1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #if defined(_MSC_VER) || defined(__MINGW32__) 15 // Provide M_PI. 16 #define _USE_MATH_DEFINES 17 #endif 18 19 #include "SIISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 24 #include "SIDefines.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIRegisterInfo.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "llvm/ADT/APFloat.h" 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/BitVector.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/CallingConvLower.h" 41 #include "llvm/CodeGen/DAGCombine.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/TargetCallingConv.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugLoc.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/DiagnosticInfo.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/GlobalValue.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/IntrinsicInst.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CodeGen.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/MachineValueType.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Target/TargetOptions.h" 79 #include <cassert> 80 #include <cmath> 81 #include <cstdint> 82 #include <iterator> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "si-lower" 90 91 STATISTIC(NumTailCalls, "Number of tail calls"); 92 93 static cl::opt<bool> DisableLoopAlignment( 94 "amdgpu-disable-loop-alignment", 95 cl::desc("Do not align and prefetch loops"), 96 cl::init(false)); 97 98 static bool hasFP32Denormals(const MachineFunction &MF) { 99 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 100 return Info->getMode().FP32Denormals; 101 } 102 103 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 104 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 105 return Info->getMode().FP64FP16Denormals; 106 } 107 108 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 109 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 110 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 111 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 112 return AMDGPU::SGPR0 + Reg; 113 } 114 } 115 llvm_unreachable("Cannot allocate sgpr"); 116 } 117 118 SITargetLowering::SITargetLowering(const TargetMachine &TM, 119 const GCNSubtarget &STI) 120 : AMDGPUTargetLowering(TM, STI), 121 Subtarget(&STI) { 122 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 123 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 124 125 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 126 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 127 128 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 129 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 130 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 131 132 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 133 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); 134 135 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 136 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 137 138 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 139 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 140 141 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 142 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); 143 144 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); 145 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 146 147 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); 148 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 149 150 if (Subtarget->has16BitInsts()) { 151 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 152 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 153 154 // Unless there are also VOP3P operations, not operations are really legal. 155 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 156 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 157 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 158 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 159 } 160 161 if (Subtarget->hasMAIInsts()) { 162 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 163 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass); 164 } 165 166 computeRegisterProperties(Subtarget->getRegisterInfo()); 167 168 // The boolean content concept here is too inflexible. Compares only ever 169 // really produce a 1-bit result. Any copy/extend from these will turn into a 170 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 171 // it's what most targets use. 172 setBooleanContents(ZeroOrOneBooleanContent); 173 setBooleanVectorContents(ZeroOrOneBooleanContent); 174 175 // We need to custom lower vector stores from local memory 176 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 177 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 178 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 179 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 180 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 181 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 182 setOperationAction(ISD::LOAD, MVT::i1, Custom); 183 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 184 185 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 186 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 187 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 188 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 189 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 190 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 191 setOperationAction(ISD::STORE, MVT::i1, Custom); 192 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 193 194 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 195 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 196 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 197 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 198 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 199 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 200 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 201 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 202 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 203 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 204 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 205 206 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 207 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 208 209 setOperationAction(ISD::SELECT, MVT::i1, Promote); 210 setOperationAction(ISD::SELECT, MVT::i64, Custom); 211 setOperationAction(ISD::SELECT, MVT::f64, Promote); 212 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 213 214 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 215 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 216 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 217 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 218 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 219 220 setOperationAction(ISD::SETCC, MVT::i1, Promote); 221 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 222 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 223 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 224 225 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 226 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 227 228 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 229 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 230 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 231 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 232 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 235 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 236 237 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 238 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 239 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 240 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 241 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 242 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 243 244 setOperationAction(ISD::UADDO, MVT::i32, Legal); 245 setOperationAction(ISD::USUBO, MVT::i32, Legal); 246 247 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 248 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 249 250 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 251 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 252 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 253 254 #if 0 255 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 256 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 257 #endif 258 259 // We only support LOAD/STORE and vector manipulation ops for vectors 260 // with > 4 elements. 261 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 262 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 263 MVT::v32i32, MVT::v32f32 }) { 264 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 265 switch (Op) { 266 case ISD::LOAD: 267 case ISD::STORE: 268 case ISD::BUILD_VECTOR: 269 case ISD::BITCAST: 270 case ISD::EXTRACT_VECTOR_ELT: 271 case ISD::INSERT_VECTOR_ELT: 272 case ISD::INSERT_SUBVECTOR: 273 case ISD::EXTRACT_SUBVECTOR: 274 case ISD::SCALAR_TO_VECTOR: 275 break; 276 case ISD::CONCAT_VECTORS: 277 setOperationAction(Op, VT, Custom); 278 break; 279 default: 280 setOperationAction(Op, VT, Expand); 281 break; 282 } 283 } 284 } 285 286 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 287 288 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 289 // is expanded to avoid having two separate loops in case the index is a VGPR. 290 291 // Most operations are naturally 32-bit vector operations. We only support 292 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 293 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 294 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 295 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 296 297 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 298 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 299 300 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 301 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 302 303 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 304 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 305 } 306 307 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 308 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 309 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 310 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 311 312 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 313 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 314 315 // Avoid stack access for these. 316 // TODO: Generalize to more vector types. 317 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 318 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 319 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 320 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 321 322 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 323 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 324 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 325 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 326 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 327 328 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 329 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 330 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 331 332 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 333 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 334 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 335 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 336 337 // Deal with vec3 vector operations when widened to vec4. 338 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 339 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 340 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 341 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 342 343 // Deal with vec5 vector operations when widened to vec8. 344 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 345 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 346 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 347 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 348 349 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 350 // and output demarshalling 351 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 352 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 353 354 // We can't return success/failure, only the old value, 355 // let LLVM add the comparison 356 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 357 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 358 359 if (Subtarget->hasFlatAddressSpace()) { 360 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 361 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 362 } 363 364 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 365 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 366 367 // On SI this is s_memtime and s_memrealtime on VI. 368 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 369 setOperationAction(ISD::TRAP, MVT::Other, Custom); 370 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 371 372 if (Subtarget->has16BitInsts()) { 373 setOperationAction(ISD::FPOW, MVT::f16, Promote); 374 setOperationAction(ISD::FLOG, MVT::f16, Custom); 375 setOperationAction(ISD::FEXP, MVT::f16, Custom); 376 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 377 } 378 379 // v_mad_f32 does not support denormals. We report it as unconditionally 380 // legal, and the context where it is formed will disallow it when fp32 381 // denormals are enabled. 382 setOperationAction(ISD::FMAD, MVT::f32, Legal); 383 384 if (!Subtarget->hasBFI()) { 385 // fcopysign can be done in a single instruction with BFI. 386 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 387 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 388 } 389 390 if (!Subtarget->hasBCNT(32)) 391 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 392 393 if (!Subtarget->hasBCNT(64)) 394 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 395 396 if (Subtarget->hasFFBH()) 397 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 398 399 if (Subtarget->hasFFBL()) 400 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 401 402 // We only really have 32-bit BFE instructions (and 16-bit on VI). 403 // 404 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 405 // effort to match them now. We want this to be false for i64 cases when the 406 // extraction isn't restricted to the upper or lower half. Ideally we would 407 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 408 // span the midpoint are probably relatively rare, so don't worry about them 409 // for now. 410 if (Subtarget->hasBFE()) 411 setHasExtractBitsInsn(true); 412 413 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 414 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 415 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 417 418 419 // These are really only legal for ieee_mode functions. We should be avoiding 420 // them for functions that don't have ieee_mode enabled, so just say they are 421 // legal. 422 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 423 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 424 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 425 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 426 427 428 if (Subtarget->haveRoundOpsF64()) { 429 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 430 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 431 setOperationAction(ISD::FRINT, MVT::f64, Legal); 432 } else { 433 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 434 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 435 setOperationAction(ISD::FRINT, MVT::f64, Custom); 436 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 437 } 438 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 441 setOperationAction(ISD::FSIN, MVT::f32, Custom); 442 setOperationAction(ISD::FCOS, MVT::f32, Custom); 443 setOperationAction(ISD::FDIV, MVT::f32, Custom); 444 setOperationAction(ISD::FDIV, MVT::f64, Custom); 445 446 if (Subtarget->has16BitInsts()) { 447 setOperationAction(ISD::Constant, MVT::i16, Legal); 448 449 setOperationAction(ISD::SMIN, MVT::i16, Legal); 450 setOperationAction(ISD::SMAX, MVT::i16, Legal); 451 452 setOperationAction(ISD::UMIN, MVT::i16, Legal); 453 setOperationAction(ISD::UMAX, MVT::i16, Legal); 454 455 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 456 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 457 458 setOperationAction(ISD::ROTR, MVT::i16, Promote); 459 setOperationAction(ISD::ROTL, MVT::i16, Promote); 460 461 setOperationAction(ISD::SDIV, MVT::i16, Promote); 462 setOperationAction(ISD::UDIV, MVT::i16, Promote); 463 setOperationAction(ISD::SREM, MVT::i16, Promote); 464 setOperationAction(ISD::UREM, MVT::i16, Promote); 465 466 setOperationAction(ISD::BSWAP, MVT::i16, Promote); 467 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 468 469 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 470 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 471 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 472 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 473 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 474 475 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 476 477 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 478 479 setOperationAction(ISD::LOAD, MVT::i16, Custom); 480 481 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 482 483 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 484 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 485 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 486 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 487 488 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 489 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 490 491 // F16 - Constant Actions. 492 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 493 494 // F16 - Load/Store Actions. 495 setOperationAction(ISD::LOAD, MVT::f16, Promote); 496 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 497 setOperationAction(ISD::STORE, MVT::f16, Promote); 498 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 499 500 // F16 - VOP1 Actions. 501 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 502 setOperationAction(ISD::FCOS, MVT::f16, Promote); 503 setOperationAction(ISD::FSIN, MVT::f16, Promote); 504 505 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); 506 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); 507 508 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 509 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 510 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 511 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 512 setOperationAction(ISD::FROUND, MVT::f16, Custom); 513 514 // F16 - VOP2 Actions. 515 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 516 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 517 518 setOperationAction(ISD::FDIV, MVT::f16, Custom); 519 520 // F16 - VOP3 Actions. 521 setOperationAction(ISD::FMA, MVT::f16, Legal); 522 if (STI.hasMadF16()) 523 setOperationAction(ISD::FMAD, MVT::f16, Legal); 524 525 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 526 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 527 switch (Op) { 528 case ISD::LOAD: 529 case ISD::STORE: 530 case ISD::BUILD_VECTOR: 531 case ISD::BITCAST: 532 case ISD::EXTRACT_VECTOR_ELT: 533 case ISD::INSERT_VECTOR_ELT: 534 case ISD::INSERT_SUBVECTOR: 535 case ISD::EXTRACT_SUBVECTOR: 536 case ISD::SCALAR_TO_VECTOR: 537 break; 538 case ISD::CONCAT_VECTORS: 539 setOperationAction(Op, VT, Custom); 540 break; 541 default: 542 setOperationAction(Op, VT, Expand); 543 break; 544 } 545 } 546 } 547 548 // XXX - Do these do anything? Vector constants turn into build_vector. 549 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 550 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 551 552 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 553 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 554 555 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 556 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 557 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 558 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 559 560 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 561 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 562 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 563 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 564 565 setOperationAction(ISD::AND, MVT::v2i16, Promote); 566 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 567 setOperationAction(ISD::OR, MVT::v2i16, Promote); 568 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 569 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 570 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 571 572 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 573 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 574 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 575 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 576 577 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 578 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 579 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 580 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 581 582 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 583 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 584 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 585 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 586 587 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 588 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 589 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 590 591 if (!Subtarget->hasVOP3PInsts()) { 592 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 593 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 594 } 595 596 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 597 // This isn't really legal, but this avoids the legalizer unrolling it (and 598 // allows matching fneg (fabs x) patterns) 599 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 600 601 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 602 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 603 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 604 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 605 606 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 607 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 608 609 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 610 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 611 } 612 613 if (Subtarget->hasVOP3PInsts()) { 614 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 615 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 616 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 617 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 618 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 619 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 620 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 621 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 622 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 623 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 624 625 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 626 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 627 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 628 629 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 630 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 631 632 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 633 634 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 635 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 636 637 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 638 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 639 640 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 641 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 642 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 643 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 644 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 645 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 646 647 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 648 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 649 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 650 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 651 652 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 653 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 654 setOperationAction(ISD::FMA, MVT::v4f16, Custom); 655 656 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 657 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 658 659 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 660 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 661 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 662 663 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 664 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 665 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 666 } 667 668 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 669 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 670 671 if (Subtarget->has16BitInsts()) { 672 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 673 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 674 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 675 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 676 } else { 677 // Legalization hack. 678 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 679 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 680 681 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 682 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 683 } 684 685 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 686 setOperationAction(ISD::SELECT, VT, Custom); 687 } 688 689 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 690 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 691 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 692 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 693 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 694 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 695 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 696 697 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 698 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 699 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 700 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 701 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 702 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 703 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 704 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 705 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 706 707 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 708 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 709 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 710 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 711 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 712 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 713 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 714 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 715 716 setTargetDAGCombine(ISD::ADD); 717 setTargetDAGCombine(ISD::ADDCARRY); 718 setTargetDAGCombine(ISD::SUB); 719 setTargetDAGCombine(ISD::SUBCARRY); 720 setTargetDAGCombine(ISD::FADD); 721 setTargetDAGCombine(ISD::FSUB); 722 setTargetDAGCombine(ISD::FMINNUM); 723 setTargetDAGCombine(ISD::FMAXNUM); 724 setTargetDAGCombine(ISD::FMINNUM_IEEE); 725 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 726 setTargetDAGCombine(ISD::FMA); 727 setTargetDAGCombine(ISD::SMIN); 728 setTargetDAGCombine(ISD::SMAX); 729 setTargetDAGCombine(ISD::UMIN); 730 setTargetDAGCombine(ISD::UMAX); 731 setTargetDAGCombine(ISD::SETCC); 732 setTargetDAGCombine(ISD::AND); 733 setTargetDAGCombine(ISD::OR); 734 setTargetDAGCombine(ISD::XOR); 735 setTargetDAGCombine(ISD::SINT_TO_FP); 736 setTargetDAGCombine(ISD::UINT_TO_FP); 737 setTargetDAGCombine(ISD::FCANONICALIZE); 738 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 739 setTargetDAGCombine(ISD::ZERO_EXTEND); 740 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 741 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 742 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 743 744 // All memory operations. Some folding on the pointer operand is done to help 745 // matching the constant offsets in the addressing modes. 746 setTargetDAGCombine(ISD::LOAD); 747 setTargetDAGCombine(ISD::STORE); 748 setTargetDAGCombine(ISD::ATOMIC_LOAD); 749 setTargetDAGCombine(ISD::ATOMIC_STORE); 750 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 751 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 752 setTargetDAGCombine(ISD::ATOMIC_SWAP); 753 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 754 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 755 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 756 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 757 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 758 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 759 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 760 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 761 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 762 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 763 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 764 765 setSchedulingPreference(Sched::RegPressure); 766 } 767 768 const GCNSubtarget *SITargetLowering::getSubtarget() const { 769 return Subtarget; 770 } 771 772 //===----------------------------------------------------------------------===// 773 // TargetLowering queries 774 //===----------------------------------------------------------------------===// 775 776 // v_mad_mix* support a conversion from f16 to f32. 777 // 778 // There is only one special case when denormals are enabled we don't currently, 779 // where this is OK to use. 780 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 781 EVT DestVT, EVT SrcVT) const { 782 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 783 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 784 DestVT.getScalarType() == MVT::f32 && 785 SrcVT.getScalarType() == MVT::f16 && 786 !hasFP32Denormals(DAG.getMachineFunction()); 787 } 788 789 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 790 // SI has some legal vector types, but no legal vector operations. Say no 791 // shuffles are legal in order to prefer scalarizing some vector operations. 792 return false; 793 } 794 795 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 796 CallingConv::ID CC, 797 EVT VT) const { 798 if (CC == CallingConv::AMDGPU_KERNEL) 799 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 800 801 if (VT.isVector()) { 802 EVT ScalarVT = VT.getScalarType(); 803 unsigned Size = ScalarVT.getSizeInBits(); 804 if (Size == 32) 805 return ScalarVT.getSimpleVT(); 806 807 if (Size > 32) 808 return MVT::i32; 809 810 if (Size == 16 && Subtarget->has16BitInsts()) 811 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 812 } else if (VT.getSizeInBits() > 32) 813 return MVT::i32; 814 815 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 816 } 817 818 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 819 CallingConv::ID CC, 820 EVT VT) const { 821 if (CC == CallingConv::AMDGPU_KERNEL) 822 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 823 824 if (VT.isVector()) { 825 unsigned NumElts = VT.getVectorNumElements(); 826 EVT ScalarVT = VT.getScalarType(); 827 unsigned Size = ScalarVT.getSizeInBits(); 828 829 if (Size == 32) 830 return NumElts; 831 832 if (Size > 32) 833 return NumElts * ((Size + 31) / 32); 834 835 if (Size == 16 && Subtarget->has16BitInsts()) 836 return (NumElts + 1) / 2; 837 } else if (VT.getSizeInBits() > 32) 838 return (VT.getSizeInBits() + 31) / 32; 839 840 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 841 } 842 843 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 844 LLVMContext &Context, CallingConv::ID CC, 845 EVT VT, EVT &IntermediateVT, 846 unsigned &NumIntermediates, MVT &RegisterVT) const { 847 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 848 unsigned NumElts = VT.getVectorNumElements(); 849 EVT ScalarVT = VT.getScalarType(); 850 unsigned Size = ScalarVT.getSizeInBits(); 851 if (Size == 32) { 852 RegisterVT = ScalarVT.getSimpleVT(); 853 IntermediateVT = RegisterVT; 854 NumIntermediates = NumElts; 855 return NumIntermediates; 856 } 857 858 if (Size > 32) { 859 RegisterVT = MVT::i32; 860 IntermediateVT = RegisterVT; 861 NumIntermediates = NumElts * ((Size + 31) / 32); 862 return NumIntermediates; 863 } 864 865 // FIXME: We should fix the ABI to be the same on targets without 16-bit 866 // support, but unless we can properly handle 3-vectors, it will be still be 867 // inconsistent. 868 if (Size == 16 && Subtarget->has16BitInsts()) { 869 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 870 IntermediateVT = RegisterVT; 871 NumIntermediates = (NumElts + 1) / 2; 872 return NumIntermediates; 873 } 874 } 875 876 return TargetLowering::getVectorTypeBreakdownForCallingConv( 877 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 878 } 879 880 static MVT memVTFromAggregate(Type *Ty) { 881 // Only limited forms of aggregate type currently expected. 882 assert(Ty->isStructTy() && "Expected struct type"); 883 884 885 Type *ElementType = nullptr; 886 unsigned NumElts; 887 if (Ty->getContainedType(0)->isVectorTy()) { 888 VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0)); 889 ElementType = VecComponent->getElementType(); 890 NumElts = VecComponent->getNumElements(); 891 } else { 892 ElementType = Ty->getContainedType(0); 893 NumElts = 1; 894 } 895 896 assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type"); 897 898 // Calculate the size of the memVT type from the aggregate 899 unsigned Pow2Elts = 0; 900 unsigned ElementSize; 901 switch (ElementType->getTypeID()) { 902 default: 903 llvm_unreachable("Unknown type!"); 904 case Type::IntegerTyID: 905 ElementSize = cast<IntegerType>(ElementType)->getBitWidth(); 906 break; 907 case Type::HalfTyID: 908 ElementSize = 16; 909 break; 910 case Type::FloatTyID: 911 ElementSize = 32; 912 break; 913 } 914 unsigned AdditionalElts = ElementSize == 16 ? 2 : 1; 915 Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts); 916 917 return MVT::getVectorVT(MVT::getVT(ElementType, false), 918 Pow2Elts); 919 } 920 921 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 922 const CallInst &CI, 923 MachineFunction &MF, 924 unsigned IntrID) const { 925 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 926 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 927 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 928 (Intrinsic::ID)IntrID); 929 if (Attr.hasFnAttribute(Attribute::ReadNone)) 930 return false; 931 932 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 933 934 if (RsrcIntr->IsImage) { 935 Info.ptrVal = MFI->getImagePSV( 936 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 937 CI.getArgOperand(RsrcIntr->RsrcArg)); 938 Info.align.reset(); 939 } else { 940 Info.ptrVal = MFI->getBufferPSV( 941 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 942 CI.getArgOperand(RsrcIntr->RsrcArg)); 943 } 944 945 Info.flags = MachineMemOperand::MODereferenceable; 946 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 947 Info.opc = ISD::INTRINSIC_W_CHAIN; 948 Info.memVT = MVT::getVT(CI.getType(), true); 949 if (Info.memVT == MVT::Other) { 950 // Some intrinsics return an aggregate type - special case to work out 951 // the correct memVT 952 Info.memVT = memVTFromAggregate(CI.getType()); 953 } 954 Info.flags |= MachineMemOperand::MOLoad; 955 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 956 Info.opc = ISD::INTRINSIC_VOID; 957 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 958 Info.flags |= MachineMemOperand::MOStore; 959 } else { 960 // Atomic 961 Info.opc = ISD::INTRINSIC_W_CHAIN; 962 Info.memVT = MVT::getVT(CI.getType()); 963 Info.flags = MachineMemOperand::MOLoad | 964 MachineMemOperand::MOStore | 965 MachineMemOperand::MODereferenceable; 966 967 // XXX - Should this be volatile without known ordering? 968 Info.flags |= MachineMemOperand::MOVolatile; 969 } 970 return true; 971 } 972 973 switch (IntrID) { 974 case Intrinsic::amdgcn_atomic_inc: 975 case Intrinsic::amdgcn_atomic_dec: 976 case Intrinsic::amdgcn_ds_ordered_add: 977 case Intrinsic::amdgcn_ds_ordered_swap: 978 case Intrinsic::amdgcn_ds_fadd: 979 case Intrinsic::amdgcn_ds_fmin: 980 case Intrinsic::amdgcn_ds_fmax: { 981 Info.opc = ISD::INTRINSIC_W_CHAIN; 982 Info.memVT = MVT::getVT(CI.getType()); 983 Info.ptrVal = CI.getOperand(0); 984 Info.align.reset(); 985 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 986 987 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 988 if (!Vol->isZero()) 989 Info.flags |= MachineMemOperand::MOVolatile; 990 991 return true; 992 } 993 case Intrinsic::amdgcn_buffer_atomic_fadd: { 994 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 995 996 Info.opc = ISD::INTRINSIC_VOID; 997 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 998 Info.ptrVal = MFI->getBufferPSV( 999 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1000 CI.getArgOperand(1)); 1001 Info.align.reset(); 1002 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1003 1004 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1005 if (!Vol || !Vol->isZero()) 1006 Info.flags |= MachineMemOperand::MOVolatile; 1007 1008 return true; 1009 } 1010 case Intrinsic::amdgcn_global_atomic_fadd: { 1011 Info.opc = ISD::INTRINSIC_VOID; 1012 Info.memVT = MVT::getVT(CI.getOperand(0)->getType() 1013 ->getPointerElementType()); 1014 Info.ptrVal = CI.getOperand(0); 1015 Info.align.reset(); 1016 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1017 1018 return true; 1019 } 1020 case Intrinsic::amdgcn_ds_append: 1021 case Intrinsic::amdgcn_ds_consume: { 1022 Info.opc = ISD::INTRINSIC_W_CHAIN; 1023 Info.memVT = MVT::getVT(CI.getType()); 1024 Info.ptrVal = CI.getOperand(0); 1025 Info.align.reset(); 1026 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1027 1028 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1029 if (!Vol->isZero()) 1030 Info.flags |= MachineMemOperand::MOVolatile; 1031 1032 return true; 1033 } 1034 case Intrinsic::amdgcn_ds_gws_init: 1035 case Intrinsic::amdgcn_ds_gws_barrier: 1036 case Intrinsic::amdgcn_ds_gws_sema_v: 1037 case Intrinsic::amdgcn_ds_gws_sema_br: 1038 case Intrinsic::amdgcn_ds_gws_sema_p: 1039 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1040 Info.opc = ISD::INTRINSIC_VOID; 1041 1042 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1043 Info.ptrVal = 1044 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1045 1046 // This is an abstract access, but we need to specify a type and size. 1047 Info.memVT = MVT::i32; 1048 Info.size = 4; 1049 Info.align = Align(4); 1050 1051 Info.flags = MachineMemOperand::MOStore; 1052 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1053 Info.flags = MachineMemOperand::MOLoad; 1054 return true; 1055 } 1056 default: 1057 return false; 1058 } 1059 } 1060 1061 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1062 SmallVectorImpl<Value*> &Ops, 1063 Type *&AccessTy) const { 1064 switch (II->getIntrinsicID()) { 1065 case Intrinsic::amdgcn_atomic_inc: 1066 case Intrinsic::amdgcn_atomic_dec: 1067 case Intrinsic::amdgcn_ds_ordered_add: 1068 case Intrinsic::amdgcn_ds_ordered_swap: 1069 case Intrinsic::amdgcn_ds_fadd: 1070 case Intrinsic::amdgcn_ds_fmin: 1071 case Intrinsic::amdgcn_ds_fmax: { 1072 Value *Ptr = II->getArgOperand(0); 1073 AccessTy = II->getType(); 1074 Ops.push_back(Ptr); 1075 return true; 1076 } 1077 default: 1078 return false; 1079 } 1080 } 1081 1082 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1083 if (!Subtarget->hasFlatInstOffsets()) { 1084 // Flat instructions do not have offsets, and only have the register 1085 // address. 1086 return AM.BaseOffs == 0 && AM.Scale == 0; 1087 } 1088 1089 return AM.Scale == 0 && 1090 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1091 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, 1092 /*Signed=*/false)); 1093 } 1094 1095 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1096 if (Subtarget->hasFlatGlobalInsts()) 1097 return AM.Scale == 0 && 1098 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1099 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1100 /*Signed=*/true)); 1101 1102 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1103 // Assume the we will use FLAT for all global memory accesses 1104 // on VI. 1105 // FIXME: This assumption is currently wrong. On VI we still use 1106 // MUBUF instructions for the r + i addressing mode. As currently 1107 // implemented, the MUBUF instructions only work on buffer < 4GB. 1108 // It may be possible to support > 4GB buffers with MUBUF instructions, 1109 // by setting the stride value in the resource descriptor which would 1110 // increase the size limit to (stride * 4GB). However, this is risky, 1111 // because it has never been validated. 1112 return isLegalFlatAddressingMode(AM); 1113 } 1114 1115 return isLegalMUBUFAddressingMode(AM); 1116 } 1117 1118 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1119 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1120 // additionally can do r + r + i with addr64. 32-bit has more addressing 1121 // mode options. Depending on the resource constant, it can also do 1122 // (i64 r0) + (i32 r1) * (i14 i). 1123 // 1124 // Private arrays end up using a scratch buffer most of the time, so also 1125 // assume those use MUBUF instructions. Scratch loads / stores are currently 1126 // implemented as mubuf instructions with offen bit set, so slightly 1127 // different than the normal addr64. 1128 if (!isUInt<12>(AM.BaseOffs)) 1129 return false; 1130 1131 // FIXME: Since we can split immediate into soffset and immediate offset, 1132 // would it make sense to allow any immediate? 1133 1134 switch (AM.Scale) { 1135 case 0: // r + i or just i, depending on HasBaseReg. 1136 return true; 1137 case 1: 1138 return true; // We have r + r or r + i. 1139 case 2: 1140 if (AM.HasBaseReg) { 1141 // Reject 2 * r + r. 1142 return false; 1143 } 1144 1145 // Allow 2 * r as r + r 1146 // Or 2 * r + i is allowed as r + r + i. 1147 return true; 1148 default: // Don't allow n * r 1149 return false; 1150 } 1151 } 1152 1153 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1154 const AddrMode &AM, Type *Ty, 1155 unsigned AS, Instruction *I) const { 1156 // No global is ever allowed as a base. 1157 if (AM.BaseGV) 1158 return false; 1159 1160 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1161 return isLegalGlobalAddressingMode(AM); 1162 1163 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1164 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1165 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1166 // If the offset isn't a multiple of 4, it probably isn't going to be 1167 // correctly aligned. 1168 // FIXME: Can we get the real alignment here? 1169 if (AM.BaseOffs % 4 != 0) 1170 return isLegalMUBUFAddressingMode(AM); 1171 1172 // There are no SMRD extloads, so if we have to do a small type access we 1173 // will use a MUBUF load. 1174 // FIXME?: We also need to do this if unaligned, but we don't know the 1175 // alignment here. 1176 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1177 return isLegalGlobalAddressingMode(AM); 1178 1179 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1180 // SMRD instructions have an 8-bit, dword offset on SI. 1181 if (!isUInt<8>(AM.BaseOffs / 4)) 1182 return false; 1183 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1184 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1185 // in 8-bits, it can use a smaller encoding. 1186 if (!isUInt<32>(AM.BaseOffs / 4)) 1187 return false; 1188 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1189 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1190 if (!isUInt<20>(AM.BaseOffs)) 1191 return false; 1192 } else 1193 llvm_unreachable("unhandled generation"); 1194 1195 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1196 return true; 1197 1198 if (AM.Scale == 1 && AM.HasBaseReg) 1199 return true; 1200 1201 return false; 1202 1203 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1204 return isLegalMUBUFAddressingMode(AM); 1205 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1206 AS == AMDGPUAS::REGION_ADDRESS) { 1207 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1208 // field. 1209 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1210 // an 8-bit dword offset but we don't know the alignment here. 1211 if (!isUInt<16>(AM.BaseOffs)) 1212 return false; 1213 1214 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1215 return true; 1216 1217 if (AM.Scale == 1 && AM.HasBaseReg) 1218 return true; 1219 1220 return false; 1221 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1222 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1223 // For an unknown address space, this usually means that this is for some 1224 // reason being used for pure arithmetic, and not based on some addressing 1225 // computation. We don't have instructions that compute pointers with any 1226 // addressing modes, so treat them as having no offset like flat 1227 // instructions. 1228 return isLegalFlatAddressingMode(AM); 1229 } else { 1230 llvm_unreachable("unhandled address space"); 1231 } 1232 } 1233 1234 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1235 const SelectionDAG &DAG) const { 1236 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1237 return (MemVT.getSizeInBits() <= 4 * 32); 1238 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1239 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1240 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1241 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1242 return (MemVT.getSizeInBits() <= 2 * 32); 1243 } 1244 return true; 1245 } 1246 1247 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1248 unsigned Size, unsigned AddrSpace, unsigned Align, 1249 MachineMemOperand::Flags Flags, bool *IsFast) const { 1250 if (IsFast) 1251 *IsFast = false; 1252 1253 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1254 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1255 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 1256 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 1257 // with adjacent offsets. 1258 bool AlignedBy4 = (Align % 4 == 0); 1259 if (IsFast) 1260 *IsFast = AlignedBy4; 1261 1262 return AlignedBy4; 1263 } 1264 1265 // FIXME: We have to be conservative here and assume that flat operations 1266 // will access scratch. If we had access to the IR function, then we 1267 // could determine if any private memory was used in the function. 1268 if (!Subtarget->hasUnalignedScratchAccess() && 1269 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 1270 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { 1271 bool AlignedBy4 = Align >= 4; 1272 if (IsFast) 1273 *IsFast = AlignedBy4; 1274 1275 return AlignedBy4; 1276 } 1277 1278 if (Subtarget->hasUnalignedBufferAccess()) { 1279 // If we have an uniform constant load, it still requires using a slow 1280 // buffer instruction if unaligned. 1281 if (IsFast) { 1282 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1283 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1284 (Align % 4 == 0) : true; 1285 } 1286 1287 return true; 1288 } 1289 1290 // Smaller than dword value must be aligned. 1291 if (Size < 32) 1292 return false; 1293 1294 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1295 // byte-address are ignored, thus forcing Dword alignment. 1296 // This applies to private, global, and constant memory. 1297 if (IsFast) 1298 *IsFast = true; 1299 1300 return Size >= 32 && Align >= 4; 1301 } 1302 1303 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1304 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1305 bool *IsFast) const { 1306 if (IsFast) 1307 *IsFast = false; 1308 1309 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1310 // which isn't a simple VT. 1311 // Until MVT is extended to handle this, simply check for the size and 1312 // rely on the condition below: allow accesses if the size is a multiple of 4. 