1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "SIDefines.h" 20 #include "SIInstrInfo.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "SIRegisterInfo.h" 23 #include "Utils/AMDGPUBaseInfo.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/StringSwitch.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/CallingConvLower.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineLoopInfo.h" 45 #include "llvm/CodeGen/MachineMemOperand.h" 46 #include "llvm/CodeGen/MachineModuleInfo.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/SelectionDAG.h" 50 #include "llvm/CodeGen/SelectionDAGNodes.h" 51 #include "llvm/CodeGen/TargetCallingConv.h" 52 #include "llvm/CodeGen/TargetRegisterInfo.h" 53 #include "llvm/CodeGen/ValueTypes.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/DiagnosticInfo.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GlobalValue.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Compiler.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MachineValueType.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <cassert> 76 #include <cmath> 77 #include <cstdint> 78 #include <iterator> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 #define DEBUG_TYPE "si-lower" 86 87 STATISTIC(NumTailCalls, "Number of tail calls"); 88 89 static cl::opt<bool> DisableLoopAlignment( 90 "amdgpu-disable-loop-alignment", 91 cl::desc("Do not align and prefetch loops"), 92 cl::init(false)); 93 94 static cl::opt<bool> VGPRReserveforSGPRSpill( 95 "amdgpu-reserve-vgpr-for-sgpr-spill", 96 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true)); 97 98 static cl::opt<bool> UseDivergentRegisterIndexing( 99 "amdgpu-use-divergent-register-indexing", 100 cl::Hidden, 101 cl::desc("Use indirect register addressing for divergent indexes"), 102 cl::init(false)); 103 104 static bool hasFP32Denormals(const MachineFunction &MF) { 105 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 106 return Info->getMode().allFP32Denormals(); 107 } 108 109 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 110 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 111 return Info->getMode().allFP64FP16Denormals(); 112 } 113 114 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 115 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 116 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 117 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 118 return AMDGPU::SGPR0 + Reg; 119 } 120 } 121 llvm_unreachable("Cannot allocate sgpr"); 122 } 123 124 SITargetLowering::SITargetLowering(const TargetMachine &TM, 125 const GCNSubtarget &STI) 126 : AMDGPUTargetLowering(TM, STI), 127 Subtarget(&STI) { 128 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 129 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 130 131 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 132 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 133 134 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 135 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 136 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 137 138 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 139 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); 140 141 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 142 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 143 144 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 145 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 146 147 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 148 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); 149 150 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 151 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 152 153 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 154 addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass); 155 156 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 157 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 158 159 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 160 addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass); 161 162 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 163 addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass); 164 165 if (Subtarget->has16BitInsts()) { 166 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 167 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 168 169 // Unless there are also VOP3P operations, not operations are really legal. 170 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 171 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 172 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 173 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 174 } 175 176 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 177 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass); 178 179 computeRegisterProperties(Subtarget->getRegisterInfo()); 180 181 // The boolean content concept here is too inflexible. Compares only ever 182 // really produce a 1-bit result. Any copy/extend from these will turn into a 183 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 184 // it's what most targets use. 185 setBooleanContents(ZeroOrOneBooleanContent); 186 setBooleanVectorContents(ZeroOrOneBooleanContent); 187 188 // We need to custom lower vector stores from local memory 189 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 190 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 191 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 192 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 193 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 194 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 195 setOperationAction(ISD::LOAD, MVT::i1, Custom); 196 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 197 198 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 199 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 200 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 201 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 202 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 203 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 204 setOperationAction(ISD::STORE, MVT::i1, Custom); 205 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 206 207 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 208 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 209 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 210 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 211 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 212 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 213 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 214 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 215 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 216 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 217 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 218 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 219 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 220 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 221 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 222 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 223 224 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 225 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 226 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 227 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 228 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 229 230 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 231 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 232 233 setOperationAction(ISD::SELECT, MVT::i1, Promote); 234 setOperationAction(ISD::SELECT, MVT::i64, Custom); 235 setOperationAction(ISD::SELECT, MVT::f64, Promote); 236 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 237 238 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 239 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 240 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 242 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 243 244 setOperationAction(ISD::SETCC, MVT::i1, Promote); 245 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 246 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 247 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 248 249 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 250 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 251 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand); 252 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand); 253 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand); 254 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand); 255 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand); 256 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand); 257 258 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 259 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 266 267 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 268 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 269 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 270 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 271 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 272 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 273 274 setOperationAction(ISD::UADDO, MVT::i32, Legal); 275 setOperationAction(ISD::USUBO, MVT::i32, Legal); 276 277 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 278 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 279 280 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 281 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 282 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 283 284 #if 0 285 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 286 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 287 #endif 288 289 // We only support LOAD/STORE and vector manipulation ops for vectors 290 // with > 4 elements. 291 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 292 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 293 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 294 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) { 295 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 296 switch (Op) { 297 case ISD::LOAD: 298 case ISD::STORE: 299 case ISD::BUILD_VECTOR: 300 case ISD::BITCAST: 301 case ISD::EXTRACT_VECTOR_ELT: 302 case ISD::INSERT_VECTOR_ELT: 303 case ISD::INSERT_SUBVECTOR: 304 case ISD::EXTRACT_SUBVECTOR: 305 case ISD::SCALAR_TO_VECTOR: 306 break; 307 case ISD::CONCAT_VECTORS: 308 setOperationAction(Op, VT, Custom); 309 break; 310 default: 311 setOperationAction(Op, VT, Expand); 312 break; 313 } 314 } 315 } 316 317 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 318 319 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 320 // is expanded to avoid having two separate loops in case the index is a VGPR. 321 322 // Most operations are naturally 32-bit vector operations. We only support 323 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 324 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 325 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 326 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 327 328 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 329 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 330 331 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 332 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 333 334 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 335 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 336 } 337 338 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 339 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 340 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 341 342 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 343 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 344 345 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 346 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 347 348 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 349 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 350 } 351 352 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 353 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 354 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 355 356 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 357 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 358 359 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 360 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 361 362 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 363 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 364 } 365 366 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 367 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 368 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 369 370 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 371 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 372 373 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 374 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 375 376 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 377 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 378 } 379 380 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 381 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 382 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 383 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 384 385 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 386 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 387 388 // Avoid stack access for these. 389 // TODO: Generalize to more vector types. 390 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 392 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 393 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 394 395 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 396 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 399 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 400 401 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 402 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 403 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 404 405 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 406 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 407 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 408 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 409 410 // Deal with vec3 vector operations when widened to vec4. 411 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 414 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 415 416 // Deal with vec5 vector operations when widened to vec8. 417 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 418 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 419 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 420 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 421 422 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 423 // and output demarshalling 424 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 425 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 426 427 // We can't return success/failure, only the old value, 428 // let LLVM add the comparison 429 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 430 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 431 432 if (Subtarget->hasFlatAddressSpace()) { 433 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 434 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 435 } 436 437 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 438 439 // FIXME: This should be narrowed to i32, but that only happens if i64 is 440 // illegal. 441 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 442 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 443 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 444 445 // On SI this is s_memtime and s_memrealtime on VI. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 447 setOperationAction(ISD::TRAP, MVT::Other, Custom); 448 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 449 450 if (Subtarget->has16BitInsts()) { 451 setOperationAction(ISD::FPOW, MVT::f16, Promote); 452 setOperationAction(ISD::FLOG, MVT::f16, Custom); 453 setOperationAction(ISD::FEXP, MVT::f16, Custom); 454 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 455 } 456 457 if (Subtarget->hasMadMacF32Insts()) 458 setOperationAction(ISD::FMAD, MVT::f32, Legal); 459 460 if (!Subtarget->hasBFI()) { 461 // fcopysign can be done in a single instruction with BFI. 462 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 463 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 464 } 465 466 if (!Subtarget->hasBCNT(32)) 467 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 468 469 if (!Subtarget->hasBCNT(64)) 470 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 471 472 if (Subtarget->hasFFBH()) 473 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 474 475 if (Subtarget->hasFFBL()) 476 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 477 478 // We only really have 32-bit BFE instructions (and 16-bit on VI). 479 // 480 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 481 // effort to match them now. We want this to be false for i64 cases when the 482 // extraction isn't restricted to the upper or lower half. Ideally we would 483 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 484 // span the midpoint are probably relatively rare, so don't worry about them 485 // for now. 486 if (Subtarget->hasBFE()) 487 setHasExtractBitsInsn(true); 488 489 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 490 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 491 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 492 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 493 494 495 // These are really only legal for ieee_mode functions. We should be avoiding 496 // them for functions that don't have ieee_mode enabled, so just say they are 497 // legal. 498 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 499 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 500 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 501 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 502 503 504 if (Subtarget->haveRoundOpsF64()) { 505 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 506 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::f64, Legal); 508 } else { 509 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 510 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 511 setOperationAction(ISD::FRINT, MVT::f64, Custom); 512 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 513 } 514 515 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 516 517 setOperationAction(ISD::FSIN, MVT::f32, Custom); 518 setOperationAction(ISD::FCOS, MVT::f32, Custom); 519 setOperationAction(ISD::FDIV, MVT::f32, Custom); 520 setOperationAction(ISD::FDIV, MVT::f64, Custom); 521 522 if (Subtarget->has16BitInsts()) { 523 setOperationAction(ISD::Constant, MVT::i16, Legal); 524 525 setOperationAction(ISD::SMIN, MVT::i16, Legal); 526 setOperationAction(ISD::SMAX, MVT::i16, Legal); 527 528 setOperationAction(ISD::UMIN, MVT::i16, Legal); 529 setOperationAction(ISD::UMAX, MVT::i16, Legal); 530 531 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 532 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 533 534 setOperationAction(ISD::ROTR, MVT::i16, Promote); 535 setOperationAction(ISD::ROTL, MVT::i16, Promote); 536 537 setOperationAction(ISD::SDIV, MVT::i16, Promote); 538 setOperationAction(ISD::UDIV, MVT::i16, Promote); 539 setOperationAction(ISD::SREM, MVT::i16, Promote); 540 setOperationAction(ISD::UREM, MVT::i16, Promote); 541 542 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 543 544 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 545 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 546 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 547 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 548 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 549 550 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 551 552 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 553 554 setOperationAction(ISD::LOAD, MVT::i16, Custom); 555 556 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 557 558 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 559 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 560 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 561 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 562 563 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 564 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 565 566 // F16 - Constant Actions. 567 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 568 569 // F16 - Load/Store Actions. 570 setOperationAction(ISD::LOAD, MVT::f16, Promote); 571 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 572 setOperationAction(ISD::STORE, MVT::f16, Promote); 573 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 574 575 // F16 - VOP1 Actions. 576 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 577 setOperationAction(ISD::FCOS, MVT::f16, Custom); 578 setOperationAction(ISD::FSIN, MVT::f16, Custom); 579 580 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); 581 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); 582 583 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 584 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 585 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 586 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 587 setOperationAction(ISD::FROUND, MVT::f16, Custom); 588 589 // F16 - VOP2 Actions. 590 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 591 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 592 593 setOperationAction(ISD::FDIV, MVT::f16, Custom); 594 595 // F16 - VOP3 Actions. 596 setOperationAction(ISD::FMA, MVT::f16, Legal); 597 if (STI.hasMadF16()) 598 setOperationAction(ISD::FMAD, MVT::f16, Legal); 599 600 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 601 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 602 switch (Op) { 603 case ISD::LOAD: 604 case ISD::STORE: 605 case ISD::BUILD_VECTOR: 606 case ISD::BITCAST: 607 case ISD::EXTRACT_VECTOR_ELT: 608 case ISD::INSERT_VECTOR_ELT: 609 case ISD::INSERT_SUBVECTOR: 610 case ISD::EXTRACT_SUBVECTOR: 611 case ISD::SCALAR_TO_VECTOR: 612 break; 613 case ISD::CONCAT_VECTORS: 614 setOperationAction(Op, VT, Custom); 615 break; 616 default: 617 setOperationAction(Op, VT, Expand); 618 break; 619 } 620 } 621 } 622 623 // v_perm_b32 can handle either of these. 624 setOperationAction(ISD::BSWAP, MVT::i16, Legal); 625 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal); 626 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 627 628 // XXX - Do these do anything? Vector constants turn into build_vector. 629 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 630 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 631 632 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 633 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 634 635 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 636 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 637 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 638 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 639 640 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 641 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 642 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 643 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 644 645 setOperationAction(ISD::AND, MVT::v2i16, Promote); 646 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 647 setOperationAction(ISD::OR, MVT::v2i16, Promote); 648 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 649 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 650 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 651 652 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 653 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 654 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 655 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 656 657 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 658 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 659 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 660 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 661 662 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 663 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 664 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 665 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 666 667 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 668 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 669 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 670 671 if (!Subtarget->hasVOP3PInsts()) { 672 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 673 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 674 } 675 676 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 677 // This isn't really legal, but this avoids the legalizer unrolling it (and 678 // allows matching fneg (fabs x) patterns) 679 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 680 681 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 682 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 683 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 684 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 685 686 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 687 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 688 689 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 690 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 691 } 692 693 if (Subtarget->hasVOP3PInsts()) { 694 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 695 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 696 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 697 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 698 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 699 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 700 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 701 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 702 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 703 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 704 705 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 706 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 707 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 708 709 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 710 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 711 712 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 713 714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 715 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 716 717 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 718 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 719 720 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 721 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 722 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 723 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 724 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 725 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 726 727 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 728 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 729 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 730 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 731 732 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 733 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 734 setOperationAction(ISD::FMA, MVT::v4f16, Custom); 735 736 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 737 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 738 739 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 740 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 741 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 742 743 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 744 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 745 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 746 } 747 748 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 749 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 750 751 if (Subtarget->has16BitInsts()) { 752 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 753 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 754 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 755 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 756 } else { 757 // Legalization hack. 758 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 759 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 760 761 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 762 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 763 } 764 765 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 766 setOperationAction(ISD::SELECT, VT, Custom); 767 } 768 769 setOperationAction(ISD::SMULO, MVT::i64, Custom); 770 setOperationAction(ISD::UMULO, MVT::i64, Custom); 771 772 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 773 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 774 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 775 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 776 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 777 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 778 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 779 780 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 781 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 782 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 783 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 784 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 785 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 786 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 787 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 788 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 789 790 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 791 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 792 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 793 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 794 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 795 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 796 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 797 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 798 799 setTargetDAGCombine(ISD::ADD); 800 setTargetDAGCombine(ISD::ADDCARRY); 801 setTargetDAGCombine(ISD::SUB); 802 setTargetDAGCombine(ISD::SUBCARRY); 803 setTargetDAGCombine(ISD::FADD); 804 setTargetDAGCombine(ISD::FSUB); 805 setTargetDAGCombine(ISD::FMINNUM); 806 setTargetDAGCombine(ISD::FMAXNUM); 807 setTargetDAGCombine(ISD::FMINNUM_IEEE); 808 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 809 setTargetDAGCombine(ISD::FMA); 810 setTargetDAGCombine(ISD::SMIN); 811 setTargetDAGCombine(ISD::SMAX); 812 setTargetDAGCombine(ISD::UMIN); 813 setTargetDAGCombine(ISD::UMAX); 814 setTargetDAGCombine(ISD::SETCC); 815 setTargetDAGCombine(ISD::AND); 816 setTargetDAGCombine(ISD::OR); 817 setTargetDAGCombine(ISD::XOR); 818 setTargetDAGCombine(ISD::SINT_TO_FP); 819 setTargetDAGCombine(ISD::UINT_TO_FP); 820 setTargetDAGCombine(ISD::FCANONICALIZE); 821 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 822 setTargetDAGCombine(ISD::ZERO_EXTEND); 823 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 824 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 825 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 826 827 // All memory operations. Some folding on the pointer operand is done to help 828 // matching the constant offsets in the addressing modes. 829 setTargetDAGCombine(ISD::LOAD); 830 setTargetDAGCombine(ISD::STORE); 831 setTargetDAGCombine(ISD::ATOMIC_LOAD); 832 setTargetDAGCombine(ISD::ATOMIC_STORE); 833 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 834 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 835 setTargetDAGCombine(ISD::ATOMIC_SWAP); 836 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 837 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 838 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 839 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 840 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 841 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 842 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 843 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 844 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 845 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 846 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 847 848 // FIXME: In other contexts we pretend this is a per-function property. 849 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 850 851 setSchedulingPreference(Sched::RegPressure); 852 } 853 854 const GCNSubtarget *SITargetLowering::getSubtarget() const { 855 return Subtarget; 856 } 857 858 //===----------------------------------------------------------------------===// 859 // TargetLowering queries 860 //===----------------------------------------------------------------------===// 861 862 // v_mad_mix* support a conversion from f16 to f32. 863 // 864 // There is only one special case when denormals are enabled we don't currently, 865 // where this is OK to use. 866 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 867 EVT DestVT, EVT SrcVT) const { 868 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 869 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 870 DestVT.getScalarType() == MVT::f32 && 871 SrcVT.getScalarType() == MVT::f16 && 872 // TODO: This probably only requires no input flushing? 873 !hasFP32Denormals(DAG.getMachineFunction()); 874 } 875 876 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 877 // SI has some legal vector types, but no legal vector operations. Say no 878 // shuffles are legal in order to prefer scalarizing some vector operations. 879 return false; 880 } 881 882 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 883 CallingConv::ID CC, 884 EVT VT) const { 885 if (CC == CallingConv::AMDGPU_KERNEL) 886 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 887 888 if (VT.isVector()) { 889 EVT ScalarVT = VT.getScalarType(); 890 unsigned Size = ScalarVT.getSizeInBits(); 891 if (Size == 32) 892 return ScalarVT.getSimpleVT(); 893 894 if (Size > 32) 895 return MVT::i32; 896 897 if (Size == 16 && Subtarget->has16BitInsts()) 898 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 899 } else if (VT.getSizeInBits() > 32) 900 return MVT::i32; 901 902 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 903 } 904 905 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 906 CallingConv::ID CC, 907 EVT VT) const { 908 if (CC == CallingConv::AMDGPU_KERNEL) 909 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 910 911 if (VT.isVector()) { 912 unsigned NumElts = VT.getVectorNumElements(); 913 EVT ScalarVT = VT.getScalarType(); 914 unsigned Size = ScalarVT.getSizeInBits(); 915 916 if (Size == 32) 917 return NumElts; 918 919 if (Size > 32) 920 return NumElts * ((Size + 31) / 32); 921 922 if (Size == 16 && Subtarget->has16BitInsts()) 923 return (NumElts + 1) / 2; 924 } else if (VT.getSizeInBits() > 32) 925 return (VT.getSizeInBits() + 31) / 32; 926 927 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 928 } 929 930 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 931 LLVMContext &Context, CallingConv::ID CC, 932 EVT VT, EVT &IntermediateVT, 933 unsigned &NumIntermediates, MVT &RegisterVT) const { 934 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 935 unsigned NumElts = VT.getVectorNumElements(); 936 EVT ScalarVT = VT.getScalarType(); 937 unsigned Size = ScalarVT.getSizeInBits(); 938 if (Size == 32) { 939 RegisterVT = ScalarVT.getSimpleVT(); 940 IntermediateVT = RegisterVT; 941 NumIntermediates = NumElts; 942 return NumIntermediates; 943 } 944 945 if (Size > 32) { 946 RegisterVT = MVT::i32; 947 IntermediateVT = RegisterVT; 948 NumIntermediates = NumElts * ((Size + 31) / 32); 949 return NumIntermediates; 950 } 951 952 // FIXME: We should fix the ABI to be the same on targets without 16-bit 953 // support, but unless we can properly handle 3-vectors, it will be still be 954 // inconsistent. 955 if (Size == 16 && Subtarget->has16BitInsts()) { 956 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 957 IntermediateVT = RegisterVT; 958 NumIntermediates = (NumElts + 1) / 2; 959 return NumIntermediates; 960 } 961 } 962 963 return TargetLowering::getVectorTypeBreakdownForCallingConv( 964 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 965 } 966 967 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 968 assert(DMaskLanes != 0); 969 970 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 971 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 972 return EVT::getVectorVT(Ty->getContext(), 973 EVT::getEVT(VT->getElementType()), 974 NumElts); 975 } 976 977 return EVT::getEVT(Ty); 978 } 979 980 // Peek through TFE struct returns to only use the data size. 981 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 982 auto *ST = dyn_cast<StructType>(Ty); 983 if (!ST) 984 return memVTFromImageData(Ty, DMaskLanes); 985 986 // Some intrinsics return an aggregate type - special case to work out the 987 // correct memVT. 988 // 989 // Only limited forms of aggregate type currently expected. 990 if (ST->getNumContainedTypes() != 2 || 991 !ST->getContainedType(1)->isIntegerTy(32)) 992 return EVT(); 993 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 994 } 995 996 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 997 const CallInst &CI, 998 MachineFunction &MF, 999 unsigned IntrID) const { 1000 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1001 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1002 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1003 (Intrinsic::ID)IntrID); 1004 if (Attr.hasFnAttribute(Attribute::ReadNone)) 1005 return false; 1006 1007 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1008 1009 if (RsrcIntr->IsImage) { 1010 Info.ptrVal = MFI->getImagePSV( 1011 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1012 CI.getArgOperand(RsrcIntr->RsrcArg)); 1013 Info.align.reset(); 1014 } else { 1015 Info.ptrVal = MFI->getBufferPSV( 1016 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1017 CI.getArgOperand(RsrcIntr->RsrcArg)); 1018 } 1019 1020 Info.flags = MachineMemOperand::MODereferenceable; 1021 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 1022 unsigned DMaskLanes = 4; 1023 1024 if (RsrcIntr->IsImage) { 1025 const AMDGPU::ImageDimIntrinsicInfo *Intr 1026 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1027 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1028 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1029 1030 if (!BaseOpcode->Gather4) { 1031 // If this isn't a gather, we may have excess loaded elements in the 1032 // IR type. Check the dmask for the real number of elements loaded. 1033 unsigned DMask 1034 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1035 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1036 } 1037 1038 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 1039 } else 1040 Info.memVT = EVT::getEVT(CI.getType()); 1041 1042 // FIXME: What does alignment mean for an image? 