOperand(0); 5962 SDValue Hi = Op.getOperand(1); 5963 5964 // Avoid adding defined bits with the zero_extend. 5965 if (Hi.isUndef()) { 5966 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5967 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5968 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5969 } 5970 5971 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5972 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5973 5974 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5975 DAG.getConstant(16, SL, MVT::i32)); 5976 if (Lo.isUndef()) 5977 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5978 5979 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5980 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5981 5982 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5983 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5984 } 5985 5986 bool 5987 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5988 // We can fold offsets for anything that doesn't require a GOT relocation. 5989 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5990 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5991 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5992 !shouldEmitGOTReloc(GA->getGlobal()); 5993 } 5994 5995 static SDValue 5996 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5997 const SDLoc &DL, int64_t Offset, EVT PtrVT, 5998 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5999 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 6000 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 6001 // lowered to the following code sequence: 6002 // 6003 // For constant address space: 6004 // s_getpc_b64 s[0:1] 6005 // s_add_u32 s0, s0, $symbol 6006 // s_addc_u32 s1, s1, 0 6007 // 6008 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6009 // a fixup or relocation is emitted to replace $symbol with a literal 6010 // constant, which is a pc-relative offset from the encoding of the $symbol 6011 // operand to the global variable. 6012 // 6013 // For global address space: 6014 // s_getpc_b64 s[0:1] 6015 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 6016 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 6017 // 6018 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6019 // fixups or relocations are emitted to replace $symbol@*@lo and 6020 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 6021 // which is a 64-bit pc-relative offset from the encoding of the $symbol 6022 // operand to the global variable. 6023 // 6024 // What we want here is an offset from the value returned by s_getpc 6025 // (which is the address of the s_add_u32 instruction) to the global 6026 // variable, but since the encoding of $symbol starts 4 bytes after the start 6027 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 6028 // small. This requires us to add 4 to the global variable offset in order to 6029 // compute the correct address. Similarly for the s_addc_u32 instruction, the 6030 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 6031 // instruction. 6032 SDValue PtrLo = 6033 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 6034 SDValue PtrHi; 6035 if (GAFlags == SIInstrInfo::MO_NONE) { 6036 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 6037 } else { 6038 PtrHi = 6039 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 6040 } 6041 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 6042 } 6043 6044 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 6045 SDValue Op, 6046 SelectionDAG &DAG) const { 6047 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 6048 SDLoc DL(GSD); 6049 EVT PtrVT = Op.getValueType(); 6050 6051 const GlobalValue *GV = GSD->getGlobal(); 6052 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6053 shouldUseLDSConstAddress(GV)) || 6054 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 6055 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 6056 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6057 GV->hasExternalLinkage()) { 6058 Type *Ty = GV->getValueType(); 6059 // HIP uses an unsized array `extern __shared__ T s[]` or similar 6060 // zero-sized type in other languages to declare the dynamic shared 6061 // memory which size is not known at the compile time. They will be 6062 // allocated by the runtime and placed directly after the static 6063 // allocated ones. They all share the same offset. 6064 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 6065 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 6066 // Adjust alignment for that dynamic shared memory array. 6067 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); 6068 return SDValue( 6069 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 6070 } 6071 } 6072 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 6073 } 6074 6075 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 6076 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 6077 SIInstrInfo::MO_ABS32_LO); 6078 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 6079 } 6080 6081 if (shouldEmitFixup(GV)) 6082 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 6083 else if (shouldEmitPCReloc(GV)) 6084 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 6085 SIInstrInfo::MO_REL32); 6086 6087 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 6088 SIInstrInfo::MO_GOTPCREL32); 6089 6090 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 6091 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 6092 const DataLayout &DataLayout = DAG.getDataLayout(); 6093 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 6094 MachinePointerInfo PtrInfo 6095 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 6096 6097 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 6098 MachineMemOperand::MODereferenceable | 6099 MachineMemOperand::MOInvariant); 6100 } 6101 6102 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 6103 const SDLoc &DL, SDValue V) const { 6104 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 6105 // the destination register. 6106 // 6107 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 6108 // so we will end up with redundant moves to m0. 6109 // 6110 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 6111 6112 // A Null SDValue creates a glue result. 6113 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 6114 V, Chain); 6115 return SDValue(M0, 0); 6116 } 6117 6118 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 6119 SDValue Op, 6120 MVT VT, 6121 unsigned Offset) const { 6122 SDLoc SL(Op); 6123 SDValue Param = lowerKernargMemParameter( 6124 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 6125 // The local size values will have the hi 16-bits as zero. 6126 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 6127 DAG.getValueType(VT)); 6128 } 6129 6130 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6131 EVT VT) { 6132 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6133 "non-hsa intrinsic with hsa target", 6134 DL.getDebugLoc()); 6135 DAG.getContext()->diagnose(BadIntrin); 6136 return DAG.getUNDEF(VT); 6137 } 6138 6139 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6140 EVT VT) { 6141 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6142 "intrinsic not supported on subtarget", 6143 DL.getDebugLoc()); 6144 DAG.getContext()->diagnose(BadIntrin); 6145 return DAG.getUNDEF(VT); 6146 } 6147 6148 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 6149 ArrayRef<SDValue> Elts) { 6150 assert(!Elts.empty()); 6151 MVT Type; 6152 unsigned NumElts = Elts.size(); 6153 6154 if (NumElts <= 8) { 6155 Type = MVT::getVectorVT(MVT::f32, NumElts); 6156 } else { 6157 assert(Elts.size() <= 16); 6158 Type = MVT::v16f32; 6159 NumElts = 16; 6160 } 6161 6162 SmallVector<SDValue, 16> VecElts(NumElts); 6163 for (unsigned i = 0; i < Elts.size(); ++i) { 6164 SDValue Elt = Elts[i]; 6165 if (Elt.getValueType() != MVT::f32) 6166 Elt = DAG.getBitcast(MVT::f32, Elt); 6167 VecElts[i] = Elt; 6168 } 6169 for (unsigned i = Elts.size(); i < NumElts; ++i) 6170 VecElts[i] = DAG.getUNDEF(MVT::f32); 6171 6172 if (NumElts == 1) 6173 return VecElts[0]; 6174 return DAG.getBuildVector(Type, DL, VecElts); 6175 } 6176 6177 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 6178 SDValue Src, int ExtraElts) { 6179 EVT SrcVT = Src.getValueType(); 6180 6181 SmallVector<SDValue, 8> Elts; 6182 6183 if (SrcVT.isVector()) 6184 DAG.ExtractVectorElements(Src, Elts); 6185 else 6186 Elts.push_back(Src); 6187 6188 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 6189 while (ExtraElts--) 6190 Elts.push_back(Undef); 6191 6192 return DAG.getBuildVector(CastVT, DL, Elts); 6193 } 6194 6195 // Re-construct the required return value for a image load intrinsic. 6196 // This is more complicated due to the optional use TexFailCtrl which means the required 6197 // return type is an aggregate 6198 static SDValue constructRetValue(SelectionDAG &DAG, 6199 MachineSDNode *Result, 6200 ArrayRef<EVT> ResultTypes, 6201 bool IsTexFail, bool Unpacked, bool IsD16, 6202 int DMaskPop, int NumVDataDwords, 6203 const SDLoc &DL) { 6204 // Determine the required return type. This is the same regardless of IsTexFail flag 6205 EVT ReqRetVT = ResultTypes[0]; 6206 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 6207 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6208 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 6209 6210 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6211 DMaskPop : (DMaskPop + 1) / 2; 6212 6213 MVT DataDwordVT = NumDataDwords == 1 ? 6214 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 6215 6216 MVT MaskPopVT = MaskPopDwords == 1 ? 6217 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 6218 6219 SDValue Data(Result, 0); 6220 SDValue TexFail; 6221 6222 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 6223 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 6224 if (MaskPopVT.isVector()) { 6225 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 6226 SDValue(Result, 0), ZeroIdx); 6227 } else { 6228 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 6229 SDValue(Result, 0), ZeroIdx); 6230 } 6231 } 6232 6233 if (DataDwordVT.isVector()) 6234 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 6235 NumDataDwords - MaskPopDwords); 6236 6237 if (IsD16) 6238 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 6239 6240 EVT LegalReqRetVT = ReqRetVT; 6241 if (!ReqRetVT.isVector()) { 6242 if (!Data.getValueType().isInteger()) 6243 Data = DAG.getNode(ISD::BITCAST, DL, 6244 Data.getValueType().changeTypeToInteger(), Data); 6245 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 6246 } else { 6247 // We need to widen the return vector to a legal type 6248 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 6249 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 6250 LegalReqRetVT = 6251 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 6252 ReqRetVT.getVectorNumElements() + 1); 6253 } 6254 } 6255 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 6256 6257 if (IsTexFail) { 6258 TexFail = 6259 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 6260 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 6261 6262 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 6263 } 6264 6265 if (Result->getNumValues() == 1) 6266 return Data; 6267 6268 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 6269 } 6270 6271 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 6272 SDValue *LWE, bool &IsTexFail) { 6273 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 6274 6275 uint64_t Value = TexFailCtrlConst->getZExtValue(); 6276 if (Value) { 6277 IsTexFail = true; 6278 } 6279 6280 SDLoc DL(TexFailCtrlConst); 6281 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 6282 Value &= ~(uint64_t)0x1; 6283 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 6284 Value &= ~(uint64_t)0x2; 6285 6286 return Value == 0; 6287 } 6288 6289 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 6290 MVT PackVectorVT, 6291 SmallVectorImpl<SDValue> &PackedAddrs, 6292 unsigned DimIdx, unsigned EndIdx, 6293 unsigned NumGradients) { 6294 SDLoc DL(Op); 6295 for (unsigned I = DimIdx; I < EndIdx; I++) { 6296 SDValue Addr = Op.getOperand(I); 6297 6298 // Gradients are packed with undef for each coordinate. 6299 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 6300 // 1D: undef,dx/dh; undef,dx/dv 6301 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 6302 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 6303 if (((I + 1) >= EndIdx) || 6304 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 6305 I == DimIdx + NumGradients - 1))) { 6306 if (Addr.getValueType() != MVT::i16) 6307 Addr = DAG.getBitcast(MVT::i16, Addr); 6308 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 6309 } else { 6310 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 6311 I++; 6312 } 6313 Addr = DAG.getBitcast(MVT::f32, Addr); 6314 PackedAddrs.push_back(Addr); 6315 } 6316 } 6317 6318 SDValue SITargetLowering::lowerImage(SDValue Op, 6319 const AMDGPU::ImageDimIntrinsicInfo *Intr, 6320 SelectionDAG &DAG, bool WithChain) const { 6321 SDLoc DL(Op); 6322 MachineFunction &MF = DAG.getMachineFunction(); 6323 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 6324 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 6325 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 6326 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 6327 unsigned IntrOpcode = Intr->BaseOpcode; 6328 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 6329 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 6330 6331 SmallVector<EVT, 3> ResultTypes(Op->values()); 6332 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 6333 bool IsD16 = false; 6334 bool IsG16 = false; 6335 bool IsA16 = false; 6336 SDValue VData; 6337 int NumVDataDwords; 6338 bool AdjustRetType = false; 6339 6340 // Offset of intrinsic arguments 6341 const unsigned ArgOffset = WithChain ? 2 : 1; 6342 6343 unsigned DMask; 6344 unsigned DMaskLanes = 0; 6345 6346 if (BaseOpcode->Atomic) { 6347 VData = Op.getOperand(2); 6348 6349 bool Is64Bit = VData.getValueType() == MVT::i64; 6350 if (BaseOpcode->AtomicX2) { 6351 SDValue VData2 = Op.getOperand(3); 6352 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 6353 {VData, VData2}); 6354 if (Is64Bit) 6355 VData = DAG.getBitcast(MVT::v4i32, VData); 6356 6357 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 6358 DMask = Is64Bit ? 0xf : 0x3; 6359 NumVDataDwords = Is64Bit ? 4 : 2; 6360 } else { 6361 DMask = Is64Bit ? 0x3 : 0x1; 6362 NumVDataDwords = Is64Bit ? 2 : 1; 6363 } 6364 } else { 6365 auto *DMaskConst = 6366 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 6367 DMask = DMaskConst->getZExtValue(); 6368 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 6369 6370 if (BaseOpcode->Store) { 6371 VData = Op.getOperand(2); 6372 6373 MVT StoreVT = VData.getSimpleValueType(); 6374 if (StoreVT.getScalarType() == MVT::f16) { 6375 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6376 return Op; // D16 is unsupported for this instruction 6377 6378 IsD16 = true; 6379 VData = handleD16VData(VData, DAG, true); 6380 } 6381 6382 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 6383 } else { 6384 // Work out the num dwords based on the dmask popcount and underlying type 6385 // and whether packing is supported. 6386 MVT LoadVT = ResultTypes[0].getSimpleVT(); 6387 if (LoadVT.getScalarType() == MVT::f16) { 6388 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6389 return Op; // D16 is unsupported for this instruction 6390 6391 IsD16 = true; 6392 } 6393 6394 // Confirm that the return type is large enough for the dmask specified 6395 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 6396 (!LoadVT.isVector() && DMaskLanes > 1)) 6397 return Op; 6398 6399 // The sq block of gfx8 and gfx9 do not estimate register use correctly 6400 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 6401 // instructions. 6402 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 6403 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 6404 NumVDataDwords = (DMaskLanes + 1) / 2; 6405 else 6406 NumVDataDwords = DMaskLanes; 6407 6408 AdjustRetType = true; 6409 } 6410 } 6411 6412 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 6413 SmallVector<SDValue, 4> VAddrs; 6414 6415 // Check for 16 bit addresses or derivatives and pack if true. 6416 MVT VAddrVT = 6417 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 6418 MVT VAddrScalarVT = VAddrVT.getScalarType(); 6419 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6420 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6421 6422 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6423 VAddrScalarVT = VAddrVT.getScalarType(); 6424 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6425 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6426 6427 // Push back extra arguments. 6428 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 6429 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 6430 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 6431 // Special handling of bias when A16 is on. Bias is of type half but 6432 // occupies full 32-bit. 6433 SDValue Bias = DAG.getBuildVector( 6434 MVT::v2f16, DL, 6435 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 6436 VAddrs.push_back(Bias); 6437 } else { 6438 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 6439 "Bias needs to be converted to 16 bit in A16 mode"); 6440 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 6441 } 6442 } 6443 6444 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 6445 // 16 bit gradients are supported, but are tied to the A16 control 6446 // so both gradients and addresses must be 16 bit 6447 LLVM_DEBUG( 6448 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6449 "require 16 bit args for both gradients and addresses"); 6450 return Op; 6451 } 6452 6453 if (IsA16) { 6454 if (!ST->hasA16()) { 6455 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6456 "support 16 bit addresses\n"); 6457 return Op; 6458 } 6459 } 6460 6461 // We've dealt with incorrect input so we know that if IsA16, IsG16 6462 // are set then we have to compress/pack operands (either address, 6463 // gradient or both) 6464 // In the case where a16 and gradients are tied (no G16 support) then we 6465 // have already verified that both IsA16 and IsG16 are true 6466 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 6467 // Activate g16 6468 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6469 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6470 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6471 } 6472 6473 // Add gradients (packed or unpacked) 6474 if (IsG16) { 6475 // Pack the gradients 6476 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6477 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 6478 ArgOffset + Intr->GradientStart, 6479 ArgOffset + Intr->CoordStart, Intr->NumGradients); 6480 } else { 6481 for (unsigned I = ArgOffset + Intr->GradientStart; 6482 I < ArgOffset + Intr->CoordStart; I++) 6483 VAddrs.push_back(Op.getOperand(I)); 6484 } 6485 6486 // Add addresses (packed or unpacked) 6487 if (IsA16) { 6488 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 6489 ArgOffset + Intr->CoordStart, VAddrEnd, 6490 0 /* No gradients */); 6491 } else { 6492 // Add uncompressed address 6493 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6494 VAddrs.push_back(Op.getOperand(I)); 6495 } 6496 6497 // If the register allocator cannot place the address registers contiguously 6498 // without introducing moves, then using the non-sequential address encoding 6499 // is always preferable, since it saves VALU instructions and is usually a 6500 // wash in terms of code size or even better. 6501 // 6502 // However, we currently have no way of hinting to the register allocator that 6503 // MIMG addresses should be placed contiguously when it is possible to do so, 6504 // so force non-NSA for the common 2-address case as a heuristic. 6505 // 6506 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6507 // allocation when possible. 6508 // 6509 // TODO: we can actually allow partial NSA where the final register is a 6510 // contiguous set of the remaining addresses. 6511 // This could help where there are more addresses than supported. 6512 bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) && 6513 VAddrs.size() >= 3 && 6514 VAddrs.size() <= (unsigned)ST->getNSAMaxSize(); 6515 SDValue VAddr; 6516 if (!UseNSA) 6517 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6518 6519 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6520 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6521 SDValue Unorm; 6522 if (!BaseOpcode->Sampler) { 6523 Unorm = True; 6524 } else { 6525 auto UnormConst = 6526 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6527 6528 Unorm = UnormConst->getZExtValue() ? True : False; 6529 } 6530 6531 SDValue TFE; 6532 SDValue LWE; 6533 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6534 bool IsTexFail = false; 6535 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6536 return Op; 6537 6538 if (IsTexFail) { 6539 if (!DMaskLanes) { 6540 // Expecting to get an error flag since TFC is on - and dmask is 0 6541 // Force dmask to be at least 1 otherwise the instruction will fail 6542 DMask = 0x1; 6543 DMaskLanes = 1; 6544 NumVDataDwords = 1; 6545 } 6546 NumVDataDwords += 1; 6547 AdjustRetType = true; 6548 } 6549 6550 // Has something earlier tagged that the return type needs adjusting 6551 // This happens if the instruction is a load or has set TexFailCtrl flags 6552 if (AdjustRetType) { 6553 // NumVDataDwords reflects the true number of dwords required in the return type 6554 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6555 // This is a no-op load. This can be eliminated 6556 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6557 if (isa<MemSDNode>(Op)) 6558 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6559 return Undef; 6560 } 6561 6562 EVT NewVT = NumVDataDwords > 1 ? 6563 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6564 : MVT::i32; 6565 6566 ResultTypes[0] = NewVT; 6567 if (ResultTypes.size() == 3) { 6568 // Original result was aggregate type used for TexFailCtrl results 6569 // The actual instruction returns as a vector type which has now been 6570 // created. Remove the aggregate result. 6571 ResultTypes.erase(&ResultTypes[1]); 6572 } 6573 } 6574 6575 unsigned CPol = cast<ConstantSDNode>( 6576 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 6577 if (BaseOpcode->Atomic) 6578 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 6579 if (CPol & ~AMDGPU::CPol::ALL) 6580 return Op; 6581 6582 SmallVector<SDValue, 26> Ops; 6583 if (BaseOpcode->Store || BaseOpcode->Atomic) 6584 Ops.push_back(VData); // vdata 6585 if (UseNSA) 6586 append_range(Ops, VAddrs); 6587 else 6588 Ops.push_back(VAddr); 6589 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6590 if (BaseOpcode->Sampler) 6591 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6592 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6593 if (IsGFX10Plus) 6594 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6595 Ops.push_back(Unorm); 6596 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 6597 Ops.push_back(IsA16 && // r128, a16 for gfx9 6598 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6599 if (IsGFX10Plus) 6600 Ops.push_back(IsA16 ? True : False); 6601 if (!Subtarget->hasGFX90AInsts()) { 6602 Ops.push_back(TFE); //tfe 6603 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { 6604 report_fatal_error("TFE is not supported on this GPU"); 6605 } 6606 Ops.push_back(LWE); // lwe 6607 if (!IsGFX10Plus) 6608 Ops.push_back(DimInfo->DA ? True : False); 6609 if (BaseOpcode->HasD16) 6610 Ops.push_back(IsD16 ? True : False); 6611 if (isa<MemSDNode>(Op)) 6612 Ops.push_back(Op.getOperand(0)); // chain 6613 6614 int NumVAddrDwords = 6615 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6616 int Opcode = -1; 6617 6618 if (IsGFX11Plus) { 6619 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6620 UseNSA ? AMDGPU::MIMGEncGfx11NSA 6621 : AMDGPU::MIMGEncGfx11Default, 6622 NumVDataDwords, NumVAddrDwords); 6623 } else if (IsGFX10Plus) { 6624 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6625 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6626 : AMDGPU::MIMGEncGfx10Default, 6627 NumVDataDwords, NumVAddrDwords); 6628 } else { 6629 if (Subtarget->hasGFX90AInsts()) { 6630 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 6631 NumVDataDwords, NumVAddrDwords); 6632 if (Opcode == -1) 6633 report_fatal_error( 6634 "requested image instruction is not supported on this GPU"); 6635 } 6636 if (Opcode == -1 && 6637 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6638 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6639 NumVDataDwords, NumVAddrDwords); 6640 if (Opcode == -1) 6641 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6642 NumVDataDwords, NumVAddrDwords); 6643 } 6644 assert(Opcode != -1); 6645 6646 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6647 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6648 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6649 DAG.setNodeMemRefs(NewNode, {MemRef}); 6650 } 6651 6652 if (BaseOpcode->AtomicX2) { 6653 SmallVector<SDValue, 1> Elt; 6654 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6655 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6656 } 6657 if (BaseOpcode->Store) 6658 return SDValue(NewNode, 0); 6659 return constructRetValue(DAG, NewNode, 6660 OrigResultTypes, IsTexFail, 6661 Subtarget->hasUnpackedD16VMem(), IsD16, 6662 DMaskLanes, NumVDataDwords, DL); 6663 } 6664 6665 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6666 SDValue Offset, SDValue CachePolicy, 6667 SelectionDAG &DAG) const { 6668 MachineFunction &MF = DAG.getMachineFunction(); 6669 6670 const DataLayout &DataLayout = DAG.getDataLayout(); 6671 Align Alignment = 6672 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6673 6674 MachineMemOperand *MMO = MF.getMachineMemOperand( 6675 MachinePointerInfo(), 6676 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6677 MachineMemOperand::MOInvariant, 6678 VT.getStoreSize(), Alignment); 6679 6680 if (!Offset->isDivergent()) { 6681 SDValue Ops[] = { 6682 Rsrc, 6683 Offset, // Offset 6684 CachePolicy 6685 }; 6686 6687 // Widen vec3 load to vec4. 6688 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6689 EVT WidenedVT = 6690 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6691 auto WidenedOp = DAG.getMemIntrinsicNode( 6692 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6693 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6694 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6695 DAG.getVectorIdxConstant(0, DL)); 6696 return Subvector; 6697 } 6698 6699 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6700 DAG.getVTList(VT), Ops, VT, MMO); 6701 } 6702 6703 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6704 // assume that the buffer is unswizzled. 6705 SmallVector<SDValue, 4> Loads; 6706 unsigned NumLoads = 1; 6707 MVT LoadVT = VT.getSimpleVT(); 6708 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6709 assert((LoadVT.getScalarType() == MVT::i32 || 6710 LoadVT.getScalarType() == MVT::f32)); 6711 6712 if (NumElts == 8 || NumElts == 16) { 6713 NumLoads = NumElts / 4; 6714 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6715 } 6716 6717 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6718 SDValue Ops[] = { 6719 DAG.getEntryNode(), // Chain 6720 Rsrc, // rsrc 6721 DAG.getConstant(0, DL, MVT::i32), // vindex 6722 {}, // voffset 6723 {}, // soffset 6724 {}, // offset 6725 CachePolicy, // cachepolicy 6726 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6727 }; 6728 6729 // Use the alignment to ensure that the required offsets will fit into the 6730 // immediate offsets. 6731 setBufferOffsets(Offset, DAG, &Ops[3], 6732 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6733 6734 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6735 for (unsigned i = 0; i < NumLoads; ++i) { 6736 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6737 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6738 LoadVT, MMO, DAG)); 6739 } 6740 6741 if (NumElts == 8 || NumElts == 16) 6742 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6743 6744 return Loads[0]; 6745 } 6746 6747 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, 6748 unsigned Dim, 6749 const ArgDescriptor &Arg) const { 6750 SDLoc SL(Op); 6751 MachineFunction &MF = DAG.getMachineFunction(); 6752 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); 6753 if (MaxID == 0) 6754 return DAG.getConstant(0, SL, MVT::i32); 6755 6756 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6757 SDLoc(DAG.getEntryNode()), Arg); 6758 6759 // Don't bother inserting AssertZext for packed IDs since we're emitting the 6760 // masking operations anyway. 6761 // 6762 // TODO: We could assert the top bit is 0 for the source copy. 6763 if (Arg.isMasked()) 6764 return Val; 6765 6766 // Preserve the known bits after expansion to a copy. 6767 EVT SmallVT = 6768 EVT::getIntegerVT(*DAG.getContext(), 32 - countLeadingZeros(MaxID)); 6769 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, 6770 DAG.getValueType(SmallVT)); 6771 } 6772 6773 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6774 SelectionDAG &DAG) const { 6775 MachineFunction &MF = DAG.getMachineFunction(); 6776 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6777 6778 EVT VT = Op.getValueType(); 6779 SDLoc DL(Op); 6780 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6781 6782 // TODO: Should this propagate fast-math-flags? 