1313 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1314 VT.getStoreSize() > 16)) { 1315 return false; 1316 } 1317 1318 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1319 Align, Flags, IsFast); 1320 } 1321 1322 EVT SITargetLowering::getOptimalMemOpType( 1323 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 1324 bool ZeroMemset, bool MemcpyStrSrc, 1325 const AttributeList &FuncAttributes) const { 1326 // FIXME: Should account for address space here. 1327 1328 // The default fallback uses the private pointer size as a guess for a type to 1329 // use. Make sure we switch these to 64-bit accesses. 1330 1331 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global 1332 return MVT::v4i32; 1333 1334 if (Size >= 8 && DstAlign >= 4) 1335 return MVT::v2i32; 1336 1337 // Use the default. 1338 return MVT::Other; 1339 } 1340 1341 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, 1342 unsigned DestAS) const { 1343 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); 1344 } 1345 1346 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1347 const MemSDNode *MemNode = cast<MemSDNode>(N); 1348 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1349 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1350 return I && I->getMetadata("amdgpu.noclobber"); 1351 } 1352 1353 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1354 unsigned DestAS) const { 1355 // Flat -> private/local is a simple truncate. 1356 // Flat -> global is no-op 1357 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1358 return true; 1359 1360 return isNoopAddrSpaceCast(SrcAS, DestAS); 1361 } 1362 1363 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1364 const MemSDNode *MemNode = cast<MemSDNode>(N); 1365 1366 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1367 } 1368 1369 TargetLoweringBase::LegalizeTypeAction 1370 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1371 int NumElts = VT.getVectorNumElements(); 1372 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16)) 1373 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1374 return TargetLoweringBase::getPreferredVectorAction(VT); 1375 } 1376 1377 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1378 Type *Ty) const { 1379 // FIXME: Could be smarter if called for vector constants. 1380 return true; 1381 } 1382 1383 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1384 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1385 switch (Op) { 1386 case ISD::LOAD: 1387 case ISD::STORE: 1388 1389 // These operations are done with 32-bit instructions anyway. 1390 case ISD::AND: 1391 case ISD::OR: 1392 case ISD::XOR: 1393 case ISD::SELECT: 1394 // TODO: Extensions? 1395 return true; 1396 default: 1397 return false; 1398 } 1399 } 1400 1401 // SimplifySetCC uses this function to determine whether or not it should 1402 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1403 if (VT == MVT::i1 && Op == ISD::SETCC) 1404 return false; 1405 1406 return TargetLowering::isTypeDesirableForOp(Op, VT); 1407 } 1408 1409 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1410 const SDLoc &SL, 1411 SDValue Chain, 1412 uint64_t Offset) const { 1413 const DataLayout &DL = DAG.getDataLayout(); 1414 MachineFunction &MF = DAG.getMachineFunction(); 1415 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1416 1417 const ArgDescriptor *InputPtrReg; 1418 const TargetRegisterClass *RC; 1419 1420 std::tie(InputPtrReg, RC) 1421 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1422 1423 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1424 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1425 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1426 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1427 1428 return DAG.getObjectPtrOffset(SL, BasePtr, Offset); 1429 } 1430 1431 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1432 const SDLoc &SL) const { 1433 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1434 FIRST_IMPLICIT); 1435 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1436 } 1437 1438 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1439 const SDLoc &SL, SDValue Val, 1440 bool Signed, 1441 const ISD::InputArg *Arg) const { 1442 // First, if it is a widened vector, narrow it. 1443 if (VT.isVector() && 1444 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1445 EVT NarrowedVT = 1446 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1447 VT.getVectorNumElements()); 1448 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1449 DAG.getConstant(0, SL, MVT::i32)); 1450 } 1451 1452 // Then convert the vector elements or scalar value. 1453 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1454 VT.bitsLT(MemVT)) { 1455 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1456 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1457 } 1458 1459 if (MemVT.isFloatingPoint()) 1460 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); 1461 else if (Signed) 1462 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1463 else 1464 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1465 1466 return Val; 1467 } 1468 1469 SDValue SITargetLowering::lowerKernargMemParameter( 1470 SelectionDAG &DAG, EVT VT, EVT MemVT, 1471 const SDLoc &SL, SDValue Chain, 1472 uint64_t Offset, unsigned Align, bool Signed, 1473 const ISD::InputArg *Arg) const { 1474 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1475 1476 // Try to avoid using an extload by loading earlier than the argument address, 1477 // and extracting the relevant bits. The load should hopefully be merged with 1478 // the previous argument. 1479 if (MemVT.getStoreSize() < 4 && Align < 4) { 1480 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1481 int64_t AlignDownOffset = alignDown(Offset, 4); 1482 int64_t OffsetDiff = Offset - AlignDownOffset; 1483 1484 EVT IntVT = MemVT.changeTypeToInteger(); 1485 1486 // TODO: If we passed in the base kernel offset we could have a better 1487 // alignment than 4, but we don't really need it. 1488 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1489 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, 1490 MachineMemOperand::MODereferenceable | 1491 MachineMemOperand::MOInvariant); 1492 1493 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1494 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1495 1496 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1497 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1498 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1499 1500 1501 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1502 } 1503 1504 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1505 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, 1506 MachineMemOperand::MODereferenceable | 1507 MachineMemOperand::MOInvariant); 1508 1509 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1510 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1511 } 1512 1513 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1514 const SDLoc &SL, SDValue Chain, 1515 const ISD::InputArg &Arg) const { 1516 MachineFunction &MF = DAG.getMachineFunction(); 1517 MachineFrameInfo &MFI = MF.getFrameInfo(); 1518 1519 if (Arg.Flags.isByVal()) { 1520 unsigned Size = Arg.Flags.getByValSize(); 1521 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1522 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1523 } 1524 1525 unsigned ArgOffset = VA.getLocMemOffset(); 1526 unsigned ArgSize = VA.getValVT().getStoreSize(); 1527 1528 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1529 1530 // Create load nodes to retrieve arguments from the stack. 1531 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1532 SDValue ArgValue; 1533 1534 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1535 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1536 MVT MemVT = VA.getValVT(); 1537 1538 switch (VA.getLocInfo()) { 1539 default: 1540 break; 1541 case CCValAssign::BCvt: 1542 MemVT = VA.getLocVT(); 1543 break; 1544 case CCValAssign::SExt: 1545 ExtType = ISD::SEXTLOAD; 1546 break; 1547 case CCValAssign::ZExt: 1548 ExtType = ISD::ZEXTLOAD; 1549 break; 1550 case CCValAssign::AExt: 1551 ExtType = ISD::EXTLOAD; 1552 break; 1553 } 1554 1555 ArgValue = DAG.getExtLoad( 1556 ExtType, SL, VA.getLocVT(), Chain, FIN, 1557 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1558 MemVT); 1559 return ArgValue; 1560 } 1561 1562 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1563 const SIMachineFunctionInfo &MFI, 1564 EVT VT, 1565 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1566 const ArgDescriptor *Reg; 1567 const TargetRegisterClass *RC; 1568 1569 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); 1570 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1571 } 1572 1573 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1574 CallingConv::ID CallConv, 1575 ArrayRef<ISD::InputArg> Ins, 1576 BitVector &Skipped, 1577 FunctionType *FType, 1578 SIMachineFunctionInfo *Info) { 1579 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1580 const ISD::InputArg *Arg = &Ins[I]; 1581 1582 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1583 "vector type argument should have been split"); 1584 1585 // First check if it's a PS input addr. 1586 if (CallConv == CallingConv::AMDGPU_PS && 1587 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1588 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1589 1590 // Inconveniently only the first part of the split is marked as isSplit, 1591 // so skip to the end. We only want to increment PSInputNum once for the 1592 // entire split argument. 1593 if (Arg->Flags.isSplit()) { 1594 while (!Arg->Flags.isSplitEnd()) { 1595 assert((!Arg->VT.isVector() || 1596 Arg->VT.getScalarSizeInBits() == 16) && 1597 "unexpected vector split in ps argument type"); 1598 if (!SkipArg) 1599 Splits.push_back(*Arg); 1600 Arg = &Ins[++I]; 1601 } 1602 } 1603 1604 if (SkipArg) { 1605 // We can safely skip PS inputs. 1606 Skipped.set(Arg->getOrigArgIndex()); 1607 ++PSInputNum; 1608 continue; 1609 } 1610 1611 Info->markPSInputAllocated(PSInputNum); 1612 if (Arg->Used) 1613 Info->markPSInputEnabled(PSInputNum); 1614 1615 ++PSInputNum; 1616 } 1617 1618 Splits.push_back(*Arg); 1619 } 1620 } 1621 1622 // Allocate special inputs passed in VGPRs. 1623 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1624 MachineFunction &MF, 1625 const SIRegisterInfo &TRI, 1626 SIMachineFunctionInfo &Info) const { 1627 const LLT S32 = LLT::scalar(32); 1628 MachineRegisterInfo &MRI = MF.getRegInfo(); 1629 1630 if (Info.hasWorkItemIDX()) { 1631 Register Reg = AMDGPU::VGPR0; 1632 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1633 1634 CCInfo.AllocateReg(Reg); 1635 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); 1636 } 1637 1638 if (Info.hasWorkItemIDY()) { 1639 Register Reg = AMDGPU::VGPR1; 1640 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1641 1642 CCInfo.AllocateReg(Reg); 1643 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1644 } 1645 1646 if (Info.hasWorkItemIDZ()) { 1647 Register Reg = AMDGPU::VGPR2; 1648 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1649 1650 CCInfo.AllocateReg(Reg); 1651 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1652 } 1653 } 1654 1655 // Try to allocate a VGPR at the end of the argument list, or if no argument 1656 // VGPRs are left allocating a stack slot. 1657 // If \p Mask is is given it indicates bitfield position in the register. 1658 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1659 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1660 ArgDescriptor Arg = ArgDescriptor()) { 1661 if (Arg.isSet()) 1662 return ArgDescriptor::createArg(Arg, Mask); 1663 1664 ArrayRef<MCPhysReg> ArgVGPRs 1665 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1666 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1667 if (RegIdx == ArgVGPRs.size()) { 1668 // Spill to stack required. 1669 int64_t Offset = CCInfo.AllocateStack(4, 4); 1670 1671 return ArgDescriptor::createStack(Offset, Mask); 1672 } 1673 1674 unsigned Reg = ArgVGPRs[RegIdx]; 1675 Reg = CCInfo.AllocateReg(Reg); 1676 assert(Reg != AMDGPU::NoRegister); 1677 1678 MachineFunction &MF = CCInfo.getMachineFunction(); 1679 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1680 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1681 return ArgDescriptor::createRegister(Reg, Mask); 1682 } 1683 1684 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1685 const TargetRegisterClass *RC, 1686 unsigned NumArgRegs) { 1687 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1688 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1689 if (RegIdx == ArgSGPRs.size()) 1690 report_fatal_error("ran out of SGPRs for arguments"); 1691 1692 unsigned Reg = ArgSGPRs[RegIdx]; 1693 Reg = CCInfo.AllocateReg(Reg); 1694 assert(Reg != AMDGPU::NoRegister); 1695 1696 MachineFunction &MF = CCInfo.getMachineFunction(); 1697 MF.addLiveIn(Reg, RC); 1698 return ArgDescriptor::createRegister(Reg); 1699 } 1700 1701 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { 1702 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1703 } 1704 1705 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { 1706 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1707 } 1708 1709 void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo, 1710 MachineFunction &MF, 1711 const SIRegisterInfo &TRI, 1712 SIMachineFunctionInfo &Info) const { 1713 const unsigned Mask = 0x3ff; 1714 ArgDescriptor Arg; 1715 1716 if (Info.hasWorkItemIDX()) { 1717 Arg = allocateVGPR32Input(CCInfo, Mask); 1718 Info.setWorkItemIDX(Arg); 1719 } 1720 1721 if (Info.hasWorkItemIDY()) { 1722 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 1723 Info.setWorkItemIDY(Arg); 1724 } 1725 1726 if (Info.hasWorkItemIDZ()) 1727 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 1728 } 1729 1730 void SITargetLowering::allocateSpecialInputSGPRs( 1731 CCState &CCInfo, 1732 MachineFunction &MF, 1733 const SIRegisterInfo &TRI, 1734 SIMachineFunctionInfo &Info) const { 1735 auto &ArgInfo = Info.getArgInfo(); 1736 1737 // TODO: Unify handling with private memory pointers. 1738 1739 if (Info.hasDispatchPtr()) 1740 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); 1741 1742 if (Info.hasQueuePtr()) 1743 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); 1744 1745 if (Info.hasKernargSegmentPtr()) 1746 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); 1747 1748 if (Info.hasDispatchID()) 1749 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); 1750 1751 // flat_scratch_init is not applicable for non-kernel functions. 1752 1753 if (Info.hasWorkGroupIDX()) 1754 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); 1755 1756 if (Info.hasWorkGroupIDY()) 1757 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); 1758 1759 if (Info.hasWorkGroupIDZ()) 1760 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); 1761 1762 if (Info.hasImplicitArgPtr()) 1763 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); 1764 } 1765 1766 // Allocate special inputs passed in user SGPRs. 1767 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 1768 MachineFunction &MF, 1769 const SIRegisterInfo &TRI, 1770 SIMachineFunctionInfo &Info) const { 1771 if (Info.hasImplicitBufferPtr()) { 1772 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 1773 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 1774 CCInfo.AllocateReg(ImplicitBufferPtrReg); 1775 } 1776 1777 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 1778 if (Info.hasPrivateSegmentBuffer()) { 1779 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 1780 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 1781 CCInfo.AllocateReg(PrivateSegmentBufferReg); 1782 } 1783 1784 if (Info.hasDispatchPtr()) { 1785 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); 1786 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 1787 CCInfo.AllocateReg(DispatchPtrReg); 1788 } 1789 1790 if (Info.hasQueuePtr()) { 1791 unsigned QueuePtrReg = Info.addQueuePtr(TRI); 1792 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 1793 CCInfo.AllocateReg(QueuePtrReg); 1794 } 1795 1796 if (Info.hasKernargSegmentPtr()) { 1797 MachineRegisterInfo &MRI = MF.getRegInfo(); 1798 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 1799 CCInfo.AllocateReg(InputPtrReg); 1800 1801 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 1802 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1803 } 1804 1805 if (Info.hasDispatchID()) { 1806 unsigned DispatchIDReg = Info.addDispatchID(TRI); 1807 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 1808 CCInfo.AllocateReg(DispatchIDReg); 1809 } 1810 1811 if (Info.hasFlatScratchInit()) { 1812 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); 1813 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 1814 CCInfo.AllocateReg(FlatScratchInitReg); 1815 } 1816 1817 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 1818 // these from the dispatch pointer. 1819 } 1820 1821 // Allocate special input registers that are initialized per-wave. 1822 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 1823 MachineFunction &MF, 1824 SIMachineFunctionInfo &Info, 1825 CallingConv::ID CallConv, 1826 bool IsShader) const { 1827 if (Info.hasWorkGroupIDX()) { 1828 unsigned Reg = Info.addWorkGroupIDX(); 1829 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1830 CCInfo.AllocateReg(Reg); 1831 } 1832 1833 if (Info.hasWorkGroupIDY()) { 1834 unsigned Reg = Info.addWorkGroupIDY(); 1835 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1836 CCInfo.AllocateReg(Reg); 1837 } 1838 1839 if (Info.hasWorkGroupIDZ()) { 1840 unsigned Reg = Info.addWorkGroupIDZ(); 1841 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1842 CCInfo.AllocateReg(Reg); 1843 } 1844 1845 if (Info.hasWorkGroupInfo()) { 1846 unsigned Reg = Info.addWorkGroupInfo(); 1847 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1848 CCInfo.AllocateReg(Reg); 1849 } 1850 1851 if (Info.hasPrivateSegmentWaveByteOffset()) { 1852 // Scratch wave offset passed in system SGPR. 1853 unsigned PrivateSegmentWaveByteOffsetReg; 1854 1855 if (IsShader) { 1856 PrivateSegmentWaveByteOffsetReg = 1857 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 1858 1859 // This is true if the scratch wave byte offset doesn't have a fixed 1860 // location. 1861 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 1862 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 1863 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 1864 } 1865 } else 1866 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 1867 1868 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 1869 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 1870 } 1871 } 1872 1873 static void reservePrivateMemoryRegs(const TargetMachine &TM, 1874 MachineFunction &MF, 1875 const SIRegisterInfo &TRI, 1876 SIMachineFunctionInfo &Info) { 1877 // Now that we've figured out where the scratch register inputs are, see if 1878 // should reserve the arguments and use them directly. 1879 MachineFrameInfo &MFI = MF.getFrameInfo(); 1880 bool HasStackObjects = MFI.hasStackObjects(); 1881 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1882 1883 // Record that we know we have non-spill stack objects so we don't need to 1884 // check all stack objects later. 1885 if (HasStackObjects) 1886 Info.setHasNonSpillStackObjects(true); 1887 1888 // Everything live out of a block is spilled with fast regalloc, so it's 1889 // almost certain that spilling will be required. 1890 if (TM.getOptLevel() == CodeGenOpt::None) 1891 HasStackObjects = true; 1892 1893 // For now assume stack access is needed in any callee functions, so we need 1894 // the scratch registers to pass in. 1895 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 1896 1897 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 1898 // If we have stack objects, we unquestionably need the private buffer 1899 // resource. For the Code Object V2 ABI, this will be the first 4 user 1900 // SGPR inputs. We can reserve those and use them directly. 1901 1902 Register PrivateSegmentBufferReg = 1903 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 1904 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 1905 } else { 1906 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 1907 // We tentatively reserve the last registers (skipping the last registers 1908 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 1909 // we'll replace these with the ones immediately after those which were 1910 // really allocated. In the prologue copies will be inserted from the 1911 // argument to these reserved registers. 1912 1913 // Without HSA, relocations are used for the scratch pointer and the 1914 // buffer resource setup is always inserted in the prologue. Scratch wave 1915 // offset is still in an input SGPR. 1916 Info.setScratchRSrcReg(ReservedBufferReg); 1917 } 1918 1919 // hasFP should be accurate for kernels even before the frame is finalized. 1920 if (ST.getFrameLowering()->hasFP(MF)) { 1921 MachineRegisterInfo &MRI = MF.getRegInfo(); 1922 1923 // Try to use s32 as the SP, but move it if it would interfere with input 1924 // arguments. This won't work with calls though. 1925 // 1926 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 1927 // registers. 1928 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 1929 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 1930 } else { 1931 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 1932 1933 if (MFI.hasCalls()) 1934 report_fatal_error("call in graphics shader with too many input SGPRs"); 1935 1936 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 1937 if (!MRI.isLiveIn(Reg)) { 1938 Info.setStackPtrOffsetReg(Reg); 1939 break; 1940 } 1941 } 1942 1943 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 1944 report_fatal_error("failed to find register for SP"); 1945 } 1946 1947 if (MFI.hasCalls()) { 1948 Info.setScratchWaveOffsetReg(AMDGPU::SGPR33); 1949 Info.setFrameOffsetReg(AMDGPU::SGPR33); 1950 } else { 1951 unsigned ReservedOffsetReg = 1952 TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1953 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1954 Info.setFrameOffsetReg(ReservedOffsetReg); 1955 } 1956 } else if (RequiresStackAccess) { 1957 assert(!MFI.hasCalls()); 1958 // We know there are accesses and they will be done relative to SP, so just 1959 // pin it to the input. 1960 // 1961 // FIXME: Should not do this if inline asm is reading/writing these 1962 // registers. 1963 Register PreloadedSP = Info.getPreloadedReg( 1964 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); 1965 1966 Info.setStackPtrOffsetReg(PreloadedSP); 1967 Info.setScratchWaveOffsetReg(PreloadedSP); 1968 Info.setFrameOffsetReg(PreloadedSP); 1969 } else { 1970 assert(!MFI.hasCalls()); 1971 1972 // There may not be stack access at all. There may still be spills, or 1973 // access of a constant pointer (in which cases an extra copy will be 1974 // emitted in the prolog). 1975 unsigned ReservedOffsetReg 1976 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1977 Info.setStackPtrOffsetReg(ReservedOffsetReg); 1978 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1979 Info.setFrameOffsetReg(ReservedOffsetReg); 1980 } 1981 } 1982 1983 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 1984 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 1985 return !Info->isEntryFunction(); 1986 } 1987 1988 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 1989 1990 } 1991 1992 void SITargetLowering::insertCopiesSplitCSR( 1993 MachineBasicBlock *Entry, 1994 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 1995 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 1996 1997 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 1998 if (!IStart) 1999 return; 2000 2001 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2002 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2003 MachineBasicBlock::iterator MBBI = Entry->begin(); 2004 for (const MCPhysReg *I = IStart; *I; ++I) { 2005 const TargetRegisterClass *RC = nullptr; 2006 if (AMDGPU::SReg_64RegClass.contains(*I)) 2007 RC = &AMDGPU::SGPR_64RegClass; 2008 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2009 RC = &AMDGPU::SGPR_32RegClass; 2010 else 2011 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2012 2013 Register NewVR = MRI->createVirtualRegister(RC); 2014 // Create copy from CSR to a virtual register. 2015 Entry->addLiveIn(*I); 2016 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2017 .addReg(*I); 2018 2019 // Insert the copy-back instructions right before the terminator. 2020 for (auto *Exit : Exits) 2021 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2022 TII->get(TargetOpcode::COPY), *I) 2023 .addReg(NewVR); 2024 } 2025 } 2026 2027 SDValue SITargetLowering::LowerFormalArguments( 2028 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2029 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2030 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2031 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2032 2033 MachineFunction &MF = DAG.getMachineFunction(); 2034 const Function &Fn = MF.getFunction(); 2035 FunctionType *FType = MF.getFunction().getFunctionType(); 2036 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2037 2038 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { 2039 DiagnosticInfoUnsupported NoGraphicsHSA( 2040 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2041 DAG.getContext()->diagnose(NoGraphicsHSA); 2042 return DAG.getEntryNode(); 2043 } 2044 2045 SmallVector<ISD::InputArg, 16> Splits; 2046 SmallVector<CCValAssign, 16> ArgLocs; 2047 BitVector Skipped(Ins.size()); 2048 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2049 *DAG.getContext()); 2050 2051 bool IsShader = AMDGPU::isShader(CallConv); 2052 bool IsKernel = AMDGPU::isKernel(CallConv); 2053 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2054 2055 if (IsShader) { 2056 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2057 2058 // At least one interpolation mode must be enabled or else the GPU will 2059 // hang. 2060 // 2061 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2062 // set PSInputAddr, the user wants to enable some bits after the compilation 2063 // based on run-time states. Since we can't know what the final PSInputEna 2064 // will look like, so we shouldn't do anything here and the user should take 2065 // responsibility for the correct programming. 2066 // 2067 // Otherwise, the following restrictions apply: 2068 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2069 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2070 // enabled too. 2071 if (CallConv == CallingConv::AMDGPU_PS) { 2072 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2073 ((Info->getPSInputAddr() & 0xF) == 0 && 2074 Info->isPSInputAllocated(11))) { 2075 CCInfo.AllocateReg(AMDGPU::VGPR0); 2076 CCInfo.AllocateReg(AMDGPU::VGPR1); 2077 Info->markPSInputAllocated(0); 2078 Info->markPSInputEnabled(0); 2079 } 2080 if (Subtarget->isAmdPalOS()) { 2081 // For isAmdPalOS, the user does not enable some bits after compilation 2082 // based on run-time states; the register values being generated here are 2083 // the final ones set in hardware. Therefore we need to apply the 2084 // workaround to PSInputAddr and PSInputEnable together. (The case where 2085 // a bit is set in PSInputAddr but not PSInputEnable is where the 2086 // frontend set up an input arg for a particular interpolation mode, but 2087 // nothing uses that input arg. Really we should have an earlier pass 2088 // that removes such an arg.) 2089 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2090 if ((PsInputBits & 0x7F) == 0 || 2091 ((PsInputBits & 0xF) == 0 && 2092 (PsInputBits >> 11 & 1))) 2093 Info->markPSInputEnabled( 2094 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2095 } 2096 } 2097 2098 assert(!Info->hasDispatchPtr() && 2099 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && 2100 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2101 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2102 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2103 !Info->hasWorkItemIDZ()); 2104 } else if (IsKernel) { 2105 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2106 } else { 2107 Splits.append(Ins.begin(), Ins.end()); 2108 } 2109 2110 if (IsEntryFunc) { 2111 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2112 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2113 } 2114 2115 if (IsKernel) { 2116 analyzeFormalArgumentsCompute(CCInfo, Ins); 2117 } else { 2118 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2119 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2120 } 2121 2122 SmallVector<SDValue, 16> Chains; 2123 2124 // FIXME: This is the minimum kernel argument alignment. We should improve 2125 // this to the maximum alignment of the arguments. 2126 // 2127 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2128 // kern arg offset. 2129 const unsigned KernelArgBaseAlign = 16; 2130 2131 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2132 const ISD::InputArg &Arg = Ins[i]; 2133 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2134 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2135 continue; 2136 } 2137 2138 CCValAssign &VA = ArgLocs[ArgIdx++]; 2139 MVT VT = VA.getLocVT(); 2140 2141 if (IsEntryFunc && VA.isMemLoc()) { 2142 VT = Ins[i].VT; 2143 EVT MemVT = VA.getLocVT(); 2144 2145 const uint64_t Offset = VA.getLocMemOffset(); 2146 unsigned Align = MinAlign(KernelArgBaseAlign, Offset); 2147 2148 SDValue Arg = lowerKernargMemParameter( 2149 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]); 2150 Chains.push_back(Arg.getValue(1)); 2151 2152 auto *ParamTy = 2153 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2154 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2155 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2156 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2157 // On SI local pointers are just offsets into LDS, so they are always 2158 // less than 16-bits. On CI and newer they could potentially be 2159 // real pointers, so we can't guarantee their size. 2160 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2161 DAG.getValueType(MVT::i16)); 2162 } 2163 2164 InVals.push_back(Arg); 2165 continue; 2166 } else if (!IsEntryFunc && VA.isMemLoc()) { 2167 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2168 InVals.push_back(Val); 2169 if (!Arg.Flags.isByVal()) 2170 Chains.push_back(Val.getValue(1)); 2171 continue; 2172 } 2173 2174 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2175 2176 Register Reg = VA.getLocReg(); 2177 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2178 EVT ValVT = VA.getValVT(); 2179 2180 Reg = MF.addLiveIn(Reg, RC); 2181 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2182 2183 if (Arg.Flags.isSRet()) { 2184 // The return object should be reasonably addressable. 2185 2186 // FIXME: This helps when the return is a real sret. If it is a 2187 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2188 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2189 unsigned NumBits 2190 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2191 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2192 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2193 } 2194 2195 // If this is an 8 or 16-bit value, it is really passed promoted 2196 // to 32 bits. Insert an assert[sz]ext to capture this, then 2197 // truncate to the right size. 2198 switch (VA.getLocInfo()) { 2199 case CCValAssign::Full: 2200 break; 2201 case CCValAssign::BCvt: 2202 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2203 break; 2204 case CCValAssign::SExt: 2205 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2206 DAG.getValueType(ValVT)); 2207 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2208 break; 2209 case CCValAssign::ZExt: 2210 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2211 DAG.getValueType(ValVT)); 2212 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2213 break; 2214 case CCValAssign::AExt: 2215 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2216 break; 2217 default: 2218 llvm_unreachable("Unknown loc info!"); 2219 } 2220 2221 InVals.push_back(Val); 2222 } 2223 2224 if (!IsEntryFunc) { 2225 // Special inputs come after user arguments. 2226 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2227 } 2228 2229 // Start adding system SGPRs. 2230 if (IsEntryFunc) { 2231 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); 2232 } else { 2233 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2234 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); 2235 CCInfo.AllocateReg(Info->getFrameOffsetReg()); 2236 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2237 } 2238 2239 auto &ArgUsageInfo = 2240 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2241 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2242 2243 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2244 Info->setBytesInStackArgArea(StackArgSize); 2245 2246 return Chains.empty() ? Chain : 2247 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2248 } 2249 2250 // TODO: If return values can't fit in registers, we should return as many as 2251 // possible in registers before passing on stack. 2252 bool SITargetLowering::CanLowerReturn( 2253 CallingConv::ID CallConv, 2254 MachineFunction &MF, bool IsVarArg, 2255 const SmallVectorImpl<ISD::OutputArg> &Outs, 2256 LLVMContext &Context) const { 2257 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2258 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2259 // for shaders. Vector types should be explicitly handled by CC. 2260 if (AMDGPU::isEntryFunctionCC(CallConv)) 2261 return true; 2262 2263 SmallVector<CCValAssign, 16> RVLocs; 2264 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2265 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2266 } 2267 2268 SDValue 2269 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2270 bool isVarArg, 2271 const SmallVectorImpl<ISD::OutputArg> &Outs, 2272 const SmallVectorImpl<SDValue> &OutVals, 2273 const SDLoc &DL, SelectionDAG &DAG) const { 2274 MachineFunction &MF = DAG.getMachineFunction(); 2275 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2276 2277 if (AMDGPU::isKernel(CallConv)) { 2278 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2279 OutVals, DL, DAG); 2280 } 2281 2282 bool IsShader = AMDGPU::isShader(CallConv); 2283 2284 Info->setIfReturnsVoid(Outs.empty()); 2285 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2286 2287 // CCValAssign - represent the assignment of the return value to a location. 2288 SmallVector<CCValAssign, 48> RVLocs; 2289 SmallVector<ISD::OutputArg, 48> Splits; 2290 2291 // CCState - Info about the registers and stack slots. 2292 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2293 *DAG.getContext()); 2294 2295 // Analyze outgoing return values. 2296 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2297 2298 SDValue Flag; 2299 SmallVector<SDValue, 48> RetOps; 2300 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2301 2302 // Add return address for callable functions. 2303 if (!Info->isEntryFunction()) { 2304 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2305 SDValue ReturnAddrReg = CreateLiveInRegister( 2306 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2307 2308 SDValue ReturnAddrVirtualReg = DAG.getRegister( 2309 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), 2310 MVT::i64); 2311 Chain = 2312 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2313 Flag = Chain.getValue(1); 2314 RetOps.push_back(ReturnAddrVirtualReg); 2315 } 2316 2317 // Copy the result values into the output registers. 2318 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2319 ++I, ++RealRVLocIdx) { 2320 CCValAssign &VA = RVLocs[I]; 2321 assert(VA.isRegLoc() && "Can only return in registers!"); 2322 // TODO: Partially return in registers if return values don't fit. 2323 SDValue Arg = OutVals[RealRVLocIdx]; 2324 2325 // Copied from other backends. 2326 switch (VA.getLocInfo()) { 2327 case CCValAssign::Full: 2328 break; 2329 case CCValAssign::BCvt: 2330 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2331 break; 2332 case CCValAssign::SExt: 2333 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2334 break; 2335 case CCValAssign::ZExt: 2336 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2337 break; 2338 case CCValAssign::AExt: 2339 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2340 break; 2341 default: 2342 llvm_unreachable("Unknown loc info!"); 2343 } 2344 2345 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2346 Flag = Chain.getValue(1); 2347 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2348 } 2349 2350 // FIXME: Does sret work properly? 2351 if (!Info->isEntryFunction()) { 2352 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2353 const MCPhysReg *I = 2354 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2355 if (I) { 2356 for (; *I; ++I) { 2357 if (AMDGPU::SReg_64RegClass.contains(*I)) 2358 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2359 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2360 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2361 else 2362 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2363 } 2364 } 2365 } 2366 2367 // Update chain and glue. 2368 RetOps[0] = Chain; 2369 if (Flag.getNode()) 2370 RetOps.push_back(Flag); 2371 2372 unsigned Opc = AMDGPUISD::ENDPGM; 2373 if (!IsWaveEnd) 2374 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2375 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2376 } 2377 2378 SDValue SITargetLowering::LowerCallResult( 2379 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2380 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2381 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2382 SDValue ThisVal) const { 2383 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2384 2385 // Assign locations to each value returned by this call. 2386 SmallVector<CCValAssign, 16> RVLocs; 2387 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2388 *DAG.getContext()); 2389 CCInfo.AnalyzeCallResult(Ins, RetCC); 2390 2391 // Copy all of the result registers out of their specified physreg. 2392 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2393 CCValAssign VA = RVLocs[i]; 2394 SDValue Val; 2395 2396 if (VA.isRegLoc()) { 2397 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2398 Chain = Val.getValue(1); 2399 InFlag = Val.getValue(2); 2400 } else if (VA.isMemLoc()) { 2401 report_fatal_error("TODO: return values in memory"); 2402 } else 2403 llvm_unreachable("unknown argument location type"); 2404 2405 switch (VA.getLocInfo()) { 2406 case CCValAssign::Full: 2407 break; 2408 case CCValAssign::BCvt: 2409 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2410 break; 2411 case CCValAssign::ZExt: 2412 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2413 DAG.getValueType(VA.getValVT())); 2414 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2415 break; 2416 case CCValAssign::SExt: 2417 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2418 DAG.getValueType(VA.getValVT())); 2419 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2420 break; 2421 case CCValAssign::AExt: 2422 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2423 break; 2424 default: 2425 llvm_unreachable("Unknown loc info!"); 2426 } 2427 2428 InVals.push_back(Val); 2429 } 2430 2431 return Chain; 2432 } 2433 2434 // Add code to pass special inputs required depending on used features separate 2435 // from the explicit user arguments present in the IR. 2436 void SITargetLowering::passSpecialInputs( 2437 CallLoweringInfo &CLI, 2438 CCState &CCInfo, 2439 const SIMachineFunctionInfo &Info, 2440 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2441 SmallVectorImpl<SDValue> &MemOpChains, 2442 SDValue Chain) const { 2443 // If we don't have a call site, this was a call inserted by 2444 // legalization. These can never use special inputs. 2445 if (!CLI.CS) 2446 return; 2447 2448 const Function *CalleeFunc = CLI.CS.getCalledFunction(); 2449 assert(CalleeFunc); 2450 2451 SelectionDAG &DAG = CLI.DAG; 2452 const SDLoc &DL = CLI.DL; 2453 2454 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2455 2456 auto &ArgUsageInfo = 2457 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2458 const AMDGPUFunctionArgInfo &CalleeArgInfo 2459 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2460 2461 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2462 2463 // TODO: Unify with private memory register handling. This is complicated by 2464 // the fact that at least in kernels, the input argument is not necessarily 2465 // in the same location as the input. 2466 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2467 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2468 AMDGPUFunctionArgInfo::QUEUE_PTR, 2469 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, 2470 AMDGPUFunctionArgInfo::DISPATCH_ID, 2471 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2472 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2473 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, 2474 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR 2475 }; 2476 2477 for (auto InputID : InputRegs) { 2478 const ArgDescriptor *OutgoingArg; 2479 const TargetRegisterClass *ArgRC; 2480 2481 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); 2482 if (!OutgoingArg) 2483 continue; 2484 2485 const ArgDescriptor *IncomingArg; 2486 const TargetRegisterClass *IncomingArgRC; 2487 std::tie(IncomingArg, IncomingArgRC) 2488 = CallerArgInfo.getPreloadedValue(InputID); 2489 assert(IncomingArgRC == ArgRC); 2490 2491 // All special arguments are ints for now. 2492 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2493 SDValue InputReg; 2494 2495 if (IncomingArg) { 2496 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2497 } else { 2498 // The implicit arg ptr is special because it doesn't have a corresponding 2499 // input for kernels, and is computed from the kernarg segment pointer. 2500 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2501 InputReg = getImplicitArgPtr(DAG, DL); 2502 } 2503 2504 if (OutgoingArg->isRegister()) { 2505 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2506 } else { 2507 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4); 2508 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2509 SpecialArgOffset); 2510 MemOpChains.push_back(ArgStore); 2511 } 2512 } 2513 2514 // Pack workitem IDs into a single register or pass it as is if already 2515 // packed. 2516 const ArgDescriptor *OutgoingArg; 2517 const TargetRegisterClass *ArgRC; 2518 2519 std::tie(OutgoingArg, ArgRC) = 2520 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2521 if (!OutgoingArg) 2522 std::tie(OutgoingArg, ArgRC) = 2523 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2524 if (!OutgoingArg) 2525 std::tie(OutgoingArg, ArgRC) = 2526 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2527 if (!OutgoingArg) 2528 return; 2529 2530 const ArgDescriptor *IncomingArgX 2531 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first; 2532 const ArgDescriptor *IncomingArgY 2533 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first; 2534 const ArgDescriptor *IncomingArgZ 2535 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first; 2536 2537 SDValue InputReg; 2538 SDLoc SL; 2539 2540 // If incoming ids are not packed we need to pack them. 2541 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX) 2542 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2543 2544 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) { 2545 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2546 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2547 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2548 InputReg = InputReg.getNode() ? 2549 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2550 } 2551 2552 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) { 2553 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2554 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2555 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2556 InputReg = InputReg.getNode() ? 2557 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2558 } 2559 2560 if (!InputReg.getNode()) { 2561 // Workitem ids are already packed, any of present incoming arguments 2562 // will carry all required fields. 2563 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2564 IncomingArgX ? *IncomingArgX : 2565 IncomingArgY ? *IncomingArgY : 2566 *IncomingArgZ, ~0u); 2567 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2568 } 2569 2570 if (OutgoingArg->isRegister()) { 2571 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2572 } else { 2573 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4); 2574 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2575 SpecialArgOffset); 2576 MemOpChains.push_back(ArgStore); 2577 } 2578 } 2579 2580 static bool canGuaranteeTCO(CallingConv::ID CC) { 2581 return CC == CallingConv::Fast; 2582 } 2583 2584 /// Return true if we might ever do TCO for calls with this calling convention. 2585 static bool mayTailCallThisCC(CallingConv::ID CC) { 2586 switch (CC) { 2587 case CallingConv::C: 2588 return true; 2589 default: 2590 return canGuaranteeTCO(CC); 2591 } 2592 } 2593 2594 bool SITargetLowering::isEligibleForTailCallOptimization( 2595 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2596 const SmallVectorImpl<ISD::OutputArg> &Outs, 2597 const SmallVectorImpl<SDValue> &OutVals, 2598 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2599 if (!mayTailCallThisCC(CalleeCC)) 2600 return false; 2601 2602 MachineFunction &MF = DAG.getMachineFunction(); 2603 const Function &CallerF = MF.getFunction(); 2604 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2605 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2606 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2607 2608 // Kernels aren't callable, and don't have a live in return address so it 2609 // doesn't make sense to do a tail call with entry functions. 2610 if (!CallerPreserved) 2611 return false; 2612 2613 bool CCMatch = CallerCC == CalleeCC; 2614 2615 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2616 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2617 return true; 2618 return false; 2619 } 2620 2621 // TODO: Can we handle var args? 2622 if (IsVarArg) 2623 return false; 2624 2625 for (const Argument &Arg : CallerF.args()) { 2626 if (Arg.hasByValAttr()) 2627 return false; 2628 } 2629 2630 LLVMContext &Ctx = *DAG.getContext(); 2631 2632 // Check that the call results are passed in the same way. 2633 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2634 CCAssignFnForCall(CalleeCC, IsVarArg), 2635 CCAssignFnForCall(CallerCC, IsVarArg))) 2636 return false; 2637 2638 // The callee has to preserve all registers the caller needs to preserve. 2639 if (!CCMatch) { 2640 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2641 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2642 return false; 2643 } 2644 2645 // Nothing more to check if the callee is taking no arguments. 2646 if (Outs.empty()) 2647 return true; 2648 2649 SmallVector<CCValAssign, 16> ArgLocs; 2650 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2651 2652 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2653 2654 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2655 // If the stack arguments for this call do not fit into our own save area then 2656 // the call cannot be made tail. 2657 // TODO: Is this really necessary? 2658 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2659 return false; 2660 2661 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2662 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2663 } 2664 2665 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2666 if (!CI->isTailCall()) 2667 return false; 2668 2669 const Function *ParentFn = CI->getParent()->getParent(); 2670 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2671 return false; 2672 return true; 2673 } 2674 2675 // The wave scratch offset register is used as the global base pointer. 2676 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2677 SmallVectorImpl<SDValue> &InVals) const { 2678 SelectionDAG &DAG = CLI.DAG; 2679 const SDLoc &DL = CLI.DL; 2680 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2681 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2682 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2683 SDValue Chain = CLI.Chain; 2684 SDValue Callee = CLI.Callee; 2685 bool &IsTailCall = CLI.IsTailCall; 2686 CallingConv::ID CallConv = CLI.CallConv; 2687 bool IsVarArg = CLI.IsVarArg; 2688 bool IsSibCall = false; 2689 bool IsThisReturn = false; 2690 MachineFunction &MF = DAG.getMachineFunction(); 2691 2692 if (Callee.isUndef() || isNullConstant(Callee)) { 2693 if (!CLI.IsTailCall) { 2694 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 2695 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 2696 } 2697 2698 return Chain; 2699 } 2700 2701 if (IsVarArg) { 2702 return lowerUnhandledCall(CLI, InVals, 2703 "unsupported call to variadic function "); 2704 } 2705 2706 if (!CLI.CS.getInstruction()) 2707 report_fatal_error("unsupported libcall legalization"); 2708 2709 if (!CLI.CS.getCalledFunction()) { 2710 return lowerUnhandledCall(CLI, InVals, 2711 "unsupported indirect call to function "); 2712 } 2713 2714 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2715 return lowerUnhandledCall(CLI, InVals, 2716 "unsupported required tail call to function "); 2717 } 2718 2719 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { 2720 // Note the issue is with the CC of the calling function, not of the call 2721 // itself. 