1043 Info.opc = ISD::INTRINSIC_W_CHAIN; 1044 Info.flags |= MachineMemOperand::MOLoad; 1045 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 1046 Info.opc = ISD::INTRINSIC_VOID; 1047 1048 Type *DataTy = CI.getArgOperand(0)->getType(); 1049 if (RsrcIntr->IsImage) { 1050 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1051 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1052 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1053 } else 1054 Info.memVT = EVT::getEVT(DataTy); 1055 1056 Info.flags |= MachineMemOperand::MOStore; 1057 } else { 1058 // Atomic 1059 Info.opc = ISD::INTRINSIC_W_CHAIN; 1060 Info.memVT = MVT::getVT(CI.getType()); 1061 Info.flags = MachineMemOperand::MOLoad | 1062 MachineMemOperand::MOStore | 1063 MachineMemOperand::MODereferenceable; 1064 1065 // XXX - Should this be volatile without known ordering? 1066 Info.flags |= MachineMemOperand::MOVolatile; 1067 } 1068 return true; 1069 } 1070 1071 switch (IntrID) { 1072 case Intrinsic::amdgcn_atomic_inc: 1073 case Intrinsic::amdgcn_atomic_dec: 1074 case Intrinsic::amdgcn_ds_ordered_add: 1075 case Intrinsic::amdgcn_ds_ordered_swap: 1076 case Intrinsic::amdgcn_ds_fadd: 1077 case Intrinsic::amdgcn_ds_fmin: 1078 case Intrinsic::amdgcn_ds_fmax: { 1079 Info.opc = ISD::INTRINSIC_W_CHAIN; 1080 Info.memVT = MVT::getVT(CI.getType()); 1081 Info.ptrVal = CI.getOperand(0); 1082 Info.align.reset(); 1083 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1084 1085 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1086 if (!Vol->isZero()) 1087 Info.flags |= MachineMemOperand::MOVolatile; 1088 1089 return true; 1090 } 1091 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1092 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1093 1094 Info.opc = ISD::INTRINSIC_VOID; 1095 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1096 Info.ptrVal = MFI->getBufferPSV( 1097 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1098 CI.getArgOperand(1)); 1099 Info.align.reset(); 1100 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1101 1102 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1103 if (!Vol || !Vol->isZero()) 1104 Info.flags |= MachineMemOperand::MOVolatile; 1105 1106 return true; 1107 } 1108 case Intrinsic::amdgcn_global_atomic_fadd: { 1109 Info.opc = ISD::INTRINSIC_VOID; 1110 Info.memVT = MVT::getVT(CI.getOperand(0)->getType() 1111 ->getPointerElementType()); 1112 Info.ptrVal = CI.getOperand(0); 1113 Info.align.reset(); 1114 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1115 1116 return true; 1117 } 1118 case Intrinsic::amdgcn_ds_append: 1119 case Intrinsic::amdgcn_ds_consume: { 1120 Info.opc = ISD::INTRINSIC_W_CHAIN; 1121 Info.memVT = MVT::getVT(CI.getType()); 1122 Info.ptrVal = CI.getOperand(0); 1123 Info.align.reset(); 1124 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1125 1126 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1127 if (!Vol->isZero()) 1128 Info.flags |= MachineMemOperand::MOVolatile; 1129 1130 return true; 1131 } 1132 case Intrinsic::amdgcn_global_atomic_csub: { 1133 Info.opc = ISD::INTRINSIC_W_CHAIN; 1134 Info.memVT = MVT::getVT(CI.getType()); 1135 Info.ptrVal = CI.getOperand(0); 1136 Info.align.reset(); 1137 Info.flags = MachineMemOperand::MOLoad | 1138 MachineMemOperand::MOStore | 1139 MachineMemOperand::MODereferenceable | 1140 MachineMemOperand::MOVolatile; 1141 return true; 1142 } 1143 case Intrinsic::amdgcn_ds_gws_init: 1144 case Intrinsic::amdgcn_ds_gws_barrier: 1145 case Intrinsic::amdgcn_ds_gws_sema_v: 1146 case Intrinsic::amdgcn_ds_gws_sema_br: 1147 case Intrinsic::amdgcn_ds_gws_sema_p: 1148 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1149 Info.opc = ISD::INTRINSIC_VOID; 1150 1151 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1152 Info.ptrVal = 1153 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1154 1155 // This is an abstract access, but we need to specify a type and size. 1156 Info.memVT = MVT::i32; 1157 Info.size = 4; 1158 Info.align = Align(4); 1159 1160 Info.flags = MachineMemOperand::MOStore; 1161 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1162 Info.flags = MachineMemOperand::MOLoad; 1163 return true; 1164 } 1165 default: 1166 return false; 1167 } 1168 } 1169 1170 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1171 SmallVectorImpl<Value*> &Ops, 1172 Type *&AccessTy) const { 1173 switch (II->getIntrinsicID()) { 1174 case Intrinsic::amdgcn_atomic_inc: 1175 case Intrinsic::amdgcn_atomic_dec: 1176 case Intrinsic::amdgcn_ds_ordered_add: 1177 case Intrinsic::amdgcn_ds_ordered_swap: 1178 case Intrinsic::amdgcn_ds_fadd: 1179 case Intrinsic::amdgcn_ds_fmin: 1180 case Intrinsic::amdgcn_ds_fmax: { 1181 Value *Ptr = II->getArgOperand(0); 1182 AccessTy = II->getType(); 1183 Ops.push_back(Ptr); 1184 return true; 1185 } 1186 default: 1187 return false; 1188 } 1189 } 1190 1191 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1192 if (!Subtarget->hasFlatInstOffsets()) { 1193 // Flat instructions do not have offsets, and only have the register 1194 // address. 1195 return AM.BaseOffs == 0 && AM.Scale == 0; 1196 } 1197 1198 return AM.Scale == 0 && 1199 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1200 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, 1201 /*Signed=*/false)); 1202 } 1203 1204 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1205 if (Subtarget->hasFlatGlobalInsts()) 1206 return AM.Scale == 0 && 1207 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1208 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1209 /*Signed=*/true)); 1210 1211 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1212 // Assume the we will use FLAT for all global memory accesses 1213 // on VI. 1214 // FIXME: This assumption is currently wrong. On VI we still use 1215 // MUBUF instructions for the r + i addressing mode. As currently 1216 // implemented, the MUBUF instructions only work on buffer < 4GB. 1217 // It may be possible to support > 4GB buffers with MUBUF instructions, 1218 // by setting the stride value in the resource descriptor which would 1219 // increase the size limit to (stride * 4GB). However, this is risky, 1220 // because it has never been validated. 1221 return isLegalFlatAddressingMode(AM); 1222 } 1223 1224 return isLegalMUBUFAddressingMode(AM); 1225 } 1226 1227 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1228 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1229 // additionally can do r + r + i with addr64. 32-bit has more addressing 1230 // mode options. Depending on the resource constant, it can also do 1231 // (i64 r0) + (i32 r1) * (i14 i). 1232 // 1233 // Private arrays end up using a scratch buffer most of the time, so also 1234 // assume those use MUBUF instructions. Scratch loads / stores are currently 1235 // implemented as mubuf instructions with offen bit set, so slightly 1236 // different than the normal addr64. 1237 if (!isUInt<12>(AM.BaseOffs)) 1238 return false; 1239 1240 // FIXME: Since we can split immediate into soffset and immediate offset, 1241 // would it make sense to allow any immediate? 1242 1243 switch (AM.Scale) { 1244 case 0: // r + i or just i, depending on HasBaseReg. 1245 return true; 1246 case 1: 1247 return true; // We have r + r or r + i. 1248 case 2: 1249 if (AM.HasBaseReg) { 1250 // Reject 2 * r + r. 1251 return false; 1252 } 1253 1254 // Allow 2 * r as r + r 1255 // Or 2 * r + i is allowed as r + r + i. 1256 return true; 1257 default: // Don't allow n * r 1258 return false; 1259 } 1260 } 1261 1262 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1263 const AddrMode &AM, Type *Ty, 1264 unsigned AS, Instruction *I) const { 1265 // No global is ever allowed as a base. 1266 if (AM.BaseGV) 1267 return false; 1268 1269 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1270 return isLegalGlobalAddressingMode(AM); 1271 1272 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1273 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1274 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1275 // If the offset isn't a multiple of 4, it probably isn't going to be 1276 // correctly aligned. 1277 // FIXME: Can we get the real alignment here? 1278 if (AM.BaseOffs % 4 != 0) 1279 return isLegalMUBUFAddressingMode(AM); 1280 1281 // There are no SMRD extloads, so if we have to do a small type access we 1282 // will use a MUBUF load. 1283 // FIXME?: We also need to do this if unaligned, but we don't know the 1284 // alignment here. 1285 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1286 return isLegalGlobalAddressingMode(AM); 1287 1288 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1289 // SMRD instructions have an 8-bit, dword offset on SI. 1290 if (!isUInt<8>(AM.BaseOffs / 4)) 1291 return false; 1292 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1293 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1294 // in 8-bits, it can use a smaller encoding. 1295 if (!isUInt<32>(AM.BaseOffs / 4)) 1296 return false; 1297 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1298 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1299 if (!isUInt<20>(AM.BaseOffs)) 1300 return false; 1301 } else 1302 llvm_unreachable("unhandled generation"); 1303 1304 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1305 return true; 1306 1307 if (AM.Scale == 1 && AM.HasBaseReg) 1308 return true; 1309 1310 return false; 1311 1312 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1313 return isLegalMUBUFAddressingMode(AM); 1314 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1315 AS == AMDGPUAS::REGION_ADDRESS) { 1316 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1317 // field. 1318 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1319 // an 8-bit dword offset but we don't know the alignment here. 1320 if (!isUInt<16>(AM.BaseOffs)) 1321 return false; 1322 1323 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1324 return true; 1325 1326 if (AM.Scale == 1 && AM.HasBaseReg) 1327 return true; 1328 1329 return false; 1330 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1331 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1332 // For an unknown address space, this usually means that this is for some 1333 // reason being used for pure arithmetic, and not based on some addressing 1334 // computation. We don't have instructions that compute pointers with any 1335 // addressing modes, so treat them as having no offset like flat 1336 // instructions. 1337 return isLegalFlatAddressingMode(AM); 1338 } 1339 1340 // Assume a user alias of global for unknown address spaces. 1341 return isLegalGlobalAddressingMode(AM); 1342 } 1343 1344 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1345 const SelectionDAG &DAG) const { 1346 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1347 return (MemVT.getSizeInBits() <= 4 * 32); 1348 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1349 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1350 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1351 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1352 return (MemVT.getSizeInBits() <= 2 * 32); 1353 } 1354 return true; 1355 } 1356 1357 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1358 unsigned Size, unsigned AddrSpace, unsigned Align, 1359 MachineMemOperand::Flags Flags, bool *IsFast) const { 1360 if (IsFast) 1361 *IsFast = false; 1362 1363 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1364 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1365 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 1366 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 1367 // with adjacent offsets. 1368 bool AlignedBy4 = (Align % 4 == 0); 1369 if (IsFast) 1370 *IsFast = AlignedBy4; 1371 1372 return AlignedBy4; 1373 } 1374 1375 // FIXME: We have to be conservative here and assume that flat operations 1376 // will access scratch. If we had access to the IR function, then we 1377 // could determine if any private memory was used in the function. 1378 if (!Subtarget->hasUnalignedScratchAccess() && 1379 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 1380 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { 1381 bool AlignedBy4 = Align >= 4; 1382 if (IsFast) 1383 *IsFast = AlignedBy4; 1384 1385 return AlignedBy4; 1386 } 1387 1388 if (Subtarget->hasUnalignedBufferAccess()) { 1389 // If we have an uniform constant load, it still requires using a slow 1390 // buffer instruction if unaligned. 1391 if (IsFast) { 1392 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1393 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss. 1394 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1395 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1396 Align >= 4 : Align != 2; 1397 } 1398 1399 return true; 1400 } 1401 1402 // Smaller than dword value must be aligned. 1403 if (Size < 32) 1404 return false; 1405 1406 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1407 // byte-address are ignored, thus forcing Dword alignment. 1408 // This applies to private, global, and constant memory. 1409 if (IsFast) 1410 *IsFast = true; 1411 1412 return Size >= 32 && Align >= 4; 1413 } 1414 1415 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1416 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1417 bool *IsFast) const { 1418 if (IsFast) 1419 *IsFast = false; 1420 1421 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1422 // which isn't a simple VT. 1423 // Until MVT is extended to handle this, simply check for the size and 1424 // rely on the condition below: allow accesses if the size is a multiple of 4. 1425 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1426 VT.getStoreSize() > 16)) { 1427 return false; 1428 } 1429 1430 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1431 Align, Flags, IsFast); 1432 } 1433 1434 EVT SITargetLowering::getOptimalMemOpType( 1435 const MemOp &Op, const AttributeList &FuncAttributes) const { 1436 // FIXME: Should account for address space here. 1437 1438 // The default fallback uses the private pointer size as a guess for a type to 1439 // use. Make sure we switch these to 64-bit accesses. 1440 1441 if (Op.size() >= 16 && 1442 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1443 return MVT::v4i32; 1444 1445 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1446 return MVT::v2i32; 1447 1448 // Use the default. 1449 return MVT::Other; 1450 } 1451 1452 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, 1453 unsigned DestAS) const { 1454 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); 1455 } 1456 1457 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1458 const MemSDNode *MemNode = cast<MemSDNode>(N); 1459 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1460 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1461 return I && I->getMetadata("amdgpu.noclobber"); 1462 } 1463 1464 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1465 unsigned DestAS) const { 1466 // Flat -> private/local is a simple truncate. 1467 // Flat -> global is no-op 1468 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1469 return true; 1470 1471 return isNoopAddrSpaceCast(SrcAS, DestAS); 1472 } 1473 1474 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1475 const MemSDNode *MemNode = cast<MemSDNode>(N); 1476 1477 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1478 } 1479 1480 TargetLoweringBase::LegalizeTypeAction 1481 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1482 int NumElts = VT.getVectorNumElements(); 1483 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16)) 1484 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1485 return TargetLoweringBase::getPreferredVectorAction(VT); 1486 } 1487 1488 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1489 Type *Ty) const { 1490 // FIXME: Could be smarter if called for vector constants. 1491 return true; 1492 } 1493 1494 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1495 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1496 switch (Op) { 1497 case ISD::LOAD: 1498 case ISD::STORE: 1499 1500 // These operations are done with 32-bit instructions anyway. 1501 case ISD::AND: 1502 case ISD::OR: 1503 case ISD::XOR: 1504 case ISD::SELECT: 1505 // TODO: Extensions? 1506 return true; 1507 default: 1508 return false; 1509 } 1510 } 1511 1512 // SimplifySetCC uses this function to determine whether or not it should 1513 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1514 if (VT == MVT::i1 && Op == ISD::SETCC) 1515 return false; 1516 1517 return TargetLowering::isTypeDesirableForOp(Op, VT); 1518 } 1519 1520 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1521 const SDLoc &SL, 1522 SDValue Chain, 1523 uint64_t Offset) const { 1524 const DataLayout &DL = DAG.getDataLayout(); 1525 MachineFunction &MF = DAG.getMachineFunction(); 1526 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1527 1528 const ArgDescriptor *InputPtrReg; 1529 const TargetRegisterClass *RC; 1530 LLT ArgTy; 1531 1532 std::tie(InputPtrReg, RC, ArgTy) = 1533 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1534 1535 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1536 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1537 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1538 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1539 1540 return DAG.getObjectPtrOffset(SL, BasePtr, Offset); 1541 } 1542 1543 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1544 const SDLoc &SL) const { 1545 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1546 FIRST_IMPLICIT); 1547 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1548 } 1549 1550 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1551 const SDLoc &SL, SDValue Val, 1552 bool Signed, 1553 const ISD::InputArg *Arg) const { 1554 // First, if it is a widened vector, narrow it. 1555 if (VT.isVector() && 1556 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1557 EVT NarrowedVT = 1558 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1559 VT.getVectorNumElements()); 1560 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1561 DAG.getConstant(0, SL, MVT::i32)); 1562 } 1563 1564 // Then convert the vector elements or scalar value. 1565 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1566 VT.bitsLT(MemVT)) { 1567 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1568 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1569 } 1570 1571 if (MemVT.isFloatingPoint()) 1572 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1573 else if (Signed) 1574 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1575 else 1576 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1577 1578 return Val; 1579 } 1580 1581 SDValue SITargetLowering::lowerKernargMemParameter( 1582 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1583 uint64_t Offset, Align Alignment, bool Signed, 1584 const ISD::InputArg *Arg) const { 1585 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1586 1587 // Try to avoid using an extload by loading earlier than the argument address, 1588 // and extracting the relevant bits. The load should hopefully be merged with 1589 // the previous argument. 1590 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1591 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1592 int64_t AlignDownOffset = alignDown(Offset, 4); 1593 int64_t OffsetDiff = Offset - AlignDownOffset; 1594 1595 EVT IntVT = MemVT.changeTypeToInteger(); 1596 1597 // TODO: If we passed in the base kernel offset we could have a better 1598 // alignment than 4, but we don't really need it. 1599 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1600 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, 1601 MachineMemOperand::MODereferenceable | 1602 MachineMemOperand::MOInvariant); 1603 1604 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1605 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1606 1607 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1608 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1609 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1610 1611 1612 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1613 } 1614 1615 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1616 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1617 MachineMemOperand::MODereferenceable | 1618 MachineMemOperand::MOInvariant); 1619 1620 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1621 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1622 } 1623 1624 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1625 const SDLoc &SL, SDValue Chain, 1626 const ISD::InputArg &Arg) const { 1627 MachineFunction &MF = DAG.getMachineFunction(); 1628 MachineFrameInfo &MFI = MF.getFrameInfo(); 1629 1630 if (Arg.Flags.isByVal()) { 1631 unsigned Size = Arg.Flags.getByValSize(); 1632 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1633 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1634 } 1635 1636 unsigned ArgOffset = VA.getLocMemOffset(); 1637 unsigned ArgSize = VA.getValVT().getStoreSize(); 1638 1639 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1640 1641 // Create load nodes to retrieve arguments from the stack. 1642 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1643 SDValue ArgValue; 1644 1645 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1646 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1647 MVT MemVT = VA.getValVT(); 1648 1649 switch (VA.getLocInfo()) { 1650 default: 1651 break; 1652 case CCValAssign::BCvt: 1653 MemVT = VA.getLocVT(); 1654 break; 1655 case CCValAssign::SExt: 1656 ExtType = ISD::SEXTLOAD; 1657 break; 1658 case CCValAssign::ZExt: 1659 ExtType = ISD::ZEXTLOAD; 1660 break; 1661 case CCValAssign::AExt: 1662 ExtType = ISD::EXTLOAD; 1663 break; 1664 } 1665 1666 ArgValue = DAG.getExtLoad( 1667 ExtType, SL, VA.getLocVT(), Chain, FIN, 1668 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1669 MemVT); 1670 return ArgValue; 1671 } 1672 1673 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1674 const SIMachineFunctionInfo &MFI, 1675 EVT VT, 1676 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1677 const ArgDescriptor *Reg; 1678 const TargetRegisterClass *RC; 1679 LLT Ty; 1680 1681 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1682 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1683 } 1684 1685 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1686 CallingConv::ID CallConv, 1687 ArrayRef<ISD::InputArg> Ins, 1688 BitVector &Skipped, 1689 FunctionType *FType, 1690 SIMachineFunctionInfo *Info) { 1691 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1692 const ISD::InputArg *Arg = &Ins[I]; 1693 1694 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1695 "vector type argument should have been split"); 1696 1697 // First check if it's a PS input addr. 1698 if (CallConv == CallingConv::AMDGPU_PS && 1699 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1700 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1701 1702 // Inconveniently only the first part of the split is marked as isSplit, 1703 // so skip to the end. We only want to increment PSInputNum once for the 1704 // entire split argument. 1705 if (Arg->Flags.isSplit()) { 1706 while (!Arg->Flags.isSplitEnd()) { 1707 assert((!Arg->VT.isVector() || 1708 Arg->VT.getScalarSizeInBits() == 16) && 1709 "unexpected vector split in ps argument type"); 1710 if (!SkipArg) 1711 Splits.push_back(*Arg); 1712 Arg = &Ins[++I]; 1713 } 1714 } 1715 1716 if (SkipArg) { 1717 // We can safely skip PS inputs. 1718 Skipped.set(Arg->getOrigArgIndex()); 1719 ++PSInputNum; 1720 continue; 1721 } 1722 1723 Info->markPSInputAllocated(PSInputNum); 1724 if (Arg->Used) 1725 Info->markPSInputEnabled(PSInputNum); 1726 1727 ++PSInputNum; 1728 } 1729 1730 Splits.push_back(*Arg); 1731 } 1732 } 1733 1734 // Allocate special inputs passed in VGPRs. 1735 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1736 MachineFunction &MF, 1737 const SIRegisterInfo &TRI, 1738 SIMachineFunctionInfo &Info) const { 1739 const LLT S32 = LLT::scalar(32); 1740 MachineRegisterInfo &MRI = MF.getRegInfo(); 1741 1742 if (Info.hasWorkItemIDX()) { 1743 Register Reg = AMDGPU::VGPR0; 1744 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1745 1746 CCInfo.AllocateReg(Reg); 1747 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); 1748 } 1749 1750 if (Info.hasWorkItemIDY()) { 1751 Register Reg = AMDGPU::VGPR1; 1752 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1753 1754 CCInfo.AllocateReg(Reg); 1755 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1756 } 1757 1758 if (Info.hasWorkItemIDZ()) { 1759 Register Reg = AMDGPU::VGPR2; 1760 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1761 1762 CCInfo.AllocateReg(Reg); 1763 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1764 } 1765 } 1766 1767 // Try to allocate a VGPR at the end of the argument list, or if no argument 1768 // VGPRs are left allocating a stack slot. 1769 // If \p Mask is is given it indicates bitfield position in the register. 1770 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1771 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1772 ArgDescriptor Arg = ArgDescriptor()) { 1773 if (Arg.isSet()) 1774 return ArgDescriptor::createArg(Arg, Mask); 1775 1776 ArrayRef<MCPhysReg> ArgVGPRs 1777 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1778 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1779 if (RegIdx == ArgVGPRs.size()) { 1780 // Spill to stack required. 1781 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 1782 1783 return ArgDescriptor::createStack(Offset, Mask); 1784 } 1785 1786 unsigned Reg = ArgVGPRs[RegIdx]; 1787 Reg = CCInfo.AllocateReg(Reg); 1788 assert(Reg != AMDGPU::NoRegister); 1789 1790 MachineFunction &MF = CCInfo.getMachineFunction(); 1791 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1792 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1793 return ArgDescriptor::createRegister(Reg, Mask); 1794 } 1795 1796 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1797 const TargetRegisterClass *RC, 1798 unsigned NumArgRegs) { 1799 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1800 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1801 if (RegIdx == ArgSGPRs.size()) 1802 report_fatal_error("ran out of SGPRs for arguments"); 1803 1804 unsigned Reg = ArgSGPRs[RegIdx]; 1805 Reg = CCInfo.AllocateReg(Reg); 1806 assert(Reg != AMDGPU::NoRegister); 1807 1808 MachineFunction &MF = CCInfo.getMachineFunction(); 1809 MF.addLiveIn(Reg, RC); 1810 return ArgDescriptor::createRegister(Reg); 1811 } 1812 1813 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { 1814 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1815 } 1816 1817 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { 1818 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1819 } 1820 1821 /// Allocate implicit function VGPR arguments at the end of allocated user 1822 /// arguments. 1823 void SITargetLowering::allocateSpecialInputVGPRs( 1824 CCState &CCInfo, MachineFunction &MF, 1825 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1826 const unsigned Mask = 0x3ff; 1827 ArgDescriptor Arg; 1828 1829 if (Info.hasWorkItemIDX()) { 1830 Arg = allocateVGPR32Input(CCInfo, Mask); 1831 Info.setWorkItemIDX(Arg); 1832 } 1833 1834 if (Info.hasWorkItemIDY()) { 1835 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 1836 Info.setWorkItemIDY(Arg); 1837 } 1838 1839 if (Info.hasWorkItemIDZ()) 1840 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 1841 } 1842 1843 /// Allocate implicit function VGPR arguments in fixed registers. 1844 void SITargetLowering::allocateSpecialInputVGPRsFixed( 1845 CCState &CCInfo, MachineFunction &MF, 1846 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1847 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 1848 if (!Reg) 1849 report_fatal_error("failed to allocated VGPR for implicit arguments"); 1850 1851 const unsigned Mask = 0x3ff; 1852 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1853 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 1854 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 1855 } 1856 1857 void SITargetLowering::allocateSpecialInputSGPRs( 1858 CCState &CCInfo, 1859 MachineFunction &MF, 1860 const SIRegisterInfo &TRI, 1861 SIMachineFunctionInfo &Info) const { 1862 auto &ArgInfo = Info.getArgInfo(); 1863 1864 // TODO: Unify handling with private memory pointers. 1865 1866 if (Info.hasDispatchPtr()) 1867 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); 1868 1869 if (Info.hasQueuePtr()) 1870 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); 1871 1872 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 1873 // constant offset from the kernarg segment. 1874 if (Info.hasImplicitArgPtr()) 1875 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); 1876 1877 if (Info.hasDispatchID()) 1878 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); 1879 1880 // flat_scratch_init is not applicable for non-kernel functions. 1881 1882 if (Info.hasWorkGroupIDX()) 1883 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); 1884 1885 if (Info.hasWorkGroupIDY()) 1886 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); 1887 1888 if (Info.hasWorkGroupIDZ()) 1889 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); 1890 } 1891 1892 // Allocate special inputs passed in user SGPRs. 1893 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 1894 MachineFunction &MF, 1895 const SIRegisterInfo &TRI, 1896 SIMachineFunctionInfo &Info) const { 1897 if (Info.hasImplicitBufferPtr()) { 1898 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 1899 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 1900 CCInfo.AllocateReg(ImplicitBufferPtrReg); 1901 } 1902 1903 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 1904 if (Info.hasPrivateSegmentBuffer()) { 1905 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 1906 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 1907 CCInfo.AllocateReg(PrivateSegmentBufferReg); 1908 } 1909 1910 if (Info.hasDispatchPtr()) { 1911 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); 1912 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 1913 CCInfo.AllocateReg(DispatchPtrReg); 1914 } 1915 1916 if (Info.hasQueuePtr()) { 1917 unsigned QueuePtrReg = Info.addQueuePtr(TRI); 1918 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 1919 CCInfo.AllocateReg(QueuePtrReg); 1920 } 1921 1922 if (Info.hasKernargSegmentPtr()) { 1923 MachineRegisterInfo &MRI = MF.getRegInfo(); 1924 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 1925 CCInfo.AllocateReg(InputPtrReg); 1926 1927 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 1928 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1929 } 1930 1931 if (Info.hasDispatchID()) { 1932 unsigned DispatchIDReg = Info.addDispatchID(TRI); 1933 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 1934 CCInfo.AllocateReg(DispatchIDReg); 1935 } 1936 1937 if (Info.hasFlatScratchInit()) { 1938 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); 1939 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 1940 CCInfo.AllocateReg(FlatScratchInitReg); 1941 } 1942 1943 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 1944 // these from the dispatch pointer. 1945 } 1946 1947 // Allocate special input registers that are initialized per-wave. 1948 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 1949 MachineFunction &MF, 1950 SIMachineFunctionInfo &Info, 1951 CallingConv::ID CallConv, 1952 bool IsShader) const { 1953 if (Info.hasWorkGroupIDX()) { 1954 unsigned Reg = Info.addWorkGroupIDX(); 1955 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1956 CCInfo.AllocateReg(Reg); 1957 } 1958 1959 if (Info.hasWorkGroupIDY()) { 1960 unsigned Reg = Info.addWorkGroupIDY(); 1961 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1962 CCInfo.AllocateReg(Reg); 1963 } 1964 1965 if (Info.hasWorkGroupIDZ()) { 1966 unsigned Reg = Info.addWorkGroupIDZ(); 1967 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1968 CCInfo.AllocateReg(Reg); 1969 } 1970 1971 if (Info.hasWorkGroupInfo()) { 1972 unsigned Reg = Info.addWorkGroupInfo(); 1973 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1974 CCInfo.AllocateReg(Reg); 1975 } 1976 1977 if (Info.hasPrivateSegmentWaveByteOffset()) { 1978 // Scratch wave offset passed in system SGPR. 1979 unsigned PrivateSegmentWaveByteOffsetReg; 1980 1981 if (IsShader) { 1982 PrivateSegmentWaveByteOffsetReg = 1983 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 1984 1985 // This is true if the scratch wave byte offset doesn't have a fixed 1986 // location. 1987 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 1988 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 1989 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 1990 } 1991 } else 1992 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 1993 1994 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 1995 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 1996 } 1997 } 1998 1999 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2000 MachineFunction &MF, 2001 const SIRegisterInfo &TRI, 2002 SIMachineFunctionInfo &Info) { 2003 // Now that we've figured out where the scratch register inputs are, see if 2004 // should reserve the arguments and use them directly. 2005 MachineFrameInfo &MFI = MF.getFrameInfo(); 2006 bool HasStackObjects = MFI.hasStackObjects(); 2007 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2008 2009 // Record that we know we have non-spill stack objects so we don't need to 2010 // check all stack objects later. 2011 if (HasStackObjects) 2012 Info.setHasNonSpillStackObjects(true); 2013 2014 // Everything live out of a block is spilled with fast regalloc, so it's 2015 // almost certain that spilling will be required. 2016 if (TM.getOptLevel() == CodeGenOpt::None) 2017 HasStackObjects = true; 2018 2019 // For now assume stack access is needed in any callee functions, so we need 2020 // the scratch registers to pass in. 2021 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2022 2023 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2024 // If we have stack objects, we unquestionably need the private buffer 2025 // resource. For the Code Object V2 ABI, this will be the first 4 user 2026 // SGPR inputs. We can reserve those and use them directly. 2027 2028 Register PrivateSegmentBufferReg = 2029 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2030 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2031 } else { 2032 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2033 // We tentatively reserve the last registers (skipping the last registers 2034 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2035 // we'll replace these with the ones immediately after those which were 2036 // really allocated. In the prologue copies will be inserted from the 2037 // argument to these reserved registers. 2038 2039 // Without HSA, relocations are used for the scratch pointer and the 2040 // buffer resource setup is always inserted in the prologue. Scratch wave 2041 // offset is still in an input SGPR. 2042 Info.setScratchRSrcReg(ReservedBufferReg); 2043 } 2044 2045 MachineRegisterInfo &MRI = MF.getRegInfo(); 2046 2047 // For entry functions we have to set up the stack pointer if we use it, 2048 // whereas non-entry functions get this "for free". This means there is no 2049 // intrinsic advantage to using S32 over S34 in cases where we do not have 2050 // calls but do need a frame pointer (i.e. if we are requested to have one 2051 // because frame pointer elimination is disabled). To keep things simple we 2052 // only ever use S32 as the call ABI stack pointer, and so using it does not 2053 // imply we need a separate frame pointer. 2054 // 2055 // Try to use s32 as the SP, but move it if it would interfere with input 2056 // arguments. This won't work with calls though. 2057 // 2058 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2059 // registers. 2060 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2061 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2062 } else { 2063 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2064 2065 if (MFI.hasCalls()) 2066 report_fatal_error("call in graphics shader with too many input SGPRs"); 2067 2068 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2069 if (!MRI.isLiveIn(Reg)) { 2070 Info.setStackPtrOffsetReg(Reg); 2071 break; 2072 } 2073 } 2074 2075 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2076 report_fatal_error("failed to find register for SP"); 2077 } 2078 2079 // hasFP should be accurate for entry functions even before the frame is 2080 // finalized, because it does not rely on the known stack size, only 2081 // properties like whether variable sized objects are present. 2082 if (ST.getFrameLowering()->hasFP(MF)) { 2083 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2084 } 2085 } 2086 2087 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2088 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2089 return !Info->isEntryFunction(); 2090 } 2091 2092 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2093 2094 } 2095 2096 void SITargetLowering::insertCopiesSplitCSR( 2097 MachineBasicBlock *Entry, 2098 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2099 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2100 2101 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2102 if (!IStart) 2103 return; 2104 2105 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2106 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2107 MachineBasicBlock::iterator MBBI = Entry->begin(); 2108 for (const MCPhysReg *I = IStart; *I; ++I) { 2109 const TargetRegisterClass *RC = nullptr; 2110 if (AMDGPU::SReg_64RegClass.contains(*I)) 2111 RC = &AMDGPU::SGPR_64RegClass; 2112 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2113 RC = &AMDGPU::SGPR_32RegClass; 2114 else 2115 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2116 2117 Register NewVR = MRI->createVirtualRegister(RC); 2118 // Create copy from CSR to a virtual register. 2119 Entry->addLiveIn(*I); 2120 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2121 .addReg(*I); 2122 2123 // Insert the copy-back instructions right before the terminator. 2124 for (auto *Exit : Exits) 2125 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2126 TII->get(TargetOpcode::COPY), *I) 2127 .addReg(NewVR); 2128 } 2129 } 2130 2131 SDValue SITargetLowering::LowerFormalArguments( 2132 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2133 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2134 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2135 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2136 2137 MachineFunction &MF = DAG.getMachineFunction(); 2138 const Function &Fn = MF.getFunction(); 2139 FunctionType *FType = MF.getFunction().getFunctionType(); 2140 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2141 2142 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { 2143 DiagnosticInfoUnsupported NoGraphicsHSA( 2144 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2145 DAG.getContext()->diagnose(NoGraphicsHSA); 2146 return DAG.getEntryNode(); 2147 } 2148 2149 SmallVector<ISD::InputArg, 16> Splits; 2150 SmallVector<CCValAssign, 16> ArgLocs; 2151 BitVector Skipped(Ins.size()); 2152 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2153 *DAG.getContext()); 2154 2155 bool IsShader = AMDGPU::isShader(CallConv); 2156 bool IsKernel = AMDGPU::isKernel(CallConv); 2157 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2158 2159 if (IsShader) { 2160 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2161 2162 // At least one interpolation mode must be enabled or else the GPU will 2163 // hang. 2164 // 2165 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2166 // set PSInputAddr, the user wants to enable some bits after the compilation 2167 // based on run-time states. Since we can't know what the final PSInputEna 2168 // will look like, so we shouldn't do anything here and the user should take 2169 // responsibility for the correct programming. 