6783 6784 switch (IntrinsicID) { 6785 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6786 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6787 return emitNonHSAIntrinsicError(DAG, DL, VT); 6788 return getPreloadedValue(DAG, *MFI, VT, 6789 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6790 } 6791 case Intrinsic::amdgcn_dispatch_ptr: 6792 case Intrinsic::amdgcn_queue_ptr: { 6793 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6794 DiagnosticInfoUnsupported BadIntrin( 6795 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6796 DL.getDebugLoc()); 6797 DAG.getContext()->diagnose(BadIntrin); 6798 return DAG.getUNDEF(VT); 6799 } 6800 6801 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6802 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6803 return getPreloadedValue(DAG, *MFI, VT, RegID); 6804 } 6805 case Intrinsic::amdgcn_implicitarg_ptr: { 6806 if (MFI->isEntryFunction()) 6807 return getImplicitArgPtr(DAG, DL); 6808 return getPreloadedValue(DAG, *MFI, VT, 6809 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6810 } 6811 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6812 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6813 // This only makes sense to call in a kernel, so just lower to null. 6814 return DAG.getConstant(0, DL, VT); 6815 } 6816 6817 return getPreloadedValue(DAG, *MFI, VT, 6818 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6819 } 6820 case Intrinsic::amdgcn_dispatch_id: { 6821 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6822 } 6823 case Intrinsic::amdgcn_rcp: 6824 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6825 case Intrinsic::amdgcn_rsq: 6826 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6827 case Intrinsic::amdgcn_rsq_legacy: 6828 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6829 return emitRemovedIntrinsicError(DAG, DL, VT); 6830 return SDValue(); 6831 case Intrinsic::amdgcn_rcp_legacy: 6832 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6833 return emitRemovedIntrinsicError(DAG, DL, VT); 6834 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6835 case Intrinsic::amdgcn_rsq_clamp: { 6836 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6837 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6838 6839 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6840 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6841 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6842 6843 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6844 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6845 DAG.getConstantFP(Max, DL, VT)); 6846 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6847 DAG.getConstantFP(Min, DL, VT)); 6848 } 6849 case Intrinsic::r600_read_ngroups_x: 6850 if (Subtarget->isAmdHsaOS()) 6851 return emitNonHSAIntrinsicError(DAG, DL, VT); 6852 6853 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6854 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6855 false); 6856 case Intrinsic::r600_read_ngroups_y: 6857 if (Subtarget->isAmdHsaOS()) 6858 return emitNonHSAIntrinsicError(DAG, DL, VT); 6859 6860 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6861 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6862 false); 6863 case Intrinsic::r600_read_ngroups_z: 6864 if (Subtarget->isAmdHsaOS()) 6865 return emitNonHSAIntrinsicError(DAG, DL, VT); 6866 6867 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6868 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6869 false); 6870 case Intrinsic::r600_read_global_size_x: 6871 if (Subtarget->isAmdHsaOS()) 6872 return emitNonHSAIntrinsicError(DAG, DL, VT); 6873 6874 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6875 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6876 Align(4), false); 6877 case Intrinsic::r600_read_global_size_y: 6878 if (Subtarget->isAmdHsaOS()) 6879 return emitNonHSAIntrinsicError(DAG, DL, VT); 6880 6881 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6882 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6883 Align(4), false); 6884 case Intrinsic::r600_read_global_size_z: 6885 if (Subtarget->isAmdHsaOS()) 6886 return emitNonHSAIntrinsicError(DAG, DL, VT); 6887 6888 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6889 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6890 Align(4), false); 6891 case Intrinsic::r600_read_local_size_x: 6892 if (Subtarget->isAmdHsaOS()) 6893 return emitNonHSAIntrinsicError(DAG, DL, VT); 6894 6895 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6896 SI::KernelInputOffsets::LOCAL_SIZE_X); 6897 case Intrinsic::r600_read_local_size_y: 6898 if (Subtarget->isAmdHsaOS()) 6899 return emitNonHSAIntrinsicError(DAG, DL, VT); 6900 6901 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6902 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6903 case Intrinsic::r600_read_local_size_z: 6904 if (Subtarget->isAmdHsaOS()) 6905 return emitNonHSAIntrinsicError(DAG, DL, VT); 6906 6907 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6908 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6909 case Intrinsic::amdgcn_workgroup_id_x: 6910 return getPreloadedValue(DAG, *MFI, VT, 6911 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6912 case Intrinsic::amdgcn_workgroup_id_y: 6913 return getPreloadedValue(DAG, *MFI, VT, 6914 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6915 case Intrinsic::amdgcn_workgroup_id_z: 6916 return getPreloadedValue(DAG, *MFI, VT, 6917 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6918 case Intrinsic::amdgcn_lds_kernel_id: { 6919 if (MFI->isEntryFunction()) 6920 return getLDSKernelId(DAG, DL); 6921 return getPreloadedValue(DAG, *MFI, VT, 6922 AMDGPUFunctionArgInfo::LDS_KERNEL_ID); 6923 } 6924 case Intrinsic::amdgcn_workitem_id_x: 6925 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); 6926 case Intrinsic::amdgcn_workitem_id_y: 6927 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); 6928 case Intrinsic::amdgcn_workitem_id_z: 6929 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); 6930 case Intrinsic::amdgcn_wavefrontsize: 6931 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6932 SDLoc(Op), MVT::i32); 6933 case Intrinsic::amdgcn_s_buffer_load: { 6934 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6935 if (CPol & ~AMDGPU::CPol::ALL) 6936 return Op; 6937 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6938 DAG); 6939 } 6940 case Intrinsic::amdgcn_fdiv_fast: 6941 return lowerFDIV_FAST(Op, DAG); 6942 case Intrinsic::amdgcn_sin: 6943 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6944 6945 case Intrinsic::amdgcn_cos: 6946 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6947 6948 case Intrinsic::amdgcn_mul_u24: 6949 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6950 case Intrinsic::amdgcn_mul_i24: 6951 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6952 6953 case Intrinsic::amdgcn_log_clamp: { 6954 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6955 return SDValue(); 6956 6957 return emitRemovedIntrinsicError(DAG, DL, VT); 6958 } 6959 case Intrinsic::amdgcn_ldexp: 6960 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6961 Op.getOperand(1), Op.getOperand(2)); 6962 6963 case Intrinsic::amdgcn_fract: 6964 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6965 6966 case Intrinsic::amdgcn_class: 6967 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6968 Op.getOperand(1), Op.getOperand(2)); 6969 case Intrinsic::amdgcn_div_fmas: 6970 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6971 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6972 Op.getOperand(4)); 6973 6974 case Intrinsic::amdgcn_div_fixup: 6975 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6976 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6977 6978 case Intrinsic::amdgcn_div_scale: { 6979 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6980 6981 // Translate to the operands expected by the machine instruction. The 6982 // first parameter must be the same as the first instruction. 6983 SDValue Numerator = Op.getOperand(1); 6984 SDValue Denominator = Op.getOperand(2); 6985 6986 // Note this order is opposite of the machine instruction's operations, 6987 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6988 // intrinsic has the numerator as the first operand to match a normal 6989 // division operation. 6990 6991 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 6992 6993 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6994 Denominator, Numerator); 6995 } 6996 case Intrinsic::amdgcn_icmp: { 6997 // There is a Pat that handles this variant, so return it as-is. 6998 if (Op.getOperand(1).getValueType() == MVT::i1 && 6999 Op.getConstantOperandVal(2) == 0 && 7000 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 7001 return Op; 7002 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 7003 } 7004 case Intrinsic::amdgcn_fcmp: { 7005 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 7006 } 7007 case Intrinsic::amdgcn_ballot: 7008 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 7009 case Intrinsic::amdgcn_fmed3: 7010 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 7011 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7012 case Intrinsic::amdgcn_fdot2: 7013 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 7014 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 7015 Op.getOperand(4)); 7016 case Intrinsic::amdgcn_fmul_legacy: 7017 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 7018 Op.getOperand(1), Op.getOperand(2)); 7019 case Intrinsic::amdgcn_sffbh: 7020 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 7021 case Intrinsic::amdgcn_sbfe: 7022 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 7023 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7024 case Intrinsic::amdgcn_ubfe: 7025 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 7026 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7027 case Intrinsic::amdgcn_cvt_pkrtz: 7028 case Intrinsic::amdgcn_cvt_pknorm_i16: 7029 case Intrinsic::amdgcn_cvt_pknorm_u16: 7030 case Intrinsic::amdgcn_cvt_pk_i16: 7031 case Intrinsic::amdgcn_cvt_pk_u16: { 7032 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 7033 EVT VT = Op.getValueType(); 7034 unsigned Opcode; 7035 7036 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 7037 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 7038 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 7039 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 7040 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 7041 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 7042 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 7043 Opcode = AMDGPUISD::CVT_PK_I16_I32; 7044 else 7045 Opcode = AMDGPUISD::CVT_PK_U16_U32; 7046 7047 if (isTypeLegal(VT)) 7048 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7049 7050 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 7051 Op.getOperand(1), Op.getOperand(2)); 7052 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 7053 } 7054 case Intrinsic::amdgcn_fmad_ftz: 7055 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 7056 Op.getOperand(2), Op.getOperand(3)); 7057 7058 case Intrinsic::amdgcn_if_break: 7059 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 7060 Op->getOperand(1), Op->getOperand(2)), 0); 7061 7062 case Intrinsic::amdgcn_groupstaticsize: { 7063 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 7064 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 7065 return Op; 7066 7067 const Module *M = MF.getFunction().getParent(); 7068 const GlobalValue *GV = 7069 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 7070 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 7071 SIInstrInfo::MO_ABS32_LO); 7072 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7073 } 7074 case Intrinsic::amdgcn_is_shared: 7075 case Intrinsic::amdgcn_is_private: { 7076 SDLoc SL(Op); 7077 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 7078 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 7079 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 7080 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 7081 Op.getOperand(1)); 7082 7083 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 7084 DAG.getConstant(1, SL, MVT::i32)); 7085 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 7086 } 7087 case Intrinsic::amdgcn_perm: 7088 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 7089 Op.getOperand(2), Op.getOperand(3)); 7090 case Intrinsic::amdgcn_reloc_constant: { 7091 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 7092 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 7093 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 7094 auto RelocSymbol = cast<GlobalVariable>( 7095 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 7096 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 7097 SIInstrInfo::MO_ABS32_LO); 7098 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7099 } 7100 default: 7101 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7102 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7103 return lowerImage(Op, ImageDimIntr, DAG, false); 7104 7105 return Op; 7106 } 7107 } 7108 7109 /// Update \p MMO based on the offset inputs to an intrinsic. 7110 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, 7111 SDValue SOffset, SDValue Offset, 7112 SDValue VIndex = SDValue()) { 7113 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 7114 !isa<ConstantSDNode>(Offset)) { 7115 // The combined offset is not known to be constant, so we cannot represent 7116 // it in the MMO. Give up. 7117 MMO->setValue((Value *)nullptr); 7118 return; 7119 } 7120 7121 if (VIndex && (!isa<ConstantSDNode>(VIndex) || 7122 !cast<ConstantSDNode>(VIndex)->isZero())) { 7123 // The strided index component of the address is not known to be zero, so we 7124 // cannot represent it in the MMO. Give up. 7125 MMO->setValue((Value *)nullptr); 7126 return; 7127 } 7128 7129 MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() + 7130 cast<ConstantSDNode>(SOffset)->getSExtValue() + 7131 cast<ConstantSDNode>(Offset)->getSExtValue()); 7132 } 7133 7134 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 7135 SelectionDAG &DAG, 7136 unsigned NewOpcode) const { 7137 SDLoc DL(Op); 7138 7139 SDValue VData = Op.getOperand(2); 7140 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7141 SDValue Ops[] = { 7142 Op.getOperand(0), // Chain 7143 VData, // vdata 7144 Op.getOperand(3), // rsrc 7145 DAG.getConstant(0, DL, MVT::i32), // vindex 7146 Offsets.first, // voffset 7147 Op.getOperand(5), // soffset 7148 Offsets.second, // offset 7149 Op.getOperand(6), // cachepolicy 7150 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7151 }; 7152 7153 auto *M = cast<MemSDNode>(Op); 7154 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 7155 7156 EVT MemVT = VData.getValueType(); 7157 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7158 M->getMemOperand()); 7159 } 7160 7161 // Return a value to use for the idxen operand by examining the vindex operand. 7162 static unsigned getIdxEn(SDValue VIndex) { 7163 if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex)) 7164 // No need to set idxen if vindex is known to be zero. 7165 return VIndexC->getZExtValue() != 0; 7166 return 1; 7167 } 7168 7169 SDValue 7170 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 7171 unsigned NewOpcode) const { 7172 SDLoc DL(Op); 7173 7174 SDValue VData = Op.getOperand(2); 7175 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7176 SDValue Ops[] = { 7177 Op.getOperand(0), // Chain 7178 VData, // vdata 7179 Op.getOperand(3), // rsrc 7180 Op.getOperand(4), // vindex 7181 Offsets.first, // voffset 7182 Op.getOperand(6), // soffset 7183 Offsets.second, // offset 7184 Op.getOperand(7), // cachepolicy 7185 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7186 }; 7187 7188 auto *M = cast<MemSDNode>(Op); 7189 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7190 7191 EVT MemVT = VData.getValueType(); 7192 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7193 M->getMemOperand()); 7194 } 7195 7196 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 7197 SelectionDAG &DAG) const { 7198 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7199 SDLoc DL(Op); 7200 7201 switch (IntrID) { 7202 case Intrinsic::amdgcn_ds_ordered_add: 7203 case Intrinsic::amdgcn_ds_ordered_swap: { 7204 MemSDNode *M = cast<MemSDNode>(Op); 7205 SDValue Chain = M->getOperand(0); 7206 SDValue M0 = M->getOperand(2); 7207 SDValue Value = M->getOperand(3); 7208 unsigned IndexOperand = M->getConstantOperandVal(7); 7209 unsigned WaveRelease = M->getConstantOperandVal(8); 7210 unsigned WaveDone = M->getConstantOperandVal(9); 7211 7212 unsigned OrderedCountIndex = IndexOperand & 0x3f; 7213 IndexOperand &= ~0x3f; 7214 unsigned CountDw = 0; 7215 7216 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 7217 CountDw = (IndexOperand >> 24) & 0xf; 7218 IndexOperand &= ~(0xf << 24); 7219 7220 if (CountDw < 1 || CountDw > 4) { 7221 report_fatal_error( 7222 "ds_ordered_count: dword count must be between 1 and 4"); 7223 } 7224 } 7225 7226 if (IndexOperand) 7227 report_fatal_error("ds_ordered_count: bad index operand"); 7228 7229 if (WaveDone && !WaveRelease) 7230 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 7231 7232 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 7233 unsigned ShaderType = 7234 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 7235 unsigned Offset0 = OrderedCountIndex << 2; 7236 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); 7237 7238 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 7239 Offset1 |= (CountDw - 1) << 6; 7240 7241 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) 7242 Offset1 |= ShaderType << 2; 7243 7244 unsigned Offset = Offset0 | (Offset1 << 8); 7245 7246 SDValue Ops[] = { 7247 Chain, 7248 Value, 7249 DAG.getTargetConstant(Offset, DL, MVT::i16), 7250 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 7251 }; 7252 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 7253 M->getVTList(), Ops, M->getMemoryVT(), 7254 M->getMemOperand()); 7255 } 7256 case Intrinsic::amdgcn_ds_fadd: { 7257 MemSDNode *M = cast<MemSDNode>(Op); 7258 unsigned Opc; 7259 switch (IntrID) { 7260 case Intrinsic::amdgcn_ds_fadd: 7261 Opc = ISD::ATOMIC_LOAD_FADD; 7262 break; 7263 } 7264 7265 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 7266 M->getOperand(0), M->getOperand(2), M->getOperand(3), 7267 M->getMemOperand()); 7268 } 7269 case Intrinsic::amdgcn_atomic_inc: 7270 case Intrinsic::amdgcn_atomic_dec: 7271 case Intrinsic::amdgcn_ds_fmin: 7272 case Intrinsic::amdgcn_ds_fmax: { 7273 MemSDNode *M = cast<MemSDNode>(Op); 7274 unsigned Opc; 7275 switch (IntrID) { 7276 case Intrinsic::amdgcn_atomic_inc: 7277 Opc = AMDGPUISD::ATOMIC_INC; 7278 break; 7279 case Intrinsic::amdgcn_atomic_dec: 7280 Opc = AMDGPUISD::ATOMIC_DEC; 7281 break; 7282 case Intrinsic::amdgcn_ds_fmin: 7283 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 7284 break; 7285 case Intrinsic::amdgcn_ds_fmax: 7286 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 7287 break; 7288 default: 7289 llvm_unreachable("Unknown intrinsic!"); 7290 } 7291 SDValue Ops[] = { 7292 M->getOperand(0), // Chain 7293 M->getOperand(2), // Ptr 7294 M->getOperand(3) // Value 7295 }; 7296 7297 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 7298 M->getMemoryVT(), M->getMemOperand()); 7299 } 7300 case Intrinsic::amdgcn_buffer_load: 7301 case Intrinsic::amdgcn_buffer_load_format: { 7302 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 7303 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7304 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7305 SDValue Ops[] = { 7306 Op.getOperand(0), // Chain 7307 Op.getOperand(2), // rsrc 7308 Op.getOperand(3), // vindex 7309 SDValue(), // voffset -- will be set by setBufferOffsets 7310 SDValue(), // soffset -- will be set by setBufferOffsets 7311 SDValue(), // offset -- will be set by setBufferOffsets 7312 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7313 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7314 }; 7315 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 7316 7317 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 7318 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 7319 7320 EVT VT = Op.getValueType(); 7321 EVT IntVT = VT.changeTypeToInteger(); 7322 auto *M = cast<MemSDNode>(Op); 7323 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7324 EVT LoadVT = Op.getValueType(); 7325 7326 if (LoadVT.getScalarType() == MVT::f16) 7327 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 7328 M, DAG, Ops); 7329 7330 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 7331 if (LoadVT.getScalarType() == MVT::i8 || 7332 LoadVT.getScalarType() == MVT::i16) 7333 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 7334 7335 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 7336 M->getMemOperand(), DAG); 7337 } 7338 case Intrinsic::amdgcn_raw_buffer_load: 7339 case Intrinsic::amdgcn_raw_buffer_load_format: { 7340 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 7341 7342 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7343 SDValue Ops[] = { 7344 Op.getOperand(0), // Chain 7345 Op.getOperand(2), // rsrc 7346 DAG.getConstant(0, DL, MVT::i32), // vindex 7347 Offsets.first, // voffset 7348 Op.getOperand(4), // soffset 7349 Offsets.second, // offset 7350 Op.getOperand(5), // cachepolicy, swizzled buffer 7351 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7352 }; 7353 7354 auto *M = cast<MemSDNode>(Op); 7355 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); 7356 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 7357 } 7358 case Intrinsic::amdgcn_struct_buffer_load: 7359 case Intrinsic::amdgcn_struct_buffer_load_format: { 7360 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 7361 7362 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7363 SDValue Ops[] = { 7364 Op.getOperand(0), // Chain 7365 Op.getOperand(2), // rsrc 7366 Op.getOperand(3), // vindex 7367 Offsets.first, // voffset 7368 Op.getOperand(5), // soffset 7369 Offsets.second, // offset 7370 Op.getOperand(6), // cachepolicy, swizzled buffer 7371 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7372 }; 7373 7374 auto *M = cast<MemSDNode>(Op); 7375 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7376 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 7377 } 7378 case Intrinsic::amdgcn_tbuffer_load: { 7379 MemSDNode *M = cast<MemSDNode>(Op); 7380 EVT LoadVT = Op.getValueType(); 7381 7382 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7383 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7384 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7385 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7386 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7387 SDValue Ops[] = { 7388 Op.getOperand(0), // Chain 7389 Op.getOperand(2), // rsrc 7390 Op.getOperand(3), // vindex 7391 Op.getOperand(4), // voffset 7392 Op.getOperand(5), // soffset 7393 Op.getOperand(6), // offset 7394 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7395 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7396 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 7397 }; 7398 7399 if (LoadVT.getScalarType() == MVT::f16) 7400 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7401 M, DAG, Ops); 7402 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7403 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7404 DAG); 7405 } 7406 case Intrinsic::amdgcn_raw_tbuffer_load: { 7407 MemSDNode *M = cast<MemSDNode>(Op); 7408 EVT LoadVT = Op.getValueType(); 7409 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7410 7411 SDValue Ops[] = { 7412 Op.getOperand(0), // Chain 7413 Op.getOperand(2), // rsrc 7414 DAG.getConstant(0, DL, MVT::i32), // vindex 7415 Offsets.first, // voffset 7416 Op.getOperand(4), // soffset 7417 Offsets.second, // offset 7418 Op.getOperand(5), // format 7419 Op.getOperand(6), // cachepolicy, swizzled buffer 7420 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7421 }; 7422 7423 if (LoadVT.getScalarType() == MVT::f16) 7424 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7425 M, DAG, Ops); 7426 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7427 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7428 DAG); 7429 } 7430 case Intrinsic::amdgcn_struct_tbuffer_load: { 7431 MemSDNode *M = cast<MemSDNode>(Op); 7432 EVT LoadVT = Op.getValueType(); 7433 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7434 7435 SDValue Ops[] = { 7436 Op.getOperand(0), // Chain 7437 Op.getOperand(2), // rsrc 7438 Op.getOperand(3), // vindex 7439 Offsets.first, // voffset 7440 Op.getOperand(5), // soffset 7441 Offsets.second, // offset 7442 Op.getOperand(6), // format 7443 Op.getOperand(7), // cachepolicy, swizzled buffer 7444 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7445 }; 7446 7447 if (LoadVT.getScalarType() == MVT::f16) 7448 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7449 M, DAG, Ops); 7450 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7451 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7452 DAG); 7453 } 7454 case Intrinsic::amdgcn_buffer_atomic_swap: 7455 case Intrinsic::amdgcn_buffer_atomic_add: 7456 case Intrinsic::amdgcn_buffer_atomic_sub: 7457 case Intrinsic::amdgcn_buffer_atomic_csub: 7458 case Intrinsic::amdgcn_buffer_atomic_smin: 7459 case Intrinsic::amdgcn_buffer_atomic_umin: 7460 case Intrinsic::amdgcn_buffer_atomic_smax: 7461 case Intrinsic::amdgcn_buffer_atomic_umax: 7462 case Intrinsic::amdgcn_buffer_atomic_and: 7463 case Intrinsic::amdgcn_buffer_atomic_or: 7464 case Intrinsic::amdgcn_buffer_atomic_xor: 7465 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7466 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7467 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7468 SDValue Ops[] = { 7469 Op.getOperand(0), // Chain 7470 Op.getOperand(2), // vdata 7471 Op.getOperand(3), // rsrc 7472 Op.getOperand(4), // vindex 7473 SDValue(), // voffset -- will be set by setBufferOffsets 7474 SDValue(), // soffset -- will be set by setBufferOffsets 7475 SDValue(), // offset -- will be set by setBufferOffsets 7476 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7477 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7478 }; 7479 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7480 7481 EVT VT = Op.getValueType(); 7482 7483 auto *M = cast<MemSDNode>(Op); 7484 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7485 unsigned Opcode = 0; 7486 7487 switch (IntrID) { 7488 case Intrinsic::amdgcn_buffer_atomic_swap: 7489 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7490 break; 7491 case Intrinsic::amdgcn_buffer_atomic_add: 7492 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7493 break; 7494 case Intrinsic::amdgcn_buffer_atomic_sub: 7495 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7496 break; 7497 case Intrinsic::amdgcn_buffer_atomic_csub: 7498 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7499 break; 7500 case Intrinsic::amdgcn_buffer_atomic_smin: 7501 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7502 break; 7503 case Intrinsic::amdgcn_buffer_atomic_umin: 7504 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7505 break; 7506 case Intrinsic::amdgcn_buffer_atomic_smax: 7507 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7508 break; 7509 case Intrinsic::amdgcn_buffer_atomic_umax: 7510 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7511 break; 7512 case Intrinsic::amdgcn_buffer_atomic_and: 7513 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7514 break; 7515 case Intrinsic::amdgcn_buffer_atomic_or: 7516 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7517 break; 7518 case Intrinsic::amdgcn_buffer_atomic_xor: 7519 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7520 break; 7521 case Intrinsic::amdgcn_buffer_atomic_fadd: 7522 if (!Op.getValue(0).use_empty() && !hasAtomicFaddRtnForTy(Op)) { 7523 DiagnosticInfoUnsupported 7524 NoFpRet(DAG.getMachineFunction().getFunction(), 7525 "return versions of fp atomics not supported", 7526 DL.getDebugLoc(), DS_Error); 7527 DAG.getContext()->diagnose(NoFpRet); 7528 return SDValue(); 7529 } 7530 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7531 break; 7532 default: 7533 llvm_unreachable("unhandled atomic opcode"); 7534 } 7535 7536 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7537 M->getMemOperand()); 7538 } 7539 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7540 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7541 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7542 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7543 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 7544 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7545 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 7546 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7547 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 7548 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7549 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 7550 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7551 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7552 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7553 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7554 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7555 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7556 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7557 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7558 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7559 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7560 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7561 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7562 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7563 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7564 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7565 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7566 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7567 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7568 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7569 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7570 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7571 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7572 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7573 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7574 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7575 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7576 return lowerStructBufferAtomicIntrin(Op, DAG, 7577 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7578 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7579 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7580 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7581 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7582 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7583 return lowerStructBufferAtomicIntrin(Op, DAG, 7584 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7585 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7586 return lowerStructBufferAtomicIntrin(Op, DAG, 7587 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7588 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7589 return lowerStructBufferAtomicIntrin(Op, DAG, 7590 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7591 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7592 return lowerStructBufferAtomicIntrin(Op, DAG, 7593 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7594 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7595 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7596 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7597 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7598 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7599 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7600 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7601 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7602 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7603 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7604 7605 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7606 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7607 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 7608 SDValue Ops[] = { 7609 Op.getOperand(0), // Chain 7610 Op.getOperand(2), // src 7611 Op.getOperand(3), // cmp 7612 Op.getOperand(4), // rsrc 7613 Op.getOperand(5), // vindex 7614 SDValue(), // voffset -- will be set by setBufferOffsets 7615 SDValue(), // soffset -- will be set by setBufferOffsets 7616 SDValue(), // offset -- will be set by setBufferOffsets 7617 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7618 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7619 }; 7620 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7621 7622 EVT VT = Op.getValueType(); 7623 auto *M = cast<MemSDNode>(Op); 7624 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7625 7626 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7627 Op->getVTList(), Ops, VT, M->getMemOperand()); 7628 } 7629 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7630 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7631 SDValue Ops[] = { 7632 Op.getOperand(0), // Chain 7633 Op.getOperand(2), // src 7634 Op.getOperand(3), // cmp 7635 Op.getOperand(4), // rsrc 7636 DAG.getConstant(0, DL, MVT::i32), // vindex 7637 Offsets.first, // voffset 7638 Op.getOperand(6), // soffset 7639 Offsets.second, // offset 7640 Op.getOperand(7), // cachepolicy 7641 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7642 }; 7643 EVT VT = Op.getValueType(); 7644 auto *M = cast<MemSDNode>(Op); 7645 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); 7646 7647 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7648 Op->getVTList(), Ops, VT, M->getMemOperand()); 7649 } 7650 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7651 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7652 SDValue Ops[] = { 7653 Op.getOperand(0), // Chain 7654 Op.getOperand(2), // src 7655 Op.getOperand(3), // cmp 7656 Op.getOperand(4), // rsrc 7657 Op.getOperand(5), // vindex 7658 Offsets.first, // voffset 7659 Op.getOperand(7), // soffset 7660 Offsets.second, // offset 7661 Op.getOperand(8), // cachepolicy 7662 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7663 }; 7664 EVT VT = Op.getValueType(); 7665 auto *M = cast<MemSDNode>(Op); 7666 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7667 7668 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7669 Op->getVTList(), Ops, VT, M->getMemOperand()); 7670 } 7671 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 7672 MemSDNode *M = cast<MemSDNode>(Op); 7673 SDValue NodePtr = M->getOperand(2); 7674 SDValue RayExtent = M->getOperand(3); 7675 SDValue RayOrigin = M->getOperand(4); 7676 SDValue RayDir = M->getOperand(5); 7677 SDValue RayInvDir = M->getOperand(6); 7678 SDValue TDescr = M->getOperand(7); 7679 7680 assert(NodePtr.getValueType() == MVT::i32 || 7681 NodePtr.getValueType() == MVT::i64); 7682 assert(RayDir.getValueType() == MVT::v3f16 || 7683 RayDir.getValueType() == MVT::v3f32); 7684 7685 if (!Subtarget->hasGFX10_AEncoding()) { 7686 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 7687 return SDValue(); 7688 } 7689 7690 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 7691 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 7692 const bool Is64 = NodePtr.getValueType() == MVT::i64; 7693 const unsigned NumVDataDwords = 4; 7694 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 7695 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; 7696 const bool UseNSA = 7697 Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize(); 7698 const unsigned BaseOpcodes[2][2] = { 7699 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 7700 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 7701 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 7702 int Opcode; 7703 if (UseNSA) { 7704 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7705 IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA 7706 : AMDGPU::MIMGEncGfx10NSA, 7707 NumVDataDwords, NumVAddrDwords); 7708 } else { 7709 Opcode = 7710 AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7711 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default 7712 : AMDGPU::MIMGEncGfx10Default, 7713 NumVDataDwords, PowerOf2Ceil(NumVAddrDwords)); 7714 } 7715 assert(Opcode != -1); 7716 7717 SmallVector<SDValue, 16> Ops; 7718 7719 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 7720 SmallVector<SDValue, 3> Lanes; 7721 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 7722 if (Lanes[0].getValueSizeInBits() == 32) { 7723 for (unsigned I = 0; I < 3; ++I) 7724 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 7725 } else { 7726 if (IsAligned) { 7727 Ops.push_back( 7728 DAG.getBitcast(MVT::i32, 7729 DAG.getBuildVector(MVT::v2f16, DL, 7730 { Lanes[0], Lanes[1] }))); 7731 Ops.push_back(Lanes[2]); 7732 } else { 7733 SDValue Elt0 = Ops.pop_back_val(); 7734 Ops.push_back( 7735 DAG.getBitcast(MVT::i32, 7736 DAG.getBuildVector(MVT::v2f16, DL, 7737 { Elt0, Lanes[0] }))); 7738 Ops.push_back( 7739 DAG.getBitcast(MVT::i32, 7740 DAG.getBuildVector(MVT::v2f16, DL, 7741 { Lanes[1], Lanes[2] }))); 7742 } 7743 } 7744 }; 7745 7746 if (UseNSA && IsGFX11Plus) { 7747 Ops.push_back(NodePtr); 7748 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7749 Ops.push_back(RayOrigin); 7750 if (IsA16) { 7751 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; 7752 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); 7753 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); 7754 for (unsigned I = 0; I < 3; ++I) { 7755 MergedLanes.push_back(DAG.getBitcast( 7756 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, 7757 {DirLanes[I], InvDirLanes[I]}))); 7758 } 7759 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); 7760 } else { 7761 Ops.push_back(RayDir); 7762 Ops.push_back(RayInvDir); 7763 } 7764 } else { 7765 if (Is64) 7766 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 7767 2); 7768 else 7769 Ops.push_back(NodePtr); 7770 7771 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7772 packLanes(RayOrigin, true); 7773 packLanes(RayDir, true); 7774 packLanes(RayInvDir, false); 7775 } 7776 7777 if (!UseNSA) { 7778 // Build a single vector containing all the operands so far prepared. 7779 if (NumVAddrDwords > 8) { 7780 SDValue Undef = DAG.getUNDEF(MVT::i32); 7781 Ops.append(16 - Ops.size(), Undef); 7782 } 7783 assert(Ops.size() == 8 || Ops.size() == 16); 7784 SDValue MergedOps = DAG.getBuildVector( 7785 Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops); 7786 Ops.clear(); 7787 Ops.push_back(MergedOps); 7788 } 7789 7790 Ops.push_back(TDescr); 7791 if (IsA16) 7792 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); 7793 Ops.push_back(M->getChain()); 7794 7795 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 7796 MachineMemOperand *MemRef = M->getMemOperand(); 7797 DAG.setNodeMemRefs(NewNode, {MemRef}); 7798 return SDValue(NewNode, 0); 7799 } 7800 case Intrinsic::amdgcn_global_atomic_fadd: 7801 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7802 DiagnosticInfoUnsupported 7803 NoFpRet(DAG.getMachineFunction().getFunction(), 7804 "return versions of fp atomics not supported", 7805 DL.getDebugLoc(), DS_Error); 7806 DAG.getContext()->diagnose(NoFpRet); 7807 return SDValue(); 7808 } 7809 LLVM_FALLTHROUGH; 7810 case Intrinsic::amdgcn_global_atomic_fmin: 7811 case Intrinsic::amdgcn_global_atomic_fmax: 7812 case Intrinsic::amdgcn_flat_atomic_fadd: 7813 case Intrinsic::amdgcn_flat_atomic_fmin: 7814 case Intrinsic::amdgcn_flat_atomic_fmax: { 7815 MemSDNode *M = cast<MemSDNode>(Op); 7816 SDValue Ops[] = { 7817 M->getOperand(0), // Chain 7818 M->getOperand(2), // Ptr 7819 M->getOperand(3) // Value 7820 }; 7821 unsigned Opcode = 0; 7822 switch (IntrID) { 7823 case Intrinsic::amdgcn_global_atomic_fadd: 7824 case Intrinsic::amdgcn_flat_atomic_fadd: { 7825 EVT VT = Op.getOperand(3).getValueType(); 7826 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7827 DAG.getVTList(VT, MVT::Other), Ops, 7828 M->getMemOperand()); 7829 } 7830 case Intrinsic::amdgcn_global_atomic_fmin: 7831 case Intrinsic::amdgcn_flat_atomic_fmin: { 7832 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 7833 break; 7834 } 7835 case Intrinsic::amdgcn_global_atomic_fmax: 7836 case Intrinsic::amdgcn_flat_atomic_fmax: { 7837 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 7838 break; 7839 } 7840 default: 7841 llvm_unreachable("unhandled atomic opcode"); 7842 } 7843 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 7844 M->getVTList(), Ops, M->getMemoryVT(), 7845 M->getMemOperand()); 7846 } 7847 default: 7848 7849 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7850 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7851 return lowerImage(Op, ImageDimIntr, DAG, true); 7852 7853 return SDValue(); 7854 } 7855 } 7856 7857 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7858 // dwordx4 if on SI. 7859 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7860 SDVTList VTList, 7861 ArrayRef<SDValue> Ops, EVT MemVT, 7862 MachineMemOperand *MMO, 7863 SelectionDAG &DAG) const { 7864 EVT VT = VTList.VTs[0]; 7865 EVT WidenedVT = VT; 7866 EVT WidenedMemVT = MemVT; 7867 if (!Subtarget->hasDwordx3LoadStores() && 7868 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7869 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7870 WidenedVT.getVectorElementType(), 4); 7871 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7872 WidenedMemVT.getVectorElementType(), 4); 7873 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7874 } 7875 7876 assert(VTList.NumVTs == 2); 7877 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7878 7879 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7880 WidenedMemVT, MMO); 7881 if (WidenedVT != VT) { 7882 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7883 DAG.getVectorIdxConstant(0, DL)); 7884 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7885 } 7886 return NewOp; 7887 } 7888 7889 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 7890 bool ImageStore) const { 7891 EVT StoreVT = VData.getValueType(); 7892 7893 // No change for f16 and legal vector D16 types. 7894 if (!StoreVT.isVector()) 7895 return VData; 7896 7897 SDLoc DL(VData); 7898 unsigned NumElements = StoreVT.getVectorNumElements(); 7899 7900 if (Subtarget->hasUnpackedD16VMem()) { 7901 // We need to unpack the packed data to store. 7902 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7903 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7904 7905 EVT EquivStoreVT = 7906 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 7907 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7908 return DAG.UnrollVectorOp(ZExt.getNode()); 7909 } 7910 7911 // The sq block of gfx8.1 does not estimate register use correctly for d16 7912 // image store instructions. The data operand is computed as if it were not a 7913 // d16 image instruction. 7914 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 7915 // Bitcast to i16 7916 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7917 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7918 7919 // Decompose into scalars 7920 SmallVector<SDValue, 4> Elts; 7921 DAG.ExtractVectorElements(IntVData, Elts); 7922 7923 // Group pairs of i16 into v2i16 and bitcast to i32 7924 SmallVector<SDValue, 4> PackedElts; 7925 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 7926 SDValue Pair = 7927 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 7928 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7929 PackedElts.push_back(IntPair); 7930 } 7931 if ((NumElements % 2) == 1) { 7932 // Handle v3i16 7933 unsigned I = Elts.size() / 2; 7934 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 7935 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 7936 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7937 PackedElts.push_back(IntPair); 7938 } 7939 7940 // Pad using UNDEF 7941 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 7942 7943 // Build final vector 7944 EVT VecVT = 7945 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 7946 return DAG.getBuildVector(VecVT, DL, PackedElts); 7947 } 7948 7949 if (NumElements == 3) { 7950 EVT IntStoreVT = 7951 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 7952 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7953 7954 EVT WidenedStoreVT = EVT::getVectorVT( 7955 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 7956 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 7957 WidenedStoreVT.getStoreSizeInBits()); 7958 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 7959 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 7960 } 7961 7962 assert(isTypeLegal(StoreVT)); 7963 return VData; 7964 } 7965 7966 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7967 SelectionDAG &DAG) const { 7968 SDLoc DL(Op); 7969 SDValue Chain = Op.getOperand(0); 7970 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7971 MachineFunction &MF = DAG.getMachineFunction(); 7972 7973 switch (IntrinsicID) { 7974 case Intrinsic::amdgcn_exp_compr: { 7975 if (!Subtarget->hasCompressedExport()) { 7976 DiagnosticInfoUnsupported BadIntrin( 7977 DAG.getMachineFunction().getFunction(), 7978 "intrinsic not supported on subtarget", DL.getDebugLoc()); 7979 DAG.getContext()->diagnose(BadIntrin); 7980 } 7981 SDValue Src0 = Op.getOperand(4); 7982 SDValue Src1 = Op.getOperand(5); 7983 // Hack around illegal type on SI by directly selecting it. 7984 if (isTypeLegal(Src0.getValueType())) 7985 return SDValue(); 7986 7987 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7988 SDValue Undef = DAG.getUNDEF(MVT::f32); 7989 const SDValue Ops[] = { 7990 Op.getOperand(2), // tgt 7991 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7992 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7993 Undef, // src2 7994 Undef, // src3 7995 Op.getOperand(7), // vm 7996 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7997 Op.getOperand(3), // en 7998 Op.getOperand(0) // Chain 7999 }; 8000 8001 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 8002 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 8003 } 8004 case Intrinsic::amdgcn_s_barrier: { 8005 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 8006 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 8007 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 8008 if (WGSize <= ST.getWavefrontSize()) 8009 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 8010 Op.getOperand(0)), 0); 8011 } 8012 return SDValue(); 8013 }; 8014 case Intrinsic::amdgcn_tbuffer_store: { 8015 SDValue VData = Op.getOperand(2); 8016 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8017 if (IsD16) 8018 VData = handleD16VData(VData, DAG); 8019 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 8020 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 8021 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 8022 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 8023 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8024 SDValue Ops[] = { 8025 Chain, 8026 VData, // vdata 8027 Op.getOperand(3), // rsrc 8028 Op.getOperand(4), // vindex 8029 Op.getOperand(5), // voffset 8030 Op.getOperand(6), // soffset 8031 Op.getOperand(7), // offset 8032 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 8033 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8034 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8035 }; 8036 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8037 AMDGPUISD::TBUFFER_STORE_FORMAT; 8038 MemSDNode *M = cast<MemSDNode>(Op); 8039 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8040 M->getMemoryVT(), M->getMemOperand()); 8041 } 8042 8043 case Intrinsic::amdgcn_struct_tbuffer_store: { 8044 SDValue VData = Op.getOperand(2); 8045 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8046 if (IsD16) 8047 VData = handleD16VData(VData, DAG); 8048 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8049 SDValue Ops[] = { 8050 Chain, 8051 VData, // vdata 8052 Op.getOperand(3), // rsrc 8053 Op.getOperand(4), // vindex 8054 Offsets.first, // voffset 8055 Op.getOperand(6), // soffset 8056 Offsets.second, // offset 8057 Op.getOperand(7), // format 8058 Op.getOperand(8), // cachepolicy, swizzled buffer 8059 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8060 }; 8061 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8062 AMDGPUISD::TBUFFER_STORE_FORMAT; 8063 MemSDNode *M = cast<MemSDNode>(Op); 8064 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8065 M->getMemoryVT(), M->getMemOperand()); 8066 } 8067 8068 case Intrinsic::amdgcn_raw_tbuffer_store: { 8069 SDValue VData = Op.getOperand(2); 8070 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8071 if (IsD16) 8072 VData = handleD16VData(VData, DAG); 8073 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8074 SDValue Ops[] = { 8075 Chain, 8076 VData, // vdata 8077 Op.getOperand(3), // rsrc 8078 DAG.getConstant(0, DL, MVT::i32), // vindex 8079 Offsets.first, // voffset 8080 Op.getOperand(5), // soffset 8081 Offsets.second, // offset 8082 Op.getOperand(6), // format 8083 Op.getOperand(7), // cachepolicy, swizzled buffer 8084 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8085 }; 8086 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8087 AMDGPUISD::TBUFFER_STORE_FORMAT; 8088 MemSDNode *M = cast<MemSDNode>(Op); 8089 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8090 M->getMemoryVT(), M->getMemOperand()); 8091 } 8092 8093 case Intrinsic::amdgcn_buffer_store: 8094 case Intrinsic::amdgcn_buffer_store_format: { 8095 SDValue VData = Op.getOperand(2); 8096 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8097 if (IsD16) 8098 VData = handleD16VData(VData, DAG); 8099 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 8100 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 8101 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8102 SDValue Ops[] = { 8103 Chain, 8104 VData, 8105 Op.getOperand(3), // rsrc 8106 Op.getOperand(4), // vindex 8107 SDValue(), // voffset -- will be set by setBufferOffsets 8108 SDValue(), // soffset -- will be set by setBufferOffsets 8109 SDValue(), // offset -- will be set by setBufferOffsets 8110 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8111 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8112 }; 8113 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 8114 8115 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 8116 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8117 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8118 MemSDNode *M = cast<MemSDNode>(Op); 8119 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8120 8121 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8122 EVT VDataType = VData.getValueType().getScalarType(); 8123 if (VDataType == MVT::i8 || VDataType == MVT::i16) 8124 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8125 8126 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8127 M->getMemoryVT(), M->getMemOperand()); 8128 } 8129 8130 case Intrinsic::amdgcn_raw_buffer_store: 8131 case Intrinsic::amdgcn_raw_buffer_store_format: { 8132 const bool IsFormat = 8133 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 8134 8135 SDValue VData = Op.getOperand(2); 8136 EVT VDataVT = VData.getValueType(); 8137 EVT EltType = VDataVT.getScalarType(); 8138 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8139 if (IsD16) { 8140 VData = handleD16VData(VData, DAG); 8141 VDataVT = VData.getValueType(); 8142 } 8143 8144 if (!isTypeLegal(VDataVT)) { 8145 VData = 8146 DAG.getNode(ISD::BITCAST, DL, 8147 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8148 } 8149 8150 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8151 SDValue Ops[] = { 8152 Chain, 8153 VData, 8154 Op.getOperand(3), // rsrc 8155 DAG.getConstant(0, DL, MVT::i32), // vindex 8156 Offsets.first, // voffset 8157 Op.getOperand(5), // soffset 8158 Offsets.second, // offset 8159 Op.getOperand(6), // cachepolicy, swizzled buffer 8160 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8161 }; 8162 unsigned Opc = 8163 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 8164 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8165 MemSDNode *M = cast<MemSDNode>(Op); 8166 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 8167 8168 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8169 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8170 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 8171 8172 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8173 M->getMemoryVT(), M->getMemOperand()); 8174 } 8175 8176 case Intrinsic::amdgcn_struct_buffer_store: 8177 case Intrinsic::amdgcn_struct_buffer_store_format: { 8178 const bool IsFormat = 8179 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 8180 8181 SDValue VData = Op.getOperand(2); 8182 EVT VDataVT = VData.getValueType(); 8183 EVT EltType = VDataVT.getScalarType(); 8184 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8185 8186 if (IsD16) { 8187 VData = handleD16VData(VData, DAG); 8188 VDataVT = VData.getValueType(); 8189 } 8190 8191 if (!isTypeLegal(VDataVT)) { 8192 VData = 8193 DAG.getNode(ISD::BITCAST, DL, 8194 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8195 } 8196 8197 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8198 SDValue Ops[] = { 8199 Chain, 8200 VData, 8201 Op.getOperand(3), // rsrc 8202 Op.getOperand(4), // vindex 8203 Offsets.first, // voffset 8204 Op.getOperand(6), // soffset 8205 Offsets.second, // offset 8206 Op.getOperand(7), // cachepolicy, swizzled buffer 8207 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8208 }; 8209 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 8210 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8211 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8212 MemSDNode *M = cast<MemSDNode>(Op); 8213 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8214 8215 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8216 EVT VDataType = VData.getValueType().getScalarType(); 8217 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8218 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8219 8220 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8221 M->getMemoryVT(), M->getMemOperand()); 8222 } 8223 case Intrinsic::amdgcn_raw_buffer_load_lds: 8224 case Intrinsic::amdgcn_struct_buffer_load_lds: { 8225 unsigned Opc; 8226 bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds; 8227 unsigned OpOffset = HasVIndex ? 1 : 0; 8228 SDValue VOffset = Op.getOperand(5 + OpOffset); 8229 auto CVOffset = dyn_cast<ConstantSDNode>(VOffset); 8230 bool HasVOffset = !CVOffset || !CVOffset->isZero(); 8231 unsigned Size = Op->getConstantOperandVal(4); 8232 8233 switch (Size) { 8234 default: 8235 return SDValue(); 8236 case 1: 8237 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN 8238 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN 8239 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN 8240 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; 8241 break; 8242 case 2: 8243 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN 8244 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN 8245 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN 8246 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; 8247 break; 8248 case 4: 8249 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN 8250 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN 8251 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN 8252 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; 8253 break; 8254 } 8255 8256 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8257 8258 SmallVector<SDValue, 8> Ops; 8259 8260 if (HasVIndex && HasVOffset) 8261 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, 8262 { Op.getOperand(5), // VIndex 8263 VOffset })); 8264 else if (HasVIndex) 8265 Ops.push_back(Op.getOperand(5)); 8266 else if (HasVOffset) 8267 Ops.push_back(VOffset); 8268 8269 Ops.push_back(Op.getOperand(2)); // rsrc 8270 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset 8271 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset 8272 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); 8273 Ops.push_back( 8274 DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol 8275 Ops.push_back( 8276 DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz 8277 Ops.push_back(M0Val.getValue(0)); // Chain 8278 Ops.push_back(M0Val.getValue(1)); // Glue 8279 8280 auto *M = cast<MemSDNode>(Op); 8281 MachineMemOperand *LoadMMO = M->getMemOperand(); 8282 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8283 LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset); 8284 MachinePointerInfo StorePtrI = LoadPtrI; 8285 StorePtrI.V = nullptr; 8286 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8287 8288 auto F = LoadMMO->getFlags() & 8289 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8290 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8291 Size, LoadMMO->getBaseAlign()); 8292 8293 MachineMemOperand *StoreMMO = 8294 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8295 sizeof(int32_t), LoadMMO->getBaseAlign()); 8296 8297 auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); 8298 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8299 8300 return SDValue(Load, 0); 8301 } 8302 case Intrinsic::amdgcn_global_load_lds: { 8303 unsigned Opc; 8304 unsigned Size = Op->getConstantOperandVal(4); 8305 switch (Size) { 8306 default: 8307 return SDValue(); 8308 case 1: 8309 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; 8310 break; 8311 case 2: 8312 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; 8313 break; 8314 case 4: 8315 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; 8316 break; 8317 } 8318 8319 auto *M = cast<MemSDNode>(Op); 8320 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8321 8322 SmallVector<SDValue, 6> Ops; 8323 8324 SDValue Addr = Op.getOperand(2); // Global ptr 8325 SDValue VOffset; 8326 // Try to split SAddr and VOffset. Global and LDS pointers share the same 8327 // immediate offset, so we cannot use a regular SelectGlobalSAddr(). 8328 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { 8329 SDValue LHS = Addr.getOperand(0); 8330 SDValue RHS = Addr.getOperand(1); 8331 8332 if (LHS->isDivergent()) 8333 std::swap(LHS, RHS); 8334 8335 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && 8336 RHS.getOperand(0).getValueType() == MVT::i32) { 8337 // add (i64 sgpr), (zero_extend (i32 vgpr)) 8338 Addr = LHS; 8339 VOffset = RHS.getOperand(0); 8340 } 8341 } 8342 8343 Ops.push_back(Addr); 8344 if (!Addr->isDivergent()) { 8345 Opc = AMDGPU::getGlobalSaddrOp(Opc); 8346 if (!VOffset) 8347 VOffset = SDValue( 8348 DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, 8349 DAG.getTargetConstant(0, DL, MVT::i32)), 0); 8350 Ops.push_back(VOffset); 8351 } 8352 8353 Ops.push_back(Op.getOperand(5)); // Offset 8354 Ops.push_back(Op.getOperand(6)); // CPol 8355 Ops.push_back(M0Val.getValue(0)); // Chain 8356 Ops.push_back(M0Val.getValue(1)); // Glue 8357 8358 MachineMemOperand *LoadMMO = M->getMemOperand(); 8359 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8360 LoadPtrI.Offset = Op->getConstantOperandVal(5); 8361 MachinePointerInfo StorePtrI = LoadPtrI; 8362 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 8363 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8364 auto F = LoadMMO->getFlags() & 8365 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8366 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8367 Size, LoadMMO->getBaseAlign()); 8368 MachineMemOperand *StoreMMO = 8369 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8370 sizeof(int32_t), Align(4)); 8371 8372 auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 8373 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8374 8375 return SDValue(Load, 0); 8376 } 8377 case Intrinsic::amdgcn_end_cf: 8378 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 8379 Op->getOperand(2), Chain), 0); 8380 8381 default: { 8382 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8383 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8384 return lowerImage(Op, ImageDimIntr, DAG, true); 8385 8386 return Op; 8387 } 8388 } 8389 } 8390 8391 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 8392 // offset (the offset that is included in bounds checking and swizzling, to be 8393 // split between the instruction's voffset and immoffset fields) and soffset 8394 // (the offset that is excluded from bounds checking and swizzling, to go in 8395 // the instruction's soffset field). This function takes the first kind of 8396 // offset and figures out how to split it between voffset and immoffset. 8397 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 8398 SDValue Offset, SelectionDAG &DAG) const { 8399 SDLoc DL(Offset); 8400 const unsigned MaxImm = 4095; 8401 SDValue N0 = Offset; 8402 ConstantSDNode *C1 = nullptr; 8403 8404 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 8405 N0 = SDValue(); 8406 else if (DAG.isBaseWithConstantOffset(N0)) { 8407 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 8408 N0 = N0.getOperand(0); 8409 } 8410 8411 if (C1) { 8412 unsigned ImmOffset = C1->getZExtValue(); 8413 // If the immediate value is too big for the immoffset field, put the value 8414 // and -4096 into the immoffset field so that the value that is copied/added 8415 // for the voffset field is a multiple of 4096, and it stands more chance 8416 // of being CSEd with the copy/add for another similar load/store. 8417 // However, do not do that rounding down to a multiple of 4096 if that is a 8418 // negative number, as it appears to be illegal to have a negative offset 8419 // in the vgpr, even if adding the immediate offset makes it positive. 8420 unsigned Overflow = ImmOffset & ~MaxImm; 8421 ImmOffset -= Overflow; 8422 if ((int32_t)Overflow < 0) { 8423 Overflow += ImmOffset; 8424 ImmOffset = 0; 8425 } 8426 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 8427 if (Overflow) { 8428 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 8429 if (!N0) 8430 N0 = OverflowVal; 8431 else { 8432 SDValue Ops[] = { N0, OverflowVal }; 8433 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 8434 } 8435 } 8436 } 8437 if (!N0) 8438 N0 = DAG.getConstant(0, DL, MVT::i32); 8439 if (!C1) 8440 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 8441 return {N0, SDValue(C1, 0)}; 8442 } 8443 8444 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 8445 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 8446 // pointed to by Offsets. 