2722 return lowerUnhandledCall(CLI, InVals, 2723 "unsupported call from graphics shader of function "); 2724 } 2725 2726 if (IsTailCall) { 2727 IsTailCall = isEligibleForTailCallOptimization( 2728 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2729 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { 2730 report_fatal_error("failed to perform tail call elimination on a call " 2731 "site marked musttail"); 2732 } 2733 2734 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2735 2736 // A sibling call is one where we're under the usual C ABI and not planning 2737 // to change that but can still do a tail call: 2738 if (!TailCallOpt && IsTailCall) 2739 IsSibCall = true; 2740 2741 if (IsTailCall) 2742 ++NumTailCalls; 2743 } 2744 2745 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2746 2747 // Analyze operands of the call, assigning locations to each operand. 2748 SmallVector<CCValAssign, 16> ArgLocs; 2749 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2750 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 2751 2752 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 2753 2754 // Get a count of how many bytes are to be pushed on the stack. 2755 unsigned NumBytes = CCInfo.getNextStackOffset(); 2756 2757 if (IsSibCall) { 2758 // Since we're not changing the ABI to make this a tail call, the memory 2759 // operands are already available in the caller's incoming argument space. 2760 NumBytes = 0; 2761 } 2762 2763 // FPDiff is the byte offset of the call's argument area from the callee's. 2764 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2765 // by this amount for a tail call. In a sibling call it must be 0 because the 2766 // caller will deallocate the entire stack and the callee still expects its 2767 // arguments to begin at SP+0. Completely unused for non-tail calls. 2768 int32_t FPDiff = 0; 2769 MachineFrameInfo &MFI = MF.getFrameInfo(); 2770 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2771 2772 // Adjust the stack pointer for the new arguments... 2773 // These operations are automatically eliminated by the prolog/epilog pass 2774 if (!IsSibCall) { 2775 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 2776 2777 SmallVector<SDValue, 4> CopyFromChains; 2778 2779 // In the HSA case, this should be an identity copy. 2780 SDValue ScratchRSrcReg 2781 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 2782 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 2783 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 2784 Chain = DAG.getTokenFactor(DL, CopyFromChains); 2785 } 2786 2787 SmallVector<SDValue, 8> MemOpChains; 2788 MVT PtrVT = MVT::i32; 2789 2790 // Walk the register/memloc assignments, inserting copies/loads. 2791 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2792 CCValAssign &VA = ArgLocs[i]; 2793 SDValue Arg = OutVals[i]; 2794 2795 // Promote the value if needed. 2796 switch (VA.getLocInfo()) { 2797 case CCValAssign::Full: 2798 break; 2799 case CCValAssign::BCvt: 2800 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2801 break; 2802 case CCValAssign::ZExt: 2803 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2804 break; 2805 case CCValAssign::SExt: 2806 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2807 break; 2808 case CCValAssign::AExt: 2809 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2810 break; 2811 case CCValAssign::FPExt: 2812 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 2813 break; 2814 default: 2815 llvm_unreachable("Unknown loc info!"); 2816 } 2817 2818 if (VA.isRegLoc()) { 2819 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2820 } else { 2821 assert(VA.isMemLoc()); 2822 2823 SDValue DstAddr; 2824 MachinePointerInfo DstInfo; 2825 2826 unsigned LocMemOffset = VA.getLocMemOffset(); 2827 int32_t Offset = LocMemOffset; 2828 2829 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 2830 MaybeAlign Alignment; 2831 2832 if (IsTailCall) { 2833 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2834 unsigned OpSize = Flags.isByVal() ? 2835 Flags.getByValSize() : VA.getValVT().getStoreSize(); 2836 2837 // FIXME: We can have better than the minimum byval required alignment. 2838 Alignment = 2839 Flags.isByVal() 2840 ? MaybeAlign(Flags.getByValAlign()) 2841 : commonAlignment(Subtarget->getStackAlignment(), Offset); 2842 2843 Offset = Offset + FPDiff; 2844 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 2845 2846 DstAddr = DAG.getFrameIndex(FI, PtrVT); 2847 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 2848 2849 // Make sure any stack arguments overlapping with where we're storing 2850 // are loaded before this eventual operation. Otherwise they'll be 2851 // clobbered. 2852 2853 // FIXME: Why is this really necessary? This seems to just result in a 2854 // lot of code to copy the stack and write them back to the same 2855 // locations, which are supposed to be immutable? 2856 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 2857 } else { 2858 DstAddr = PtrOff; 2859 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 2860 Alignment = 2861 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 2862 } 2863 2864 if (Outs[i].Flags.isByVal()) { 2865 SDValue SizeNode = 2866 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 2867 SDValue Cpy = DAG.getMemcpy( 2868 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), 2869 /*isVol = */ false, /*AlwaysInline = */ true, 2870 /*isTailCall = */ false, DstInfo, 2871 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 2872 2873 MemOpChains.push_back(Cpy); 2874 } else { 2875 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, 2876 Alignment ? Alignment->value() : 0); 2877 MemOpChains.push_back(Store); 2878 } 2879 } 2880 } 2881 2882 // Copy special input registers after user input arguments. 2883 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2884 2885 if (!MemOpChains.empty()) 2886 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2887 2888 // Build a sequence of copy-to-reg nodes chained together with token chain 2889 // and flag operands which copy the outgoing args into the appropriate regs. 2890 SDValue InFlag; 2891 for (auto &RegToPass : RegsToPass) { 2892 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 2893 RegToPass.second, InFlag); 2894 InFlag = Chain.getValue(1); 2895 } 2896 2897 2898 SDValue PhysReturnAddrReg; 2899 if (IsTailCall) { 2900 // Since the return is being combined with the call, we need to pass on the 2901 // return address. 2902 2903 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2904 SDValue ReturnAddrReg = CreateLiveInRegister( 2905 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2906 2907 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 2908 MVT::i64); 2909 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 2910 InFlag = Chain.getValue(1); 2911 } 2912 2913 // We don't usually want to end the call-sequence here because we would tidy 2914 // the frame up *after* the call, however in the ABI-changing tail-call case 2915 // we've carefully laid out the parameters so that when sp is reset they'll be 2916 // in the correct location. 2917 if (IsTailCall && !IsSibCall) { 2918 Chain = DAG.getCALLSEQ_END(Chain, 2919 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 2920 DAG.getTargetConstant(0, DL, MVT::i32), 2921 InFlag, DL); 2922 InFlag = Chain.getValue(1); 2923 } 2924 2925 std::vector<SDValue> Ops; 2926 Ops.push_back(Chain); 2927 Ops.push_back(Callee); 2928 // Add a redundant copy of the callee global which will not be legalized, as 2929 // we need direct access to the callee later. 2930 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee); 2931 const GlobalValue *GV = GSD->getGlobal(); 2932 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 2933 2934 if (IsTailCall) { 2935 // Each tail call may have to adjust the stack by a different amount, so 2936 // this information must travel along with the operation for eventual 2937 // consumption by emitEpilogue. 2938 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 2939 2940 Ops.push_back(PhysReturnAddrReg); 2941 } 2942 2943 // Add argument registers to the end of the list so that they are known live 2944 // into the call. 2945 for (auto &RegToPass : RegsToPass) { 2946 Ops.push_back(DAG.getRegister(RegToPass.first, 2947 RegToPass.second.getValueType())); 2948 } 2949 2950 // Add a register mask operand representing the call-preserved registers. 2951 2952 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 2953 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2954 assert(Mask && "Missing call preserved mask for calling convention"); 2955 Ops.push_back(DAG.getRegisterMask(Mask)); 2956 2957 if (InFlag.getNode()) 2958 Ops.push_back(InFlag); 2959 2960 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2961 2962 // If we're doing a tall call, use a TC_RETURN here rather than an 2963 // actual call instruction. 2964 if (IsTailCall) { 2965 MFI.setHasTailCall(); 2966 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 2967 } 2968 2969 // Returns a chain and a flag for retval copy to use. 2970 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 2971 Chain = Call.getValue(0); 2972 InFlag = Call.getValue(1); 2973 2974 uint64_t CalleePopBytes = NumBytes; 2975 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 2976 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 2977 InFlag, DL); 2978 if (!Ins.empty()) 2979 InFlag = Chain.getValue(1); 2980 2981 // Handle result values, copying them out of physregs into vregs that we 2982 // return. 2983 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 2984 InVals, IsThisReturn, 2985 IsThisReturn ? OutVals[0] : SDValue()); 2986 } 2987 2988 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 2989 const MachineFunction &MF) const { 2990 Register Reg = StringSwitch<Register>(RegName) 2991 .Case("m0", AMDGPU::M0) 2992 .Case("exec", AMDGPU::EXEC) 2993 .Case("exec_lo", AMDGPU::EXEC_LO) 2994 .Case("exec_hi", AMDGPU::EXEC_HI) 2995 .Case("flat_scratch", AMDGPU::FLAT_SCR) 2996 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 2997 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 2998 .Default(Register()); 2999 3000 if (Reg == AMDGPU::NoRegister) { 3001 report_fatal_error(Twine("invalid register name \"" 3002 + StringRef(RegName) + "\".")); 3003 3004 } 3005 3006 if (!Subtarget->hasFlatScrRegister() && 3007 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3008 report_fatal_error(Twine("invalid register \"" 3009 + StringRef(RegName) + "\" for subtarget.")); 3010 } 3011 3012 switch (Reg) { 3013 case AMDGPU::M0: 3014 case AMDGPU::EXEC_LO: 3015 case AMDGPU::EXEC_HI: 3016 case AMDGPU::FLAT_SCR_LO: 3017 case AMDGPU::FLAT_SCR_HI: 3018 if (VT.getSizeInBits() == 32) 3019 return Reg; 3020 break; 3021 case AMDGPU::EXEC: 3022 case AMDGPU::FLAT_SCR: 3023 if (VT.getSizeInBits() == 64) 3024 return Reg; 3025 break; 3026 default: 3027 llvm_unreachable("missing register type checking"); 3028 } 3029 3030 report_fatal_error(Twine("invalid type for register \"" 3031 + StringRef(RegName) + "\".")); 3032 } 3033 3034 // If kill is not the last instruction, split the block so kill is always a 3035 // proper terminator. 3036 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, 3037 MachineBasicBlock *BB) const { 3038 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3039 3040 MachineBasicBlock::iterator SplitPoint(&MI); 3041 ++SplitPoint; 3042 3043 if (SplitPoint == BB->end()) { 3044 // Don't bother with a new block. 3045 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3046 return BB; 3047 } 3048 3049 MachineFunction *MF = BB->getParent(); 3050 MachineBasicBlock *SplitBB 3051 = MF->CreateMachineBasicBlock(BB->getBasicBlock()); 3052 3053 MF->insert(++MachineFunction::iterator(BB), SplitBB); 3054 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); 3055 3056 SplitBB->transferSuccessorsAndUpdatePHIs(BB); 3057 BB->addSuccessor(SplitBB); 3058 3059 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3060 return SplitBB; 3061 } 3062 3063 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3064 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3065 // be the first instruction in the remainder block. 3066 // 3067 /// \returns { LoopBody, Remainder } 3068 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3069 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3070 MachineFunction *MF = MBB.getParent(); 3071 MachineBasicBlock::iterator I(&MI); 3072 3073 // To insert the loop we need to split the block. Move everything after this 3074 // point to a new block, and insert a new empty block between the two. 3075 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3076 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3077 MachineFunction::iterator MBBI(MBB); 3078 ++MBBI; 3079 3080 MF->insert(MBBI, LoopBB); 3081 MF->insert(MBBI, RemainderBB); 3082 3083 LoopBB->addSuccessor(LoopBB); 3084 LoopBB->addSuccessor(RemainderBB); 3085 3086 // Move the rest of the block into a new block. 3087 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3088 3089 if (InstInLoop) { 3090 auto Next = std::next(I); 3091 3092 // Move instruction to loop body. 3093 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3094 3095 // Move the rest of the block. 3096 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3097 } else { 3098 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3099 } 3100 3101 MBB.addSuccessor(LoopBB); 3102 3103 return std::make_pair(LoopBB, RemainderBB); 3104 } 3105 3106 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3107 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3108 MachineBasicBlock *MBB = MI.getParent(); 3109 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3110 auto I = MI.getIterator(); 3111 auto E = std::next(I); 3112 3113 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3114 .addImm(0); 3115 3116 MIBundleBuilder Bundler(*MBB, I, E); 3117 finalizeBundle(*MBB, Bundler.begin()); 3118 } 3119 3120 MachineBasicBlock * 3121 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3122 MachineBasicBlock *BB) const { 3123 const DebugLoc &DL = MI.getDebugLoc(); 3124 3125 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3126 3127 MachineBasicBlock *LoopBB; 3128 MachineBasicBlock *RemainderBB; 3129 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3130 3131 // Apparently kill flags are only valid if the def is in the same block? 3132 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3133 Src->setIsKill(false); 3134 3135 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3136 3137 MachineBasicBlock::iterator I = LoopBB->end(); 3138 3139 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3140 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3141 3142 // Clear TRAP_STS.MEM_VIOL 3143 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3144 .addImm(0) 3145 .addImm(EncodedReg); 3146 3147 bundleInstWithWaitcnt(MI); 3148 3149 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3150 3151 // Load and check TRAP_STS.MEM_VIOL 3152 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3153 .addImm(EncodedReg); 3154 3155 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3156 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3157 .addReg(Reg, RegState::Kill) 3158 .addImm(0); 3159 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3160 .addMBB(LoopBB); 3161 3162 return RemainderBB; 3163 } 3164 3165 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3166 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3167 // will only do one iteration. In the worst case, this will loop 64 times. 3168 // 3169 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3170 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( 3171 const SIInstrInfo *TII, 3172 MachineRegisterInfo &MRI, 3173 MachineBasicBlock &OrigBB, 3174 MachineBasicBlock &LoopBB, 3175 const DebugLoc &DL, 3176 const MachineOperand &IdxReg, 3177 unsigned InitReg, 3178 unsigned ResultReg, 3179 unsigned PhiReg, 3180 unsigned InitSaveExecReg, 3181 int Offset, 3182 bool UseGPRIdxMode, 3183 bool IsIndirectSrc) { 3184 MachineFunction *MF = OrigBB.getParent(); 3185 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3186 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3187 MachineBasicBlock::iterator I = LoopBB.begin(); 3188 3189 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3190 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3191 Register NewExec = MRI.createVirtualRegister(BoolRC); 3192 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3193 Register CondReg = MRI.createVirtualRegister(BoolRC); 3194 3195 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3196 .addReg(InitReg) 3197 .addMBB(&OrigBB) 3198 .addReg(ResultReg) 3199 .addMBB(&LoopBB); 3200 3201 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3202 .addReg(InitSaveExecReg) 3203 .addMBB(&OrigBB) 3204 .addReg(NewExec) 3205 .addMBB(&LoopBB); 3206 3207 // Read the next variant <- also loop target. 3208 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3209 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); 3210 3211 // Compare the just read M0 value to all possible Idx values. 3212 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3213 .addReg(CurrentIdxReg) 3214 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); 3215 3216 // Update EXEC, save the original EXEC value to VCC. 3217 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3218 : AMDGPU::S_AND_SAVEEXEC_B64), 3219 NewExec) 3220 .addReg(CondReg, RegState::Kill); 3221 3222 MRI.setSimpleHint(NewExec, CondReg); 3223 3224 if (UseGPRIdxMode) { 3225 unsigned IdxReg; 3226 if (Offset == 0) { 3227 IdxReg = CurrentIdxReg; 3228 } else { 3229 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3230 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) 3231 .addReg(CurrentIdxReg, RegState::Kill) 3232 .addImm(Offset); 3233 } 3234 unsigned IdxMode = IsIndirectSrc ? 3235 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3236 MachineInstr *SetOn = 3237 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3238 .addReg(IdxReg, RegState::Kill) 3239 .addImm(IdxMode); 3240 SetOn->getOperand(3).setIsUndef(); 3241 } else { 3242 // Move index from VCC into M0 3243 if (Offset == 0) { 3244 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3245 .addReg(CurrentIdxReg, RegState::Kill); 3246 } else { 3247 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3248 .addReg(CurrentIdxReg, RegState::Kill) 3249 .addImm(Offset); 3250 } 3251 } 3252 3253 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3254 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3255 MachineInstr *InsertPt = 3256 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3257 : AMDGPU::S_XOR_B64_term), Exec) 3258 .addReg(Exec) 3259 .addReg(NewExec); 3260 3261 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3262 // s_cbranch_scc0? 3263 3264 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3265 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3266 .addMBB(&LoopBB); 3267 3268 return InsertPt->getIterator(); 3269 } 3270 3271 // This has slightly sub-optimal regalloc when the source vector is killed by 3272 // the read. The register allocator does not understand that the kill is 3273 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3274 // subregister from it, using 1 more VGPR than necessary. This was saved when 3275 // this was expanded after register allocation. 3276 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, 3277 MachineBasicBlock &MBB, 3278 MachineInstr &MI, 3279 unsigned InitResultReg, 3280 unsigned PhiReg, 3281 int Offset, 3282 bool UseGPRIdxMode, 3283 bool IsIndirectSrc) { 3284 MachineFunction *MF = MBB.getParent(); 3285 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3286 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3287 MachineRegisterInfo &MRI = MF->getRegInfo(); 3288 const DebugLoc &DL = MI.getDebugLoc(); 3289 MachineBasicBlock::iterator I(&MI); 3290 3291 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3292 Register DstReg = MI.getOperand(0).getReg(); 3293 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3294 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3295 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3296 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3297 3298 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3299 3300 // Save the EXEC mask 3301 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3302 .addReg(Exec); 3303 3304 MachineBasicBlock *LoopBB; 3305 MachineBasicBlock *RemainderBB; 3306 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3307 3308 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3309 3310 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3311 InitResultReg, DstReg, PhiReg, TmpExec, 3312 Offset, UseGPRIdxMode, IsIndirectSrc); 3313 3314 MachineBasicBlock::iterator First = RemainderBB->begin(); 3315 BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec) 3316 .addReg(SaveExec); 3317 3318 return InsPt; 3319 } 3320 3321 // Returns subreg index, offset 3322 static std::pair<unsigned, int> 3323 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3324 const TargetRegisterClass *SuperRC, 3325 unsigned VecReg, 3326 int Offset) { 3327 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3328 3329 // Skip out of bounds offsets, or else we would end up using an undefined 3330 // register. 3331 if (Offset >= NumElts || Offset < 0) 3332 return std::make_pair(AMDGPU::sub0, Offset); 3333 3334 return std::make_pair(AMDGPU::sub0 + Offset, 0); 3335 } 3336 3337 // Return true if the index is an SGPR and was set. 3338 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3339 MachineRegisterInfo &MRI, 3340 MachineInstr &MI, 3341 int Offset, 3342 bool UseGPRIdxMode, 3343 bool IsIndirectSrc) { 3344 MachineBasicBlock *MBB = MI.getParent(); 3345 const DebugLoc &DL = MI.getDebugLoc(); 3346 MachineBasicBlock::iterator I(&MI); 3347 3348 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3349 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3350 3351 assert(Idx->getReg() != AMDGPU::NoRegister); 3352 3353 if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) 3354 return false; 3355 3356 if (UseGPRIdxMode) { 3357 unsigned IdxMode = IsIndirectSrc ? 3358 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3359 if (Offset == 0) { 3360 MachineInstr *SetOn = 3361 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3362 .add(*Idx) 3363 .addImm(IdxMode); 3364 3365 SetOn->getOperand(3).setIsUndef(); 3366 } else { 3367 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3368 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3369 .add(*Idx) 3370 .addImm(Offset); 3371 MachineInstr *SetOn = 3372 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3373 .addReg(Tmp, RegState::Kill) 3374 .addImm(IdxMode); 3375 3376 SetOn->getOperand(3).setIsUndef(); 3377 } 3378 3379 return true; 3380 } 3381 3382 if (Offset == 0) { 3383 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3384 .add(*Idx); 3385 } else { 3386 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3387 .add(*Idx) 3388 .addImm(Offset); 3389 } 3390 3391 return true; 3392 } 3393 3394 // Control flow needs to be inserted if indexing with a VGPR. 3395 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3396 MachineBasicBlock &MBB, 3397 const GCNSubtarget &ST) { 3398 const SIInstrInfo *TII = ST.getInstrInfo(); 3399 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3400 MachineFunction *MF = MBB.getParent(); 3401 MachineRegisterInfo &MRI = MF->getRegInfo(); 3402 3403 Register Dst = MI.getOperand(0).getReg(); 3404 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3405 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3406 3407 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3408 3409 unsigned SubReg; 3410 std::tie(SubReg, Offset) 3411 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3412 3413 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3414 3415 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { 3416 MachineBasicBlock::iterator I(&MI); 3417 const DebugLoc &DL = MI.getDebugLoc(); 3418 3419 if (UseGPRIdxMode) { 3420 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3421 // to avoid interfering with other uses, so probably requires a new 3422 // optimization pass. 3423 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3424 .addReg(SrcReg, RegState::Undef, SubReg) 3425 .addReg(SrcReg, RegState::Implicit) 3426 .addReg(AMDGPU::M0, RegState::Implicit); 3427 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3428 } else { 3429 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3430 .addReg(SrcReg, RegState::Undef, SubReg) 3431 .addReg(SrcReg, RegState::Implicit); 3432 } 3433 3434 MI.eraseFromParent(); 3435 3436 return &MBB; 3437 } 3438 3439 const DebugLoc &DL = MI.getDebugLoc(); 3440 MachineBasicBlock::iterator I(&MI); 3441 3442 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3443 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3444 3445 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3446 3447 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, 3448 Offset, UseGPRIdxMode, true); 3449 MachineBasicBlock *LoopBB = InsPt->getParent(); 3450 3451 if (UseGPRIdxMode) { 3452 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3453 .addReg(SrcReg, RegState::Undef, SubReg) 3454 .addReg(SrcReg, RegState::Implicit) 3455 .addReg(AMDGPU::M0, RegState::Implicit); 3456 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3457 } else { 3458 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3459 .addReg(SrcReg, RegState::Undef, SubReg) 3460 .addReg(SrcReg, RegState::Implicit); 3461 } 3462 3463 MI.eraseFromParent(); 3464 3465 return LoopBB; 3466 } 3467 3468 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, 3469 const TargetRegisterClass *VecRC) { 3470 switch (TRI.getRegSizeInBits(*VecRC)) { 3471 case 32: // 4 bytes 3472 return AMDGPU::V_MOVRELD_B32_V1; 3473 case 64: // 8 bytes 3474 return AMDGPU::V_MOVRELD_B32_V2; 3475 case 128: // 16 bytes 3476 return AMDGPU::V_MOVRELD_B32_V4; 3477 case 256: // 32 bytes 3478 return AMDGPU::V_MOVRELD_B32_V8; 3479 case 512: // 64 bytes 3480 return AMDGPU::V_MOVRELD_B32_V16; 3481 default: 3482 llvm_unreachable("unsupported size for MOVRELD pseudos"); 3483 } 3484 } 3485 3486 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3487 MachineBasicBlock &MBB, 3488 const GCNSubtarget &ST) { 3489 const SIInstrInfo *TII = ST.getInstrInfo(); 3490 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3491 MachineFunction *MF = MBB.getParent(); 3492 MachineRegisterInfo &MRI = MF->getRegInfo(); 3493 3494 Register Dst = MI.getOperand(0).getReg(); 3495 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3496 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3497 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3498 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3499 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3500 3501 // This can be an immediate, but will be folded later. 3502 assert(Val->getReg()); 3503 3504 unsigned SubReg; 3505 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3506 SrcVec->getReg(), 3507 Offset); 3508 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3509 3510 if (Idx->getReg() == AMDGPU::NoRegister) { 3511 MachineBasicBlock::iterator I(&MI); 3512 const DebugLoc &DL = MI.getDebugLoc(); 3513 3514 assert(Offset == 0); 3515 3516 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3517 .add(*SrcVec) 3518 .add(*Val) 3519 .addImm(SubReg); 3520 3521 MI.eraseFromParent(); 3522 return &MBB; 3523 } 3524 3525 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { 3526 MachineBasicBlock::iterator I(&MI); 3527 const DebugLoc &DL = MI.getDebugLoc(); 3528 3529 if (UseGPRIdxMode) { 3530 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) 3531 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst 3532 .add(*Val) 3533 .addReg(Dst, RegState::ImplicitDefine) 3534 .addReg(SrcVec->getReg(), RegState::Implicit) 3535 .addReg(AMDGPU::M0, RegState::Implicit); 3536 3537 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3538 } else { 3539 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); 3540 3541 BuildMI(MBB, I, DL, MovRelDesc) 3542 .addReg(Dst, RegState::Define) 3543 .addReg(SrcVec->getReg()) 3544 .add(*Val) 3545 .addImm(SubReg - AMDGPU::sub0); 3546 } 3547 3548 MI.eraseFromParent(); 3549 return &MBB; 3550 } 3551 3552 if (Val->isReg()) 3553 MRI.clearKillFlags(Val->getReg()); 3554 3555 const DebugLoc &DL = MI.getDebugLoc(); 3556 3557 Register PhiReg = MRI.createVirtualRegister(VecRC); 3558 3559 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, 3560 Offset, UseGPRIdxMode, false); 3561 MachineBasicBlock *LoopBB = InsPt->getParent(); 3562 3563 if (UseGPRIdxMode) { 3564 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) 3565 .addReg(PhiReg, RegState::Undef, SubReg) // vdst 3566 .add(*Val) // src0 3567 .addReg(Dst, RegState::ImplicitDefine) 3568 .addReg(PhiReg, RegState::Implicit) 3569 .addReg(AMDGPU::M0, RegState::Implicit); 3570 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3571 } else { 3572 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); 3573 3574 BuildMI(*LoopBB, InsPt, DL, MovRelDesc) 3575 .addReg(Dst, RegState::Define) 3576 .addReg(PhiReg) 3577 .add(*Val) 3578 .addImm(SubReg - AMDGPU::sub0); 3579 } 3580 3581 MI.eraseFromParent(); 3582 3583 return LoopBB; 3584 } 3585 3586 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3587 MachineInstr &MI, MachineBasicBlock *BB) const { 3588 3589 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3590 MachineFunction *MF = BB->getParent(); 3591 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3592 3593 if (TII->isMIMG(MI)) { 3594 if (MI.memoperands_empty() && MI.mayLoadOrStore()) { 3595 report_fatal_error("missing mem operand from MIMG instruction"); 3596 } 3597 // Add a memoperand for mimg instructions so that they aren't assumed to 3598 // be ordered memory instuctions. 3599 3600 return BB; 3601 } 3602 3603 switch (MI.getOpcode()) { 3604 case AMDGPU::S_ADD_U64_PSEUDO: 3605 case AMDGPU::S_SUB_U64_PSEUDO: { 3606 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3607 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3608 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3609 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3610 const DebugLoc &DL = MI.getDebugLoc(); 3611 3612 MachineOperand &Dest = MI.getOperand(0); 3613 MachineOperand &Src0 = MI.getOperand(1); 3614 MachineOperand &Src1 = MI.getOperand(2); 3615 3616 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3617 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3618 3619 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, 3620 Src0, BoolRC, AMDGPU::sub0, 3621 &AMDGPU::SReg_32RegClass); 3622 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, 3623 Src0, BoolRC, AMDGPU::sub1, 3624 &AMDGPU::SReg_32RegClass); 3625 3626 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, 3627 Src1, BoolRC, AMDGPU::sub0, 3628 &AMDGPU::SReg_32RegClass); 3629 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, 3630 Src1, BoolRC, AMDGPU::sub1, 3631 &AMDGPU::SReg_32RegClass); 3632 3633 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3634 3635 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3636 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3637 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3638 .add(Src0Sub0) 3639 .add(Src1Sub0); 3640 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 3641 .add(Src0Sub1) 3642 .add(Src1Sub1); 3643 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3644 .addReg(DestSub0) 3645 .addImm(AMDGPU::sub0) 3646 .addReg(DestSub1) 3647 .addImm(AMDGPU::sub1); 3648 MI.eraseFromParent(); 3649 return BB; 3650 } 3651 case AMDGPU::SI_INIT_M0: { 3652 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 3653 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3654 .add(MI.getOperand(0)); 3655 MI.eraseFromParent(); 3656 return BB; 3657 } 3658 case AMDGPU::SI_INIT_EXEC: 3659 // This should be before all vector instructions. 3660 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 3661 AMDGPU::EXEC) 3662 .addImm(MI.getOperand(0).getImm()); 3663 MI.eraseFromParent(); 3664 return BB; 3665 3666 case AMDGPU::SI_INIT_EXEC_LO: 3667 // This should be before all vector instructions. 3668 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), 3669 AMDGPU::EXEC_LO) 3670 .addImm(MI.getOperand(0).getImm()); 3671 MI.eraseFromParent(); 3672 return BB; 3673 3674 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { 3675 // Extract the thread count from an SGPR input and set EXEC accordingly. 3676 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 3677 // 3678 // S_BFE_U32 count, input, {shift, 7} 3679 // S_BFM_B64 exec, count, 0 3680 // S_CMP_EQ_U32 count, 64 3681 // S_CMOV_B64 exec, -1 3682 MachineInstr *FirstMI = &*BB->begin(); 3683 MachineRegisterInfo &MRI = MF->getRegInfo(); 3684 Register InputReg = MI.getOperand(0).getReg(); 3685 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3686 bool Found = false; 3687 3688 // Move the COPY of the input reg to the beginning, so that we can use it. 3689 for (auto I = BB->begin(); I != &MI; I++) { 3690 if (I->getOpcode() != TargetOpcode::COPY || 3691 I->getOperand(0).getReg() != InputReg) 3692 continue; 3693 3694 if (I == FirstMI) { 3695 FirstMI = &*++BB->begin(); 3696 } else { 3697 I->removeFromParent(); 3698 BB->insert(FirstMI, &*I); 3699 } 3700 Found = true; 3701 break; 3702 } 3703 assert(Found); 3704 (void)Found; 3705 3706 // This should be before all vector instructions. 3707 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1; 3708 bool isWave32 = getSubtarget()->isWave32(); 3709 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3710 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) 3711 .addReg(InputReg) 3712 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 3713 BuildMI(*BB, FirstMI, DebugLoc(), 3714 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), 3715 Exec) 3716 .addReg(CountReg) 3717 .addImm(0); 3718 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) 3719 .addReg(CountReg, RegState::Kill) 3720 .addImm(getSubtarget()->getWavefrontSize()); 3721 BuildMI(*BB, FirstMI, DebugLoc(), 3722 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 3723 Exec) 3724 .addImm(-1); 3725 MI.eraseFromParent(); 3726 return BB; 3727 } 3728 3729 case AMDGPU::GET_GROUPSTATICSIZE: { 3730 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 3731 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 3732 DebugLoc DL = MI.getDebugLoc(); 3733 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 3734 .add(MI.getOperand(0)) 3735 .addImm(MFI->getLDSSize()); 3736 MI.eraseFromParent(); 3737 return BB; 3738 } 3739 case AMDGPU::SI_INDIRECT_SRC_V1: 3740 case AMDGPU::SI_INDIRECT_SRC_V2: 3741 case AMDGPU::SI_INDIRECT_SRC_V4: 3742 case AMDGPU::SI_INDIRECT_SRC_V8: 3743 case AMDGPU::SI_INDIRECT_SRC_V16: 3744 return emitIndirectSrc(MI, *BB, *getSubtarget()); 3745 case AMDGPU::SI_INDIRECT_DST_V1: 3746 case AMDGPU::SI_INDIRECT_DST_V2: 3747 case AMDGPU::SI_INDIRECT_DST_V4: 3748 case AMDGPU::SI_INDIRECT_DST_V8: 3749 case AMDGPU::SI_INDIRECT_DST_V16: 3750 return emitIndirectDst(MI, *BB, *getSubtarget()); 3751 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 3752 case AMDGPU::SI_KILL_I1_PSEUDO: 3753 return splitKillBlock(MI, BB); 3754 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 3755 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3756 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3757 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3758 3759 Register Dst = MI.getOperand(0).getReg(); 3760 Register Src0 = MI.getOperand(1).getReg(); 3761 Register Src1 = MI.getOperand(2).getReg(); 3762 const DebugLoc &DL = MI.getDebugLoc(); 3763 Register SrcCond = MI.getOperand(3).getReg(); 3764 3765 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3766 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3767 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3768 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 3769 3770 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 3771 .addReg(SrcCond); 3772 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 3773 .addImm(0) 3774 .addReg(Src0, 0, AMDGPU::sub0) 3775 .addImm(0) 3776 .addReg(Src1, 0, AMDGPU::sub0) 3777 .addReg(SrcCondCopy); 3778 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 3779 .addImm(0) 3780 .addReg(Src0, 0, AMDGPU::sub1) 3781 .addImm(0) 3782 .addReg(Src1, 0, AMDGPU::sub1) 3783 .addReg(SrcCondCopy); 3784 3785 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 3786 .addReg(DstLo) 3787 .addImm(AMDGPU::sub0) 3788 .addReg(DstHi) 3789 .addImm(AMDGPU::sub1); 3790 MI.eraseFromParent(); 3791 return BB; 3792 } 3793 case AMDGPU::SI_BR_UNDEF: { 3794 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3795 const DebugLoc &DL = MI.getDebugLoc(); 3796 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3797 .add(MI.getOperand(0)); 3798 Br->getOperand(1).setIsUndef(true); // read undef SCC 3799 MI.eraseFromParent(); 3800 return BB; 3801 } 3802 case AMDGPU::ADJCALLSTACKUP: 3803 case AMDGPU::ADJCALLSTACKDOWN: { 3804 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 3805 MachineInstrBuilder MIB(*MF, &MI); 3806 3807 // Add an implicit use of the frame offset reg to prevent the restore copy 3808 // inserted after the call from being reorderd after stack operations in the 3809 // the caller's frame. 3810 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 3811 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) 3812 .addReg(Info->getFrameOffsetReg(), RegState::Implicit); 3813 return BB; 3814 } 3815 case AMDGPU::SI_CALL_ISEL: { 3816 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3817 const DebugLoc &DL = MI.getDebugLoc(); 3818 3819 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 3820 3821 MachineInstrBuilder MIB; 3822 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 3823 3824 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3825 MIB.add(MI.getOperand(I)); 3826 3827 MIB.cloneMemRefs(MI); 3828 MI.eraseFromParent(); 3829 return BB; 3830 } 3831 case AMDGPU::V_ADD_I32_e32: 3832 case AMDGPU::V_SUB_I32_e32: 3833 case AMDGPU::V_SUBREV_I32_e32: { 3834 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 3835 const DebugLoc &DL = MI.getDebugLoc(); 3836 unsigned Opc = MI.getOpcode(); 3837 3838 bool NeedClampOperand = false; 3839 if (TII->pseudoToMCOpcode(Opc) == -1) { 3840 Opc = AMDGPU::getVOPe64(Opc); 3841 NeedClampOperand = true; 3842 } 3843 3844 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 3845 if (TII->isVOP3(*I)) { 3846 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3847 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3848 I.addReg(TRI->getVCC(), RegState::Define); 3849 } 3850 I.add(MI.getOperand(1)) 3851 .add(MI.getOperand(2)); 3852 if (NeedClampOperand) 3853 I.addImm(0); // clamp bit for e64 encoding 3854 3855 TII->legalizeOperands(*I); 3856 3857 MI.eraseFromParent(); 3858 return BB; 3859 } 3860 case AMDGPU::DS_GWS_INIT: 3861 case AMDGPU::DS_GWS_SEMA_V: 3862 case AMDGPU::DS_GWS_SEMA_BR: 3863 case AMDGPU::DS_GWS_SEMA_P: 3864 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 3865 case AMDGPU::DS_GWS_BARRIER: 3866 // A s_waitcnt 0 is required to be the instruction immediately following. 3867 if (getSubtarget()->hasGWSAutoReplay()) { 3868 bundleInstWithWaitcnt(MI); 3869 return BB; 3870 } 3871 3872 return emitGWSMemViolTestLoop(MI, BB); 3873 default: 3874 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 3875 } 3876 } 3877 3878 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 3879 return isTypeLegal(VT.getScalarType()); 3880 } 3881 3882 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 3883 // This currently forces unfolding various combinations of fsub into fma with 3884 // free fneg'd operands. As long as we have fast FMA (controlled by 3885 // isFMAFasterThanFMulAndFAdd), we should perform these. 3886 3887 // When fma is quarter rate, for f64 where add / sub are at best half rate, 3888 // most of these combines appear to be cycle neutral but save on instruction 3889 // count / code size. 3890 return true; 3891 } 3892 3893 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 3894 EVT VT) const { 3895 if (!VT.isVector()) { 3896 return MVT::i1; 3897 } 3898 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 3899 } 3900 3901 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 3902 // TODO: Should i16 be used always if legal? For now it would force VALU 3903 // shifts. 3904 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 3905 } 3906 3907 // Answering this is somewhat tricky and depends on the specific device which 3908 // have different rates for fma or all f64 operations. 3909 // 3910 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 3911 // regardless of which device (although the number of cycles differs between 3912 // devices), so it is always profitable for f64. 3913 // 3914 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 3915 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 3916 // which we can always do even without fused FP ops since it returns the same 3917 // result as the separate operations and since it is always full 3918 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 3919 // however does not support denormals, so we do report fma as faster if we have 3920 // a fast fma device and require denormals. 3921 // 3922 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 3923 EVT VT) const { 3924 VT = VT.getScalarType(); 3925 3926 switch (VT.getSimpleVT().SimpleTy) { 3927 case MVT::f32: { 3928 // This is as fast on some subtargets. However, we always have full rate f32 3929 // mad available which returns the same result as the separate operations 3930 // which we should prefer over fma. We can't use this if we want to support 3931 // denormals, so only report this in these cases. 3932 if (hasFP32Denormals(MF)) 3933 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 3934 3935 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 3936 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 3937 } 3938 case MVT::f64: 3939 return true; 3940 case MVT::f16: 3941 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 3942 default: 3943 break; 3944 } 3945 3946 return false; 3947 } 3948 3949 bool SITargetLowering::isFMADLegalForFAddFSub(const SelectionDAG &DAG, 3950 const SDNode *N) const { 3951 // TODO: Check future ftz flag 3952 // v_mad_f32/v_mac_f32 do not support denormals. 3953 EVT VT = N->getValueType(0); 3954 if (VT == MVT::f32) 3955 return !hasFP32Denormals(DAG.getMachineFunction()); 3956 if (VT == MVT::f16) { 3957 return Subtarget->hasMadF16() && 3958 !hasFP64FP16Denormals(DAG.getMachineFunction()); 3959 } 3960 3961 return false; 3962 } 3963 3964 //===----------------------------------------------------------------------===// 3965 // Custom DAG Lowering Operations 3966 //===----------------------------------------------------------------------===// 3967 3968 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 3969 // wider vector type is legal. 3970 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 3971 SelectionDAG &DAG) const { 3972 unsigned Opc = Op.getOpcode(); 3973 EVT VT = Op.getValueType(); 3974 assert(VT == MVT::v4f16); 3975 3976 SDValue Lo, Hi; 3977 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3978 3979 SDLoc SL(Op); 3980 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 3981 Op->getFlags()); 3982 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 3983 Op->getFlags()); 3984 3985 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 3986 } 3987 3988 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 3989 // wider vector type is legal. 3990 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 3991 SelectionDAG &DAG) const { 3992 unsigned Opc = Op.getOpcode(); 3993 EVT VT = Op.getValueType(); 3994 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 3995 3996 SDValue Lo0, Hi0; 3997 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 3998 SDValue Lo1, Hi1; 3999 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4000 4001 SDLoc SL(Op); 4002 4003 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4004 Op->getFlags()); 4005 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4006 Op->getFlags()); 4007 4008 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4009 } 4010 4011 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4012 SelectionDAG &DAG) const { 4013 unsigned Opc = Op.getOpcode(); 4014 EVT VT = Op.getValueType(); 4015 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4016 4017 SDValue Lo0, Hi0; 4018 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4019 SDValue Lo1, Hi1; 4020 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4021 SDValue Lo2, Hi2; 4022 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4023 4024 SDLoc SL(Op); 4025 4026 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, 4027 Op->getFlags()); 4028 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, 4029 Op->getFlags()); 4030 4031 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4032 } 4033 4034 4035 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4036 switch (Op.getOpcode()) { 4037 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4038 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4039 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4040 case ISD::LOAD: { 4041 SDValue Result = LowerLOAD(Op, DAG); 4042 assert((!Result.getNode() || 4043 Result.getNode()->getNumValues() == 2) && 4044 "Load should return a value and a chain"); 4045 return Result; 4046 } 4047 4048 case ISD::FSIN: 4049 case ISD::FCOS: 4050 return LowerTrig(Op, DAG); 4051 case ISD::SELECT: return LowerSELECT(Op, DAG); 4052 case ISD::FDIV: return LowerFDIV(Op, DAG); 4053 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4054 case ISD::STORE: return LowerSTORE(Op, DAG); 4055 case ISD::GlobalAddress: { 4056 MachineFunction &MF = DAG.getMachineFunction(); 4057 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4058 return LowerGlobalAddress(MFI, Op, DAG); 4059 } 4060 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4061 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4062 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4063 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4064 case ISD::INSERT_SUBVECTOR: 4065 return lowerINSERT_SUBVECTOR(Op, DAG); 4066 case ISD::INSERT_VECTOR_ELT: 4067 return lowerINSERT_VECTOR_ELT(Op, DAG); 4068 case ISD::EXTRACT_VECTOR_ELT: 4069 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4070 case ISD::VECTOR_SHUFFLE: 4071 return lowerVECTOR_SHUFFLE(Op, DAG); 4072 case ISD::BUILD_VECTOR: 4073 return lowerBUILD_VECTOR(Op, DAG); 4074 case ISD::FP_ROUND: 4075 return lowerFP_ROUND(Op, DAG); 4076 case ISD::TRAP: 4077 return lowerTRAP(Op, DAG); 4078 case ISD::DEBUGTRAP: 4079 return lowerDEBUGTRAP(Op, DAG); 4080 case ISD::FABS: 4081 case ISD::FNEG: 4082 case ISD::FCANONICALIZE: 4083 return splitUnaryVectorOp(Op, DAG); 4084 case ISD::FMINNUM: 4085 case ISD::FMAXNUM: 4086 return lowerFMINNUM_FMAXNUM(Op, DAG); 4087 case ISD::FMA: 4088 return splitTernaryVectorOp(Op, DAG); 4089 case ISD::SHL: 4090 case ISD::SRA: 4091 case ISD::SRL: 4092 case ISD::ADD: 4093 case ISD::SUB: 4094 case ISD::MUL: 4095 case ISD::SMIN: 4096 case ISD::SMAX: 4097 case ISD::UMIN: 4098 case ISD::UMAX: 4099 case ISD::FADD: 4100 case ISD::FMUL: 4101 case ISD::FMINNUM_IEEE: 4102 case ISD::FMAXNUM_IEEE: 4103 return splitBinaryVectorOp(Op, DAG); 4104 } 4105 return SDValue(); 4106 } 4107 4108 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4109 const SDLoc &DL, 4110 SelectionDAG &DAG, bool Unpacked) { 4111 if (!LoadVT.isVector()) 4112 return Result; 4113 4114 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4115 // Truncate to v2i16/v4i16. 4116 EVT IntLoadVT = LoadVT.changeTypeToInteger(); 4117 4118 // Workaround legalizer not scalarizing truncate after vector op 4119 // legalization byt not creating intermediate vector trunc. 