2170 // 2171 // Otherwise, the following restrictions apply: 2172 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2173 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2174 // enabled too. 2175 if (CallConv == CallingConv::AMDGPU_PS) { 2176 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2177 ((Info->getPSInputAddr() & 0xF) == 0 && 2178 Info->isPSInputAllocated(11))) { 2179 CCInfo.AllocateReg(AMDGPU::VGPR0); 2180 CCInfo.AllocateReg(AMDGPU::VGPR1); 2181 Info->markPSInputAllocated(0); 2182 Info->markPSInputEnabled(0); 2183 } 2184 if (Subtarget->isAmdPalOS()) { 2185 // For isAmdPalOS, the user does not enable some bits after compilation 2186 // based on run-time states; the register values being generated here are 2187 // the final ones set in hardware. Therefore we need to apply the 2188 // workaround to PSInputAddr and PSInputEnable together. (The case where 2189 // a bit is set in PSInputAddr but not PSInputEnable is where the 2190 // frontend set up an input arg for a particular interpolation mode, but 2191 // nothing uses that input arg. Really we should have an earlier pass 2192 // that removes such an arg.) 2193 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2194 if ((PsInputBits & 0x7F) == 0 || 2195 ((PsInputBits & 0xF) == 0 && 2196 (PsInputBits >> 11 & 1))) 2197 Info->markPSInputEnabled( 2198 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2199 } 2200 } 2201 2202 assert(!Info->hasDispatchPtr() && 2203 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && 2204 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2205 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2206 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2207 !Info->hasWorkItemIDZ()); 2208 } else if (IsKernel) { 2209 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2210 } else { 2211 Splits.append(Ins.begin(), Ins.end()); 2212 } 2213 2214 if (IsEntryFunc) { 2215 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2216 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2217 } else { 2218 // For the fixed ABI, pass workitem IDs in the last argument register. 2219 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 2220 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2221 } 2222 2223 if (IsKernel) { 2224 analyzeFormalArgumentsCompute(CCInfo, Ins); 2225 } else { 2226 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2227 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2228 } 2229 2230 SmallVector<SDValue, 16> Chains; 2231 2232 // FIXME: This is the minimum kernel argument alignment. We should improve 2233 // this to the maximum alignment of the arguments. 2234 // 2235 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2236 // kern arg offset. 2237 const Align KernelArgBaseAlign = Align(16); 2238 2239 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2240 const ISD::InputArg &Arg = Ins[i]; 2241 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2242 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2243 continue; 2244 } 2245 2246 CCValAssign &VA = ArgLocs[ArgIdx++]; 2247 MVT VT = VA.getLocVT(); 2248 2249 if (IsEntryFunc && VA.isMemLoc()) { 2250 VT = Ins[i].VT; 2251 EVT MemVT = VA.getLocVT(); 2252 2253 const uint64_t Offset = VA.getLocMemOffset(); 2254 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2255 2256 SDValue Arg = 2257 lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset, Alignment, 2258 Ins[i].Flags.isSExt(), &Ins[i]); 2259 Chains.push_back(Arg.getValue(1)); 2260 2261 auto *ParamTy = 2262 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2263 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2264 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2265 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2266 // On SI local pointers are just offsets into LDS, so they are always 2267 // less than 16-bits. On CI and newer they could potentially be 2268 // real pointers, so we can't guarantee their size. 2269 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2270 DAG.getValueType(MVT::i16)); 2271 } 2272 2273 InVals.push_back(Arg); 2274 continue; 2275 } else if (!IsEntryFunc && VA.isMemLoc()) { 2276 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2277 InVals.push_back(Val); 2278 if (!Arg.Flags.isByVal()) 2279 Chains.push_back(Val.getValue(1)); 2280 continue; 2281 } 2282 2283 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2284 2285 Register Reg = VA.getLocReg(); 2286 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2287 EVT ValVT = VA.getValVT(); 2288 2289 Reg = MF.addLiveIn(Reg, RC); 2290 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2291 2292 if (Arg.Flags.isSRet()) { 2293 // The return object should be reasonably addressable. 2294 2295 // FIXME: This helps when the return is a real sret. If it is a 2296 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2297 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2298 unsigned NumBits 2299 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2300 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2301 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2302 } 2303 2304 // If this is an 8 or 16-bit value, it is really passed promoted 2305 // to 32 bits. Insert an assert[sz]ext to capture this, then 2306 // truncate to the right size. 2307 switch (VA.getLocInfo()) { 2308 case CCValAssign::Full: 2309 break; 2310 case CCValAssign::BCvt: 2311 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2312 break; 2313 case CCValAssign::SExt: 2314 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2315 DAG.getValueType(ValVT)); 2316 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2317 break; 2318 case CCValAssign::ZExt: 2319 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2320 DAG.getValueType(ValVT)); 2321 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2322 break; 2323 case CCValAssign::AExt: 2324 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2325 break; 2326 default: 2327 llvm_unreachable("Unknown loc info!"); 2328 } 2329 2330 InVals.push_back(Val); 2331 } 2332 2333 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 2334 // Special inputs come after user arguments. 2335 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2336 } 2337 2338 // Start adding system SGPRs. 2339 if (IsEntryFunc) { 2340 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); 2341 } else { 2342 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2343 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2344 } 2345 2346 auto &ArgUsageInfo = 2347 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2348 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2349 2350 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2351 Info->setBytesInStackArgArea(StackArgSize); 2352 2353 return Chains.empty() ? Chain : 2354 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2355 } 2356 2357 // TODO: If return values can't fit in registers, we should return as many as 2358 // possible in registers before passing on stack. 2359 bool SITargetLowering::CanLowerReturn( 2360 CallingConv::ID CallConv, 2361 MachineFunction &MF, bool IsVarArg, 2362 const SmallVectorImpl<ISD::OutputArg> &Outs, 2363 LLVMContext &Context) const { 2364 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2365 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2366 // for shaders. Vector types should be explicitly handled by CC. 2367 if (AMDGPU::isEntryFunctionCC(CallConv)) 2368 return true; 2369 2370 SmallVector<CCValAssign, 16> RVLocs; 2371 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2372 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2373 } 2374 2375 SDValue 2376 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2377 bool isVarArg, 2378 const SmallVectorImpl<ISD::OutputArg> &Outs, 2379 const SmallVectorImpl<SDValue> &OutVals, 2380 const SDLoc &DL, SelectionDAG &DAG) const { 2381 MachineFunction &MF = DAG.getMachineFunction(); 2382 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2383 2384 if (AMDGPU::isKernel(CallConv)) { 2385 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2386 OutVals, DL, DAG); 2387 } 2388 2389 bool IsShader = AMDGPU::isShader(CallConv); 2390 2391 Info->setIfReturnsVoid(Outs.empty()); 2392 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2393 2394 // CCValAssign - represent the assignment of the return value to a location. 2395 SmallVector<CCValAssign, 48> RVLocs; 2396 SmallVector<ISD::OutputArg, 48> Splits; 2397 2398 // CCState - Info about the registers and stack slots. 2399 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2400 *DAG.getContext()); 2401 2402 // Analyze outgoing return values. 2403 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2404 2405 SDValue Flag; 2406 SmallVector<SDValue, 48> RetOps; 2407 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2408 2409 // Add return address for callable functions. 2410 if (!Info->isEntryFunction()) { 2411 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2412 SDValue ReturnAddrReg = CreateLiveInRegister( 2413 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2414 2415 SDValue ReturnAddrVirtualReg = DAG.getRegister( 2416 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), 2417 MVT::i64); 2418 Chain = 2419 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2420 Flag = Chain.getValue(1); 2421 RetOps.push_back(ReturnAddrVirtualReg); 2422 } 2423 2424 // Copy the result values into the output registers. 2425 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2426 ++I, ++RealRVLocIdx) { 2427 CCValAssign &VA = RVLocs[I]; 2428 assert(VA.isRegLoc() && "Can only return in registers!"); 2429 // TODO: Partially return in registers if return values don't fit. 2430 SDValue Arg = OutVals[RealRVLocIdx]; 2431 2432 // Copied from other backends. 2433 switch (VA.getLocInfo()) { 2434 case CCValAssign::Full: 2435 break; 2436 case CCValAssign::BCvt: 2437 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2438 break; 2439 case CCValAssign::SExt: 2440 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2441 break; 2442 case CCValAssign::ZExt: 2443 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2444 break; 2445 case CCValAssign::AExt: 2446 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2447 break; 2448 default: 2449 llvm_unreachable("Unknown loc info!"); 2450 } 2451 2452 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2453 Flag = Chain.getValue(1); 2454 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2455 } 2456 2457 // FIXME: Does sret work properly? 2458 if (!Info->isEntryFunction()) { 2459 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2460 const MCPhysReg *I = 2461 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2462 if (I) { 2463 for (; *I; ++I) { 2464 if (AMDGPU::SReg_64RegClass.contains(*I)) 2465 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2466 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2467 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2468 else 2469 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2470 } 2471 } 2472 } 2473 2474 // Update chain and glue. 2475 RetOps[0] = Chain; 2476 if (Flag.getNode()) 2477 RetOps.push_back(Flag); 2478 2479 unsigned Opc = AMDGPUISD::ENDPGM; 2480 if (!IsWaveEnd) 2481 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2482 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2483 } 2484 2485 SDValue SITargetLowering::LowerCallResult( 2486 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2487 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2488 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2489 SDValue ThisVal) const { 2490 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2491 2492 // Assign locations to each value returned by this call. 2493 SmallVector<CCValAssign, 16> RVLocs; 2494 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2495 *DAG.getContext()); 2496 CCInfo.AnalyzeCallResult(Ins, RetCC); 2497 2498 // Copy all of the result registers out of their specified physreg. 2499 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2500 CCValAssign VA = RVLocs[i]; 2501 SDValue Val; 2502 2503 if (VA.isRegLoc()) { 2504 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2505 Chain = Val.getValue(1); 2506 InFlag = Val.getValue(2); 2507 } else if (VA.isMemLoc()) { 2508 report_fatal_error("TODO: return values in memory"); 2509 } else 2510 llvm_unreachable("unknown argument location type"); 2511 2512 switch (VA.getLocInfo()) { 2513 case CCValAssign::Full: 2514 break; 2515 case CCValAssign::BCvt: 2516 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2517 break; 2518 case CCValAssign::ZExt: 2519 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2520 DAG.getValueType(VA.getValVT())); 2521 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2522 break; 2523 case CCValAssign::SExt: 2524 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2525 DAG.getValueType(VA.getValVT())); 2526 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2527 break; 2528 case CCValAssign::AExt: 2529 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2530 break; 2531 default: 2532 llvm_unreachable("Unknown loc info!"); 2533 } 2534 2535 InVals.push_back(Val); 2536 } 2537 2538 return Chain; 2539 } 2540 2541 // Add code to pass special inputs required depending on used features separate 2542 // from the explicit user arguments present in the IR. 2543 void SITargetLowering::passSpecialInputs( 2544 CallLoweringInfo &CLI, 2545 CCState &CCInfo, 2546 const SIMachineFunctionInfo &Info, 2547 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2548 SmallVectorImpl<SDValue> &MemOpChains, 2549 SDValue Chain) const { 2550 // If we don't have a call site, this was a call inserted by 2551 // legalization. These can never use special inputs. 2552 if (!CLI.CB) 2553 return; 2554 2555 SelectionDAG &DAG = CLI.DAG; 2556 const SDLoc &DL = CLI.DL; 2557 2558 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2559 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2560 2561 const AMDGPUFunctionArgInfo *CalleeArgInfo 2562 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2563 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2564 auto &ArgUsageInfo = 2565 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2566 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2567 } 2568 2569 // TODO: Unify with private memory register handling. This is complicated by 2570 // the fact that at least in kernels, the input argument is not necessarily 2571 // in the same location as the input. 2572 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2573 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2574 AMDGPUFunctionArgInfo::QUEUE_PTR, 2575 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 2576 AMDGPUFunctionArgInfo::DISPATCH_ID, 2577 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2578 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2579 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 2580 }; 2581 2582 for (auto InputID : InputRegs) { 2583 const ArgDescriptor *OutgoingArg; 2584 const TargetRegisterClass *ArgRC; 2585 LLT ArgTy; 2586 2587 std::tie(OutgoingArg, ArgRC, ArgTy) = 2588 CalleeArgInfo->getPreloadedValue(InputID); 2589 if (!OutgoingArg) 2590 continue; 2591 2592 const ArgDescriptor *IncomingArg; 2593 const TargetRegisterClass *IncomingArgRC; 2594 LLT Ty; 2595 std::tie(IncomingArg, IncomingArgRC, Ty) = 2596 CallerArgInfo.getPreloadedValue(InputID); 2597 assert(IncomingArgRC == ArgRC); 2598 2599 // All special arguments are ints for now. 2600 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2601 SDValue InputReg; 2602 2603 if (IncomingArg) { 2604 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2605 } else { 2606 // The implicit arg ptr is special because it doesn't have a corresponding 2607 // input for kernels, and is computed from the kernarg segment pointer. 2608 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2609 InputReg = getImplicitArgPtr(DAG, DL); 2610 } 2611 2612 if (OutgoingArg->isRegister()) { 2613 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2614 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2615 report_fatal_error("failed to allocate implicit input argument"); 2616 } else { 2617 unsigned SpecialArgOffset = 2618 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2619 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2620 SpecialArgOffset); 2621 MemOpChains.push_back(ArgStore); 2622 } 2623 } 2624 2625 // Pack workitem IDs into a single register or pass it as is if already 2626 // packed. 2627 const ArgDescriptor *OutgoingArg; 2628 const TargetRegisterClass *ArgRC; 2629 LLT Ty; 2630 2631 std::tie(OutgoingArg, ArgRC, Ty) = 2632 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2633 if (!OutgoingArg) 2634 std::tie(OutgoingArg, ArgRC, Ty) = 2635 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2636 if (!OutgoingArg) 2637 std::tie(OutgoingArg, ArgRC, Ty) = 2638 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2639 if (!OutgoingArg) 2640 return; 2641 2642 const ArgDescriptor *IncomingArgX = std::get<0>( 2643 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2644 const ArgDescriptor *IncomingArgY = std::get<0>( 2645 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2646 const ArgDescriptor *IncomingArgZ = std::get<0>( 2647 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2648 2649 SDValue InputReg; 2650 SDLoc SL; 2651 2652 // If incoming ids are not packed we need to pack them. 2653 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) 2654 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2655 2656 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 2657 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2658 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2659 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2660 InputReg = InputReg.getNode() ? 2661 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2662 } 2663 2664 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 2665 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2666 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2667 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2668 InputReg = InputReg.getNode() ? 2669 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2670 } 2671 2672 if (!InputReg.getNode()) { 2673 // Workitem ids are already packed, any of present incoming arguments 2674 // will carry all required fields. 2675 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2676 IncomingArgX ? *IncomingArgX : 2677 IncomingArgY ? *IncomingArgY : 2678 *IncomingArgZ, ~0u); 2679 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2680 } 2681 2682 if (OutgoingArg->isRegister()) { 2683 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2684 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2685 } else { 2686 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2687 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2688 SpecialArgOffset); 2689 MemOpChains.push_back(ArgStore); 2690 } 2691 } 2692 2693 static bool canGuaranteeTCO(CallingConv::ID CC) { 2694 return CC == CallingConv::Fast; 2695 } 2696 2697 /// Return true if we might ever do TCO for calls with this calling convention. 2698 static bool mayTailCallThisCC(CallingConv::ID CC) { 2699 switch (CC) { 2700 case CallingConv::C: 2701 return true; 2702 default: 2703 return canGuaranteeTCO(CC); 2704 } 2705 } 2706 2707 bool SITargetLowering::isEligibleForTailCallOptimization( 2708 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2709 const SmallVectorImpl<ISD::OutputArg> &Outs, 2710 const SmallVectorImpl<SDValue> &OutVals, 2711 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2712 if (!mayTailCallThisCC(CalleeCC)) 2713 return false; 2714 2715 MachineFunction &MF = DAG.getMachineFunction(); 2716 const Function &CallerF = MF.getFunction(); 2717 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2718 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2719 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2720 2721 // Kernels aren't callable, and don't have a live in return address so it 2722 // doesn't make sense to do a tail call with entry functions. 2723 if (!CallerPreserved) 2724 return false; 2725 2726 bool CCMatch = CallerCC == CalleeCC; 2727 2728 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2729 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2730 return true; 2731 return false; 2732 } 2733 2734 // TODO: Can we handle var args? 2735 if (IsVarArg) 2736 return false; 2737 2738 for (const Argument &Arg : CallerF.args()) { 2739 if (Arg.hasByValAttr()) 2740 return false; 2741 } 2742 2743 LLVMContext &Ctx = *DAG.getContext(); 2744 2745 // Check that the call results are passed in the same way. 2746 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2747 CCAssignFnForCall(CalleeCC, IsVarArg), 2748 CCAssignFnForCall(CallerCC, IsVarArg))) 2749 return false; 2750 2751 // The callee has to preserve all registers the caller needs to preserve. 2752 if (!CCMatch) { 2753 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2754 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2755 return false; 2756 } 2757 2758 // Nothing more to check if the callee is taking no arguments. 2759 if (Outs.empty()) 2760 return true; 2761 2762 SmallVector<CCValAssign, 16> ArgLocs; 2763 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2764 2765 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2766 2767 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2768 // If the stack arguments for this call do not fit into our own save area then 2769 // the call cannot be made tail. 2770 // TODO: Is this really necessary? 2771 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2772 return false; 2773 2774 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2775 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2776 } 2777 2778 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2779 if (!CI->isTailCall()) 2780 return false; 2781 2782 const Function *ParentFn = CI->getParent()->getParent(); 2783 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2784 return false; 2785 return true; 2786 } 2787 2788 // The wave scratch offset register is used as the global base pointer. 2789 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2790 SmallVectorImpl<SDValue> &InVals) const { 2791 SelectionDAG &DAG = CLI.DAG; 2792 const SDLoc &DL = CLI.DL; 2793 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2794 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2795 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2796 SDValue Chain = CLI.Chain; 2797 SDValue Callee = CLI.Callee; 2798 bool &IsTailCall = CLI.IsTailCall; 2799 CallingConv::ID CallConv = CLI.CallConv; 2800 bool IsVarArg = CLI.IsVarArg; 2801 bool IsSibCall = false; 2802 bool IsThisReturn = false; 2803 MachineFunction &MF = DAG.getMachineFunction(); 2804 2805 if (Callee.isUndef() || isNullConstant(Callee)) { 2806 if (!CLI.IsTailCall) { 2807 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 2808 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 2809 } 2810 2811 return Chain; 2812 } 2813 2814 if (IsVarArg) { 2815 return lowerUnhandledCall(CLI, InVals, 2816 "unsupported call to variadic function "); 2817 } 2818 2819 if (!CLI.CB) 2820 report_fatal_error("unsupported libcall legalization"); 2821 2822 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 2823 !CLI.CB->getCalledFunction()) { 2824 return lowerUnhandledCall(CLI, InVals, 2825 "unsupported indirect call to function "); 2826 } 2827 2828 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2829 return lowerUnhandledCall(CLI, InVals, 2830 "unsupported required tail call to function "); 2831 } 2832 2833 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { 2834 // Note the issue is with the CC of the calling function, not of the call 2835 // itself. 2836 return lowerUnhandledCall(CLI, InVals, 2837 "unsupported call from graphics shader of function "); 2838 } 2839 2840 if (IsTailCall) { 2841 IsTailCall = isEligibleForTailCallOptimization( 2842 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2843 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 2844 report_fatal_error("failed to perform tail call elimination on a call " 2845 "site marked musttail"); 2846 } 2847 2848 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2849 2850 // A sibling call is one where we're under the usual C ABI and not planning 2851 // to change that but can still do a tail call: 2852 if (!TailCallOpt && IsTailCall) 2853 IsSibCall = true; 2854 2855 if (IsTailCall) 2856 ++NumTailCalls; 2857 } 2858 2859 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2860 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2861 SmallVector<SDValue, 8> MemOpChains; 2862 2863 // Analyze operands of the call, assigning locations to each operand. 2864 SmallVector<CCValAssign, 16> ArgLocs; 2865 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2866 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 2867 2868 if (AMDGPUTargetMachine::EnableFixedFunctionABI) { 2869 // With a fixed ABI, allocate fixed registers before user arguments. 2870 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2871 } 2872 2873 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 2874 2875 // Get a count of how many bytes are to be pushed on the stack. 2876 unsigned NumBytes = CCInfo.getNextStackOffset(); 2877 2878 if (IsSibCall) { 2879 // Since we're not changing the ABI to make this a tail call, the memory 2880 // operands are already available in the caller's incoming argument space. 2881 NumBytes = 0; 2882 } 2883 2884 // FPDiff is the byte offset of the call's argument area from the callee's. 2885 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2886 // by this amount for a tail call. In a sibling call it must be 0 because the 2887 // caller will deallocate the entire stack and the callee still expects its 2888 // arguments to begin at SP+0. Completely unused for non-tail calls. 2889 int32_t FPDiff = 0; 2890 MachineFrameInfo &MFI = MF.getFrameInfo(); 2891 2892 // Adjust the stack pointer for the new arguments... 2893 // These operations are automatically eliminated by the prolog/epilog pass 2894 if (!IsSibCall) { 2895 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 2896 2897 SmallVector<SDValue, 4> CopyFromChains; 2898 2899 // In the HSA case, this should be an identity copy. 2900 SDValue ScratchRSrcReg 2901 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 2902 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 2903 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 2904 Chain = DAG.getTokenFactor(DL, CopyFromChains); 2905 } 2906 2907 MVT PtrVT = MVT::i32; 2908 2909 // Walk the register/memloc assignments, inserting copies/loads. 2910 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2911 CCValAssign &VA = ArgLocs[i]; 2912 SDValue Arg = OutVals[i]; 2913 2914 // Promote the value if needed. 2915 switch (VA.getLocInfo()) { 2916 case CCValAssign::Full: 2917 break; 2918 case CCValAssign::BCvt: 2919 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2920 break; 2921 case CCValAssign::ZExt: 2922 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2923 break; 2924 case CCValAssign::SExt: 2925 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2926 break; 2927 case CCValAssign::AExt: 2928 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2929 break; 2930 case CCValAssign::FPExt: 2931 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 2932 break; 2933 default: 2934 llvm_unreachable("Unknown loc info!"); 2935 } 2936 2937 if (VA.isRegLoc()) { 2938 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2939 } else { 2940 assert(VA.isMemLoc()); 2941 2942 SDValue DstAddr; 2943 MachinePointerInfo DstInfo; 2944 2945 unsigned LocMemOffset = VA.getLocMemOffset(); 2946 int32_t Offset = LocMemOffset; 2947 2948 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 2949 MaybeAlign Alignment; 2950 2951 if (IsTailCall) { 2952 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2953 unsigned OpSize = Flags.isByVal() ? 2954 Flags.getByValSize() : VA.getValVT().getStoreSize(); 2955 2956 // FIXME: We can have better than the minimum byval required alignment. 2957 Alignment = 2958 Flags.isByVal() 2959 ? Flags.getNonZeroByValAlign() 2960 : commonAlignment(Subtarget->getStackAlignment(), Offset); 2961 2962 Offset = Offset + FPDiff; 2963 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 2964 2965 DstAddr = DAG.getFrameIndex(FI, PtrVT); 2966 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 2967 2968 // Make sure any stack arguments overlapping with where we're storing 2969 // are loaded before this eventual operation. Otherwise they'll be 2970 // clobbered. 2971 2972 // FIXME: Why is this really necessary? This seems to just result in a 2973 // lot of code to copy the stack and write them back to the same 2974 // locations, which are supposed to be immutable? 2975 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 2976 } else { 2977 DstAddr = PtrOff; 2978 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 2979 Alignment = 2980 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 2981 } 2982 2983 if (Outs[i].Flags.isByVal()) { 2984 SDValue SizeNode = 2985 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 2986 SDValue Cpy = 2987 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 2988 Outs[i].Flags.getNonZeroByValAlign(), 2989 /*isVol = */ false, /*AlwaysInline = */ true, 2990 /*isTailCall = */ false, DstInfo, 2991 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 2992 2993 MemOpChains.push_back(Cpy); 2994 } else { 2995 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, 2996 Alignment ? Alignment->value() : 0); 2997 MemOpChains.push_back(Store); 2998 } 2999 } 3000 } 3001 3002 if (!AMDGPUTargetMachine::EnableFixedFunctionABI) { 3003 // Copy special input registers after user input arguments. 3004 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3005 } 3006 3007 if (!MemOpChains.empty()) 3008 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3009 3010 // Build a sequence of copy-to-reg nodes chained together with token chain 3011 // and flag operands which copy the outgoing args into the appropriate regs. 3012 SDValue InFlag; 3013 for (auto &RegToPass : RegsToPass) { 3014 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3015 RegToPass.second, InFlag); 3016 InFlag = Chain.getValue(1); 3017 } 3018 3019 3020 SDValue PhysReturnAddrReg; 3021 if (IsTailCall) { 3022 // Since the return is being combined with the call, we need to pass on the 3023 // return address. 3024 3025 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3026 SDValue ReturnAddrReg = CreateLiveInRegister( 3027 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 3028 3029 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 3030 MVT::i64); 3031 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 3032 InFlag = Chain.getValue(1); 3033 } 3034 3035 // We don't usually want to end the call-sequence here because we would tidy 3036 // the frame up *after* the call, however in the ABI-changing tail-call case 3037 // we've carefully laid out the parameters so that when sp is reset they'll be 3038 // in the correct location. 3039 if (IsTailCall && !IsSibCall) { 3040 Chain = DAG.getCALLSEQ_END(Chain, 3041 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3042 DAG.getTargetConstant(0, DL, MVT::i32), 3043 InFlag, DL); 3044 InFlag = Chain.getValue(1); 3045 } 3046 3047 std::vector<SDValue> Ops; 3048 Ops.push_back(Chain); 3049 Ops.push_back(Callee); 3050 // Add a redundant copy of the callee global which will not be legalized, as 3051 // we need direct access to the callee later. 3052 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3053 const GlobalValue *GV = GSD->getGlobal(); 3054 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3055 } else { 3056 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3057 } 3058 3059 if (IsTailCall) { 3060 // Each tail call may have to adjust the stack by a different amount, so 3061 // this information must travel along with the operation for eventual 3062 // consumption by emitEpilogue. 3063 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3064 3065 Ops.push_back(PhysReturnAddrReg); 3066 } 3067 3068 // Add argument registers to the end of the list so that they are known live 3069 // into the call. 3070 for (auto &RegToPass : RegsToPass) { 3071 Ops.push_back(DAG.getRegister(RegToPass.first, 3072 RegToPass.second.getValueType())); 3073 } 3074 3075 // Add a register mask operand representing the call-preserved registers. 3076 3077 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3078 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3079 assert(Mask && "Missing call preserved mask for calling convention"); 3080 Ops.push_back(DAG.getRegisterMask(Mask)); 3081 3082 if (InFlag.getNode()) 3083 Ops.push_back(InFlag); 3084 3085 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3086 3087 // If we're doing a tall call, use a TC_RETURN here rather than an 3088 // actual call instruction. 3089 if (IsTailCall) { 3090 MFI.setHasTailCall(); 3091 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3092 } 3093 3094 // Returns a chain and a flag for retval copy to use. 3095 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3096 Chain = Call.getValue(0); 3097 InFlag = Call.getValue(1); 3098 3099 uint64_t CalleePopBytes = NumBytes; 3100 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3101 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3102 InFlag, DL); 3103 if (!Ins.empty()) 3104 InFlag = Chain.getValue(1); 3105 3106 // Handle result values, copying them out of physregs into vregs that we 3107 // return. 3108 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3109 InVals, IsThisReturn, 3110 IsThisReturn ? OutVals[0] : SDValue()); 3111 } 3112 3113 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3114 // except for applying the wave size scale to the increment amount. 3115 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3116 SDValue Op, SelectionDAG &DAG) const { 3117 const MachineFunction &MF = DAG.getMachineFunction(); 3118 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3119 3120 SDLoc dl(Op); 3121 EVT VT = Op.getValueType(); 3122 SDValue Tmp1 = Op; 3123 SDValue Tmp2 = Op.getValue(1); 3124 SDValue Tmp3 = Op.getOperand(2); 3125 SDValue Chain = Tmp1.getOperand(0); 3126 3127 Register SPReg = Info->getStackPtrOffsetReg(); 3128 3129 // Chain the dynamic stack allocation so that it doesn't modify the stack 3130 // pointer when other instructions are using the stack. 3131 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3132 3133 SDValue Size = Tmp2.getOperand(1); 3134 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3135 Chain = SP.getValue(1); 3136 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3137 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3138 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3139 unsigned Opc = 3140 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3141 ISD::ADD : ISD::SUB; 3142 3143 SDValue ScaledSize = DAG.getNode( 3144 ISD::SHL, dl, VT, Size, 3145 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3146 3147 Align StackAlign = TFL->getStackAlign(); 3148 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3149 if (Alignment && *Alignment > StackAlign) { 3150 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3151 DAG.getConstant(-(uint64_t)Alignment->value() 3152 << ST.getWavefrontSizeLog2(), 3153 dl, VT)); 3154 } 3155 3156 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3157 Tmp2 = DAG.getCALLSEQ_END( 3158 Chain, DAG.getIntPtrConstant(0, dl, true), 3159 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3160 3161 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3162 } 3163 3164 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3165 SelectionDAG &DAG) const { 3166 // We only handle constant sizes here to allow non-entry block, static sized 3167 // allocas. A truly dynamic value is more difficult to support because we 3168 // don't know if the size value is uniform or not. If the size isn't uniform, 3169 // we would need to do a wave reduction to get the maximum size to know how 3170 // much to increment the uniform stack pointer. 3171 SDValue Size = Op.getOperand(1); 3172 if (isa<ConstantSDNode>(Size)) 3173 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3174 3175 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3176 } 3177 3178 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3179 const MachineFunction &MF) const { 3180 Register Reg = StringSwitch<Register>(RegName) 3181 .Case("m0", AMDGPU::M0) 3182 .Case("exec", AMDGPU::EXEC) 3183 .Case("exec_lo", AMDGPU::EXEC_LO) 3184 .Case("exec_hi", AMDGPU::EXEC_HI) 3185 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3186 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3187 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3188 .Default(Register()); 3189 3190 if (Reg == AMDGPU::NoRegister) { 3191 report_fatal_error(Twine("invalid register name \"" 3192 + StringRef(RegName) + "\".")); 3193 3194 } 3195 3196 if (!Subtarget->hasFlatScrRegister() && 3197 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3198 report_fatal_error(Twine("invalid register \"" 3199 + StringRef(RegName) + "\" for subtarget.")); 3200 } 3201 3202 switch (Reg) { 3203 case AMDGPU::M0: 3204 case AMDGPU::EXEC_LO: 3205 case AMDGPU::EXEC_HI: 3206 case AMDGPU::FLAT_SCR_LO: 3207 case AMDGPU::FLAT_SCR_HI: 3208 if (VT.getSizeInBits() == 32) 3209 return Reg; 3210 break; 3211 case AMDGPU::EXEC: 3212 case AMDGPU::FLAT_SCR: 3213 if (VT.getSizeInBits() == 64) 3214 return Reg; 3215 break; 3216 default: 3217 llvm_unreachable("missing register type checking"); 3218 } 3219 3220 report_fatal_error(Twine("invalid type for register \"" 3221 + StringRef(RegName) + "\".")); 3222 } 3223 3224 // If kill is not the last instruction, split the block so kill is always a 3225 // proper terminator. 3226 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, 3227 MachineBasicBlock *BB) const { 3228 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3229 3230 MachineBasicBlock::iterator SplitPoint(&MI); 3231 ++SplitPoint; 3232 3233 if (SplitPoint == BB->end()) { 3234 // Don't bother with a new block. 3235 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3236 return BB; 3237 } 3238 3239 MachineFunction *MF = BB->getParent(); 3240 MachineBasicBlock *SplitBB 3241 = MF->CreateMachineBasicBlock(BB->getBasicBlock()); 3242 3243 MF->insert(++MachineFunction::iterator(BB), SplitBB); 3244 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); 3245 3246 SplitBB->transferSuccessorsAndUpdatePHIs(BB); 3247 BB->addSuccessor(SplitBB); 3248 3249 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3250 return SplitBB; 3251 } 3252 3253 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3254 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3255 // be the first instruction in the remainder block. 