8447 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 8448 SelectionDAG &DAG, SDValue *Offsets, 8449 Align Alignment) const { 8450 SDLoc DL(CombinedOffset); 8451 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 8452 uint32_t Imm = C->getZExtValue(); 8453 uint32_t SOffset, ImmOffset; 8454 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 8455 Alignment)) { 8456 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 8457 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8458 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8459 return; 8460 } 8461 } 8462 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 8463 SDValue N0 = CombinedOffset.getOperand(0); 8464 SDValue N1 = CombinedOffset.getOperand(1); 8465 uint32_t SOffset, ImmOffset; 8466 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 8467 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 8468 Subtarget, Alignment)) { 8469 Offsets[0] = N0; 8470 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8471 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8472 return; 8473 } 8474 } 8475 Offsets[0] = CombinedOffset; 8476 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 8477 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 8478 } 8479 8480 // Handle 8 bit and 16 bit buffer loads 8481 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 8482 EVT LoadVT, SDLoc DL, 8483 ArrayRef<SDValue> Ops, 8484 MemSDNode *M) const { 8485 EVT IntVT = LoadVT.changeTypeToInteger(); 8486 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 8487 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 8488 8489 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 8490 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 8491 Ops, IntVT, 8492 M->getMemOperand()); 8493 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 8494 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 8495 8496 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 8497 } 8498 8499 // Handle 8 bit and 16 bit buffer stores 8500 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 8501 EVT VDataType, SDLoc DL, 8502 SDValue Ops[], 8503 MemSDNode *M) const { 8504 if (VDataType == MVT::f16) 8505 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 8506 8507 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 8508 Ops[1] = BufferStoreExt; 8509 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 8510 AMDGPUISD::BUFFER_STORE_SHORT; 8511 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 8512 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 8513 M->getMemOperand()); 8514 } 8515 8516 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 8517 ISD::LoadExtType ExtType, SDValue Op, 8518 const SDLoc &SL, EVT VT) { 8519 if (VT.bitsLT(Op.getValueType())) 8520 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 8521 8522 switch (ExtType) { 8523 case ISD::SEXTLOAD: 8524 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 8525 case ISD::ZEXTLOAD: 8526 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 8527 case ISD::EXTLOAD: 8528 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 8529 case ISD::NON_EXTLOAD: 8530 return Op; 8531 } 8532 8533 llvm_unreachable("invalid ext type"); 8534 } 8535 8536 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 8537 SelectionDAG &DAG = DCI.DAG; 8538 if (Ld->getAlign() < Align(4) || Ld->isDivergent()) 8539 return SDValue(); 8540 8541 // FIXME: Constant loads should all be marked invariant. 8542 unsigned AS = Ld->getAddressSpace(); 8543 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 8544 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 8545 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 8546 return SDValue(); 8547 8548 // Don't do this early, since it may interfere with adjacent load merging for 8549 // illegal types. We can avoid losing alignment information for exotic types 8550 // pre-legalize. 8551 EVT MemVT = Ld->getMemoryVT(); 8552 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 8553 MemVT.getSizeInBits() >= 32) 8554 return SDValue(); 8555 8556 SDLoc SL(Ld); 8557 8558 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 8559 "unexpected vector extload"); 8560 8561 // TODO: Drop only high part of range. 8562 SDValue Ptr = Ld->getBasePtr(); 8563 SDValue NewLoad = DAG.getLoad( 8564 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, 8565 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), 8566 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), 8567 nullptr); // Drop ranges 8568 8569 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 8570 if (MemVT.isFloatingPoint()) { 8571 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 8572 "unexpected fp extload"); 8573 TruncVT = MemVT.changeTypeToInteger(); 8574 } 8575 8576 SDValue Cvt = NewLoad; 8577 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 8578 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 8579 DAG.getValueType(TruncVT)); 8580 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 8581 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 8582 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 8583 } else { 8584 assert(Ld->getExtensionType() == ISD::EXTLOAD); 8585 } 8586 8587 EVT VT = Ld->getValueType(0); 8588 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8589 8590 DCI.AddToWorklist(Cvt.getNode()); 8591 8592 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 8593 // the appropriate extension from the 32-bit load. 8594 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 8595 DCI.AddToWorklist(Cvt.getNode()); 8596 8597 // Handle conversion back to floating point if necessary. 8598 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 8599 8600 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 8601 } 8602 8603 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 8604 SDLoc DL(Op); 8605 LoadSDNode *Load = cast<LoadSDNode>(Op); 8606 ISD::LoadExtType ExtType = Load->getExtensionType(); 8607 EVT MemVT = Load->getMemoryVT(); 8608 8609 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 8610 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 8611 return SDValue(); 8612 8613 // FIXME: Copied from PPC 8614 // First, load into 32 bits, then truncate to 1 bit. 8615 8616 SDValue Chain = Load->getChain(); 8617 SDValue BasePtr = Load->getBasePtr(); 8618 MachineMemOperand *MMO = Load->getMemOperand(); 8619 8620 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 8621 8622 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 8623 BasePtr, RealMemVT, MMO); 8624 8625 if (!MemVT.isVector()) { 8626 SDValue Ops[] = { 8627 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 8628 NewLD.getValue(1) 8629 }; 8630 8631 return DAG.getMergeValues(Ops, DL); 8632 } 8633 8634 SmallVector<SDValue, 3> Elts; 8635 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 8636 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 8637 DAG.getConstant(I, DL, MVT::i32)); 8638 8639 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 8640 } 8641 8642 SDValue Ops[] = { 8643 DAG.getBuildVector(MemVT, DL, Elts), 8644 NewLD.getValue(1) 8645 }; 8646 8647 return DAG.getMergeValues(Ops, DL); 8648 } 8649 8650 if (!MemVT.isVector()) 8651 return SDValue(); 8652 8653 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 8654 "Custom lowering for non-i32 vectors hasn't been implemented."); 8655 8656 Align Alignment = Load->getAlign(); 8657 unsigned AS = Load->getAddressSpace(); 8658 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && 8659 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 8660 return SplitVectorLoad(Op, DAG); 8661 } 8662 8663 MachineFunction &MF = DAG.getMachineFunction(); 8664 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8665 // If there is a possibility that flat instruction access scratch memory 8666 // then we need to use the same legalization rules we use for private. 8667 if (AS == AMDGPUAS::FLAT_ADDRESS && 8668 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8669 AS = MFI->hasFlatScratchInit() ? 8670 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8671 8672 unsigned NumElements = MemVT.getVectorNumElements(); 8673 8674 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8675 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 8676 if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { 8677 if (MemVT.isPow2VectorType()) 8678 return SDValue(); 8679 return WidenOrSplitVectorLoad(Op, DAG); 8680 } 8681 // Non-uniform loads will be selected to MUBUF instructions, so they 8682 // have the same legalization requirements as global and private 8683 // loads. 8684 // 8685 } 8686 8687 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8688 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8689 AS == AMDGPUAS::GLOBAL_ADDRESS) { 8690 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 8691 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 8692 Alignment >= Align(4) && NumElements < 32) { 8693 if (MemVT.isPow2VectorType()) 8694 return SDValue(); 8695 return WidenOrSplitVectorLoad(Op, DAG); 8696 } 8697 // Non-uniform loads will be selected to MUBUF instructions, so they 8698 // have the same legalization requirements as global and private 8699 // loads. 8700 // 8701 } 8702 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8703 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8704 AS == AMDGPUAS::GLOBAL_ADDRESS || 8705 AS == AMDGPUAS::FLAT_ADDRESS) { 8706 if (NumElements > 4) 8707 return SplitVectorLoad(Op, DAG); 8708 // v3 loads not supported on SI. 8709 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8710 return WidenOrSplitVectorLoad(Op, DAG); 8711 8712 // v3 and v4 loads are supported for private and global memory. 8713 return SDValue(); 8714 } 8715 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8716 // Depending on the setting of the private_element_size field in the 8717 // resource descriptor, we can only make private accesses up to a certain 8718 // size. 8719 switch (Subtarget->getMaxPrivateElementSize()) { 8720 case 4: { 8721 SDValue Ops[2]; 8722 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 8723 return DAG.getMergeValues(Ops, DL); 8724 } 8725 case 8: 8726 if (NumElements > 2) 8727 return SplitVectorLoad(Op, DAG); 8728 return SDValue(); 8729 case 16: 8730 // Same as global/flat 8731 if (NumElements > 4) 8732 return SplitVectorLoad(Op, DAG); 8733 // v3 loads not supported on SI. 8734 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8735 return WidenOrSplitVectorLoad(Op, DAG); 8736 8737 return SDValue(); 8738 default: 8739 llvm_unreachable("unsupported private_element_size"); 8740 } 8741 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8742 bool Fast = false; 8743 auto Flags = Load->getMemOperand()->getFlags(); 8744 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 8745 Load->getAlign(), Flags, &Fast) && 8746 Fast) 8747 return SDValue(); 8748 8749 if (MemVT.isVector()) 8750 return SplitVectorLoad(Op, DAG); 8751 } 8752 8753 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8754 MemVT, *Load->getMemOperand())) { 8755 SDValue Ops[2]; 8756 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 8757 return DAG.getMergeValues(Ops, DL); 8758 } 8759 8760 return SDValue(); 8761 } 8762 8763 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 8764 EVT VT = Op.getValueType(); 8765 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256) 8766 return splitTernaryVectorOp(Op, DAG); 8767 8768 assert(VT.getSizeInBits() == 64); 8769 8770 SDLoc DL(Op); 8771 SDValue Cond = Op.getOperand(0); 8772 8773 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 8774 SDValue One = DAG.getConstant(1, DL, MVT::i32); 8775 8776 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 8777 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 8778 8779 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 8780 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 8781 8782 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 8783 8784 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 8785 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 8786 8787 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 8788 8789 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 8790 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 8791 } 8792 8793 // Catch division cases where we can use shortcuts with rcp and rsq 8794 // instructions. 8795 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 8796 SelectionDAG &DAG) const { 8797 SDLoc SL(Op); 8798 SDValue LHS = Op.getOperand(0); 8799 SDValue RHS = Op.getOperand(1); 8800 EVT VT = Op.getValueType(); 8801 const SDNodeFlags Flags = Op->getFlags(); 8802 8803 bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); 8804 8805 // Without !fpmath accuracy information, we can't do more because we don't 8806 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8807 if (!AllowInaccurateRcp) 8808 return SDValue(); 8809 8810 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8811 if (CLHS->isExactlyValue(1.0)) { 8812 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8813 // the CI documentation has a worst case error of 1 ulp. 8814 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8815 // use it as long as we aren't trying to use denormals. 8816 // 8817 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8818 8819 // 1.0 / sqrt(x) -> rsq(x) 8820 8821 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8822 // error seems really high at 2^29 ULP. 8823 if (RHS.getOpcode() == ISD::FSQRT) 8824 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8825 8826 // 1.0 / x -> rcp(x) 8827 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8828 } 8829 8830 // Same as for 1.0, but expand the sign out of the constant. 8831 if (CLHS->isExactlyValue(-1.0)) { 8832 // -1.0 / x -> rcp (fneg x) 8833 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8834 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8835 } 8836 } 8837 8838 // Turn into multiply by the reciprocal. 8839 // x / y -> x * (1.0 / y) 8840 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8841 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8842 } 8843 8844 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 8845 SelectionDAG &DAG) const { 8846 SDLoc SL(Op); 8847 SDValue X = Op.getOperand(0); 8848 SDValue Y = Op.getOperand(1); 8849 EVT VT = Op.getValueType(); 8850 const SDNodeFlags Flags = Op->getFlags(); 8851 8852 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 8853 DAG.getTarget().Options.UnsafeFPMath; 8854 if (!AllowInaccurateDiv) 8855 return SDValue(); 8856 8857 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 8858 SDValue One = DAG.getConstantFP(1.0, SL, VT); 8859 8860 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 8861 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8862 8863 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 8864 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8865 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 8866 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 8867 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 8868 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 8869 } 8870 8871 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8872 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8873 SDNodeFlags Flags) { 8874 if (GlueChain->getNumValues() <= 1) { 8875 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8876 } 8877 8878 assert(GlueChain->getNumValues() == 3); 8879 8880 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8881 switch (Opcode) { 8882 default: llvm_unreachable("no chain equivalent for opcode"); 8883 case ISD::FMUL: 8884 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8885 break; 8886 } 8887 8888 return DAG.getNode(Opcode, SL, VTList, 8889 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8890 Flags); 8891 } 8892 8893 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8894 EVT VT, SDValue A, SDValue B, SDValue C, 8895 SDValue GlueChain, SDNodeFlags Flags) { 8896 if (GlueChain->getNumValues() <= 1) { 8897 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8898 } 8899 8900 assert(GlueChain->getNumValues() == 3); 8901 8902 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8903 switch (Opcode) { 8904 default: llvm_unreachable("no chain equivalent for opcode"); 8905 case ISD::FMA: 8906 Opcode = AMDGPUISD::FMA_W_CHAIN; 8907 break; 8908 } 8909 8910 return DAG.getNode(Opcode, SL, VTList, 8911 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8912 Flags); 8913 } 8914 8915 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8916 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8917 return FastLowered; 8918 8919 SDLoc SL(Op); 8920 SDValue Src0 = Op.getOperand(0); 8921 SDValue Src1 = Op.getOperand(1); 8922 8923 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8924 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8925 8926 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8927 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8928 8929 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8930 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8931 8932 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8933 } 8934 8935 // Faster 2.5 ULP division that does not support denormals. 8936 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8937 SDLoc SL(Op); 8938 SDValue LHS = Op.getOperand(1); 8939 SDValue RHS = Op.getOperand(2); 8940 8941 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8942 8943 const APFloat K0Val(BitsToFloat(0x6f800000)); 8944 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8945 8946 const APFloat K1Val(BitsToFloat(0x2f800000)); 8947 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8948 8949 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8950 8951 EVT SetCCVT = 8952 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8953 8954 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8955 8956 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8957 8958 // TODO: Should this propagate fast-math-flags? 8959 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8960 8961 // rcp does not support denormals. 8962 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8963 8964 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8965 8966 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8967 } 8968 8969 // Returns immediate value for setting the F32 denorm mode when using the 8970 // S_DENORM_MODE instruction. 8971 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8972 const SDLoc &SL, const GCNSubtarget *ST) { 8973 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8974 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8975 ? FP_DENORM_FLUSH_NONE 8976 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8977 8978 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8979 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8980 } 8981 8982 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8983 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8984 return FastLowered; 8985 8986 // The selection matcher assumes anything with a chain selecting to a 8987 // mayRaiseFPException machine instruction. Since we're introducing a chain 8988 // here, we need to explicitly report nofpexcept for the regular fdiv 8989 // lowering. 8990 SDNodeFlags Flags = Op->getFlags(); 8991 Flags.setNoFPExcept(true); 8992 8993 SDLoc SL(Op); 8994 SDValue LHS = Op.getOperand(0); 8995 SDValue RHS = Op.getOperand(1); 8996 8997 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8998 8999 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 9000 9001 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9002 {RHS, RHS, LHS}, Flags); 9003 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9004 {LHS, RHS, LHS}, Flags); 9005 9006 // Denominator is scaled to not be denormal, so using rcp is ok. 9007 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 9008 DenominatorScaled, Flags); 9009 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 9010 DenominatorScaled, Flags); 9011 9012 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 9013 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 9014 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 9015 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 9016 9017 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 9018 9019 if (!HasFP32Denormals) { 9020 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 9021 // lowering. The chain dependence is insufficient, and we need glue. We do 9022 // not need the glue variants in a strictfp function. 9023 9024 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 9025 9026 SDNode *EnableDenorm; 9027 if (Subtarget->hasDenormModeInst()) { 9028 const SDValue EnableDenormValue = 9029 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 9030 9031 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 9032 DAG.getEntryNode(), EnableDenormValue).getNode(); 9033 } else { 9034 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 9035 SL, MVT::i32); 9036 EnableDenorm = 9037 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 9038 {EnableDenormValue, BitField, DAG.getEntryNode()}); 9039 } 9040 9041 SDValue Ops[3] = { 9042 NegDivScale0, 9043 SDValue(EnableDenorm, 0), 9044 SDValue(EnableDenorm, 1) 9045 }; 9046 9047 NegDivScale0 = DAG.getMergeValues(Ops, SL); 9048 } 9049 9050 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 9051 ApproxRcp, One, NegDivScale0, Flags); 9052 9053 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 9054 ApproxRcp, Fma0, Flags); 9055 9056 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 9057 Fma1, Fma1, Flags); 9058 9059 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 9060 NumeratorScaled, Mul, Flags); 9061 9062 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 9063 Fma2, Fma1, Mul, Fma2, Flags); 9064 9065 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 9066 NumeratorScaled, Fma3, Flags); 9067 9068 if (!HasFP32Denormals) { 9069 SDNode *DisableDenorm; 9070 if (Subtarget->hasDenormModeInst()) { 9071 const SDValue DisableDenormValue = 9072 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 9073 9074 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 9075 Fma4.getValue(1), DisableDenormValue, 9076 Fma4.getValue(2)).getNode(); 9077 } else { 9078 const SDValue DisableDenormValue = 9079 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 9080 9081 DisableDenorm = DAG.getMachineNode( 9082 AMDGPU::S_SETREG_B32, SL, MVT::Other, 9083 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 9084 } 9085 9086 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 9087 SDValue(DisableDenorm, 0), DAG.getRoot()); 9088 DAG.setRoot(OutputChain); 9089 } 9090 9091 SDValue Scale = NumeratorScaled.getValue(1); 9092 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 9093 {Fma4, Fma1, Fma3, Scale}, Flags); 9094 9095 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 9096 } 9097 9098 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 9099 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 9100 return FastLowered; 9101 9102 SDLoc SL(Op); 9103 SDValue X = Op.getOperand(0); 9104 SDValue Y = Op.getOperand(1); 9105 9106 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 9107 9108 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 9109 9110 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 9111 9112 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 9113 9114 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 9115 9116 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 9117 9118 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 9119 9120 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 9121 9122 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 9123 9124 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 9125 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 9126 9127 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 9128 NegDivScale0, Mul, DivScale1); 9129 9130 SDValue Scale; 9131 9132 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 9133 // Workaround a hardware bug on SI where the condition output from div_scale 9134 // is not usable. 9135 9136 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 9137 9138 // Figure out if the scale to use for div_fmas. 9139 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 9140 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 9141 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 9142 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 9143 9144 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 9145 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 9146 9147 SDValue Scale0Hi 9148 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 9149 SDValue Scale1Hi 9150 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 9151 9152 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 9153 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 9154 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 9155 } else { 9156 Scale = DivScale1.getValue(1); 9157 } 9158 9159 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 9160 Fma4, Fma3, Mul, Scale); 9161 9162 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 9163 } 9164 9165 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 9166 EVT VT = Op.getValueType(); 9167 9168 if (VT == MVT::f32) 9169 return LowerFDIV32(Op, DAG); 9170 9171 if (VT == MVT::f64) 9172 return LowerFDIV64(Op, DAG); 9173 9174 if (VT == MVT::f16) 9175 return LowerFDIV16(Op, DAG); 9176 9177 llvm_unreachable("Unexpected type for fdiv"); 9178 } 9179 9180 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 9181 SDLoc DL(Op); 9182 StoreSDNode *Store = cast<StoreSDNode>(Op); 9183 EVT VT = Store->getMemoryVT(); 9184 9185 if (VT == MVT::i1) { 9186 return DAG.getTruncStore(Store->getChain(), DL, 9187 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 9188 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 9189 } 9190 9191 assert(VT.isVector() && 9192 Store->getValue().getValueType().getScalarType() == MVT::i32); 9193 9194 unsigned AS = Store->getAddressSpace(); 9195 if (Subtarget->hasLDSMisalignedBug() && 9196 AS == AMDGPUAS::FLAT_ADDRESS && 9197 Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 9198 return SplitVectorStore(Op, DAG); 9199 } 9200 9201 MachineFunction &MF = DAG.getMachineFunction(); 9202 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9203 // If there is a possibility that flat instruction access scratch memory 9204 // then we need to use the same legalization rules we use for private. 9205 if (AS == AMDGPUAS::FLAT_ADDRESS && 9206 !Subtarget->hasMultiDwordFlatScratchAddressing()) 9207 AS = MFI->hasFlatScratchInit() ? 9208 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 9209 9210 unsigned NumElements = VT.getVectorNumElements(); 9211 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 9212 AS == AMDGPUAS::FLAT_ADDRESS) { 9213 if (NumElements > 4) 9214 return SplitVectorStore(Op, DAG); 9215 // v3 stores not supported on SI. 9216 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 9217 return SplitVectorStore(Op, DAG); 9218 9219 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 9220 VT, *Store->getMemOperand())) 9221 return expandUnalignedStore(Store, DAG); 9222 9223 return SDValue(); 9224 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 9225 switch (Subtarget->getMaxPrivateElementSize()) { 9226 case 4: 9227 return scalarizeVectorStore(Store, DAG); 9228 case 8: 9229 if (NumElements > 2) 9230 return SplitVectorStore(Op, DAG); 9231 return SDValue(); 9232 case 16: 9233 if (NumElements > 4 || 9234 (NumElements == 3 && !Subtarget->enableFlatScratch())) 9235 return SplitVectorStore(Op, DAG); 9236 return SDValue(); 9237 default: 9238 llvm_unreachable("unsupported private_element_size"); 9239 } 9240 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 9241 bool Fast = false; 9242 auto Flags = Store->getMemOperand()->getFlags(); 9243 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 9244 Store->getAlign(), Flags, &Fast) && 9245 Fast) 9246 return SDValue(); 9247 9248 if (VT.isVector()) 9249 return SplitVectorStore(Op, DAG); 9250 9251 return expandUnalignedStore(Store, DAG); 9252 } 9253 9254 // Probably an invalid store. If so we'll end up emitting a selection error. 9255 return SDValue(); 9256 } 9257 9258 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 9259 SDLoc DL(Op); 9260 EVT VT = Op.getValueType(); 9261 SDValue Arg = Op.getOperand(0); 9262 SDValue TrigVal; 9263 9264 // Propagate fast-math flags so that the multiply we introduce can be folded 9265 // if Arg is already the result of a multiply by constant. 9266 auto Flags = Op->getFlags(); 9267 9268 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 9269 9270 if (Subtarget->hasTrigReducedRange()) { 9271 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9272 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 9273 } else { 9274 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9275 } 9276 9277 switch (Op.getOpcode()) { 9278 case ISD::FCOS: 9279 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 9280 case ISD::FSIN: 9281 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 9282 default: 9283 llvm_unreachable("Wrong trig opcode"); 9284 } 9285 } 9286 9287 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 9288 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 9289 assert(AtomicNode->isCompareAndSwap()); 9290 unsigned AS = AtomicNode->getAddressSpace(); 9291 9292 // No custom lowering required for local address space 9293 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 9294 return Op; 9295 9296 // Non-local address space requires custom lowering for atomic compare 9297 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 9298 SDLoc DL(Op); 9299 SDValue ChainIn = Op.getOperand(0); 9300 SDValue Addr = Op.getOperand(1); 9301 SDValue Old = Op.getOperand(2); 9302 SDValue New = Op.getOperand(3); 9303 EVT VT = Op.getValueType(); 9304 MVT SimpleVT = VT.getSimpleVT(); 9305 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 9306 9307 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 9308 SDValue Ops[] = { ChainIn, Addr, NewOld }; 9309 9310 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 9311 Ops, VT, AtomicNode->getMemOperand()); 9312 } 9313 9314 //===----------------------------------------------------------------------===// 9315 // Custom DAG optimizations 9316 //===----------------------------------------------------------------------===// 9317 9318 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 9319 DAGCombinerInfo &DCI) const { 9320 EVT VT = N->getValueType(0); 9321 EVT ScalarVT = VT.getScalarType(); 9322 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 9323 return SDValue(); 9324 9325 SelectionDAG &DAG = DCI.DAG; 9326 SDLoc DL(N); 9327 9328 SDValue Src = N->getOperand(0); 9329 EVT SrcVT = Src.getValueType(); 9330 9331 // TODO: We could try to match extracting the higher bytes, which would be 9332 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 9333 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 9334 // about in practice. 9335 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 9336 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 9337 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 9338 DCI.AddToWorklist(Cvt.getNode()); 9339 9340 // For the f16 case, fold to a cast to f32 and then cast back to f16. 9341 if (ScalarVT != MVT::f32) { 9342 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 9343 DAG.getTargetConstant(0, DL, MVT::i32)); 9344 } 9345 return Cvt; 9346 } 9347 } 9348 9349 return SDValue(); 9350 } 9351 9352 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 9353 9354 // This is a variant of 9355 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 9356 // 9357 // The normal DAG combiner will do this, but only if the add has one use since 9358 // that would increase the number of instructions. 9359 // 9360 // This prevents us from seeing a constant offset that can be folded into a 9361 // memory instruction's addressing mode. If we know the resulting add offset of 9362 // a pointer can be folded into an addressing offset, we can replace the pointer 9363 // operand with the add of new constant offset. This eliminates one of the uses, 9364 // and may allow the remaining use to also be simplified. 9365 // 9366 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 9367 unsigned AddrSpace, 9368 EVT MemVT, 9369 DAGCombinerInfo &DCI) const { 9370 SDValue N0 = N->getOperand(0); 9371 SDValue N1 = N->getOperand(1); 9372 9373 // We only do this to handle cases where it's profitable when there are 9374 // multiple uses of the add, so defer to the standard combine. 