4120 SmallVector<SDValue, 4> Elts; 4121 DAG.ExtractVectorElements(Result, Elts); 4122 for (SDValue &Elt : Elts) 4123 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4124 4125 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4126 4127 // Bitcast to original type (v2f16/v4f16). 4128 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4129 } 4130 4131 // Cast back to the original packed type. 4132 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4133 } 4134 4135 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4136 MemSDNode *M, 4137 SelectionDAG &DAG, 4138 ArrayRef<SDValue> Ops, 4139 bool IsIntrinsic) const { 4140 SDLoc DL(M); 4141 4142 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4143 EVT LoadVT = M->getValueType(0); 4144 4145 EVT EquivLoadVT = LoadVT; 4146 if (Unpacked && LoadVT.isVector()) { 4147 EquivLoadVT = LoadVT.isVector() ? 4148 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4149 LoadVT.getVectorNumElements()) : LoadVT; 4150 } 4151 4152 // Change from v4f16/v2f16 to EquivLoadVT. 4153 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4154 4155 SDValue Load 4156 = DAG.getMemIntrinsicNode( 4157 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4158 VTList, Ops, M->getMemoryVT(), 4159 M->getMemOperand()); 4160 if (!Unpacked) // Just adjusted the opcode. 4161 return Load; 4162 4163 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4164 4165 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4166 } 4167 4168 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4169 SelectionDAG &DAG, 4170 ArrayRef<SDValue> Ops) const { 4171 SDLoc DL(M); 4172 EVT LoadVT = M->getValueType(0); 4173 EVT EltType = LoadVT.getScalarType(); 4174 EVT IntVT = LoadVT.changeTypeToInteger(); 4175 4176 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4177 4178 unsigned Opc = 4179 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4180 4181 if (IsD16) { 4182 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4183 } 4184 4185 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4186 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4187 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4188 4189 if (isTypeLegal(LoadVT)) { 4190 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4191 M->getMemOperand(), DAG); 4192 } 4193 4194 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4195 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4196 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4197 M->getMemOperand(), DAG); 4198 return DAG.getMergeValues( 4199 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4200 DL); 4201 } 4202 4203 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4204 SDNode *N, SelectionDAG &DAG) { 4205 EVT VT = N->getValueType(0); 4206 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4207 int CondCode = CD->getSExtValue(); 4208 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || 4209 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) 4210 return DAG.getUNDEF(VT); 4211 4212 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4213 4214 SDValue LHS = N->getOperand(1); 4215 SDValue RHS = N->getOperand(2); 4216 4217 SDLoc DL(N); 4218 4219 EVT CmpVT = LHS.getValueType(); 4220 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4221 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4222 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4223 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4224 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4225 } 4226 4227 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4228 4229 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4230 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4231 4232 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4233 DAG.getCondCode(CCOpcode)); 4234 if (VT.bitsEq(CCVT)) 4235 return SetCC; 4236 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4237 } 4238 4239 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4240 SDNode *N, SelectionDAG &DAG) { 4241 EVT VT = N->getValueType(0); 4242 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4243 4244 int CondCode = CD->getSExtValue(); 4245 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || 4246 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) { 4247 return DAG.getUNDEF(VT); 4248 } 4249 4250 SDValue Src0 = N->getOperand(1); 4251 SDValue Src1 = N->getOperand(2); 4252 EVT CmpVT = Src0.getValueType(); 4253 SDLoc SL(N); 4254 4255 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4256 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4257 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4258 } 4259 4260 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4261 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4262 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4263 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4264 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4265 Src1, DAG.getCondCode(CCOpcode)); 4266 if (VT.bitsEq(CCVT)) 4267 return SetCC; 4268 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4269 } 4270 4271 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4272 SmallVectorImpl<SDValue> &Results, 4273 SelectionDAG &DAG) const { 4274 switch (N->getOpcode()) { 4275 case ISD::INSERT_VECTOR_ELT: { 4276 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4277 Results.push_back(Res); 4278 return; 4279 } 4280 case ISD::EXTRACT_VECTOR_ELT: { 4281 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4282 Results.push_back(Res); 4283 return; 4284 } 4285 case ISD::INTRINSIC_WO_CHAIN: { 4286 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4287 switch (IID) { 4288 case Intrinsic::amdgcn_cvt_pkrtz: { 4289 SDValue Src0 = N->getOperand(1); 4290 SDValue Src1 = N->getOperand(2); 4291 SDLoc SL(N); 4292 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4293 Src0, Src1); 4294 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4295 return; 4296 } 4297 case Intrinsic::amdgcn_cvt_pknorm_i16: 4298 case Intrinsic::amdgcn_cvt_pknorm_u16: 4299 case Intrinsic::amdgcn_cvt_pk_i16: 4300 case Intrinsic::amdgcn_cvt_pk_u16: { 4301 SDValue Src0 = N->getOperand(1); 4302 SDValue Src1 = N->getOperand(2); 4303 SDLoc SL(N); 4304 unsigned Opcode; 4305 4306 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 4307 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 4308 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 4309 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 4310 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 4311 Opcode = AMDGPUISD::CVT_PK_I16_I32; 4312 else 4313 Opcode = AMDGPUISD::CVT_PK_U16_U32; 4314 4315 EVT VT = N->getValueType(0); 4316 if (isTypeLegal(VT)) 4317 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 4318 else { 4319 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 4320 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 4321 } 4322 return; 4323 } 4324 } 4325 break; 4326 } 4327 case ISD::INTRINSIC_W_CHAIN: { 4328 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 4329 if (Res.getOpcode() == ISD::MERGE_VALUES) { 4330 // FIXME: Hacky 4331 Results.push_back(Res.getOperand(0)); 4332 Results.push_back(Res.getOperand(1)); 4333 } else { 4334 Results.push_back(Res); 4335 Results.push_back(Res.getValue(1)); 4336 } 4337 return; 4338 } 4339 4340 break; 4341 } 4342 case ISD::SELECT: { 4343 SDLoc SL(N); 4344 EVT VT = N->getValueType(0); 4345 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 4346 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 4347 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 4348 4349 EVT SelectVT = NewVT; 4350 if (NewVT.bitsLT(MVT::i32)) { 4351 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 4352 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 4353 SelectVT = MVT::i32; 4354 } 4355 4356 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 4357 N->getOperand(0), LHS, RHS); 4358 4359 if (NewVT != SelectVT) 4360 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 4361 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 4362 return; 4363 } 4364 case ISD::FNEG: { 4365 if (N->getValueType(0) != MVT::v2f16) 4366 break; 4367 4368 SDLoc SL(N); 4369 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4370 4371 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 4372 BC, 4373 DAG.getConstant(0x80008000, SL, MVT::i32)); 4374 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4375 return; 4376 } 4377 case ISD::FABS: { 4378 if (N->getValueType(0) != MVT::v2f16) 4379 break; 4380 4381 SDLoc SL(N); 4382 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4383 4384 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 4385 BC, 4386 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 4387 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4388 return; 4389 } 4390 default: 4391 break; 4392 } 4393 } 4394 4395 /// Helper function for LowerBRCOND 4396 static SDNode *findUser(SDValue Value, unsigned Opcode) { 4397 4398 SDNode *Parent = Value.getNode(); 4399 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 4400 I != E; ++I) { 4401 4402 if (I.getUse().get() != Value) 4403 continue; 4404 4405 if (I->getOpcode() == Opcode) 4406 return *I; 4407 } 4408 return nullptr; 4409 } 4410 4411 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 4412 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 4413 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 4414 case Intrinsic::amdgcn_if: 4415 return AMDGPUISD::IF; 4416 case Intrinsic::amdgcn_else: 4417 return AMDGPUISD::ELSE; 4418 case Intrinsic::amdgcn_loop: 4419 return AMDGPUISD::LOOP; 4420 case Intrinsic::amdgcn_end_cf: 4421 llvm_unreachable("should not occur"); 4422 default: 4423 return 0; 4424 } 4425 } 4426 4427 // break, if_break, else_break are all only used as inputs to loop, not 4428 // directly as branch conditions. 4429 return 0; 4430 } 4431 4432 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 4433 const Triple &TT = getTargetMachine().getTargetTriple(); 4434 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4435 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4436 AMDGPU::shouldEmitConstantsToTextSection(TT); 4437 } 4438 4439 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 4440 // FIXME: Either avoid relying on address space here or change the default 4441 // address space for functions to avoid the explicit check. 4442 return (GV->getValueType()->isFunctionTy() || 4443 GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 4444 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4445 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4446 !shouldEmitFixup(GV) && 4447 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 4448 } 4449 4450 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 4451 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 4452 } 4453 4454 /// This transforms the control flow intrinsics to get the branch destination as 4455 /// last parameter, also switches branch target with BR if the need arise 4456 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 4457 SelectionDAG &DAG) const { 4458 SDLoc DL(BRCOND); 4459 4460 SDNode *Intr = BRCOND.getOperand(1).getNode(); 4461 SDValue Target = BRCOND.getOperand(2); 4462 SDNode *BR = nullptr; 4463 SDNode *SetCC = nullptr; 4464 4465 if (Intr->getOpcode() == ISD::SETCC) { 4466 // As long as we negate the condition everything is fine 4467 SetCC = Intr; 4468 Intr = SetCC->getOperand(0).getNode(); 4469 4470 } else { 4471 // Get the target from BR if we don't negate the condition 4472 BR = findUser(BRCOND, ISD::BR); 4473 Target = BR->getOperand(1); 4474 } 4475 4476 // FIXME: This changes the types of the intrinsics instead of introducing new 4477 // nodes with the correct types. 4478 // e.g. llvm.amdgcn.loop 4479 4480 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 4481 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088> 4482 4483 unsigned CFNode = isCFIntrinsic(Intr); 4484 if (CFNode == 0) { 4485 // This is a uniform branch so we don't need to legalize. 4486 return BRCOND; 4487 } 4488 4489 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 4490 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 4491 4492 assert(!SetCC || 4493 (SetCC->getConstantOperandVal(1) == 1 && 4494 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 4495 ISD::SETNE)); 4496 4497 // operands of the new intrinsic call 4498 SmallVector<SDValue, 4> Ops; 4499 if (HaveChain) 4500 Ops.push_back(BRCOND.getOperand(0)); 4501 4502 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 4503 Ops.push_back(Target); 4504 4505 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 4506 4507 // build the new intrinsic call 4508 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 4509 4510 if (!HaveChain) { 4511 SDValue Ops[] = { 4512 SDValue(Result, 0), 4513 BRCOND.getOperand(0) 4514 }; 4515 4516 Result = DAG.getMergeValues(Ops, DL).getNode(); 4517 } 4518 4519 if (BR) { 4520 // Give the branch instruction our target 4521 SDValue Ops[] = { 4522 BR->getOperand(0), 4523 BRCOND.getOperand(2) 4524 }; 4525 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 4526 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 4527 BR = NewBR.getNode(); 4528 } 4529 4530 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 4531 4532 // Copy the intrinsic results to registers 4533 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 4534 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 4535 if (!CopyToReg) 4536 continue; 4537 4538 Chain = DAG.getCopyToReg( 4539 Chain, DL, 4540 CopyToReg->getOperand(1), 4541 SDValue(Result, i - 1), 4542 SDValue()); 4543 4544 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 4545 } 4546 4547 // Remove the old intrinsic from the chain 4548 DAG.ReplaceAllUsesOfValueWith( 4549 SDValue(Intr, Intr->getNumValues() - 1), 4550 Intr->getOperand(0)); 4551 4552 return Chain; 4553 } 4554 4555 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 4556 SelectionDAG &DAG) const { 4557 MVT VT = Op.getSimpleValueType(); 4558 SDLoc DL(Op); 4559 // Checking the depth 4560 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 4561 return DAG.getConstant(0, DL, VT); 4562 4563 MachineFunction &MF = DAG.getMachineFunction(); 4564 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4565 // Check for kernel and shader functions 4566 if (Info->isEntryFunction()) 4567 return DAG.getConstant(0, DL, VT); 4568 4569 MachineFrameInfo &MFI = MF.getFrameInfo(); 4570 // There is a call to @llvm.returnaddress in this function 4571 MFI.setReturnAddressIsTaken(true); 4572 4573 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 4574 // Get the return address reg and mark it as an implicit live-in 4575 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 4576 4577 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 4578 } 4579 4580 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, 4581 SDValue Op, 4582 const SDLoc &DL, 4583 EVT VT) const { 4584 return Op.getValueType().bitsLE(VT) ? 4585 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 4586 DAG.getNode(ISD::FTRUNC, DL, VT, Op); 4587 } 4588 4589 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 4590 assert(Op.getValueType() == MVT::f16 && 4591 "Do not know how to custom lower FP_ROUND for non-f16 type"); 4592 4593 SDValue Src = Op.getOperand(0); 4594 EVT SrcVT = Src.getValueType(); 4595 if (SrcVT != MVT::f64) 4596 return Op; 4597 4598 SDLoc DL(Op); 4599 4600 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 4601 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 4602 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 4603 } 4604 4605 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 4606 SelectionDAG &DAG) const { 4607 EVT VT = Op.getValueType(); 4608 const MachineFunction &MF = DAG.getMachineFunction(); 4609 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4610 bool IsIEEEMode = Info->getMode().IEEE; 4611 4612 // FIXME: Assert during eslection that this is only selected for 4613 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 4614 // mode functions, but this happens to be OK since it's only done in cases 4615 // where there is known no sNaN. 4616 if (IsIEEEMode) 4617 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 4618 4619 if (VT == MVT::v4f16) 4620 return splitBinaryVectorOp(Op, DAG); 4621 return Op; 4622 } 4623 4624 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 4625 SDLoc SL(Op); 4626 SDValue Chain = Op.getOperand(0); 4627 4628 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4629 !Subtarget->isTrapHandlerEnabled()) 4630 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 4631 4632 MachineFunction &MF = DAG.getMachineFunction(); 4633 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4634 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 4635 assert(UserSGPR != AMDGPU::NoRegister); 4636 SDValue QueuePtr = CreateLiveInRegister( 4637 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 4638 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 4639 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 4640 QueuePtr, SDValue()); 4641 SDValue Ops[] = { 4642 ToReg, 4643 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), 4644 SGPR01, 4645 ToReg.getValue(1) 4646 }; 4647 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 4648 } 4649 4650 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 4651 SDLoc SL(Op); 4652 SDValue Chain = Op.getOperand(0); 4653 MachineFunction &MF = DAG.getMachineFunction(); 4654 4655 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4656 !Subtarget->isTrapHandlerEnabled()) { 4657 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 4658 "debugtrap handler not supported", 4659 Op.getDebugLoc(), 4660 DS_Warning); 4661 LLVMContext &Ctx = MF.getFunction().getContext(); 4662 Ctx.diagnose(NoTrap); 4663 return Chain; 4664 } 4665 4666 SDValue Ops[] = { 4667 Chain, 4668 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) 4669 }; 4670 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 4671 } 4672 4673 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 4674 SelectionDAG &DAG) const { 4675 // FIXME: Use inline constants (src_{shared, private}_base) instead. 4676 if (Subtarget->hasApertureRegs()) { 4677 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 4678 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 4679 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 4680 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 4681 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 4682 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 4683 unsigned Encoding = 4684 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 4685 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 4686 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 4687 4688 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 4689 SDValue ApertureReg = SDValue( 4690 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 4691 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 4692 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 4693 } 4694 4695 MachineFunction &MF = DAG.getMachineFunction(); 4696 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4697 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 4698 assert(UserSGPR != AMDGPU::NoRegister); 4699 4700 SDValue QueuePtr = CreateLiveInRegister( 4701 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 4702 4703 // Offset into amd_queue_t for group_segment_aperture_base_hi / 4704 // private_segment_aperture_base_hi. 4705 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 4706 4707 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); 4708 4709 // TODO: Use custom target PseudoSourceValue. 4710 // TODO: We should use the value from the IR intrinsic call, but it might not 4711 // be available and how do we get it? 4712 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 4713 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 4714 MinAlign(64, StructOffset), 4715 MachineMemOperand::MODereferenceable | 4716 MachineMemOperand::MOInvariant); 4717 } 4718 4719 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 4720 SelectionDAG &DAG) const { 4721 SDLoc SL(Op); 4722 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 4723 4724 SDValue Src = ASC->getOperand(0); 4725 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 4726 4727 const AMDGPUTargetMachine &TM = 4728 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 4729 4730 // flat -> local/private 4731 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 4732 unsigned DestAS = ASC->getDestAddressSpace(); 4733 4734 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 4735 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 4736 unsigned NullVal = TM.getNullPointerValue(DestAS); 4737 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 4738 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 4739 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 4740 4741 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 4742 NonNull, Ptr, SegmentNullPtr); 4743 } 4744 } 4745 4746 // local/private -> flat 4747 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 4748 unsigned SrcAS = ASC->getSrcAddressSpace(); 4749 4750 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 4751 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 4752 unsigned NullVal = TM.getNullPointerValue(SrcAS); 4753 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 4754 4755 SDValue NonNull 4756 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 4757 4758 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 4759 SDValue CvtPtr 4760 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 4761 4762 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 4763 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 4764 FlatNullPtr); 4765 } 4766 } 4767 4768 // global <-> flat are no-ops and never emitted. 4769 4770 const MachineFunction &MF = DAG.getMachineFunction(); 4771 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 4772 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 4773 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 4774 4775 return DAG.getUNDEF(ASC->getValueType(0)); 4776 } 4777 4778 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 4779 // the small vector and inserting them into the big vector. That is better than 4780 // the default expansion of doing it via a stack slot. Even though the use of 4781 // the stack slot would be optimized away afterwards, the stack slot itself 4782 // remains. 4783 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4784 SelectionDAG &DAG) const { 4785 SDValue Vec = Op.getOperand(0); 4786 SDValue Ins = Op.getOperand(1); 4787 SDValue Idx = Op.getOperand(2); 4788 EVT VecVT = Vec.getValueType(); 4789 EVT InsVT = Ins.getValueType(); 4790 EVT EltVT = VecVT.getVectorElementType(); 4791 unsigned InsNumElts = InsVT.getVectorNumElements(); 4792 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 4793 SDLoc SL(Op); 4794 4795 for (unsigned I = 0; I != InsNumElts; ++I) { 4796 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 4797 DAG.getConstant(I, SL, MVT::i32)); 4798 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 4799 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 4800 } 4801 return Vec; 4802 } 4803 4804 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4805 SelectionDAG &DAG) const { 4806 SDValue Vec = Op.getOperand(0); 4807 SDValue InsVal = Op.getOperand(1); 4808 SDValue Idx = Op.getOperand(2); 4809 EVT VecVT = Vec.getValueType(); 4810 EVT EltVT = VecVT.getVectorElementType(); 4811 unsigned VecSize = VecVT.getSizeInBits(); 4812 unsigned EltSize = EltVT.getSizeInBits(); 4813 4814 4815 assert(VecSize <= 64); 4816 4817 unsigned NumElts = VecVT.getVectorNumElements(); 4818 SDLoc SL(Op); 4819 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 4820 4821 if (NumElts == 4 && EltSize == 16 && KIdx) { 4822 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 4823 4824 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 4825 DAG.getConstant(0, SL, MVT::i32)); 4826 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 4827 DAG.getConstant(1, SL, MVT::i32)); 4828 4829 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 4830 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 4831 4832 unsigned Idx = KIdx->getZExtValue(); 4833 bool InsertLo = Idx < 2; 4834 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 4835 InsertLo ? LoVec : HiVec, 4836 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 4837 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 4838 4839 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 4840 4841 SDValue Concat = InsertLo ? 4842 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 4843 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 4844 4845 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 4846 } 4847 4848 if (isa<ConstantSDNode>(Idx)) 4849 return SDValue(); 4850 4851 MVT IntVT = MVT::getIntegerVT(VecSize); 4852 4853 // Avoid stack access for dynamic indexing. 4854 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 4855 4856 // Create a congruent vector with the target value in each element so that 4857 // the required element can be masked and ORed into the target vector. 4858 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 4859 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 4860 4861 assert(isPowerOf2_32(EltSize)); 4862 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 4863 4864 // Convert vector index to bit-index. 4865 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 4866 4867 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 4868 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 4869 DAG.getConstant(0xffff, SL, IntVT), 4870 ScaledIdx); 4871 4872 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 4873 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 4874 DAG.getNOT(SL, BFM, IntVT), BCVec); 4875 4876 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 4877 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 4878 } 4879 4880 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4881 SelectionDAG &DAG) const { 4882 SDLoc SL(Op); 4883 4884 EVT ResultVT = Op.getValueType(); 4885 SDValue Vec = Op.getOperand(0); 4886 SDValue Idx = Op.getOperand(1); 4887 EVT VecVT = Vec.getValueType(); 4888 unsigned VecSize = VecVT.getSizeInBits(); 4889 EVT EltVT = VecVT.getVectorElementType(); 4890 assert(VecSize <= 64); 4891 4892 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 4893 4894 // Make sure we do any optimizations that will make it easier to fold 4895 // source modifiers before obscuring it with bit operations. 4896 4897 // XXX - Why doesn't this get called when vector_shuffle is expanded? 4898 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 4899 return Combined; 4900 4901 unsigned EltSize = EltVT.getSizeInBits(); 4902 assert(isPowerOf2_32(EltSize)); 4903 4904 MVT IntVT = MVT::getIntegerVT(VecSize); 4905 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 4906 4907 // Convert vector index to bit-index (* EltSize) 4908 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 4909 4910 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 4911 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 4912 4913 if (ResultVT == MVT::f16) { 4914 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 4915 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 4916 } 4917 4918 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 4919 } 4920 4921 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 4922 assert(Elt % 2 == 0); 4923 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 4924 } 4925 4926 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4927 SelectionDAG &DAG) const { 4928 SDLoc SL(Op); 4929 EVT ResultVT = Op.getValueType(); 4930 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 4931 4932 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 4933 EVT EltVT = PackVT.getVectorElementType(); 4934 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 4935 4936 // vector_shuffle <0,1,6,7> lhs, rhs 4937 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 4938 // 4939 // vector_shuffle <6,7,2,3> lhs, rhs 4940 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 4941 // 4942 // vector_shuffle <6,7,0,1> lhs, rhs 4943 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 4944 4945 // Avoid scalarizing when both halves are reading from consecutive elements. 4946 SmallVector<SDValue, 4> Pieces; 4947 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 4948 if (elementPairIsContiguous(SVN->getMask(), I)) { 4949 const int Idx = SVN->getMaskElt(I); 4950 int VecIdx = Idx < SrcNumElts ? 0 : 1; 4951 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 4952 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 4953 PackVT, SVN->getOperand(VecIdx), 4954 DAG.getConstant(EltIdx, SL, MVT::i32)); 4955 Pieces.push_back(SubVec); 4956 } else { 4957 const int Idx0 = SVN->getMaskElt(I); 4958 const int Idx1 = SVN->getMaskElt(I + 1); 4959 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 4960 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 4961 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 4962 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 4963 4964 SDValue Vec0 = SVN->getOperand(VecIdx0); 4965 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 4966 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 4967 4968 SDValue Vec1 = SVN->getOperand(VecIdx1); 4969 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 4970 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 4971 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 4972 } 4973 } 4974 4975 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 4976 } 4977 4978 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 4979 SelectionDAG &DAG) const { 4980 SDLoc SL(Op); 4981 EVT VT = Op.getValueType(); 4982 4983 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4984 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 4985 4986 // Turn into pair of packed build_vectors. 4987 // TODO: Special case for constants that can be materialized with s_mov_b64. 4988 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 4989 { Op.getOperand(0), Op.getOperand(1) }); 4990 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 4991 { Op.getOperand(2), Op.getOperand(3) }); 4992 4993 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 4994 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 4995 4996 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 4997 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 4998 } 4999 5000 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5001 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5002 5003 SDValue Lo = Op.getOperand(0); 5004 SDValue Hi = Op.getOperand(1); 5005 5006 // Avoid adding defined bits with the zero_extend. 5007 if (Hi.isUndef()) { 5008 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5009 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5010 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5011 } 5012 5013 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5014 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5015 5016 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5017 DAG.getConstant(16, SL, MVT::i32)); 5018 if (Lo.isUndef()) 5019 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5020 5021 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5022 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5023 5024 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5025 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5026 } 5027 5028 bool 5029 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5030 // We can fold offsets for anything that doesn't require a GOT relocation. 5031 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5032 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5033 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5034 !shouldEmitGOTReloc(GA->getGlobal()); 5035 } 5036 5037 static SDValue 5038 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5039 const SDLoc &DL, unsigned Offset, EVT PtrVT, 5040 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5041 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5042 // lowered to the following code sequence: 5043 // 5044 // For constant address space: 5045 // s_getpc_b64 s[0:1] 5046 // s_add_u32 s0, s0, $symbol 5047 // s_addc_u32 s1, s1, 0 5048 // 5049 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5050 // a fixup or relocation is emitted to replace $symbol with a literal 5051 // constant, which is a pc-relative offset from the encoding of the $symbol 5052 // operand to the global variable. 5053 // 5054 // For global address space: 5055 // s_getpc_b64 s[0:1] 5056 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5057 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5058 // 5059 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5060 // fixups or relocations are emitted to replace $symbol@*@lo and 5061 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5062 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5063 // operand to the global variable. 5064 // 5065 // What we want here is an offset from the value returned by s_getpc 5066 // (which is the address of the s_add_u32 instruction) to the global 5067 // variable, but since the encoding of $symbol starts 4 bytes after the start 5068 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5069 // small. This requires us to add 4 to the global variable offset in order to 5070 // compute the correct address. 5071 SDValue PtrLo = 5072 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5073 SDValue PtrHi; 5074 if (GAFlags == SIInstrInfo::MO_NONE) { 5075 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5076 } else { 5077 PtrHi = 5078 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1); 5079 } 5080 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5081 } 5082 5083 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5084 SDValue Op, 5085 SelectionDAG &DAG) const { 5086 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5087 const GlobalValue *GV = GSD->getGlobal(); 5088 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5089 (!GV->hasExternalLinkage() || 5090 getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 5091 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) || 5092 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5093 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) 5094 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 5095 5096 SDLoc DL(GSD); 5097 EVT PtrVT = Op.getValueType(); 5098 5099 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 5100 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 5101 SIInstrInfo::MO_ABS32_LO); 5102 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 5103 } 5104 5105 if (shouldEmitFixup(GV)) 5106 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 5107 else if (shouldEmitPCReloc(GV)) 5108 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 5109 SIInstrInfo::MO_REL32); 5110 5111 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 5112 SIInstrInfo::MO_GOTPCREL32); 5113 5114 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 5115 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 5116 const DataLayout &DataLayout = DAG.getDataLayout(); 5117 unsigned Align = DataLayout.getABITypeAlignment(PtrTy); 5118 MachinePointerInfo PtrInfo 5119 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 5120 5121 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, 5122 MachineMemOperand::MODereferenceable | 5123 MachineMemOperand::MOInvariant); 5124 } 5125 5126 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 5127 const SDLoc &DL, SDValue V) const { 5128 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 5129 // the destination register. 5130 // 5131 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 5132 // so we will end up with redundant moves to m0. 5133 // 5134 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 5135 5136 // A Null SDValue creates a glue result. 5137 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 5138 V, Chain); 5139 return SDValue(M0, 0); 5140 } 5141 5142 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 5143 SDValue Op, 5144 MVT VT, 5145 unsigned Offset) const { 5146 SDLoc SL(Op); 5147 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, 5148 DAG.getEntryNode(), Offset, 4, false); 5149 // The local size values will have the hi 16-bits as zero. 5150 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 5151 DAG.getValueType(VT)); 5152 } 5153 5154 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5155 EVT VT) { 5156 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5157 "non-hsa intrinsic with hsa target", 5158 DL.getDebugLoc()); 5159 DAG.getContext()->diagnose(BadIntrin); 5160 return DAG.getUNDEF(VT); 5161 } 5162 5163 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5164 EVT VT) { 5165 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5166 "intrinsic not supported on subtarget", 5167 DL.getDebugLoc()); 5168 DAG.getContext()->diagnose(BadIntrin); 5169 return DAG.getUNDEF(VT); 5170 } 5171 5172 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 5173 ArrayRef<SDValue> Elts) { 5174 assert(!Elts.empty()); 5175 MVT Type; 5176 unsigned NumElts; 5177 5178 if (Elts.size() == 1) { 5179 Type = MVT::f32; 5180 NumElts = 1; 5181 } else if (Elts.size() == 2) { 5182 Type = MVT::v2f32; 5183 NumElts = 2; 5184 } else if (Elts.size() <= 4) { 5185 Type = MVT::v4f32; 5186 NumElts = 4; 5187 } else if (Elts.size() <= 8) { 5188 Type = MVT::v8f32; 5189 NumElts = 8; 5190 } else { 5191 assert(Elts.size() <= 16); 5192 Type = MVT::v16f32; 5193 NumElts = 16; 5194 } 5195 5196 SmallVector<SDValue, 16> VecElts(NumElts); 5197 for (unsigned i = 0; i < Elts.size(); ++i) { 5198 SDValue Elt = Elts[i]; 5199 if (Elt.getValueType() != MVT::f32) 5200 Elt = DAG.getBitcast(MVT::f32, Elt); 5201 VecElts[i] = Elt; 5202 } 5203 for (unsigned i = Elts.size(); i < NumElts; ++i) 5204 VecElts[i] = DAG.getUNDEF(MVT::f32); 5205 5206 if (NumElts == 1) 5207 return VecElts[0]; 5208 return DAG.getBuildVector(Type, DL, VecElts); 5209 } 5210 5211 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, 5212 SDValue *GLC, SDValue *SLC, SDValue *DLC) { 5213 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); 5214 5215 uint64_t Value = CachePolicyConst->getZExtValue(); 5216 SDLoc DL(CachePolicy); 5217 if (GLC) { 5218 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5219 Value &= ~(uint64_t)0x1; 5220 } 5221 if (SLC) { 5222 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5223 Value &= ~(uint64_t)0x2; 5224 } 5225 if (DLC) { 5226 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); 5227 Value &= ~(uint64_t)0x4; 5228 } 5229 5230 return Value == 0; 5231 } 5232 5233 // Re-construct the required return value for a image load intrinsic. 5234 // This is more complicated due to the optional use TexFailCtrl which means the required 5235 // return type is an aggregate 5236 static SDValue constructRetValue(SelectionDAG &DAG, 5237 MachineSDNode *Result, 5238 ArrayRef<EVT> ResultTypes, 5239 bool IsTexFail, bool Unpacked, bool IsD16, 5240 int DMaskPop, int NumVDataDwords, 5241 const SDLoc &DL, LLVMContext &Context) { 5242 // Determine the required return type. This is the same regardless of IsTexFail flag 5243 EVT ReqRetVT = ResultTypes[0]; 5244 EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT; 5245 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 5246 EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT; 5247 EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts) 5248 : AdjEltVT 5249 : ReqRetVT; 5250 5251 // Extract data part of the result 5252 // Bitcast the result to the same type as the required return type 5253 int NumElts; 5254 if (IsD16 && !Unpacked) 5255 NumElts = NumVDataDwords << 1; 5256 else 5257 NumElts = NumVDataDwords; 5258 5259 EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts) 5260 : AdjEltVT; 5261 5262 // Special case for v6f16. Rather than add support for this, use v3i32 to 5263 // extract the data elements 5264 bool V6F16Special = false; 5265 if (NumElts == 6) { 5266 CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2); 5267 DMaskPop >>= 1; 5268 ReqRetNumElts >>= 1; 5269 V6F16Special = true; 5270 AdjVT = MVT::v2i32; 5271 } 5272 5273 SDValue N = SDValue(Result, 0); 5274 SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N); 5275 5276 // Iterate over the result 5277 SmallVector<SDValue, 4> BVElts; 5278 5279 if (CastVT.isVector()) { 5280 DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop); 5281 } else { 5282 BVElts.push_back(CastRes); 5283 } 5284 int ExtraElts = ReqRetNumElts - DMaskPop; 5285 while(ExtraElts--) 5286 BVElts.push_back(DAG.getUNDEF(AdjEltVT)); 5287 5288 SDValue PreTFCRes; 5289 if (ReqRetNumElts > 1) { 5290 SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts); 5291 if (IsD16 && Unpacked) 5292 PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked); 5293 else 5294 PreTFCRes = NewVec; 5295 } else { 5296 PreTFCRes = BVElts[0]; 5297 } 5298 5299 if (V6F16Special) 5300 PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes); 5301 5302 if (!IsTexFail) { 5303 if (Result->getNumValues() > 1) 5304 return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL); 5305 else 5306 return PreTFCRes; 5307 } 5308 5309 // Extract the TexFail result and insert into aggregate return 5310 SmallVector<SDValue, 1> TFCElt; 5311 DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1); 5312 SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]); 5313 return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL); 5314 } 5315 5316 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 5317 SDValue *LWE, bool &IsTexFail) { 5318 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 5319 5320 uint64_t Value = TexFailCtrlConst->getZExtValue(); 5321 if (Value) { 5322 IsTexFail = true; 5323 } 5324 5325 SDLoc DL(TexFailCtrlConst); 5326 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5327 Value &= ~(uint64_t)0x1; 5328 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5329 Value &= ~(uint64_t)0x2; 5330 5331 return Value == 0; 5332 } 5333 5334 SDValue SITargetLowering::lowerImage(SDValue Op, 5335 const AMDGPU::ImageDimIntrinsicInfo *Intr, 5336 SelectionDAG &DAG) const { 5337 SDLoc DL(Op); 5338 MachineFunction &MF = DAG.getMachineFunction(); 5339 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 5340 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5341 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 5342 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 5343 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 5344 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 5345 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = 5346 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); 5347 unsigned IntrOpcode = Intr->BaseOpcode; 5348 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 5349 5350 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end()); 5351 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end()); 5352 bool IsD16 = false; 5353 bool IsA16 = false; 5354 SDValue VData; 5355 int NumVDataDwords; 5356 bool AdjustRetType = false; 5357 5358 unsigned AddrIdx; // Index of first address argument 5359 unsigned DMask; 5360 unsigned DMaskLanes = 0; 5361 5362 if (BaseOpcode->Atomic) { 5363 VData = Op.getOperand(2); 5364 5365 bool Is64Bit = VData.getValueType() == MVT::i64; 5366 if (BaseOpcode->AtomicX2) { 5367 SDValue VData2 = Op.getOperand(3); 5368 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 5369 {VData, VData2}); 5370 if (Is64Bit) 5371 VData = DAG.getBitcast(MVT::v4i32, VData); 5372 5373 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 5374 DMask = Is64Bit ? 0xf : 0x3; 5375 NumVDataDwords = Is64Bit ? 4 : 2; 5376 AddrIdx = 4; 5377 } else { 5378 DMask = Is64Bit ? 0x3 : 0x1; 5379 NumVDataDwords = Is64Bit ? 2 : 1; 5380 AddrIdx = 3; 5381 } 5382 } else { 5383 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1; 5384 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); 5385 DMask = DMaskConst->getZExtValue(); 5386 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 5387 5388 if (BaseOpcode->Store) { 5389 VData = Op.getOperand(2); 5390 5391 MVT StoreVT = VData.getSimpleValueType(); 5392 if (StoreVT.getScalarType() == MVT::f16) { 5393 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5394 return Op; // D16 is unsupported for this instruction 5395 5396 IsD16 = true; 5397 VData = handleD16VData(VData, DAG); 5398 } 5399 5400 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 5401 } else { 5402 // Work out the num dwords based on the dmask popcount and underlying type 5403 // and whether packing is supported. 5404 MVT LoadVT = ResultTypes[0].getSimpleVT(); 5405 if (LoadVT.getScalarType() == MVT::f16) { 5406 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5407 return Op; // D16 is unsupported for this instruction 5408 5409 IsD16 = true; 5410 } 5411 5412 // Confirm that the return type is large enough for the dmask specified 5413 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 5414 (!LoadVT.isVector() && DMaskLanes > 1)) 5415 return Op; 5416 5417 if (IsD16 && !Subtarget->hasUnpackedD16VMem()) 5418 NumVDataDwords = (DMaskLanes + 1) / 2; 5419 else 5420 NumVDataDwords = DMaskLanes; 5421 5422 AdjustRetType = true; 5423 } 5424 5425 AddrIdx = DMaskIdx + 1; 5426 } 5427 5428 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; 5429 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; 5430 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; 5431 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + 5432 NumCoords + NumLCM; 5433 unsigned NumMIVAddrs = NumVAddrs; 5434 5435 SmallVector<SDValue, 4> VAddrs; 5436 5437 // Optimize _L to _LZ when _L is zero 5438 if (LZMappingInfo) { 5439 if (auto ConstantLod = 5440 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5441 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 5442 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 5443 NumMIVAddrs--; // remove 'lod' 5444 } 5445 } 5446 } 5447 5448 // Optimize _mip away, when 'lod' is zero 5449 if (MIPMappingInfo) { 5450 if (auto ConstantLod = 5451 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5452 if (ConstantLod->isNullValue()) { 5453 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip 5454 NumMIVAddrs--; // remove 'lod' 5455 } 5456 } 5457 } 5458 5459 // Check for 16 bit addresses and pack if true. 5460 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 5461 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); 5462 const MVT VAddrScalarVT = VAddrVT.getScalarType(); 5463 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) && 5464 ST->hasFeature(AMDGPU::FeatureR128A16)) { 5465 IsA16 = true; 5466 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 5467 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) { 5468 SDValue AddrLo, AddrHi; 5469 // Push back extra arguments. 5470 if (i < DimIdx) { 5471 AddrLo = Op.getOperand(i); 5472 } else { 5473 AddrLo = Op.getOperand(i); 5474 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, 5475 // in 1D, derivatives dx/dh and dx/dv are packed with undef. 5476 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) || 5477 ((NumGradients / 2) % 2 == 1 && 5478 (i == DimIdx + (NumGradients / 2) - 1 || 5479 i == DimIdx + NumGradients - 1))) { 5480 AddrHi = DAG.getUNDEF(MVT::f16); 5481 } else { 5482 AddrHi = Op.getOperand(i + 1); 5483 i++; 5484 } 5485 AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT, 5486 {AddrLo, AddrHi}); 5487 AddrLo = DAG.getBitcast(MVT::i32, AddrLo); 5488 } 5489 VAddrs.push_back(AddrLo); 5490 } 5491 } else { 5492 for (unsigned i = 0; i < NumMIVAddrs; ++i) 5493 VAddrs.push_back(Op.getOperand(AddrIdx + i)); 5494 } 5495 5496 // If the register allocator cannot place the address registers contiguously 5497 // without introducing moves, then using the non-sequential address encoding 5498 // is always preferable, since it saves VALU instructions and is usually a 5499 // wash in terms of code size or even better. 5500 // 5501 // However, we currently have no way of hinting to the register allocator that 5502 // MIMG addresses should be placed contiguously when it is possible to do so, 5503 // so force non-NSA for the common 2-address case as a heuristic. 5504 // 5505 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 5506 // allocation when possible. 