3256 // 3257 /// \returns { LoopBody, Remainder } 3258 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3259 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3260 MachineFunction *MF = MBB.getParent(); 3261 MachineBasicBlock::iterator I(&MI); 3262 3263 // To insert the loop we need to split the block. Move everything after this 3264 // point to a new block, and insert a new empty block between the two. 3265 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3266 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3267 MachineFunction::iterator MBBI(MBB); 3268 ++MBBI; 3269 3270 MF->insert(MBBI, LoopBB); 3271 MF->insert(MBBI, RemainderBB); 3272 3273 LoopBB->addSuccessor(LoopBB); 3274 LoopBB->addSuccessor(RemainderBB); 3275 3276 // Move the rest of the block into a new block. 3277 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3278 3279 if (InstInLoop) { 3280 auto Next = std::next(I); 3281 3282 // Move instruction to loop body. 3283 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3284 3285 // Move the rest of the block. 3286 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3287 } else { 3288 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3289 } 3290 3291 MBB.addSuccessor(LoopBB); 3292 3293 return std::make_pair(LoopBB, RemainderBB); 3294 } 3295 3296 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3297 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3298 MachineBasicBlock *MBB = MI.getParent(); 3299 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3300 auto I = MI.getIterator(); 3301 auto E = std::next(I); 3302 3303 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3304 .addImm(0); 3305 3306 MIBundleBuilder Bundler(*MBB, I, E); 3307 finalizeBundle(*MBB, Bundler.begin()); 3308 } 3309 3310 MachineBasicBlock * 3311 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3312 MachineBasicBlock *BB) const { 3313 const DebugLoc &DL = MI.getDebugLoc(); 3314 3315 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3316 3317 MachineBasicBlock *LoopBB; 3318 MachineBasicBlock *RemainderBB; 3319 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3320 3321 // Apparently kill flags are only valid if the def is in the same block? 3322 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3323 Src->setIsKill(false); 3324 3325 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3326 3327 MachineBasicBlock::iterator I = LoopBB->end(); 3328 3329 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3330 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3331 3332 // Clear TRAP_STS.MEM_VIOL 3333 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3334 .addImm(0) 3335 .addImm(EncodedReg); 3336 3337 bundleInstWithWaitcnt(MI); 3338 3339 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3340 3341 // Load and check TRAP_STS.MEM_VIOL 3342 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3343 .addImm(EncodedReg); 3344 3345 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3346 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3347 .addReg(Reg, RegState::Kill) 3348 .addImm(0); 3349 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3350 .addMBB(LoopBB); 3351 3352 return RemainderBB; 3353 } 3354 3355 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3356 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3357 // will only do one iteration. In the worst case, this will loop 64 times. 3358 // 3359 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3360 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( 3361 const SIInstrInfo *TII, 3362 MachineRegisterInfo &MRI, 3363 MachineBasicBlock &OrigBB, 3364 MachineBasicBlock &LoopBB, 3365 const DebugLoc &DL, 3366 const MachineOperand &IdxReg, 3367 unsigned InitReg, 3368 unsigned ResultReg, 3369 unsigned PhiReg, 3370 unsigned InitSaveExecReg, 3371 int Offset, 3372 bool UseGPRIdxMode, 3373 bool IsIndirectSrc) { 3374 MachineFunction *MF = OrigBB.getParent(); 3375 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3376 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3377 MachineBasicBlock::iterator I = LoopBB.begin(); 3378 3379 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3380 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3381 Register NewExec = MRI.createVirtualRegister(BoolRC); 3382 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3383 Register CondReg = MRI.createVirtualRegister(BoolRC); 3384 3385 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3386 .addReg(InitReg) 3387 .addMBB(&OrigBB) 3388 .addReg(ResultReg) 3389 .addMBB(&LoopBB); 3390 3391 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3392 .addReg(InitSaveExecReg) 3393 .addMBB(&OrigBB) 3394 .addReg(NewExec) 3395 .addMBB(&LoopBB); 3396 3397 // Read the next variant <- also loop target. 3398 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3399 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); 3400 3401 // Compare the just read M0 value to all possible Idx values. 3402 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3403 .addReg(CurrentIdxReg) 3404 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); 3405 3406 // Update EXEC, save the original EXEC value to VCC. 3407 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3408 : AMDGPU::S_AND_SAVEEXEC_B64), 3409 NewExec) 3410 .addReg(CondReg, RegState::Kill); 3411 3412 MRI.setSimpleHint(NewExec, CondReg); 3413 3414 if (UseGPRIdxMode) { 3415 unsigned IdxReg; 3416 if (Offset == 0) { 3417 IdxReg = CurrentIdxReg; 3418 } else { 3419 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3420 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) 3421 .addReg(CurrentIdxReg, RegState::Kill) 3422 .addImm(Offset); 3423 } 3424 unsigned IdxMode = IsIndirectSrc ? 3425 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3426 MachineInstr *SetOn = 3427 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3428 .addReg(IdxReg, RegState::Kill) 3429 .addImm(IdxMode); 3430 SetOn->getOperand(3).setIsUndef(); 3431 } else { 3432 // Move index from VCC into M0 3433 if (Offset == 0) { 3434 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3435 .addReg(CurrentIdxReg, RegState::Kill); 3436 } else { 3437 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3438 .addReg(CurrentIdxReg, RegState::Kill) 3439 .addImm(Offset); 3440 } 3441 } 3442 3443 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3444 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3445 MachineInstr *InsertPt = 3446 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3447 : AMDGPU::S_XOR_B64_term), Exec) 3448 .addReg(Exec) 3449 .addReg(NewExec); 3450 3451 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3452 // s_cbranch_scc0? 3453 3454 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3455 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3456 .addMBB(&LoopBB); 3457 3458 return InsertPt->getIterator(); 3459 } 3460 3461 // This has slightly sub-optimal regalloc when the source vector is killed by 3462 // the read. The register allocator does not understand that the kill is 3463 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3464 // subregister from it, using 1 more VGPR than necessary. This was saved when 3465 // this was expanded after register allocation. 3466 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, 3467 MachineBasicBlock &MBB, 3468 MachineInstr &MI, 3469 unsigned InitResultReg, 3470 unsigned PhiReg, 3471 int Offset, 3472 bool UseGPRIdxMode, 3473 bool IsIndirectSrc) { 3474 MachineFunction *MF = MBB.getParent(); 3475 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3476 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3477 MachineRegisterInfo &MRI = MF->getRegInfo(); 3478 const DebugLoc &DL = MI.getDebugLoc(); 3479 MachineBasicBlock::iterator I(&MI); 3480 3481 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3482 Register DstReg = MI.getOperand(0).getReg(); 3483 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3484 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3485 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3486 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3487 3488 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3489 3490 // Save the EXEC mask 3491 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3492 .addReg(Exec); 3493 3494 MachineBasicBlock *LoopBB; 3495 MachineBasicBlock *RemainderBB; 3496 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3497 3498 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3499 3500 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3501 InitResultReg, DstReg, PhiReg, TmpExec, 3502 Offset, UseGPRIdxMode, IsIndirectSrc); 3503 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3504 MachineFunction::iterator MBBI(LoopBB); 3505 ++MBBI; 3506 MF->insert(MBBI, LandingPad); 3507 LoopBB->removeSuccessor(RemainderBB); 3508 LandingPad->addSuccessor(RemainderBB); 3509 LoopBB->addSuccessor(LandingPad); 3510 MachineBasicBlock::iterator First = LandingPad->begin(); 3511 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3512 .addReg(SaveExec); 3513 3514 return InsPt; 3515 } 3516 3517 // Returns subreg index, offset 3518 static std::pair<unsigned, int> 3519 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3520 const TargetRegisterClass *SuperRC, 3521 unsigned VecReg, 3522 int Offset) { 3523 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3524 3525 // Skip out of bounds offsets, or else we would end up using an undefined 3526 // register. 3527 if (Offset >= NumElts || Offset < 0) 3528 return std::make_pair(AMDGPU::sub0, Offset); 3529 3530 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3531 } 3532 3533 // Return true if the index is an SGPR and was set. 3534 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3535 MachineRegisterInfo &MRI, 3536 MachineInstr &MI, 3537 int Offset, 3538 bool UseGPRIdxMode, 3539 bool IsIndirectSrc) { 3540 MachineBasicBlock *MBB = MI.getParent(); 3541 const DebugLoc &DL = MI.getDebugLoc(); 3542 MachineBasicBlock::iterator I(&MI); 3543 3544 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3545 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3546 3547 assert(Idx->getReg() != AMDGPU::NoRegister); 3548 3549 if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) 3550 return false; 3551 3552 if (UseGPRIdxMode) { 3553 unsigned IdxMode = IsIndirectSrc ? 3554 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3555 if (Offset == 0) { 3556 MachineInstr *SetOn = 3557 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3558 .add(*Idx) 3559 .addImm(IdxMode); 3560 3561 SetOn->getOperand(3).setIsUndef(); 3562 } else { 3563 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3564 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3565 .add(*Idx) 3566 .addImm(Offset); 3567 MachineInstr *SetOn = 3568 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3569 .addReg(Tmp, RegState::Kill) 3570 .addImm(IdxMode); 3571 3572 SetOn->getOperand(3).setIsUndef(); 3573 } 3574 3575 return true; 3576 } 3577 3578 if (Offset == 0) { 3579 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3580 .add(*Idx); 3581 } else { 3582 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3583 .add(*Idx) 3584 .addImm(Offset); 3585 } 3586 3587 return true; 3588 } 3589 3590 // Control flow needs to be inserted if indexing with a VGPR. 3591 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3592 MachineBasicBlock &MBB, 3593 const GCNSubtarget &ST) { 3594 const SIInstrInfo *TII = ST.getInstrInfo(); 3595 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3596 MachineFunction *MF = MBB.getParent(); 3597 MachineRegisterInfo &MRI = MF->getRegInfo(); 3598 3599 Register Dst = MI.getOperand(0).getReg(); 3600 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3601 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3602 3603 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3604 3605 unsigned SubReg; 3606 std::tie(SubReg, Offset) 3607 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3608 3609 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3610 3611 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { 3612 MachineBasicBlock::iterator I(&MI); 3613 const DebugLoc &DL = MI.getDebugLoc(); 3614 3615 if (UseGPRIdxMode) { 3616 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3617 // to avoid interfering with other uses, so probably requires a new 3618 // optimization pass. 3619 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3620 .addReg(SrcReg, RegState::Undef, SubReg) 3621 .addReg(SrcReg, RegState::Implicit) 3622 .addReg(AMDGPU::M0, RegState::Implicit); 3623 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3624 } else { 3625 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3626 .addReg(SrcReg, RegState::Undef, SubReg) 3627 .addReg(SrcReg, RegState::Implicit); 3628 } 3629 3630 MI.eraseFromParent(); 3631 3632 return &MBB; 3633 } 3634 3635 const DebugLoc &DL = MI.getDebugLoc(); 3636 MachineBasicBlock::iterator I(&MI); 3637 3638 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3639 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3640 3641 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3642 3643 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, 3644 Offset, UseGPRIdxMode, true); 3645 MachineBasicBlock *LoopBB = InsPt->getParent(); 3646 3647 if (UseGPRIdxMode) { 3648 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3649 .addReg(SrcReg, RegState::Undef, SubReg) 3650 .addReg(SrcReg, RegState::Implicit) 3651 .addReg(AMDGPU::M0, RegState::Implicit); 3652 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3653 } else { 3654 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3655 .addReg(SrcReg, RegState::Undef, SubReg) 3656 .addReg(SrcReg, RegState::Implicit); 3657 } 3658 3659 MI.eraseFromParent(); 3660 3661 return LoopBB; 3662 } 3663 3664 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3665 MachineBasicBlock &MBB, 3666 const GCNSubtarget &ST) { 3667 const SIInstrInfo *TII = ST.getInstrInfo(); 3668 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3669 MachineFunction *MF = MBB.getParent(); 3670 MachineRegisterInfo &MRI = MF->getRegInfo(); 3671 3672 Register Dst = MI.getOperand(0).getReg(); 3673 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3674 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3675 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3676 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3677 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3678 3679 // This can be an immediate, but will be folded later. 3680 assert(Val->getReg()); 3681 3682 unsigned SubReg; 3683 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3684 SrcVec->getReg(), 3685 Offset); 3686 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3687 3688 if (Idx->getReg() == AMDGPU::NoRegister) { 3689 MachineBasicBlock::iterator I(&MI); 3690 const DebugLoc &DL = MI.getDebugLoc(); 3691 3692 assert(Offset == 0); 3693 3694 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3695 .add(*SrcVec) 3696 .add(*Val) 3697 .addImm(SubReg); 3698 3699 MI.eraseFromParent(); 3700 return &MBB; 3701 } 3702 3703 const MCInstrDesc &MovRelDesc 3704 = TII->getIndirectRegWritePseudo(TRI.getRegSizeInBits(*VecRC), 32, false); 3705 3706 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { 3707 MachineBasicBlock::iterator I(&MI); 3708 const DebugLoc &DL = MI.getDebugLoc(); 3709 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3710 .addReg(SrcVec->getReg()) 3711 .add(*Val) 3712 .addImm(SubReg); 3713 if (UseGPRIdxMode) 3714 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3715 3716 MI.eraseFromParent(); 3717 return &MBB; 3718 } 3719 3720 if (Val->isReg()) 3721 MRI.clearKillFlags(Val->getReg()); 3722 3723 const DebugLoc &DL = MI.getDebugLoc(); 3724 3725 Register PhiReg = MRI.createVirtualRegister(VecRC); 3726 3727 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, 3728 Offset, UseGPRIdxMode, false); 3729 MachineBasicBlock *LoopBB = InsPt->getParent(); 3730 3731 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3732 .addReg(PhiReg) 3733 .add(*Val) 3734 .addImm(AMDGPU::sub0); 3735 if (UseGPRIdxMode) 3736 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3737 3738 MI.eraseFromParent(); 3739 return LoopBB; 3740 } 3741 3742 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3743 MachineInstr &MI, MachineBasicBlock *BB) const { 3744 3745 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3746 MachineFunction *MF = BB->getParent(); 3747 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3748 3749 switch (MI.getOpcode()) { 3750 case AMDGPU::S_UADDO_PSEUDO: 3751 case AMDGPU::S_USUBO_PSEUDO: { 3752 const DebugLoc &DL = MI.getDebugLoc(); 3753 MachineOperand &Dest0 = MI.getOperand(0); 3754 MachineOperand &Dest1 = MI.getOperand(1); 3755 MachineOperand &Src0 = MI.getOperand(2); 3756 MachineOperand &Src1 = MI.getOperand(3); 3757 3758 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3759 ? AMDGPU::S_ADD_I32 3760 : AMDGPU::S_SUB_I32; 3761 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3762 3763 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3764 .addImm(1) 3765 .addImm(0); 3766 3767 MI.eraseFromParent(); 3768 return BB; 3769 } 3770 case AMDGPU::S_ADD_U64_PSEUDO: 3771 case AMDGPU::S_SUB_U64_PSEUDO: { 3772 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3773 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3774 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3775 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3776 const DebugLoc &DL = MI.getDebugLoc(); 3777 3778 MachineOperand &Dest = MI.getOperand(0); 3779 MachineOperand &Src0 = MI.getOperand(1); 3780 MachineOperand &Src1 = MI.getOperand(2); 3781 3782 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3783 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3784 3785 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 3786 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3787 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 3788 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3789 3790 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 3791 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3792 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 3793 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3794 3795 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3796 3797 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3798 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3799 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 3800 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 3801 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3802 .addReg(DestSub0) 3803 .addImm(AMDGPU::sub0) 3804 .addReg(DestSub1) 3805 .addImm(AMDGPU::sub1); 3806 MI.eraseFromParent(); 3807 return BB; 3808 } 3809 case AMDGPU::V_ADD_U64_PSEUDO: 3810 case AMDGPU::V_SUB_U64_PSEUDO: { 3811 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3812 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3813 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3814 const DebugLoc &DL = MI.getDebugLoc(); 3815 3816 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 3817 3818 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3819 3820 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3821 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3822 3823 Register CarryReg = MRI.createVirtualRegister(CarryRC); 3824 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 3825 3826 MachineOperand &Dest = MI.getOperand(0); 3827 MachineOperand &Src0 = MI.getOperand(1); 3828 MachineOperand &Src1 = MI.getOperand(2); 3829 3830 const TargetRegisterClass *Src0RC = Src0.isReg() 3831 ? MRI.getRegClass(Src0.getReg()) 3832 : &AMDGPU::VReg_64RegClass; 3833 const TargetRegisterClass *Src1RC = Src1.isReg() 3834 ? MRI.getRegClass(Src1.getReg()) 3835 : &AMDGPU::VReg_64RegClass; 3836 3837 const TargetRegisterClass *Src0SubRC = 3838 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 3839 const TargetRegisterClass *Src1SubRC = 3840 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 3841 3842 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 3843 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 3844 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 3845 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 3846 3847 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 3848 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 3849 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 3850 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 3851 3852 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64; 3853 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3854 .addReg(CarryReg, RegState::Define) 3855 .add(SrcReg0Sub0) 3856 .add(SrcReg1Sub0) 3857 .addImm(0); // clamp bit 3858 3859 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 3860 MachineInstr *HiHalf = 3861 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 3862 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 3863 .add(SrcReg0Sub1) 3864 .add(SrcReg1Sub1) 3865 .addReg(CarryReg, RegState::Kill) 3866 .addImm(0); // clamp bit 3867 3868 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3869 .addReg(DestSub0) 3870 .addImm(AMDGPU::sub0) 3871 .addReg(DestSub1) 3872 .addImm(AMDGPU::sub1); 3873 TII->legalizeOperands(*LoHalf); 3874 TII->legalizeOperands(*HiHalf); 3875 MI.eraseFromParent(); 3876 return BB; 3877 } 3878 case AMDGPU::S_ADD_CO_PSEUDO: 3879 case AMDGPU::S_SUB_CO_PSEUDO: { 3880 // This pseudo has a chance to be selected 3881 // only from uniform add/subcarry node. All the VGPR operands 3882 // therefore assumed to be splat vectors. 3883 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3884 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3885 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3886 MachineBasicBlock::iterator MII = MI; 3887 const DebugLoc &DL = MI.getDebugLoc(); 3888 MachineOperand &Dest = MI.getOperand(0); 3889 MachineOperand &CarryDest = MI.getOperand(1); 3890 MachineOperand &Src0 = MI.getOperand(2); 3891 MachineOperand &Src1 = MI.getOperand(3); 3892 MachineOperand &Src2 = MI.getOperand(4); 3893 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 3894 ? AMDGPU::S_ADDC_U32 3895 : AMDGPU::S_SUBB_U32; 3896 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 3897 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3898 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 3899 .addReg(Src0.getReg()); 3900 Src0.setReg(RegOp0); 3901 } 3902 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 3903 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3904 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 3905 .addReg(Src1.getReg()); 3906 Src1.setReg(RegOp1); 3907 } 3908 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3909 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 3910 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 3911 .addReg(Src2.getReg()); 3912 Src2.setReg(RegOp2); 3913 } 3914 3915 if (TRI->getRegSizeInBits(*MRI.getRegClass(Src2.getReg())) == 64) { 3916 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 3917 .addReg(Src2.getReg()) 3918 .addImm(0); 3919 } else { 3920 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 3921 .addReg(Src2.getReg()) 3922 .addImm(0); 3923 } 3924 3925 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 3926 3927 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg()) 3928 .addReg(AMDGPU::SCC); 3929 MI.eraseFromParent(); 3930 return BB; 3931 } 3932 case AMDGPU::SI_INIT_M0: { 3933 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 3934 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3935 .add(MI.getOperand(0)); 3936 MI.eraseFromParent(); 3937 return BB; 3938 } 3939 case AMDGPU::SI_INIT_EXEC: 3940 // This should be before all vector instructions. 3941 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 3942 AMDGPU::EXEC) 3943 .addImm(MI.getOperand(0).getImm()); 3944 MI.eraseFromParent(); 3945 return BB; 3946 3947 case AMDGPU::SI_INIT_EXEC_LO: 3948 // This should be before all vector instructions. 3949 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), 3950 AMDGPU::EXEC_LO) 3951 .addImm(MI.getOperand(0).getImm()); 3952 MI.eraseFromParent(); 3953 return BB; 3954 3955 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { 3956 // Extract the thread count from an SGPR input and set EXEC accordingly. 3957 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 3958 // 3959 // S_BFE_U32 count, input, {shift, 7} 3960 // S_BFM_B64 exec, count, 0 3961 // S_CMP_EQ_U32 count, 64 3962 // S_CMOV_B64 exec, -1 3963 MachineInstr *FirstMI = &*BB->begin(); 3964 MachineRegisterInfo &MRI = MF->getRegInfo(); 3965 Register InputReg = MI.getOperand(0).getReg(); 3966 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3967 bool Found = false; 3968 3969 // Move the COPY of the input reg to the beginning, so that we can use it. 3970 for (auto I = BB->begin(); I != &MI; I++) { 3971 if (I->getOpcode() != TargetOpcode::COPY || 3972 I->getOperand(0).getReg() != InputReg) 3973 continue; 3974 3975 if (I == FirstMI) { 3976 FirstMI = &*++BB->begin(); 3977 } else { 3978 I->removeFromParent(); 3979 BB->insert(FirstMI, &*I); 3980 } 3981 Found = true; 3982 break; 3983 } 3984 assert(Found); 3985 (void)Found; 3986 3987 // This should be before all vector instructions. 3988 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1; 3989 bool isWave32 = getSubtarget()->isWave32(); 3990 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3991 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) 3992 .addReg(InputReg) 3993 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 3994 BuildMI(*BB, FirstMI, DebugLoc(), 3995 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), 3996 Exec) 3997 .addReg(CountReg) 3998 .addImm(0); 3999 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) 4000 .addReg(CountReg, RegState::Kill) 4001 .addImm(getSubtarget()->getWavefrontSize()); 4002 BuildMI(*BB, FirstMI, DebugLoc(), 4003 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 4004 Exec) 4005 .addImm(-1); 4006 MI.eraseFromParent(); 4007 return BB; 4008 } 4009 4010 case AMDGPU::GET_GROUPSTATICSIZE: { 4011 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4012 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4013 DebugLoc DL = MI.getDebugLoc(); 4014 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4015 .add(MI.getOperand(0)) 4016 .addImm(MFI->getLDSSize()); 4017 MI.eraseFromParent(); 4018 return BB; 4019 } 4020 case AMDGPU::SI_INDIRECT_SRC_V1: 4021 case AMDGPU::SI_INDIRECT_SRC_V2: 4022 case AMDGPU::SI_INDIRECT_SRC_V4: 4023 case AMDGPU::SI_INDIRECT_SRC_V8: 4024 case AMDGPU::SI_INDIRECT_SRC_V16: 4025 case AMDGPU::SI_INDIRECT_SRC_V32: 4026 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4027 case AMDGPU::SI_INDIRECT_DST_V1: 4028 case AMDGPU::SI_INDIRECT_DST_V2: 4029 case AMDGPU::SI_INDIRECT_DST_V4: 4030 case AMDGPU::SI_INDIRECT_DST_V8: 4031 case AMDGPU::SI_INDIRECT_DST_V16: 4032 case AMDGPU::SI_INDIRECT_DST_V32: 4033 return emitIndirectDst(MI, *BB, *getSubtarget()); 4034 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4035 case AMDGPU::SI_KILL_I1_PSEUDO: 4036 return splitKillBlock(MI, BB); 4037 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4038 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4039 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4040 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4041 4042 Register Dst = MI.getOperand(0).getReg(); 4043 Register Src0 = MI.getOperand(1).getReg(); 4044 Register Src1 = MI.getOperand(2).getReg(); 4045 const DebugLoc &DL = MI.getDebugLoc(); 4046 Register SrcCond = MI.getOperand(3).getReg(); 4047 4048 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4049 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4050 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4051 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4052 4053 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4054 .addReg(SrcCond); 4055 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4056 .addImm(0) 4057 .addReg(Src0, 0, AMDGPU::sub0) 4058 .addImm(0) 4059 .addReg(Src1, 0, AMDGPU::sub0) 4060 .addReg(SrcCondCopy); 4061 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4062 .addImm(0) 4063 .addReg(Src0, 0, AMDGPU::sub1) 4064 .addImm(0) 4065 .addReg(Src1, 0, AMDGPU::sub1) 4066 .addReg(SrcCondCopy); 4067 4068 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4069 .addReg(DstLo) 4070 .addImm(AMDGPU::sub0) 4071 .addReg(DstHi) 4072 .addImm(AMDGPU::sub1); 4073 MI.eraseFromParent(); 4074 return BB; 4075 } 4076 case AMDGPU::SI_BR_UNDEF: { 4077 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4078 const DebugLoc &DL = MI.getDebugLoc(); 4079 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4080 .add(MI.getOperand(0)); 4081 Br->getOperand(1).setIsUndef(true); // read undef SCC 4082 MI.eraseFromParent(); 4083 return BB; 4084 } 4085 case AMDGPU::ADJCALLSTACKUP: 4086 case AMDGPU::ADJCALLSTACKDOWN: { 4087 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4088 MachineInstrBuilder MIB(*MF, &MI); 4089 4090 // Add an implicit use of the frame offset reg to prevent the restore copy 4091 // inserted after the call from being reorderd after stack operations in the 4092 // the caller's frame. 4093 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4094 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) 4095 .addReg(Info->getFrameOffsetReg(), RegState::Implicit); 4096 return BB; 4097 } 4098 case AMDGPU::SI_CALL_ISEL: { 4099 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4100 const DebugLoc &DL = MI.getDebugLoc(); 4101 4102 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4103 4104 MachineInstrBuilder MIB; 4105 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4106 4107 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 4108 MIB.add(MI.getOperand(I)); 4109 4110 MIB.cloneMemRefs(MI); 4111 MI.eraseFromParent(); 4112 return BB; 4113 } 4114 case AMDGPU::V_ADD_I32_e32: 4115 case AMDGPU::V_SUB_I32_e32: 4116 case AMDGPU::V_SUBREV_I32_e32: { 4117 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4118 const DebugLoc &DL = MI.getDebugLoc(); 4119 unsigned Opc = MI.getOpcode(); 4120 4121 bool NeedClampOperand = false; 4122 if (TII->pseudoToMCOpcode(Opc) == -1) { 4123 Opc = AMDGPU::getVOPe64(Opc); 4124 NeedClampOperand = true; 4125 } 4126 4127 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4128 if (TII->isVOP3(*I)) { 4129 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4130 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4131 I.addReg(TRI->getVCC(), RegState::Define); 4132 } 4133 I.add(MI.getOperand(1)) 4134 .add(MI.getOperand(2)); 4135 if (NeedClampOperand) 4136 I.addImm(0); // clamp bit for e64 encoding 4137 4138 TII->legalizeOperands(*I); 4139 4140 MI.eraseFromParent(); 4141 return BB; 4142 } 4143 case AMDGPU::DS_GWS_INIT: 4144 case AMDGPU::DS_GWS_SEMA_V: 4145 case AMDGPU::DS_GWS_SEMA_BR: 4146 case AMDGPU::DS_GWS_SEMA_P: 4147 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4148 case AMDGPU::DS_GWS_BARRIER: 4149 // A s_waitcnt 0 is required to be the instruction immediately following. 4150 if (getSubtarget()->hasGWSAutoReplay()) { 4151 bundleInstWithWaitcnt(MI); 4152 return BB; 4153 } 4154 4155 return emitGWSMemViolTestLoop(MI, BB); 4156 case AMDGPU::S_SETREG_B32: { 4157 if (!getSubtarget()->hasDenormModeInst()) 4158 return BB; 4159 4160 // Try to optimize cases that only set the denormal mode or rounding mode. 4161 // 4162 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4163 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4164 // instead. 4165 // 4166 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4167 // allow you to have a no side effect instruction in the output of a 4168 // sideeffecting pattern. 4169 4170 // TODO: Should also emit a no side effects pseudo if only FP bits are 4171 // touched, even if not all of them or to a variable. 4172 unsigned ID, Offset, Width; 4173 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4174 if (ID != AMDGPU::Hwreg::ID_MODE) 4175 return BB; 4176 4177 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4178 const unsigned SetMask = WidthMask << Offset; 4179 unsigned SetDenormOp = 0; 4180 unsigned SetRoundOp = 0; 4181 4182 // The dedicated instructions can only set the whole denorm or round mode at 4183 // once, not a subset of bits in either. 4184 if (Width == 8 && (SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4185 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) { 4186 // If this fully sets both the round and denorm mode, emit the two 4187 // dedicated instructions for these. 4188 assert(Offset == 0); 4189 SetRoundOp = AMDGPU::S_ROUND_MODE; 4190 SetDenormOp = AMDGPU::S_DENORM_MODE; 4191 } else if (Width == 4) { 4192 if ((SetMask & AMDGPU::Hwreg::FP_ROUND_MASK) == SetMask) { 4193 SetRoundOp = AMDGPU::S_ROUND_MODE; 4194 assert(Offset == 0); 4195 } else if ((SetMask & AMDGPU::Hwreg::FP_DENORM_MASK) == SetMask) { 4196 SetDenormOp = AMDGPU::S_DENORM_MODE; 4197 assert(Offset == 4); 4198 } 4199 } 4200 4201 if (SetRoundOp || SetDenormOp) { 4202 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4203 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4204 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4205 unsigned ImmVal = Def->getOperand(1).getImm(); 4206 if (SetRoundOp) { 4207 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4208 .addImm(ImmVal & 0xf); 4209 4210 // If we also have the denorm mode, get just the denorm mode bits. 4211 ImmVal >>= 4; 4212 } 4213 4214 if (SetDenormOp) { 4215 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4216 .addImm(ImmVal & 0xf); 4217 } 4218 4219 MI.eraseFromParent(); 4220 } 4221 } 4222 4223 return BB; 4224 } 4225 default: 4226 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4227 } 4228 } 4229 4230 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4231 return isTypeLegal(VT.getScalarType()); 4232 } 4233 4234 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4235 // This currently forces unfolding various combinations of fsub into fma with 4236 // free fneg'd operands. As long as we have fast FMA (controlled by 4237 // isFMAFasterThanFMulAndFAdd), we should perform these. 4238 4239 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4240 // most of these combines appear to be cycle neutral but save on instruction 4241 // count / code size. 4242 return true; 4243 } 4244 4245 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4246 EVT VT) const { 4247 if (!VT.isVector()) { 4248 return MVT::i1; 4249 } 4250 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4251 } 4252 4253 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4254 // TODO: Should i16 be used always if legal? For now it would force VALU 4255 // shifts. 4256 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4257 } 4258 4259 // Answering this is somewhat tricky and depends on the specific device which 4260 // have different rates for fma or all f64 operations. 4261 // 4262 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4263 // regardless of which device (although the number of cycles differs between 4264 // devices), so it is always profitable for f64. 4265 // 4266 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4267 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4268 // which we can always do even without fused FP ops since it returns the same 4269 // result as the separate operations and since it is always full 4270 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4271 // however does not support denormals, so we do report fma as faster if we have 4272 // a fast fma device and require denormals. 4273 // 4274 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4275 EVT VT) const { 4276 VT = VT.getScalarType(); 4277 4278 switch (VT.getSimpleVT().SimpleTy) { 4279 case MVT::f32: { 4280 // If mad is not available this depends only on if f32 fma is full rate. 4281 if (!Subtarget->hasMadMacF32Insts()) 4282 return Subtarget->hasFastFMAF32(); 4283 4284 // Otherwise f32 mad is always full rate and returns the same result as 4285 // the separate operations so should be preferred over fma. 4286 // However does not support denomals. 4287 if (hasFP32Denormals(MF)) 4288 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4289 4290 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4291 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4292 } 4293 case MVT::f64: 4294 return true; 4295 case MVT::f16: 4296 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4297 default: 4298 break; 4299 } 4300 4301 return false; 4302 } 4303 4304 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4305 const SDNode *N) const { 4306 // TODO: Check future ftz flag 4307 // v_mad_f32/v_mac_f32 do not support denormals. 4308 EVT VT = N->getValueType(0); 4309 if (VT == MVT::f32) 4310 return Subtarget->hasMadMacF32Insts() && 4311 !hasFP32Denormals(DAG.getMachineFunction()); 4312 if (VT == MVT::f16) { 4313 return Subtarget->hasMadF16() && 4314 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4315 } 4316 4317 return false; 4318 } 4319 4320 //===----------------------------------------------------------------------===// 4321 // Custom DAG Lowering Operations 4322 //===----------------------------------------------------------------------===// 4323 4324 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4325 // wider vector type is legal. 4326 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4327 SelectionDAG &DAG) const { 4328 unsigned Opc = Op.getOpcode(); 4329 EVT VT = Op.getValueType(); 4330 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4331 4332 SDValue Lo, Hi; 4333 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4334 4335 SDLoc SL(Op); 4336 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4337 Op->getFlags()); 4338 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4339 Op->getFlags()); 4340 4341 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4342 } 4343 4344 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4345 // wider vector type is legal. 