9375 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 9376 N0->hasOneUse()) 9377 return SDValue(); 9378 9379 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 9380 if (!CN1) 9381 return SDValue(); 9382 9383 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 9384 if (!CAdd) 9385 return SDValue(); 9386 9387 // If the resulting offset is too large, we can't fold it into the addressing 9388 // mode offset. 9389 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 9390 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 9391 9392 AddrMode AM; 9393 AM.HasBaseReg = true; 9394 AM.BaseOffs = Offset.getSExtValue(); 9395 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 9396 return SDValue(); 9397 9398 SelectionDAG &DAG = DCI.DAG; 9399 SDLoc SL(N); 9400 EVT VT = N->getValueType(0); 9401 9402 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 9403 SDValue COffset = DAG.getConstant(Offset, SL, VT); 9404 9405 SDNodeFlags Flags; 9406 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 9407 (N0.getOpcode() == ISD::OR || 9408 N0->getFlags().hasNoUnsignedWrap())); 9409 9410 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 9411 } 9412 9413 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 9414 /// by the chain and intrinsic ID. Theoretically we would also need to check the 9415 /// specific intrinsic, but they all place the pointer operand first. 9416 static unsigned getBasePtrIndex(const MemSDNode *N) { 9417 switch (N->getOpcode()) { 9418 case ISD::STORE: 9419 case ISD::INTRINSIC_W_CHAIN: 9420 case ISD::INTRINSIC_VOID: 9421 return 2; 9422 default: 9423 return 1; 9424 } 9425 } 9426 9427 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 9428 DAGCombinerInfo &DCI) const { 9429 SelectionDAG &DAG = DCI.DAG; 9430 SDLoc SL(N); 9431 9432 unsigned PtrIdx = getBasePtrIndex(N); 9433 SDValue Ptr = N->getOperand(PtrIdx); 9434 9435 // TODO: We could also do this for multiplies. 9436 if (Ptr.getOpcode() == ISD::SHL) { 9437 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 9438 N->getMemoryVT(), DCI); 9439 if (NewPtr) { 9440 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 9441 9442 NewOps[PtrIdx] = NewPtr; 9443 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 9444 } 9445 } 9446 9447 return SDValue(); 9448 } 9449 9450 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 9451 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 9452 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 9453 (Opc == ISD::XOR && Val == 0); 9454 } 9455 9456 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 9457 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 9458 // integer combine opportunities since most 64-bit operations are decomposed 9459 // this way. TODO: We won't want this for SALU especially if it is an inline 9460 // immediate. 9461 SDValue SITargetLowering::splitBinaryBitConstantOp( 9462 DAGCombinerInfo &DCI, 9463 const SDLoc &SL, 9464 unsigned Opc, SDValue LHS, 9465 const ConstantSDNode *CRHS) const { 9466 uint64_t Val = CRHS->getZExtValue(); 9467 uint32_t ValLo = Lo_32(Val); 9468 uint32_t ValHi = Hi_32(Val); 9469 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9470 9471 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 9472 bitOpWithConstantIsReducible(Opc, ValHi)) || 9473 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 9474 // If we need to materialize a 64-bit immediate, it will be split up later 9475 // anyway. Avoid creating the harder to understand 64-bit immediate 9476 // materialization. 9477 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 9478 } 9479 9480 return SDValue(); 9481 } 9482 9483 // Returns true if argument is a boolean value which is not serialized into 9484 // memory or argument and does not require v_cndmask_b32 to be deserialized. 9485 static bool isBoolSGPR(SDValue V) { 9486 if (V.getValueType() != MVT::i1) 9487 return false; 9488 switch (V.getOpcode()) { 9489 default: 9490 break; 9491 case ISD::SETCC: 9492 case AMDGPUISD::FP_CLASS: 9493 return true; 9494 case ISD::AND: 9495 case ISD::OR: 9496 case ISD::XOR: 9497 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 9498 } 9499 return false; 9500 } 9501 9502 // If a constant has all zeroes or all ones within each byte return it. 9503 // Otherwise return 0. 9504 static uint32_t getConstantPermuteMask(uint32_t C) { 9505 // 0xff for any zero byte in the mask 9506 uint32_t ZeroByteMask = 0; 9507 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 9508 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 9509 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 9510 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 9511 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 9512 if ((NonZeroByteMask & C) != NonZeroByteMask) 9513 return 0; // Partial bytes selected. 9514 return C; 9515 } 9516 9517 // Check if a node selects whole bytes from its operand 0 starting at a byte 9518 // boundary while masking the rest. Returns select mask as in the v_perm_b32 9519 // or -1 if not succeeded. 9520 // Note byte select encoding: 9521 // value 0-3 selects corresponding source byte; 9522 // value 0xc selects zero; 9523 // value 0xff selects 0xff. 9524 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 9525 assert(V.getValueSizeInBits() == 32); 9526 9527 if (V.getNumOperands() != 2) 9528 return ~0; 9529 9530 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 9531 if (!N1) 9532 return ~0; 9533 9534 uint32_t C = N1->getZExtValue(); 9535 9536 switch (V.getOpcode()) { 9537 default: 9538 break; 9539 case ISD::AND: 9540 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9541 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 9542 } 9543 break; 9544 9545 case ISD::OR: 9546 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9547 return (0x03020100 & ~ConstMask) | ConstMask; 9548 } 9549 break; 9550 9551 case ISD::SHL: 9552 if (C % 8) 9553 return ~0; 9554 9555 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 9556 9557 case ISD::SRL: 9558 if (C % 8) 9559 return ~0; 9560 9561 return uint32_t(0x0c0c0c0c03020100ull >> C); 9562 } 9563 9564 return ~0; 9565 } 9566 9567 SDValue SITargetLowering::performAndCombine(SDNode *N, 9568 DAGCombinerInfo &DCI) const { 9569 if (DCI.isBeforeLegalize()) 9570 return SDValue(); 9571 9572 SelectionDAG &DAG = DCI.DAG; 9573 EVT VT = N->getValueType(0); 9574 SDValue LHS = N->getOperand(0); 9575 SDValue RHS = N->getOperand(1); 9576 9577 9578 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9579 if (VT == MVT::i64 && CRHS) { 9580 if (SDValue Split 9581 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 9582 return Split; 9583 } 9584 9585 if (CRHS && VT == MVT::i32) { 9586 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 9587 // nb = number of trailing zeroes in mask 9588 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 9589 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 9590 uint64_t Mask = CRHS->getZExtValue(); 9591 unsigned Bits = countPopulation(Mask); 9592 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 9593 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 9594 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 9595 unsigned Shift = CShift->getZExtValue(); 9596 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 9597 unsigned Offset = NB + Shift; 9598 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 9599 SDLoc SL(N); 9600 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 9601 LHS->getOperand(0), 9602 DAG.getConstant(Offset, SL, MVT::i32), 9603 DAG.getConstant(Bits, SL, MVT::i32)); 9604 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9605 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 9606 DAG.getValueType(NarrowVT)); 9607 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 9608 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 9609 return Shl; 9610 } 9611 } 9612 } 9613 9614 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9615 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 9616 isa<ConstantSDNode>(LHS.getOperand(2))) { 9617 uint32_t Sel = getConstantPermuteMask(Mask); 9618 if (!Sel) 9619 return SDValue(); 9620 9621 // Select 0xc for all zero bytes 9622 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 9623 SDLoc DL(N); 9624 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9625 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9626 } 9627 } 9628 9629 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 9630 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 9631 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 9632 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9633 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 9634 9635 SDValue X = LHS.getOperand(0); 9636 SDValue Y = RHS.getOperand(0); 9637 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 9638 return SDValue(); 9639 9640 if (LCC == ISD::SETO) { 9641 if (X != LHS.getOperand(1)) 9642 return SDValue(); 9643 9644 if (RCC == ISD::SETUNE) { 9645 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 9646 if (!C1 || !C1->isInfinity() || C1->isNegative()) 9647 return SDValue(); 9648 9649 const uint32_t Mask = SIInstrFlags::N_NORMAL | 9650 SIInstrFlags::N_SUBNORMAL | 9651 SIInstrFlags::N_ZERO | 9652 SIInstrFlags::P_ZERO | 9653 SIInstrFlags::P_SUBNORMAL | 9654 SIInstrFlags::P_NORMAL; 9655 9656 static_assert(((~(SIInstrFlags::S_NAN | 9657 SIInstrFlags::Q_NAN | 9658 SIInstrFlags::N_INFINITY | 9659 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 9660 "mask not equal"); 9661 9662 SDLoc DL(N); 9663 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9664 X, DAG.getConstant(Mask, DL, MVT::i32)); 9665 } 9666 } 9667 } 9668 9669 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 9670 std::swap(LHS, RHS); 9671 9672 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 9673 RHS.hasOneUse()) { 9674 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9675 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 9676 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 9677 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9678 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 9679 (RHS.getOperand(0) == LHS.getOperand(0) && 9680 LHS.getOperand(0) == LHS.getOperand(1))) { 9681 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 9682 unsigned NewMask = LCC == ISD::SETO ? 9683 Mask->getZExtValue() & ~OrdMask : 9684 Mask->getZExtValue() & OrdMask; 9685 9686 SDLoc DL(N); 9687 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 9688 DAG.getConstant(NewMask, DL, MVT::i32)); 9689 } 9690 } 9691 9692 if (VT == MVT::i32 && 9693 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 9694 // and x, (sext cc from i1) => select cc, x, 0 9695 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 9696 std::swap(LHS, RHS); 9697 if (isBoolSGPR(RHS.getOperand(0))) 9698 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 9699 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 9700 } 9701 9702 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9703 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9704 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9705 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9706 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9707 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9708 if (LHSMask != ~0u && RHSMask != ~0u) { 9709 // Canonicalize the expression in an attempt to have fewer unique masks 9710 // and therefore fewer registers used to hold the masks. 9711 if (LHSMask > RHSMask) { 9712 std::swap(LHSMask, RHSMask); 9713 std::swap(LHS, RHS); 9714 } 9715 9716 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9717 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9718 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9719 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9720 9721 // Check of we need to combine values from two sources within a byte. 9722 if (!(LHSUsedLanes & RHSUsedLanes) && 9723 // If we select high and lower word keep it for SDWA. 9724 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9725 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9726 // Each byte in each mask is either selector mask 0-3, or has higher 9727 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 9728 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 9729 // mask which is not 0xff wins. By anding both masks we have a correct 9730 // result except that 0x0c shall be corrected to give 0x0c only. 9731 uint32_t Mask = LHSMask & RHSMask; 9732 for (unsigned I = 0; I < 32; I += 8) { 9733 uint32_t ByteSel = 0xff << I; 9734 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 9735 Mask &= (0x0c << I) & 0xffffffff; 9736 } 9737 9738 // Add 4 to each active LHS lane. It will not affect any existing 0xff 9739 // or 0x0c. 9740 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 9741 SDLoc DL(N); 9742 9743 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9744 LHS.getOperand(0), RHS.getOperand(0), 9745 DAG.getConstant(Sel, DL, MVT::i32)); 9746 } 9747 } 9748 } 9749 9750 return SDValue(); 9751 } 9752 9753 SDValue SITargetLowering::performOrCombine(SDNode *N, 9754 DAGCombinerInfo &DCI) const { 9755 SelectionDAG &DAG = DCI.DAG; 9756 SDValue LHS = N->getOperand(0); 9757 SDValue RHS = N->getOperand(1); 9758 9759 EVT VT = N->getValueType(0); 9760 if (VT == MVT::i1) { 9761 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 9762 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 9763 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 9764 SDValue Src = LHS.getOperand(0); 9765 if (Src != RHS.getOperand(0)) 9766 return SDValue(); 9767 9768 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9769 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9770 if (!CLHS || !CRHS) 9771 return SDValue(); 9772 9773 // Only 10 bits are used. 9774 static const uint32_t MaxMask = 0x3ff; 9775 9776 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 9777 SDLoc DL(N); 9778 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9779 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 9780 } 9781 9782 return SDValue(); 9783 } 9784 9785 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9786 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 9787 LHS.getOpcode() == AMDGPUISD::PERM && 9788 isa<ConstantSDNode>(LHS.getOperand(2))) { 9789 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 9790 if (!Sel) 9791 return SDValue(); 9792 9793 Sel |= LHS.getConstantOperandVal(2); 9794 SDLoc DL(N); 9795 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9796 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9797 } 9798 9799 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9800 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9801 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9802 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9803 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9804 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9805 if (LHSMask != ~0u && RHSMask != ~0u) { 9806 // Canonicalize the expression in an attempt to have fewer unique masks 9807 // and therefore fewer registers used to hold the masks. 9808 if (LHSMask > RHSMask) { 9809 std::swap(LHSMask, RHSMask); 9810 std::swap(LHS, RHS); 9811 } 9812 9813 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9814 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9815 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9816 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9817 9818 // Check of we need to combine values from two sources within a byte. 9819 if (!(LHSUsedLanes & RHSUsedLanes) && 9820 // If we select high and lower word keep it for SDWA. 9821 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9822 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9823 // Kill zero bytes selected by other mask. Zero value is 0xc. 9824 LHSMask &= ~RHSUsedLanes; 9825 RHSMask &= ~LHSUsedLanes; 9826 // Add 4 to each active LHS lane 9827 LHSMask |= LHSUsedLanes & 0x04040404; 9828 // Combine masks 9829 uint32_t Sel = LHSMask | RHSMask; 9830 SDLoc DL(N); 9831 9832 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9833 LHS.getOperand(0), RHS.getOperand(0), 9834 DAG.getConstant(Sel, DL, MVT::i32)); 9835 } 9836 } 9837 } 9838 9839 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9840 return SDValue(); 9841 9842 // TODO: This could be a generic combine with a predicate for extracting the 9843 // high half of an integer being free. 9844 9845 // (or i64:x, (zero_extend i32:y)) -> 9846 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9847 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9848 RHS.getOpcode() != ISD::ZERO_EXTEND) 9849 std::swap(LHS, RHS); 9850 9851 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9852 SDValue ExtSrc = RHS.getOperand(0); 9853 EVT SrcVT = ExtSrc.getValueType(); 9854 if (SrcVT == MVT::i32) { 9855 SDLoc SL(N); 9856 SDValue LowLHS, HiBits; 9857 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9858 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9859 9860 DCI.AddToWorklist(LowOr.getNode()); 9861 DCI.AddToWorklist(HiBits.getNode()); 9862 9863 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9864 LowOr, HiBits); 9865 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9866 } 9867 } 9868 9869 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9870 if (CRHS) { 9871 if (SDValue Split 9872 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 9873 N->getOperand(0), CRHS)) 9874 return Split; 9875 } 9876 9877 return SDValue(); 9878 } 9879 9880 SDValue SITargetLowering::performXorCombine(SDNode *N, 9881 DAGCombinerInfo &DCI) const { 9882 if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) 9883 return RV; 9884 9885 EVT VT = N->getValueType(0); 9886 if (VT != MVT::i64) 9887 return SDValue(); 9888 9889 SDValue LHS = N->getOperand(0); 9890 SDValue RHS = N->getOperand(1); 9891 9892 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9893 if (CRHS) { 9894 if (SDValue Split 9895 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9896 return Split; 9897 } 9898 9899 return SDValue(); 9900 } 9901 9902 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9903 DAGCombinerInfo &DCI) const { 9904 if (!Subtarget->has16BitInsts() || 9905 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9906 return SDValue(); 9907 9908 EVT VT = N->getValueType(0); 9909 if (VT != MVT::i32) 9910 return SDValue(); 9911 9912 SDValue Src = N->getOperand(0); 9913 if (Src.getValueType() != MVT::i16) 9914 return SDValue(); 9915 9916 return SDValue(); 9917 } 9918 9919 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9920 DAGCombinerInfo &DCI) 9921 const { 9922 SDValue Src = N->getOperand(0); 9923 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9924 9925 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9926 VTSign->getVT() == MVT::i8) || 9927 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9928 VTSign->getVT() == MVT::i16)) && 9929 Src.hasOneUse()) { 9930 auto *M = cast<MemSDNode>(Src); 9931 SDValue Ops[] = { 9932 Src.getOperand(0), // Chain 9933 Src.getOperand(1), // rsrc 9934 Src.getOperand(2), // vindex 9935 Src.getOperand(3), // voffset 9936 Src.getOperand(4), // soffset 9937 Src.getOperand(5), // offset 9938 Src.getOperand(6), 9939 Src.getOperand(7) 9940 }; 9941 // replace with BUFFER_LOAD_BYTE/SHORT 9942 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9943 Src.getOperand(0).getValueType()); 9944 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9945 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9946 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9947 ResList, 9948 Ops, M->getMemoryVT(), 9949 M->getMemOperand()); 9950 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9951 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9952 } 9953 return SDValue(); 9954 } 9955 9956 SDValue SITargetLowering::performClassCombine(SDNode *N, 9957 DAGCombinerInfo &DCI) const { 9958 SelectionDAG &DAG = DCI.DAG; 9959 SDValue Mask = N->getOperand(1); 9960 9961 // fp_class x, 0 -> false 9962 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9963 if (CMask->isZero()) 9964 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9965 } 9966 9967 if (N->getOperand(0).isUndef()) 9968 return DAG.getUNDEF(MVT::i1); 9969 9970 return SDValue(); 9971 } 9972 9973 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9974 DAGCombinerInfo &DCI) const { 9975 EVT VT = N->getValueType(0); 9976 SDValue N0 = N->getOperand(0); 9977 9978 if (N0.isUndef()) 9979 return N0; 9980 9981 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9982 N0.getOpcode() == ISD::SINT_TO_FP)) { 9983 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9984 N->getFlags()); 9985 } 9986 9987 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9988 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9989 N0.getOperand(0), N->getFlags()); 9990 } 9991 9992 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9993 } 9994 9995 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9996 unsigned MaxDepth) const { 9997 unsigned Opcode = Op.getOpcode(); 9998 if (Opcode == ISD::FCANONICALIZE) 9999 return true; 10000 10001 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10002 auto F = CFP->getValueAPF(); 10003 if (F.isNaN() && F.isSignaling()) 10004 return false; 10005 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 10006 } 10007 10008 // If source is a result of another standard FP operation it is already in 10009 // canonical form. 10010 if (MaxDepth == 0) 10011 return false; 10012 10013 switch (Opcode) { 10014 // These will flush denorms if required. 10015 case ISD::FADD: 10016 case ISD::FSUB: 10017 case ISD::FMUL: 10018 case ISD::FCEIL: 10019 case ISD::FFLOOR: 10020 case ISD::FMA: 10021 case ISD::FMAD: 10022 case ISD::FSQRT: 10023 case ISD::FDIV: 10024 case ISD::FREM: 10025 case ISD::FP_ROUND: 10026 case ISD::FP_EXTEND: 10027 case AMDGPUISD::FMUL_LEGACY: 10028 case AMDGPUISD::FMAD_FTZ: 10029 case AMDGPUISD::RCP: 10030 case AMDGPUISD::RSQ: 10031 case AMDGPUISD::RSQ_CLAMP: 10032 case AMDGPUISD::RCP_LEGACY: 10033 case AMDGPUISD::RCP_IFLAG: 10034 case AMDGPUISD::DIV_SCALE: 10035 case AMDGPUISD::DIV_FMAS: 10036 case AMDGPUISD::DIV_FIXUP: 10037 case AMDGPUISD::FRACT: 10038 case AMDGPUISD::LDEXP: 10039 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10040 case AMDGPUISD::CVT_F32_UBYTE0: 10041 case AMDGPUISD::CVT_F32_UBYTE1: 10042 case AMDGPUISD::CVT_F32_UBYTE2: 10043 case AMDGPUISD::CVT_F32_UBYTE3: 10044 return true; 10045 10046 // It can/will be lowered or combined as a bit operation. 10047 // Need to check their input recursively to handle. 10048 case ISD::FNEG: 10049 case ISD::FABS: 10050 case ISD::FCOPYSIGN: 10051 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10052 10053 case ISD::FSIN: 10054 case ISD::FCOS: 10055 case ISD::FSINCOS: 10056 return Op.getValueType().getScalarType() != MVT::f16; 10057 10058 case ISD::FMINNUM: 10059 case ISD::FMAXNUM: 10060 case ISD::FMINNUM_IEEE: 10061 case ISD::FMAXNUM_IEEE: 10062 case AMDGPUISD::CLAMP: 10063 case AMDGPUISD::FMED3: 10064 case AMDGPUISD::FMAX3: 10065 case AMDGPUISD::FMIN3: { 10066 // FIXME: Shouldn't treat the generic operations different based these. 10067 // However, we aren't really required to flush the result from 10068 // minnum/maxnum.. 10069 10070 // snans will be quieted, so we only need to worry about denormals. 10071 if (Subtarget->supportsMinMaxDenormModes() || 10072 denormalsEnabledForType(DAG, Op.getValueType())) 10073 return true; 10074 10075 // Flushing may be required. 10076 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 10077 // targets need to check their input recursively. 10078 10079 // FIXME: Does this apply with clamp? It's implemented with max. 10080 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 10081 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 10082 return false; 10083 } 10084 10085 return true; 10086 } 10087 case ISD::SELECT: { 10088 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 10089 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 10090 } 10091 case ISD::BUILD_VECTOR: { 10092 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 10093 SDValue SrcOp = Op.getOperand(i); 10094 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 10095 return false; 10096 } 10097 10098 return true; 10099 } 10100 case ISD::EXTRACT_VECTOR_ELT: 10101 case ISD::EXTRACT_SUBVECTOR: { 10102 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10103 } 10104 case ISD::INSERT_VECTOR_ELT: { 10105 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 10106 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 10107 } 10108 case ISD::UNDEF: 10109 // Could be anything. 10110 return false; 10111 10112 case ISD::BITCAST: 10113 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10114 case ISD::TRUNCATE: { 10115 // Hack round the mess we make when legalizing extract_vector_elt 10116 if (Op.getValueType() == MVT::i16) { 10117 SDValue TruncSrc = Op.getOperand(0); 10118 if (TruncSrc.getValueType() == MVT::i32 && 10119 TruncSrc.getOpcode() == ISD::BITCAST && 10120 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 10121 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 10122 } 10123 } 10124 return false; 10125 } 10126 case ISD::INTRINSIC_WO_CHAIN: { 10127 unsigned IntrinsicID 10128 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10129 // TODO: Handle more intrinsics 10130 switch (IntrinsicID) { 10131 case Intrinsic::amdgcn_cvt_pkrtz: 10132 case Intrinsic::amdgcn_cubeid: 10133 case Intrinsic::amdgcn_frexp_mant: 10134 case Intrinsic::amdgcn_fdot2: 10135 case Intrinsic::amdgcn_rcp: 10136 case Intrinsic::amdgcn_rsq: 10137 case Intrinsic::amdgcn_rsq_clamp: 10138 case Intrinsic::amdgcn_rcp_legacy: 10139 case Intrinsic::amdgcn_rsq_legacy: 10140 case Intrinsic::amdgcn_trig_preop: 10141 return true; 10142 default: 10143 break; 10144 } 10145 10146 LLVM_FALLTHROUGH; 10147 } 10148 default: 10149 return denormalsEnabledForType(DAG, Op.getValueType()) && 10150 DAG.isKnownNeverSNaN(Op); 10151 } 10152 10153 llvm_unreachable("invalid operation"); 10154 } 10155 10156 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 10157 unsigned MaxDepth) const { 10158 MachineRegisterInfo &MRI = MF.getRegInfo(); 10159 MachineInstr *MI = MRI.getVRegDef(Reg); 10160 unsigned Opcode = MI->getOpcode(); 10161 10162 if (Opcode == AMDGPU::G_FCANONICALIZE) 10163 return true; 10164 10165 Optional<FPValueAndVReg> FCR; 10166 // Constant splat (can be padded with undef) or scalar constant. 10167 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 10168 if (FCR->Value.isSignaling()) 10169 return false; 10170 return !FCR->Value.isDenormal() || 10171 denormalsEnabledForType(MRI.getType(FCR->VReg), MF); 10172 } 10173 10174 if (MaxDepth == 0) 10175 return false; 10176 10177 switch (Opcode) { 10178 case AMDGPU::G_FMINNUM_IEEE: 10179 case AMDGPU::G_FMAXNUM_IEEE: { 10180 if (Subtarget->supportsMinMaxDenormModes() || 10181 denormalsEnabledForType(MRI.getType(Reg), MF)) 10182 return true; 10183 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 10184 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 10185 return false; 10186 return true; 10187 } 10188 default: 10189 return denormalsEnabledForType(MRI.getType(Reg), MF) && 10190 isKnownNeverSNaN(Reg, MRI); 10191 } 10192 10193 llvm_unreachable("invalid operation"); 10194 } 10195 10196 // Constant fold canonicalize. 10197 SDValue SITargetLowering::getCanonicalConstantFP( 10198 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 10199 // Flush denormals to 0 if not enabled. 10200 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 10201 return DAG.getConstantFP(0.0, SL, VT); 10202 10203 if (C.isNaN()) { 10204 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 10205 if (C.isSignaling()) { 10206 // Quiet a signaling NaN. 10207 // FIXME: Is this supposed to preserve payload bits? 10208 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 10209 } 10210 10211 // Make sure it is the canonical NaN bitpattern. 10212 // 10213 // TODO: Can we use -1 as the canonical NaN value since it's an inline 10214 // immediate? 10215 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 10216 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 10217 } 10218 10219 // Already canonical. 10220 return DAG.getConstantFP(C, SL, VT); 10221 } 10222 10223 static bool vectorEltWillFoldAway(SDValue Op) { 10224 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 10225 } 10226 10227 SDValue SITargetLowering::performFCanonicalizeCombine( 10228 SDNode *N, 10229 DAGCombinerInfo &DCI) const { 10230 SelectionDAG &DAG = DCI.DAG; 10231 SDValue N0 = N->getOperand(0); 10232 EVT VT = N->getValueType(0); 10233 10234 // fcanonicalize undef -> qnan 10235 if (N0.isUndef()) { 10236 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 10237 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 10238 } 10239 10240 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 10241 EVT VT = N->getValueType(0); 10242 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 10243 } 10244 10245 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 10246 // (fcanonicalize k) 10247 // 10248 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 10249 10250 // TODO: This could be better with wider vectors that will be split to v2f16, 10251 // and to consider uses since there aren't that many packed operations. 10252 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 10253 isTypeLegal(MVT::v2f16)) { 10254 SDLoc SL(N); 10255 SDValue NewElts[2]; 10256 SDValue Lo = N0.getOperand(0); 10257 SDValue Hi = N0.getOperand(1); 10258 EVT EltVT = Lo.getValueType(); 10259 10260 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 10261 for (unsigned I = 0; I != 2; ++I) { 10262 SDValue Op = N0.getOperand(I); 10263 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10264 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 10265 CFP->getValueAPF()); 10266 } else if (Op.isUndef()) { 10267 // Handled below based on what the other operand is. 10268 NewElts[I] = Op; 10269 } else { 10270 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 10271 } 10272 } 10273 10274 // If one half is undef, and one is constant, prefer a splat vector rather 10275 // than the normal qNaN. If it's a register, prefer 0.0 since that's 10276 // cheaper to use and may be free with a packed operation. 10277 if (NewElts[0].isUndef()) { 10278 if (isa<ConstantFPSDNode>(NewElts[1])) 10279 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 10280 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 10281 } 10282 10283 if (NewElts[1].isUndef()) { 10284 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 10285 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 10286 } 10287 10288 return DAG.getBuildVector(VT, SL, NewElts); 10289 } 10290 } 10291 10292 unsigned SrcOpc = N0.getOpcode(); 10293 10294 // If it's free to do so, push canonicalizes further up the source, which may 10295 // find a canonical source. 10296 // 10297 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 10298 // sNaNs. 