5507 bool UseNSA = 5508 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; 5509 SDValue VAddr; 5510 if (!UseNSA) 5511 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 5512 5513 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 5514 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 5515 unsigned CtrlIdx; // Index of texfailctrl argument 5516 SDValue Unorm; 5517 if (!BaseOpcode->Sampler) { 5518 Unorm = True; 5519 CtrlIdx = AddrIdx + NumVAddrs + 1; 5520 } else { 5521 auto UnormConst = 5522 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); 5523 5524 Unorm = UnormConst->getZExtValue() ? True : False; 5525 CtrlIdx = AddrIdx + NumVAddrs + 3; 5526 } 5527 5528 SDValue TFE; 5529 SDValue LWE; 5530 SDValue TexFail = Op.getOperand(CtrlIdx); 5531 bool IsTexFail = false; 5532 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 5533 return Op; 5534 5535 if (IsTexFail) { 5536 if (!DMaskLanes) { 5537 // Expecting to get an error flag since TFC is on - and dmask is 0 5538 // Force dmask to be at least 1 otherwise the instruction will fail 5539 DMask = 0x1; 5540 DMaskLanes = 1; 5541 NumVDataDwords = 1; 5542 } 5543 NumVDataDwords += 1; 5544 AdjustRetType = true; 5545 } 5546 5547 // Has something earlier tagged that the return type needs adjusting 5548 // This happens if the instruction is a load or has set TexFailCtrl flags 5549 if (AdjustRetType) { 5550 // NumVDataDwords reflects the true number of dwords required in the return type 5551 if (DMaskLanes == 0 && !BaseOpcode->Store) { 5552 // This is a no-op load. This can be eliminated 5553 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 5554 if (isa<MemSDNode>(Op)) 5555 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 5556 return Undef; 5557 } 5558 5559 EVT NewVT = NumVDataDwords > 1 ? 5560 EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords) 5561 : MVT::f32; 5562 5563 ResultTypes[0] = NewVT; 5564 if (ResultTypes.size() == 3) { 5565 // Original result was aggregate type used for TexFailCtrl results 5566 // The actual instruction returns as a vector type which has now been 5567 // created. Remove the aggregate result. 5568 ResultTypes.erase(&ResultTypes[1]); 5569 } 5570 } 5571 5572 SDValue GLC; 5573 SDValue SLC; 5574 SDValue DLC; 5575 if (BaseOpcode->Atomic) { 5576 GLC = True; // TODO no-return optimization 5577 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC, 5578 IsGFX10 ? &DLC : nullptr)) 5579 return Op; 5580 } else { 5581 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC, 5582 IsGFX10 ? &DLC : nullptr)) 5583 return Op; 5584 } 5585 5586 SmallVector<SDValue, 26> Ops; 5587 if (BaseOpcode->Store || BaseOpcode->Atomic) 5588 Ops.push_back(VData); // vdata 5589 if (UseNSA) { 5590 for (const SDValue &Addr : VAddrs) 5591 Ops.push_back(Addr); 5592 } else { 5593 Ops.push_back(VAddr); 5594 } 5595 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc 5596 if (BaseOpcode->Sampler) 5597 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler 5598 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 5599 if (IsGFX10) 5600 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 5601 Ops.push_back(Unorm); 5602 if (IsGFX10) 5603 Ops.push_back(DLC); 5604 Ops.push_back(GLC); 5605 Ops.push_back(SLC); 5606 Ops.push_back(IsA16 && // a16 or r128 5607 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 5608 Ops.push_back(TFE); // tfe 5609 Ops.push_back(LWE); // lwe 5610 if (!IsGFX10) 5611 Ops.push_back(DimInfo->DA ? True : False); 5612 if (BaseOpcode->HasD16) 5613 Ops.push_back(IsD16 ? True : False); 5614 if (isa<MemSDNode>(Op)) 5615 Ops.push_back(Op.getOperand(0)); // chain 5616 5617 int NumVAddrDwords = 5618 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 5619 int Opcode = -1; 5620 5621 if (IsGFX10) { 5622 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 5623 UseNSA ? AMDGPU::MIMGEncGfx10NSA 5624 : AMDGPU::MIMGEncGfx10Default, 5625 NumVDataDwords, NumVAddrDwords); 5626 } else { 5627 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 5628 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 5629 NumVDataDwords, NumVAddrDwords); 5630 if (Opcode == -1) 5631 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 5632 NumVDataDwords, NumVAddrDwords); 5633 } 5634 assert(Opcode != -1); 5635 5636 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 5637 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 5638 MachineMemOperand *MemRef = MemOp->getMemOperand(); 5639 DAG.setNodeMemRefs(NewNode, {MemRef}); 5640 } 5641 5642 if (BaseOpcode->AtomicX2) { 5643 SmallVector<SDValue, 1> Elt; 5644 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 5645 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 5646 } else if (!BaseOpcode->Store) { 5647 return constructRetValue(DAG, NewNode, 5648 OrigResultTypes, IsTexFail, 5649 Subtarget->hasUnpackedD16VMem(), IsD16, 5650 DMaskLanes, NumVDataDwords, DL, 5651 *DAG.getContext()); 5652 } 5653 5654 return SDValue(NewNode, 0); 5655 } 5656 5657 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 5658 SDValue Offset, SDValue GLC, SDValue DLC, 5659 SelectionDAG &DAG) const { 5660 MachineFunction &MF = DAG.getMachineFunction(); 5661 5662 const DataLayout &DataLayout = DAG.getDataLayout(); 5663 unsigned Align = 5664 DataLayout.getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); 5665 5666 MachineMemOperand *MMO = MF.getMachineMemOperand( 5667 MachinePointerInfo(), 5668 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 5669 MachineMemOperand::MOInvariant, 5670 VT.getStoreSize(), Align); 5671 5672 if (!Offset->isDivergent()) { 5673 SDValue Ops[] = { 5674 Rsrc, 5675 Offset, // Offset 5676 GLC, 5677 DLC, 5678 }; 5679 5680 // Widen vec3 load to vec4. 5681 if (VT.isVector() && VT.getVectorNumElements() == 3) { 5682 EVT WidenedVT = 5683 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 5684 auto WidenedOp = DAG.getMemIntrinsicNode( 5685 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 5686 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 5687 auto Subvector = DAG.getNode( 5688 ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 5689 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 5690 return Subvector; 5691 } 5692 5693 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 5694 DAG.getVTList(VT), Ops, VT, MMO); 5695 } 5696 5697 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 5698 // assume that the buffer is unswizzled. 5699 SmallVector<SDValue, 4> Loads; 5700 unsigned NumLoads = 1; 5701 MVT LoadVT = VT.getSimpleVT(); 5702 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 5703 assert((LoadVT.getScalarType() == MVT::i32 || 5704 LoadVT.getScalarType() == MVT::f32)); 5705 5706 if (NumElts == 8 || NumElts == 16) { 5707 NumLoads = NumElts / 4; 5708 LoadVT = MVT::v4i32; 5709 } 5710 5711 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 5712 unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue(); 5713 SDValue Ops[] = { 5714 DAG.getEntryNode(), // Chain 5715 Rsrc, // rsrc 5716 DAG.getConstant(0, DL, MVT::i32), // vindex 5717 {}, // voffset 5718 {}, // soffset 5719 {}, // offset 5720 DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy 5721 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 5722 }; 5723 5724 // Use the alignment to ensure that the required offsets will fit into the 5725 // immediate offsets. 5726 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4); 5727 5728 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 5729 for (unsigned i = 0; i < NumLoads; ++i) { 5730 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 5731 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 5732 LoadVT, MMO, DAG)); 5733 } 5734 5735 if (VT == MVT::v8i32 || VT == MVT::v16i32) 5736 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 5737 5738 return Loads[0]; 5739 } 5740 5741 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 5742 SelectionDAG &DAG) const { 5743 MachineFunction &MF = DAG.getMachineFunction(); 5744 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 5745 5746 EVT VT = Op.getValueType(); 5747 SDLoc DL(Op); 5748 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5749 5750 // TODO: Should this propagate fast-math-flags? 5751 5752 switch (IntrinsicID) { 5753 case Intrinsic::amdgcn_implicit_buffer_ptr: { 5754 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 5755 return emitNonHSAIntrinsicError(DAG, DL, VT); 5756 return getPreloadedValue(DAG, *MFI, VT, 5757 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 5758 } 5759 case Intrinsic::amdgcn_dispatch_ptr: 5760 case Intrinsic::amdgcn_queue_ptr: { 5761 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 5762 DiagnosticInfoUnsupported BadIntrin( 5763 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 5764 DL.getDebugLoc()); 5765 DAG.getContext()->diagnose(BadIntrin); 5766 return DAG.getUNDEF(VT); 5767 } 5768 5769 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 5770 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 5771 return getPreloadedValue(DAG, *MFI, VT, RegID); 5772 } 5773 case Intrinsic::amdgcn_implicitarg_ptr: { 5774 if (MFI->isEntryFunction()) 5775 return getImplicitArgPtr(DAG, DL); 5776 return getPreloadedValue(DAG, *MFI, VT, 5777 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 5778 } 5779 case Intrinsic::amdgcn_kernarg_segment_ptr: { 5780 return getPreloadedValue(DAG, *MFI, VT, 5781 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 5782 } 5783 case Intrinsic::amdgcn_dispatch_id: { 5784 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 5785 } 5786 case Intrinsic::amdgcn_rcp: 5787 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 5788 case Intrinsic::amdgcn_rsq: 5789 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 5790 case Intrinsic::amdgcn_rsq_legacy: 5791 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 5792 return emitRemovedIntrinsicError(DAG, DL, VT); 5793 5794 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 5795 case Intrinsic::amdgcn_rcp_legacy: 5796 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 5797 return emitRemovedIntrinsicError(DAG, DL, VT); 5798 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 5799 case Intrinsic::amdgcn_rsq_clamp: { 5800 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 5801 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 5802 5803 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 5804 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 5805 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 5806 5807 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 5808 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 5809 DAG.getConstantFP(Max, DL, VT)); 5810 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 5811 DAG.getConstantFP(Min, DL, VT)); 5812 } 5813 case Intrinsic::r600_read_ngroups_x: 5814 if (Subtarget->isAmdHsaOS()) 5815 return emitNonHSAIntrinsicError(DAG, DL, VT); 5816 5817 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5818 SI::KernelInputOffsets::NGROUPS_X, 4, false); 5819 case Intrinsic::r600_read_ngroups_y: 5820 if (Subtarget->isAmdHsaOS()) 5821 return emitNonHSAIntrinsicError(DAG, DL, VT); 5822 5823 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5824 SI::KernelInputOffsets::NGROUPS_Y, 4, false); 5825 case Intrinsic::r600_read_ngroups_z: 5826 if (Subtarget->isAmdHsaOS()) 5827 return emitNonHSAIntrinsicError(DAG, DL, VT); 5828 5829 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5830 SI::KernelInputOffsets::NGROUPS_Z, 4, false); 5831 case Intrinsic::r600_read_global_size_x: 5832 if (Subtarget->isAmdHsaOS()) 5833 return emitNonHSAIntrinsicError(DAG, DL, VT); 5834 5835 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5836 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false); 5837 case Intrinsic::r600_read_global_size_y: 5838 if (Subtarget->isAmdHsaOS()) 5839 return emitNonHSAIntrinsicError(DAG, DL, VT); 5840 5841 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5842 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false); 5843 case Intrinsic::r600_read_global_size_z: 5844 if (Subtarget->isAmdHsaOS()) 5845 return emitNonHSAIntrinsicError(DAG, DL, VT); 5846 5847 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5848 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false); 5849 case Intrinsic::r600_read_local_size_x: 5850 if (Subtarget->isAmdHsaOS()) 5851 return emitNonHSAIntrinsicError(DAG, DL, VT); 5852 5853 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5854 SI::KernelInputOffsets::LOCAL_SIZE_X); 5855 case Intrinsic::r600_read_local_size_y: 5856 if (Subtarget->isAmdHsaOS()) 5857 return emitNonHSAIntrinsicError(DAG, DL, VT); 5858 5859 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5860 SI::KernelInputOffsets::LOCAL_SIZE_Y); 5861 case Intrinsic::r600_read_local_size_z: 5862 if (Subtarget->isAmdHsaOS()) 5863 return emitNonHSAIntrinsicError(DAG, DL, VT); 5864 5865 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5866 SI::KernelInputOffsets::LOCAL_SIZE_Z); 5867 case Intrinsic::amdgcn_workgroup_id_x: 5868 case Intrinsic::r600_read_tgid_x: 5869 return getPreloadedValue(DAG, *MFI, VT, 5870 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 5871 case Intrinsic::amdgcn_workgroup_id_y: 5872 case Intrinsic::r600_read_tgid_y: 5873 return getPreloadedValue(DAG, *MFI, VT, 5874 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 5875 case Intrinsic::amdgcn_workgroup_id_z: 5876 case Intrinsic::r600_read_tgid_z: 5877 return getPreloadedValue(DAG, *MFI, VT, 5878 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 5879 case Intrinsic::amdgcn_workitem_id_x: 5880 case Intrinsic::r600_read_tidig_x: 5881 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5882 SDLoc(DAG.getEntryNode()), 5883 MFI->getArgInfo().WorkItemIDX); 5884 case Intrinsic::amdgcn_workitem_id_y: 5885 case Intrinsic::r600_read_tidig_y: 5886 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5887 SDLoc(DAG.getEntryNode()), 5888 MFI->getArgInfo().WorkItemIDY); 5889 case Intrinsic::amdgcn_workitem_id_z: 5890 case Intrinsic::r600_read_tidig_z: 5891 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5892 SDLoc(DAG.getEntryNode()), 5893 MFI->getArgInfo().WorkItemIDZ); 5894 case Intrinsic::amdgcn_wavefrontsize: 5895 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 5896 SDLoc(Op), MVT::i32); 5897 case Intrinsic::amdgcn_s_buffer_load: { 5898 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 5899 SDValue GLC; 5900 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); 5901 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, 5902 IsGFX10 ? &DLC : nullptr)) 5903 return Op; 5904 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC, 5905 DAG); 5906 } 5907 case Intrinsic::amdgcn_fdiv_fast: 5908 return lowerFDIV_FAST(Op, DAG); 5909 case Intrinsic::amdgcn_interp_p1_f16: { 5910 SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0, 5911 Op.getOperand(5), SDValue()); 5912 if (getSubtarget()->getLDSBankCount() == 16) { 5913 // 16 bank LDS 5914 5915 // FIXME: This implicitly will insert a second CopyToReg to M0. 5916 SDValue S = DAG.getNode( 5917 ISD::INTRINSIC_WO_CHAIN, DL, MVT::f32, 5918 DAG.getTargetConstant(Intrinsic::amdgcn_interp_mov, DL, MVT::i32), 5919 DAG.getConstant(2, DL, MVT::i32), // P0 5920 Op.getOperand(2), // Attrchan 5921 Op.getOperand(3), // Attr 5922 Op.getOperand(5)); // m0 5923 5924 SDValue Ops[] = { 5925 Op.getOperand(1), // Src0 5926 Op.getOperand(2), // Attrchan 5927 Op.getOperand(3), // Attr 5928 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 5929 S, // Src2 - holds two f16 values selected by high 5930 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 5931 Op.getOperand(4), // high 5932 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp 5933 DAG.getTargetConstant(0, DL, MVT::i32) // $omod 5934 }; 5935 return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops); 5936 } else { 5937 // 32 bank LDS 5938 SDValue Ops[] = { 5939 Op.getOperand(1), // Src0 5940 Op.getOperand(2), // Attrchan 5941 Op.getOperand(3), // Attr 5942 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 5943 Op.getOperand(4), // high 5944 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp 5945 DAG.getTargetConstant(0, DL, MVT::i32), // $omod 5946 ToM0.getValue(1) 5947 }; 5948 return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops); 5949 } 5950 } 5951 case Intrinsic::amdgcn_sin: 5952 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 5953 5954 case Intrinsic::amdgcn_cos: 5955 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 5956 5957 case Intrinsic::amdgcn_mul_u24: 5958 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 5959 case Intrinsic::amdgcn_mul_i24: 5960 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 5961 5962 case Intrinsic::amdgcn_log_clamp: { 5963 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 5964 return SDValue(); 5965 5966 DiagnosticInfoUnsupported BadIntrin( 5967 MF.getFunction(), "intrinsic not supported on subtarget", 5968 DL.getDebugLoc()); 5969 DAG.getContext()->diagnose(BadIntrin); 5970 return DAG.getUNDEF(VT); 5971 } 5972 case Intrinsic::amdgcn_ldexp: 5973 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 5974 Op.getOperand(1), Op.getOperand(2)); 5975 5976 case Intrinsic::amdgcn_fract: 5977 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 5978 5979 case Intrinsic::amdgcn_class: 5980 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 5981 Op.getOperand(1), Op.getOperand(2)); 5982 case Intrinsic::amdgcn_div_fmas: 5983 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 5984 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 5985 Op.getOperand(4)); 5986 5987 case Intrinsic::amdgcn_div_fixup: 5988 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 5989 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 5990 5991 case Intrinsic::amdgcn_trig_preop: 5992 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 5993 Op.getOperand(1), Op.getOperand(2)); 5994 case Intrinsic::amdgcn_div_scale: { 5995 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 5996 5997 // Translate to the operands expected by the machine instruction. The 5998 // first parameter must be the same as the first instruction. 5999 SDValue Numerator = Op.getOperand(1); 6000 SDValue Denominator = Op.getOperand(2); 6001 6002 // Note this order is opposite of the machine instruction's operations, 6003 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6004 // intrinsic has the numerator as the first operand to match a normal 6005 // division operation. 6006 6007 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 6008 6009 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6010 Denominator, Numerator); 6011 } 6012 case Intrinsic::amdgcn_icmp: { 6013 // There is a Pat that handles this variant, so return it as-is. 6014 if (Op.getOperand(1).getValueType() == MVT::i1 && 6015 Op.getConstantOperandVal(2) == 0 && 6016 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6017 return Op; 6018 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6019 } 6020 case Intrinsic::amdgcn_fcmp: { 6021 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6022 } 6023 case Intrinsic::amdgcn_fmed3: 6024 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6025 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6026 case Intrinsic::amdgcn_fdot2: 6027 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6028 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6029 Op.getOperand(4)); 6030 case Intrinsic::amdgcn_fmul_legacy: 6031 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6032 Op.getOperand(1), Op.getOperand(2)); 6033 case Intrinsic::amdgcn_sffbh: 6034 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6035 case Intrinsic::amdgcn_sbfe: 6036 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6037 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6038 case Intrinsic::amdgcn_ubfe: 6039 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6040 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6041 case Intrinsic::amdgcn_cvt_pkrtz: 6042 case Intrinsic::amdgcn_cvt_pknorm_i16: 6043 case Intrinsic::amdgcn_cvt_pknorm_u16: 6044 case Intrinsic::amdgcn_cvt_pk_i16: 6045 case Intrinsic::amdgcn_cvt_pk_u16: { 6046 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6047 EVT VT = Op.getValueType(); 6048 unsigned Opcode; 6049 6050 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6051 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6052 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6053 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6054 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6055 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6056 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6057 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6058 else 6059 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6060 6061 if (isTypeLegal(VT)) 6062 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6063 6064 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6065 Op.getOperand(1), Op.getOperand(2)); 6066 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6067 } 6068 case Intrinsic::amdgcn_fmad_ftz: 6069 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6070 Op.getOperand(2), Op.getOperand(3)); 6071 6072 case Intrinsic::amdgcn_if_break: 6073 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6074 Op->getOperand(1), Op->getOperand(2)), 0); 6075 6076 case Intrinsic::amdgcn_groupstaticsize: { 6077 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6078 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6079 return Op; 6080 6081 const Module *M = MF.getFunction().getParent(); 6082 const GlobalValue *GV = 6083 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6084 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6085 SIInstrInfo::MO_ABS32_LO); 6086 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6087 } 6088 case Intrinsic::amdgcn_is_shared: 6089 case Intrinsic::amdgcn_is_private: { 6090 SDLoc SL(Op); 6091 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6092 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6093 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6094 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6095 Op.getOperand(1)); 6096 6097 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6098 DAG.getConstant(1, SL, MVT::i32)); 6099 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 6100 } 6101 default: 6102 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6103 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 6104 return lowerImage(Op, ImageDimIntr, DAG); 6105 6106 return Op; 6107 } 6108 } 6109 6110 // This function computes an appropriate offset to pass to 6111 // MachineMemOperand::setOffset() based on the offset inputs to 6112 // an intrinsic. If any of the offsets are non-contstant or 6113 // if VIndex is non-zero then this function returns 0. Otherwise, 6114 // it returns the sum of VOffset, SOffset, and Offset. 6115 static unsigned getBufferOffsetForMMO(SDValue VOffset, 6116 SDValue SOffset, 6117 SDValue Offset, 6118 SDValue VIndex = SDValue()) { 6119 6120 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 6121 !isa<ConstantSDNode>(Offset)) 6122 return 0; 6123 6124 if (VIndex) { 6125 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue()) 6126 return 0; 6127 } 6128 6129 return cast<ConstantSDNode>(VOffset)->getSExtValue() + 6130 cast<ConstantSDNode>(SOffset)->getSExtValue() + 6131 cast<ConstantSDNode>(Offset)->getSExtValue(); 6132 } 6133 6134 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 6135 SelectionDAG &DAG) const { 6136 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6137 SDLoc DL(Op); 6138 6139 switch (IntrID) { 6140 case Intrinsic::amdgcn_ds_ordered_add: 6141 case Intrinsic::amdgcn_ds_ordered_swap: { 6142 MemSDNode *M = cast<MemSDNode>(Op); 6143 SDValue Chain = M->getOperand(0); 6144 SDValue M0 = M->getOperand(2); 6145 SDValue Value = M->getOperand(3); 6146 unsigned IndexOperand = M->getConstantOperandVal(7); 6147 unsigned WaveRelease = M->getConstantOperandVal(8); 6148 unsigned WaveDone = M->getConstantOperandVal(9); 6149 unsigned ShaderType; 6150 unsigned Instruction; 6151 6152 unsigned OrderedCountIndex = IndexOperand & 0x3f; 6153 IndexOperand &= ~0x3f; 6154 unsigned CountDw = 0; 6155 6156 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 6157 CountDw = (IndexOperand >> 24) & 0xf; 6158 IndexOperand &= ~(0xf << 24); 6159 6160 if (CountDw < 1 || CountDw > 4) { 6161 report_fatal_error( 6162 "ds_ordered_count: dword count must be between 1 and 4"); 6163 } 6164 } 6165 6166 if (IndexOperand) 6167 report_fatal_error("ds_ordered_count: bad index operand"); 6168 6169 switch (IntrID) { 6170 case Intrinsic::amdgcn_ds_ordered_add: 6171 Instruction = 0; 6172 break; 6173 case Intrinsic::amdgcn_ds_ordered_swap: 6174 Instruction = 1; 6175 break; 6176 } 6177 6178 if (WaveDone && !WaveRelease) 6179 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 6180 6181 switch (DAG.getMachineFunction().getFunction().getCallingConv()) { 6182 case CallingConv::AMDGPU_CS: 6183 case CallingConv::AMDGPU_KERNEL: 6184 ShaderType = 0; 6185 break; 6186 case CallingConv::AMDGPU_PS: 6187 ShaderType = 1; 6188 break; 6189 case CallingConv::AMDGPU_VS: 6190 ShaderType = 2; 6191 break; 6192 case CallingConv::AMDGPU_GS: 6193 ShaderType = 3; 6194 break; 6195 default: 6196 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 6197 } 6198 6199 unsigned Offset0 = OrderedCountIndex << 2; 6200 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 6201 (Instruction << 4); 6202 6203 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 6204 Offset1 |= (CountDw - 1) << 6; 6205 6206 unsigned Offset = Offset0 | (Offset1 << 8); 6207 6208 SDValue Ops[] = { 6209 Chain, 6210 Value, 6211 DAG.getTargetConstant(Offset, DL, MVT::i16), 6212 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 6213 }; 6214 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 6215 M->getVTList(), Ops, M->getMemoryVT(), 6216 M->getMemOperand()); 6217 } 6218 case Intrinsic::amdgcn_ds_fadd: { 6219 MemSDNode *M = cast<MemSDNode>(Op); 6220 unsigned Opc; 6221 switch (IntrID) { 6222 case Intrinsic::amdgcn_ds_fadd: 6223 Opc = ISD::ATOMIC_LOAD_FADD; 6224 break; 6225 } 6226 6227 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 6228 M->getOperand(0), M->getOperand(2), M->getOperand(3), 6229 M->getMemOperand()); 6230 } 6231 case Intrinsic::amdgcn_atomic_inc: 6232 case Intrinsic::amdgcn_atomic_dec: 6233 case Intrinsic::amdgcn_ds_fmin: 6234 case Intrinsic::amdgcn_ds_fmax: { 6235 MemSDNode *M = cast<MemSDNode>(Op); 6236 unsigned Opc; 6237 switch (IntrID) { 6238 case Intrinsic::amdgcn_atomic_inc: 6239 Opc = AMDGPUISD::ATOMIC_INC; 6240 break; 6241 case Intrinsic::amdgcn_atomic_dec: 6242 Opc = AMDGPUISD::ATOMIC_DEC; 6243 break; 6244 case Intrinsic::amdgcn_ds_fmin: 6245 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 6246 break; 6247 case Intrinsic::amdgcn_ds_fmax: 6248 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 6249 break; 6250 default: 6251 llvm_unreachable("Unknown intrinsic!"); 6252 } 6253 SDValue Ops[] = { 6254 M->getOperand(0), // Chain 6255 M->getOperand(2), // Ptr 6256 M->getOperand(3) // Value 6257 }; 6258 6259 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 6260 M->getMemoryVT(), M->getMemOperand()); 6261 } 6262 case Intrinsic::amdgcn_buffer_load: 6263 case Intrinsic::amdgcn_buffer_load_format: { 6264 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 6265 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6266 unsigned IdxEn = 1; 6267 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6268 IdxEn = Idx->getZExtValue() != 0; 6269 SDValue Ops[] = { 6270 Op.getOperand(0), // Chain 6271 Op.getOperand(2), // rsrc 6272 Op.getOperand(3), // vindex 6273 SDValue(), // voffset -- will be set by setBufferOffsets 6274 SDValue(), // soffset -- will be set by setBufferOffsets 6275 SDValue(), // offset -- will be set by setBufferOffsets 6276 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6277 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6278 }; 6279 6280 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 6281 // We don't know the offset if vindex is non-zero, so clear it. 6282 if (IdxEn) 6283 Offset = 0; 6284 6285 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 6286 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 6287 6288 EVT VT = Op.getValueType(); 6289 EVT IntVT = VT.changeTypeToInteger(); 6290 auto *M = cast<MemSDNode>(Op); 6291 M->getMemOperand()->setOffset(Offset); 6292 EVT LoadVT = Op.getValueType(); 6293 6294 if (LoadVT.getScalarType() == MVT::f16) 6295 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 6296 M, DAG, Ops); 6297 6298 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 6299 if (LoadVT.getScalarType() == MVT::i8 || 6300 LoadVT.getScalarType() == MVT::i16) 6301 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 6302 6303 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 6304 M->getMemOperand(), DAG); 6305 } 6306 case Intrinsic::amdgcn_raw_buffer_load: 6307 case Intrinsic::amdgcn_raw_buffer_load_format: { 6308 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 6309 6310 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6311 SDValue Ops[] = { 6312 Op.getOperand(0), // Chain 6313 Op.getOperand(2), // rsrc 6314 DAG.getConstant(0, DL, MVT::i32), // vindex 6315 Offsets.first, // voffset 6316 Op.getOperand(4), // soffset 6317 Offsets.second, // offset 6318 Op.getOperand(5), // cachepolicy, swizzled buffer 6319 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6320 }; 6321 6322 auto *M = cast<MemSDNode>(Op); 6323 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5])); 6324 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 6325 } 6326 case Intrinsic::amdgcn_struct_buffer_load: 6327 case Intrinsic::amdgcn_struct_buffer_load_format: { 6328 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 6329 6330 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6331 SDValue Ops[] = { 6332 Op.getOperand(0), // Chain 6333 Op.getOperand(2), // rsrc 6334 Op.getOperand(3), // vindex 6335 Offsets.first, // voffset 6336 Op.getOperand(5), // soffset 6337 Offsets.second, // offset 6338 Op.getOperand(6), // cachepolicy, swizzled buffer 6339 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6340 }; 6341 6342 auto *M = cast<MemSDNode>(Op); 6343 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5], 6344 Ops[2])); 6345 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6346 } 6347 case Intrinsic::amdgcn_tbuffer_load: { 6348 MemSDNode *M = cast<MemSDNode>(Op); 6349 EVT LoadVT = Op.getValueType(); 6350 6351 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6352 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6353 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6354 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6355 unsigned IdxEn = 1; 6356 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6357 IdxEn = Idx->getZExtValue() != 0; 6358 SDValue Ops[] = { 6359 Op.getOperand(0), // Chain 6360 Op.getOperand(2), // rsrc 6361 Op.getOperand(3), // vindex 6362 Op.getOperand(4), // voffset 6363 Op.getOperand(5), // soffset 6364 Op.getOperand(6), // offset 6365 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6366 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6367 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 6368 }; 6369 6370 if (LoadVT.getScalarType() == MVT::f16) 6371 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6372 M, DAG, Ops); 6373 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6374 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6375 DAG); 6376 } 6377 case Intrinsic::amdgcn_raw_tbuffer_load: { 6378 MemSDNode *M = cast<MemSDNode>(Op); 6379 EVT LoadVT = Op.getValueType(); 6380 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6381 6382 SDValue Ops[] = { 6383 Op.getOperand(0), // Chain 6384 Op.getOperand(2), // rsrc 6385 DAG.getConstant(0, DL, MVT::i32), // vindex 6386 Offsets.first, // voffset 6387 Op.getOperand(4), // soffset 6388 Offsets.second, // offset 6389 Op.getOperand(5), // format 6390 Op.getOperand(6), // cachepolicy, swizzled buffer 6391 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6392 }; 6393 6394 if (LoadVT.getScalarType() == MVT::f16) 6395 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6396 M, DAG, Ops); 6397 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6398 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6399 DAG); 6400 } 6401 case Intrinsic::amdgcn_struct_tbuffer_load: { 6402 MemSDNode *M = cast<MemSDNode>(Op); 6403 EVT LoadVT = Op.getValueType(); 6404 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6405 6406 SDValue Ops[] = { 6407 Op.getOperand(0), // Chain 6408 Op.getOperand(2), // rsrc 6409 Op.getOperand(3), // vindex 6410 Offsets.first, // voffset 6411 Op.getOperand(5), // soffset 6412 Offsets.second, // offset 6413 Op.getOperand(6), // format 6414 Op.getOperand(7), // cachepolicy, swizzled buffer 6415 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6416 }; 6417 6418 if (LoadVT.getScalarType() == MVT::f16) 6419 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6420 M, DAG, Ops); 6421 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6422 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6423 DAG); 6424 } 6425 case Intrinsic::amdgcn_buffer_atomic_swap: 6426 case Intrinsic::amdgcn_buffer_atomic_add: 6427 case Intrinsic::amdgcn_buffer_atomic_sub: 6428 case Intrinsic::amdgcn_buffer_atomic_smin: 6429 case Intrinsic::amdgcn_buffer_atomic_umin: 6430 case Intrinsic::amdgcn_buffer_atomic_smax: 6431 case Intrinsic::amdgcn_buffer_atomic_umax: 6432 case Intrinsic::amdgcn_buffer_atomic_and: 6433 case Intrinsic::amdgcn_buffer_atomic_or: 6434 case Intrinsic::amdgcn_buffer_atomic_xor: { 6435 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6436 unsigned IdxEn = 1; 6437 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6438 IdxEn = Idx->getZExtValue() != 0; 6439 SDValue Ops[] = { 6440 Op.getOperand(0), // Chain 6441 Op.getOperand(2), // vdata 6442 Op.getOperand(3), // rsrc 6443 Op.getOperand(4), // vindex 6444 SDValue(), // voffset -- will be set by setBufferOffsets 6445 SDValue(), // soffset -- will be set by setBufferOffsets 6446 SDValue(), // offset -- will be set by setBufferOffsets 6447 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6448 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6449 }; 6450 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 6451 // We don't know the offset if vindex is non-zero, so clear it. 6452 if (IdxEn) 6453 Offset = 0; 6454 EVT VT = Op.getValueType(); 6455 6456 auto *M = cast<MemSDNode>(Op); 6457 M->getMemOperand()->setOffset(Offset); 6458 unsigned Opcode = 0; 6459 6460 switch (IntrID) { 6461 case Intrinsic::amdgcn_buffer_atomic_swap: 6462 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6463 break; 6464 case Intrinsic::amdgcn_buffer_atomic_add: 6465 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6466 break; 6467 case Intrinsic::amdgcn_buffer_atomic_sub: 6468 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6469 break; 6470 case Intrinsic::amdgcn_buffer_atomic_smin: 6471 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6472 break; 6473 case Intrinsic::amdgcn_buffer_atomic_umin: 6474 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6475 break; 6476 case Intrinsic::amdgcn_buffer_atomic_smax: 6477 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6478 break; 6479 case Intrinsic::amdgcn_buffer_atomic_umax: 6480 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6481 break; 6482 case Intrinsic::amdgcn_buffer_atomic_and: 6483 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6484 break; 6485 case Intrinsic::amdgcn_buffer_atomic_or: 6486 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6487 break; 6488 case Intrinsic::amdgcn_buffer_atomic_xor: 6489 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6490 break; 6491 default: 6492 llvm_unreachable("unhandled atomic opcode"); 6493 } 6494 6495 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6496 M->getMemOperand()); 6497 } 6498 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6499 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6500 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6501 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6502 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6503 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6504 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6505 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6506 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6507 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6508 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6509 case Intrinsic::amdgcn_raw_buffer_atomic_dec: { 6510 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6511 SDValue Ops[] = { 6512 Op.getOperand(0), // Chain 6513 Op.getOperand(2), // vdata 6514 Op.getOperand(3), // rsrc 6515 DAG.getConstant(0, DL, MVT::i32), // vindex 6516 Offsets.first, // voffset 6517 Op.getOperand(5), // soffset 6518 Offsets.second, // offset 6519 Op.getOperand(6), // cachepolicy 6520 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6521 }; 6522 EVT VT = Op.getValueType(); 6523 6524 auto *M = cast<MemSDNode>(Op); 6525 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 6526 unsigned Opcode = 0; 6527 6528 switch (IntrID) { 6529 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6530 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6531 break; 6532 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6533 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6534 break; 6535 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6536 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6537 break; 6538 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6539 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6540 break; 6541 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6542 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6543 break; 6544 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6545 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6546 break; 6547 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6548 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6549 break; 6550 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6551 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6552 break; 6553 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6554 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6555 break; 6556 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6557 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6558 break; 6559 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6560 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 6561 break; 6562 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 6563 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 6564 break; 6565 default: 6566 llvm_unreachable("unhandled atomic opcode"); 6567 } 6568 6569 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6570 M->getMemOperand()); 6571 } 6572 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 6573 case Intrinsic::amdgcn_struct_buffer_atomic_add: 6574 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 6575 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 6576 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 6577 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 6578 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 6579 case Intrinsic::amdgcn_struct_buffer_atomic_and: 6580 case Intrinsic::amdgcn_struct_buffer_atomic_or: 6581 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 6582 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 6583 case Intrinsic::amdgcn_struct_buffer_atomic_dec: { 6584 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6585 SDValue Ops[] = { 6586 Op.getOperand(0), // Chain 6587 Op.getOperand(2), // vdata 6588 Op.getOperand(3), // rsrc 6589 Op.getOperand(4), // vindex 6590 Offsets.first, // voffset 6591 Op.getOperand(6), // soffset 6592 Offsets.second, // offset 6593 Op.getOperand(7), // cachepolicy 6594 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6595 }; 6596 EVT VT = Op.getValueType(); 6597 6598 auto *M = cast<MemSDNode>(Op); 6599 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 6600 Ops[3])); 6601 unsigned Opcode = 0; 6602 6603 switch (IntrID) { 6604 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 6605 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6606 break; 6607 case Intrinsic::amdgcn_struct_buffer_atomic_add: 6608 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6609 break; 6610 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 6611 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6612 break; 6613 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 6614 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6615 break; 6616 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 6617 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6618 break; 6619 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 6620 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6621 break; 6622 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 6623 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6624 break; 6625 case Intrinsic::amdgcn_struct_buffer_atomic_and: 6626 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6627 break; 6628 case Intrinsic::amdgcn_struct_buffer_atomic_or: 6629 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6630 break; 6631 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 6632 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6633 break; 6634 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 6635 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 6636 break; 6637 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 6638 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 6639 break; 6640 default: 6641 llvm_unreachable("unhandled atomic opcode"); 6642 } 6643 6644 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6645 M->getMemOperand()); 6646 } 6647 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 6648 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6649 unsigned IdxEn = 1; 6650 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 6651 IdxEn = Idx->getZExtValue() != 0; 6652 SDValue Ops[] = { 6653 Op.getOperand(0), // Chain 6654 Op.getOperand(2), // src 6655 Op.getOperand(3), // cmp 6656 Op.getOperand(4), // rsrc 6657 Op.getOperand(5), // vindex 6658 SDValue(), // voffset -- will be set by setBufferOffsets 6659 SDValue(), // soffset -- will be set by setBufferOffsets 6660 SDValue(), // offset -- will be set by setBufferOffsets 6661 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6662 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6663 }; 6664 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 6665 // We don't know the offset if vindex is non-zero, so clear it. 6666 if (IdxEn) 6667 Offset = 0; 6668 EVT VT = Op.getValueType(); 6669 auto *M = cast<MemSDNode>(Op); 6670 M->getMemOperand()->setOffset(Offset); 6671 6672 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 6673 Op->getVTList(), Ops, VT, M->getMemOperand()); 6674 } 6675 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 6676 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6677 SDValue Ops[] = { 6678 Op.getOperand(0), // Chain 6679 Op.getOperand(2), // src 6680 Op.getOperand(3), // cmp 6681 Op.getOperand(4), // rsrc 6682 DAG.getConstant(0, DL, MVT::i32), // vindex 6683 Offsets.first, // voffset 6684 Op.getOperand(6), // soffset 6685 Offsets.second, // offset 6686 Op.getOperand(7), // cachepolicy 6687 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6688 }; 6689 EVT VT = Op.getValueType(); 6690 auto *M = cast<MemSDNode>(Op); 6691 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7])); 6692 6693 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 6694 Op->getVTList(), Ops, VT, M->getMemOperand()); 6695 } 6696 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 6697 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 6698 SDValue Ops[] = { 6699 Op.getOperand(0), // Chain 6700 Op.getOperand(2), // src 6701 Op.getOperand(3), // cmp 6702 Op.getOperand(4), // rsrc 6703 Op.getOperand(5), // vindex 6704 Offsets.first, // voffset 6705 Op.getOperand(7), // soffset 6706 Offsets.second, // offset 6707 Op.getOperand(8), // cachepolicy 6708 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6709 }; 6710 EVT VT = Op.getValueType(); 6711 auto *M = cast<MemSDNode>(Op); 6712 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7], 6713 Ops[4])); 6714 6715 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 6716 Op->getVTList(), Ops, VT, M->getMemOperand()); 6717 } 6718 6719 default: 6720 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6721 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 6722 return lowerImage(Op, ImageDimIntr, DAG); 6723 6724 return SDValue(); 6725 } 6726 } 6727 6728 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 6729 // dwordx4 if on SI. 6730 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 6731 SDVTList VTList, 6732 ArrayRef<SDValue> Ops, EVT MemVT, 6733 MachineMemOperand *MMO, 6734 SelectionDAG &DAG) const { 6735 EVT VT = VTList.VTs[0]; 6736 EVT WidenedVT = VT; 6737 EVT WidenedMemVT = MemVT; 6738 if (!Subtarget->hasDwordx3LoadStores() && 6739 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 6740 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 6741 WidenedVT.getVectorElementType(), 4); 6742 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 6743 WidenedMemVT.getVectorElementType(), 4); 6744 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 6745 } 6746 6747 assert(VTList.NumVTs == 2); 6748 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 6749 6750 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 6751 WidenedMemVT, MMO); 6752 if (WidenedVT != VT) { 6753 auto Extract = DAG.getNode( 6754 ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 6755 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 6756 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 6757 } 6758 return NewOp; 6759 } 6760 6761 SDValue SITargetLowering::handleD16VData(SDValue VData, 6762 SelectionDAG &DAG) const { 6763 EVT StoreVT = VData.getValueType(); 6764 6765 // No change for f16 and legal vector D16 types. 6766 if (!StoreVT.isVector()) 6767 return VData; 6768 6769 SDLoc DL(VData); 6770 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); 6771 6772 if (Subtarget->hasUnpackedD16VMem()) { 6773 // We need to unpack the packed data to store. 6774 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 6775 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 6776 6777 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 6778 StoreVT.getVectorNumElements()); 6779 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 6780 return DAG.UnrollVectorOp(ZExt.getNode()); 6781 } 6782 6783 assert(isTypeLegal(StoreVT)); 6784 return VData; 6785 } 6786 6787 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 6788 SelectionDAG &DAG) const { 6789 SDLoc DL(Op); 6790 SDValue Chain = Op.getOperand(0); 6791 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6792 MachineFunction &MF = DAG.getMachineFunction(); 6793 6794 switch (IntrinsicID) { 6795 case Intrinsic::amdgcn_exp: { 6796 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); 6797 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); 6798 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8)); 6799 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9)); 6800 6801 const SDValue Ops[] = { 6802 Chain, 6803 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt 6804 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en 6805 Op.getOperand(4), // src0 6806 Op.getOperand(5), // src1 6807 Op.getOperand(6), // src2 6808 Op.getOperand(7), // src3 6809 DAG.getTargetConstant(0, DL, MVT::i1), // compr 6810 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) 6811 }; 6812 6813 unsigned Opc = Done->isNullValue() ? 6814 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; 6815 return DAG.getNode(Opc, DL, Op->getVTList(), Ops); 6816 } 6817 case Intrinsic::amdgcn_exp_compr: { 6818 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); 6819 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); 6820 SDValue Src0 = Op.getOperand(4); 6821 SDValue Src1 = Op.getOperand(5); 6822 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 6823 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7)); 6824 6825 SDValue Undef = DAG.getUNDEF(MVT::f32); 6826 const SDValue Ops[] = { 6827 Chain, 6828 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt 6829 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en 6830 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), 6831 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), 6832 Undef, // src2 6833 Undef, // src3 6834 DAG.getTargetConstant(1, DL, MVT::i1), // compr 6835 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) 6836 }; 6837 6838 unsigned Opc = Done->isNullValue() ? 