4346 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4347 SelectionDAG &DAG) const { 4348 unsigned Opc = Op.getOpcode(); 4349 EVT VT = Op.getValueType(); 4350 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4351 4352 SDValue Lo0, Hi0; 4353 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4354 SDValue Lo1, Hi1; 4355 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4356 4357 SDLoc SL(Op); 4358 4359 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4360 Op->getFlags()); 4361 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4362 Op->getFlags()); 4363 4364 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4365 } 4366 4367 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4368 SelectionDAG &DAG) const { 4369 unsigned Opc = Op.getOpcode(); 4370 EVT VT = Op.getValueType(); 4371 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4372 4373 SDValue Lo0, Hi0; 4374 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4375 SDValue Lo1, Hi1; 4376 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4377 SDValue Lo2, Hi2; 4378 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4379 4380 SDLoc SL(Op); 4381 4382 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, 4383 Op->getFlags()); 4384 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, 4385 Op->getFlags()); 4386 4387 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4388 } 4389 4390 4391 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4392 switch (Op.getOpcode()) { 4393 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4394 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4395 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4396 case ISD::LOAD: { 4397 SDValue Result = LowerLOAD(Op, DAG); 4398 assert((!Result.getNode() || 4399 Result.getNode()->getNumValues() == 2) && 4400 "Load should return a value and a chain"); 4401 return Result; 4402 } 4403 4404 case ISD::FSIN: 4405 case ISD::FCOS: 4406 return LowerTrig(Op, DAG); 4407 case ISD::SELECT: return LowerSELECT(Op, DAG); 4408 case ISD::FDIV: return LowerFDIV(Op, DAG); 4409 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4410 case ISD::STORE: return LowerSTORE(Op, DAG); 4411 case ISD::GlobalAddress: { 4412 MachineFunction &MF = DAG.getMachineFunction(); 4413 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4414 return LowerGlobalAddress(MFI, Op, DAG); 4415 } 4416 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4417 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4418 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4419 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4420 case ISD::INSERT_SUBVECTOR: 4421 return lowerINSERT_SUBVECTOR(Op, DAG); 4422 case ISD::INSERT_VECTOR_ELT: 4423 return lowerINSERT_VECTOR_ELT(Op, DAG); 4424 case ISD::EXTRACT_VECTOR_ELT: 4425 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4426 case ISD::VECTOR_SHUFFLE: 4427 return lowerVECTOR_SHUFFLE(Op, DAG); 4428 case ISD::BUILD_VECTOR: 4429 return lowerBUILD_VECTOR(Op, DAG); 4430 case ISD::FP_ROUND: 4431 return lowerFP_ROUND(Op, DAG); 4432 case ISD::TRAP: 4433 return lowerTRAP(Op, DAG); 4434 case ISD::DEBUGTRAP: 4435 return lowerDEBUGTRAP(Op, DAG); 4436 case ISD::FABS: 4437 case ISD::FNEG: 4438 case ISD::FCANONICALIZE: 4439 case ISD::BSWAP: 4440 return splitUnaryVectorOp(Op, DAG); 4441 case ISD::FMINNUM: 4442 case ISD::FMAXNUM: 4443 return lowerFMINNUM_FMAXNUM(Op, DAG); 4444 case ISD::FMA: 4445 return splitTernaryVectorOp(Op, DAG); 4446 case ISD::SHL: 4447 case ISD::SRA: 4448 case ISD::SRL: 4449 case ISD::ADD: 4450 case ISD::SUB: 4451 case ISD::MUL: 4452 case ISD::SMIN: 4453 case ISD::SMAX: 4454 case ISD::UMIN: 4455 case ISD::UMAX: 4456 case ISD::FADD: 4457 case ISD::FMUL: 4458 case ISD::FMINNUM_IEEE: 4459 case ISD::FMAXNUM_IEEE: 4460 return splitBinaryVectorOp(Op, DAG); 4461 case ISD::SMULO: 4462 case ISD::UMULO: 4463 return lowerXMULO(Op, DAG); 4464 case ISD::DYNAMIC_STACKALLOC: 4465 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4466 } 4467 return SDValue(); 4468 } 4469 4470 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4471 const SDLoc &DL, 4472 SelectionDAG &DAG, bool Unpacked) { 4473 if (!LoadVT.isVector()) 4474 return Result; 4475 4476 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4477 // Truncate to v2i16/v4i16. 4478 EVT IntLoadVT = LoadVT.changeTypeToInteger(); 4479 4480 // Workaround legalizer not scalarizing truncate after vector op 4481 // legalization byt not creating intermediate vector trunc. 4482 SmallVector<SDValue, 4> Elts; 4483 DAG.ExtractVectorElements(Result, Elts); 4484 for (SDValue &Elt : Elts) 4485 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4486 4487 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4488 4489 // Bitcast to original type (v2f16/v4f16). 4490 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4491 } 4492 4493 // Cast back to the original packed type. 4494 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4495 } 4496 4497 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4498 MemSDNode *M, 4499 SelectionDAG &DAG, 4500 ArrayRef<SDValue> Ops, 4501 bool IsIntrinsic) const { 4502 SDLoc DL(M); 4503 4504 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4505 EVT LoadVT = M->getValueType(0); 4506 4507 EVT EquivLoadVT = LoadVT; 4508 if (Unpacked && LoadVT.isVector()) { 4509 EquivLoadVT = LoadVT.isVector() ? 4510 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4511 LoadVT.getVectorNumElements()) : LoadVT; 4512 } 4513 4514 // Change from v4f16/v2f16 to EquivLoadVT. 4515 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4516 4517 SDValue Load 4518 = DAG.getMemIntrinsicNode( 4519 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4520 VTList, Ops, M->getMemoryVT(), 4521 M->getMemOperand()); 4522 if (!Unpacked) // Just adjusted the opcode. 4523 return Load; 4524 4525 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4526 4527 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4528 } 4529 4530 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4531 SelectionDAG &DAG, 4532 ArrayRef<SDValue> Ops) const { 4533 SDLoc DL(M); 4534 EVT LoadVT = M->getValueType(0); 4535 EVT EltType = LoadVT.getScalarType(); 4536 EVT IntVT = LoadVT.changeTypeToInteger(); 4537 4538 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4539 4540 unsigned Opc = 4541 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4542 4543 if (IsD16) { 4544 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4545 } 4546 4547 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4548 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4549 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4550 4551 if (isTypeLegal(LoadVT)) { 4552 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4553 M->getMemOperand(), DAG); 4554 } 4555 4556 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4557 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4558 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4559 M->getMemOperand(), DAG); 4560 return DAG.getMergeValues( 4561 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4562 DL); 4563 } 4564 4565 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4566 SDNode *N, SelectionDAG &DAG) { 4567 EVT VT = N->getValueType(0); 4568 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4569 unsigned CondCode = CD->getZExtValue(); 4570 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4571 return DAG.getUNDEF(VT); 4572 4573 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4574 4575 SDValue LHS = N->getOperand(1); 4576 SDValue RHS = N->getOperand(2); 4577 4578 SDLoc DL(N); 4579 4580 EVT CmpVT = LHS.getValueType(); 4581 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4582 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4583 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4584 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4585 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4586 } 4587 4588 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4589 4590 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4591 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4592 4593 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4594 DAG.getCondCode(CCOpcode)); 4595 if (VT.bitsEq(CCVT)) 4596 return SetCC; 4597 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4598 } 4599 4600 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4601 SDNode *N, SelectionDAG &DAG) { 4602 EVT VT = N->getValueType(0); 4603 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4604 4605 unsigned CondCode = CD->getZExtValue(); 4606 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4607 return DAG.getUNDEF(VT); 4608 4609 SDValue Src0 = N->getOperand(1); 4610 SDValue Src1 = N->getOperand(2); 4611 EVT CmpVT = Src0.getValueType(); 4612 SDLoc SL(N); 4613 4614 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4615 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4616 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4617 } 4618 4619 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4620 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4621 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4622 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4623 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4624 Src1, DAG.getCondCode(CCOpcode)); 4625 if (VT.bitsEq(CCVT)) 4626 return SetCC; 4627 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4628 } 4629 4630 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4631 SelectionDAG &DAG) { 4632 EVT VT = N->getValueType(0); 4633 SDValue Src = N->getOperand(1); 4634 SDLoc SL(N); 4635 4636 if (Src.getOpcode() == ISD::SETCC) { 4637 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4638 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4639 Src.getOperand(1), Src.getOperand(2)); 4640 } 4641 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4642 // (ballot 0) -> 0 4643 if (Arg->isNullValue()) 4644 return DAG.getConstant(0, SL, VT); 4645 4646 // (ballot 1) -> EXEC/EXEC_LO 4647 if (Arg->isOne()) { 4648 Register Exec; 4649 if (VT.getScalarSizeInBits() == 32) 4650 Exec = AMDGPU::EXEC_LO; 4651 else if (VT.getScalarSizeInBits() == 64) 4652 Exec = AMDGPU::EXEC; 4653 else 4654 return SDValue(); 4655 4656 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4657 } 4658 } 4659 4660 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4661 // ISD::SETNE) 4662 return DAG.getNode( 4663 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4664 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4665 } 4666 4667 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4668 SmallVectorImpl<SDValue> &Results, 4669 SelectionDAG &DAG) const { 4670 switch (N->getOpcode()) { 4671 case ISD::INSERT_VECTOR_ELT: { 4672 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4673 Results.push_back(Res); 4674 return; 4675 } 4676 case ISD::EXTRACT_VECTOR_ELT: { 4677 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4678 Results.push_back(Res); 4679 return; 4680 } 4681 case ISD::INTRINSIC_WO_CHAIN: { 4682 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4683 switch (IID) { 4684 case Intrinsic::amdgcn_cvt_pkrtz: { 4685 SDValue Src0 = N->getOperand(1); 4686 SDValue Src1 = N->getOperand(2); 4687 SDLoc SL(N); 4688 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4689 Src0, Src1); 4690 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4691 return; 4692 } 4693 case Intrinsic::amdgcn_cvt_pknorm_i16: 4694 case Intrinsic::amdgcn_cvt_pknorm_u16: 4695 case Intrinsic::amdgcn_cvt_pk_i16: 4696 case Intrinsic::amdgcn_cvt_pk_u16: { 4697 SDValue Src0 = N->getOperand(1); 4698 SDValue Src1 = N->getOperand(2); 4699 SDLoc SL(N); 4700 unsigned Opcode; 4701 4702 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 4703 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 4704 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 4705 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 4706 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 4707 Opcode = AMDGPUISD::CVT_PK_I16_I32; 4708 else 4709 Opcode = AMDGPUISD::CVT_PK_U16_U32; 4710 4711 EVT VT = N->getValueType(0); 4712 if (isTypeLegal(VT)) 4713 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 4714 else { 4715 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 4716 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 4717 } 4718 return; 4719 } 4720 } 4721 break; 4722 } 4723 case ISD::INTRINSIC_W_CHAIN: { 4724 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 4725 if (Res.getOpcode() == ISD::MERGE_VALUES) { 4726 // FIXME: Hacky 4727 Results.push_back(Res.getOperand(0)); 4728 Results.push_back(Res.getOperand(1)); 4729 } else { 4730 Results.push_back(Res); 4731 Results.push_back(Res.getValue(1)); 4732 } 4733 return; 4734 } 4735 4736 break; 4737 } 4738 case ISD::SELECT: { 4739 SDLoc SL(N); 4740 EVT VT = N->getValueType(0); 4741 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 4742 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 4743 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 4744 4745 EVT SelectVT = NewVT; 4746 if (NewVT.bitsLT(MVT::i32)) { 4747 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 4748 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 4749 SelectVT = MVT::i32; 4750 } 4751 4752 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 4753 N->getOperand(0), LHS, RHS); 4754 4755 if (NewVT != SelectVT) 4756 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 4757 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 4758 return; 4759 } 4760 case ISD::FNEG: { 4761 if (N->getValueType(0) != MVT::v2f16) 4762 break; 4763 4764 SDLoc SL(N); 4765 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4766 4767 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 4768 BC, 4769 DAG.getConstant(0x80008000, SL, MVT::i32)); 4770 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4771 return; 4772 } 4773 case ISD::FABS: { 4774 if (N->getValueType(0) != MVT::v2f16) 4775 break; 4776 4777 SDLoc SL(N); 4778 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4779 4780 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 4781 BC, 4782 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 4783 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4784 return; 4785 } 4786 default: 4787 break; 4788 } 4789 } 4790 4791 /// Helper function for LowerBRCOND 4792 static SDNode *findUser(SDValue Value, unsigned Opcode) { 4793 4794 SDNode *Parent = Value.getNode(); 4795 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 4796 I != E; ++I) { 4797 4798 if (I.getUse().get() != Value) 4799 continue; 4800 4801 if (I->getOpcode() == Opcode) 4802 return *I; 4803 } 4804 return nullptr; 4805 } 4806 4807 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 4808 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 4809 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 4810 case Intrinsic::amdgcn_if: 4811 return AMDGPUISD::IF; 4812 case Intrinsic::amdgcn_else: 4813 return AMDGPUISD::ELSE; 4814 case Intrinsic::amdgcn_loop: 4815 return AMDGPUISD::LOOP; 4816 case Intrinsic::amdgcn_end_cf: 4817 llvm_unreachable("should not occur"); 4818 default: 4819 return 0; 4820 } 4821 } 4822 4823 // break, if_break, else_break are all only used as inputs to loop, not 4824 // directly as branch conditions. 4825 return 0; 4826 } 4827 4828 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 4829 const Triple &TT = getTargetMachine().getTargetTriple(); 4830 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4831 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4832 AMDGPU::shouldEmitConstantsToTextSection(TT); 4833 } 4834 4835 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 4836 // FIXME: Either avoid relying on address space here or change the default 4837 // address space for functions to avoid the explicit check. 4838 return (GV->getValueType()->isFunctionTy() || 4839 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 4840 !shouldEmitFixup(GV) && 4841 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 4842 } 4843 4844 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 4845 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 4846 } 4847 4848 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 4849 if (!GV->hasExternalLinkage()) 4850 return true; 4851 4852 const auto OS = getTargetMachine().getTargetTriple().getOS(); 4853 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 4854 } 4855 4856 /// This transforms the control flow intrinsics to get the branch destination as 4857 /// last parameter, also switches branch target with BR if the need arise 4858 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 4859 SelectionDAG &DAG) const { 4860 SDLoc DL(BRCOND); 4861 4862 SDNode *Intr = BRCOND.getOperand(1).getNode(); 4863 SDValue Target = BRCOND.getOperand(2); 4864 SDNode *BR = nullptr; 4865 SDNode *SetCC = nullptr; 4866 4867 if (Intr->getOpcode() == ISD::SETCC) { 4868 // As long as we negate the condition everything is fine 4869 SetCC = Intr; 4870 Intr = SetCC->getOperand(0).getNode(); 4871 4872 } else { 4873 // Get the target from BR if we don't negate the condition 4874 BR = findUser(BRCOND, ISD::BR); 4875 assert(BR && "brcond missing unconditional branch user"); 4876 Target = BR->getOperand(1); 4877 } 4878 4879 unsigned CFNode = isCFIntrinsic(Intr); 4880 if (CFNode == 0) { 4881 // This is a uniform branch so we don't need to legalize. 4882 return BRCOND; 4883 } 4884 4885 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 4886 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 4887 4888 assert(!SetCC || 4889 (SetCC->getConstantOperandVal(1) == 1 && 4890 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 4891 ISD::SETNE)); 4892 4893 // operands of the new intrinsic call 4894 SmallVector<SDValue, 4> Ops; 4895 if (HaveChain) 4896 Ops.push_back(BRCOND.getOperand(0)); 4897 4898 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 4899 Ops.push_back(Target); 4900 4901 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 4902 4903 // build the new intrinsic call 4904 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 4905 4906 if (!HaveChain) { 4907 SDValue Ops[] = { 4908 SDValue(Result, 0), 4909 BRCOND.getOperand(0) 4910 }; 4911 4912 Result = DAG.getMergeValues(Ops, DL).getNode(); 4913 } 4914 4915 if (BR) { 4916 // Give the branch instruction our target 4917 SDValue Ops[] = { 4918 BR->getOperand(0), 4919 BRCOND.getOperand(2) 4920 }; 4921 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 4922 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 4923 } 4924 4925 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 4926 4927 // Copy the intrinsic results to registers 4928 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 4929 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 4930 if (!CopyToReg) 4931 continue; 4932 4933 Chain = DAG.getCopyToReg( 4934 Chain, DL, 4935 CopyToReg->getOperand(1), 4936 SDValue(Result, i - 1), 4937 SDValue()); 4938 4939 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 4940 } 4941 4942 // Remove the old intrinsic from the chain 4943 DAG.ReplaceAllUsesOfValueWith( 4944 SDValue(Intr, Intr->getNumValues() - 1), 4945 Intr->getOperand(0)); 4946 4947 return Chain; 4948 } 4949 4950 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 4951 SelectionDAG &DAG) const { 4952 MVT VT = Op.getSimpleValueType(); 4953 SDLoc DL(Op); 4954 // Checking the depth 4955 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 4956 return DAG.getConstant(0, DL, VT); 4957 4958 MachineFunction &MF = DAG.getMachineFunction(); 4959 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4960 // Check for kernel and shader functions 4961 if (Info->isEntryFunction()) 4962 return DAG.getConstant(0, DL, VT); 4963 4964 MachineFrameInfo &MFI = MF.getFrameInfo(); 4965 // There is a call to @llvm.returnaddress in this function 4966 MFI.setReturnAddressIsTaken(true); 4967 4968 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 4969 // Get the return address reg and mark it as an implicit live-in 4970 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 4971 4972 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 4973 } 4974 4975 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 4976 SDValue Op, 4977 const SDLoc &DL, 4978 EVT VT) const { 4979 return Op.getValueType().bitsLE(VT) ? 4980 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 4981 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 4982 DAG.getTargetConstant(0, DL, MVT::i32)); 4983 } 4984 4985 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 4986 assert(Op.getValueType() == MVT::f16 && 4987 "Do not know how to custom lower FP_ROUND for non-f16 type"); 4988 4989 SDValue Src = Op.getOperand(0); 4990 EVT SrcVT = Src.getValueType(); 4991 if (SrcVT != MVT::f64) 4992 return Op; 4993 4994 SDLoc DL(Op); 4995 4996 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 4997 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 4998 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 4999 } 5000 5001 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5002 SelectionDAG &DAG) const { 5003 EVT VT = Op.getValueType(); 5004 const MachineFunction &MF = DAG.getMachineFunction(); 5005 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5006 bool IsIEEEMode = Info->getMode().IEEE; 5007 5008 // FIXME: Assert during selection that this is only selected for 5009 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5010 // mode functions, but this happens to be OK since it's only done in cases 5011 // where there is known no sNaN. 5012 if (IsIEEEMode) 5013 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5014 5015 if (VT == MVT::v4f16) 5016 return splitBinaryVectorOp(Op, DAG); 5017 return Op; 5018 } 5019 5020 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5021 EVT VT = Op.getValueType(); 5022 SDLoc SL(Op); 5023 SDValue LHS = Op.getOperand(0); 5024 SDValue RHS = Op.getOperand(1); 5025 bool isSigned = Op.getOpcode() == ISD::SMULO; 5026 5027 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5028 const APInt &C = RHSC->getAPIntValue(); 5029 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5030 if (C.isPowerOf2()) { 5031 // smulo(x, signed_min) is same as umulo(x, signed_min). 5032 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5033 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5034 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5035 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5036 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5037 SL, VT, Result, ShiftAmt), 5038 LHS, ISD::SETNE); 5039 return DAG.getMergeValues({ Result, Overflow }, SL); 5040 } 5041 } 5042 5043 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5044 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5045 SL, VT, LHS, RHS); 5046 5047 SDValue Sign = isSigned 5048 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5049 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5050 : DAG.getConstant(0, SL, VT); 5051 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5052 5053 return DAG.getMergeValues({ Result, Overflow }, SL); 5054 } 5055 5056 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5057 SDLoc SL(Op); 5058 SDValue Chain = Op.getOperand(0); 5059 5060 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 5061 !Subtarget->isTrapHandlerEnabled()) 5062 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5063 5064 MachineFunction &MF = DAG.getMachineFunction(); 5065 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5066 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 5067 assert(UserSGPR != AMDGPU::NoRegister); 5068 SDValue QueuePtr = CreateLiveInRegister( 5069 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5070 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5071 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5072 QueuePtr, SDValue()); 5073 SDValue Ops[] = { 5074 ToReg, 5075 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), 5076 SGPR01, 5077 ToReg.getValue(1) 5078 }; 5079 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5080 } 5081 5082 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5083 SDLoc SL(Op); 5084 SDValue Chain = Op.getOperand(0); 5085 MachineFunction &MF = DAG.getMachineFunction(); 5086 5087 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 5088 !Subtarget->isTrapHandlerEnabled()) { 5089 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5090 "debugtrap handler not supported", 5091 Op.getDebugLoc(), 5092 DS_Warning); 5093 LLVMContext &Ctx = MF.getFunction().getContext(); 5094 Ctx.diagnose(NoTrap); 5095 return Chain; 5096 } 5097 5098 SDValue Ops[] = { 5099 Chain, 5100 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) 5101 }; 5102 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5103 } 5104 5105 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5106 SelectionDAG &DAG) const { 5107 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5108 if (Subtarget->hasApertureRegs()) { 5109 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5110 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5111 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5112 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5113 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5114 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5115 unsigned Encoding = 5116 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5117 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5118 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5119 5120 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5121 SDValue ApertureReg = SDValue( 5122 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5123 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5124 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5125 } 5126 5127 MachineFunction &MF = DAG.getMachineFunction(); 5128 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5129 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5130 assert(UserSGPR != AMDGPU::NoRegister); 5131 5132 SDValue QueuePtr = CreateLiveInRegister( 5133 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5134 5135 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5136 // private_segment_aperture_base_hi. 5137 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5138 5139 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); 5140 5141 // TODO: Use custom target PseudoSourceValue. 5142 // TODO: We should use the value from the IR intrinsic call, but it might not 5143 // be available and how do we get it? 5144 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5145 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5146 MinAlign(64, StructOffset), 5147 MachineMemOperand::MODereferenceable | 5148 MachineMemOperand::MOInvariant); 5149 } 5150 5151 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5152 SelectionDAG &DAG) const { 5153 SDLoc SL(Op); 5154 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5155 5156 SDValue Src = ASC->getOperand(0); 5157 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5158 5159 const AMDGPUTargetMachine &TM = 5160 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5161 5162 // flat -> local/private 5163 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5164 unsigned DestAS = ASC->getDestAddressSpace(); 5165 5166 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5167 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5168 unsigned NullVal = TM.getNullPointerValue(DestAS); 5169 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5170 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5171 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5172 5173 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 5174 NonNull, Ptr, SegmentNullPtr); 5175 } 5176 } 5177 5178 // local/private -> flat 5179 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5180 unsigned SrcAS = ASC->getSrcAddressSpace(); 5181 5182 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5183 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5184 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5185 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5186 5187 SDValue NonNull 5188 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5189 5190 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5191 SDValue CvtPtr 5192 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5193 5194 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 5195 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 5196 FlatNullPtr); 5197 } 5198 } 5199 5200 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5201 Src.getValueType() == MVT::i64) 5202 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5203 5204 // global <-> flat are no-ops and never emitted. 5205 5206 const MachineFunction &MF = DAG.getMachineFunction(); 5207 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5208 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5209 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5210 5211 return DAG.getUNDEF(ASC->getValueType(0)); 5212 } 5213 5214 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5215 // the small vector and inserting them into the big vector. That is better than 5216 // the default expansion of doing it via a stack slot. Even though the use of 5217 // the stack slot would be optimized away afterwards, the stack slot itself 5218 // remains. 5219 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5220 SelectionDAG &DAG) const { 5221 SDValue Vec = Op.getOperand(0); 5222 SDValue Ins = Op.getOperand(1); 5223 SDValue Idx = Op.getOperand(2); 5224 EVT VecVT = Vec.getValueType(); 5225 EVT InsVT = Ins.getValueType(); 5226 EVT EltVT = VecVT.getVectorElementType(); 5227 unsigned InsNumElts = InsVT.getVectorNumElements(); 5228 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5229 SDLoc SL(Op); 5230 5231 for (unsigned I = 0; I != InsNumElts; ++I) { 5232 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5233 DAG.getConstant(I, SL, MVT::i32)); 5234 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5235 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5236 } 5237 return Vec; 5238 } 5239 5240 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5241 SelectionDAG &DAG) const { 5242 SDValue Vec = Op.getOperand(0); 5243 SDValue InsVal = Op.getOperand(1); 5244 SDValue Idx = Op.getOperand(2); 5245 EVT VecVT = Vec.getValueType(); 5246 EVT EltVT = VecVT.getVectorElementType(); 5247 unsigned VecSize = VecVT.getSizeInBits(); 5248 unsigned EltSize = EltVT.getSizeInBits(); 5249 5250 5251 assert(VecSize <= 64); 5252 5253 unsigned NumElts = VecVT.getVectorNumElements(); 5254 SDLoc SL(Op); 5255 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5256 5257 if (NumElts == 4 && EltSize == 16 && KIdx) { 5258 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5259 5260 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5261 DAG.getConstant(0, SL, MVT::i32)); 5262 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5263 DAG.getConstant(1, SL, MVT::i32)); 5264 5265 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5266 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5267 5268 unsigned Idx = KIdx->getZExtValue(); 5269 bool InsertLo = Idx < 2; 5270 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5271 InsertLo ? LoVec : HiVec, 5272 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5273 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5274 5275 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5276 5277 SDValue Concat = InsertLo ? 5278 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5279 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5280 5281 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5282 } 5283 5284 if (isa<ConstantSDNode>(Idx)) 5285 return SDValue(); 5286 5287 MVT IntVT = MVT::getIntegerVT(VecSize); 5288 5289 // Avoid stack access for dynamic indexing. 5290 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5291 5292 // Create a congruent vector with the target value in each element so that 5293 // the required element can be masked and ORed into the target vector. 5294 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5295 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5296 5297 assert(isPowerOf2_32(EltSize)); 5298 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5299 5300 // Convert vector index to bit-index. 5301 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5302 5303 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5304 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5305 DAG.getConstant(0xffff, SL, IntVT), 5306 ScaledIdx); 5307 5308 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5309 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5310 DAG.getNOT(SL, BFM, IntVT), BCVec); 5311 5312 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5313 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5314 } 5315 5316 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5317 SelectionDAG &DAG) const { 5318 SDLoc SL(Op); 5319 5320 EVT ResultVT = Op.getValueType(); 5321 SDValue Vec = Op.getOperand(0); 5322 SDValue Idx = Op.getOperand(1); 5323 EVT VecVT = Vec.getValueType(); 5324 unsigned VecSize = VecVT.getSizeInBits(); 5325 EVT EltVT = VecVT.getVectorElementType(); 5326 assert(VecSize <= 64); 5327 5328 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5329 5330 // Make sure we do any optimizations that will make it easier to fold 5331 // source modifiers before obscuring it with bit operations. 5332 5333 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5334 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5335 return Combined; 5336 5337 unsigned EltSize = EltVT.getSizeInBits(); 5338 assert(isPowerOf2_32(EltSize)); 5339 5340 MVT IntVT = MVT::getIntegerVT(VecSize); 5341 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5342 5343 // Convert vector index to bit-index (* EltSize) 5344 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5345 5346 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5347 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5348 5349 if (ResultVT == MVT::f16) { 5350 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5351 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5352 } 5353 5354 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5355 } 5356 5357 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5358 assert(Elt % 2 == 0); 5359 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5360 } 5361 5362 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5363 SelectionDAG &DAG) const { 5364 SDLoc SL(Op); 5365 EVT ResultVT = Op.getValueType(); 5366 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5367 5368 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5369 EVT EltVT = PackVT.getVectorElementType(); 5370 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5371 5372 // vector_shuffle <0,1,6,7> lhs, rhs 5373 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5374 // 5375 // vector_shuffle <6,7,2,3> lhs, rhs 5376 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5377 // 5378 // vector_shuffle <6,7,0,1> lhs, rhs 5379 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5380 5381 // Avoid scalarizing when both halves are reading from consecutive elements. 5382 SmallVector<SDValue, 4> Pieces; 5383 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5384 if (elementPairIsContiguous(SVN->getMask(), I)) { 5385 const int Idx = SVN->getMaskElt(I); 5386 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5387 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5388 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5389 PackVT, SVN->getOperand(VecIdx), 5390 DAG.getConstant(EltIdx, SL, MVT::i32)); 5391 Pieces.push_back(SubVec); 5392 } else { 5393 const int Idx0 = SVN->getMaskElt(I); 5394 const int Idx1 = SVN->getMaskElt(I + 1); 5395 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5396 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5397 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5398 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5399 5400 SDValue Vec0 = SVN->getOperand(VecIdx0); 5401 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5402 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5403 5404 SDValue Vec1 = SVN->getOperand(VecIdx1); 5405 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5406 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5407 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5408 } 5409 } 5410 5411 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5412 } 5413 5414 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5415 SelectionDAG &DAG) const { 5416 SDLoc SL(Op); 5417 EVT VT = Op.getValueType(); 5418 5419 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 5420 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 5421 5422 // Turn into pair of packed build_vectors. 5423 // TODO: Special case for constants that can be materialized with s_mov_b64. 5424 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 5425 { Op.getOperand(0), Op.getOperand(1) }); 5426 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 5427 { Op.getOperand(2), Op.getOperand(3) }); 5428 5429 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 5430 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 5431 5432 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 5433 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5434 } 5435 5436 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5437 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5438 5439 SDValue Lo = Op.getOperand(0); 5440 SDValue Hi = Op.getOperand(1); 5441 5442 // Avoid adding defined bits with the zero_extend. 5443 if (Hi.isUndef()) { 5444 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5445 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5446 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5447 } 5448 5449 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5450 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5451 5452 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5453 DAG.getConstant(16, SL, MVT::i32)); 5454 if (Lo.isUndef()) 5455 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5456 5457 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5458 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5459 5460 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5461 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5462 } 5463 5464 bool 5465 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5466 // We can fold offsets for anything that doesn't require a GOT relocation. 5467 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5468 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5469 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5470 !shouldEmitGOTReloc(GA->getGlobal()); 5471 } 5472 5473 static SDValue 5474 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5475 const SDLoc &DL, int64_t Offset, EVT PtrVT, 5476 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5477 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 5478 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5479 // lowered to the following code sequence: 5480 // 5481 // For constant address space: 5482 // s_getpc_b64 s[0:1] 5483 // s_add_u32 s0, s0, $symbol 5484 // s_addc_u32 s1, s1, 0 5485 // 5486 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5487 // a fixup or relocation is emitted to replace $symbol with a literal 5488 // constant, which is a pc-relative offset from the encoding of the $symbol 5489 // operand to the global variable. 5490 // 5491 // For global address space: 5492 // s_getpc_b64 s[0:1] 5493 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5494 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5495 // 5496 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5497 // fixups or relocations are emitted to replace $symbol@*@lo and 5498 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5499 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5500 // operand to the global variable. 5501 // 5502 // What we want here is an offset from the value returned by s_getpc 5503 // (which is the address of the s_add_u32 instruction) to the global 5504 // variable, but since the encoding of $symbol starts 4 bytes after the start 5505 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5506 // small. This requires us to add 4 to the global variable offset in order to 5507 // compute the correct address. 