10299 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 10300 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 10301 if (CRHS && N0.hasOneUse()) { 10302 SDLoc SL(N); 10303 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 10304 N0.getOperand(0)); 10305 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 10306 DCI.AddToWorklist(Canon0.getNode()); 10307 10308 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 10309 } 10310 } 10311 10312 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 10313 } 10314 10315 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 10316 switch (Opc) { 10317 case ISD::FMAXNUM: 10318 case ISD::FMAXNUM_IEEE: 10319 return AMDGPUISD::FMAX3; 10320 case ISD::SMAX: 10321 return AMDGPUISD::SMAX3; 10322 case ISD::UMAX: 10323 return AMDGPUISD::UMAX3; 10324 case ISD::FMINNUM: 10325 case ISD::FMINNUM_IEEE: 10326 return AMDGPUISD::FMIN3; 10327 case ISD::SMIN: 10328 return AMDGPUISD::SMIN3; 10329 case ISD::UMIN: 10330 return AMDGPUISD::UMIN3; 10331 default: 10332 llvm_unreachable("Not a min/max opcode"); 10333 } 10334 } 10335 10336 SDValue SITargetLowering::performIntMed3ImmCombine( 10337 SelectionDAG &DAG, const SDLoc &SL, 10338 SDValue Op0, SDValue Op1, bool Signed) const { 10339 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 10340 if (!K1) 10341 return SDValue(); 10342 10343 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 10344 if (!K0) 10345 return SDValue(); 10346 10347 if (Signed) { 10348 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 10349 return SDValue(); 10350 } else { 10351 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 10352 return SDValue(); 10353 } 10354 10355 EVT VT = K0->getValueType(0); 10356 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 10357 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 10358 return DAG.getNode(Med3Opc, SL, VT, 10359 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 10360 } 10361 10362 // If there isn't a 16-bit med3 operation, convert to 32-bit. 10363 if (VT == MVT::i16) { 10364 MVT NVT = MVT::i32; 10365 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10366 10367 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 10368 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 10369 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 10370 10371 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 10372 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 10373 } 10374 10375 return SDValue(); 10376 } 10377 10378 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 10379 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 10380 return C; 10381 10382 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 10383 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 10384 return C; 10385 } 10386 10387 return nullptr; 10388 } 10389 10390 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 10391 const SDLoc &SL, 10392 SDValue Op0, 10393 SDValue Op1) const { 10394 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 10395 if (!K1) 10396 return SDValue(); 10397 10398 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 10399 if (!K0) 10400 return SDValue(); 10401 10402 // Ordered >= (although NaN inputs should have folded away by now). 10403 if (K0->getValueAPF() > K1->getValueAPF()) 10404 return SDValue(); 10405 10406 const MachineFunction &MF = DAG.getMachineFunction(); 10407 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10408 10409 // TODO: Check IEEE bit enabled? 10410 EVT VT = Op0.getValueType(); 10411 if (Info->getMode().DX10Clamp) { 10412 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 10413 // hardware fmed3 behavior converting to a min. 10414 // FIXME: Should this be allowing -0.0? 10415 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 10416 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 10417 } 10418 10419 // med3 for f16 is only available on gfx9+, and not available for v2f16. 10420 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 10421 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 10422 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 10423 // then give the other result, which is different from med3 with a NaN 10424 // input. 10425 SDValue Var = Op0.getOperand(0); 10426 if (!DAG.isKnownNeverSNaN(Var)) 10427 return SDValue(); 10428 10429 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10430 10431 if ((!K0->hasOneUse() || 10432 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 10433 (!K1->hasOneUse() || 10434 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 10435 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 10436 Var, SDValue(K0, 0), SDValue(K1, 0)); 10437 } 10438 } 10439 10440 return SDValue(); 10441 } 10442 10443 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 10444 DAGCombinerInfo &DCI) const { 10445 SelectionDAG &DAG = DCI.DAG; 10446 10447 EVT VT = N->getValueType(0); 10448 unsigned Opc = N->getOpcode(); 10449 SDValue Op0 = N->getOperand(0); 10450 SDValue Op1 = N->getOperand(1); 10451 10452 // Only do this if the inner op has one use since this will just increases 10453 // register pressure for no benefit. 10454 10455 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 10456 !VT.isVector() && 10457 (VT == MVT::i32 || VT == MVT::f32 || 10458 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 10459 // max(max(a, b), c) -> max3(a, b, c) 10460 // min(min(a, b), c) -> min3(a, b, c) 10461 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 10462 SDLoc DL(N); 10463 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10464 DL, 10465 N->getValueType(0), 10466 Op0.getOperand(0), 10467 Op0.getOperand(1), 10468 Op1); 10469 } 10470 10471 // Try commuted. 10472 // max(a, max(b, c)) -> max3(a, b, c) 10473 // min(a, min(b, c)) -> min3(a, b, c) 10474 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 10475 SDLoc DL(N); 10476 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10477 DL, 10478 N->getValueType(0), 10479 Op0, 10480 Op1.getOperand(0), 10481 Op1.getOperand(1)); 10482 } 10483 } 10484 10485 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 10486 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 10487 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 10488 return Med3; 10489 } 10490 10491 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 10492 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 10493 return Med3; 10494 } 10495 10496 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 10497 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 10498 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 10499 (Opc == AMDGPUISD::FMIN_LEGACY && 10500 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 10501 (VT == MVT::f32 || VT == MVT::f64 || 10502 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 10503 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 10504 Op0.hasOneUse()) { 10505 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 10506 return Res; 10507 } 10508 10509 return SDValue(); 10510 } 10511 10512 static bool isClampZeroToOne(SDValue A, SDValue B) { 10513 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 10514 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 10515 // FIXME: Should this be allowing -0.0? 10516 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 10517 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 10518 } 10519 } 10520 10521 return false; 10522 } 10523 10524 // FIXME: Should only worry about snans for version with chain. 10525 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 10526 DAGCombinerInfo &DCI) const { 10527 EVT VT = N->getValueType(0); 10528 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 10529 // NaNs. With a NaN input, the order of the operands may change the result. 10530 10531 SelectionDAG &DAG = DCI.DAG; 10532 SDLoc SL(N); 10533 10534 SDValue Src0 = N->getOperand(0); 10535 SDValue Src1 = N->getOperand(1); 10536 SDValue Src2 = N->getOperand(2); 10537 10538 if (isClampZeroToOne(Src0, Src1)) { 10539 // const_a, const_b, x -> clamp is safe in all cases including signaling 10540 // nans. 10541 // FIXME: Should this be allowing -0.0? 10542 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 10543 } 10544 10545 const MachineFunction &MF = DAG.getMachineFunction(); 10546 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10547 10548 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 10549 // handling no dx10-clamp? 10550 if (Info->getMode().DX10Clamp) { 10551 // If NaNs is clamped to 0, we are free to reorder the inputs. 10552 10553 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10554 std::swap(Src0, Src1); 10555 10556 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 10557 std::swap(Src1, Src2); 10558 10559 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10560 std::swap(Src0, Src1); 10561 10562 if (isClampZeroToOne(Src1, Src2)) 10563 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 10564 } 10565 10566 return SDValue(); 10567 } 10568 10569 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 10570 DAGCombinerInfo &DCI) const { 10571 SDValue Src0 = N->getOperand(0); 10572 SDValue Src1 = N->getOperand(1); 10573 if (Src0.isUndef() && Src1.isUndef()) 10574 return DCI.DAG.getUNDEF(N->getValueType(0)); 10575 return SDValue(); 10576 } 10577 10578 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 10579 // expanded into a set of cmp/select instructions. 10580 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 10581 unsigned NumElem, 10582 bool IsDivergentIdx, 10583 const GCNSubtarget *Subtarget) { 10584 if (UseDivergentRegisterIndexing) 10585 return false; 10586 10587 unsigned VecSize = EltSize * NumElem; 10588 10589 // Sub-dword vectors of size 2 dword or less have better implementation. 10590 if (VecSize <= 64 && EltSize < 32) 10591 return false; 10592 10593 // Always expand the rest of sub-dword instructions, otherwise it will be 10594 // lowered via memory. 10595 if (EltSize < 32) 10596 return true; 10597 10598 // Always do this if var-idx is divergent, otherwise it will become a loop. 10599 if (IsDivergentIdx) 10600 return true; 10601 10602 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 10603 unsigned NumInsts = NumElem /* Number of compares */ + 10604 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 10605 10606 // On some architectures (GFX9) movrel is not available and it's better 10607 // to expand. 10608 if (!Subtarget->hasMovrel()) 10609 return NumInsts <= 16; 10610 10611 // If movrel is available, use it instead of expanding for vector of 8 10612 // elements. 10613 return NumInsts <= 15; 10614 } 10615 10616 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { 10617 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 10618 if (isa<ConstantSDNode>(Idx)) 10619 return false; 10620 10621 SDValue Vec = N->getOperand(0); 10622 EVT VecVT = Vec.getValueType(); 10623 EVT EltVT = VecVT.getVectorElementType(); 10624 unsigned EltSize = EltVT.getSizeInBits(); 10625 unsigned NumElem = VecVT.getVectorNumElements(); 10626 10627 return SITargetLowering::shouldExpandVectorDynExt( 10628 EltSize, NumElem, Idx->isDivergent(), getSubtarget()); 10629 } 10630 10631 SDValue SITargetLowering::performExtractVectorEltCombine( 10632 SDNode *N, DAGCombinerInfo &DCI) const { 10633 SDValue Vec = N->getOperand(0); 10634 SelectionDAG &DAG = DCI.DAG; 10635 10636 EVT VecVT = Vec.getValueType(); 10637 EVT EltVT = VecVT.getVectorElementType(); 10638 10639 if ((Vec.getOpcode() == ISD::FNEG || 10640 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 10641 SDLoc SL(N); 10642 EVT EltVT = N->getValueType(0); 10643 SDValue Idx = N->getOperand(1); 10644 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10645 Vec.getOperand(0), Idx); 10646 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 10647 } 10648 10649 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 10650 // => 10651 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 10652 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 10653 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 10654 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 10655 SDLoc SL(N); 10656 EVT EltVT = N->getValueType(0); 10657 SDValue Idx = N->getOperand(1); 10658 unsigned Opc = Vec.getOpcode(); 10659 10660 switch(Opc) { 10661 default: 10662 break; 10663 // TODO: Support other binary operations. 10664 case ISD::FADD: 10665 case ISD::FSUB: 10666 case ISD::FMUL: 10667 case ISD::ADD: 10668 case ISD::UMIN: 10669 case ISD::UMAX: 10670 case ISD::SMIN: 10671 case ISD::SMAX: 10672 case ISD::FMAXNUM: 10673 case ISD::FMINNUM: 10674 case ISD::FMAXNUM_IEEE: 10675 case ISD::FMINNUM_IEEE: { 10676 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10677 Vec.getOperand(0), Idx); 10678 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10679 Vec.getOperand(1), Idx); 10680 10681 DCI.AddToWorklist(Elt0.getNode()); 10682 DCI.AddToWorklist(Elt1.getNode()); 10683 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 10684 } 10685 } 10686 } 10687 10688 unsigned VecSize = VecVT.getSizeInBits(); 10689 unsigned EltSize = EltVT.getSizeInBits(); 10690 10691 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 10692 if (shouldExpandVectorDynExt(N)) { 10693 SDLoc SL(N); 10694 SDValue Idx = N->getOperand(1); 10695 SDValue V; 10696 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10697 SDValue IC = DAG.getVectorIdxConstant(I, SL); 10698 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10699 if (I == 0) 10700 V = Elt; 10701 else 10702 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 10703 } 10704 return V; 10705 } 10706 10707 if (!DCI.isBeforeLegalize()) 10708 return SDValue(); 10709 10710 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 10711 // elements. This exposes more load reduction opportunities by replacing 10712 // multiple small extract_vector_elements with a single 32-bit extract. 10713 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10714 if (isa<MemSDNode>(Vec) && 10715 EltSize <= 16 && 10716 EltVT.isByteSized() && 10717 VecSize > 32 && 10718 VecSize % 32 == 0 && 10719 Idx) { 10720 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 10721 10722 unsigned BitIndex = Idx->getZExtValue() * EltSize; 10723 unsigned EltIdx = BitIndex / 32; 10724 unsigned LeftoverBitIdx = BitIndex % 32; 10725 SDLoc SL(N); 10726 10727 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 10728 DCI.AddToWorklist(Cast.getNode()); 10729 10730 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 10731 DAG.getConstant(EltIdx, SL, MVT::i32)); 10732 DCI.AddToWorklist(Elt.getNode()); 10733 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 10734 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 10735 DCI.AddToWorklist(Srl.getNode()); 10736 10737 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 10738 DCI.AddToWorklist(Trunc.getNode()); 10739 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 10740 } 10741 10742 return SDValue(); 10743 } 10744 10745 SDValue 10746 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 10747 DAGCombinerInfo &DCI) const { 10748 SDValue Vec = N->getOperand(0); 10749 SDValue Idx = N->getOperand(2); 10750 EVT VecVT = Vec.getValueType(); 10751 EVT EltVT = VecVT.getVectorElementType(); 10752 10753 // INSERT_VECTOR_ELT (<n x e>, var-idx) 10754 // => BUILD_VECTOR n x select (e, const-idx) 10755 if (!shouldExpandVectorDynExt(N)) 10756 return SDValue(); 10757 10758 SelectionDAG &DAG = DCI.DAG; 10759 SDLoc SL(N); 10760 SDValue Ins = N->getOperand(1); 10761 EVT IdxVT = Idx.getValueType(); 10762 10763 SmallVector<SDValue, 16> Ops; 10764 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10765 SDValue IC = DAG.getConstant(I, SL, IdxVT); 10766 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10767 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 10768 Ops.push_back(V); 10769 } 10770 10771 return DAG.getBuildVector(VecVT, SL, Ops); 10772 } 10773 10774 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 10775 const SDNode *N0, 10776 const SDNode *N1) const { 10777 EVT VT = N0->getValueType(0); 10778 10779 // Only do this if we are not trying to support denormals. v_mad_f32 does not 10780 // support denormals ever. 10781 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 10782 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 10783 getSubtarget()->hasMadF16())) && 10784 isOperationLegal(ISD::FMAD, VT)) 10785 return ISD::FMAD; 10786 10787 const TargetOptions &Options = DAG.getTarget().Options; 10788 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10789 (N0->getFlags().hasAllowContract() && 10790 N1->getFlags().hasAllowContract())) && 10791 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 10792 return ISD::FMA; 10793 } 10794 10795 return 0; 10796 } 10797 10798 // For a reassociatable opcode perform: 10799 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 10800 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 10801 SelectionDAG &DAG) const { 10802 EVT VT = N->getValueType(0); 10803 if (VT != MVT::i32 && VT != MVT::i64) 10804 return SDValue(); 10805 10806 if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) 10807 return SDValue(); 10808 10809 unsigned Opc = N->getOpcode(); 10810 SDValue Op0 = N->getOperand(0); 10811 SDValue Op1 = N->getOperand(1); 10812 10813 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 10814 return SDValue(); 10815 10816 if (Op0->isDivergent()) 10817 std::swap(Op0, Op1); 10818 10819 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 10820 return SDValue(); 10821 10822 SDValue Op2 = Op1.getOperand(1); 10823 Op1 = Op1.getOperand(0); 10824 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 10825 return SDValue(); 10826 10827 if (Op1->isDivergent()) 10828 std::swap(Op1, Op2); 10829 10830 SDLoc SL(N); 10831 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10832 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10833 } 10834 10835 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10836 EVT VT, 10837 SDValue N0, SDValue N1, SDValue N2, 10838 bool Signed) { 10839 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10840 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10841 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10842 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10843 } 10844 10845 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high 10846 // multiplies, if any. 10847 // 10848 // Full 64-bit multiplies that feed into an addition are lowered here instead 10849 // of using the generic expansion. The generic expansion ends up with 10850 // a tree of ADD nodes that prevents us from using the "add" part of the 10851 // MAD instruction. The expansion produced here results in a chain of ADDs 10852 // instead of a tree. 10853 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, 10854 DAGCombinerInfo &DCI) const { 10855 assert(N->getOpcode() == ISD::ADD); 10856 10857 SelectionDAG &DAG = DCI.DAG; 10858 EVT VT = N->getValueType(0); 10859 SDLoc SL(N); 10860 SDValue LHS = N->getOperand(0); 10861 SDValue RHS = N->getOperand(1); 10862 10863 if (VT.isVector()) 10864 return SDValue(); 10865 10866 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall 10867 // result in scalar registers for uniform values. 10868 if (!N->isDivergent() && Subtarget->hasSMulHi()) 10869 return SDValue(); 10870 10871 unsigned NumBits = VT.getScalarSizeInBits(); 10872 if (NumBits <= 32 || NumBits > 64) 10873 return SDValue(); 10874 10875 if (LHS.getOpcode() != ISD::MUL) { 10876 assert(RHS.getOpcode() == ISD::MUL); 10877 std::swap(LHS, RHS); 10878 } 10879 10880 // Avoid the fold if it would unduly increase the number of multiplies due to 10881 // multiple uses, except on hardware with full-rate multiply-add (which is 10882 // part of full-rate 64-bit ops). 10883 if (!Subtarget->hasFullRate64Ops()) { 10884 unsigned NumUsers = 0; 10885 for (SDNode *Use : LHS->uses()) { 10886 // There is a use that does not feed into addition, so the multiply can't 10887 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. 10888 if (Use->getOpcode() != ISD::ADD) 10889 return SDValue(); 10890 10891 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer 10892 // MUL + 3xADD + 3xADDC over 3xMAD. 10893 ++NumUsers; 10894 if (NumUsers >= 3) 10895 return SDValue(); 10896 } 10897 } 10898 10899 SDValue MulLHS = LHS.getOperand(0); 10900 SDValue MulRHS = LHS.getOperand(1); 10901 SDValue AddRHS = RHS; 10902 10903 // Always check whether operands are small unsigned values, since that 10904 // knowledge is useful in more cases. Check for small signed values only if 10905 // doing so can unlock a shorter code sequence. 10906 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; 10907 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; 10908 10909 bool MulSignedLo = false; 10910 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { 10911 MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && 10912 numBitsSigned(MulRHS, DAG) <= 32; 10913 } 10914 10915 // The operands and final result all have the same number of bits. If 10916 // operands need to be extended, they can be extended with garbage. The 10917 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is 10918 // truncated away in the end. 10919 if (VT != MVT::i64) { 10920 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); 10921 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); 10922 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); 10923 } 10924 10925 // The basic code generated is conceptually straightforward. Pseudo code: 10926 // 10927 // accum = mad_64_32 lhs.lo, rhs.lo, accum 10928 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi 10929 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi 10930 // 10931 // The second and third lines are optional, depending on whether the factors 10932 // are {sign,zero}-extended or not. 10933 // 10934 // The actual DAG is noisier than the pseudo code, but only due to 10935 // instructions that disassemble values into low and high parts, and 10936 // assemble the final result. 10937 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 10938 SDValue One = DAG.getConstant(1, SL, MVT::i32); 10939 10940 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); 10941 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); 10942 SDValue Accum = 10943 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); 10944 10945 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { 10946 auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero); 10947 auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One); 10948 10949 if (!MulLHSUnsigned32) { 10950 auto MulLHSHi = 10951 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); 10952 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); 10953 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 10954 } 10955 10956 if (!MulRHSUnsigned32) { 10957 auto MulRHSHi = 10958 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); 10959 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); 10960 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 10961 } 10962 10963 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); 10964 Accum = DAG.getBitcast(MVT::i64, Accum); 10965 } 10966 10967 if (VT != MVT::i64) 10968 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); 10969 return Accum; 10970 } 10971 10972 SDValue SITargetLowering::performAddCombine(SDNode *N, 10973 DAGCombinerInfo &DCI) const { 10974 SelectionDAG &DAG = DCI.DAG; 10975 EVT VT = N->getValueType(0); 10976 SDLoc SL(N); 10977 SDValue LHS = N->getOperand(0); 10978 SDValue RHS = N->getOperand(1); 10979 10980 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { 10981 if (Subtarget->hasMad64_32()) { 10982 if (SDValue Folded = tryFoldToMad64_32(N, DCI)) 10983 return Folded; 10984 } 10985 10986 return SDValue(); 10987 } 10988 10989 if (SDValue V = reassociateScalarOps(N, DAG)) { 10990 return V; 10991 } 10992 10993 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10994 return SDValue(); 10995 10996 // add x, zext (setcc) => addcarry x, 0, setcc 10997 // add x, sext (setcc) => subcarry x, 0, setcc 10998 unsigned Opc = LHS.getOpcode(); 10999 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 11000 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 11001 std::swap(RHS, LHS); 11002 11003 Opc = RHS.getOpcode(); 11004 switch (Opc) { 11005 default: break; 11006 case ISD::ZERO_EXTEND: 11007 case ISD::SIGN_EXTEND: 11008 case ISD::ANY_EXTEND: { 11009 auto Cond = RHS.getOperand(0); 11010 // If this won't be a real VOPC output, we would still need to insert an 11011 // extra instruction anyway. 11012 if (!isBoolSGPR(Cond)) 11013 break; 11014 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 11015 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 11016 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 11017 return DAG.getNode(Opc, SL, VTList, Args); 11018 } 11019 case ISD::ADDCARRY: { 11020 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 11021 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 11022 if (!C || C->getZExtValue() != 0) break; 11023 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 11024 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 11025 } 11026 } 11027 return SDValue(); 11028 } 11029 11030 SDValue SITargetLowering::performSubCombine(SDNode *N, 11031 DAGCombinerInfo &DCI) const { 11032 SelectionDAG &DAG = DCI.DAG; 11033 EVT VT = N->getValueType(0); 11034 11035 if (VT != MVT::i32) 11036 return SDValue(); 11037 11038 SDLoc SL(N); 11039 SDValue LHS = N->getOperand(0); 11040 SDValue RHS = N->getOperand(1); 11041 11042 // sub x, zext (setcc) => subcarry x, 0, setcc 11043 // sub x, sext (setcc) => addcarry x, 0, setcc 11044 unsigned Opc = RHS.getOpcode(); 11045 switch (Opc) { 11046 default: break; 11047 case ISD::ZERO_EXTEND: 11048 case ISD::SIGN_EXTEND: 11049 case ISD::ANY_EXTEND: { 11050 auto Cond = RHS.getOperand(0); 11051 // If this won't be a real VOPC output, we would still need to insert an 11052 // extra instruction anyway. 11053 if (!isBoolSGPR(Cond)) 11054 break; 11055 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 11056 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 11057 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 11058 return DAG.getNode(Opc, SL, VTList, Args); 11059 } 11060 } 11061 11062 if (LHS.getOpcode() == ISD::SUBCARRY) { 11063 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 11064 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 11065 if (!C || !C->isZero()) 11066 return SDValue(); 11067 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 11068 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 11069 } 11070 return SDValue(); 11071 } 11072 11073 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 11074 DAGCombinerInfo &DCI) const { 11075 11076 if (N->getValueType(0) != MVT::i32) 11077 return SDValue(); 11078 11079 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11080 if (!C || C->getZExtValue() != 0) 11081 return SDValue(); 11082 11083 SelectionDAG &DAG = DCI.DAG; 11084 SDValue LHS = N->getOperand(0); 11085 11086 // addcarry (add x, y), 0, cc => addcarry x, y, cc 11087 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 11088 unsigned LHSOpc = LHS.getOpcode(); 11089 unsigned Opc = N->getOpcode(); 11090 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 11091 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 11092 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 11093 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 11094 } 11095 return SDValue(); 11096 } 11097 11098 SDValue SITargetLowering::performFAddCombine(SDNode *N, 11099 DAGCombinerInfo &DCI) const { 11100 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 11101 return SDValue(); 11102 11103 SelectionDAG &DAG = DCI.DAG; 11104 EVT VT = N->getValueType(0); 11105 11106 SDLoc SL(N); 11107 SDValue LHS = N->getOperand(0); 11108 SDValue RHS = N->getOperand(1); 11109 11110 // These should really be instruction patterns, but writing patterns with 11111 // source modifiers is a pain. 11112 11113 // fadd (fadd (a, a), b) -> mad 2.0, a, b 11114 if (LHS.getOpcode() == ISD::FADD) { 11115 SDValue A = LHS.getOperand(0); 11116 if (A == LHS.getOperand(1)) { 11117 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 11118 if (FusedOp != 0) { 11119 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11120 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 11121 } 11122 } 11123 } 11124 11125 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 11126 if (RHS.getOpcode() == ISD::FADD) { 11127 SDValue A = RHS.getOperand(0); 11128 if (A == RHS.getOperand(1)) { 11129 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 11130 if (FusedOp != 0) { 11131 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11132 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 11133 } 11134 } 11135 } 11136 11137 return SDValue(); 11138 } 11139 11140 SDValue SITargetLowering::performFSubCombine(SDNode *N, 11141 DAGCombinerInfo &DCI) const { 11142 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 11143 return SDValue(); 11144 11145 SelectionDAG &DAG = DCI.DAG; 11146 SDLoc SL(N); 11147 EVT VT = N->getValueType(0); 11148 assert(!VT.isVector()); 11149 11150 // Try to get the fneg to fold into the source modifier. This undoes generic 11151 // DAG combines and folds them into the mad. 11152 // 11153 // Only do this if we are not trying to support denormals. v_mad_f32 does 11154 // not support denormals ever. 11155 SDValue LHS = N->getOperand(0); 11156 SDValue RHS = N->getOperand(1); 11157 if (LHS.getOpcode() == ISD::FADD) { 11158 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 11159 SDValue A = LHS.getOperand(0); 11160 if (A == LHS.getOperand(1)) { 11161 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 11162 if (FusedOp != 0){ 11163 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11164 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 11165 11166 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 11167 } 11168 } 11169 } 11170 11171 if (RHS.getOpcode() == ISD::FADD) { 11172 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 11173 11174 SDValue A = RHS.getOperand(0); 11175 if (A == RHS.getOperand(1)) { 11176 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 11177 if (FusedOp != 0){ 11178 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 11179 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 11180 } 11181 } 11182 } 11183 11184 return SDValue(); 11185 } 11186 11187 SDValue SITargetLowering::performFMACombine(SDNode *N, 11188 DAGCombinerInfo &DCI) const { 11189 SelectionDAG &DAG = DCI.DAG; 11190 EVT VT = N->getValueType(0); 11191 SDLoc SL(N); 11192 11193 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 11194 return SDValue(); 11195 11196 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 11197 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 11198 SDValue Op1 = N->getOperand(0); 11199 SDValue Op2 = N->getOperand(1); 11200 SDValue FMA = N->getOperand(2); 11201 11202 if (FMA.getOpcode() != ISD::FMA || 11203 Op1.getOpcode() != ISD::FP_EXTEND || 11204 Op2.getOpcode() != ISD::FP_EXTEND) 11205 return SDValue(); 11206 11207 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 11208 // regardless of the denorm mode setting. Therefore, 11209 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. 