6839 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; 6840 return DAG.getNode(Opc, DL, Op->getVTList(), Ops); 6841 } 6842 case Intrinsic::amdgcn_s_barrier: { 6843 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 6844 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 6845 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 6846 if (WGSize <= ST.getWavefrontSize()) 6847 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 6848 Op.getOperand(0)), 0); 6849 } 6850 return SDValue(); 6851 }; 6852 case Intrinsic::amdgcn_tbuffer_store: { 6853 SDValue VData = Op.getOperand(2); 6854 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6855 if (IsD16) 6856 VData = handleD16VData(VData, DAG); 6857 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6858 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6859 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6860 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 6861 unsigned IdxEn = 1; 6862 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6863 IdxEn = Idx->getZExtValue() != 0; 6864 SDValue Ops[] = { 6865 Chain, 6866 VData, // vdata 6867 Op.getOperand(3), // rsrc 6868 Op.getOperand(4), // vindex 6869 Op.getOperand(5), // voffset 6870 Op.getOperand(6), // soffset 6871 Op.getOperand(7), // offset 6872 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6873 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6874 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen 6875 }; 6876 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 6877 AMDGPUISD::TBUFFER_STORE_FORMAT; 6878 MemSDNode *M = cast<MemSDNode>(Op); 6879 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6880 M->getMemoryVT(), M->getMemOperand()); 6881 } 6882 6883 case Intrinsic::amdgcn_struct_tbuffer_store: { 6884 SDValue VData = Op.getOperand(2); 6885 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6886 if (IsD16) 6887 VData = handleD16VData(VData, DAG); 6888 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6889 SDValue Ops[] = { 6890 Chain, 6891 VData, // vdata 6892 Op.getOperand(3), // rsrc 6893 Op.getOperand(4), // vindex 6894 Offsets.first, // voffset 6895 Op.getOperand(6), // soffset 6896 Offsets.second, // offset 6897 Op.getOperand(7), // format 6898 Op.getOperand(8), // cachepolicy, swizzled buffer 6899 DAG.getTargetConstant(1, DL, MVT::i1), // idexen 6900 }; 6901 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 6902 AMDGPUISD::TBUFFER_STORE_FORMAT; 6903 MemSDNode *M = cast<MemSDNode>(Op); 6904 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6905 M->getMemoryVT(), M->getMemOperand()); 6906 } 6907 6908 case Intrinsic::amdgcn_raw_tbuffer_store: { 6909 SDValue VData = Op.getOperand(2); 6910 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6911 if (IsD16) 6912 VData = handleD16VData(VData, DAG); 6913 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6914 SDValue Ops[] = { 6915 Chain, 6916 VData, // vdata 6917 Op.getOperand(3), // rsrc 6918 DAG.getConstant(0, DL, MVT::i32), // vindex 6919 Offsets.first, // voffset 6920 Op.getOperand(5), // soffset 6921 Offsets.second, // offset 6922 Op.getOperand(6), // format 6923 Op.getOperand(7), // cachepolicy, swizzled buffer 6924 DAG.getTargetConstant(0, DL, MVT::i1), // idexen 6925 }; 6926 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 6927 AMDGPUISD::TBUFFER_STORE_FORMAT; 6928 MemSDNode *M = cast<MemSDNode>(Op); 6929 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6930 M->getMemoryVT(), M->getMemOperand()); 6931 } 6932 6933 case Intrinsic::amdgcn_buffer_store: 6934 case Intrinsic::amdgcn_buffer_store_format: { 6935 SDValue VData = Op.getOperand(2); 6936 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6937 if (IsD16) 6938 VData = handleD16VData(VData, DAG); 6939 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6940 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6941 unsigned IdxEn = 1; 6942 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6943 IdxEn = Idx->getZExtValue() != 0; 6944 SDValue Ops[] = { 6945 Chain, 6946 VData, 6947 Op.getOperand(3), // rsrc 6948 Op.getOperand(4), // vindex 6949 SDValue(), // voffset -- will be set by setBufferOffsets 6950 SDValue(), // soffset -- will be set by setBufferOffsets 6951 SDValue(), // offset -- will be set by setBufferOffsets 6952 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6953 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6954 }; 6955 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 6956 // We don't know the offset if vindex is non-zero, so clear it. 6957 if (IdxEn) 6958 Offset = 0; 6959 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 6960 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 6961 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 6962 MemSDNode *M = cast<MemSDNode>(Op); 6963 M->getMemOperand()->setOffset(Offset); 6964 6965 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 6966 EVT VDataType = VData.getValueType().getScalarType(); 6967 if (VDataType == MVT::i8 || VDataType == MVT::i16) 6968 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 6969 6970 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6971 M->getMemoryVT(), M->getMemOperand()); 6972 } 6973 6974 case Intrinsic::amdgcn_raw_buffer_store: 6975 case Intrinsic::amdgcn_raw_buffer_store_format: { 6976 const bool IsFormat = 6977 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 6978 6979 SDValue VData = Op.getOperand(2); 6980 EVT VDataVT = VData.getValueType(); 6981 EVT EltType = VDataVT.getScalarType(); 6982 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 6983 if (IsD16) 6984 VData = handleD16VData(VData, DAG); 6985 6986 if (!isTypeLegal(VDataVT)) { 6987 VData = 6988 DAG.getNode(ISD::BITCAST, DL, 6989 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 6990 } 6991 6992 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6993 SDValue Ops[] = { 6994 Chain, 6995 VData, 6996 Op.getOperand(3), // rsrc 6997 DAG.getConstant(0, DL, MVT::i32), // vindex 6998 Offsets.first, // voffset 6999 Op.getOperand(5), // soffset 7000 Offsets.second, // offset 7001 Op.getOperand(6), // cachepolicy, swizzled buffer 7002 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7003 }; 7004 unsigned Opc = 7005 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 7006 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7007 MemSDNode *M = cast<MemSDNode>(Op); 7008 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 7009 7010 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7011 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7012 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 7013 7014 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7015 M->getMemoryVT(), M->getMemOperand()); 7016 } 7017 7018 case Intrinsic::amdgcn_struct_buffer_store: 7019 case Intrinsic::amdgcn_struct_buffer_store_format: { 7020 const bool IsFormat = 7021 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 7022 7023 SDValue VData = Op.getOperand(2); 7024 EVT VDataVT = VData.getValueType(); 7025 EVT EltType = VDataVT.getScalarType(); 7026 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7027 7028 if (IsD16) 7029 VData = handleD16VData(VData, DAG); 7030 7031 if (!isTypeLegal(VDataVT)) { 7032 VData = 7033 DAG.getNode(ISD::BITCAST, DL, 7034 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7035 } 7036 7037 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7038 SDValue Ops[] = { 7039 Chain, 7040 VData, 7041 Op.getOperand(3), // rsrc 7042 Op.getOperand(4), // vindex 7043 Offsets.first, // voffset 7044 Op.getOperand(6), // soffset 7045 Offsets.second, // offset 7046 Op.getOperand(7), // cachepolicy, swizzled buffer 7047 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7048 }; 7049 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 7050 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7051 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7052 MemSDNode *M = cast<MemSDNode>(Op); 7053 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 7054 Ops[3])); 7055 7056 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7057 EVT VDataType = VData.getValueType().getScalarType(); 7058 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7059 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7060 7061 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7062 M->getMemoryVT(), M->getMemOperand()); 7063 } 7064 7065 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7066 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7067 unsigned IdxEn = 1; 7068 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7069 IdxEn = Idx->getZExtValue() != 0; 7070 SDValue Ops[] = { 7071 Chain, 7072 Op.getOperand(2), // vdata 7073 Op.getOperand(3), // rsrc 7074 Op.getOperand(4), // vindex 7075 SDValue(), // voffset -- will be set by setBufferOffsets 7076 SDValue(), // soffset -- will be set by setBufferOffsets 7077 SDValue(), // offset -- will be set by setBufferOffsets 7078 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7079 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7080 }; 7081 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7082 // We don't know the offset if vindex is non-zero, so clear it. 7083 if (IdxEn) 7084 Offset = 0; 7085 EVT VT = Op.getOperand(2).getValueType(); 7086 7087 auto *M = cast<MemSDNode>(Op); 7088 M->getMemOperand()->setOffset(Offset); 7089 unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD 7090 : AMDGPUISD::BUFFER_ATOMIC_FADD; 7091 7092 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7093 M->getMemOperand()); 7094 } 7095 7096 case Intrinsic::amdgcn_global_atomic_fadd: { 7097 SDValue Ops[] = { 7098 Chain, 7099 Op.getOperand(2), // ptr 7100 Op.getOperand(3) // vdata 7101 }; 7102 EVT VT = Op.getOperand(3).getValueType(); 7103 7104 auto *M = cast<MemSDNode>(Op); 7105 if (VT.isVector()) { 7106 return DAG.getMemIntrinsicNode( 7107 AMDGPUISD::ATOMIC_PK_FADD, DL, Op->getVTList(), Ops, VT, 7108 M->getMemOperand()); 7109 } 7110 7111 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7112 DAG.getVTList(VT, MVT::Other), Ops, 7113 M->getMemOperand()).getValue(1); 7114 } 7115 case Intrinsic::amdgcn_end_cf: 7116 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 7117 Op->getOperand(2), Chain), 0); 7118 7119 default: { 7120 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7121 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7122 return lowerImage(Op, ImageDimIntr, DAG); 7123 7124 return Op; 7125 } 7126 } 7127 } 7128 7129 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 7130 // offset (the offset that is included in bounds checking and swizzling, to be 7131 // split between the instruction's voffset and immoffset fields) and soffset 7132 // (the offset that is excluded from bounds checking and swizzling, to go in 7133 // the instruction's soffset field). This function takes the first kind of 7134 // offset and figures out how to split it between voffset and immoffset. 7135 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 7136 SDValue Offset, SelectionDAG &DAG) const { 7137 SDLoc DL(Offset); 7138 const unsigned MaxImm = 4095; 7139 SDValue N0 = Offset; 7140 ConstantSDNode *C1 = nullptr; 7141 7142 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 7143 N0 = SDValue(); 7144 else if (DAG.isBaseWithConstantOffset(N0)) { 7145 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 7146 N0 = N0.getOperand(0); 7147 } 7148 7149 if (C1) { 7150 unsigned ImmOffset = C1->getZExtValue(); 7151 // If the immediate value is too big for the immoffset field, put the value 7152 // and -4096 into the immoffset field so that the value that is copied/added 7153 // for the voffset field is a multiple of 4096, and it stands more chance 7154 // of being CSEd with the copy/add for another similar load/store. 7155 // However, do not do that rounding down to a multiple of 4096 if that is a 7156 // negative number, as it appears to be illegal to have a negative offset 7157 // in the vgpr, even if adding the immediate offset makes it positive. 7158 unsigned Overflow = ImmOffset & ~MaxImm; 7159 ImmOffset -= Overflow; 7160 if ((int32_t)Overflow < 0) { 7161 Overflow += ImmOffset; 7162 ImmOffset = 0; 7163 } 7164 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 7165 if (Overflow) { 7166 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 7167 if (!N0) 7168 N0 = OverflowVal; 7169 else { 7170 SDValue Ops[] = { N0, OverflowVal }; 7171 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 7172 } 7173 } 7174 } 7175 if (!N0) 7176 N0 = DAG.getConstant(0, DL, MVT::i32); 7177 if (!C1) 7178 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 7179 return {N0, SDValue(C1, 0)}; 7180 } 7181 7182 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 7183 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 7184 // pointed to by Offsets. 7185 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 7186 SelectionDAG &DAG, SDValue *Offsets, 7187 unsigned Align) const { 7188 SDLoc DL(CombinedOffset); 7189 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 7190 uint32_t Imm = C->getZExtValue(); 7191 uint32_t SOffset, ImmOffset; 7192 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) { 7193 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 7194 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7195 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7196 return SOffset + ImmOffset; 7197 } 7198 } 7199 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 7200 SDValue N0 = CombinedOffset.getOperand(0); 7201 SDValue N1 = CombinedOffset.getOperand(1); 7202 uint32_t SOffset, ImmOffset; 7203 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 7204 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 7205 Subtarget, Align)) { 7206 Offsets[0] = N0; 7207 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7208 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7209 return 0; 7210 } 7211 } 7212 Offsets[0] = CombinedOffset; 7213 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 7214 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 7215 return 0; 7216 } 7217 7218 // Handle 8 bit and 16 bit buffer loads 7219 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 7220 EVT LoadVT, SDLoc DL, 7221 ArrayRef<SDValue> Ops, 7222 MemSDNode *M) const { 7223 EVT IntVT = LoadVT.changeTypeToInteger(); 7224 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 7225 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 7226 7227 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 7228 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 7229 Ops, IntVT, 7230 M->getMemOperand()); 7231 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 7232 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 7233 7234 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 7235 } 7236 7237 // Handle 8 bit and 16 bit buffer stores 7238 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 7239 EVT VDataType, SDLoc DL, 7240 SDValue Ops[], 7241 MemSDNode *M) const { 7242 if (VDataType == MVT::f16) 7243 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 7244 7245 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 7246 Ops[1] = BufferStoreExt; 7247 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 7248 AMDGPUISD::BUFFER_STORE_SHORT; 7249 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 7250 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 7251 M->getMemOperand()); 7252 } 7253 7254 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 7255 ISD::LoadExtType ExtType, SDValue Op, 7256 const SDLoc &SL, EVT VT) { 7257 if (VT.bitsLT(Op.getValueType())) 7258 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 7259 7260 switch (ExtType) { 7261 case ISD::SEXTLOAD: 7262 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 7263 case ISD::ZEXTLOAD: 7264 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 7265 case ISD::EXTLOAD: 7266 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 7267 case ISD::NON_EXTLOAD: 7268 return Op; 7269 } 7270 7271 llvm_unreachable("invalid ext type"); 7272 } 7273 7274 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 7275 SelectionDAG &DAG = DCI.DAG; 7276 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 7277 return SDValue(); 7278 7279 // FIXME: Constant loads should all be marked invariant. 7280 unsigned AS = Ld->getAddressSpace(); 7281 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 7282 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 7283 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 7284 return SDValue(); 7285 7286 // Don't do this early, since it may interfere with adjacent load merging for 7287 // illegal types. We can avoid losing alignment information for exotic types 7288 // pre-legalize. 7289 EVT MemVT = Ld->getMemoryVT(); 7290 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 7291 MemVT.getSizeInBits() >= 32) 7292 return SDValue(); 7293 7294 SDLoc SL(Ld); 7295 7296 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 7297 "unexpected vector extload"); 7298 7299 // TODO: Drop only high part of range. 7300 SDValue Ptr = Ld->getBasePtr(); 7301 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 7302 MVT::i32, SL, Ld->getChain(), Ptr, 7303 Ld->getOffset(), 7304 Ld->getPointerInfo(), MVT::i32, 7305 Ld->getAlignment(), 7306 Ld->getMemOperand()->getFlags(), 7307 Ld->getAAInfo(), 7308 nullptr); // Drop ranges 7309 7310 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 7311 if (MemVT.isFloatingPoint()) { 7312 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 7313 "unexpected fp extload"); 7314 TruncVT = MemVT.changeTypeToInteger(); 7315 } 7316 7317 SDValue Cvt = NewLoad; 7318 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 7319 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 7320 DAG.getValueType(TruncVT)); 7321 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 7322 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 7323 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 7324 } else { 7325 assert(Ld->getExtensionType() == ISD::EXTLOAD); 7326 } 7327 7328 EVT VT = Ld->getValueType(0); 7329 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7330 7331 DCI.AddToWorklist(Cvt.getNode()); 7332 7333 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 7334 // the appropriate extension from the 32-bit load. 7335 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 7336 DCI.AddToWorklist(Cvt.getNode()); 7337 7338 // Handle conversion back to floating point if necessary. 7339 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 7340 7341 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 7342 } 7343 7344 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7345 SDLoc DL(Op); 7346 LoadSDNode *Load = cast<LoadSDNode>(Op); 7347 ISD::LoadExtType ExtType = Load->getExtensionType(); 7348 EVT MemVT = Load->getMemoryVT(); 7349 7350 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 7351 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 7352 return SDValue(); 7353 7354 // FIXME: Copied from PPC 7355 // First, load into 32 bits, then truncate to 1 bit. 7356 7357 SDValue Chain = Load->getChain(); 7358 SDValue BasePtr = Load->getBasePtr(); 7359 MachineMemOperand *MMO = Load->getMemOperand(); 7360 7361 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 7362 7363 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 7364 BasePtr, RealMemVT, MMO); 7365 7366 if (!MemVT.isVector()) { 7367 SDValue Ops[] = { 7368 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 7369 NewLD.getValue(1) 7370 }; 7371 7372 return DAG.getMergeValues(Ops, DL); 7373 } 7374 7375 SmallVector<SDValue, 3> Elts; 7376 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 7377 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 7378 DAG.getConstant(I, DL, MVT::i32)); 7379 7380 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 7381 } 7382 7383 SDValue Ops[] = { 7384 DAG.getBuildVector(MemVT, DL, Elts), 7385 NewLD.getValue(1) 7386 }; 7387 7388 return DAG.getMergeValues(Ops, DL); 7389 } 7390 7391 if (!MemVT.isVector()) 7392 return SDValue(); 7393 7394 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 7395 "Custom lowering for non-i32 vectors hasn't been implemented."); 7396 7397 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 7398 MemVT, *Load->getMemOperand())) { 7399 SDValue Ops[2]; 7400 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 7401 return DAG.getMergeValues(Ops, DL); 7402 } 7403 7404 unsigned Alignment = Load->getAlignment(); 7405 unsigned AS = Load->getAddressSpace(); 7406 if (Subtarget->hasLDSMisalignedBug() && 7407 AS == AMDGPUAS::FLAT_ADDRESS && 7408 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 7409 return SplitVectorLoad(Op, DAG); 7410 } 7411 7412 MachineFunction &MF = DAG.getMachineFunction(); 7413 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7414 // If there is a possibilty that flat instruction access scratch memory 7415 // then we need to use the same legalization rules we use for private. 7416 if (AS == AMDGPUAS::FLAT_ADDRESS) 7417 AS = MFI->hasFlatScratchInit() ? 7418 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7419 7420 unsigned NumElements = MemVT.getVectorNumElements(); 7421 7422 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7423 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 7424 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 7425 if (MemVT.isPow2VectorType()) 7426 return SDValue(); 7427 if (NumElements == 3) 7428 return WidenVectorLoad(Op, DAG); 7429 return SplitVectorLoad(Op, DAG); 7430 } 7431 // Non-uniform loads will be selected to MUBUF instructions, so they 7432 // have the same legalization requirements as global and private 7433 // loads. 7434 // 7435 } 7436 7437 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7438 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7439 AS == AMDGPUAS::GLOBAL_ADDRESS) { 7440 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 7441 !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) && 7442 Alignment >= 4 && NumElements < 32) { 7443 if (MemVT.isPow2VectorType()) 7444 return SDValue(); 7445 if (NumElements == 3) 7446 return WidenVectorLoad(Op, DAG); 7447 return SplitVectorLoad(Op, DAG); 7448 } 7449 // Non-uniform loads will be selected to MUBUF instructions, so they 7450 // have the same legalization requirements as global and private 7451 // loads. 7452 // 7453 } 7454 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7455 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7456 AS == AMDGPUAS::GLOBAL_ADDRESS || 7457 AS == AMDGPUAS::FLAT_ADDRESS) { 7458 if (NumElements > 4) 7459 return SplitVectorLoad(Op, DAG); 7460 // v3 loads not supported on SI. 7461 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7462 return WidenVectorLoad(Op, DAG); 7463 // v3 and v4 loads are supported for private and global memory. 7464 return SDValue(); 7465 } 7466 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 7467 // Depending on the setting of the private_element_size field in the 7468 // resource descriptor, we can only make private accesses up to a certain 7469 // size. 7470 switch (Subtarget->getMaxPrivateElementSize()) { 7471 case 4: { 7472 SDValue Ops[2]; 7473 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 7474 return DAG.getMergeValues(Ops, DL); 7475 } 7476 case 8: 7477 if (NumElements > 2) 7478 return SplitVectorLoad(Op, DAG); 7479 return SDValue(); 7480 case 16: 7481 // Same as global/flat 7482 if (NumElements > 4) 7483 return SplitVectorLoad(Op, DAG); 7484 // v3 loads not supported on SI. 7485 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7486 return WidenVectorLoad(Op, DAG); 7487 return SDValue(); 7488 default: 7489 llvm_unreachable("unsupported private_element_size"); 7490 } 7491 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 7492 // Use ds_read_b128 if possible. 7493 if (Subtarget->useDS128() && Load->getAlignment() >= 16 && 7494 MemVT.getStoreSize() == 16) 7495 return SDValue(); 7496 7497 if (NumElements > 2) 7498 return SplitVectorLoad(Op, DAG); 7499 7500 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 7501 // address is negative, then the instruction is incorrectly treated as 7502 // out-of-bounds even if base + offsets is in bounds. Split vectorized 7503 // loads here to avoid emitting ds_read2_b32. We may re-combine the 7504 // load later in the SILoadStoreOptimizer. 7505 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 7506 NumElements == 2 && MemVT.getStoreSize() == 8 && 7507 Load->getAlignment() < 8) { 7508 return SplitVectorLoad(Op, DAG); 7509 } 7510 } 7511 return SDValue(); 7512 } 7513 7514 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 7515 EVT VT = Op.getValueType(); 7516 assert(VT.getSizeInBits() == 64); 7517 7518 SDLoc DL(Op); 7519 SDValue Cond = Op.getOperand(0); 7520 7521 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 7522 SDValue One = DAG.getConstant(1, DL, MVT::i32); 7523 7524 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 7525 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 7526 7527 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 7528 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 7529 7530 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 7531 7532 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 7533 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 7534 7535 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 7536 7537 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 7538 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 7539 } 7540 7541 // Catch division cases where we can use shortcuts with rcp and rsq 7542 // instructions. 7543 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 7544 SelectionDAG &DAG) const { 7545 SDLoc SL(Op); 7546 SDValue LHS = Op.getOperand(0); 7547 SDValue RHS = Op.getOperand(1); 7548 EVT VT = Op.getValueType(); 7549 const SDNodeFlags Flags = Op->getFlags(); 7550 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal(); 7551 7552 if (!Unsafe && VT == MVT::f32 && hasFP32Denormals(DAG.getMachineFunction())) 7553 return SDValue(); 7554 7555 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 7556 if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { 7557 if (CLHS->isExactlyValue(1.0)) { 7558 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 7559 // the CI documentation has a worst case error of 1 ulp. 7560 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 7561 // use it as long as we aren't trying to use denormals. 7562 // 7563 // v_rcp_f16 and v_rsq_f16 DO support denormals. 7564 7565 // 1.0 / sqrt(x) -> rsq(x) 7566 7567 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 7568 // error seems really high at 2^29 ULP. 7569 if (RHS.getOpcode() == ISD::FSQRT) 7570 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 7571 7572 // 1.0 / x -> rcp(x) 7573 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 7574 } 7575 7576 // Same as for 1.0, but expand the sign out of the constant. 7577 if (CLHS->isExactlyValue(-1.0)) { 7578 // -1.0 / x -> rcp (fneg x) 7579 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 7580 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 7581 } 7582 } 7583 } 7584 7585 if (Unsafe) { 7586 // Turn into multiply by the reciprocal. 7587 // x / y -> x * (1.0 / y) 7588 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 7589 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 7590 } 7591 7592 return SDValue(); 7593 } 7594 7595 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 7596 EVT VT, SDValue A, SDValue B, SDValue GlueChain) { 7597 if (GlueChain->getNumValues() <= 1) { 7598 return DAG.getNode(Opcode, SL, VT, A, B); 7599 } 7600 7601 assert(GlueChain->getNumValues() == 3); 7602 7603 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 7604 switch (Opcode) { 7605 default: llvm_unreachable("no chain equivalent for opcode"); 7606 case ISD::FMUL: 7607 Opcode = AMDGPUISD::FMUL_W_CHAIN; 7608 break; 7609 } 7610 7611 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, 7612 GlueChain.getValue(2)); 7613 } 7614 7615 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 7616 EVT VT, SDValue A, SDValue B, SDValue C, 7617 SDValue GlueChain) { 7618 if (GlueChain->getNumValues() <= 1) { 7619 return DAG.getNode(Opcode, SL, VT, A, B, C); 7620 } 7621 7622 assert(GlueChain->getNumValues() == 3); 7623 7624 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 7625 switch (Opcode) { 7626 default: llvm_unreachable("no chain equivalent for opcode"); 7627 case ISD::FMA: 7628 Opcode = AMDGPUISD::FMA_W_CHAIN; 7629 break; 7630 } 7631 7632 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, 7633 GlueChain.getValue(2)); 7634 } 7635 7636 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 7637 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 7638 return FastLowered; 7639 7640 SDLoc SL(Op); 7641 SDValue Src0 = Op.getOperand(0); 7642 SDValue Src1 = Op.getOperand(1); 7643 7644 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 7645 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 7646 7647 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 7648 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 7649 7650 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 7651 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 7652 7653 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 7654 } 7655 7656 // Faster 2.5 ULP division that does not support denormals. 7657 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 7658 SDLoc SL(Op); 7659 SDValue LHS = Op.getOperand(1); 7660 SDValue RHS = Op.getOperand(2); 7661 7662 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 7663 7664 const APFloat K0Val(BitsToFloat(0x6f800000)); 7665 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 7666 7667 const APFloat K1Val(BitsToFloat(0x2f800000)); 7668 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 7669 7670 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 7671 7672 EVT SetCCVT = 7673 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 7674 7675 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 7676 7677 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 7678 7679 // TODO: Should this propagate fast-math-flags? 7680 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 7681 7682 // rcp does not support denormals. 7683 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 7684 7685 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 7686 7687 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 7688 } 7689 7690 // Returns immediate value for setting the F32 denorm mode when using the 7691 // S_DENORM_MODE instruction. 7692 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 7693 const SDLoc &SL, const GCNSubtarget *ST) { 7694 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 7695 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 7696 ? FP_DENORM_FLUSH_NONE 7697 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 7698 7699 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 7700 return DAG.getTargetConstant(Mode, SL, MVT::i32); 7701 } 7702 7703 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 7704 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 7705 return FastLowered; 7706 7707 SDLoc SL(Op); 7708 SDValue LHS = Op.getOperand(0); 7709 SDValue RHS = Op.getOperand(1); 7710 7711 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 7712 7713 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 7714 7715 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 7716 RHS, RHS, LHS); 7717 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 7718 LHS, RHS, LHS); 7719 7720 // Denominator is scaled to not be denormal, so using rcp is ok. 7721 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 7722 DenominatorScaled); 7723 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 7724 DenominatorScaled); 7725 7726 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 7727 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 7728 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 7729 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); 7730 7731 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 7732 7733 if (!HasFP32Denormals) { 7734 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 7735 7736 SDValue EnableDenorm; 7737 if (Subtarget->hasDenormModeInst()) { 7738 const SDValue EnableDenormValue = 7739 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 7740 7741 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 7742 DAG.getEntryNode(), EnableDenormValue); 7743 } else { 7744 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 7745 SL, MVT::i32); 7746 EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, 7747 DAG.getEntryNode(), EnableDenormValue, 7748 BitField); 7749 } 7750 7751 SDValue Ops[3] = { 7752 NegDivScale0, 7753 EnableDenorm.getValue(0), 7754 EnableDenorm.getValue(1) 7755 }; 7756 7757 NegDivScale0 = DAG.getMergeValues(Ops, SL); 7758 } 7759 7760 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 7761 ApproxRcp, One, NegDivScale0); 7762 7763 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 7764 ApproxRcp, Fma0); 7765 7766 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 7767 Fma1, Fma1); 7768 7769 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 7770 NumeratorScaled, Mul); 7771 7772 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2); 7773 7774 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 7775 NumeratorScaled, Fma3); 7776 7777 if (!HasFP32Denormals) { 7778 SDValue DisableDenorm; 7779 if (Subtarget->hasDenormModeInst()) { 7780 const SDValue DisableDenormValue = 7781 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 7782 7783 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 7784 Fma4.getValue(1), DisableDenormValue, 7785 Fma4.getValue(2)); 7786 } else { 7787 const SDValue DisableDenormValue = 7788 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 7789 7790 DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, 7791 Fma4.getValue(1), DisableDenormValue, 7792 BitField, Fma4.getValue(2)); 7793 } 7794 7795 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 7796 DisableDenorm, DAG.getRoot()); 7797 DAG.setRoot(OutputChain); 7798 } 7799 7800 SDValue Scale = NumeratorScaled.getValue(1); 7801 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 7802 Fma4, Fma1, Fma3, Scale); 7803 7804 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); 7805 } 7806 7807 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 7808 if (DAG.getTarget().Options.UnsafeFPMath) 7809 return lowerFastUnsafeFDIV(Op, DAG); 7810 7811 SDLoc SL(Op); 7812 SDValue X = Op.getOperand(0); 7813 SDValue Y = Op.getOperand(1); 7814 7815 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 7816 7817 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 7818 7819 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 7820 7821 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 7822 7823 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 7824 7825 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 7826 7827 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 7828 7829 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 7830 7831 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 7832 7833 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 7834 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 7835 7836 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 7837 NegDivScale0, Mul, DivScale1); 7838 7839 SDValue Scale; 7840 7841 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 7842 // Workaround a hardware bug on SI where the condition output from div_scale 7843 // is not usable. 7844 7845 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 7846 7847 // Figure out if the scale to use for div_fmas. 7848 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 7849 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 7850 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 7851 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 7852 7853 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 7854 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 7855 7856 SDValue Scale0Hi 7857 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 7858 SDValue Scale1Hi 7859 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 7860 7861 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 7862 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 7863 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 7864 } else { 7865 Scale = DivScale1.getValue(1); 7866 } 7867 7868 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 7869 Fma4, Fma3, Mul, Scale); 7870 7871 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 7872 } 7873 7874 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 7875 EVT VT = Op.getValueType(); 7876 7877 if (VT == MVT::f32) 7878 return LowerFDIV32(Op, DAG); 7879 7880 if (VT == MVT::f64) 7881 return LowerFDIV64(Op, DAG); 7882 7883 if (VT == MVT::f16) 7884 return LowerFDIV16(Op, DAG); 7885 7886 llvm_unreachable("Unexpected type for fdiv"); 7887 } 7888 7889 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7890 SDLoc DL(Op); 7891 StoreSDNode *Store = cast<StoreSDNode>(Op); 7892 EVT VT = Store->getMemoryVT(); 7893 7894 if (VT == MVT::i1) { 7895 return DAG.getTruncStore(Store->getChain(), DL, 7896 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 7897 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 7898 } 7899 7900 assert(VT.isVector() && 7901 Store->getValue().getValueType().getScalarType() == MVT::i32); 7902 7903 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 7904 VT, *Store->getMemOperand())) { 7905 return expandUnalignedStore(Store, DAG); 7906 } 7907 7908 unsigned AS = Store->getAddressSpace(); 7909 if (Subtarget->hasLDSMisalignedBug() && 7910 AS == AMDGPUAS::FLAT_ADDRESS && 7911 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 7912 return SplitVectorStore(Op, DAG); 7913 } 7914 7915 MachineFunction &MF = DAG.getMachineFunction(); 7916 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7917 // If there is a possibilty that flat instruction access scratch memory 7918 // then we need to use the same legalization rules we use for private. 7919 if (AS == AMDGPUAS::FLAT_ADDRESS) 7920 AS = MFI->hasFlatScratchInit() ? 7921 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7922 7923 unsigned NumElements = VT.getVectorNumElements(); 7924 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 7925 AS == AMDGPUAS::FLAT_ADDRESS) { 7926 if (NumElements > 4) 7927 return SplitVectorStore(Op, DAG); 7928 // v3 stores not supported on SI. 7929 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7930 return SplitVectorStore(Op, DAG); 7931 return SDValue(); 7932 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 7933 switch (Subtarget->getMaxPrivateElementSize()) { 7934 case 4: 7935 return scalarizeVectorStore(Store, DAG); 7936 case 8: 7937 if (NumElements > 2) 7938 return SplitVectorStore(Op, DAG); 7939 return SDValue(); 7940 case 16: 7941 if (NumElements > 4 || NumElements == 3) 7942 return SplitVectorStore(Op, DAG); 7943 return SDValue(); 7944 default: 7945 llvm_unreachable("unsupported private_element_size"); 7946 } 7947 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 7948 // Use ds_write_b128 if possible. 7949 if (Subtarget->useDS128() && Store->getAlignment() >= 16 && 7950 VT.getStoreSize() == 16 && NumElements != 3) 7951 return SDValue(); 7952 7953 if (NumElements > 2) 7954 return SplitVectorStore(Op, DAG); 7955 7956 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 7957 // address is negative, then the instruction is incorrectly treated as 7958 // out-of-bounds even if base + offsets is in bounds. Split vectorized 7959 // stores here to avoid emitting ds_write2_b32. We may re-combine the 7960 // store later in the SILoadStoreOptimizer. 7961 if (!Subtarget->hasUsableDSOffset() && 7962 NumElements == 2 && VT.getStoreSize() == 8 && 7963 Store->getAlignment() < 8) { 7964 return SplitVectorStore(Op, DAG); 7965 } 7966 7967 return SDValue(); 7968 } else { 7969 llvm_unreachable("unhandled address space"); 7970 } 7971 } 7972 7973 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 7974 SDLoc DL(Op); 7975 EVT VT = Op.getValueType(); 7976 SDValue Arg = Op.getOperand(0); 7977 SDValue TrigVal; 7978 7979 // TODO: Should this propagate fast-math-flags? 7980 7981 SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT); 7982 7983 if (Subtarget->hasTrigReducedRange()) { 7984 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); 7985 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal); 7986 } else { 7987 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); 7988 } 7989 7990 switch (Op.getOpcode()) { 7991 case ISD::FCOS: 7992 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal); 7993 case ISD::FSIN: 7994 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal); 7995 default: 7996 llvm_unreachable("Wrong trig opcode"); 7997 } 7998 } 7999 8000 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 8001 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 8002 assert(AtomicNode->isCompareAndSwap()); 8003 unsigned AS = AtomicNode->getAddressSpace(); 8004 8005 // No custom lowering required for local address space 8006 if (!isFlatGlobalAddrSpace(AS)) 8007 return Op; 8008 8009 // Non-local address space requires custom lowering for atomic compare 8010 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 8011 SDLoc DL(Op); 8012 SDValue ChainIn = Op.getOperand(0); 8013 SDValue Addr = Op.getOperand(1); 8014 SDValue Old = Op.getOperand(2); 8015 SDValue New = Op.getOperand(3); 8016 EVT VT = Op.getValueType(); 8017 MVT SimpleVT = VT.getSimpleVT(); 8018 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 8019 8020 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 8021 SDValue Ops[] = { ChainIn, Addr, NewOld }; 8022 8023 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 8024 Ops, VT, AtomicNode->getMemOperand()); 8025 } 8026 8027 //===----------------------------------------------------------------------===// 8028 // Custom DAG optimizations 8029 //===----------------------------------------------------------------------===// 8030 8031 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 8032 DAGCombinerInfo &DCI) const { 8033 EVT VT = N->getValueType(0); 8034 EVT ScalarVT = VT.getScalarType(); 8035 if (ScalarVT != MVT::f32) 8036 return SDValue(); 8037 8038 SelectionDAG &DAG = DCI.DAG; 8039 SDLoc DL(N); 8040 8041 SDValue Src = N->getOperand(0); 8042 EVT SrcVT = Src.getValueType(); 8043 8044 // TODO: We could try to match extracting the higher bytes, which would be 8045 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 8046 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 8047 // about in practice. 8048 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 8049 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 8050 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); 8051 DCI.AddToWorklist(Cvt.getNode()); 8052 return Cvt; 8053 } 8054 } 8055 8056 return SDValue(); 8057 } 8058 8059 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 8060 8061 // This is a variant of 8062 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 8063 // 8064 // The normal DAG combiner will do this, but only if the add has one use since 8065 // that would increase the number of instructions. 8066 // 8067 // This prevents us from seeing a constant offset that can be folded into a 8068 // memory instruction's addressing mode. If we know the resulting add offset of 8069 // a pointer can be folded into an addressing offset, we can replace the pointer 8070 // operand with the add of new constant offset. This eliminates one of the uses, 8071 // and may allow the remaining use to also be simplified. 8072 // 8073 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 8074 unsigned AddrSpace, 8075 EVT MemVT, 8076 DAGCombinerInfo &DCI) const { 8077 SDValue N0 = N->getOperand(0); 8078 SDValue N1 = N->getOperand(1); 8079 8080 // We only do this to handle cases where it's profitable when there are 8081 // multiple uses of the add, so defer to the standard combine. 8082 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 8083 N0->hasOneUse()) 8084 return SDValue(); 8085 8086 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 8087 if (!CN1) 8088 return SDValue(); 8089 8090 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 8091 if (!CAdd) 8092 return SDValue(); 8093 8094 // If the resulting offset is too large, we can't fold it into the addressing 8095 // mode offset. 8096 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 8097 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 8098 8099 AddrMode AM; 8100 AM.HasBaseReg = true; 8101 AM.BaseOffs = Offset.getSExtValue(); 8102 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 8103 return SDValue(); 8104 8105 SelectionDAG &DAG = DCI.DAG; 8106 SDLoc SL(N); 8107 EVT VT = N->getValueType(0); 8108 8109 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 8110 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); 8111 8112 SDNodeFlags Flags; 8113 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 8114 (N0.getOpcode() == ISD::OR || 8115 N0->getFlags().hasNoUnsignedWrap())); 8116 8117 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 8118 } 8119 8120 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 8121 DAGCombinerInfo &DCI) const { 8122 SDValue Ptr = N->getBasePtr(); 8123 SelectionDAG &DAG = DCI.DAG; 8124 SDLoc SL(N); 8125 8126 // TODO: We could also do this for multiplies. 8127 if (Ptr.getOpcode() == ISD::SHL) { 8128 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 8129 N->getMemoryVT(), DCI); 8130 if (NewPtr) { 8131 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 8132 8133 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; 8134 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 8135 } 8136 } 8137 8138 return SDValue(); 8139 } 8140 8141 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 8142 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 8143 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 8144 (Opc == ISD::XOR && Val == 0); 8145 } 8146 8147 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 8148 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 8149 // integer combine opportunities since most 64-bit operations are decomposed 8150 // this way. TODO: We won't want this for SALU especially if it is an inline 8151 // immediate. 8152 SDValue SITargetLowering::splitBinaryBitConstantOp( 8153 DAGCombinerInfo &DCI, 8154 const SDLoc &SL, 8155 unsigned Opc, SDValue LHS, 8156 const ConstantSDNode *CRHS) const { 8157 uint64_t Val = CRHS->getZExtValue(); 8158 uint32_t ValLo = Lo_32(Val); 8159 uint32_t ValHi = Hi_32(Val); 8160 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8161 8162 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 8163 bitOpWithConstantIsReducible(Opc, ValHi)) || 8164 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 8165 // If we need to materialize a 64-bit immediate, it will be split up later 8166 // anyway. Avoid creating the harder to understand 64-bit immediate 8167 // materialization. 8168 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 8169 } 8170 8171 return SDValue(); 8172 } 8173 8174 // Returns true if argument is a boolean value which is not serialized into 8175 // memory or argument and does not require v_cmdmask_b32 to be deserialized. 8176 static bool isBoolSGPR(SDValue V) { 8177 if (V.getValueType() != MVT::i1) 8178 return false; 8179 switch (V.getOpcode()) { 8180 default: break; 8181 case ISD::SETCC: 8182 case ISD::AND: 8183 case ISD::OR: 8184 case ISD::XOR: 8185 case AMDGPUISD::FP_CLASS: 8186 return true; 8187 } 8188 return false; 8189 } 8190 8191 // If a constant has all zeroes or all ones within each byte return it. 8192 // Otherwise return 0. 8193 static uint32_t getConstantPermuteMask(uint32_t C) { 8194 // 0xff for any zero byte in the mask 8195 uint32_t ZeroByteMask = 0; 8196 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 8197 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 8198 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 8199 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 8200 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 8201 if ((NonZeroByteMask & C) != NonZeroByteMask) 8202 return 0; // Partial bytes selected. 8203 return C; 8204 } 8205 8206 // Check if a node selects whole bytes from its operand 0 starting at a byte 8207 // boundary while masking the rest. Returns select mask as in the v_perm_b32 8208 // or -1 if not succeeded. 