5508 SDValue PtrLo = 5509 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5510 SDValue PtrHi; 5511 if (GAFlags == SIInstrInfo::MO_NONE) { 5512 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5513 } else { 5514 PtrHi = 5515 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1); 5516 } 5517 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5518 } 5519 5520 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5521 SDValue Op, 5522 SelectionDAG &DAG) const { 5523 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5524 const GlobalValue *GV = GSD->getGlobal(); 5525 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5526 shouldUseLDSConstAddress(GV)) || 5527 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5528 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) 5529 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 5530 5531 SDLoc DL(GSD); 5532 EVT PtrVT = Op.getValueType(); 5533 5534 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 5535 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 5536 SIInstrInfo::MO_ABS32_LO); 5537 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 5538 } 5539 5540 if (shouldEmitFixup(GV)) 5541 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 5542 else if (shouldEmitPCReloc(GV)) 5543 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 5544 SIInstrInfo::MO_REL32); 5545 5546 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 5547 SIInstrInfo::MO_GOTPCREL32); 5548 5549 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 5550 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 5551 const DataLayout &DataLayout = DAG.getDataLayout(); 5552 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 5553 MachinePointerInfo PtrInfo 5554 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 5555 5556 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 5557 MachineMemOperand::MODereferenceable | 5558 MachineMemOperand::MOInvariant); 5559 } 5560 5561 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 5562 const SDLoc &DL, SDValue V) const { 5563 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 5564 // the destination register. 5565 // 5566 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 5567 // so we will end up with redundant moves to m0. 5568 // 5569 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 5570 5571 // A Null SDValue creates a glue result. 5572 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 5573 V, Chain); 5574 return SDValue(M0, 0); 5575 } 5576 5577 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 5578 SDValue Op, 5579 MVT VT, 5580 unsigned Offset) const { 5581 SDLoc SL(Op); 5582 SDValue Param = lowerKernargMemParameter( 5583 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 5584 // The local size values will have the hi 16-bits as zero. 5585 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 5586 DAG.getValueType(VT)); 5587 } 5588 5589 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5590 EVT VT) { 5591 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5592 "non-hsa intrinsic with hsa target", 5593 DL.getDebugLoc()); 5594 DAG.getContext()->diagnose(BadIntrin); 5595 return DAG.getUNDEF(VT); 5596 } 5597 5598 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5599 EVT VT) { 5600 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5601 "intrinsic not supported on subtarget", 5602 DL.getDebugLoc()); 5603 DAG.getContext()->diagnose(BadIntrin); 5604 return DAG.getUNDEF(VT); 5605 } 5606 5607 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 5608 ArrayRef<SDValue> Elts) { 5609 assert(!Elts.empty()); 5610 MVT Type; 5611 unsigned NumElts; 5612 5613 if (Elts.size() == 1) { 5614 Type = MVT::f32; 5615 NumElts = 1; 5616 } else if (Elts.size() == 2) { 5617 Type = MVT::v2f32; 5618 NumElts = 2; 5619 } else if (Elts.size() == 3) { 5620 Type = MVT::v3f32; 5621 NumElts = 3; 5622 } else if (Elts.size() <= 4) { 5623 Type = MVT::v4f32; 5624 NumElts = 4; 5625 } else if (Elts.size() <= 8) { 5626 Type = MVT::v8f32; 5627 NumElts = 8; 5628 } else { 5629 assert(Elts.size() <= 16); 5630 Type = MVT::v16f32; 5631 NumElts = 16; 5632 } 5633 5634 SmallVector<SDValue, 16> VecElts(NumElts); 5635 for (unsigned i = 0; i < Elts.size(); ++i) { 5636 SDValue Elt = Elts[i]; 5637 if (Elt.getValueType() != MVT::f32) 5638 Elt = DAG.getBitcast(MVT::f32, Elt); 5639 VecElts[i] = Elt; 5640 } 5641 for (unsigned i = Elts.size(); i < NumElts; ++i) 5642 VecElts[i] = DAG.getUNDEF(MVT::f32); 5643 5644 if (NumElts == 1) 5645 return VecElts[0]; 5646 return DAG.getBuildVector(Type, DL, VecElts); 5647 } 5648 5649 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, 5650 SDValue *GLC, SDValue *SLC, SDValue *DLC) { 5651 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); 5652 5653 uint64_t Value = CachePolicyConst->getZExtValue(); 5654 SDLoc DL(CachePolicy); 5655 if (GLC) { 5656 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5657 Value &= ~(uint64_t)0x1; 5658 } 5659 if (SLC) { 5660 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5661 Value &= ~(uint64_t)0x2; 5662 } 5663 if (DLC) { 5664 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); 5665 Value &= ~(uint64_t)0x4; 5666 } 5667 5668 return Value == 0; 5669 } 5670 5671 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 5672 SDValue Src, int ExtraElts) { 5673 EVT SrcVT = Src.getValueType(); 5674 5675 SmallVector<SDValue, 8> Elts; 5676 5677 if (SrcVT.isVector()) 5678 DAG.ExtractVectorElements(Src, Elts); 5679 else 5680 Elts.push_back(Src); 5681 5682 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 5683 while (ExtraElts--) 5684 Elts.push_back(Undef); 5685 5686 return DAG.getBuildVector(CastVT, DL, Elts); 5687 } 5688 5689 // Re-construct the required return value for a image load intrinsic. 5690 // This is more complicated due to the optional use TexFailCtrl which means the required 5691 // return type is an aggregate 5692 static SDValue constructRetValue(SelectionDAG &DAG, 5693 MachineSDNode *Result, 5694 ArrayRef<EVT> ResultTypes, 5695 bool IsTexFail, bool Unpacked, bool IsD16, 5696 int DMaskPop, int NumVDataDwords, 5697 const SDLoc &DL, LLVMContext &Context) { 5698 // Determine the required return type. This is the same regardless of IsTexFail flag 5699 EVT ReqRetVT = ResultTypes[0]; 5700 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 5701 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5702 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 5703 5704 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5705 DMaskPop : (DMaskPop + 1) / 2; 5706 5707 MVT DataDwordVT = NumDataDwords == 1 ? 5708 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 5709 5710 MVT MaskPopVT = MaskPopDwords == 1 ? 5711 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 5712 5713 SDValue Data(Result, 0); 5714 SDValue TexFail; 5715 5716 if (IsTexFail) { 5717 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 5718 if (MaskPopVT.isVector()) { 5719 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 5720 SDValue(Result, 0), ZeroIdx); 5721 } else { 5722 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 5723 SDValue(Result, 0), ZeroIdx); 5724 } 5725 5726 TexFail = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 5727 SDValue(Result, 0), 5728 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 5729 } 5730 5731 if (DataDwordVT.isVector()) 5732 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 5733 NumDataDwords - MaskPopDwords); 5734 5735 if (IsD16) 5736 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 5737 5738 if (!ReqRetVT.isVector()) 5739 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 5740 5741 Data = DAG.getNode(ISD::BITCAST, DL, ReqRetVT, Data); 5742 5743 if (TexFail) 5744 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 5745 5746 if (Result->getNumValues() == 1) 5747 return Data; 5748 5749 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 5750 } 5751 5752 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 5753 SDValue *LWE, bool &IsTexFail) { 5754 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 5755 5756 uint64_t Value = TexFailCtrlConst->getZExtValue(); 5757 if (Value) { 5758 IsTexFail = true; 5759 } 5760 5761 SDLoc DL(TexFailCtrlConst); 5762 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5763 Value &= ~(uint64_t)0x1; 5764 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5765 Value &= ~(uint64_t)0x2; 5766 5767 return Value == 0; 5768 } 5769 5770 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op, 5771 MVT PackVectorVT, 5772 SmallVectorImpl<SDValue> &PackedAddrs, 5773 unsigned DimIdx, unsigned EndIdx, 5774 unsigned NumGradients) { 5775 SDLoc DL(Op); 5776 for (unsigned I = DimIdx; I < EndIdx; I++) { 5777 SDValue Addr = Op.getOperand(I); 5778 5779 // Gradients are packed with undef for each coordinate. 5780 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 5781 // 1D: undef,dx/dh; undef,dx/dv 5782 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 5783 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 5784 if (((I + 1) >= EndIdx) || 5785 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 5786 I == DimIdx + NumGradients - 1))) { 5787 if (Addr.getValueType() != MVT::i16) 5788 Addr = DAG.getBitcast(MVT::i16, Addr); 5789 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 5790 } else { 5791 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 5792 I++; 5793 } 5794 Addr = DAG.getBitcast(MVT::f32, Addr); 5795 PackedAddrs.push_back(Addr); 5796 } 5797 } 5798 5799 SDValue SITargetLowering::lowerImage(SDValue Op, 5800 const AMDGPU::ImageDimIntrinsicInfo *Intr, 5801 SelectionDAG &DAG) const { 5802 SDLoc DL(Op); 5803 MachineFunction &MF = DAG.getMachineFunction(); 5804 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 5805 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5806 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 5807 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 5808 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 5809 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 5810 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = 5811 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); 5812 unsigned IntrOpcode = Intr->BaseOpcode; 5813 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 5814 5815 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end()); 5816 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end()); 5817 bool IsD16 = false; 5818 bool IsG16 = false; 5819 bool IsA16 = false; 5820 SDValue VData; 5821 int NumVDataDwords; 5822 bool AdjustRetType = false; 5823 5824 unsigned AddrIdx; // Index of first address argument 5825 unsigned DMask; 5826 unsigned DMaskLanes = 0; 5827 5828 if (BaseOpcode->Atomic) { 5829 VData = Op.getOperand(2); 5830 5831 bool Is64Bit = VData.getValueType() == MVT::i64; 5832 if (BaseOpcode->AtomicX2) { 5833 SDValue VData2 = Op.getOperand(3); 5834 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 5835 {VData, VData2}); 5836 if (Is64Bit) 5837 VData = DAG.getBitcast(MVT::v4i32, VData); 5838 5839 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 5840 DMask = Is64Bit ? 0xf : 0x3; 5841 NumVDataDwords = Is64Bit ? 4 : 2; 5842 AddrIdx = 4; 5843 } else { 5844 DMask = Is64Bit ? 0x3 : 0x1; 5845 NumVDataDwords = Is64Bit ? 2 : 1; 5846 AddrIdx = 3; 5847 } 5848 } else { 5849 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1; 5850 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); 5851 DMask = DMaskConst->getZExtValue(); 5852 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 5853 5854 if (BaseOpcode->Store) { 5855 VData = Op.getOperand(2); 5856 5857 MVT StoreVT = VData.getSimpleValueType(); 5858 if (StoreVT.getScalarType() == MVT::f16) { 5859 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5860 return Op; // D16 is unsupported for this instruction 5861 5862 IsD16 = true; 5863 VData = handleD16VData(VData, DAG); 5864 } 5865 5866 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 5867 } else { 5868 // Work out the num dwords based on the dmask popcount and underlying type 5869 // and whether packing is supported. 5870 MVT LoadVT = ResultTypes[0].getSimpleVT(); 5871 if (LoadVT.getScalarType() == MVT::f16) { 5872 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5873 return Op; // D16 is unsupported for this instruction 5874 5875 IsD16 = true; 5876 } 5877 5878 // Confirm that the return type is large enough for the dmask specified 5879 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 5880 (!LoadVT.isVector() && DMaskLanes > 1)) 5881 return Op; 5882 5883 if (IsD16 && !Subtarget->hasUnpackedD16VMem()) 5884 NumVDataDwords = (DMaskLanes + 1) / 2; 5885 else 5886 NumVDataDwords = DMaskLanes; 5887 5888 AdjustRetType = true; 5889 } 5890 5891 AddrIdx = DMaskIdx + 1; 5892 } 5893 5894 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; 5895 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; 5896 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; 5897 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + 5898 NumCoords + NumLCM; 5899 unsigned NumMIVAddrs = NumVAddrs; 5900 5901 SmallVector<SDValue, 4> VAddrs; 5902 5903 // Optimize _L to _LZ when _L is zero 5904 if (LZMappingInfo) { 5905 if (auto ConstantLod = 5906 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5907 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 5908 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 5909 NumMIVAddrs--; // remove 'lod' 5910 } 5911 } 5912 } 5913 5914 // Optimize _mip away, when 'lod' is zero 5915 if (MIPMappingInfo) { 5916 if (auto ConstantLod = 5917 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5918 if (ConstantLod->isNullValue()) { 5919 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip 5920 NumMIVAddrs--; // remove 'lod' 5921 } 5922 } 5923 } 5924 5925 // Push back extra arguments. 5926 for (unsigned I = 0; I < BaseOpcode->NumExtraArgs; I++) 5927 VAddrs.push_back(Op.getOperand(AddrIdx + I)); 5928 5929 // Check for 16 bit addresses or derivatives and pack if true. 5930 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 5931 unsigned CoordIdx = DimIdx + NumGradients; 5932 unsigned CoordsEnd = AddrIdx + NumMIVAddrs; 5933 5934 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); 5935 MVT VAddrScalarVT = VAddrVT.getScalarType(); 5936 MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 5937 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 5938 5939 VAddrVT = Op.getOperand(CoordIdx).getSimpleValueType(); 5940 VAddrScalarVT = VAddrVT.getScalarType(); 5941 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 5942 if (IsA16 || IsG16) { 5943 if (IsA16) { 5944 if (!ST->hasA16()) { 5945 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 5946 "support 16 bit addresses\n"); 5947 return Op; 5948 } 5949 if (!IsG16) { 5950 LLVM_DEBUG( 5951 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 5952 "need 16 bit derivatives but got 32 bit derivatives\n"); 5953 return Op; 5954 } 5955 } else if (!ST->hasG16()) { 5956 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 5957 "support 16 bit derivatives\n"); 5958 return Op; 5959 } 5960 5961 if (BaseOpcode->Gradients && !IsA16) { 5962 if (!ST->hasG16()) { 5963 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 5964 "support 16 bit derivatives\n"); 5965 return Op; 5966 } 5967 // Activate g16 5968 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 5969 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 5970 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 5971 } 5972 5973 // Don't compress addresses for G16 5974 const int PackEndIdx = IsA16 ? CoordsEnd : CoordIdx; 5975 packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs, DimIdx, 5976 PackEndIdx, NumGradients); 5977 5978 if (!IsA16) { 5979 // Add uncompressed address 5980 for (unsigned I = CoordIdx; I < CoordsEnd; I++) 5981 VAddrs.push_back(Op.getOperand(I)); 5982 } 5983 } else { 5984 for (unsigned I = DimIdx; I < CoordsEnd; I++) 5985 VAddrs.push_back(Op.getOperand(I)); 5986 } 5987 5988 // If the register allocator cannot place the address registers contiguously 5989 // without introducing moves, then using the non-sequential address encoding 5990 // is always preferable, since it saves VALU instructions and is usually a 5991 // wash in terms of code size or even better. 5992 // 5993 // However, we currently have no way of hinting to the register allocator that 5994 // MIMG addresses should be placed contiguously when it is possible to do so, 5995 // so force non-NSA for the common 2-address case as a heuristic. 5996 // 5997 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 5998 // allocation when possible. 5999 bool UseNSA = 6000 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; 6001 SDValue VAddr; 6002 if (!UseNSA) 6003 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6004 6005 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6006 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6007 unsigned CtrlIdx; // Index of texfailctrl argument 6008 SDValue Unorm; 6009 if (!BaseOpcode->Sampler) { 6010 Unorm = True; 6011 CtrlIdx = AddrIdx + NumVAddrs + 1; 6012 } else { 6013 auto UnormConst = 6014 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); 6015 6016 Unorm = UnormConst->getZExtValue() ? True : False; 6017 CtrlIdx = AddrIdx + NumVAddrs + 3; 6018 } 6019 6020 SDValue TFE; 6021 SDValue LWE; 6022 SDValue TexFail = Op.getOperand(CtrlIdx); 6023 bool IsTexFail = false; 6024 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6025 return Op; 6026 6027 if (IsTexFail) { 6028 if (!DMaskLanes) { 6029 // Expecting to get an error flag since TFC is on - and dmask is 0 6030 // Force dmask to be at least 1 otherwise the instruction will fail 6031 DMask = 0x1; 6032 DMaskLanes = 1; 6033 NumVDataDwords = 1; 6034 } 6035 NumVDataDwords += 1; 6036 AdjustRetType = true; 6037 } 6038 6039 // Has something earlier tagged that the return type needs adjusting 6040 // This happens if the instruction is a load or has set TexFailCtrl flags 6041 if (AdjustRetType) { 6042 // NumVDataDwords reflects the true number of dwords required in the return type 6043 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6044 // This is a no-op load. This can be eliminated 6045 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6046 if (isa<MemSDNode>(Op)) 6047 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6048 return Undef; 6049 } 6050 6051 EVT NewVT = NumVDataDwords > 1 ? 6052 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6053 : MVT::i32; 6054 6055 ResultTypes[0] = NewVT; 6056 if (ResultTypes.size() == 3) { 6057 // Original result was aggregate type used for TexFailCtrl results 6058 // The actual instruction returns as a vector type which has now been 6059 // created. Remove the aggregate result. 6060 ResultTypes.erase(&ResultTypes[1]); 6061 } 6062 } 6063 6064 SDValue GLC; 6065 SDValue SLC; 6066 SDValue DLC; 6067 if (BaseOpcode->Atomic) { 6068 GLC = True; // TODO no-return optimization 6069 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC, 6070 IsGFX10 ? &DLC : nullptr)) 6071 return Op; 6072 } else { 6073 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC, 6074 IsGFX10 ? &DLC : nullptr)) 6075 return Op; 6076 } 6077 6078 SmallVector<SDValue, 26> Ops; 6079 if (BaseOpcode->Store || BaseOpcode->Atomic) 6080 Ops.push_back(VData); // vdata 6081 if (UseNSA) { 6082 for (const SDValue &Addr : VAddrs) 6083 Ops.push_back(Addr); 6084 } else { 6085 Ops.push_back(VAddr); 6086 } 6087 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc 6088 if (BaseOpcode->Sampler) 6089 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler 6090 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6091 if (IsGFX10) 6092 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6093 Ops.push_back(Unorm); 6094 if (IsGFX10) 6095 Ops.push_back(DLC); 6096 Ops.push_back(GLC); 6097 Ops.push_back(SLC); 6098 Ops.push_back(IsA16 && // r128, a16 for gfx9 6099 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6100 if (IsGFX10) 6101 Ops.push_back(IsA16 ? True : False); 6102 Ops.push_back(TFE); 6103 Ops.push_back(LWE); 6104 if (!IsGFX10) 6105 Ops.push_back(DimInfo->DA ? True : False); 6106 if (BaseOpcode->HasD16) 6107 Ops.push_back(IsD16 ? True : False); 6108 if (isa<MemSDNode>(Op)) 6109 Ops.push_back(Op.getOperand(0)); // chain 6110 6111 int NumVAddrDwords = 6112 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6113 int Opcode = -1; 6114 6115 if (IsGFX10) { 6116 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6117 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6118 : AMDGPU::MIMGEncGfx10Default, 6119 NumVDataDwords, NumVAddrDwords); 6120 } else { 6121 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6122 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6123 NumVDataDwords, NumVAddrDwords); 6124 if (Opcode == -1) 6125 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6126 NumVDataDwords, NumVAddrDwords); 6127 } 6128 assert(Opcode != -1); 6129 6130 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6131 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6132 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6133 DAG.setNodeMemRefs(NewNode, {MemRef}); 6134 } 6135 6136 if (BaseOpcode->AtomicX2) { 6137 SmallVector<SDValue, 1> Elt; 6138 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6139 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6140 } else if (!BaseOpcode->Store) { 6141 return constructRetValue(DAG, NewNode, 6142 OrigResultTypes, IsTexFail, 6143 Subtarget->hasUnpackedD16VMem(), IsD16, 6144 DMaskLanes, NumVDataDwords, DL, 6145 *DAG.getContext()); 6146 } 6147 6148 return SDValue(NewNode, 0); 6149 } 6150 6151 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6152 SDValue Offset, SDValue CachePolicy, 6153 SelectionDAG &DAG) const { 6154 MachineFunction &MF = DAG.getMachineFunction(); 6155 6156 const DataLayout &DataLayout = DAG.getDataLayout(); 6157 Align Alignment = 6158 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6159 6160 MachineMemOperand *MMO = MF.getMachineMemOperand( 6161 MachinePointerInfo(), 6162 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6163 MachineMemOperand::MOInvariant, 6164 VT.getStoreSize(), Alignment); 6165 6166 if (!Offset->isDivergent()) { 6167 SDValue Ops[] = { 6168 Rsrc, 6169 Offset, // Offset 6170 CachePolicy 6171 }; 6172 6173 // Widen vec3 load to vec4. 6174 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6175 EVT WidenedVT = 6176 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6177 auto WidenedOp = DAG.getMemIntrinsicNode( 6178 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6179 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6180 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6181 DAG.getVectorIdxConstant(0, DL)); 6182 return Subvector; 6183 } 6184 6185 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6186 DAG.getVTList(VT), Ops, VT, MMO); 6187 } 6188 6189 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6190 // assume that the buffer is unswizzled. 6191 SmallVector<SDValue, 4> Loads; 6192 unsigned NumLoads = 1; 6193 MVT LoadVT = VT.getSimpleVT(); 6194 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6195 assert((LoadVT.getScalarType() == MVT::i32 || 6196 LoadVT.getScalarType() == MVT::f32)); 6197 6198 if (NumElts == 8 || NumElts == 16) { 6199 NumLoads = NumElts / 4; 6200 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6201 } 6202 6203 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6204 SDValue Ops[] = { 6205 DAG.getEntryNode(), // Chain 6206 Rsrc, // rsrc 6207 DAG.getConstant(0, DL, MVT::i32), // vindex 6208 {}, // voffset 6209 {}, // soffset 6210 {}, // offset 6211 CachePolicy, // cachepolicy 6212 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6213 }; 6214 6215 // Use the alignment to ensure that the required offsets will fit into the 6216 // immediate offsets. 6217 setBufferOffsets(Offset, DAG, &Ops[3], 6218 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6219 6220 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6221 for (unsigned i = 0; i < NumLoads; ++i) { 6222 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6223 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6224 LoadVT, MMO, DAG)); 6225 } 6226 6227 if (NumElts == 8 || NumElts == 16) 6228 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6229 6230 return Loads[0]; 6231 } 6232 6233 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6234 SelectionDAG &DAG) const { 6235 MachineFunction &MF = DAG.getMachineFunction(); 6236 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6237 6238 EVT VT = Op.getValueType(); 6239 SDLoc DL(Op); 6240 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6241 6242 // TODO: Should this propagate fast-math-flags? 6243 6244 switch (IntrinsicID) { 6245 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6246 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6247 return emitNonHSAIntrinsicError(DAG, DL, VT); 6248 return getPreloadedValue(DAG, *MFI, VT, 6249 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6250 } 6251 case Intrinsic::amdgcn_dispatch_ptr: 6252 case Intrinsic::amdgcn_queue_ptr: { 6253 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6254 DiagnosticInfoUnsupported BadIntrin( 6255 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6256 DL.getDebugLoc()); 6257 DAG.getContext()->diagnose(BadIntrin); 6258 return DAG.getUNDEF(VT); 6259 } 6260 6261 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6262 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6263 return getPreloadedValue(DAG, *MFI, VT, RegID); 6264 } 6265 case Intrinsic::amdgcn_implicitarg_ptr: { 6266 if (MFI->isEntryFunction()) 6267 return getImplicitArgPtr(DAG, DL); 6268 return getPreloadedValue(DAG, *MFI, VT, 6269 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6270 } 6271 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6272 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6273 // This only makes sense to call in a kernel, so just lower to null. 6274 return DAG.getConstant(0, DL, VT); 6275 } 6276 6277 return getPreloadedValue(DAG, *MFI, VT, 6278 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6279 } 6280 case Intrinsic::amdgcn_dispatch_id: { 6281 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6282 } 6283 case Intrinsic::amdgcn_rcp: 6284 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6285 case Intrinsic::amdgcn_rsq: 6286 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6287 case Intrinsic::amdgcn_rsq_legacy: 6288 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6289 return emitRemovedIntrinsicError(DAG, DL, VT); 6290 return SDValue(); 6291 case Intrinsic::amdgcn_rcp_legacy: 6292 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6293 return emitRemovedIntrinsicError(DAG, DL, VT); 6294 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6295 case Intrinsic::amdgcn_rsq_clamp: { 6296 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6297 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6298 6299 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6300 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6301 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6302 6303 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6304 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6305 DAG.getConstantFP(Max, DL, VT)); 6306 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6307 DAG.getConstantFP(Min, DL, VT)); 6308 } 6309 case Intrinsic::r600_read_ngroups_x: 6310 if (Subtarget->isAmdHsaOS()) 6311 return emitNonHSAIntrinsicError(DAG, DL, VT); 6312 6313 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6314 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6315 false); 6316 case Intrinsic::r600_read_ngroups_y: 6317 if (Subtarget->isAmdHsaOS()) 6318 return emitNonHSAIntrinsicError(DAG, DL, VT); 6319 6320 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6321 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6322 false); 6323 case Intrinsic::r600_read_ngroups_z: 6324 if (Subtarget->isAmdHsaOS()) 6325 return emitNonHSAIntrinsicError(DAG, DL, VT); 6326 6327 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6328 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6329 false); 6330 case Intrinsic::r600_read_global_size_x: 6331 if (Subtarget->isAmdHsaOS()) 6332 return emitNonHSAIntrinsicError(DAG, DL, VT); 6333 6334 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6335 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6336 Align(4), false); 6337 case Intrinsic::r600_read_global_size_y: 6338 if (Subtarget->isAmdHsaOS()) 6339 return emitNonHSAIntrinsicError(DAG, DL, VT); 6340 6341 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6342 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6343 Align(4), false); 6344 case Intrinsic::r600_read_global_size_z: 6345 if (Subtarget->isAmdHsaOS()) 6346 return emitNonHSAIntrinsicError(DAG, DL, VT); 6347 6348 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6349 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6350 Align(4), false); 6351 case Intrinsic::r600_read_local_size_x: 6352 if (Subtarget->isAmdHsaOS()) 6353 return emitNonHSAIntrinsicError(DAG, DL, VT); 6354 6355 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6356 SI::KernelInputOffsets::LOCAL_SIZE_X); 6357 case Intrinsic::r600_read_local_size_y: 6358 if (Subtarget->isAmdHsaOS()) 6359 return emitNonHSAIntrinsicError(DAG, DL, VT); 6360 6361 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6362 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6363 case Intrinsic::r600_read_local_size_z: 6364 if (Subtarget->isAmdHsaOS()) 6365 return emitNonHSAIntrinsicError(DAG, DL, VT); 6366 6367 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6368 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6369 case Intrinsic::amdgcn_workgroup_id_x: 6370 return getPreloadedValue(DAG, *MFI, VT, 6371 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6372 case Intrinsic::amdgcn_workgroup_id_y: 6373 return getPreloadedValue(DAG, *MFI, VT, 6374 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6375 case Intrinsic::amdgcn_workgroup_id_z: 6376 return getPreloadedValue(DAG, *MFI, VT, 6377 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6378 case Intrinsic::amdgcn_workitem_id_x: 6379 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6380 SDLoc(DAG.getEntryNode()), 6381 MFI->getArgInfo().WorkItemIDX); 6382 case Intrinsic::amdgcn_workitem_id_y: 6383 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6384 SDLoc(DAG.getEntryNode()), 6385 MFI->getArgInfo().WorkItemIDY); 6386 case Intrinsic::amdgcn_workitem_id_z: 6387 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6388 SDLoc(DAG.getEntryNode()), 6389 MFI->getArgInfo().WorkItemIDZ); 6390 case Intrinsic::amdgcn_wavefrontsize: 6391 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6392 SDLoc(Op), MVT::i32); 6393 case Intrinsic::amdgcn_s_buffer_load: { 6394 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 6395 SDValue GLC; 6396 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); 6397 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, 6398 IsGFX10 ? &DLC : nullptr)) 6399 return Op; 6400 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6401 DAG); 6402 } 6403 case Intrinsic::amdgcn_fdiv_fast: 6404 return lowerFDIV_FAST(Op, DAG); 6405 case Intrinsic::amdgcn_sin: 6406 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6407 6408 case Intrinsic::amdgcn_cos: 6409 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6410 6411 case Intrinsic::amdgcn_mul_u24: 6412 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6413 case Intrinsic::amdgcn_mul_i24: 6414 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6415 6416 case Intrinsic::amdgcn_log_clamp: { 6417 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6418 return SDValue(); 6419 6420 DiagnosticInfoUnsupported BadIntrin( 6421 MF.getFunction(), "intrinsic not supported on subtarget", 6422 DL.getDebugLoc()); 6423 DAG.getContext()->diagnose(BadIntrin); 6424 return DAG.getUNDEF(VT); 6425 } 6426 case Intrinsic::amdgcn_ldexp: 6427 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6428 Op.getOperand(1), Op.getOperand(2)); 6429 6430 case Intrinsic::amdgcn_fract: 6431 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6432 6433 case Intrinsic::amdgcn_class: 6434 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6435 Op.getOperand(1), Op.getOperand(2)); 6436 case Intrinsic::amdgcn_div_fmas: 6437 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6438 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6439 Op.getOperand(4)); 6440 6441 case Intrinsic::amdgcn_div_fixup: 6442 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6443 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6444 6445 case Intrinsic::amdgcn_div_scale: { 6446 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6447 6448 // Translate to the operands expected by the machine instruction. The 6449 // first parameter must be the same as the first instruction. 6450 SDValue Numerator = Op.getOperand(1); 6451 SDValue Denominator = Op.getOperand(2); 6452 6453 // Note this order is opposite of the machine instruction's operations, 6454 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6455 // intrinsic has the numerator as the first operand to match a normal 6456 // division operation. 6457 6458 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 6459 6460 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6461 Denominator, Numerator); 6462 } 6463 case Intrinsic::amdgcn_icmp: { 6464 // There is a Pat that handles this variant, so return it as-is. 6465 if (Op.getOperand(1).getValueType() == MVT::i1 && 6466 Op.getConstantOperandVal(2) == 0 && 6467 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6468 return Op; 6469 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6470 } 6471 case Intrinsic::amdgcn_fcmp: { 6472 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6473 } 6474 case Intrinsic::amdgcn_ballot: 6475 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 6476 case Intrinsic::amdgcn_fmed3: 6477 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6478 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6479 case Intrinsic::amdgcn_fdot2: 6480 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6481 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6482 Op.getOperand(4)); 6483 case Intrinsic::amdgcn_fmul_legacy: 6484 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6485 Op.getOperand(1), Op.getOperand(2)); 6486 case Intrinsic::amdgcn_sffbh: 6487 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6488 case Intrinsic::amdgcn_sbfe: 6489 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6490 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6491 case Intrinsic::amdgcn_ubfe: 6492 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6493 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6494 case Intrinsic::amdgcn_cvt_pkrtz: 6495 case Intrinsic::amdgcn_cvt_pknorm_i16: 6496 case Intrinsic::amdgcn_cvt_pknorm_u16: 6497 case Intrinsic::amdgcn_cvt_pk_i16: 6498 case Intrinsic::amdgcn_cvt_pk_u16: { 6499 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6500 EVT VT = Op.getValueType(); 6501 unsigned Opcode; 6502 6503 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6504 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6505 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6506 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6507 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6508 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6509 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6510 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6511 else 6512 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6513 6514 if (isTypeLegal(VT)) 6515 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6516 6517 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6518 Op.getOperand(1), Op.getOperand(2)); 6519 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6520 } 6521 case Intrinsic::amdgcn_fmad_ftz: 6522 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6523 Op.getOperand(2), Op.getOperand(3)); 6524 6525 case Intrinsic::amdgcn_if_break: 6526 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6527 Op->getOperand(1), Op->getOperand(2)), 0); 6528 6529 case Intrinsic::amdgcn_groupstaticsize: { 6530 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6531 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6532 return Op; 6533 6534 const Module *M = MF.getFunction().getParent(); 6535 const GlobalValue *GV = 6536 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6537 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6538 SIInstrInfo::MO_ABS32_LO); 6539 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6540 } 6541 case Intrinsic::amdgcn_is_shared: 6542 case Intrinsic::amdgcn_is_private: { 6543 SDLoc SL(Op); 6544 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6545 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6546 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6547 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6548 Op.getOperand(1)); 6549 6550 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6551 DAG.getConstant(1, SL, MVT::i32)); 6552 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 6553 } 6554 case Intrinsic::amdgcn_alignbit: 6555 return DAG.getNode(ISD::FSHR, DL, VT, 6556 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6557 case Intrinsic::amdgcn_reloc_constant: { 6558 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 6559 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 6560 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 6561 auto RelocSymbol = cast<GlobalVariable>( 6562 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 6563 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 6564 SIInstrInfo::MO_ABS32_LO); 6565 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6566 } 6567 default: 6568 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6569 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 6570 return lowerImage(Op, ImageDimIntr, DAG); 6571 6572 return Op; 6573 } 6574 } 6575 6576 // This function computes an appropriate offset to pass to 6577 // MachineMemOperand::setOffset() based on the offset inputs to 6578 // an intrinsic. If any of the offsets are non-contstant or 6579 // if VIndex is non-zero then this function returns 0. Otherwise, 6580 // it returns the sum of VOffset, SOffset, and Offset. 