11210 const TargetOptions &Options = DAG.getTarget().Options; 11211 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 11212 (N->getFlags().hasAllowContract() && 11213 FMA->getFlags().hasAllowContract())) { 11214 Op1 = Op1.getOperand(0); 11215 Op2 = Op2.getOperand(0); 11216 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11217 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11218 return SDValue(); 11219 11220 SDValue Vec1 = Op1.getOperand(0); 11221 SDValue Idx1 = Op1.getOperand(1); 11222 SDValue Vec2 = Op2.getOperand(0); 11223 11224 SDValue FMAOp1 = FMA.getOperand(0); 11225 SDValue FMAOp2 = FMA.getOperand(1); 11226 SDValue FMAAcc = FMA.getOperand(2); 11227 11228 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 11229 FMAOp2.getOpcode() != ISD::FP_EXTEND) 11230 return SDValue(); 11231 11232 FMAOp1 = FMAOp1.getOperand(0); 11233 FMAOp2 = FMAOp2.getOperand(0); 11234 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11235 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11236 return SDValue(); 11237 11238 SDValue Vec3 = FMAOp1.getOperand(0); 11239 SDValue Vec4 = FMAOp2.getOperand(0); 11240 SDValue Idx2 = FMAOp1.getOperand(1); 11241 11242 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 11243 // Idx1 and Idx2 cannot be the same. 11244 Idx1 == Idx2) 11245 return SDValue(); 11246 11247 if (Vec1 == Vec2 || Vec3 == Vec4) 11248 return SDValue(); 11249 11250 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 11251 return SDValue(); 11252 11253 if ((Vec1 == Vec3 && Vec2 == Vec4) || 11254 (Vec1 == Vec4 && Vec2 == Vec3)) { 11255 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 11256 DAG.getTargetConstant(0, SL, MVT::i1)); 11257 } 11258 } 11259 return SDValue(); 11260 } 11261 11262 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 11263 DAGCombinerInfo &DCI) const { 11264 SelectionDAG &DAG = DCI.DAG; 11265 SDLoc SL(N); 11266 11267 SDValue LHS = N->getOperand(0); 11268 SDValue RHS = N->getOperand(1); 11269 EVT VT = LHS.getValueType(); 11270 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11271 11272 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 11273 if (!CRHS) { 11274 CRHS = dyn_cast<ConstantSDNode>(LHS); 11275 if (CRHS) { 11276 std::swap(LHS, RHS); 11277 CC = getSetCCSwappedOperands(CC); 11278 } 11279 } 11280 11281 if (CRHS) { 11282 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 11283 isBoolSGPR(LHS.getOperand(0))) { 11284 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 11285 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 11286 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 11287 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 11288 if ((CRHS->isAllOnes() && 11289 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 11290 (CRHS->isZero() && 11291 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 11292 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 11293 DAG.getConstant(-1, SL, MVT::i1)); 11294 if ((CRHS->isAllOnes() && 11295 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 11296 (CRHS->isZero() && 11297 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 11298 return LHS.getOperand(0); 11299 } 11300 11301 const APInt &CRHSVal = CRHS->getAPIntValue(); 11302 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 11303 LHS.getOpcode() == ISD::SELECT && 11304 isa<ConstantSDNode>(LHS.getOperand(1)) && 11305 isa<ConstantSDNode>(LHS.getOperand(2)) && 11306 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 11307 isBoolSGPR(LHS.getOperand(0))) { 11308 // Given CT != FT: 11309 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 11310 // setcc (select cc, CT, CF), CF, ne => cc 11311 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 11312 // setcc (select cc, CT, CF), CT, eq => cc 11313 const APInt &CT = LHS.getConstantOperandAPInt(1); 11314 const APInt &CF = LHS.getConstantOperandAPInt(2); 11315 11316 if ((CF == CRHSVal && CC == ISD::SETEQ) || 11317 (CT == CRHSVal && CC == ISD::SETNE)) 11318 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 11319 DAG.getConstant(-1, SL, MVT::i1)); 11320 if ((CF == CRHSVal && CC == ISD::SETNE) || 11321 (CT == CRHSVal && CC == ISD::SETEQ)) 11322 return LHS.getOperand(0); 11323 } 11324 } 11325 11326 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 11327 VT != MVT::f16)) 11328 return SDValue(); 11329 11330 // Match isinf/isfinite pattern 11331 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 11332 // (fcmp one (fabs x), inf) -> (fp_class x, 11333 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 11334 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 11335 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 11336 if (!CRHS) 11337 return SDValue(); 11338 11339 const APFloat &APF = CRHS->getValueAPF(); 11340 if (APF.isInfinity() && !APF.isNegative()) { 11341 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 11342 SIInstrFlags::N_INFINITY; 11343 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 11344 SIInstrFlags::P_ZERO | 11345 SIInstrFlags::N_NORMAL | 11346 SIInstrFlags::P_NORMAL | 11347 SIInstrFlags::N_SUBNORMAL | 11348 SIInstrFlags::P_SUBNORMAL; 11349 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 11350 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 11351 DAG.getConstant(Mask, SL, MVT::i32)); 11352 } 11353 } 11354 11355 return SDValue(); 11356 } 11357 11358 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 11359 DAGCombinerInfo &DCI) const { 11360 SelectionDAG &DAG = DCI.DAG; 11361 SDLoc SL(N); 11362 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 11363 11364 SDValue Src = N->getOperand(0); 11365 SDValue Shift = N->getOperand(0); 11366 11367 // TODO: Extend type shouldn't matter (assuming legal types). 11368 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 11369 Shift = Shift.getOperand(0); 11370 11371 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 11372 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 11373 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 11374 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 11375 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 11376 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 11377 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 11378 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 11379 SDLoc(Shift.getOperand(0)), MVT::i32); 11380 11381 unsigned ShiftOffset = 8 * Offset; 11382 if (Shift.getOpcode() == ISD::SHL) 11383 ShiftOffset -= C->getZExtValue(); 11384 else 11385 ShiftOffset += C->getZExtValue(); 11386 11387 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 11388 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 11389 MVT::f32, Shifted); 11390 } 11391 } 11392 } 11393 11394 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11395 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 11396 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 11397 // We simplified Src. If this node is not dead, visit it again so it is 11398 // folded properly. 11399 if (N->getOpcode() != ISD::DELETED_NODE) 11400 DCI.AddToWorklist(N); 11401 return SDValue(N, 0); 11402 } 11403 11404 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 11405 if (SDValue DemandedSrc = 11406 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 11407 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 11408 11409 return SDValue(); 11410 } 11411 11412 SDValue SITargetLowering::performClampCombine(SDNode *N, 11413 DAGCombinerInfo &DCI) const { 11414 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 11415 if (!CSrc) 11416 return SDValue(); 11417 11418 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 11419 const APFloat &F = CSrc->getValueAPF(); 11420 APFloat Zero = APFloat::getZero(F.getSemantics()); 11421 if (F < Zero || 11422 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 11423 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 11424 } 11425 11426 APFloat One(F.getSemantics(), "1.0"); 11427 if (F > One) 11428 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 11429 11430 return SDValue(CSrc, 0); 11431 } 11432 11433 11434 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 11435 DAGCombinerInfo &DCI) const { 11436 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 11437 return SDValue(); 11438 switch (N->getOpcode()) { 11439 case ISD::ADD: 11440 return performAddCombine(N, DCI); 11441 case ISD::SUB: 11442 return performSubCombine(N, DCI); 11443 case ISD::ADDCARRY: 11444 case ISD::SUBCARRY: 11445 return performAddCarrySubCarryCombine(N, DCI); 11446 case ISD::FADD: 11447 return performFAddCombine(N, DCI); 11448 case ISD::FSUB: 11449 return performFSubCombine(N, DCI); 11450 case ISD::SETCC: 11451 return performSetCCCombine(N, DCI); 11452 case ISD::FMAXNUM: 11453 case ISD::FMINNUM: 11454 case ISD::FMAXNUM_IEEE: 11455 case ISD::FMINNUM_IEEE: 11456 case ISD::SMAX: 11457 case ISD::SMIN: 11458 case ISD::UMAX: 11459 case ISD::UMIN: 11460 case AMDGPUISD::FMIN_LEGACY: 11461 case AMDGPUISD::FMAX_LEGACY: 11462 return performMinMaxCombine(N, DCI); 11463 case ISD::FMA: 11464 return performFMACombine(N, DCI); 11465 case ISD::AND: 11466 return performAndCombine(N, DCI); 11467 case ISD::OR: 11468 return performOrCombine(N, DCI); 11469 case ISD::XOR: 11470 return performXorCombine(N, DCI); 11471 case ISD::ZERO_EXTEND: 11472 return performZeroExtendCombine(N, DCI); 11473 case ISD::SIGN_EXTEND_INREG: 11474 return performSignExtendInRegCombine(N , DCI); 11475 case AMDGPUISD::FP_CLASS: 11476 return performClassCombine(N, DCI); 11477 case ISD::FCANONICALIZE: 11478 return performFCanonicalizeCombine(N, DCI); 11479 case AMDGPUISD::RCP: 11480 return performRcpCombine(N, DCI); 11481 case AMDGPUISD::FRACT: 11482 case AMDGPUISD::RSQ: 11483 case AMDGPUISD::RCP_LEGACY: 11484 case AMDGPUISD::RCP_IFLAG: 11485 case AMDGPUISD::RSQ_CLAMP: 11486 case AMDGPUISD::LDEXP: { 11487 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 11488 SDValue Src = N->getOperand(0); 11489 if (Src.isUndef()) 11490 return Src; 11491 break; 11492 } 11493 case ISD::SINT_TO_FP: 11494 case ISD::UINT_TO_FP: 11495 return performUCharToFloatCombine(N, DCI); 11496 case AMDGPUISD::CVT_F32_UBYTE0: 11497 case AMDGPUISD::CVT_F32_UBYTE1: 11498 case AMDGPUISD::CVT_F32_UBYTE2: 11499 case AMDGPUISD::CVT_F32_UBYTE3: 11500 return performCvtF32UByteNCombine(N, DCI); 11501 case AMDGPUISD::FMED3: 11502 return performFMed3Combine(N, DCI); 11503 case AMDGPUISD::CVT_PKRTZ_F16_F32: 11504 return performCvtPkRTZCombine(N, DCI); 11505 case AMDGPUISD::CLAMP: 11506 return performClampCombine(N, DCI); 11507 case ISD::SCALAR_TO_VECTOR: { 11508 SelectionDAG &DAG = DCI.DAG; 11509 EVT VT = N->getValueType(0); 11510 11511 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 11512 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 11513 SDLoc SL(N); 11514 SDValue Src = N->getOperand(0); 11515 EVT EltVT = Src.getValueType(); 11516 if (EltVT == MVT::f16) 11517 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 11518 11519 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 11520 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 11521 } 11522 11523 break; 11524 } 11525 case ISD::EXTRACT_VECTOR_ELT: 11526 return performExtractVectorEltCombine(N, DCI); 11527 case ISD::INSERT_VECTOR_ELT: 11528 return performInsertVectorEltCombine(N, DCI); 11529 case ISD::LOAD: { 11530 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 11531 return Widended; 11532 LLVM_FALLTHROUGH; 11533 } 11534 default: { 11535 if (!DCI.isBeforeLegalize()) { 11536 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 11537 return performMemSDNodeCombine(MemNode, DCI); 11538 } 11539 11540 break; 11541 } 11542 } 11543 11544 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 11545 } 11546 11547 /// Helper function for adjustWritemask 11548 static unsigned SubIdx2Lane(unsigned Idx) { 11549 switch (Idx) { 11550 default: return ~0u; 11551 case AMDGPU::sub0: return 0; 11552 case AMDGPU::sub1: return 1; 11553 case AMDGPU::sub2: return 2; 11554 case AMDGPU::sub3: return 3; 11555 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 11556 } 11557 } 11558 11559 /// Adjust the writemask of MIMG instructions 11560 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 11561 SelectionDAG &DAG) const { 11562 unsigned Opcode = Node->getMachineOpcode(); 11563 11564 // Subtract 1 because the vdata output is not a MachineSDNode operand. 11565 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 11566 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 11567 return Node; // not implemented for D16 11568 11569 SDNode *Users[5] = { nullptr }; 11570 unsigned Lane = 0; 11571 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 11572 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 11573 unsigned NewDmask = 0; 11574 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 11575 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 11576 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 11577 Node->getConstantOperandVal(LWEIdx)) 11578 ? true 11579 : false; 11580 unsigned TFCLane = 0; 11581 bool HasChain = Node->getNumValues() > 1; 11582 11583 if (OldDmask == 0) { 11584 // These are folded out, but on the chance it happens don't assert. 11585 return Node; 11586 } 11587 11588 unsigned OldBitsSet = countPopulation(OldDmask); 11589 // Work out which is the TFE/LWE lane if that is enabled. 11590 if (UsesTFC) { 11591 TFCLane = OldBitsSet; 11592 } 11593 11594 // Try to figure out the used register components 11595 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 11596 I != E; ++I) { 11597 11598 // Don't look at users of the chain. 11599 if (I.getUse().getResNo() != 0) 11600 continue; 11601 11602 // Abort if we can't understand the usage 11603 if (!I->isMachineOpcode() || 11604 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 11605 return Node; 11606 11607 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 11608 // Note that subregs are packed, i.e. Lane==0 is the first bit set 11609 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 11610 // set, etc. 11611 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 11612 if (Lane == ~0u) 11613 return Node; 11614 11615 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 11616 if (UsesTFC && Lane == TFCLane) { 11617 Users[Lane] = *I; 11618 } else { 11619 // Set which texture component corresponds to the lane. 11620 unsigned Comp; 11621 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 11622 Comp = countTrailingZeros(Dmask); 11623 Dmask &= ~(1 << Comp); 11624 } 11625 11626 // Abort if we have more than one user per component. 11627 if (Users[Lane]) 11628 return Node; 11629 11630 Users[Lane] = *I; 11631 NewDmask |= 1 << Comp; 11632 } 11633 } 11634 11635 // Don't allow 0 dmask, as hardware assumes one channel enabled. 11636 bool NoChannels = !NewDmask; 11637 if (NoChannels) { 11638 if (!UsesTFC) { 11639 // No uses of the result and not using TFC. Then do nothing. 11640 return Node; 11641 } 11642 // If the original dmask has one channel - then nothing to do 11643 if (OldBitsSet == 1) 11644 return Node; 11645 // Use an arbitrary dmask - required for the instruction to work 11646 NewDmask = 1; 11647 } 11648 // Abort if there's no change 11649 if (NewDmask == OldDmask) 11650 return Node; 11651 11652 unsigned BitsSet = countPopulation(NewDmask); 11653 11654 // Check for TFE or LWE - increase the number of channels by one to account 11655 // for the extra return value 11656 // This will need adjustment for D16 if this is also included in 11657 // adjustWriteMask (this function) but at present D16 are excluded. 11658 unsigned NewChannels = BitsSet + UsesTFC; 11659 11660 int NewOpcode = 11661 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 11662 assert(NewOpcode != -1 && 11663 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 11664 "failed to find equivalent MIMG op"); 11665 11666 // Adjust the writemask in the node 11667 SmallVector<SDValue, 12> Ops; 11668 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 11669 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 11670 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 11671 11672 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 11673 11674 MVT ResultVT = NewChannels == 1 ? 11675 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 11676 NewChannels == 5 ? 8 : NewChannels); 11677 SDVTList NewVTList = HasChain ? 11678 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 11679 11680 11681 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 11682 NewVTList, Ops); 11683 11684 if (HasChain) { 11685 // Update chain. 11686 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 11687 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 11688 } 11689 11690 if (NewChannels == 1) { 11691 assert(Node->hasNUsesOfValue(1, 0)); 11692 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 11693 SDLoc(Node), Users[Lane]->getValueType(0), 11694 SDValue(NewNode, 0)); 11695 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 11696 return nullptr; 11697 } 11698 11699 // Update the users of the node with the new indices 11700 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 11701 SDNode *User = Users[i]; 11702 if (!User) { 11703 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 11704 // Users[0] is still nullptr because channel 0 doesn't really have a use. 11705 if (i || !NoChannels) 11706 continue; 11707 } else { 11708 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 11709 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 11710 } 11711 11712 switch (Idx) { 11713 default: break; 11714 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 11715 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 11716 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 11717 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 11718 } 11719 } 11720 11721 DAG.RemoveDeadNode(Node); 11722 return nullptr; 11723 } 11724 11725 static bool isFrameIndexOp(SDValue Op) { 11726 if (Op.getOpcode() == ISD::AssertZext) 11727 Op = Op.getOperand(0); 11728 11729 return isa<FrameIndexSDNode>(Op); 11730 } 11731 11732 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 11733 /// with frame index operands. 11734 /// LLVM assumes that inputs are to these instructions are registers. 11735 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 11736 SelectionDAG &DAG) const { 11737 if (Node->getOpcode() == ISD::CopyToReg) { 11738 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 11739 SDValue SrcVal = Node->getOperand(2); 11740 11741 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 11742 // to try understanding copies to physical registers. 11743 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 11744 SDLoc SL(Node); 11745 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11746 SDValue VReg = DAG.getRegister( 11747 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 11748 11749 SDNode *Glued = Node->getGluedNode(); 11750 SDValue ToVReg 11751 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 11752 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 11753 SDValue ToResultReg 11754 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 11755 VReg, ToVReg.getValue(1)); 11756 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 11757 DAG.RemoveDeadNode(Node); 11758 return ToResultReg.getNode(); 11759 } 11760 } 11761 11762 SmallVector<SDValue, 8> Ops; 11763 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 11764 if (!isFrameIndexOp(Node->getOperand(i))) { 11765 Ops.push_back(Node->getOperand(i)); 11766 continue; 11767 } 11768 11769 SDLoc DL(Node); 11770 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 11771 Node->getOperand(i).getValueType(), 11772 Node->getOperand(i)), 0)); 11773 } 11774 11775 return DAG.UpdateNodeOperands(Node, Ops); 11776 } 11777 11778 /// Fold the instructions after selecting them. 11779 /// Returns null if users were already updated. 11780 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 11781 SelectionDAG &DAG) const { 11782 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11783 unsigned Opcode = Node->getMachineOpcode(); 11784 11785 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 11786 !TII->isGather4(Opcode) && 11787 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { 11788 return adjustWritemask(Node, DAG); 11789 } 11790 11791 if (Opcode == AMDGPU::INSERT_SUBREG || 11792 Opcode == AMDGPU::REG_SEQUENCE) { 11793 legalizeTargetIndependentNode(Node, DAG); 11794 return Node; 11795 } 11796 11797 switch (Opcode) { 11798 case AMDGPU::V_DIV_SCALE_F32_e64: 11799 case AMDGPU::V_DIV_SCALE_F64_e64: { 11800 // Satisfy the operand register constraint when one of the inputs is 11801 // undefined. Ordinarily each undef value will have its own implicit_def of 11802 // a vreg, so force these to use a single register. 11803 SDValue Src0 = Node->getOperand(1); 11804 SDValue Src1 = Node->getOperand(3); 11805 SDValue Src2 = Node->getOperand(5); 11806 11807 if ((Src0.isMachineOpcode() && 11808 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 11809 (Src0 == Src1 || Src0 == Src2)) 11810 break; 11811 11812 MVT VT = Src0.getValueType().getSimpleVT(); 11813 const TargetRegisterClass *RC = 11814 getRegClassFor(VT, Src0.getNode()->isDivergent()); 11815 11816 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11817 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 11818 11819 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 11820 UndefReg, Src0, SDValue()); 11821 11822 // src0 must be the same register as src1 or src2, even if the value is 11823 // undefined, so make sure we don't violate this constraint. 11824 if (Src0.isMachineOpcode() && 11825 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 11826 if (Src1.isMachineOpcode() && 11827 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11828 Src0 = Src1; 11829 else if (Src2.isMachineOpcode() && 11830 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11831 Src0 = Src2; 11832 else { 11833 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 11834 Src0 = UndefReg; 11835 Src1 = UndefReg; 11836 } 11837 } else 11838 break; 11839 11840 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 11841 Ops[1] = Src0; 11842 Ops[3] = Src1; 11843 Ops[5] = Src2; 11844 Ops.push_back(ImpDef.getValue(1)); 11845 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 11846 } 11847 default: 11848 break; 11849 } 11850 11851 return Node; 11852 } 11853 11854 // Any MIMG instructions that use tfe or lwe require an initialization of the 11855 // result register that will be written in the case of a memory access failure. 11856 // The required code is also added to tie this init code to the result of the 11857 // img instruction. 11858 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 11859 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11860 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 11861 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 11862 MachineBasicBlock &MBB = *MI.getParent(); 11863 11864 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 11865 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 11866 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 11867 11868 if (!TFE && !LWE) // intersect_ray 11869 return; 11870 11871 unsigned TFEVal = TFE ? TFE->getImm() : 0; 11872 unsigned LWEVal = LWE->getImm(); 11873 unsigned D16Val = D16 ? D16->getImm() : 0; 11874 11875 if (!TFEVal && !LWEVal) 11876 return; 11877 11878 // At least one of TFE or LWE are non-zero 11879 // We have to insert a suitable initialization of the result value and 11880 // tie this to the dest of the image instruction. 11881 11882 const DebugLoc &DL = MI.getDebugLoc(); 11883 11884 int DstIdx = 11885 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 11886 11887 // Calculate which dword we have to initialize to 0. 11888 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 11889 11890 // check that dmask operand is found. 11891 assert(MO_Dmask && "Expected dmask operand in instruction"); 11892 11893 unsigned dmask = MO_Dmask->getImm(); 11894 // Determine the number of active lanes taking into account the 11895 // Gather4 special case 11896 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask); 11897 11898 bool Packed = !Subtarget->hasUnpackedD16VMem(); 11899 11900 unsigned InitIdx = 11901 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 11902 11903 // Abandon attempt if the dst size isn't large enough 11904 // - this is in fact an error but this is picked up elsewhere and 11905 // reported correctly. 11906 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 11907 if (DstSize < InitIdx) 11908 return; 11909 11910 // Create a register for the initialization value. 11911 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11912 unsigned NewDst = 0; // Final initialized value will be in here 11913 11914 // If PRTStrictNull feature is enabled (the default) then initialize 11915 // all the result registers to 0, otherwise just the error indication 11916 // register (VGPRn+1) 11917 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 11918 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 11919 11920 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 11921 for (; SizeLeft; SizeLeft--, CurrIdx++) { 11922 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11923 // Initialize dword 11924 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 11925 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 11926 .addImm(0); 11927 // Insert into the super-reg 11928 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 11929 .addReg(PrevDst) 11930 .addReg(SubReg) 11931 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 11932 11933 PrevDst = NewDst; 11934 } 11935 11936 // Add as an implicit operand 11937 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 11938 11939 // Tie the just added implicit operand to the dst 11940 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 11941 } 11942 11943 /// Assign the register class depending on the number of 11944 /// bits set in the writemask 11945 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 11946 SDNode *Node) const { 11947 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11948 11949 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 11950 11951 if (TII->isVOP3(MI.getOpcode())) { 11952 // Make sure constant bus requirements are respected. 11953 TII->legalizeOperandsVOP3(MRI, MI); 11954 11955 // Prefer VGPRs over AGPRs in mAI instructions where possible. 11956 // This saves a chain-copy of registers and better balance register 11957 // use between vgpr and agpr as agpr tuples tend to be big. 11958 if (MI.getDesc().OpInfo) { 11959 unsigned Opc = MI.getOpcode(); 11960 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11961 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 11962 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 11963 if (I == -1) 11964 break; 11965 MachineOperand &Op = MI.getOperand(I); 11966 if (!Op.isReg() || !Op.getReg().isVirtual()) 11967 continue; 11968 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 11969 if (!TRI->hasAGPRs(RC)) 11970 continue; 11971 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 11972 if (!Src || !Src->isCopy() || 11973 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 11974 continue; 11975 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 11976 // All uses of agpr64 and agpr32 can also accept vgpr except for 11977 // v_accvgpr_read, but we do not produce agpr reads during selection, 11978 // so no use checks are needed. 11979 MRI.setRegClass(Op.getReg(), NewRC); 11980 } 11981 11982 // Resolve the rest of AV operands to AGPRs. 11983 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { 11984 if (Src2->isReg() && Src2->getReg().isVirtual()) { 11985 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); 11986 if (TRI->isVectorSuperClass(RC)) { 11987 auto *NewRC = TRI->getEquivalentAGPRClass(RC); 11988 MRI.setRegClass(Src2->getReg(), NewRC); 11989 if (Src2->isTied()) 11990 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); 11991 } 11992 } 11993 } 11994 } 11995 11996 return; 11997 } 11998 11999 if (TII->isMIMG(MI)) { 12000 if (!MI.mayStore()) 12001 AddIMGInit(MI); 12002 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); 12003 } 12004 } 12005 12006 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 12007 uint64_t Val) { 12008 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 12009 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 12010 } 12011 12012 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 12013 const SDLoc &DL, 12014 SDValue Ptr) const { 12015 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12016 12017 // Build the half of the subregister with the constants before building the 12018 // full 128-bit register. If we are building multiple resource descriptors, 12019 // this will allow CSEing of the 2-component register. 12020 const SDValue Ops0[] = { 12021 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 12022 buildSMovImm32(DAG, DL, 0), 12023 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 12024 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 12025 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 12026 }; 12027 12028 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 12029 MVT::v2i32, Ops0), 0); 12030 12031 // Combine the constants and the pointer. 12032 const SDValue Ops1[] = { 12033 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 12034 Ptr, 12035 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 12036 SubRegHi, 12037 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 12038 }; 12039 12040 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 12041 } 12042 12043 /// Return a resource descriptor with the 'Add TID' bit enabled 12044 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 12045 /// of the resource descriptor) to create an offset, which is added to 12046 /// the resource pointer. 