8209 // Note byte select encoding: 8210 // value 0-3 selects corresponding source byte; 8211 // value 0xc selects zero; 8212 // value 0xff selects 0xff. 8213 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 8214 assert(V.getValueSizeInBits() == 32); 8215 8216 if (V.getNumOperands() != 2) 8217 return ~0; 8218 8219 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 8220 if (!N1) 8221 return ~0; 8222 8223 uint32_t C = N1->getZExtValue(); 8224 8225 switch (V.getOpcode()) { 8226 default: 8227 break; 8228 case ISD::AND: 8229 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8230 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 8231 } 8232 break; 8233 8234 case ISD::OR: 8235 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8236 return (0x03020100 & ~ConstMask) | ConstMask; 8237 } 8238 break; 8239 8240 case ISD::SHL: 8241 if (C % 8) 8242 return ~0; 8243 8244 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 8245 8246 case ISD::SRL: 8247 if (C % 8) 8248 return ~0; 8249 8250 return uint32_t(0x0c0c0c0c03020100ull >> C); 8251 } 8252 8253 return ~0; 8254 } 8255 8256 SDValue SITargetLowering::performAndCombine(SDNode *N, 8257 DAGCombinerInfo &DCI) const { 8258 if (DCI.isBeforeLegalize()) 8259 return SDValue(); 8260 8261 SelectionDAG &DAG = DCI.DAG; 8262 EVT VT = N->getValueType(0); 8263 SDValue LHS = N->getOperand(0); 8264 SDValue RHS = N->getOperand(1); 8265 8266 8267 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8268 if (VT == MVT::i64 && CRHS) { 8269 if (SDValue Split 8270 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 8271 return Split; 8272 } 8273 8274 if (CRHS && VT == MVT::i32) { 8275 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 8276 // nb = number of trailing zeroes in mask 8277 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 8278 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 8279 uint64_t Mask = CRHS->getZExtValue(); 8280 unsigned Bits = countPopulation(Mask); 8281 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 8282 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 8283 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 8284 unsigned Shift = CShift->getZExtValue(); 8285 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 8286 unsigned Offset = NB + Shift; 8287 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 8288 SDLoc SL(N); 8289 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 8290 LHS->getOperand(0), 8291 DAG.getConstant(Offset, SL, MVT::i32), 8292 DAG.getConstant(Bits, SL, MVT::i32)); 8293 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8294 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 8295 DAG.getValueType(NarrowVT)); 8296 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 8297 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 8298 return Shl; 8299 } 8300 } 8301 } 8302 8303 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8304 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 8305 isa<ConstantSDNode>(LHS.getOperand(2))) { 8306 uint32_t Sel = getConstantPermuteMask(Mask); 8307 if (!Sel) 8308 return SDValue(); 8309 8310 // Select 0xc for all zero bytes 8311 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 8312 SDLoc DL(N); 8313 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8314 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8315 } 8316 } 8317 8318 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 8319 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 8320 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 8321 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8322 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 8323 8324 SDValue X = LHS.getOperand(0); 8325 SDValue Y = RHS.getOperand(0); 8326 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 8327 return SDValue(); 8328 8329 if (LCC == ISD::SETO) { 8330 if (X != LHS.getOperand(1)) 8331 return SDValue(); 8332 8333 if (RCC == ISD::SETUNE) { 8334 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 8335 if (!C1 || !C1->isInfinity() || C1->isNegative()) 8336 return SDValue(); 8337 8338 const uint32_t Mask = SIInstrFlags::N_NORMAL | 8339 SIInstrFlags::N_SUBNORMAL | 8340 SIInstrFlags::N_ZERO | 8341 SIInstrFlags::P_ZERO | 8342 SIInstrFlags::P_SUBNORMAL | 8343 SIInstrFlags::P_NORMAL; 8344 8345 static_assert(((~(SIInstrFlags::S_NAN | 8346 SIInstrFlags::Q_NAN | 8347 SIInstrFlags::N_INFINITY | 8348 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 8349 "mask not equal"); 8350 8351 SDLoc DL(N); 8352 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8353 X, DAG.getConstant(Mask, DL, MVT::i32)); 8354 } 8355 } 8356 } 8357 8358 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 8359 std::swap(LHS, RHS); 8360 8361 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 8362 RHS.hasOneUse()) { 8363 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8364 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 8365 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 8366 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8367 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 8368 (RHS.getOperand(0) == LHS.getOperand(0) && 8369 LHS.getOperand(0) == LHS.getOperand(1))) { 8370 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 8371 unsigned NewMask = LCC == ISD::SETO ? 8372 Mask->getZExtValue() & ~OrdMask : 8373 Mask->getZExtValue() & OrdMask; 8374 8375 SDLoc DL(N); 8376 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 8377 DAG.getConstant(NewMask, DL, MVT::i32)); 8378 } 8379 } 8380 8381 if (VT == MVT::i32 && 8382 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 8383 // and x, (sext cc from i1) => select cc, x, 0 8384 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 8385 std::swap(LHS, RHS); 8386 if (isBoolSGPR(RHS.getOperand(0))) 8387 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 8388 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 8389 } 8390 8391 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8392 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8393 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8394 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8395 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8396 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8397 if (LHSMask != ~0u && RHSMask != ~0u) { 8398 // Canonicalize the expression in an attempt to have fewer unique masks 8399 // and therefore fewer registers used to hold the masks. 8400 if (LHSMask > RHSMask) { 8401 std::swap(LHSMask, RHSMask); 8402 std::swap(LHS, RHS); 8403 } 8404 8405 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8406 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8407 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8408 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8409 8410 // Check of we need to combine values from two sources within a byte. 8411 if (!(LHSUsedLanes & RHSUsedLanes) && 8412 // If we select high and lower word keep it for SDWA. 8413 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8414 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8415 // Each byte in each mask is either selector mask 0-3, or has higher 8416 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 8417 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 8418 // mask which is not 0xff wins. By anding both masks we have a correct 8419 // result except that 0x0c shall be corrected to give 0x0c only. 8420 uint32_t Mask = LHSMask & RHSMask; 8421 for (unsigned I = 0; I < 32; I += 8) { 8422 uint32_t ByteSel = 0xff << I; 8423 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 8424 Mask &= (0x0c << I) & 0xffffffff; 8425 } 8426 8427 // Add 4 to each active LHS lane. It will not affect any existing 0xff 8428 // or 0x0c. 8429 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 8430 SDLoc DL(N); 8431 8432 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8433 LHS.getOperand(0), RHS.getOperand(0), 8434 DAG.getConstant(Sel, DL, MVT::i32)); 8435 } 8436 } 8437 } 8438 8439 return SDValue(); 8440 } 8441 8442 SDValue SITargetLowering::performOrCombine(SDNode *N, 8443 DAGCombinerInfo &DCI) const { 8444 SelectionDAG &DAG = DCI.DAG; 8445 SDValue LHS = N->getOperand(0); 8446 SDValue RHS = N->getOperand(1); 8447 8448 EVT VT = N->getValueType(0); 8449 if (VT == MVT::i1) { 8450 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 8451 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 8452 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 8453 SDValue Src = LHS.getOperand(0); 8454 if (Src != RHS.getOperand(0)) 8455 return SDValue(); 8456 8457 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 8458 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8459 if (!CLHS || !CRHS) 8460 return SDValue(); 8461 8462 // Only 10 bits are used. 8463 static const uint32_t MaxMask = 0x3ff; 8464 8465 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 8466 SDLoc DL(N); 8467 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8468 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 8469 } 8470 8471 return SDValue(); 8472 } 8473 8474 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8475 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 8476 LHS.getOpcode() == AMDGPUISD::PERM && 8477 isa<ConstantSDNode>(LHS.getOperand(2))) { 8478 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 8479 if (!Sel) 8480 return SDValue(); 8481 8482 Sel |= LHS.getConstantOperandVal(2); 8483 SDLoc DL(N); 8484 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8485 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8486 } 8487 8488 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8489 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8490 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8491 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8492 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8493 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8494 if (LHSMask != ~0u && RHSMask != ~0u) { 8495 // Canonicalize the expression in an attempt to have fewer unique masks 8496 // and therefore fewer registers used to hold the masks. 8497 if (LHSMask > RHSMask) { 8498 std::swap(LHSMask, RHSMask); 8499 std::swap(LHS, RHS); 8500 } 8501 8502 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8503 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8504 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8505 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8506 8507 // Check of we need to combine values from two sources within a byte. 8508 if (!(LHSUsedLanes & RHSUsedLanes) && 8509 // If we select high and lower word keep it for SDWA. 8510 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8511 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8512 // Kill zero bytes selected by other mask. Zero value is 0xc. 8513 LHSMask &= ~RHSUsedLanes; 8514 RHSMask &= ~LHSUsedLanes; 8515 // Add 4 to each active LHS lane 8516 LHSMask |= LHSUsedLanes & 0x04040404; 8517 // Combine masks 8518 uint32_t Sel = LHSMask | RHSMask; 8519 SDLoc DL(N); 8520 8521 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8522 LHS.getOperand(0), RHS.getOperand(0), 8523 DAG.getConstant(Sel, DL, MVT::i32)); 8524 } 8525 } 8526 } 8527 8528 if (VT != MVT::i64) 8529 return SDValue(); 8530 8531 // TODO: This could be a generic combine with a predicate for extracting the 8532 // high half of an integer being free. 8533 8534 // (or i64:x, (zero_extend i32:y)) -> 8535 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 8536 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 8537 RHS.getOpcode() != ISD::ZERO_EXTEND) 8538 std::swap(LHS, RHS); 8539 8540 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 8541 SDValue ExtSrc = RHS.getOperand(0); 8542 EVT SrcVT = ExtSrc.getValueType(); 8543 if (SrcVT == MVT::i32) { 8544 SDLoc SL(N); 8545 SDValue LowLHS, HiBits; 8546 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 8547 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 8548 8549 DCI.AddToWorklist(LowOr.getNode()); 8550 DCI.AddToWorklist(HiBits.getNode()); 8551 8552 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 8553 LowOr, HiBits); 8554 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 8555 } 8556 } 8557 8558 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8559 if (CRHS) { 8560 if (SDValue Split 8561 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 8562 return Split; 8563 } 8564 8565 return SDValue(); 8566 } 8567 8568 SDValue SITargetLowering::performXorCombine(SDNode *N, 8569 DAGCombinerInfo &DCI) const { 8570 EVT VT = N->getValueType(0); 8571 if (VT != MVT::i64) 8572 return SDValue(); 8573 8574 SDValue LHS = N->getOperand(0); 8575 SDValue RHS = N->getOperand(1); 8576 8577 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8578 if (CRHS) { 8579 if (SDValue Split 8580 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 8581 return Split; 8582 } 8583 8584 return SDValue(); 8585 } 8586 8587 // Instructions that will be lowered with a final instruction that zeros the 8588 // high result bits. 8589 // XXX - probably only need to list legal operations. 8590 static bool fp16SrcZerosHighBits(unsigned Opc) { 8591 switch (Opc) { 8592 case ISD::FADD: 8593 case ISD::FSUB: 8594 case ISD::FMUL: 8595 case ISD::FDIV: 8596 case ISD::FREM: 8597 case ISD::FMA: 8598 case ISD::FMAD: 8599 case ISD::FCANONICALIZE: 8600 case ISD::FP_ROUND: 8601 case ISD::UINT_TO_FP: 8602 case ISD::SINT_TO_FP: 8603 case ISD::FABS: 8604 // Fabs is lowered to a bit operation, but it's an and which will clear the 8605 // high bits anyway. 8606 case ISD::FSQRT: 8607 case ISD::FSIN: 8608 case ISD::FCOS: 8609 case ISD::FPOWI: 8610 case ISD::FPOW: 8611 case ISD::FLOG: 8612 case ISD::FLOG2: 8613 case ISD::FLOG10: 8614 case ISD::FEXP: 8615 case ISD::FEXP2: 8616 case ISD::FCEIL: 8617 case ISD::FTRUNC: 8618 case ISD::FRINT: 8619 case ISD::FNEARBYINT: 8620 case ISD::FROUND: 8621 case ISD::FFLOOR: 8622 case ISD::FMINNUM: 8623 case ISD::FMAXNUM: 8624 case AMDGPUISD::FRACT: 8625 case AMDGPUISD::CLAMP: 8626 case AMDGPUISD::COS_HW: 8627 case AMDGPUISD::SIN_HW: 8628 case AMDGPUISD::FMIN3: 8629 case AMDGPUISD::FMAX3: 8630 case AMDGPUISD::FMED3: 8631 case AMDGPUISD::FMAD_FTZ: 8632 case AMDGPUISD::RCP: 8633 case AMDGPUISD::RSQ: 8634 case AMDGPUISD::RCP_IFLAG: 8635 case AMDGPUISD::LDEXP: 8636 return true; 8637 default: 8638 // fcopysign, select and others may be lowered to 32-bit bit operations 8639 // which don't zero the high bits. 8640 return false; 8641 } 8642 } 8643 8644 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 8645 DAGCombinerInfo &DCI) const { 8646 if (!Subtarget->has16BitInsts() || 8647 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 8648 return SDValue(); 8649 8650 EVT VT = N->getValueType(0); 8651 if (VT != MVT::i32) 8652 return SDValue(); 8653 8654 SDValue Src = N->getOperand(0); 8655 if (Src.getValueType() != MVT::i16) 8656 return SDValue(); 8657 8658 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 8659 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 8660 if (Src.getOpcode() == ISD::BITCAST) { 8661 SDValue BCSrc = Src.getOperand(0); 8662 if (BCSrc.getValueType() == MVT::f16 && 8663 fp16SrcZerosHighBits(BCSrc.getOpcode())) 8664 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 8665 } 8666 8667 return SDValue(); 8668 } 8669 8670 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 8671 DAGCombinerInfo &DCI) 8672 const { 8673 SDValue Src = N->getOperand(0); 8674 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 8675 8676 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 8677 VTSign->getVT() == MVT::i8) || 8678 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 8679 VTSign->getVT() == MVT::i16)) && 8680 Src.hasOneUse()) { 8681 auto *M = cast<MemSDNode>(Src); 8682 SDValue Ops[] = { 8683 Src.getOperand(0), // Chain 8684 Src.getOperand(1), // rsrc 8685 Src.getOperand(2), // vindex 8686 Src.getOperand(3), // voffset 8687 Src.getOperand(4), // soffset 8688 Src.getOperand(5), // offset 8689 Src.getOperand(6), 8690 Src.getOperand(7) 8691 }; 8692 // replace with BUFFER_LOAD_BYTE/SHORT 8693 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 8694 Src.getOperand(0).getValueType()); 8695 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 8696 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 8697 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 8698 ResList, 8699 Ops, M->getMemoryVT(), 8700 M->getMemOperand()); 8701 return DCI.DAG.getMergeValues({BufferLoadSignExt, 8702 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 8703 } 8704 return SDValue(); 8705 } 8706 8707 SDValue SITargetLowering::performClassCombine(SDNode *N, 8708 DAGCombinerInfo &DCI) const { 8709 SelectionDAG &DAG = DCI.DAG; 8710 SDValue Mask = N->getOperand(1); 8711 8712 // fp_class x, 0 -> false 8713 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 8714 if (CMask->isNullValue()) 8715 return DAG.getConstant(0, SDLoc(N), MVT::i1); 8716 } 8717 8718 if (N->getOperand(0).isUndef()) 8719 return DAG.getUNDEF(MVT::i1); 8720 8721 return SDValue(); 8722 } 8723 8724 SDValue SITargetLowering::performRcpCombine(SDNode *N, 8725 DAGCombinerInfo &DCI) const { 8726 EVT VT = N->getValueType(0); 8727 SDValue N0 = N->getOperand(0); 8728 8729 if (N0.isUndef()) 8730 return N0; 8731 8732 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 8733 N0.getOpcode() == ISD::SINT_TO_FP)) { 8734 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 8735 N->getFlags()); 8736 } 8737 8738 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 8739 } 8740 8741 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 8742 unsigned MaxDepth) const { 8743 unsigned Opcode = Op.getOpcode(); 8744 if (Opcode == ISD::FCANONICALIZE) 8745 return true; 8746 8747 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 8748 auto F = CFP->getValueAPF(); 8749 if (F.isNaN() && F.isSignaling()) 8750 return false; 8751 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 8752 } 8753 8754 // If source is a result of another standard FP operation it is already in 8755 // canonical form. 8756 if (MaxDepth == 0) 8757 return false; 8758 8759 switch (Opcode) { 8760 // These will flush denorms if required. 8761 case ISD::FADD: 8762 case ISD::FSUB: 8763 case ISD::FMUL: 8764 case ISD::FCEIL: 8765 case ISD::FFLOOR: 8766 case ISD::FMA: 8767 case ISD::FMAD: 8768 case ISD::FSQRT: 8769 case ISD::FDIV: 8770 case ISD::FREM: 8771 case ISD::FP_ROUND: 8772 case ISD::FP_EXTEND: 8773 case AMDGPUISD::FMUL_LEGACY: 8774 case AMDGPUISD::FMAD_FTZ: 8775 case AMDGPUISD::RCP: 8776 case AMDGPUISD::RSQ: 8777 case AMDGPUISD::RSQ_CLAMP: 8778 case AMDGPUISD::RCP_LEGACY: 8779 case AMDGPUISD::RSQ_LEGACY: 8780 case AMDGPUISD::RCP_IFLAG: 8781 case AMDGPUISD::TRIG_PREOP: 8782 case AMDGPUISD::DIV_SCALE: 8783 case AMDGPUISD::DIV_FMAS: 8784 case AMDGPUISD::DIV_FIXUP: 8785 case AMDGPUISD::FRACT: 8786 case AMDGPUISD::LDEXP: 8787 case AMDGPUISD::CVT_PKRTZ_F16_F32: 8788 case AMDGPUISD::CVT_F32_UBYTE0: 8789 case AMDGPUISD::CVT_F32_UBYTE1: 8790 case AMDGPUISD::CVT_F32_UBYTE2: 8791 case AMDGPUISD::CVT_F32_UBYTE3: 8792 return true; 8793 8794 // It can/will be lowered or combined as a bit operation. 8795 // Need to check their input recursively to handle. 8796 case ISD::FNEG: 8797 case ISD::FABS: 8798 case ISD::FCOPYSIGN: 8799 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 8800 8801 case ISD::FSIN: 8802 case ISD::FCOS: 8803 case ISD::FSINCOS: 8804 return Op.getValueType().getScalarType() != MVT::f16; 8805 8806 case ISD::FMINNUM: 8807 case ISD::FMAXNUM: 8808 case ISD::FMINNUM_IEEE: 8809 case ISD::FMAXNUM_IEEE: 8810 case AMDGPUISD::CLAMP: 8811 case AMDGPUISD::FMED3: 8812 case AMDGPUISD::FMAX3: 8813 case AMDGPUISD::FMIN3: { 8814 // FIXME: Shouldn't treat the generic operations different based these. 8815 // However, we aren't really required to flush the result from 8816 // minnum/maxnum.. 8817 8818 // snans will be quieted, so we only need to worry about denormals. 8819 if (Subtarget->supportsMinMaxDenormModes() || 8820 denormalsEnabledForType(DAG, Op.getValueType())) 8821 return true; 8822 8823 // Flushing may be required. 8824 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 8825 // targets need to check their input recursively. 8826 8827 // FIXME: Does this apply with clamp? It's implemented with max. 8828 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 8829 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 8830 return false; 8831 } 8832 8833 return true; 8834 } 8835 case ISD::SELECT: { 8836 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 8837 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 8838 } 8839 case ISD::BUILD_VECTOR: { 8840 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 8841 SDValue SrcOp = Op.getOperand(i); 8842 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 8843 return false; 8844 } 8845 8846 return true; 8847 } 8848 case ISD::EXTRACT_VECTOR_ELT: 8849 case ISD::EXTRACT_SUBVECTOR: { 8850 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 8851 } 8852 case ISD::INSERT_VECTOR_ELT: { 8853 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 8854 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 8855 } 8856 case ISD::UNDEF: 8857 // Could be anything. 8858 return false; 8859 8860 case ISD::BITCAST: { 8861 // Hack round the mess we make when legalizing extract_vector_elt 8862 SDValue Src = Op.getOperand(0); 8863 if (Src.getValueType() == MVT::i16 && 8864 Src.getOpcode() == ISD::TRUNCATE) { 8865 SDValue TruncSrc = Src.getOperand(0); 8866 if (TruncSrc.getValueType() == MVT::i32 && 8867 TruncSrc.getOpcode() == ISD::BITCAST && 8868 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 8869 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 8870 } 8871 } 8872 8873 return false; 8874 } 8875 case ISD::INTRINSIC_WO_CHAIN: { 8876 unsigned IntrinsicID 8877 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8878 // TODO: Handle more intrinsics 8879 switch (IntrinsicID) { 8880 case Intrinsic::amdgcn_cvt_pkrtz: 8881 case Intrinsic::amdgcn_cubeid: 8882 case Intrinsic::amdgcn_frexp_mant: 8883 case Intrinsic::amdgcn_fdot2: 8884 return true; 8885 default: 8886 break; 8887 } 8888 8889 LLVM_FALLTHROUGH; 8890 } 8891 default: 8892 return denormalsEnabledForType(DAG, Op.getValueType()) && 8893 DAG.isKnownNeverSNaN(Op); 8894 } 8895 8896 llvm_unreachable("invalid operation"); 8897 } 8898 8899 // Constant fold canonicalize. 8900 SDValue SITargetLowering::getCanonicalConstantFP( 8901 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 8902 // Flush denormals to 0 if not enabled. 8903 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 8904 return DAG.getConstantFP(0.0, SL, VT); 8905 8906 if (C.isNaN()) { 8907 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 8908 if (C.isSignaling()) { 8909 // Quiet a signaling NaN. 8910 // FIXME: Is this supposed to preserve payload bits? 8911 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 8912 } 8913 8914 // Make sure it is the canonical NaN bitpattern. 8915 // 8916 // TODO: Can we use -1 as the canonical NaN value since it's an inline 8917 // immediate? 8918 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 8919 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 8920 } 8921 8922 // Already canonical. 8923 return DAG.getConstantFP(C, SL, VT); 8924 } 8925 8926 static bool vectorEltWillFoldAway(SDValue Op) { 8927 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 8928 } 8929 8930 SDValue SITargetLowering::performFCanonicalizeCombine( 8931 SDNode *N, 8932 DAGCombinerInfo &DCI) const { 8933 SelectionDAG &DAG = DCI.DAG; 8934 SDValue N0 = N->getOperand(0); 8935 EVT VT = N->getValueType(0); 8936 8937 // fcanonicalize undef -> qnan 8938 if (N0.isUndef()) { 8939 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 8940 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 8941 } 8942 8943 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 8944 EVT VT = N->getValueType(0); 8945 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 8946 } 8947 8948 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 8949 // (fcanonicalize k) 8950 // 8951 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 8952 8953 // TODO: This could be better with wider vectors that will be split to v2f16, 8954 // and to consider uses since there aren't that many packed operations. 8955 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 8956 isTypeLegal(MVT::v2f16)) { 8957 SDLoc SL(N); 8958 SDValue NewElts[2]; 8959 SDValue Lo = N0.getOperand(0); 8960 SDValue Hi = N0.getOperand(1); 8961 EVT EltVT = Lo.getValueType(); 8962 8963 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 8964 for (unsigned I = 0; I != 2; ++I) { 8965 SDValue Op = N0.getOperand(I); 8966 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 8967 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 8968 CFP->getValueAPF()); 8969 } else if (Op.isUndef()) { 8970 // Handled below based on what the other operand is. 8971 NewElts[I] = Op; 8972 } else { 8973 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 8974 } 8975 } 8976 8977 // If one half is undef, and one is constant, perfer a splat vector rather 8978 // than the normal qNaN. If it's a register, prefer 0.0 since that's 8979 // cheaper to use and may be free with a packed operation. 8980 if (NewElts[0].isUndef()) { 8981 if (isa<ConstantFPSDNode>(NewElts[1])) 8982 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 8983 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 8984 } 8985 8986 if (NewElts[1].isUndef()) { 8987 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 8988 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 8989 } 8990 8991 return DAG.getBuildVector(VT, SL, NewElts); 8992 } 8993 } 8994 8995 unsigned SrcOpc = N0.getOpcode(); 8996 8997 // If it's free to do so, push canonicalizes further up the source, which may 8998 // find a canonical source. 8999 // 9000 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 9001 // sNaNs. 9002 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 9003 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9004 if (CRHS && N0.hasOneUse()) { 9005 SDLoc SL(N); 9006 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 9007 N0.getOperand(0)); 9008 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 9009 DCI.AddToWorklist(Canon0.getNode()); 9010 9011 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 9012 } 9013 } 9014 9015 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 9016 } 9017 9018 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 9019 switch (Opc) { 9020 case ISD::FMAXNUM: 9021 case ISD::FMAXNUM_IEEE: 9022 return AMDGPUISD::FMAX3; 9023 case ISD::SMAX: 9024 return AMDGPUISD::SMAX3; 9025 case ISD::UMAX: 9026 return AMDGPUISD::UMAX3; 9027 case ISD::FMINNUM: 9028 case ISD::FMINNUM_IEEE: 9029 return AMDGPUISD::FMIN3; 9030 case ISD::SMIN: 9031 return AMDGPUISD::SMIN3; 9032 case ISD::UMIN: 9033 return AMDGPUISD::UMIN3; 9034 default: 9035 llvm_unreachable("Not a min/max opcode"); 9036 } 9037 } 9038 9039 SDValue SITargetLowering::performIntMed3ImmCombine( 9040 SelectionDAG &DAG, const SDLoc &SL, 9041 SDValue Op0, SDValue Op1, bool Signed) const { 9042 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 9043 if (!K1) 9044 return SDValue(); 9045 9046 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 9047 if (!K0) 9048 return SDValue(); 9049 9050 if (Signed) { 9051 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 9052 return SDValue(); 9053 } else { 9054 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 9055 return SDValue(); 9056 } 9057 9058 EVT VT = K0->getValueType(0); 9059 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 9060 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 9061 return DAG.getNode(Med3Opc, SL, VT, 9062 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 9063 } 9064 9065 // If there isn't a 16-bit med3 operation, convert to 32-bit. 9066 MVT NVT = MVT::i32; 9067 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9068 9069 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 9070 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 9071 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 9072 9073 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 9074 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 9075 } 9076 9077 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 9078 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 9079 return C; 9080 9081 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 9082 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 9083 return C; 9084 } 9085 9086 return nullptr; 9087 } 9088 9089 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 9090 const SDLoc &SL, 9091 SDValue Op0, 9092 SDValue Op1) const { 9093 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 9094 if (!K1) 9095 return SDValue(); 9096 9097 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 9098 if (!K0) 9099 return SDValue(); 9100 9101 // Ordered >= (although NaN inputs should have folded away by now). 9102 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); 9103 if (Cmp == APFloat::cmpGreaterThan) 9104 return SDValue(); 9105 9106 const MachineFunction &MF = DAG.getMachineFunction(); 9107 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9108 9109 // TODO: Check IEEE bit enabled? 9110 EVT VT = Op0.getValueType(); 9111 if (Info->getMode().DX10Clamp) { 9112 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 9113 // hardware fmed3 behavior converting to a min. 9114 // FIXME: Should this be allowing -0.0? 9115 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 9116 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 9117 } 9118 9119 // med3 for f16 is only available on gfx9+, and not available for v2f16. 9120 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 9121 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 9122 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 9123 // then give the other result, which is different from med3 with a NaN 9124 // input. 9125 SDValue Var = Op0.getOperand(0); 9126 if (!DAG.isKnownNeverSNaN(Var)) 9127 return SDValue(); 9128 9129 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9130 9131 if ((!K0->hasOneUse() || 9132 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 9133 (!K1->hasOneUse() || 9134 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 9135 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 9136 Var, SDValue(K0, 0), SDValue(K1, 0)); 9137 } 9138 } 9139 9140 return SDValue(); 9141 } 9142 9143 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 9144 DAGCombinerInfo &DCI) const { 9145 SelectionDAG &DAG = DCI.DAG; 9146 9147 EVT VT = N->getValueType(0); 9148 unsigned Opc = N->getOpcode(); 9149 SDValue Op0 = N->getOperand(0); 9150 SDValue Op1 = N->getOperand(1); 9151 9152 // Only do this if the inner op has one use since this will just increases 9153 // register pressure for no benefit. 9154 9155 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 9156 !VT.isVector() && 9157 (VT == MVT::i32 || VT == MVT::f32 || 9158 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 9159 // max(max(a, b), c) -> max3(a, b, c) 9160 // min(min(a, b), c) -> min3(a, b, c) 9161 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 9162 SDLoc DL(N); 9163 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9164 DL, 9165 N->getValueType(0), 9166 Op0.getOperand(0), 9167 Op0.getOperand(1), 9168 Op1); 9169 } 9170 9171 // Try commuted. 9172 // max(a, max(b, c)) -> max3(a, b, c) 9173 // min(a, min(b, c)) -> min3(a, b, c) 9174 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 9175 SDLoc DL(N); 9176 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9177 DL, 9178 N->getValueType(0), 9179 Op0, 9180 Op1.getOperand(0), 9181 Op1.getOperand(1)); 9182 } 9183 } 9184 9185 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 9186 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 9187 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 9188 return Med3; 9189 } 9190 9191 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 9192 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 9193 return Med3; 9194 } 9195 9196 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 9197 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 9198 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 9199 (Opc == AMDGPUISD::FMIN_LEGACY && 9200 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 9201 (VT == MVT::f32 || VT == MVT::f64 || 9202 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 9203 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 9204 Op0.hasOneUse()) { 9205 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 9206 return Res; 9207 } 9208 9209 return SDValue(); 9210 } 9211 9212 static bool isClampZeroToOne(SDValue A, SDValue B) { 9213 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 9214 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 9215 // FIXME: Should this be allowing -0.0? 9216 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 9217 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 9218 } 9219 } 9220 9221 return false; 9222 } 9223 9224 // FIXME: Should only worry about snans for version with chain. 9225 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 9226 DAGCombinerInfo &DCI) const { 9227 EVT VT = N->getValueType(0); 9228 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 9229 // NaNs. With a NaN input, the order of the operands may change the result. 9230 9231 SelectionDAG &DAG = DCI.DAG; 9232 SDLoc SL(N); 9233 9234 SDValue Src0 = N->getOperand(0); 9235 SDValue Src1 = N->getOperand(1); 9236 SDValue Src2 = N->getOperand(2); 9237 9238 if (isClampZeroToOne(Src0, Src1)) { 9239 // const_a, const_b, x -> clamp is safe in all cases including signaling 9240 // nans. 9241 // FIXME: Should this be allowing -0.0? 9242 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 9243 } 9244 9245 const MachineFunction &MF = DAG.getMachineFunction(); 9246 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9247 9248 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 9249 // handling no dx10-clamp? 9250 if (Info->getMode().DX10Clamp) { 9251 // If NaNs is clamped to 0, we are free to reorder the inputs. 9252 9253 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9254 std::swap(Src0, Src1); 9255 9256 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 9257 std::swap(Src1, Src2); 9258 9259 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9260 std::swap(Src0, Src1); 9261 9262 if (isClampZeroToOne(Src1, Src2)) 9263 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 9264 } 9265 9266 return SDValue(); 9267 } 9268 9269 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 9270 DAGCombinerInfo &DCI) const { 9271 SDValue Src0 = N->getOperand(0); 9272 SDValue Src1 = N->getOperand(1); 9273 if (Src0.isUndef() && Src1.isUndef()) 9274 return DCI.DAG.getUNDEF(N->getValueType(0)); 9275 return SDValue(); 9276 } 9277 9278 SDValue SITargetLowering::performExtractVectorEltCombine( 9279 SDNode *N, DAGCombinerInfo &DCI) const { 9280 SDValue Vec = N->getOperand(0); 9281 SelectionDAG &DAG = DCI.DAG; 9282 9283 EVT VecVT = Vec.getValueType(); 9284 EVT EltVT = VecVT.getVectorElementType(); 9285 9286 if ((Vec.getOpcode() == ISD::FNEG || 9287 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 9288 SDLoc SL(N); 9289 EVT EltVT = N->getValueType(0); 9290 SDValue Idx = N->getOperand(1); 9291 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9292 Vec.getOperand(0), Idx); 9293 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 9294 } 9295 9296 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 9297 // => 9298 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 9299 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 9300 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 9301 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 9302 SDLoc SL(N); 9303 EVT EltVT = N->getValueType(0); 9304 SDValue Idx = N->getOperand(1); 9305 unsigned Opc = Vec.getOpcode(); 9306 9307 switch(Opc) { 9308 default: 9309 break; 9310 // TODO: Support other binary operations. 9311 case ISD::FADD: 9312 case ISD::FSUB: 9313 case ISD::FMUL: 9314 case ISD::ADD: 9315 case ISD::UMIN: 9316 case ISD::UMAX: 9317 case ISD::SMIN: 9318 case ISD::SMAX: 9319 case ISD::FMAXNUM: 9320 case ISD::FMINNUM: 9321 case ISD::FMAXNUM_IEEE: 9322 case ISD::FMINNUM_IEEE: { 9323 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9324 Vec.getOperand(0), Idx); 9325 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9326 Vec.getOperand(1), Idx); 9327 9328 DCI.AddToWorklist(Elt0.getNode()); 9329 DCI.AddToWorklist(Elt1.getNode()); 9330 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 9331 } 9332 } 9333 } 9334 9335 unsigned VecSize = VecVT.getSizeInBits(); 9336 unsigned EltSize = EltVT.getSizeInBits(); 9337 9338 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 9339 // This elminates non-constant index and subsequent movrel or scratch access. 9340 // Sub-dword vectors of size 2 dword or less have better implementation. 9341 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 9342 // instructions. 9343 if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) && 9344 !isa<ConstantSDNode>(N->getOperand(1))) { 9345 SDLoc SL(N); 9346 SDValue Idx = N->getOperand(1); 9347 EVT IdxVT = Idx.getValueType(); 9348 SDValue V; 9349 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9350 SDValue IC = DAG.getConstant(I, SL, IdxVT); 9351 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9352 if (I == 0) 9353 V = Elt; 9354 else 9355 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 9356 } 9357 return V; 9358 } 9359 9360 if (!DCI.isBeforeLegalize()) 9361 return SDValue(); 9362 9363 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 9364 // elements. This exposes more load reduction opportunities by replacing 9365 // multiple small extract_vector_elements with a single 32-bit extract. 9366 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9367 if (isa<MemSDNode>(Vec) && 9368 EltSize <= 16 && 9369 EltVT.isByteSized() && 9370 VecSize > 32 && 9371 VecSize % 32 == 0 && 9372 Idx) { 9373 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 9374 9375 unsigned BitIndex = Idx->getZExtValue() * EltSize; 9376 unsigned EltIdx = BitIndex / 32; 9377 unsigned LeftoverBitIdx = BitIndex % 32; 9378 SDLoc SL(N); 9379 9380 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 9381 DCI.AddToWorklist(Cast.getNode()); 9382 9383 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 9384 DAG.getConstant(EltIdx, SL, MVT::i32)); 9385 DCI.AddToWorklist(Elt.getNode()); 9386 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 9387 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 9388 DCI.AddToWorklist(Srl.getNode()); 9389 9390 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 9391 DCI.AddToWorklist(Trunc.getNode()); 9392 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 9393 } 9394 9395 return SDValue(); 9396 } 9397 9398 SDValue 9399 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 9400 DAGCombinerInfo &DCI) const { 9401 SDValue Vec = N->getOperand(0); 9402 SDValue Idx = N->getOperand(2); 9403 EVT VecVT = Vec.getValueType(); 9404 EVT EltVT = VecVT.getVectorElementType(); 9405 unsigned VecSize = VecVT.getSizeInBits(); 9406 unsigned EltSize = EltVT.getSizeInBits(); 9407 9408 // INSERT_VECTOR_ELT (<n x e>, var-idx) 9409 // => BUILD_VECTOR n x select (e, const-idx) 9410 // This elminates non-constant index and subsequent movrel or scratch access. 9411 // Sub-dword vectors of size 2 dword or less have better implementation. 9412 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 9413 // instructions. 9414 if (isa<ConstantSDNode>(Idx) || 9415 VecSize > 256 || (VecSize <= 64 && EltSize < 32)) 9416 return SDValue(); 9417 9418 SelectionDAG &DAG = DCI.DAG; 9419 SDLoc SL(N); 9420 SDValue Ins = N->getOperand(1); 9421 EVT IdxVT = Idx.getValueType(); 9422 9423 SmallVector<SDValue, 16> Ops; 9424 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9425 SDValue IC = DAG.getConstant(I, SL, IdxVT); 9426 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9427 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 9428 Ops.push_back(V); 9429 } 9430 9431 return DAG.getBuildVector(VecVT, SL, Ops); 9432 } 9433 9434 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 9435 const SDNode *N0, 9436 const SDNode *N1) const { 9437 EVT VT = N0->getValueType(0); 9438 9439 // Only do this if we are not trying to support denormals. v_mad_f32 does not 9440 // support denormals ever. 9441 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 9442 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 9443 getSubtarget()->hasMadF16())) && 9444 isOperationLegal(ISD::FMAD, VT)) 9445 return ISD::FMAD; 9446 9447 const TargetOptions &Options = DAG.getTarget().Options; 9448 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 9449 (N0->getFlags().hasAllowContract() && 9450 N1->getFlags().hasAllowContract())) && 9451 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 9452 return ISD::FMA; 9453 } 9454 9455 return 0; 9456 } 9457 9458 // For a reassociatable opcode perform: 9459 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 9460 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 9461 SelectionDAG &DAG) const { 9462 EVT VT = N->getValueType(0); 9463 if (VT != MVT::i32 && VT != MVT::i64) 9464 return SDValue(); 9465 9466 unsigned Opc = N->getOpcode(); 9467 SDValue Op0 = N->getOperand(0); 9468 SDValue Op1 = N->getOperand(1); 9469 9470 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 9471 return SDValue(); 9472 9473 if (Op0->isDivergent()) 9474 std::swap(Op0, Op1); 9475 9476 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 9477 return SDValue(); 9478 9479 SDValue Op2 = Op1.getOperand(1); 9480 Op1 = Op1.getOperand(0); 9481 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 9482 return SDValue(); 9483 9484 if (Op1->isDivergent()) 9485 std::swap(Op1, Op2); 9486 9487 // If either operand is constant this will conflict with 9488 // DAGCombiner::ReassociateOps(). 9489 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 9490 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 9491 return SDValue(); 9492 9493 SDLoc SL(N); 9494 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 9495 return DAG.getNode(Opc, SL, VT, Add1, Op2); 9496 } 9497 9498 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 9499 EVT VT, 9500 SDValue N0, SDValue N1, SDValue N2, 9501 bool Signed) { 9502 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 9503 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 9504 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 9505 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 9506 } 9507 9508 SDValue SITargetLowering::performAddCombine(SDNode *N, 9509 DAGCombinerInfo &DCI) const { 9510 SelectionDAG &DAG = DCI.DAG; 9511 EVT VT = N->getValueType(0); 9512 SDLoc SL(N); 9513 SDValue LHS = N->getOperand(0); 9514 SDValue RHS = N->getOperand(1); 9515 9516 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 9517 && Subtarget->hasMad64_32() && 9518 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 9519 VT.getScalarSizeInBits() <= 64) { 9520 if (LHS.getOpcode() != ISD::MUL) 9521 std::swap(LHS, RHS); 9522 9523 SDValue MulLHS = LHS.getOperand(0); 9524 SDValue MulRHS = LHS.getOperand(1); 9525 SDValue AddRHS = RHS; 9526 9527 // TODO: Maybe restrict if SGPR inputs. 9528 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 9529 numBitsUnsigned(MulRHS, DAG) <= 32) { 9530 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 9531 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 9532 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 9533 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 9534 } 9535 9536 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 9537 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 9538 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 9539 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 9540 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 9541 } 9542 9543 return SDValue(); 9544 } 9545 9546 if (SDValue V = reassociateScalarOps(N, DAG)) { 9547 return V; 9548 } 9549 9550 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 9551 return SDValue(); 9552 9553 // add x, zext (setcc) => addcarry x, 0, setcc 9554 // add x, sext (setcc) => subcarry x, 0, setcc 9555 unsigned Opc = LHS.getOpcode(); 9556 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 9557 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 9558 std::swap(RHS, LHS); 9559 9560 Opc = RHS.getOpcode(); 9561 switch (Opc) { 9562 default: break; 9563 case ISD::ZERO_EXTEND: 9564 case ISD::SIGN_EXTEND: 9565 case ISD::ANY_EXTEND: { 9566 auto Cond = RHS.getOperand(0); 9567 // If this won't be a real VOPC output, we would still need to insert an 9568 // extra instruction anyway. 9569 if (!isBoolSGPR(Cond)) 9570 break; 9571 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 9572 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 9573 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 9574 return DAG.getNode(Opc, SL, VTList, Args); 9575 } 9576 case ISD::ADDCARRY: { 9577 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 9578 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9579 if (!C || C->getZExtValue() != 0) break; 9580 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 9581 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 9582 } 9583 } 9584 return SDValue(); 9585 } 9586 9587 SDValue SITargetLowering::performSubCombine(SDNode *N, 9588 DAGCombinerInfo &DCI) const { 9589 SelectionDAG &DAG = DCI.DAG; 9590 EVT VT = N->getValueType(0); 9591 9592 if (VT != MVT::i32) 9593 return SDValue(); 9594 9595 SDLoc SL(N); 9596 SDValue LHS = N->getOperand(0); 9597 SDValue RHS = N->getOperand(1); 9598 9599 // sub x, zext (setcc) => subcarry x, 0, setcc 9600 // sub x, sext (setcc) => addcarry x, 0, setcc 9601 unsigned Opc = RHS.getOpcode(); 9602 switch (Opc) { 9603 default: break; 9604 case ISD::ZERO_EXTEND: 9605 case ISD::SIGN_EXTEND: 9606 case ISD::ANY_EXTEND: { 9607 auto Cond = RHS.getOperand(0); 9608 // If this won't be a real VOPC output, we would still need to insert an 9609 // extra instruction anyway. 