6581 static unsigned getBufferOffsetForMMO(SDValue VOffset, 6582 SDValue SOffset, 6583 SDValue Offset, 6584 SDValue VIndex = SDValue()) { 6585 6586 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 6587 !isa<ConstantSDNode>(Offset)) 6588 return 0; 6589 6590 if (VIndex) { 6591 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue()) 6592 return 0; 6593 } 6594 6595 return cast<ConstantSDNode>(VOffset)->getSExtValue() + 6596 cast<ConstantSDNode>(SOffset)->getSExtValue() + 6597 cast<ConstantSDNode>(Offset)->getSExtValue(); 6598 } 6599 6600 static unsigned getDSShaderTypeValue(const MachineFunction &MF) { 6601 switch (MF.getFunction().getCallingConv()) { 6602 case CallingConv::AMDGPU_PS: 6603 return 1; 6604 case CallingConv::AMDGPU_VS: 6605 return 2; 6606 case CallingConv::AMDGPU_GS: 6607 return 3; 6608 case CallingConv::AMDGPU_HS: 6609 case CallingConv::AMDGPU_LS: 6610 case CallingConv::AMDGPU_ES: 6611 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 6612 case CallingConv::AMDGPU_CS: 6613 case CallingConv::AMDGPU_KERNEL: 6614 case CallingConv::C: 6615 case CallingConv::Fast: 6616 default: 6617 // Assume other calling conventions are various compute callable functions 6618 return 0; 6619 } 6620 } 6621 6622 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 6623 SelectionDAG &DAG) const { 6624 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6625 SDLoc DL(Op); 6626 6627 switch (IntrID) { 6628 case Intrinsic::amdgcn_ds_ordered_add: 6629 case Intrinsic::amdgcn_ds_ordered_swap: { 6630 MemSDNode *M = cast<MemSDNode>(Op); 6631 SDValue Chain = M->getOperand(0); 6632 SDValue M0 = M->getOperand(2); 6633 SDValue Value = M->getOperand(3); 6634 unsigned IndexOperand = M->getConstantOperandVal(7); 6635 unsigned WaveRelease = M->getConstantOperandVal(8); 6636 unsigned WaveDone = M->getConstantOperandVal(9); 6637 6638 unsigned OrderedCountIndex = IndexOperand & 0x3f; 6639 IndexOperand &= ~0x3f; 6640 unsigned CountDw = 0; 6641 6642 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 6643 CountDw = (IndexOperand >> 24) & 0xf; 6644 IndexOperand &= ~(0xf << 24); 6645 6646 if (CountDw < 1 || CountDw > 4) { 6647 report_fatal_error( 6648 "ds_ordered_count: dword count must be between 1 and 4"); 6649 } 6650 } 6651 6652 if (IndexOperand) 6653 report_fatal_error("ds_ordered_count: bad index operand"); 6654 6655 if (WaveDone && !WaveRelease) 6656 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 6657 6658 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 6659 unsigned ShaderType = getDSShaderTypeValue(DAG.getMachineFunction()); 6660 unsigned Offset0 = OrderedCountIndex << 2; 6661 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 6662 (Instruction << 4); 6663 6664 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 6665 Offset1 |= (CountDw - 1) << 6; 6666 6667 unsigned Offset = Offset0 | (Offset1 << 8); 6668 6669 SDValue Ops[] = { 6670 Chain, 6671 Value, 6672 DAG.getTargetConstant(Offset, DL, MVT::i16), 6673 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 6674 }; 6675 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 6676 M->getVTList(), Ops, M->getMemoryVT(), 6677 M->getMemOperand()); 6678 } 6679 case Intrinsic::amdgcn_ds_fadd: { 6680 MemSDNode *M = cast<MemSDNode>(Op); 6681 unsigned Opc; 6682 switch (IntrID) { 6683 case Intrinsic::amdgcn_ds_fadd: 6684 Opc = ISD::ATOMIC_LOAD_FADD; 6685 break; 6686 } 6687 6688 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 6689 M->getOperand(0), M->getOperand(2), M->getOperand(3), 6690 M->getMemOperand()); 6691 } 6692 case Intrinsic::amdgcn_atomic_inc: 6693 case Intrinsic::amdgcn_atomic_dec: 6694 case Intrinsic::amdgcn_ds_fmin: 6695 case Intrinsic::amdgcn_ds_fmax: { 6696 MemSDNode *M = cast<MemSDNode>(Op); 6697 unsigned Opc; 6698 switch (IntrID) { 6699 case Intrinsic::amdgcn_atomic_inc: 6700 Opc = AMDGPUISD::ATOMIC_INC; 6701 break; 6702 case Intrinsic::amdgcn_atomic_dec: 6703 Opc = AMDGPUISD::ATOMIC_DEC; 6704 break; 6705 case Intrinsic::amdgcn_ds_fmin: 6706 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 6707 break; 6708 case Intrinsic::amdgcn_ds_fmax: 6709 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 6710 break; 6711 default: 6712 llvm_unreachable("Unknown intrinsic!"); 6713 } 6714 SDValue Ops[] = { 6715 M->getOperand(0), // Chain 6716 M->getOperand(2), // Ptr 6717 M->getOperand(3) // Value 6718 }; 6719 6720 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 6721 M->getMemoryVT(), M->getMemOperand()); 6722 } 6723 case Intrinsic::amdgcn_buffer_load: 6724 case Intrinsic::amdgcn_buffer_load_format: { 6725 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 6726 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6727 unsigned IdxEn = 1; 6728 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6729 IdxEn = Idx->getZExtValue() != 0; 6730 SDValue Ops[] = { 6731 Op.getOperand(0), // Chain 6732 Op.getOperand(2), // rsrc 6733 Op.getOperand(3), // vindex 6734 SDValue(), // voffset -- will be set by setBufferOffsets 6735 SDValue(), // soffset -- will be set by setBufferOffsets 6736 SDValue(), // offset -- will be set by setBufferOffsets 6737 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6738 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6739 }; 6740 6741 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 6742 // We don't know the offset if vindex is non-zero, so clear it. 6743 if (IdxEn) 6744 Offset = 0; 6745 6746 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 6747 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 6748 6749 EVT VT = Op.getValueType(); 6750 EVT IntVT = VT.changeTypeToInteger(); 6751 auto *M = cast<MemSDNode>(Op); 6752 M->getMemOperand()->setOffset(Offset); 6753 EVT LoadVT = Op.getValueType(); 6754 6755 if (LoadVT.getScalarType() == MVT::f16) 6756 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 6757 M, DAG, Ops); 6758 6759 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 6760 if (LoadVT.getScalarType() == MVT::i8 || 6761 LoadVT.getScalarType() == MVT::i16) 6762 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 6763 6764 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 6765 M->getMemOperand(), DAG); 6766 } 6767 case Intrinsic::amdgcn_raw_buffer_load: 6768 case Intrinsic::amdgcn_raw_buffer_load_format: { 6769 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 6770 6771 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6772 SDValue Ops[] = { 6773 Op.getOperand(0), // Chain 6774 Op.getOperand(2), // rsrc 6775 DAG.getConstant(0, DL, MVT::i32), // vindex 6776 Offsets.first, // voffset 6777 Op.getOperand(4), // soffset 6778 Offsets.second, // offset 6779 Op.getOperand(5), // cachepolicy, swizzled buffer 6780 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6781 }; 6782 6783 auto *M = cast<MemSDNode>(Op); 6784 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5])); 6785 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 6786 } 6787 case Intrinsic::amdgcn_struct_buffer_load: 6788 case Intrinsic::amdgcn_struct_buffer_load_format: { 6789 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 6790 6791 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6792 SDValue Ops[] = { 6793 Op.getOperand(0), // Chain 6794 Op.getOperand(2), // rsrc 6795 Op.getOperand(3), // vindex 6796 Offsets.first, // voffset 6797 Op.getOperand(5), // soffset 6798 Offsets.second, // offset 6799 Op.getOperand(6), // cachepolicy, swizzled buffer 6800 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6801 }; 6802 6803 auto *M = cast<MemSDNode>(Op); 6804 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5], 6805 Ops[2])); 6806 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6807 } 6808 case Intrinsic::amdgcn_tbuffer_load: { 6809 MemSDNode *M = cast<MemSDNode>(Op); 6810 EVT LoadVT = Op.getValueType(); 6811 6812 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6813 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6814 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6815 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6816 unsigned IdxEn = 1; 6817 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6818 IdxEn = Idx->getZExtValue() != 0; 6819 SDValue Ops[] = { 6820 Op.getOperand(0), // Chain 6821 Op.getOperand(2), // rsrc 6822 Op.getOperand(3), // vindex 6823 Op.getOperand(4), // voffset 6824 Op.getOperand(5), // soffset 6825 Op.getOperand(6), // offset 6826 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6827 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6828 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 6829 }; 6830 6831 if (LoadVT.getScalarType() == MVT::f16) 6832 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6833 M, DAG, Ops); 6834 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6835 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6836 DAG); 6837 } 6838 case Intrinsic::amdgcn_raw_tbuffer_load: { 6839 MemSDNode *M = cast<MemSDNode>(Op); 6840 EVT LoadVT = Op.getValueType(); 6841 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6842 6843 SDValue Ops[] = { 6844 Op.getOperand(0), // Chain 6845 Op.getOperand(2), // rsrc 6846 DAG.getConstant(0, DL, MVT::i32), // vindex 6847 Offsets.first, // voffset 6848 Op.getOperand(4), // soffset 6849 Offsets.second, // offset 6850 Op.getOperand(5), // format 6851 Op.getOperand(6), // cachepolicy, swizzled buffer 6852 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6853 }; 6854 6855 if (LoadVT.getScalarType() == MVT::f16) 6856 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6857 M, DAG, Ops); 6858 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6859 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6860 DAG); 6861 } 6862 case Intrinsic::amdgcn_struct_tbuffer_load: { 6863 MemSDNode *M = cast<MemSDNode>(Op); 6864 EVT LoadVT = Op.getValueType(); 6865 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6866 6867 SDValue Ops[] = { 6868 Op.getOperand(0), // Chain 6869 Op.getOperand(2), // rsrc 6870 Op.getOperand(3), // vindex 6871 Offsets.first, // voffset 6872 Op.getOperand(5), // soffset 6873 Offsets.second, // offset 6874 Op.getOperand(6), // format 6875 Op.getOperand(7), // cachepolicy, swizzled buffer 6876 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6877 }; 6878 6879 if (LoadVT.getScalarType() == MVT::f16) 6880 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6881 M, DAG, Ops); 6882 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6883 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6884 DAG); 6885 } 6886 case Intrinsic::amdgcn_buffer_atomic_swap: 6887 case Intrinsic::amdgcn_buffer_atomic_add: 6888 case Intrinsic::amdgcn_buffer_atomic_sub: 6889 case Intrinsic::amdgcn_buffer_atomic_csub: 6890 case Intrinsic::amdgcn_buffer_atomic_smin: 6891 case Intrinsic::amdgcn_buffer_atomic_umin: 6892 case Intrinsic::amdgcn_buffer_atomic_smax: 6893 case Intrinsic::amdgcn_buffer_atomic_umax: 6894 case Intrinsic::amdgcn_buffer_atomic_and: 6895 case Intrinsic::amdgcn_buffer_atomic_or: 6896 case Intrinsic::amdgcn_buffer_atomic_xor: { 6897 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6898 unsigned IdxEn = 1; 6899 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6900 IdxEn = Idx->getZExtValue() != 0; 6901 SDValue Ops[] = { 6902 Op.getOperand(0), // Chain 6903 Op.getOperand(2), // vdata 6904 Op.getOperand(3), // rsrc 6905 Op.getOperand(4), // vindex 6906 SDValue(), // voffset -- will be set by setBufferOffsets 6907 SDValue(), // soffset -- will be set by setBufferOffsets 6908 SDValue(), // offset -- will be set by setBufferOffsets 6909 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6910 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6911 }; 6912 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 6913 // We don't know the offset if vindex is non-zero, so clear it. 6914 if (IdxEn) 6915 Offset = 0; 6916 EVT VT = Op.getValueType(); 6917 6918 auto *M = cast<MemSDNode>(Op); 6919 M->getMemOperand()->setOffset(Offset); 6920 unsigned Opcode = 0; 6921 6922 switch (IntrID) { 6923 case Intrinsic::amdgcn_buffer_atomic_swap: 6924 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6925 break; 6926 case Intrinsic::amdgcn_buffer_atomic_add: 6927 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6928 break; 6929 case Intrinsic::amdgcn_buffer_atomic_sub: 6930 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6931 break; 6932 case Intrinsic::amdgcn_buffer_atomic_csub: 6933 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 6934 break; 6935 case Intrinsic::amdgcn_buffer_atomic_smin: 6936 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6937 break; 6938 case Intrinsic::amdgcn_buffer_atomic_umin: 6939 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6940 break; 6941 case Intrinsic::amdgcn_buffer_atomic_smax: 6942 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6943 break; 6944 case Intrinsic::amdgcn_buffer_atomic_umax: 6945 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6946 break; 6947 case Intrinsic::amdgcn_buffer_atomic_and: 6948 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6949 break; 6950 case Intrinsic::amdgcn_buffer_atomic_or: 6951 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6952 break; 6953 case Intrinsic::amdgcn_buffer_atomic_xor: 6954 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6955 break; 6956 default: 6957 llvm_unreachable("unhandled atomic opcode"); 6958 } 6959 6960 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6961 M->getMemOperand()); 6962 } 6963 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6964 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6965 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6966 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6967 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6968 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6969 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6970 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6971 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6972 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6973 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6974 case Intrinsic::amdgcn_raw_buffer_atomic_dec: { 6975 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6976 SDValue Ops[] = { 6977 Op.getOperand(0), // Chain 6978 Op.getOperand(2), // vdata 6979 Op.getOperand(3), // rsrc 6980 DAG.getConstant(0, DL, MVT::i32), // vindex 6981 Offsets.first, // voffset 6982 Op.getOperand(5), // soffset 6983 Offsets.second, // offset 6984 Op.getOperand(6), // cachepolicy 6985 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6986 }; 6987 EVT VT = Op.getValueType(); 6988 6989 auto *M = cast<MemSDNode>(Op); 6990 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 6991 unsigned Opcode = 0; 6992 6993 switch (IntrID) { 6994 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6995 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6996 break; 6997 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6998 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6999 break; 7000 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7001 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7002 break; 7003 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7004 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7005 break; 7006 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7007 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7008 break; 7009 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7010 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7011 break; 7012 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7013 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7014 break; 7015 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7016 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7017 break; 7018 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7019 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7020 break; 7021 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7022 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7023 break; 7024 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7025 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 7026 break; 7027 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7028 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 7029 break; 7030 default: 7031 llvm_unreachable("unhandled atomic opcode"); 7032 } 7033 7034 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7035 M->getMemOperand()); 7036 } 7037 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7038 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7039 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7040 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7041 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7042 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7043 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7044 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7045 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7046 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7047 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7048 case Intrinsic::amdgcn_struct_buffer_atomic_dec: { 7049 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7050 SDValue Ops[] = { 7051 Op.getOperand(0), // Chain 7052 Op.getOperand(2), // vdata 7053 Op.getOperand(3), // rsrc 7054 Op.getOperand(4), // vindex 7055 Offsets.first, // voffset 7056 Op.getOperand(6), // soffset 7057 Offsets.second, // offset 7058 Op.getOperand(7), // cachepolicy 7059 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7060 }; 7061 EVT VT = Op.getValueType(); 7062 7063 auto *M = cast<MemSDNode>(Op); 7064 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 7065 Ops[3])); 7066 unsigned Opcode = 0; 7067 7068 switch (IntrID) { 7069 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7070 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7071 break; 7072 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7073 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7074 break; 7075 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7076 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7077 break; 7078 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7079 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7080 break; 7081 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7082 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7083 break; 7084 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7085 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7086 break; 7087 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7088 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7089 break; 7090 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7091 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7092 break; 7093 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7094 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7095 break; 7096 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7097 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7098 break; 7099 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7100 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 7101 break; 7102 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7103 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 7104 break; 7105 default: 7106 llvm_unreachable("unhandled atomic opcode"); 7107 } 7108 7109 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7110 M->getMemOperand()); 7111 } 7112 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7113 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7114 unsigned IdxEn = 1; 7115 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 7116 IdxEn = Idx->getZExtValue() != 0; 7117 SDValue Ops[] = { 7118 Op.getOperand(0), // Chain 7119 Op.getOperand(2), // src 7120 Op.getOperand(3), // cmp 7121 Op.getOperand(4), // rsrc 7122 Op.getOperand(5), // vindex 7123 SDValue(), // voffset -- will be set by setBufferOffsets 7124 SDValue(), // soffset -- will be set by setBufferOffsets 7125 SDValue(), // offset -- will be set by setBufferOffsets 7126 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7127 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7128 }; 7129 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7130 // We don't know the offset if vindex is non-zero, so clear it. 7131 if (IdxEn) 7132 Offset = 0; 7133 EVT VT = Op.getValueType(); 7134 auto *M = cast<MemSDNode>(Op); 7135 M->getMemOperand()->setOffset(Offset); 7136 7137 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7138 Op->getVTList(), Ops, VT, M->getMemOperand()); 7139 } 7140 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7141 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7142 SDValue Ops[] = { 7143 Op.getOperand(0), // Chain 7144 Op.getOperand(2), // src 7145 Op.getOperand(3), // cmp 7146 Op.getOperand(4), // rsrc 7147 DAG.getConstant(0, DL, MVT::i32), // vindex 7148 Offsets.first, // voffset 7149 Op.getOperand(6), // soffset 7150 Offsets.second, // offset 7151 Op.getOperand(7), // cachepolicy 7152 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7153 }; 7154 EVT VT = Op.getValueType(); 7155 auto *M = cast<MemSDNode>(Op); 7156 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7])); 7157 7158 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7159 Op->getVTList(), Ops, VT, M->getMemOperand()); 7160 } 7161 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7162 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7163 SDValue Ops[] = { 7164 Op.getOperand(0), // Chain 7165 Op.getOperand(2), // src 7166 Op.getOperand(3), // cmp 7167 Op.getOperand(4), // rsrc 7168 Op.getOperand(5), // vindex 7169 Offsets.first, // voffset 7170 Op.getOperand(7), // soffset 7171 Offsets.second, // offset 7172 Op.getOperand(8), // cachepolicy 7173 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7174 }; 7175 EVT VT = Op.getValueType(); 7176 auto *M = cast<MemSDNode>(Op); 7177 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7], 7178 Ops[4])); 7179 7180 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7181 Op->getVTList(), Ops, VT, M->getMemOperand()); 7182 } 7183 case Intrinsic::amdgcn_global_atomic_csub: { 7184 MemSDNode *M = cast<MemSDNode>(Op); 7185 SDValue Ops[] = { 7186 M->getOperand(0), // Chain 7187 M->getOperand(2), // Ptr 7188 M->getOperand(3) // Value 7189 }; 7190 7191 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_LOAD_CSUB, SDLoc(Op), 7192 M->getVTList(), Ops, M->getMemoryVT(), 7193 M->getMemOperand()); 7194 } 7195 7196 default: 7197 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7198 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7199 return lowerImage(Op, ImageDimIntr, DAG); 7200 7201 return SDValue(); 7202 } 7203 } 7204 7205 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7206 // dwordx4 if on SI. 7207 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7208 SDVTList VTList, 7209 ArrayRef<SDValue> Ops, EVT MemVT, 7210 MachineMemOperand *MMO, 7211 SelectionDAG &DAG) const { 7212 EVT VT = VTList.VTs[0]; 7213 EVT WidenedVT = VT; 7214 EVT WidenedMemVT = MemVT; 7215 if (!Subtarget->hasDwordx3LoadStores() && 7216 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7217 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7218 WidenedVT.getVectorElementType(), 4); 7219 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7220 WidenedMemVT.getVectorElementType(), 4); 7221 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7222 } 7223 7224 assert(VTList.NumVTs == 2); 7225 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7226 7227 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7228 WidenedMemVT, MMO); 7229 if (WidenedVT != VT) { 7230 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7231 DAG.getVectorIdxConstant(0, DL)); 7232 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7233 } 7234 return NewOp; 7235 } 7236 7237 SDValue SITargetLowering::handleD16VData(SDValue VData, 7238 SelectionDAG &DAG) const { 7239 EVT StoreVT = VData.getValueType(); 7240 7241 // No change for f16 and legal vector D16 types. 7242 if (!StoreVT.isVector()) 7243 return VData; 7244 7245 SDLoc DL(VData); 7246 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); 7247 7248 if (Subtarget->hasUnpackedD16VMem()) { 7249 // We need to unpack the packed data to store. 7250 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7251 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7252 7253 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 7254 StoreVT.getVectorNumElements()); 7255 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7256 return DAG.UnrollVectorOp(ZExt.getNode()); 7257 } 7258 7259 assert(isTypeLegal(StoreVT)); 7260 return VData; 7261 } 7262 7263 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7264 SelectionDAG &DAG) const { 7265 SDLoc DL(Op); 7266 SDValue Chain = Op.getOperand(0); 7267 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7268 MachineFunction &MF = DAG.getMachineFunction(); 7269 7270 switch (IntrinsicID) { 7271 case Intrinsic::amdgcn_exp_compr: { 7272 SDValue Src0 = Op.getOperand(4); 7273 SDValue Src1 = Op.getOperand(5); 7274 // Hack around illegal type on SI by directly selecting it. 7275 if (isTypeLegal(Src0.getValueType())) 7276 return SDValue(); 7277 7278 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7279 SDValue Undef = DAG.getUNDEF(MVT::f32); 7280 const SDValue Ops[] = { 7281 Op.getOperand(2), // tgt 7282 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7283 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7284 Undef, // src2 7285 Undef, // src3 7286 Op.getOperand(7), // vm 7287 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7288 Op.getOperand(3), // en 7289 Op.getOperand(0) // Chain 7290 }; 7291 7292 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 7293 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 7294 } 7295 case Intrinsic::amdgcn_s_barrier: { 7296 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 7297 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 7298 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 7299 if (WGSize <= ST.getWavefrontSize()) 7300 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 7301 Op.getOperand(0)), 0); 7302 } 7303 return SDValue(); 7304 }; 7305 case Intrinsic::amdgcn_tbuffer_store: { 7306 SDValue VData = Op.getOperand(2); 7307 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7308 if (IsD16) 7309 VData = handleD16VData(VData, DAG); 7310 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7311 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7312 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7313 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 7314 unsigned IdxEn = 1; 7315 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7316 IdxEn = Idx->getZExtValue() != 0; 7317 SDValue Ops[] = { 7318 Chain, 7319 VData, // vdata 7320 Op.getOperand(3), // rsrc 7321 Op.getOperand(4), // vindex 7322 Op.getOperand(5), // voffset 7323 Op.getOperand(6), // soffset 7324 Op.getOperand(7), // offset 7325 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7326 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7327 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen 7328 }; 7329 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7330 AMDGPUISD::TBUFFER_STORE_FORMAT; 7331 MemSDNode *M = cast<MemSDNode>(Op); 7332 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7333 M->getMemoryVT(), M->getMemOperand()); 7334 } 7335 7336 case Intrinsic::amdgcn_struct_tbuffer_store: { 7337 SDValue VData = Op.getOperand(2); 7338 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7339 if (IsD16) 7340 VData = handleD16VData(VData, DAG); 7341 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7342 SDValue Ops[] = { 7343 Chain, 7344 VData, // vdata 7345 Op.getOperand(3), // rsrc 7346 Op.getOperand(4), // vindex 7347 Offsets.first, // voffset 7348 Op.getOperand(6), // soffset 7349 Offsets.second, // offset 7350 Op.getOperand(7), // format 7351 Op.getOperand(8), // cachepolicy, swizzled buffer 7352 DAG.getTargetConstant(1, DL, MVT::i1), // idexen 7353 }; 7354 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7355 AMDGPUISD::TBUFFER_STORE_FORMAT; 7356 MemSDNode *M = cast<MemSDNode>(Op); 7357 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7358 M->getMemoryVT(), M->getMemOperand()); 7359 } 7360 7361 case Intrinsic::amdgcn_raw_tbuffer_store: { 7362 SDValue VData = Op.getOperand(2); 7363 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7364 if (IsD16) 7365 VData = handleD16VData(VData, DAG); 7366 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7367 SDValue Ops[] = { 7368 Chain, 7369 VData, // vdata 7370 Op.getOperand(3), // rsrc 7371 DAG.getConstant(0, DL, MVT::i32), // vindex 7372 Offsets.first, // voffset 7373 Op.getOperand(5), // soffset 7374 Offsets.second, // offset 7375 Op.getOperand(6), // format 7376 Op.getOperand(7), // cachepolicy, swizzled buffer 7377 DAG.getTargetConstant(0, DL, MVT::i1), // idexen 7378 }; 7379 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7380 AMDGPUISD::TBUFFER_STORE_FORMAT; 7381 MemSDNode *M = cast<MemSDNode>(Op); 7382 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7383 M->getMemoryVT(), M->getMemOperand()); 7384 } 7385 7386 case Intrinsic::amdgcn_buffer_store: 7387 case Intrinsic::amdgcn_buffer_store_format: { 7388 SDValue VData = Op.getOperand(2); 7389 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7390 if (IsD16) 7391 VData = handleD16VData(VData, DAG); 7392 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7393 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7394 unsigned IdxEn = 1; 7395 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7396 IdxEn = Idx->getZExtValue() != 0; 7397 SDValue Ops[] = { 7398 Chain, 7399 VData, 7400 Op.getOperand(3), // rsrc 7401 Op.getOperand(4), // vindex 7402 SDValue(), // voffset -- will be set by setBufferOffsets 7403 SDValue(), // soffset -- will be set by setBufferOffsets 7404 SDValue(), // offset -- will be set by setBufferOffsets 7405 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7406 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7407 }; 7408 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7409 // We don't know the offset if vindex is non-zero, so clear it. 7410 if (IdxEn) 7411 Offset = 0; 7412 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 7413 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7414 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7415 MemSDNode *M = cast<MemSDNode>(Op); 7416 M->getMemOperand()->setOffset(Offset); 7417 7418 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7419 EVT VDataType = VData.getValueType().getScalarType(); 7420 if (VDataType == MVT::i8 || VDataType == MVT::i16) 7421 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7422 7423 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7424 M->getMemoryVT(), M->getMemOperand()); 7425 } 7426 7427 case Intrinsic::amdgcn_raw_buffer_store: 7428 case Intrinsic::amdgcn_raw_buffer_store_format: { 7429 const bool IsFormat = 7430 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 7431 7432 SDValue VData = Op.getOperand(2); 7433 EVT VDataVT = VData.getValueType(); 7434 EVT EltType = VDataVT.getScalarType(); 7435 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7436 if (IsD16) 7437 VData = handleD16VData(VData, DAG); 7438 7439 if (!isTypeLegal(VDataVT)) { 7440 VData = 7441 DAG.getNode(ISD::BITCAST, DL, 7442 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7443 } 7444 7445 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7446 SDValue Ops[] = { 7447 Chain, 7448 VData, 7449 Op.getOperand(3), // rsrc 7450 DAG.getConstant(0, DL, MVT::i32), // vindex 7451 Offsets.first, // voffset 7452 Op.getOperand(5), // soffset 7453 Offsets.second, // offset 7454 Op.getOperand(6), // cachepolicy, swizzled buffer 7455 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7456 }; 7457 unsigned Opc = 7458 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 7459 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7460 MemSDNode *M = cast<MemSDNode>(Op); 7461 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 7462 7463 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7464 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7465 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 7466 7467 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7468 M->getMemoryVT(), M->getMemOperand()); 7469 } 7470 7471 case Intrinsic::amdgcn_struct_buffer_store: 7472 case Intrinsic::amdgcn_struct_buffer_store_format: { 7473 const bool IsFormat = 7474 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 7475 7476 SDValue VData = Op.getOperand(2); 7477 EVT VDataVT = VData.getValueType(); 7478 EVT EltType = VDataVT.getScalarType(); 7479 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7480 7481 if (IsD16) 7482 VData = handleD16VData(VData, DAG); 7483 7484 if (!isTypeLegal(VDataVT)) { 7485 VData = 7486 DAG.getNode(ISD::BITCAST, DL, 7487 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7488 } 7489 7490 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7491 SDValue Ops[] = { 7492 Chain, 7493 VData, 7494 Op.getOperand(3), // rsrc 7495 Op.getOperand(4), // vindex 7496 Offsets.first, // voffset 7497 Op.getOperand(6), // soffset 7498 Offsets.second, // offset 7499 Op.getOperand(7), // cachepolicy, swizzled buffer 7500 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7501 }; 7502 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 7503 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7504 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7505 MemSDNode *M = cast<MemSDNode>(Op); 7506 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 7507 Ops[3])); 7508 7509 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7510 EVT VDataType = VData.getValueType().getScalarType(); 7511 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7512 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7513 7514 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7515 M->getMemoryVT(), M->getMemOperand()); 7516 } 7517 7518 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7519 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7520 unsigned IdxEn = 1; 7521 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7522 IdxEn = Idx->getZExtValue() != 0; 7523 SDValue Ops[] = { 7524 Chain, 7525 Op.getOperand(2), // vdata 7526 Op.getOperand(3), // rsrc 7527 Op.getOperand(4), // vindex 7528 SDValue(), // voffset -- will be set by setBufferOffsets 7529 SDValue(), // soffset -- will be set by setBufferOffsets 7530 SDValue(), // offset -- will be set by setBufferOffsets 7531 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7532 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7533 }; 7534 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7535 // We don't know the offset if vindex is non-zero, so clear it. 7536 if (IdxEn) 7537 Offset = 0; 7538 EVT VT = Op.getOperand(2).getValueType(); 7539 7540 auto *M = cast<MemSDNode>(Op); 7541 M->getMemOperand()->setOffset(Offset); 7542 unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD 7543 : AMDGPUISD::BUFFER_ATOMIC_FADD; 7544 7545 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7546 M->getMemOperand()); 7547 } 7548 7549 case Intrinsic::amdgcn_global_atomic_fadd: { 7550 SDValue Ops[] = { 7551 Chain, 7552 Op.getOperand(2), // ptr 7553 Op.getOperand(3) // vdata 7554 }; 7555 EVT VT = Op.getOperand(3).getValueType(); 7556 7557 auto *M = cast<MemSDNode>(Op); 7558 if (VT.isVector()) { 7559 return DAG.getMemIntrinsicNode( 7560 AMDGPUISD::ATOMIC_PK_FADD, DL, Op->getVTList(), Ops, VT, 7561 M->getMemOperand()); 7562 } 7563 7564 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7565 DAG.getVTList(VT, MVT::Other), Ops, 7566 M->getMemOperand()).getValue(1); 7567 } 7568 case Intrinsic::amdgcn_end_cf: 7569 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 7570 Op->getOperand(2), Chain), 0); 7571 7572 default: { 7573 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7574 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7575 return lowerImage(Op, ImageDimIntr, DAG); 7576 7577 return Op; 7578 } 7579 } 7580 } 7581 7582 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 7583 // offset (the offset that is included in bounds checking and swizzling, to be 7584 // split between the instruction's voffset and immoffset fields) and soffset 7585 // (the offset that is excluded from bounds checking and swizzling, to go in 7586 // the instruction's soffset field). This function takes the first kind of 7587 // offset and figures out how to split it between voffset and immoffset. 7588 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 7589 SDValue Offset, SelectionDAG &DAG) const { 7590 SDLoc DL(Offset); 7591 const unsigned MaxImm = 4095; 7592 SDValue N0 = Offset; 7593 ConstantSDNode *C1 = nullptr; 7594 7595 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 7596 N0 = SDValue(); 7597 else if (DAG.isBaseWithConstantOffset(N0)) { 7598 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 7599 N0 = N0.getOperand(0); 7600 } 7601 7602 if (C1) { 7603 unsigned ImmOffset = C1->getZExtValue(); 7604 // If the immediate value is too big for the immoffset field, put the value 7605 // and -4096 into the immoffset field so that the value that is copied/added 7606 // for the voffset field is a multiple of 4096, and it stands more chance 7607 // of being CSEd with the copy/add for another similar load/store. 7608 // However, do not do that rounding down to a multiple of 4096 if that is a 7609 // negative number, as it appears to be illegal to have a negative offset 7610 // in the vgpr, even if adding the immediate offset makes it positive. 7611 unsigned Overflow = ImmOffset & ~MaxImm; 7612 ImmOffset -= Overflow; 7613 if ((int32_t)Overflow < 0) { 7614 Overflow += ImmOffset; 7615 ImmOffset = 0; 7616 } 7617 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 7618 if (Overflow) { 7619 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 7620 if (!N0) 7621 N0 = OverflowVal; 7622 else { 7623 SDValue Ops[] = { N0, OverflowVal }; 7624 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 7625 } 7626 } 7627 } 7628 if (!N0) 7629 N0 = DAG.getConstant(0, DL, MVT::i32); 7630 if (!C1) 7631 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 7632 return {N0, SDValue(C1, 0)}; 7633 } 7634 7635 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 7636 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 7637 // pointed to by Offsets. 7638 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 7639 SelectionDAG &DAG, SDValue *Offsets, 7640 Align Alignment) const { 7641 SDLoc DL(CombinedOffset); 7642 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 7643 uint32_t Imm = C->getZExtValue(); 7644 uint32_t SOffset, ImmOffset; 7645 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 7646 Alignment)) { 7647 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 7648 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7649 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7650 return SOffset + ImmOffset; 7651 } 7652 } 7653 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 7654 SDValue N0 = CombinedOffset.getOperand(0); 7655 SDValue N1 = CombinedOffset.getOperand(1); 7656 uint32_t SOffset, ImmOffset; 7657 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 7658 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 7659 Subtarget, Alignment)) { 7660 Offsets[0] = N0; 7661 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7662 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7663 return 0; 7664 } 7665 } 7666 Offsets[0] = CombinedOffset; 7667 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 7668 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 7669 return 0; 7670 } 7671 7672 // Handle 8 bit and 16 bit buffer loads 7673 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 7674 EVT LoadVT, SDLoc DL, 7675 ArrayRef<SDValue> Ops, 7676 MemSDNode *M) const { 7677 EVT IntVT = LoadVT.changeTypeToInteger(); 7678 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 7679 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 7680 7681 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 7682 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 7683 Ops, IntVT, 7684 M->getMemOperand()); 7685 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 7686 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 7687 7688 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 7689 } 7690 7691 // Handle 8 bit and 16 bit buffer stores 7692 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 7693 EVT VDataType, SDLoc DL, 7694 SDValue Ops[], 7695 MemSDNode *M) const { 7696 if (VDataType == MVT::f16) 7697 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 7698 7699 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 7700 Ops[1] = BufferStoreExt; 7701 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 7702 AMDGPUISD::BUFFER_STORE_SHORT; 7703 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 7704 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 7705 M->getMemOperand()); 7706 } 7707 7708 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 7709 ISD::LoadExtType ExtType, SDValue Op, 7710 const SDLoc &SL, EVT VT) { 7711 if (VT.bitsLT(Op.getValueType())) 7712 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 7713 7714 switch (ExtType) { 7715 case ISD::SEXTLOAD: 7716 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 7717 case ISD::ZEXTLOAD: 7718 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 7719 case ISD::EXTLOAD: 7720 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 7721 case ISD::NON_EXTLOAD: 7722 return Op; 7723 } 7724 7725 llvm_unreachable("invalid ext type"); 7726 } 7727 7728 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 7729 SelectionDAG &DAG = DCI.DAG; 7730 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 7731 return SDValue(); 7732 7733 // FIXME: Constant loads should all be marked invariant. 