12047 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 12048 SDValue Ptr, uint32_t RsrcDword1, 12049 uint64_t RsrcDword2And3) const { 12050 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 12051 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 12052 if (RsrcDword1) { 12053 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 12054 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 12055 0); 12056 } 12057 12058 SDValue DataLo = buildSMovImm32(DAG, DL, 12059 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 12060 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 12061 12062 const SDValue Ops[] = { 12063 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 12064 PtrLo, 12065 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 12066 PtrHi, 12067 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 12068 DataLo, 12069 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 12070 DataHi, 12071 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 12072 }; 12073 12074 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 12075 } 12076 12077 //===----------------------------------------------------------------------===// 12078 // SI Inline Assembly Support 12079 //===----------------------------------------------------------------------===// 12080 12081 std::pair<unsigned, const TargetRegisterClass *> 12082 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 12083 StringRef Constraint, 12084 MVT VT) const { 12085 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 12086 12087 const TargetRegisterClass *RC = nullptr; 12088 if (Constraint.size() == 1) { 12089 const unsigned BitWidth = VT.getSizeInBits(); 12090 switch (Constraint[0]) { 12091 default: 12092 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12093 case 's': 12094 case 'r': 12095 switch (BitWidth) { 12096 case 16: 12097 RC = &AMDGPU::SReg_32RegClass; 12098 break; 12099 case 64: 12100 RC = &AMDGPU::SGPR_64RegClass; 12101 break; 12102 default: 12103 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 12104 if (!RC) 12105 return std::make_pair(0U, nullptr); 12106 break; 12107 } 12108 break; 12109 case 'v': 12110 switch (BitWidth) { 12111 case 16: 12112 RC = &AMDGPU::VGPR_32RegClass; 12113 break; 12114 default: 12115 RC = TRI->getVGPRClassForBitWidth(BitWidth); 12116 if (!RC) 12117 return std::make_pair(0U, nullptr); 12118 break; 12119 } 12120 break; 12121 case 'a': 12122 if (!Subtarget->hasMAIInsts()) 12123 break; 12124 switch (BitWidth) { 12125 case 16: 12126 RC = &AMDGPU::AGPR_32RegClass; 12127 break; 12128 default: 12129 RC = TRI->getAGPRClassForBitWidth(BitWidth); 12130 if (!RC) 12131 return std::make_pair(0U, nullptr); 12132 break; 12133 } 12134 break; 12135 } 12136 // We actually support i128, i16 and f16 as inline parameters 12137 // even if they are not reported as legal 12138 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 12139 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 12140 return std::make_pair(0U, RC); 12141 } 12142 12143 if (Constraint.startswith("{") && Constraint.endswith("}")) { 12144 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 12145 if (RegName.consume_front("v")) { 12146 RC = &AMDGPU::VGPR_32RegClass; 12147 } else if (RegName.consume_front("s")) { 12148 RC = &AMDGPU::SGPR_32RegClass; 12149 } else if (RegName.consume_front("a")) { 12150 RC = &AMDGPU::AGPR_32RegClass; 12151 } 12152 12153 if (RC) { 12154 uint32_t Idx; 12155 if (RegName.consume_front("[")) { 12156 uint32_t End; 12157 bool Failed = RegName.consumeInteger(10, Idx); 12158 Failed |= !RegName.consume_front(":"); 12159 Failed |= RegName.consumeInteger(10, End); 12160 Failed |= !RegName.consume_back("]"); 12161 if (!Failed) { 12162 uint32_t Width = (End - Idx + 1) * 32; 12163 MCRegister Reg = RC->getRegister(Idx); 12164 if (SIRegisterInfo::isVGPRClass(RC)) 12165 RC = TRI->getVGPRClassForBitWidth(Width); 12166 else if (SIRegisterInfo::isSGPRClass(RC)) 12167 RC = TRI->getSGPRClassForBitWidth(Width); 12168 else if (SIRegisterInfo::isAGPRClass(RC)) 12169 RC = TRI->getAGPRClassForBitWidth(Width); 12170 if (RC) { 12171 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 12172 return std::make_pair(Reg, RC); 12173 } 12174 } 12175 } else { 12176 bool Failed = RegName.getAsInteger(10, Idx); 12177 if (!Failed && Idx < RC->getNumRegs()) 12178 return std::make_pair(RC->getRegister(Idx), RC); 12179 } 12180 } 12181 } 12182 12183 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12184 if (Ret.first) 12185 Ret.second = TRI->getPhysRegClass(Ret.first); 12186 12187 return Ret; 12188 } 12189 12190 static bool isImmConstraint(StringRef Constraint) { 12191 if (Constraint.size() == 1) { 12192 switch (Constraint[0]) { 12193 default: break; 12194 case 'I': 12195 case 'J': 12196 case 'A': 12197 case 'B': 12198 case 'C': 12199 return true; 12200 } 12201 } else if (Constraint == "DA" || 12202 Constraint == "DB") { 12203 return true; 12204 } 12205 return false; 12206 } 12207 12208 SITargetLowering::ConstraintType 12209 SITargetLowering::getConstraintType(StringRef Constraint) const { 12210 if (Constraint.size() == 1) { 12211 switch (Constraint[0]) { 12212 default: break; 12213 case 's': 12214 case 'v': 12215 case 'a': 12216 return C_RegisterClass; 12217 } 12218 } 12219 if (isImmConstraint(Constraint)) { 12220 return C_Other; 12221 } 12222 return TargetLowering::getConstraintType(Constraint); 12223 } 12224 12225 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 12226 if (!AMDGPU::isInlinableIntLiteral(Val)) { 12227 Val = Val & maskTrailingOnes<uint64_t>(Size); 12228 } 12229 return Val; 12230 } 12231 12232 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 12233 std::string &Constraint, 12234 std::vector<SDValue> &Ops, 12235 SelectionDAG &DAG) const { 12236 if (isImmConstraint(Constraint)) { 12237 uint64_t Val; 12238 if (getAsmOperandConstVal(Op, Val) && 12239 checkAsmConstraintVal(Op, Constraint, Val)) { 12240 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 12241 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 12242 } 12243 } else { 12244 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12245 } 12246 } 12247 12248 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 12249 unsigned Size = Op.getScalarValueSizeInBits(); 12250 if (Size > 64) 12251 return false; 12252 12253 if (Size == 16 && !Subtarget->has16BitInsts()) 12254 return false; 12255 12256 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12257 Val = C->getSExtValue(); 12258 return true; 12259 } 12260 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 12261 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 12262 return true; 12263 } 12264 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 12265 if (Size != 16 || Op.getNumOperands() != 2) 12266 return false; 12267 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 12268 return false; 12269 if (ConstantSDNode *C = V->getConstantSplatNode()) { 12270 Val = C->getSExtValue(); 12271 return true; 12272 } 12273 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 12274 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 12275 return true; 12276 } 12277 } 12278 12279 return false; 12280 } 12281 12282 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 12283 const std::string &Constraint, 12284 uint64_t Val) const { 12285 if (Constraint.size() == 1) { 12286 switch (Constraint[0]) { 12287 case 'I': 12288 return AMDGPU::isInlinableIntLiteral(Val); 12289 case 'J': 12290 return isInt<16>(Val); 12291 case 'A': 12292 return checkAsmConstraintValA(Op, Val); 12293 case 'B': 12294 return isInt<32>(Val); 12295 case 'C': 12296 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 12297 AMDGPU::isInlinableIntLiteral(Val); 12298 default: 12299 break; 12300 } 12301 } else if (Constraint.size() == 2) { 12302 if (Constraint == "DA") { 12303 int64_t HiBits = static_cast<int32_t>(Val >> 32); 12304 int64_t LoBits = static_cast<int32_t>(Val); 12305 return checkAsmConstraintValA(Op, HiBits, 32) && 12306 checkAsmConstraintValA(Op, LoBits, 32); 12307 } 12308 if (Constraint == "DB") { 12309 return true; 12310 } 12311 } 12312 llvm_unreachable("Invalid asm constraint"); 12313 } 12314 12315 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 12316 uint64_t Val, 12317 unsigned MaxSize) const { 12318 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 12319 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 12320 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 12321 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 12322 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 12323 return true; 12324 } 12325 return false; 12326 } 12327 12328 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 12329 switch (UnalignedClassID) { 12330 case AMDGPU::VReg_64RegClassID: 12331 return AMDGPU::VReg_64_Align2RegClassID; 12332 case AMDGPU::VReg_96RegClassID: 12333 return AMDGPU::VReg_96_Align2RegClassID; 12334 case AMDGPU::VReg_128RegClassID: 12335 return AMDGPU::VReg_128_Align2RegClassID; 12336 case AMDGPU::VReg_160RegClassID: 12337 return AMDGPU::VReg_160_Align2RegClassID; 12338 case AMDGPU::VReg_192RegClassID: 12339 return AMDGPU::VReg_192_Align2RegClassID; 12340 case AMDGPU::VReg_224RegClassID: 12341 return AMDGPU::VReg_224_Align2RegClassID; 12342 case AMDGPU::VReg_256RegClassID: 12343 return AMDGPU::VReg_256_Align2RegClassID; 12344 case AMDGPU::VReg_512RegClassID: 12345 return AMDGPU::VReg_512_Align2RegClassID; 12346 case AMDGPU::VReg_1024RegClassID: 12347 return AMDGPU::VReg_1024_Align2RegClassID; 12348 case AMDGPU::AReg_64RegClassID: 12349 return AMDGPU::AReg_64_Align2RegClassID; 12350 case AMDGPU::AReg_96RegClassID: 12351 return AMDGPU::AReg_96_Align2RegClassID; 12352 case AMDGPU::AReg_128RegClassID: 12353 return AMDGPU::AReg_128_Align2RegClassID; 12354 case AMDGPU::AReg_160RegClassID: 12355 return AMDGPU::AReg_160_Align2RegClassID; 12356 case AMDGPU::AReg_192RegClassID: 12357 return AMDGPU::AReg_192_Align2RegClassID; 12358 case AMDGPU::AReg_256RegClassID: 12359 return AMDGPU::AReg_256_Align2RegClassID; 12360 case AMDGPU::AReg_512RegClassID: 12361 return AMDGPU::AReg_512_Align2RegClassID; 12362 case AMDGPU::AReg_1024RegClassID: 12363 return AMDGPU::AReg_1024_Align2RegClassID; 12364 default: 12365 return -1; 12366 } 12367 } 12368 12369 // Figure out which registers should be reserved for stack access. Only after 12370 // the function is legalized do we know all of the non-spill stack objects or if 12371 // calls are present. 12372 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 12373 MachineRegisterInfo &MRI = MF.getRegInfo(); 12374 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12375 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 12376 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12377 const SIInstrInfo *TII = ST.getInstrInfo(); 12378 12379 if (Info->isEntryFunction()) { 12380 // Callable functions have fixed registers used for stack access. 12381 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 12382 } 12383 12384 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 12385 Info->getStackPtrOffsetReg())); 12386 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 12387 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 12388 12389 // We need to worry about replacing the default register with itself in case 12390 // of MIR testcases missing the MFI. 12391 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 12392 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 12393 12394 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 12395 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 12396 12397 Info->limitOccupancy(MF); 12398 12399 if (ST.isWave32() && !MF.empty()) { 12400 for (auto &MBB : MF) { 12401 for (auto &MI : MBB) { 12402 TII->fixImplicitOperands(MI); 12403 } 12404 } 12405 } 12406 12407 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 12408 // classes if required. Ideally the register class constraints would differ 12409 // per-subtarget, but there's no easy way to achieve that right now. This is 12410 // not a problem for VGPRs because the correctly aligned VGPR class is implied 12411 // from using them as the register class for legal types. 12412 if (ST.needsAlignedVGPRs()) { 12413 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 12414 const Register Reg = Register::index2VirtReg(I); 12415 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 12416 if (!RC) 12417 continue; 12418 int NewClassID = getAlignedAGPRClassID(RC->getID()); 12419 if (NewClassID != -1) 12420 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 12421 } 12422 } 12423 12424 TargetLoweringBase::finalizeLowering(MF); 12425 } 12426 12427 void SITargetLowering::computeKnownBitsForFrameIndex( 12428 const int FI, KnownBits &Known, const MachineFunction &MF) const { 12429 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 12430 12431 // Set the high bits to zero based on the maximum allowed scratch size per 12432 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 12433 // calculation won't overflow, so assume the sign bit is never set. 12434 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 12435 } 12436 12437 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 12438 KnownBits &Known, unsigned Dim) { 12439 unsigned MaxValue = 12440 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 12441 Known.Zero.setHighBits(countLeadingZeros(MaxValue)); 12442 } 12443 12444 void SITargetLowering::computeKnownBitsForTargetInstr( 12445 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 12446 const MachineRegisterInfo &MRI, unsigned Depth) const { 12447 const MachineInstr *MI = MRI.getVRegDef(R); 12448 switch (MI->getOpcode()) { 12449 case AMDGPU::G_INTRINSIC: { 12450 switch (MI->getIntrinsicID()) { 12451 case Intrinsic::amdgcn_workitem_id_x: 12452 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 12453 break; 12454 case Intrinsic::amdgcn_workitem_id_y: 12455 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 12456 break; 12457 case Intrinsic::amdgcn_workitem_id_z: 12458 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 12459 break; 12460 case Intrinsic::amdgcn_mbcnt_lo: 12461 case Intrinsic::amdgcn_mbcnt_hi: { 12462 // These return at most the wavefront size - 1. 12463 unsigned Size = MRI.getType(R).getSizeInBits(); 12464 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 12465 break; 12466 } 12467 case Intrinsic::amdgcn_groupstaticsize: { 12468 // We can report everything over the maximum size as 0. We can't report 12469 // based on the actual size because we don't know if it's accurate or not 12470 // at any given point. 12471 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); 12472 break; 12473 } 12474 } 12475 break; 12476 } 12477 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 12478 Known.Zero.setHighBits(24); 12479 break; 12480 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 12481 Known.Zero.setHighBits(16); 12482 break; 12483 } 12484 } 12485 12486 Align SITargetLowering::computeKnownAlignForTargetInstr( 12487 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 12488 unsigned Depth) const { 12489 const MachineInstr *MI = MRI.getVRegDef(R); 12490 switch (MI->getOpcode()) { 12491 case AMDGPU::G_INTRINSIC: 12492 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 12493 // FIXME: Can this move to generic code? What about the case where the call 12494 // site specifies a lower alignment? 12495 Intrinsic::ID IID = MI->getIntrinsicID(); 12496 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 12497 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 12498 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 12499 return *RetAlign; 12500 return Align(1); 12501 } 12502 default: 12503 return Align(1); 12504 } 12505 } 12506 12507 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 12508 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 12509 const Align CacheLineAlign = Align(64); 12510 12511 // Pre-GFX10 target did not benefit from loop alignment 12512 if (!ML || DisableLoopAlignment || 12513 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 12514 getSubtarget()->hasInstFwdPrefetchBug()) 12515 return PrefAlign; 12516 12517 // On GFX10 I$ is 4 x 64 bytes cache lines. 12518 // By default prefetcher keeps one cache line behind and reads two ahead. 12519 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 12520 // behind and one ahead. 12521 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 12522 // If loop fits 64 bytes it always spans no more than two cache lines and 12523 // does not need an alignment. 12524 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 12525 // Else if loop is less or equal 192 bytes we need two lines behind. 12526 12527 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12528 const MachineBasicBlock *Header = ML->getHeader(); 12529 if (Header->getAlignment() != PrefAlign) 12530 return Header->getAlignment(); // Already processed. 12531 12532 unsigned LoopSize = 0; 12533 for (const MachineBasicBlock *MBB : ML->blocks()) { 12534 // If inner loop block is aligned assume in average half of the alignment 12535 // size to be added as nops. 12536 if (MBB != Header) 12537 LoopSize += MBB->getAlignment().value() / 2; 12538 12539 for (const MachineInstr &MI : *MBB) { 12540 LoopSize += TII->getInstSizeInBytes(MI); 12541 if (LoopSize > 192) 12542 return PrefAlign; 12543 } 12544 } 12545 12546 if (LoopSize <= 64) 12547 return PrefAlign; 12548 12549 if (LoopSize <= 128) 12550 return CacheLineAlign; 12551 12552 // If any of parent loops is surrounded by prefetch instructions do not 12553 // insert new for inner loop, which would reset parent's settings. 12554 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 12555 if (MachineBasicBlock *Exit = P->getExitBlock()) { 12556 auto I = Exit->getFirstNonDebugInstr(); 12557 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 12558 return CacheLineAlign; 12559 } 12560 } 12561 12562 MachineBasicBlock *Pre = ML->getLoopPreheader(); 12563 MachineBasicBlock *Exit = ML->getExitBlock(); 12564 12565 if (Pre && Exit) { 12566 auto PreTerm = Pre->getFirstTerminator(); 12567 if (PreTerm == Pre->begin() || 12568 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) 12569 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 12570 .addImm(1); // prefetch 2 lines behind PC 12571 12572 auto ExitHead = Exit->getFirstNonDebugInstr(); 12573 if (ExitHead == Exit->end() || 12574 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) 12575 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 12576 .addImm(2); // prefetch 1 line behind PC 12577 } 12578 12579 return CacheLineAlign; 12580 } 12581 12582 LLVM_ATTRIBUTE_UNUSED 12583 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 12584 assert(N->getOpcode() == ISD::CopyFromReg); 12585 do { 12586 // Follow the chain until we find an INLINEASM node. 12587 N = N->getOperand(0).getNode(); 12588 if (N->getOpcode() == ISD::INLINEASM || 12589 N->getOpcode() == ISD::INLINEASM_BR) 12590 return true; 12591 } while (N->getOpcode() == ISD::CopyFromReg); 12592 return false; 12593 } 12594 12595 bool SITargetLowering::isSDNodeSourceOfDivergence( 12596 const SDNode *N, FunctionLoweringInfo *FLI, 12597 LegacyDivergenceAnalysis *KDA) const { 12598 switch (N->getOpcode()) { 12599 case ISD::CopyFromReg: { 12600 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 12601 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 12602 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12603 Register Reg = R->getReg(); 12604 12605 // FIXME: Why does this need to consider isLiveIn? 12606 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 12607 return !TRI->isSGPRReg(MRI, Reg); 12608 12609 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 12610 return KDA->isDivergent(V); 12611 12612 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 12613 return !TRI->isSGPRReg(MRI, Reg); 12614 } 12615 case ISD::LOAD: { 12616 const LoadSDNode *L = cast<LoadSDNode>(N); 12617 unsigned AS = L->getAddressSpace(); 12618 // A flat load may access private memory. 12619 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 12620 } 12621 case ISD::CALLSEQ_END: 12622 return true; 12623 case ISD::INTRINSIC_WO_CHAIN: 12624 return AMDGPU::isIntrinsicSourceOfDivergence( 12625 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 12626 case ISD::INTRINSIC_W_CHAIN: 12627 return AMDGPU::isIntrinsicSourceOfDivergence( 12628 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 12629 case AMDGPUISD::ATOMIC_CMP_SWAP: 12630 case AMDGPUISD::ATOMIC_INC: 12631 case AMDGPUISD::ATOMIC_DEC: 12632 case AMDGPUISD::ATOMIC_LOAD_FMIN: 12633 case AMDGPUISD::ATOMIC_LOAD_FMAX: 12634 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 12635 case AMDGPUISD::BUFFER_ATOMIC_ADD: 12636 case AMDGPUISD::BUFFER_ATOMIC_SUB: 12637 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 12638 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 12639 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 12640 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 12641 case AMDGPUISD::BUFFER_ATOMIC_AND: 12642 case AMDGPUISD::BUFFER_ATOMIC_OR: 12643 case AMDGPUISD::BUFFER_ATOMIC_XOR: 12644 case AMDGPUISD::BUFFER_ATOMIC_INC: 12645 case AMDGPUISD::BUFFER_ATOMIC_DEC: 12646 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 12647 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 12648 case AMDGPUISD::BUFFER_ATOMIC_FADD: 12649 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 12650 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 12651 // Target-specific read-modify-write atomics are sources of divergence. 12652 return true; 12653 default: 12654 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 12655 // Generic read-modify-write atomics are sources of divergence. 12656 return A->readMem() && A->writeMem(); 12657 } 12658 return false; 12659 } 12660 } 12661 12662 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 12663 EVT VT) const { 12664 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 12665 case MVT::f32: 12666 return hasFP32Denormals(DAG.getMachineFunction()); 12667 case MVT::f64: 12668 case MVT::f16: 12669 return hasFP64FP16Denormals(DAG.getMachineFunction()); 12670 default: 12671 return false; 12672 } 12673 } 12674 12675 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 12676 MachineFunction &MF) const { 12677 switch (Ty.getScalarSizeInBits()) { 12678 case 32: 12679 return hasFP32Denormals(MF); 12680 case 64: 12681 case 16: 12682 return hasFP64FP16Denormals(MF); 12683 default: 12684 return false; 12685 } 12686 } 12687 12688 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 12689 const SelectionDAG &DAG, 12690 bool SNaN, 12691 unsigned Depth) const { 12692 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 12693 const MachineFunction &MF = DAG.getMachineFunction(); 12694 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12695 12696 if (Info->getMode().DX10Clamp) 12697 return true; // Clamped to 0. 12698 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 12699 } 12700 12701 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 12702 SNaN, Depth); 12703 } 12704 12705 // Global FP atomic instructions have a hardcoded FP mode and do not support 12706 // FP32 denormals, and only support v2f16 denormals. 12707 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 12708 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 12709 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 12710 if (&Flt == &APFloat::IEEEsingle()) 12711 return DenormMode == DenormalMode::getPreserveSign(); 12712 return DenormMode == DenormalMode::getIEEE(); 12713 } 12714 12715 TargetLowering::AtomicExpansionKind 12716 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 12717 unsigned AS = RMW->getPointerAddressSpace(); 12718 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 12719 return AtomicExpansionKind::NotAtomic; 12720 12721 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 12722 OptimizationRemarkEmitter ORE(RMW->getFunction()); 12723 LLVMContext &Ctx = RMW->getFunction()->getContext(); 12724 SmallVector<StringRef> SSNs; 12725 Ctx.getSyncScopeNames(SSNs); 12726 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 12727 ? "system" 12728 : SSNs[RMW->getSyncScopeID()]; 12729 ORE.emit([&]() { 12730 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 12731 << "Hardware instruction generated for atomic " 12732 << RMW->getOperationName(RMW->getOperation()) 12733 << " operation at memory scope " << MemScope 12734 << " due to an unsafe request."; 12735 }); 12736 return Kind; 12737 }; 12738 12739 switch (RMW->getOperation()) { 12740 case AtomicRMWInst::FAdd: { 12741 Type *Ty = RMW->getType(); 12742 12743 // We don't have a way to support 16-bit atomics now, so just leave them 12744 // as-is. 12745 if (Ty->isHalfTy()) 12746 return AtomicExpansionKind::None; 12747 12748 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 12749 return AtomicExpansionKind::CmpXChg; 12750 12751 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) && 12752 Subtarget->hasAtomicFaddNoRtnInsts()) { 12753 if (Subtarget->hasGFX940Insts()) 12754 return AtomicExpansionKind::None; 12755 12756 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 12757 // floating point atomic instructions. May generate more efficient code, 12758 // but may not respect rounding and denormal modes, and may give incorrect 12759 // results for certain memory destinations. 12760 if (RMW->getFunction() 12761 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12762 .getValueAsString() != "true") 12763 return AtomicExpansionKind::CmpXChg; 12764 12765 if (Subtarget->hasGFX90AInsts()) { 12766 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS) 12767 return AtomicExpansionKind::CmpXChg; 12768 12769 auto SSID = RMW->getSyncScopeID(); 12770 if (SSID == SyncScope::System || 12771 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as")) 12772 return AtomicExpansionKind::CmpXChg; 12773 12774 return ReportUnsafeHWInst(AtomicExpansionKind::None); 12775 } 12776 12777 if (AS == AMDGPUAS::FLAT_ADDRESS) 12778 return AtomicExpansionKind::CmpXChg; 12779 12780 return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12781 : AtomicExpansionKind::CmpXChg; 12782 } 12783 12784 // DS FP atomics do respect the denormal mode, but the rounding mode is 12785 // fixed to round-to-nearest-even. 12786 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 12787 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 12788 if (!Ty->isDoubleTy()) 12789 return AtomicExpansionKind::None; 12790 12791 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 12792 return AtomicExpansionKind::None; 12793 12794 return RMW->getFunction() 12795 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12796 .getValueAsString() == "true" 12797 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12798 : AtomicExpansionKind::CmpXChg; 12799 } 12800 12801 return AtomicExpansionKind::CmpXChg; 12802 } 12803 default: 12804 break; 12805 } 12806 12807 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 12808 } 12809 12810 TargetLowering::AtomicExpansionKind 12811 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 12812 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12813 ? AtomicExpansionKind::NotAtomic 12814 : AtomicExpansionKind::None; 12815 } 12816 12817 TargetLowering::AtomicExpansionKind 12818 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 12819 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12820 ? AtomicExpansionKind::NotAtomic 12821 : AtomicExpansionKind::None; 12822 } 12823 12824 TargetLowering::AtomicExpansionKind 12825 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { 12826 return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12827 ? AtomicExpansionKind::NotAtomic 12828 : AtomicExpansionKind::None; 12829 } 12830 12831 const TargetRegisterClass * 12832 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 12833 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 12834 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12835 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 12836 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 12837 : &AMDGPU::SReg_32RegClass; 12838 if (!TRI->isSGPRClass(RC) && !isDivergent) 12839 return TRI->getEquivalentSGPRClass(RC); 12840 else if (TRI->isSGPRClass(RC) && isDivergent) 12841 return TRI->getEquivalentVGPRClass(RC); 12842 12843 return RC; 12844 } 12845 12846 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 12847 // uniform values (as produced by the mask results of control flow intrinsics) 12848 // used outside of divergent blocks. The phi users need to also be treated as 12849 // always uniform. 12850 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 12851 unsigned WaveSize) { 12852 // FIXME: We assume we never cast the mask results of a control flow 12853 // intrinsic. 12854 // Early exit if the type won't be consistent as a compile time hack. 12855 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 12856 if (!IT || IT->getBitWidth() != WaveSize) 12857 return false; 12858 12859 if (!isa<Instruction>(V)) 12860 return false; 12861 if (!Visited.insert(V).second) 12862 return false; 12863 bool Result = false; 12864 for (auto U : V->users()) { 12865 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 12866 if (V == U->getOperand(1)) { 12867 switch (Intrinsic->getIntrinsicID()) { 12868 default: 12869 Result = false; 12870 break; 12871 case Intrinsic::amdgcn_if_break: 12872 case Intrinsic::amdgcn_if: 12873 case Intrinsic::amdgcn_else: 12874 Result = true; 12875 break; 12876 } 12877 } 12878 if (V == U->getOperand(0)) { 12879 switch (Intrinsic->getIntrinsicID()) { 12880 default: 12881 Result = false; 12882 break; 12883 case Intrinsic::amdgcn_end_cf: 12884 case Intrinsic::amdgcn_loop: 12885 Result = true; 12886 break; 12887 } 12888 } 12889 } else { 12890 Result = hasCFUser(U, Visited, WaveSize); 12891 } 12892 if (Result) 12893 break; 12894 } 12895 return Result; 12896 } 12897 12898 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 12899 const Value *V) const { 12900 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 12901 if (CI->isInlineAsm()) { 12902 // FIXME: This cannot give a correct answer. This should only trigger in 12903 // the case where inline asm returns mixed SGPR and VGPR results, used 12904 // outside the defining block. We don't have a specific result to 12905 // consider, so this assumes if any value is SGPR, the overall register 12906 // also needs to be SGPR. 12907 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 12908 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 12909 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 12910 for (auto &TC : TargetConstraints) { 12911 if (TC.Type == InlineAsm::isOutput) { 12912 ComputeConstraintToUse(TC, SDValue()); 12913 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 12914 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 12915 if (RC && SIRI->isSGPRClass(RC)) 12916 return true; 12917 } 12918 } 12919 } 12920 } 12921 SmallPtrSet<const Value *, 16> Visited; 12922 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 12923 } 12924 12925 std::pair<InstructionCost, MVT> 12926 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 12927 Type *Ty) const { 12928 std::pair<InstructionCost, MVT> Cost = 12929 TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 12930 auto Size = DL.getTypeSizeInBits(Ty); 12931 // Maximum load or store can handle 8 dwords for scalar and 4 for 12932 // vector ALU. Let's assume anything above 8 dwords is expensive 12933 // even if legal. 12934 if (Size <= 256) 12935 return Cost; 12936 12937 Cost.first += (Size + 255) / 256; 12938 return Cost; 12939 } 12940 12941 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { 12942 SDNode::use_iterator I = N->use_begin(), E = N->use_end(); 12943 for (; I != E; ++I) { 12944 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { 12945 if (getBasePtrIndex(M) == I.getOperandNo()) 12946 return true; 12947 } 12948 } 12949 return false; 12950 } 12951 12952 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, 12953 SDValue N1) const { 12954 if (!N0.hasOneUse()) 12955 return false; 12956 // Take care of the opportunity to keep N0 uniform 12957 if (N0->isDivergent() || !N1->isDivergent()) 12958 return true; 12959 // Check if we have a good chance to form the memory access pattern with the 12960 // base and offset 12961 return (DAG.isBaseWithConstantOffset(N0) && 12962 hasMemSDNodeUser(*N0->use_begin())); 12963 } 12964 12965 MachineMemOperand::Flags 12966 SITargetLowering::getTargetMMOFlags(const Instruction &I) const { 12967 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. 12968 if (I.getMetadata("amdgpu.noclobber")) 12969 return MONoClobber; 12970 return MachineMemOperand::MONone; 12971 } 12972