9610 if (!isBoolSGPR(Cond)) 9611 break; 9612 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 9613 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 9614 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 9615 return DAG.getNode(Opc, SL, VTList, Args); 9616 } 9617 } 9618 9619 if (LHS.getOpcode() == ISD::SUBCARRY) { 9620 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 9621 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9622 if (!C || !C->isNullValue()) 9623 return SDValue(); 9624 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 9625 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 9626 } 9627 return SDValue(); 9628 } 9629 9630 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 9631 DAGCombinerInfo &DCI) const { 9632 9633 if (N->getValueType(0) != MVT::i32) 9634 return SDValue(); 9635 9636 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9637 if (!C || C->getZExtValue() != 0) 9638 return SDValue(); 9639 9640 SelectionDAG &DAG = DCI.DAG; 9641 SDValue LHS = N->getOperand(0); 9642 9643 // addcarry (add x, y), 0, cc => addcarry x, y, cc 9644 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 9645 unsigned LHSOpc = LHS.getOpcode(); 9646 unsigned Opc = N->getOpcode(); 9647 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 9648 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 9649 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 9650 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 9651 } 9652 return SDValue(); 9653 } 9654 9655 SDValue SITargetLowering::performFAddCombine(SDNode *N, 9656 DAGCombinerInfo &DCI) const { 9657 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9658 return SDValue(); 9659 9660 SelectionDAG &DAG = DCI.DAG; 9661 EVT VT = N->getValueType(0); 9662 9663 SDLoc SL(N); 9664 SDValue LHS = N->getOperand(0); 9665 SDValue RHS = N->getOperand(1); 9666 9667 // These should really be instruction patterns, but writing patterns with 9668 // source modiifiers is a pain. 9669 9670 // fadd (fadd (a, a), b) -> mad 2.0, a, b 9671 if (LHS.getOpcode() == ISD::FADD) { 9672 SDValue A = LHS.getOperand(0); 9673 if (A == LHS.getOperand(1)) { 9674 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 9675 if (FusedOp != 0) { 9676 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 9677 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 9678 } 9679 } 9680 } 9681 9682 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 9683 if (RHS.getOpcode() == ISD::FADD) { 9684 SDValue A = RHS.getOperand(0); 9685 if (A == RHS.getOperand(1)) { 9686 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 9687 if (FusedOp != 0) { 9688 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 9689 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 9690 } 9691 } 9692 } 9693 9694 return SDValue(); 9695 } 9696 9697 SDValue SITargetLowering::performFSubCombine(SDNode *N, 9698 DAGCombinerInfo &DCI) const { 9699 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9700 return SDValue(); 9701 9702 SelectionDAG &DAG = DCI.DAG; 9703 SDLoc SL(N); 9704 EVT VT = N->getValueType(0); 9705 assert(!VT.isVector()); 9706 9707 // Try to get the fneg to fold into the source modifier. This undoes generic 9708 // DAG combines and folds them into the mad. 9709 // 9710 // Only do this if we are not trying to support denormals. v_mad_f32 does 9711 // not support denormals ever. 9712 SDValue LHS = N->getOperand(0); 9713 SDValue RHS = N->getOperand(1); 9714 if (LHS.getOpcode() == ISD::FADD) { 9715 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 9716 SDValue A = LHS.getOperand(0); 9717 if (A == LHS.getOperand(1)) { 9718 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 9719 if (FusedOp != 0){ 9720 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 9721 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 9722 9723 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 9724 } 9725 } 9726 } 9727 9728 if (RHS.getOpcode() == ISD::FADD) { 9729 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 9730 9731 SDValue A = RHS.getOperand(0); 9732 if (A == RHS.getOperand(1)) { 9733 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 9734 if (FusedOp != 0){ 9735 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 9736 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 9737 } 9738 } 9739 } 9740 9741 return SDValue(); 9742 } 9743 9744 SDValue SITargetLowering::performFMACombine(SDNode *N, 9745 DAGCombinerInfo &DCI) const { 9746 SelectionDAG &DAG = DCI.DAG; 9747 EVT VT = N->getValueType(0); 9748 SDLoc SL(N); 9749 9750 if (!Subtarget->hasDot2Insts() || VT != MVT::f32) 9751 return SDValue(); 9752 9753 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 9754 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 9755 SDValue Op1 = N->getOperand(0); 9756 SDValue Op2 = N->getOperand(1); 9757 SDValue FMA = N->getOperand(2); 9758 9759 if (FMA.getOpcode() != ISD::FMA || 9760 Op1.getOpcode() != ISD::FP_EXTEND || 9761 Op2.getOpcode() != ISD::FP_EXTEND) 9762 return SDValue(); 9763 9764 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 9765 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 9766 // is sufficient to allow generaing fdot2. 9767 const TargetOptions &Options = DAG.getTarget().Options; 9768 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 9769 (N->getFlags().hasAllowContract() && 9770 FMA->getFlags().hasAllowContract())) { 9771 Op1 = Op1.getOperand(0); 9772 Op2 = Op2.getOperand(0); 9773 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9774 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 9775 return SDValue(); 9776 9777 SDValue Vec1 = Op1.getOperand(0); 9778 SDValue Idx1 = Op1.getOperand(1); 9779 SDValue Vec2 = Op2.getOperand(0); 9780 9781 SDValue FMAOp1 = FMA.getOperand(0); 9782 SDValue FMAOp2 = FMA.getOperand(1); 9783 SDValue FMAAcc = FMA.getOperand(2); 9784 9785 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 9786 FMAOp2.getOpcode() != ISD::FP_EXTEND) 9787 return SDValue(); 9788 9789 FMAOp1 = FMAOp1.getOperand(0); 9790 FMAOp2 = FMAOp2.getOperand(0); 9791 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9792 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 9793 return SDValue(); 9794 9795 SDValue Vec3 = FMAOp1.getOperand(0); 9796 SDValue Vec4 = FMAOp2.getOperand(0); 9797 SDValue Idx2 = FMAOp1.getOperand(1); 9798 9799 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 9800 // Idx1 and Idx2 cannot be the same. 9801 Idx1 == Idx2) 9802 return SDValue(); 9803 9804 if (Vec1 == Vec2 || Vec3 == Vec4) 9805 return SDValue(); 9806 9807 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 9808 return SDValue(); 9809 9810 if ((Vec1 == Vec3 && Vec2 == Vec4) || 9811 (Vec1 == Vec4 && Vec2 == Vec3)) { 9812 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 9813 DAG.getTargetConstant(0, SL, MVT::i1)); 9814 } 9815 } 9816 return SDValue(); 9817 } 9818 9819 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 9820 DAGCombinerInfo &DCI) const { 9821 SelectionDAG &DAG = DCI.DAG; 9822 SDLoc SL(N); 9823 9824 SDValue LHS = N->getOperand(0); 9825 SDValue RHS = N->getOperand(1); 9826 EVT VT = LHS.getValueType(); 9827 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 9828 9829 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 9830 if (!CRHS) { 9831 CRHS = dyn_cast<ConstantSDNode>(LHS); 9832 if (CRHS) { 9833 std::swap(LHS, RHS); 9834 CC = getSetCCSwappedOperands(CC); 9835 } 9836 } 9837 9838 if (CRHS) { 9839 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 9840 isBoolSGPR(LHS.getOperand(0))) { 9841 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 9842 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 9843 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 9844 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 9845 if ((CRHS->isAllOnesValue() && 9846 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 9847 (CRHS->isNullValue() && 9848 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 9849 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 9850 DAG.getConstant(-1, SL, MVT::i1)); 9851 if ((CRHS->isAllOnesValue() && 9852 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 9853 (CRHS->isNullValue() && 9854 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 9855 return LHS.getOperand(0); 9856 } 9857 9858 uint64_t CRHSVal = CRHS->getZExtValue(); 9859 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 9860 LHS.getOpcode() == ISD::SELECT && 9861 isa<ConstantSDNode>(LHS.getOperand(1)) && 9862 isa<ConstantSDNode>(LHS.getOperand(2)) && 9863 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 9864 isBoolSGPR(LHS.getOperand(0))) { 9865 // Given CT != FT: 9866 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 9867 // setcc (select cc, CT, CF), CF, ne => cc 9868 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 9869 // setcc (select cc, CT, CF), CT, eq => cc 9870 uint64_t CT = LHS.getConstantOperandVal(1); 9871 uint64_t CF = LHS.getConstantOperandVal(2); 9872 9873 if ((CF == CRHSVal && CC == ISD::SETEQ) || 9874 (CT == CRHSVal && CC == ISD::SETNE)) 9875 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 9876 DAG.getConstant(-1, SL, MVT::i1)); 9877 if ((CF == CRHSVal && CC == ISD::SETNE) || 9878 (CT == CRHSVal && CC == ISD::SETEQ)) 9879 return LHS.getOperand(0); 9880 } 9881 } 9882 9883 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 9884 VT != MVT::f16)) 9885 return SDValue(); 9886 9887 // Match isinf/isfinite pattern 9888 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 9889 // (fcmp one (fabs x), inf) -> (fp_class x, 9890 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 9891 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 9892 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 9893 if (!CRHS) 9894 return SDValue(); 9895 9896 const APFloat &APF = CRHS->getValueAPF(); 9897 if (APF.isInfinity() && !APF.isNegative()) { 9898 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 9899 SIInstrFlags::N_INFINITY; 9900 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 9901 SIInstrFlags::P_ZERO | 9902 SIInstrFlags::N_NORMAL | 9903 SIInstrFlags::P_NORMAL | 9904 SIInstrFlags::N_SUBNORMAL | 9905 SIInstrFlags::P_SUBNORMAL; 9906 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 9907 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 9908 DAG.getConstant(Mask, SL, MVT::i32)); 9909 } 9910 } 9911 9912 return SDValue(); 9913 } 9914 9915 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 9916 DAGCombinerInfo &DCI) const { 9917 SelectionDAG &DAG = DCI.DAG; 9918 SDLoc SL(N); 9919 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 9920 9921 SDValue Src = N->getOperand(0); 9922 SDValue Srl = N->getOperand(0); 9923 if (Srl.getOpcode() == ISD::ZERO_EXTEND) 9924 Srl = Srl.getOperand(0); 9925 9926 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. 9927 if (Srl.getOpcode() == ISD::SRL) { 9928 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 9929 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 9930 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 9931 9932 if (const ConstantSDNode *C = 9933 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 9934 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), 9935 EVT(MVT::i32)); 9936 9937 unsigned SrcOffset = C->getZExtValue() + 8 * Offset; 9938 if (SrcOffset < 32 && SrcOffset % 8 == 0) { 9939 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, 9940 MVT::f32, Srl); 9941 } 9942 } 9943 } 9944 9945 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 9946 9947 KnownBits Known; 9948 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 9949 !DCI.isBeforeLegalizeOps()); 9950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9951 if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { 9952 DCI.CommitTargetLoweringOpt(TLO); 9953 } 9954 9955 return SDValue(); 9956 } 9957 9958 SDValue SITargetLowering::performClampCombine(SDNode *N, 9959 DAGCombinerInfo &DCI) const { 9960 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 9961 if (!CSrc) 9962 return SDValue(); 9963 9964 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 9965 const APFloat &F = CSrc->getValueAPF(); 9966 APFloat Zero = APFloat::getZero(F.getSemantics()); 9967 APFloat::cmpResult Cmp0 = F.compare(Zero); 9968 if (Cmp0 == APFloat::cmpLessThan || 9969 (Cmp0 == APFloat::cmpUnordered && 9970 MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 9971 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 9972 } 9973 9974 APFloat One(F.getSemantics(), "1.0"); 9975 APFloat::cmpResult Cmp1 = F.compare(One); 9976 if (Cmp1 == APFloat::cmpGreaterThan) 9977 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 9978 9979 return SDValue(CSrc, 0); 9980 } 9981 9982 9983 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 9984 DAGCombinerInfo &DCI) const { 9985 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 9986 return SDValue(); 9987 switch (N->getOpcode()) { 9988 default: 9989 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 9990 case ISD::ADD: 9991 return performAddCombine(N, DCI); 9992 case ISD::SUB: 9993 return performSubCombine(N, DCI); 9994 case ISD::ADDCARRY: 9995 case ISD::SUBCARRY: 9996 return performAddCarrySubCarryCombine(N, DCI); 9997 case ISD::FADD: 9998 return performFAddCombine(N, DCI); 9999 case ISD::FSUB: 10000 return performFSubCombine(N, DCI); 10001 case ISD::SETCC: 10002 return performSetCCCombine(N, DCI); 10003 case ISD::FMAXNUM: 10004 case ISD::FMINNUM: 10005 case ISD::FMAXNUM_IEEE: 10006 case ISD::FMINNUM_IEEE: 10007 case ISD::SMAX: 10008 case ISD::SMIN: 10009 case ISD::UMAX: 10010 case ISD::UMIN: 10011 case AMDGPUISD::FMIN_LEGACY: 10012 case AMDGPUISD::FMAX_LEGACY: 10013 return performMinMaxCombine(N, DCI); 10014 case ISD::FMA: 10015 return performFMACombine(N, DCI); 10016 case ISD::LOAD: { 10017 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 10018 return Widended; 10019 LLVM_FALLTHROUGH; 10020 } 10021 case ISD::STORE: 10022 case ISD::ATOMIC_LOAD: 10023 case ISD::ATOMIC_STORE: 10024 case ISD::ATOMIC_CMP_SWAP: 10025 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 10026 case ISD::ATOMIC_SWAP: 10027 case ISD::ATOMIC_LOAD_ADD: 10028 case ISD::ATOMIC_LOAD_SUB: 10029 case ISD::ATOMIC_LOAD_AND: 10030 case ISD::ATOMIC_LOAD_OR: 10031 case ISD::ATOMIC_LOAD_XOR: 10032 case ISD::ATOMIC_LOAD_NAND: 10033 case ISD::ATOMIC_LOAD_MIN: 10034 case ISD::ATOMIC_LOAD_MAX: 10035 case ISD::ATOMIC_LOAD_UMIN: 10036 case ISD::ATOMIC_LOAD_UMAX: 10037 case ISD::ATOMIC_LOAD_FADD: 10038 case AMDGPUISD::ATOMIC_INC: 10039 case AMDGPUISD::ATOMIC_DEC: 10040 case AMDGPUISD::ATOMIC_LOAD_FMIN: 10041 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. 10042 if (DCI.isBeforeLegalize()) 10043 break; 10044 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); 10045 case ISD::AND: 10046 return performAndCombine(N, DCI); 10047 case ISD::OR: 10048 return performOrCombine(N, DCI); 10049 case ISD::XOR: 10050 return performXorCombine(N, DCI); 10051 case ISD::ZERO_EXTEND: 10052 return performZeroExtendCombine(N, DCI); 10053 case ISD::SIGN_EXTEND_INREG: 10054 return performSignExtendInRegCombine(N , DCI); 10055 case AMDGPUISD::FP_CLASS: 10056 return performClassCombine(N, DCI); 10057 case ISD::FCANONICALIZE: 10058 return performFCanonicalizeCombine(N, DCI); 10059 case AMDGPUISD::RCP: 10060 return performRcpCombine(N, DCI); 10061 case AMDGPUISD::FRACT: 10062 case AMDGPUISD::RSQ: 10063 case AMDGPUISD::RCP_LEGACY: 10064 case AMDGPUISD::RSQ_LEGACY: 10065 case AMDGPUISD::RCP_IFLAG: 10066 case AMDGPUISD::RSQ_CLAMP: 10067 case AMDGPUISD::LDEXP: { 10068 SDValue Src = N->getOperand(0); 10069 if (Src.isUndef()) 10070 return Src; 10071 break; 10072 } 10073 case ISD::SINT_TO_FP: 10074 case ISD::UINT_TO_FP: 10075 return performUCharToFloatCombine(N, DCI); 10076 case AMDGPUISD::CVT_F32_UBYTE0: 10077 case AMDGPUISD::CVT_F32_UBYTE1: 10078 case AMDGPUISD::CVT_F32_UBYTE2: 10079 case AMDGPUISD::CVT_F32_UBYTE3: 10080 return performCvtF32UByteNCombine(N, DCI); 10081 case AMDGPUISD::FMED3: 10082 return performFMed3Combine(N, DCI); 10083 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10084 return performCvtPkRTZCombine(N, DCI); 10085 case AMDGPUISD::CLAMP: 10086 return performClampCombine(N, DCI); 10087 case ISD::SCALAR_TO_VECTOR: { 10088 SelectionDAG &DAG = DCI.DAG; 10089 EVT VT = N->getValueType(0); 10090 10091 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 10092 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 10093 SDLoc SL(N); 10094 SDValue Src = N->getOperand(0); 10095 EVT EltVT = Src.getValueType(); 10096 if (EltVT == MVT::f16) 10097 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 10098 10099 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 10100 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 10101 } 10102 10103 break; 10104 } 10105 case ISD::EXTRACT_VECTOR_ELT: 10106 return performExtractVectorEltCombine(N, DCI); 10107 case ISD::INSERT_VECTOR_ELT: 10108 return performInsertVectorEltCombine(N, DCI); 10109 } 10110 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10111 } 10112 10113 /// Helper function for adjustWritemask 10114 static unsigned SubIdx2Lane(unsigned Idx) { 10115 switch (Idx) { 10116 default: return 0; 10117 case AMDGPU::sub0: return 0; 10118 case AMDGPU::sub1: return 1; 10119 case AMDGPU::sub2: return 2; 10120 case AMDGPU::sub3: return 3; 10121 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 10122 } 10123 } 10124 10125 /// Adjust the writemask of MIMG instructions 10126 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 10127 SelectionDAG &DAG) const { 10128 unsigned Opcode = Node->getMachineOpcode(); 10129 10130 // Subtract 1 because the vdata output is not a MachineSDNode operand. 10131 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 10132 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 10133 return Node; // not implemented for D16 10134 10135 SDNode *Users[5] = { nullptr }; 10136 unsigned Lane = 0; 10137 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 10138 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 10139 unsigned NewDmask = 0; 10140 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 10141 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 10142 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || 10143 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; 10144 unsigned TFCLane = 0; 10145 bool HasChain = Node->getNumValues() > 1; 10146 10147 if (OldDmask == 0) { 10148 // These are folded out, but on the chance it happens don't assert. 10149 return Node; 10150 } 10151 10152 unsigned OldBitsSet = countPopulation(OldDmask); 10153 // Work out which is the TFE/LWE lane if that is enabled. 10154 if (UsesTFC) { 10155 TFCLane = OldBitsSet; 10156 } 10157 10158 // Try to figure out the used register components 10159 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 10160 I != E; ++I) { 10161 10162 // Don't look at users of the chain. 10163 if (I.getUse().getResNo() != 0) 10164 continue; 10165 10166 // Abort if we can't understand the usage 10167 if (!I->isMachineOpcode() || 10168 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 10169 return Node; 10170 10171 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 10172 // Note that subregs are packed, i.e. Lane==0 is the first bit set 10173 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 10174 // set, etc. 10175 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 10176 10177 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 10178 if (UsesTFC && Lane == TFCLane) { 10179 Users[Lane] = *I; 10180 } else { 10181 // Set which texture component corresponds to the lane. 10182 unsigned Comp; 10183 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 10184 Comp = countTrailingZeros(Dmask); 10185 Dmask &= ~(1 << Comp); 10186 } 10187 10188 // Abort if we have more than one user per component. 10189 if (Users[Lane]) 10190 return Node; 10191 10192 Users[Lane] = *I; 10193 NewDmask |= 1 << Comp; 10194 } 10195 } 10196 10197 // Don't allow 0 dmask, as hardware assumes one channel enabled. 10198 bool NoChannels = !NewDmask; 10199 if (NoChannels) { 10200 if (!UsesTFC) { 10201 // No uses of the result and not using TFC. Then do nothing. 10202 return Node; 10203 } 10204 // If the original dmask has one channel - then nothing to do 10205 if (OldBitsSet == 1) 10206 return Node; 10207 // Use an arbitrary dmask - required for the instruction to work 10208 NewDmask = 1; 10209 } 10210 // Abort if there's no change 10211 if (NewDmask == OldDmask) 10212 return Node; 10213 10214 unsigned BitsSet = countPopulation(NewDmask); 10215 10216 // Check for TFE or LWE - increase the number of channels by one to account 10217 // for the extra return value 10218 // This will need adjustment for D16 if this is also included in 10219 // adjustWriteMask (this function) but at present D16 are excluded. 10220 unsigned NewChannels = BitsSet + UsesTFC; 10221 10222 int NewOpcode = 10223 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 10224 assert(NewOpcode != -1 && 10225 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 10226 "failed to find equivalent MIMG op"); 10227 10228 // Adjust the writemask in the node 10229 SmallVector<SDValue, 12> Ops; 10230 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 10231 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 10232 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 10233 10234 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 10235 10236 MVT ResultVT = NewChannels == 1 ? 10237 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 10238 NewChannels == 5 ? 8 : NewChannels); 10239 SDVTList NewVTList = HasChain ? 10240 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 10241 10242 10243 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 10244 NewVTList, Ops); 10245 10246 if (HasChain) { 10247 // Update chain. 10248 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 10249 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 10250 } 10251 10252 if (NewChannels == 1) { 10253 assert(Node->hasNUsesOfValue(1, 0)); 10254 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 10255 SDLoc(Node), Users[Lane]->getValueType(0), 10256 SDValue(NewNode, 0)); 10257 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 10258 return nullptr; 10259 } 10260 10261 // Update the users of the node with the new indices 10262 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 10263 SDNode *User = Users[i]; 10264 if (!User) { 10265 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 10266 // Users[0] is still nullptr because channel 0 doesn't really have a use. 10267 if (i || !NoChannels) 10268 continue; 10269 } else { 10270 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 10271 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 10272 } 10273 10274 switch (Idx) { 10275 default: break; 10276 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 10277 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 10278 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 10279 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 10280 } 10281 } 10282 10283 DAG.RemoveDeadNode(Node); 10284 return nullptr; 10285 } 10286 10287 static bool isFrameIndexOp(SDValue Op) { 10288 if (Op.getOpcode() == ISD::AssertZext) 10289 Op = Op.getOperand(0); 10290 10291 return isa<FrameIndexSDNode>(Op); 10292 } 10293 10294 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 10295 /// with frame index operands. 10296 /// LLVM assumes that inputs are to these instructions are registers. 10297 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 10298 SelectionDAG &DAG) const { 10299 if (Node->getOpcode() == ISD::CopyToReg) { 10300 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 10301 SDValue SrcVal = Node->getOperand(2); 10302 10303 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 10304 // to try understanding copies to physical registers. 10305 if (SrcVal.getValueType() == MVT::i1 && 10306 Register::isPhysicalRegister(DestReg->getReg())) { 10307 SDLoc SL(Node); 10308 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10309 SDValue VReg = DAG.getRegister( 10310 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 10311 10312 SDNode *Glued = Node->getGluedNode(); 10313 SDValue ToVReg 10314 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 10315 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 10316 SDValue ToResultReg 10317 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 10318 VReg, ToVReg.getValue(1)); 10319 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 10320 DAG.RemoveDeadNode(Node); 10321 return ToResultReg.getNode(); 10322 } 10323 } 10324 10325 SmallVector<SDValue, 8> Ops; 10326 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 10327 if (!isFrameIndexOp(Node->getOperand(i))) { 10328 Ops.push_back(Node->getOperand(i)); 10329 continue; 10330 } 10331 10332 SDLoc DL(Node); 10333 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 10334 Node->getOperand(i).getValueType(), 10335 Node->getOperand(i)), 0)); 10336 } 10337 10338 return DAG.UpdateNodeOperands(Node, Ops); 10339 } 10340 10341 /// Fold the instructions after selecting them. 10342 /// Returns null if users were already updated. 10343 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 10344 SelectionDAG &DAG) const { 10345 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10346 unsigned Opcode = Node->getMachineOpcode(); 10347 10348 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 10349 !TII->isGather4(Opcode)) { 10350 return adjustWritemask(Node, DAG); 10351 } 10352 10353 if (Opcode == AMDGPU::INSERT_SUBREG || 10354 Opcode == AMDGPU::REG_SEQUENCE) { 10355 legalizeTargetIndependentNode(Node, DAG); 10356 return Node; 10357 } 10358 10359 switch (Opcode) { 10360 case AMDGPU::V_DIV_SCALE_F32: 10361 case AMDGPU::V_DIV_SCALE_F64: { 10362 // Satisfy the operand register constraint when one of the inputs is 10363 // undefined. Ordinarily each undef value will have its own implicit_def of 10364 // a vreg, so force these to use a single register. 10365 SDValue Src0 = Node->getOperand(0); 10366 SDValue Src1 = Node->getOperand(1); 10367 SDValue Src2 = Node->getOperand(2); 10368 10369 if ((Src0.isMachineOpcode() && 10370 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 10371 (Src0 == Src1 || Src0 == Src2)) 10372 break; 10373 10374 MVT VT = Src0.getValueType().getSimpleVT(); 10375 const TargetRegisterClass *RC = 10376 getRegClassFor(VT, Src0.getNode()->isDivergent()); 10377 10378 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10379 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 10380 10381 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 10382 UndefReg, Src0, SDValue()); 10383 10384 // src0 must be the same register as src1 or src2, even if the value is 10385 // undefined, so make sure we don't violate this constraint. 10386 if (Src0.isMachineOpcode() && 10387 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 10388 if (Src1.isMachineOpcode() && 10389 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10390 Src0 = Src1; 10391 else if (Src2.isMachineOpcode() && 10392 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10393 Src0 = Src2; 10394 else { 10395 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 10396 Src0 = UndefReg; 10397 Src1 = UndefReg; 10398 } 10399 } else 10400 break; 10401 10402 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; 10403 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) 10404 Ops.push_back(Node->getOperand(I)); 10405 10406 Ops.push_back(ImpDef.getValue(1)); 10407 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 10408 } 10409 case AMDGPU::V_PERMLANE16_B32: 10410 case AMDGPU::V_PERMLANEX16_B32: { 10411 ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0)); 10412 ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2)); 10413 if (!FI->getZExtValue() && !BC->getZExtValue()) 10414 break; 10415 SDValue VDstIn = Node->getOperand(6); 10416 if (VDstIn.isMachineOpcode() 10417 && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) 10418 break; 10419 MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 10420 SDLoc(Node), MVT::i32); 10421 SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1), 10422 SDValue(BC, 0), Node->getOperand(3), 10423 Node->getOperand(4), Node->getOperand(5), 10424 SDValue(ImpDef, 0), Node->getOperand(7) }; 10425 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 10426 } 10427 default: 10428 break; 10429 } 10430 10431 return Node; 10432 } 10433 10434 /// Assign the register class depending on the number of 10435 /// bits set in the writemask 10436 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 10437 SDNode *Node) const { 10438 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10439 10440 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 10441 10442 if (TII->isVOP3(MI.getOpcode())) { 10443 // Make sure constant bus requirements are respected. 10444 TII->legalizeOperandsVOP3(MRI, MI); 10445 10446 // Prefer VGPRs over AGPRs in mAI instructions where possible. 10447 // This saves a chain-copy of registers and better ballance register 10448 // use between vgpr and agpr as agpr tuples tend to be big. 10449 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { 10450 unsigned Opc = MI.getOpcode(); 10451 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10452 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 10453 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 10454 if (I == -1) 10455 break; 10456 MachineOperand &Op = MI.getOperand(I); 10457 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && 10458 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || 10459 !Register::isVirtualRegister(Op.getReg()) || 10460 !TRI->isAGPR(MRI, Op.getReg())) 10461 continue; 10462 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 10463 if (!Src || !Src->isCopy() || 10464 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 10465 continue; 10466 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 10467 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 10468 // All uses of agpr64 and agpr32 can also accept vgpr except for 10469 // v_accvgpr_read, but we do not produce agpr reads during selection, 10470 // so no use checks are needed. 10471 MRI.setRegClass(Op.getReg(), NewRC); 10472 } 10473 } 10474 10475 return; 10476 } 10477 10478 // Replace unused atomics with the no return version. 10479 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 10480 if (NoRetAtomicOp != -1) { 10481 if (!Node->hasAnyUseOfValue(0)) { 10482 MI.setDesc(TII->get(NoRetAtomicOp)); 10483 MI.RemoveOperand(0); 10484 return; 10485 } 10486 10487 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 10488 // instruction, because the return type of these instructions is a vec2 of 10489 // the memory type, so it can be tied to the input operand. 10490 // This means these instructions always have a use, so we need to add a 10491 // special case to check if the atomic has only one extract_subreg use, 10492 // which itself has no uses. 10493 if ((Node->hasNUsesOfValue(1, 0) && 10494 Node->use_begin()->isMachineOpcode() && 10495 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 10496 !Node->use_begin()->hasAnyUseOfValue(0))) { 10497 Register Def = MI.getOperand(0).getReg(); 10498 10499 // Change this into a noret atomic. 10500 MI.setDesc(TII->get(NoRetAtomicOp)); 10501 MI.RemoveOperand(0); 10502 10503 // If we only remove the def operand from the atomic instruction, the 10504 // extract_subreg will be left with a use of a vreg without a def. 10505 // So we need to insert an implicit_def to avoid machine verifier 10506 // errors. 10507 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 10508 TII->get(AMDGPU::IMPLICIT_DEF), Def); 10509 } 10510 return; 10511 } 10512 } 10513 10514 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 10515 uint64_t Val) { 10516 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 10517 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 10518 } 10519 10520 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 10521 const SDLoc &DL, 10522 SDValue Ptr) const { 10523 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10524 10525 // Build the half of the subregister with the constants before building the 10526 // full 128-bit register. If we are building multiple resource descriptors, 10527 // this will allow CSEing of the 2-component register. 10528 const SDValue Ops0[] = { 10529 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 10530 buildSMovImm32(DAG, DL, 0), 10531 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 10532 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 10533 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 10534 }; 10535 10536 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 10537 MVT::v2i32, Ops0), 0); 10538 10539 // Combine the constants and the pointer. 10540 const SDValue Ops1[] = { 10541 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 10542 Ptr, 10543 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 10544 SubRegHi, 10545 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 10546 }; 10547 10548 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 10549 } 10550 10551 /// Return a resource descriptor with the 'Add TID' bit enabled 10552 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 10553 /// of the resource descriptor) to create an offset, which is added to 10554 /// the resource pointer. 10555 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 10556 SDValue Ptr, uint32_t RsrcDword1, 10557 uint64_t RsrcDword2And3) const { 10558 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 10559 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 10560 if (RsrcDword1) { 10561 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 10562 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 10563 0); 10564 } 10565 10566 SDValue DataLo = buildSMovImm32(DAG, DL, 10567 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 10568 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 10569 10570 const SDValue Ops[] = { 10571 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 10572 PtrLo, 10573 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 10574 PtrHi, 10575 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 10576 DataLo, 10577 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 10578 DataHi, 10579 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 10580 }; 10581 10582 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 10583 } 10584 10585 //===----------------------------------------------------------------------===// 10586 // SI Inline Assembly Support 10587 //===----------------------------------------------------------------------===// 10588 10589 std::pair<unsigned, const TargetRegisterClass *> 10590 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10591 StringRef Constraint, 10592 MVT VT) const { 10593 const TargetRegisterClass *RC = nullptr; 10594 if (Constraint.size() == 1) { 10595 switch (Constraint[0]) { 10596 default: 10597 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10598 case 's': 10599 case 'r': 10600 switch (VT.getSizeInBits()) { 10601 default: 10602 return std::make_pair(0U, nullptr); 10603 case 32: 10604 case 16: 10605 RC = &AMDGPU::SReg_32RegClass; 10606 break; 10607 case 64: 10608 RC = &AMDGPU::SGPR_64RegClass; 10609 break; 10610 case 96: 10611 RC = &AMDGPU::SReg_96RegClass; 10612 break; 10613 case 128: 10614 RC = &AMDGPU::SGPR_128RegClass; 10615 break; 10616 case 160: 10617 RC = &AMDGPU::SReg_160RegClass; 10618 break; 10619 case 256: 10620 RC = &AMDGPU::SReg_256RegClass; 10621 break; 10622 case 512: 10623 RC = &AMDGPU::SReg_512RegClass; 10624 break; 10625 } 10626 break; 10627 case 'v': 10628 switch (VT.getSizeInBits()) { 10629 default: 10630 return std::make_pair(0U, nullptr); 10631 case 32: 10632 case 16: 10633 RC = &AMDGPU::VGPR_32RegClass; 10634 break; 10635 case 64: 10636 RC = &AMDGPU::VReg_64RegClass; 10637 break; 10638 case 96: 10639 RC = &AMDGPU::VReg_96RegClass; 10640 break; 10641 case 128: 10642 RC = &AMDGPU::VReg_128RegClass; 10643 break; 10644 case 160: 10645 RC = &AMDGPU::VReg_160RegClass; 10646 break; 10647 case 256: 10648 RC = &AMDGPU::VReg_256RegClass; 10649 break; 10650 case 512: 10651 RC = &AMDGPU::VReg_512RegClass; 10652 break; 10653 } 10654 break; 10655 case 'a': 10656 if (!Subtarget->hasMAIInsts()) 10657 break; 10658 switch (VT.getSizeInBits()) { 10659 default: 10660 return std::make_pair(0U, nullptr); 10661 case 32: 10662 case 16: 10663 RC = &AMDGPU::AGPR_32RegClass; 10664 break; 10665 case 64: 10666 RC = &AMDGPU::AReg_64RegClass; 10667 break; 10668 case 128: 10669 RC = &AMDGPU::AReg_128RegClass; 10670 break; 10671 case 512: 10672 RC = &AMDGPU::AReg_512RegClass; 10673 break; 10674 case 1024: 10675 RC = &AMDGPU::AReg_1024RegClass; 10676 // v32 types are not legal but we support them here. 10677 return std::make_pair(0U, RC); 10678 } 10679 break; 10680 } 10681 // We actually support i128, i16 and f16 as inline parameters 10682 // even if they are not reported as legal 10683 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 10684 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 10685 return std::make_pair(0U, RC); 10686 } 10687 10688 if (Constraint.size() > 1) { 10689 if (Constraint[1] == 'v') { 10690 RC = &AMDGPU::VGPR_32RegClass; 10691 } else if (Constraint[1] == 's') { 10692 RC = &AMDGPU::SGPR_32RegClass; 10693 } else if (Constraint[1] == 'a') { 10694 RC = &AMDGPU::AGPR_32RegClass; 10695 } 10696 10697 if (RC) { 10698 uint32_t Idx; 10699 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 10700 if (!Failed && Idx < RC->getNumRegs()) 10701 return std::make_pair(RC->getRegister(Idx), RC); 10702 } 10703 } 10704 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10705 } 10706 10707 SITargetLowering::ConstraintType 10708 SITargetLowering::getConstraintType(StringRef Constraint) const { 10709 if (Constraint.size() == 1) { 10710 switch (Constraint[0]) { 10711 default: break; 10712 case 's': 10713 case 'v': 10714 case 'a': 10715 return C_RegisterClass; 10716 } 10717 } 10718 return TargetLowering::getConstraintType(Constraint); 10719 } 10720 10721 // Figure out which registers should be reserved for stack access. Only after 10722 // the function is legalized do we know all of the non-spill stack objects or if 10723 // calls are present. 10724 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 10725 MachineRegisterInfo &MRI = MF.getRegInfo(); 10726 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10727 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 10728 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10729 10730 if (Info->isEntryFunction()) { 10731 // Callable functions have fixed registers used for stack access. 10732 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 10733 } 10734 10735 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 10736 Info->getStackPtrOffsetReg())); 10737 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 10738 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 10739 10740 // We need to worry about replacing the default register with itself in case 10741 // of MIR testcases missing the MFI. 10742 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 10743 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 10744 10745 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 10746 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 10747 10748 if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) { 10749 MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, 10750 Info->getScratchWaveOffsetReg()); 10751 } 10752 10753 Info->limitOccupancy(MF); 10754 10755 if (ST.isWave32() && !MF.empty()) { 10756 // Add VCC_HI def because many instructions marked as imp-use VCC where 10757 // we may only define VCC_LO. If nothing defines VCC_HI we may end up 10758 // having a use of undef. 10759 10760 const SIInstrInfo *TII = ST.getInstrInfo(); 10761 DebugLoc DL; 10762 10763 MachineBasicBlock &MBB = MF.front(); 10764 MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr(); 10765 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI); 10766 10767 for (auto &MBB : MF) { 10768 for (auto &MI : MBB) { 10769 TII->fixImplicitOperands(MI); 10770 } 10771 } 10772 } 10773 10774 TargetLoweringBase::finalizeLowering(MF); 10775 } 10776 10777 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 10778 KnownBits &Known, 10779 const APInt &DemandedElts, 10780 const SelectionDAG &DAG, 10781 unsigned Depth) const { 10782 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, 10783 DAG, Depth); 10784 10785 // Set the high bits to zero based on the maximum allowed scratch size per 10786 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 10787 // calculation won't overflow, so assume the sign bit is never set. 10788 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 10789 } 10790 10791 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10792 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 10793 const Align CacheLineAlign = Align(64); 10794 10795 // Pre-GFX10 target did not benefit from loop alignment 10796 if (!ML || DisableLoopAlignment || 10797 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 10798 getSubtarget()->hasInstFwdPrefetchBug()) 10799 return PrefAlign; 10800 10801 // On GFX10 I$ is 4 x 64 bytes cache lines. 10802 // By default prefetcher keeps one cache line behind and reads two ahead. 10803 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 10804 // behind and one ahead. 10805 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 10806 // If loop fits 64 bytes it always spans no more than two cache lines and 10807 // does not need an alignment. 10808 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 10809 // Else if loop is less or equal 192 bytes we need two lines behind. 10810 10811 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10812 const MachineBasicBlock *Header = ML->getHeader(); 10813 if (Header->getAlignment() != PrefAlign) 10814 return Header->getAlignment(); // Already processed. 10815 10816 unsigned LoopSize = 0; 10817 for (const MachineBasicBlock *MBB : ML->blocks()) { 10818 // If inner loop block is aligned assume in average half of the alignment 10819 // size to be added as nops. 10820 if (MBB != Header) 10821 LoopSize += MBB->getAlignment().value() / 2; 10822 10823 for (const MachineInstr &MI : *MBB) { 10824 LoopSize += TII->getInstSizeInBytes(MI); 10825 if (LoopSize > 192) 10826 return PrefAlign; 10827 } 10828 } 10829 10830 if (LoopSize <= 64) 10831 return PrefAlign; 10832 10833 if (LoopSize <= 128) 10834 return CacheLineAlign; 10835 10836 // If any of parent loops is surrounded by prefetch instructions do not 10837 // insert new for inner loop, which would reset parent's settings. 10838 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 10839 if (MachineBasicBlock *Exit = P->getExitBlock()) { 10840 auto I = Exit->getFirstNonDebugInstr(); 10841 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 10842 return CacheLineAlign; 10843 } 10844 } 10845 10846 MachineBasicBlock *Pre = ML->getLoopPreheader(); 10847 MachineBasicBlock *Exit = ML->getExitBlock(); 10848 10849 if (Pre && Exit) { 10850 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 10851 TII->get(AMDGPU::S_INST_PREFETCH)) 10852 .addImm(1); // prefetch 2 lines behind PC 10853 10854 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 10855 TII->get(AMDGPU::S_INST_PREFETCH)) 10856 .addImm(2); // prefetch 1 line behind PC 10857 } 10858 10859 return CacheLineAlign; 10860 } 10861 10862 LLVM_ATTRIBUTE_UNUSED 10863 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 10864 assert(N->getOpcode() == ISD::CopyFromReg); 10865 do { 10866 // Follow the chain until we find an INLINEASM node. 10867 N = N->getOperand(0).getNode(); 10868 if (N->getOpcode() == ISD::INLINEASM || 10869 N->getOpcode() == ISD::INLINEASM_BR) 10870 return true; 10871 } while (N->getOpcode() == ISD::CopyFromReg); 10872 return false; 10873 } 10874 10875 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 10876 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const 10877 { 10878 switch (N->getOpcode()) { 10879 case ISD::CopyFromReg: 10880 { 10881 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 10882 const MachineFunction * MF = FLI->MF; 10883 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 10884 const MachineRegisterInfo &MRI = MF->getRegInfo(); 10885 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); 10886 unsigned Reg = R->getReg(); 10887 if (Register::isPhysicalRegister(Reg)) 10888 return !TRI.isSGPRReg(MRI, Reg); 10889 10890 if (MRI.isLiveIn(Reg)) { 10891 // workitem.id.x workitem.id.y workitem.id.z 10892 // Any VGPR formal argument is also considered divergent 10893 if (!TRI.isSGPRReg(MRI, Reg)) 10894 return true; 10895 // Formal arguments of non-entry functions 10896 // are conservatively considered divergent 10897 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) 10898 return true; 10899 return false; 10900 } 10901 const Value *V = FLI->getValueFromVirtualReg(Reg); 10902 if (V) 10903 return KDA->isDivergent(V); 10904 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 10905 return !TRI.isSGPRReg(MRI, Reg); 10906 } 10907 break; 10908 case ISD::LOAD: { 10909 const LoadSDNode *L = cast<LoadSDNode>(N); 10910 unsigned AS = L->getAddressSpace(); 10911 // A flat load may access private memory. 10912 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 10913 } break; 10914 case ISD::CALLSEQ_END: 10915 return true; 10916 break; 10917 case ISD::INTRINSIC_WO_CHAIN: 10918 { 10919 10920 } 10921 return AMDGPU::isIntrinsicSourceOfDivergence( 10922 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 10923 case ISD::INTRINSIC_W_CHAIN: 10924 return AMDGPU::isIntrinsicSourceOfDivergence( 10925 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 10926 } 10927 return false; 10928 } 10929 10930 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 10931 EVT VT) const { 10932 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 10933 case MVT::f32: 10934 return hasFP32Denormals(DAG.getMachineFunction()); 10935 case MVT::f64: 10936 case MVT::f16: 10937 return hasFP64FP16Denormals(DAG.getMachineFunction()); 10938 default: 10939 return false; 10940 } 10941 } 10942 10943 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 10944 const SelectionDAG &DAG, 10945 bool SNaN, 10946 unsigned Depth) const { 10947 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 10948 const MachineFunction &MF = DAG.getMachineFunction(); 10949 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10950 10951 if (Info->getMode().DX10Clamp) 10952 return true; // Clamped to 0. 10953 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 10954 } 10955 10956 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 10957 SNaN, Depth); 10958 } 10959 10960 TargetLowering::AtomicExpansionKind 10961 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 10962 switch (RMW->getOperation()) { 10963 case AtomicRMWInst::FAdd: { 10964 Type *Ty = RMW->getType(); 10965 10966 // We don't have a way to support 16-bit atomics now, so just leave them 10967 // as-is. 10968 if (Ty->isHalfTy()) 10969 return AtomicExpansionKind::None; 10970 10971 if (!Ty->isFloatTy()) 10972 return AtomicExpansionKind::CmpXChg; 10973 10974 // TODO: Do have these for flat. Older targets also had them for buffers. 10975 unsigned AS = RMW->getPointerAddressSpace(); 10976 10977 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) { 10978 return RMW->use_empty() ? AtomicExpansionKind::None : 10979 AtomicExpansionKind::CmpXChg; 10980 } 10981 10982 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? 10983 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; 10984 } 10985 default: 10986 break; 10987 } 10988 10989 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 10990 } 10991 10992 const TargetRegisterClass * 10993 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 10994 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 10995 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10996 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 10997 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 10998 : &AMDGPU::SReg_32RegClass; 10999 if (!TRI->isSGPRClass(RC) && !isDivergent) 11000 return TRI->getEquivalentSGPRClass(RC); 11001 else if (TRI->isSGPRClass(RC) && isDivergent) 11002 return TRI->getEquivalentVGPRClass(RC); 11003 11004 return RC; 11005 } 11006 11007 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited) { 11008 if (!isa<Instruction>(V)) 11009 return false; 11010 if (!Visited.insert(V).second) 11011 return false; 11012 bool Result = false; 11013 for (auto U : V->users()) { 11014 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 11015 if (V == U->getOperand(1)) { 11016 switch (Intrinsic->getIntrinsicID()) { 11017 default: 11018 Result = false; 11019 break; 11020 case Intrinsic::amdgcn_if_break: 11021 case Intrinsic::amdgcn_if: 11022 case Intrinsic::amdgcn_else: 11023 Result = true; 11024 break; 11025 } 11026 } 11027 if (V == U->getOperand(0)) { 11028 switch (Intrinsic->getIntrinsicID()) { 11029 default: 11030 Result = false; 11031 break; 11032 case Intrinsic::amdgcn_end_cf: 11033 case Intrinsic::amdgcn_loop: 11034 Result = true; 11035 break; 11036 } 11037 } 11038 } else { 11039 Result = hasCFUser(U, Visited); 11040 } 11041 if (Result) 11042 break; 11043 } 11044 return Result; 11045 } 11046 11047 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 11048 const Value *V) const { 11049 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 11050 switch (Intrinsic->getIntrinsicID()) { 11051 default: 11052 return false; 11053 case Intrinsic::amdgcn_if_break: 11054 return true; 11055 } 11056 } 11057 if (const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V)) { 11058 if (const IntrinsicInst *Intrinsic = 11059 dyn_cast<IntrinsicInst>(ExtValue->getOperand(0))) { 11060 switch (Intrinsic->getIntrinsicID()) { 11061 default: 11062 return false; 11063 case Intrinsic::amdgcn_if: 11064 case Intrinsic::amdgcn_else: { 11065 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 11066 if (Indices.size() == 1 && Indices[0] == 1) { 11067 return true; 11068 } 11069 } 11070 } 11071 } 11072 } 11073 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 11074 if (isa<InlineAsm>(CI->getCalledValue())) { 11075 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 11076 ImmutableCallSite CS(CI); 11077 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 11078 MF.getDataLayout(), Subtarget->getRegisterInfo(), CS); 11079 for (auto &TC : TargetConstraints) { 11080 if (TC.Type == InlineAsm::isOutput) { 11081 ComputeConstraintToUse(TC, SDValue()); 11082 unsigned AssignedReg; 11083 const TargetRegisterClass *RC; 11084 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint( 11085 SIRI, TC.ConstraintCode, TC.ConstraintVT); 11086 if (RC) { 11087 MachineRegisterInfo &MRI = MF.getRegInfo(); 11088 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg)) 11089 return true; 11090 else if (SIRI->isSGPRClass(RC)) 11091 return true; 11092 } 11093 } 11094 } 11095 } 11096 } 11097 SmallPtrSet<const Value *, 16> Visited; 11098 return hasCFUser(V, Visited); 11099 } 11100