7734 unsigned AS = Ld->getAddressSpace(); 7735 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 7736 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 7737 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 7738 return SDValue(); 7739 7740 // Don't do this early, since it may interfere with adjacent load merging for 7741 // illegal types. We can avoid losing alignment information for exotic types 7742 // pre-legalize. 7743 EVT MemVT = Ld->getMemoryVT(); 7744 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 7745 MemVT.getSizeInBits() >= 32) 7746 return SDValue(); 7747 7748 SDLoc SL(Ld); 7749 7750 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 7751 "unexpected vector extload"); 7752 7753 // TODO: Drop only high part of range. 7754 SDValue Ptr = Ld->getBasePtr(); 7755 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 7756 MVT::i32, SL, Ld->getChain(), Ptr, 7757 Ld->getOffset(), 7758 Ld->getPointerInfo(), MVT::i32, 7759 Ld->getAlignment(), 7760 Ld->getMemOperand()->getFlags(), 7761 Ld->getAAInfo(), 7762 nullptr); // Drop ranges 7763 7764 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 7765 if (MemVT.isFloatingPoint()) { 7766 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 7767 "unexpected fp extload"); 7768 TruncVT = MemVT.changeTypeToInteger(); 7769 } 7770 7771 SDValue Cvt = NewLoad; 7772 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 7773 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 7774 DAG.getValueType(TruncVT)); 7775 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 7776 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 7777 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 7778 } else { 7779 assert(Ld->getExtensionType() == ISD::EXTLOAD); 7780 } 7781 7782 EVT VT = Ld->getValueType(0); 7783 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7784 7785 DCI.AddToWorklist(Cvt.getNode()); 7786 7787 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 7788 // the appropriate extension from the 32-bit load. 7789 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 7790 DCI.AddToWorklist(Cvt.getNode()); 7791 7792 // Handle conversion back to floating point if necessary. 7793 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 7794 7795 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 7796 } 7797 7798 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7799 SDLoc DL(Op); 7800 LoadSDNode *Load = cast<LoadSDNode>(Op); 7801 ISD::LoadExtType ExtType = Load->getExtensionType(); 7802 EVT MemVT = Load->getMemoryVT(); 7803 7804 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 7805 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 7806 return SDValue(); 7807 7808 // FIXME: Copied from PPC 7809 // First, load into 32 bits, then truncate to 1 bit. 7810 7811 SDValue Chain = Load->getChain(); 7812 SDValue BasePtr = Load->getBasePtr(); 7813 MachineMemOperand *MMO = Load->getMemOperand(); 7814 7815 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 7816 7817 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 7818 BasePtr, RealMemVT, MMO); 7819 7820 if (!MemVT.isVector()) { 7821 SDValue Ops[] = { 7822 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 7823 NewLD.getValue(1) 7824 }; 7825 7826 return DAG.getMergeValues(Ops, DL); 7827 } 7828 7829 SmallVector<SDValue, 3> Elts; 7830 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 7831 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 7832 DAG.getConstant(I, DL, MVT::i32)); 7833 7834 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 7835 } 7836 7837 SDValue Ops[] = { 7838 DAG.getBuildVector(MemVT, DL, Elts), 7839 NewLD.getValue(1) 7840 }; 7841 7842 return DAG.getMergeValues(Ops, DL); 7843 } 7844 7845 if (!MemVT.isVector()) 7846 return SDValue(); 7847 7848 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 7849 "Custom lowering for non-i32 vectors hasn't been implemented."); 7850 7851 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 7852 MemVT, *Load->getMemOperand())) { 7853 SDValue Ops[2]; 7854 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 7855 return DAG.getMergeValues(Ops, DL); 7856 } 7857 7858 unsigned Alignment = Load->getAlignment(); 7859 unsigned AS = Load->getAddressSpace(); 7860 if (Subtarget->hasLDSMisalignedBug() && 7861 AS == AMDGPUAS::FLAT_ADDRESS && 7862 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 7863 return SplitVectorLoad(Op, DAG); 7864 } 7865 7866 MachineFunction &MF = DAG.getMachineFunction(); 7867 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7868 // If there is a possibilty that flat instruction access scratch memory 7869 // then we need to use the same legalization rules we use for private. 7870 if (AS == AMDGPUAS::FLAT_ADDRESS && 7871 !Subtarget->hasMultiDwordFlatScratchAddressing()) 7872 AS = MFI->hasFlatScratchInit() ? 7873 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7874 7875 unsigned NumElements = MemVT.getVectorNumElements(); 7876 7877 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7878 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 7879 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 7880 if (MemVT.isPow2VectorType()) 7881 return SDValue(); 7882 if (NumElements == 3) 7883 return WidenVectorLoad(Op, DAG); 7884 return SplitVectorLoad(Op, DAG); 7885 } 7886 // Non-uniform loads will be selected to MUBUF instructions, so they 7887 // have the same legalization requirements as global and private 7888 // loads. 7889 // 7890 } 7891 7892 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7893 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7894 AS == AMDGPUAS::GLOBAL_ADDRESS) { 7895 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 7896 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 7897 Alignment >= 4 && NumElements < 32) { 7898 if (MemVT.isPow2VectorType()) 7899 return SDValue(); 7900 if (NumElements == 3) 7901 return WidenVectorLoad(Op, DAG); 7902 return SplitVectorLoad(Op, DAG); 7903 } 7904 // Non-uniform loads will be selected to MUBUF instructions, so they 7905 // have the same legalization requirements as global and private 7906 // loads. 7907 // 7908 } 7909 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7910 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7911 AS == AMDGPUAS::GLOBAL_ADDRESS || 7912 AS == AMDGPUAS::FLAT_ADDRESS) { 7913 if (NumElements > 4) 7914 return SplitVectorLoad(Op, DAG); 7915 // v3 loads not supported on SI. 7916 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7917 return WidenVectorLoad(Op, DAG); 7918 // v3 and v4 loads are supported for private and global memory. 7919 return SDValue(); 7920 } 7921 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 7922 // Depending on the setting of the private_element_size field in the 7923 // resource descriptor, we can only make private accesses up to a certain 7924 // size. 7925 switch (Subtarget->getMaxPrivateElementSize()) { 7926 case 4: { 7927 SDValue Ops[2]; 7928 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 7929 return DAG.getMergeValues(Ops, DL); 7930 } 7931 case 8: 7932 if (NumElements > 2) 7933 return SplitVectorLoad(Op, DAG); 7934 return SDValue(); 7935 case 16: 7936 // Same as global/flat 7937 if (NumElements > 4) 7938 return SplitVectorLoad(Op, DAG); 7939 // v3 loads not supported on SI. 7940 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7941 return WidenVectorLoad(Op, DAG); 7942 return SDValue(); 7943 default: 7944 llvm_unreachable("unsupported private_element_size"); 7945 } 7946 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 7947 // Use ds_read_b128 if possible. 7948 if (Subtarget->useDS128() && Load->getAlignment() >= 16 && 7949 MemVT.getStoreSize() == 16) 7950 return SDValue(); 7951 7952 if (NumElements > 2) 7953 return SplitVectorLoad(Op, DAG); 7954 7955 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 7956 // address is negative, then the instruction is incorrectly treated as 7957 // out-of-bounds even if base + offsets is in bounds. Split vectorized 7958 // loads here to avoid emitting ds_read2_b32. We may re-combine the 7959 // load later in the SILoadStoreOptimizer. 7960 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 7961 NumElements == 2 && MemVT.getStoreSize() == 8 && 7962 Load->getAlignment() < 8) { 7963 return SplitVectorLoad(Op, DAG); 7964 } 7965 } 7966 return SDValue(); 7967 } 7968 7969 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 7970 EVT VT = Op.getValueType(); 7971 assert(VT.getSizeInBits() == 64); 7972 7973 SDLoc DL(Op); 7974 SDValue Cond = Op.getOperand(0); 7975 7976 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 7977 SDValue One = DAG.getConstant(1, DL, MVT::i32); 7978 7979 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 7980 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 7981 7982 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 7983 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 7984 7985 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 7986 7987 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 7988 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 7989 7990 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 7991 7992 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 7993 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 7994 } 7995 7996 // Catch division cases where we can use shortcuts with rcp and rsq 7997 // instructions. 7998 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 7999 SelectionDAG &DAG) const { 8000 SDLoc SL(Op); 8001 SDValue LHS = Op.getOperand(0); 8002 SDValue RHS = Op.getOperand(1); 8003 EVT VT = Op.getValueType(); 8004 const SDNodeFlags Flags = Op->getFlags(); 8005 8006 bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath || 8007 Flags.hasApproximateFuncs(); 8008 8009 // Without !fpmath accuracy information, we can't do more because we don't 8010 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8011 if (!AllowInaccurateRcp) 8012 return SDValue(); 8013 8014 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8015 if (CLHS->isExactlyValue(1.0)) { 8016 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8017 // the CI documentation has a worst case error of 1 ulp. 8018 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8019 // use it as long as we aren't trying to use denormals. 8020 // 8021 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8022 8023 // 1.0 / sqrt(x) -> rsq(x) 8024 8025 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8026 // error seems really high at 2^29 ULP. 8027 if (RHS.getOpcode() == ISD::FSQRT) 8028 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8029 8030 // 1.0 / x -> rcp(x) 8031 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8032 } 8033 8034 // Same as for 1.0, but expand the sign out of the constant. 8035 if (CLHS->isExactlyValue(-1.0)) { 8036 // -1.0 / x -> rcp (fneg x) 8037 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8038 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8039 } 8040 } 8041 8042 // Turn into multiply by the reciprocal. 8043 // x / y -> x * (1.0 / y) 8044 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8045 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8046 } 8047 8048 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8049 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8050 SDNodeFlags Flags) { 8051 if (GlueChain->getNumValues() <= 1) { 8052 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8053 } 8054 8055 assert(GlueChain->getNumValues() == 3); 8056 8057 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8058 switch (Opcode) { 8059 default: llvm_unreachable("no chain equivalent for opcode"); 8060 case ISD::FMUL: 8061 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8062 break; 8063 } 8064 8065 return DAG.getNode(Opcode, SL, VTList, 8066 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8067 Flags); 8068 } 8069 8070 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8071 EVT VT, SDValue A, SDValue B, SDValue C, 8072 SDValue GlueChain, SDNodeFlags Flags) { 8073 if (GlueChain->getNumValues() <= 1) { 8074 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8075 } 8076 8077 assert(GlueChain->getNumValues() == 3); 8078 8079 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8080 switch (Opcode) { 8081 default: llvm_unreachable("no chain equivalent for opcode"); 8082 case ISD::FMA: 8083 Opcode = AMDGPUISD::FMA_W_CHAIN; 8084 break; 8085 } 8086 8087 return DAG.getNode(Opcode, SL, VTList, 8088 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8089 Flags); 8090 } 8091 8092 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8093 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8094 return FastLowered; 8095 8096 SDLoc SL(Op); 8097 SDValue Src0 = Op.getOperand(0); 8098 SDValue Src1 = Op.getOperand(1); 8099 8100 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8101 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8102 8103 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8104 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8105 8106 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8107 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8108 8109 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8110 } 8111 8112 // Faster 2.5 ULP division that does not support denormals. 8113 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8114 SDLoc SL(Op); 8115 SDValue LHS = Op.getOperand(1); 8116 SDValue RHS = Op.getOperand(2); 8117 8118 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8119 8120 const APFloat K0Val(BitsToFloat(0x6f800000)); 8121 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8122 8123 const APFloat K1Val(BitsToFloat(0x2f800000)); 8124 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8125 8126 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8127 8128 EVT SetCCVT = 8129 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8130 8131 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8132 8133 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8134 8135 // TODO: Should this propagate fast-math-flags? 8136 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8137 8138 // rcp does not support denormals. 8139 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8140 8141 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8142 8143 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8144 } 8145 8146 // Returns immediate value for setting the F32 denorm mode when using the 8147 // S_DENORM_MODE instruction. 8148 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8149 const SDLoc &SL, const GCNSubtarget *ST) { 8150 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8151 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8152 ? FP_DENORM_FLUSH_NONE 8153 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8154 8155 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8156 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8157 } 8158 8159 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8160 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8161 return FastLowered; 8162 8163 // The selection matcher assumes anything with a chain selecting to a 8164 // mayRaiseFPException machine instruction. Since we're introducing a chain 8165 // here, we need to explicitly report nofpexcept for the regular fdiv 8166 // lowering. 8167 SDNodeFlags Flags = Op->getFlags(); 8168 Flags.setNoFPExcept(true); 8169 8170 SDLoc SL(Op); 8171 SDValue LHS = Op.getOperand(0); 8172 SDValue RHS = Op.getOperand(1); 8173 8174 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8175 8176 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 8177 8178 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8179 {RHS, RHS, LHS}, Flags); 8180 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8181 {LHS, RHS, LHS}, Flags); 8182 8183 // Denominator is scaled to not be denormal, so using rcp is ok. 8184 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 8185 DenominatorScaled, Flags); 8186 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 8187 DenominatorScaled, Flags); 8188 8189 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 8190 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 8191 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 8192 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 8193 8194 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 8195 8196 if (!HasFP32Denormals) { 8197 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 8198 // lowering. The chain dependence is insufficient, and we need glue. We do 8199 // not need the glue variants in a strictfp function. 8200 8201 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 8202 8203 SDNode *EnableDenorm; 8204 if (Subtarget->hasDenormModeInst()) { 8205 const SDValue EnableDenormValue = 8206 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 8207 8208 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 8209 DAG.getEntryNode(), EnableDenormValue).getNode(); 8210 } else { 8211 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 8212 SL, MVT::i32); 8213 EnableDenorm = 8214 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 8215 {EnableDenormValue, BitField, DAG.getEntryNode()}); 8216 } 8217 8218 SDValue Ops[3] = { 8219 NegDivScale0, 8220 SDValue(EnableDenorm, 0), 8221 SDValue(EnableDenorm, 1) 8222 }; 8223 8224 NegDivScale0 = DAG.getMergeValues(Ops, SL); 8225 } 8226 8227 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 8228 ApproxRcp, One, NegDivScale0, Flags); 8229 8230 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 8231 ApproxRcp, Fma0, Flags); 8232 8233 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 8234 Fma1, Fma1, Flags); 8235 8236 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 8237 NumeratorScaled, Mul, Flags); 8238 8239 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 8240 Fma2, Fma1, Mul, Fma2, Flags); 8241 8242 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 8243 NumeratorScaled, Fma3, Flags); 8244 8245 if (!HasFP32Denormals) { 8246 SDNode *DisableDenorm; 8247 if (Subtarget->hasDenormModeInst()) { 8248 const SDValue DisableDenormValue = 8249 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 8250 8251 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 8252 Fma4.getValue(1), DisableDenormValue, 8253 Fma4.getValue(2)).getNode(); 8254 } else { 8255 const SDValue DisableDenormValue = 8256 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 8257 8258 DisableDenorm = DAG.getMachineNode( 8259 AMDGPU::S_SETREG_B32, SL, MVT::Other, 8260 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 8261 } 8262 8263 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 8264 SDValue(DisableDenorm, 0), DAG.getRoot()); 8265 DAG.setRoot(OutputChain); 8266 } 8267 8268 SDValue Scale = NumeratorScaled.getValue(1); 8269 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 8270 {Fma4, Fma1, Fma3, Scale}, Flags); 8271 8272 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 8273 } 8274 8275 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 8276 if (DAG.getTarget().Options.UnsafeFPMath) 8277 return lowerFastUnsafeFDIV(Op, DAG); 8278 8279 SDLoc SL(Op); 8280 SDValue X = Op.getOperand(0); 8281 SDValue Y = Op.getOperand(1); 8282 8283 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 8284 8285 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 8286 8287 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 8288 8289 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 8290 8291 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 8292 8293 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 8294 8295 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 8296 8297 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 8298 8299 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 8300 8301 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 8302 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 8303 8304 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 8305 NegDivScale0, Mul, DivScale1); 8306 8307 SDValue Scale; 8308 8309 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 8310 // Workaround a hardware bug on SI where the condition output from div_scale 8311 // is not usable. 8312 8313 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 8314 8315 // Figure out if the scale to use for div_fmas. 8316 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 8317 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 8318 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 8319 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 8320 8321 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 8322 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 8323 8324 SDValue Scale0Hi 8325 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 8326 SDValue Scale1Hi 8327 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 8328 8329 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 8330 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 8331 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 8332 } else { 8333 Scale = DivScale1.getValue(1); 8334 } 8335 8336 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 8337 Fma4, Fma3, Mul, Scale); 8338 8339 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 8340 } 8341 8342 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 8343 EVT VT = Op.getValueType(); 8344 8345 if (VT == MVT::f32) 8346 return LowerFDIV32(Op, DAG); 8347 8348 if (VT == MVT::f64) 8349 return LowerFDIV64(Op, DAG); 8350 8351 if (VT == MVT::f16) 8352 return LowerFDIV16(Op, DAG); 8353 8354 llvm_unreachable("Unexpected type for fdiv"); 8355 } 8356 8357 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8358 SDLoc DL(Op); 8359 StoreSDNode *Store = cast<StoreSDNode>(Op); 8360 EVT VT = Store->getMemoryVT(); 8361 8362 if (VT == MVT::i1) { 8363 return DAG.getTruncStore(Store->getChain(), DL, 8364 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 8365 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 8366 } 8367 8368 assert(VT.isVector() && 8369 Store->getValue().getValueType().getScalarType() == MVT::i32); 8370 8371 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8372 VT, *Store->getMemOperand())) { 8373 return expandUnalignedStore(Store, DAG); 8374 } 8375 8376 unsigned AS = Store->getAddressSpace(); 8377 if (Subtarget->hasLDSMisalignedBug() && 8378 AS == AMDGPUAS::FLAT_ADDRESS && 8379 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 8380 return SplitVectorStore(Op, DAG); 8381 } 8382 8383 MachineFunction &MF = DAG.getMachineFunction(); 8384 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8385 // If there is a possibilty that flat instruction access scratch memory 8386 // then we need to use the same legalization rules we use for private. 8387 if (AS == AMDGPUAS::FLAT_ADDRESS && 8388 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8389 AS = MFI->hasFlatScratchInit() ? 8390 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8391 8392 unsigned NumElements = VT.getVectorNumElements(); 8393 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 8394 AS == AMDGPUAS::FLAT_ADDRESS) { 8395 if (NumElements > 4) 8396 return SplitVectorStore(Op, DAG); 8397 // v3 stores not supported on SI. 8398 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8399 return SplitVectorStore(Op, DAG); 8400 return SDValue(); 8401 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8402 switch (Subtarget->getMaxPrivateElementSize()) { 8403 case 4: 8404 return scalarizeVectorStore(Store, DAG); 8405 case 8: 8406 if (NumElements > 2) 8407 return SplitVectorStore(Op, DAG); 8408 return SDValue(); 8409 case 16: 8410 if (NumElements > 4 || NumElements == 3) 8411 return SplitVectorStore(Op, DAG); 8412 return SDValue(); 8413 default: 8414 llvm_unreachable("unsupported private_element_size"); 8415 } 8416 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8417 // Use ds_write_b128 if possible. 8418 if (Subtarget->useDS128() && Store->getAlignment() >= 16 && 8419 VT.getStoreSize() == 16 && NumElements != 3) 8420 return SDValue(); 8421 8422 if (NumElements > 2) 8423 return SplitVectorStore(Op, DAG); 8424 8425 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8426 // address is negative, then the instruction is incorrectly treated as 8427 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8428 // stores here to avoid emitting ds_write2_b32. We may re-combine the 8429 // store later in the SILoadStoreOptimizer. 8430 if (!Subtarget->hasUsableDSOffset() && 8431 NumElements == 2 && VT.getStoreSize() == 8 && 8432 Store->getAlignment() < 8) { 8433 return SplitVectorStore(Op, DAG); 8434 } 8435 8436 return SDValue(); 8437 } else { 8438 llvm_unreachable("unhandled address space"); 8439 } 8440 } 8441 8442 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 8443 SDLoc DL(Op); 8444 EVT VT = Op.getValueType(); 8445 SDValue Arg = Op.getOperand(0); 8446 SDValue TrigVal; 8447 8448 // Propagate fast-math flags so that the multiply we introduce can be folded 8449 // if Arg is already the result of a multiply by constant. 8450 auto Flags = Op->getFlags(); 8451 8452 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 8453 8454 if (Subtarget->hasTrigReducedRange()) { 8455 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8456 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 8457 } else { 8458 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8459 } 8460 8461 switch (Op.getOpcode()) { 8462 case ISD::FCOS: 8463 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 8464 case ISD::FSIN: 8465 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 8466 default: 8467 llvm_unreachable("Wrong trig opcode"); 8468 } 8469 } 8470 8471 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 8472 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 8473 assert(AtomicNode->isCompareAndSwap()); 8474 unsigned AS = AtomicNode->getAddressSpace(); 8475 8476 // No custom lowering required for local address space 8477 if (!isFlatGlobalAddrSpace(AS)) 8478 return Op; 8479 8480 // Non-local address space requires custom lowering for atomic compare 8481 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 8482 SDLoc DL(Op); 8483 SDValue ChainIn = Op.getOperand(0); 8484 SDValue Addr = Op.getOperand(1); 8485 SDValue Old = Op.getOperand(2); 8486 SDValue New = Op.getOperand(3); 8487 EVT VT = Op.getValueType(); 8488 MVT SimpleVT = VT.getSimpleVT(); 8489 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 8490 8491 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 8492 SDValue Ops[] = { ChainIn, Addr, NewOld }; 8493 8494 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 8495 Ops, VT, AtomicNode->getMemOperand()); 8496 } 8497 8498 //===----------------------------------------------------------------------===// 8499 // Custom DAG optimizations 8500 //===----------------------------------------------------------------------===// 8501 8502 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 8503 DAGCombinerInfo &DCI) const { 8504 EVT VT = N->getValueType(0); 8505 EVT ScalarVT = VT.getScalarType(); 8506 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 8507 return SDValue(); 8508 8509 SelectionDAG &DAG = DCI.DAG; 8510 SDLoc DL(N); 8511 8512 SDValue Src = N->getOperand(0); 8513 EVT SrcVT = Src.getValueType(); 8514 8515 // TODO: We could try to match extracting the higher bytes, which would be 8516 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 8517 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 8518 // about in practice. 8519 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 8520 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 8521 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 8522 DCI.AddToWorklist(Cvt.getNode()); 8523 8524 // For the f16 case, fold to a cast to f32 and then cast back to f16. 8525 if (ScalarVT != MVT::f32) { 8526 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 8527 DAG.getTargetConstant(0, DL, MVT::i32)); 8528 } 8529 return Cvt; 8530 } 8531 } 8532 8533 return SDValue(); 8534 } 8535 8536 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 8537 8538 // This is a variant of 8539 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 8540 // 8541 // The normal DAG combiner will do this, but only if the add has one use since 8542 // that would increase the number of instructions. 8543 // 8544 // This prevents us from seeing a constant offset that can be folded into a 8545 // memory instruction's addressing mode. If we know the resulting add offset of 8546 // a pointer can be folded into an addressing offset, we can replace the pointer 8547 // operand with the add of new constant offset. This eliminates one of the uses, 8548 // and may allow the remaining use to also be simplified. 8549 // 8550 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 8551 unsigned AddrSpace, 8552 EVT MemVT, 8553 DAGCombinerInfo &DCI) const { 8554 SDValue N0 = N->getOperand(0); 8555 SDValue N1 = N->getOperand(1); 8556 8557 // We only do this to handle cases where it's profitable when there are 8558 // multiple uses of the add, so defer to the standard combine. 8559 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 8560 N0->hasOneUse()) 8561 return SDValue(); 8562 8563 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 8564 if (!CN1) 8565 return SDValue(); 8566 8567 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 8568 if (!CAdd) 8569 return SDValue(); 8570 8571 // If the resulting offset is too large, we can't fold it into the addressing 8572 // mode offset. 8573 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 8574 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 8575 8576 AddrMode AM; 8577 AM.HasBaseReg = true; 8578 AM.BaseOffs = Offset.getSExtValue(); 8579 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 8580 return SDValue(); 8581 8582 SelectionDAG &DAG = DCI.DAG; 8583 SDLoc SL(N); 8584 EVT VT = N->getValueType(0); 8585 8586 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 8587 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); 8588 8589 SDNodeFlags Flags; 8590 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 8591 (N0.getOpcode() == ISD::OR || 8592 N0->getFlags().hasNoUnsignedWrap())); 8593 8594 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 8595 } 8596 8597 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 8598 DAGCombinerInfo &DCI) const { 8599 SDValue Ptr = N->getBasePtr(); 8600 SelectionDAG &DAG = DCI.DAG; 8601 SDLoc SL(N); 8602 8603 // TODO: We could also do this for multiplies. 8604 if (Ptr.getOpcode() == ISD::SHL) { 8605 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 8606 N->getMemoryVT(), DCI); 8607 if (NewPtr) { 8608 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 8609 8610 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; 8611 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 8612 } 8613 } 8614 8615 return SDValue(); 8616 } 8617 8618 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 8619 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 8620 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 8621 (Opc == ISD::XOR && Val == 0); 8622 } 8623 8624 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 8625 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 8626 // integer combine opportunities since most 64-bit operations are decomposed 8627 // this way. TODO: We won't want this for SALU especially if it is an inline 8628 // immediate. 8629 SDValue SITargetLowering::splitBinaryBitConstantOp( 8630 DAGCombinerInfo &DCI, 8631 const SDLoc &SL, 8632 unsigned Opc, SDValue LHS, 8633 const ConstantSDNode *CRHS) const { 8634 uint64_t Val = CRHS->getZExtValue(); 8635 uint32_t ValLo = Lo_32(Val); 8636 uint32_t ValHi = Hi_32(Val); 8637 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8638 8639 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 8640 bitOpWithConstantIsReducible(Opc, ValHi)) || 8641 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 8642 // If we need to materialize a 64-bit immediate, it will be split up later 8643 // anyway. Avoid creating the harder to understand 64-bit immediate 8644 // materialization. 8645 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 8646 } 8647 8648 return SDValue(); 8649 } 8650 8651 // Returns true if argument is a boolean value which is not serialized into 8652 // memory or argument and does not require v_cmdmask_b32 to be deserialized. 8653 static bool isBoolSGPR(SDValue V) { 8654 if (V.getValueType() != MVT::i1) 8655 return false; 8656 switch (V.getOpcode()) { 8657 default: break; 8658 case ISD::SETCC: 8659 case ISD::AND: 8660 case ISD::OR: 8661 case ISD::XOR: 8662 case AMDGPUISD::FP_CLASS: 8663 return true; 8664 } 8665 return false; 8666 } 8667 8668 // If a constant has all zeroes or all ones within each byte return it. 8669 // Otherwise return 0. 8670 static uint32_t getConstantPermuteMask(uint32_t C) { 8671 // 0xff for any zero byte in the mask 8672 uint32_t ZeroByteMask = 0; 8673 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 8674 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 8675 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 8676 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 8677 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 8678 if ((NonZeroByteMask & C) != NonZeroByteMask) 8679 return 0; // Partial bytes selected. 8680 return C; 8681 } 8682 8683 // Check if a node selects whole bytes from its operand 0 starting at a byte 8684 // boundary while masking the rest. Returns select mask as in the v_perm_b32 8685 // or -1 if not succeeded. 8686 // Note byte select encoding: 8687 // value 0-3 selects corresponding source byte; 8688 // value 0xc selects zero; 8689 // value 0xff selects 0xff. 8690 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 8691 assert(V.getValueSizeInBits() == 32); 8692 8693 if (V.getNumOperands() != 2) 8694 return ~0; 8695 8696 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 8697 if (!N1) 8698 return ~0; 8699 8700 uint32_t C = N1->getZExtValue(); 8701 8702 switch (V.getOpcode()) { 8703 default: 8704 break; 8705 case ISD::AND: 8706 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8707 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 8708 } 8709 break; 8710 8711 case ISD::OR: 8712 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8713 return (0x03020100 & ~ConstMask) | ConstMask; 8714 } 8715 break; 8716 8717 case ISD::SHL: 8718 if (C % 8) 8719 return ~0; 8720 8721 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 8722 8723 case ISD::SRL: 8724 if (C % 8) 8725 return ~0; 8726 8727 return uint32_t(0x0c0c0c0c03020100ull >> C); 8728 } 8729 8730 return ~0; 8731 } 8732 8733 SDValue SITargetLowering::performAndCombine(SDNode *N, 8734 DAGCombinerInfo &DCI) const { 8735 if (DCI.isBeforeLegalize()) 8736 return SDValue(); 8737 8738 SelectionDAG &DAG = DCI.DAG; 8739 EVT VT = N->getValueType(0); 8740 SDValue LHS = N->getOperand(0); 8741 SDValue RHS = N->getOperand(1); 8742 8743 8744 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8745 if (VT == MVT::i64 && CRHS) { 8746 if (SDValue Split 8747 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 8748 return Split; 8749 } 8750 8751 if (CRHS && VT == MVT::i32) { 8752 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 8753 // nb = number of trailing zeroes in mask 8754 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 8755 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 8756 uint64_t Mask = CRHS->getZExtValue(); 8757 unsigned Bits = countPopulation(Mask); 8758 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 8759 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 8760 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 8761 unsigned Shift = CShift->getZExtValue(); 8762 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 8763 unsigned Offset = NB + Shift; 8764 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 8765 SDLoc SL(N); 8766 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 8767 LHS->getOperand(0), 8768 DAG.getConstant(Offset, SL, MVT::i32), 8769 DAG.getConstant(Bits, SL, MVT::i32)); 8770 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8771 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 8772 DAG.getValueType(NarrowVT)); 8773 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 8774 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 8775 return Shl; 8776 } 8777 } 8778 } 8779 8780 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8781 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 8782 isa<ConstantSDNode>(LHS.getOperand(2))) { 8783 uint32_t Sel = getConstantPermuteMask(Mask); 8784 if (!Sel) 8785 return SDValue(); 8786 8787 // Select 0xc for all zero bytes 8788 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 8789 SDLoc DL(N); 8790 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8791 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8792 } 8793 } 8794 8795 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 8796 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 8797 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 8798 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8799 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 8800 8801 SDValue X = LHS.getOperand(0); 8802 SDValue Y = RHS.getOperand(0); 8803 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 8804 return SDValue(); 8805 8806 if (LCC == ISD::SETO) { 8807 if (X != LHS.getOperand(1)) 8808 return SDValue(); 8809 8810 if (RCC == ISD::SETUNE) { 8811 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 8812 if (!C1 || !C1->isInfinity() || C1->isNegative()) 8813 return SDValue(); 8814 8815 const uint32_t Mask = SIInstrFlags::N_NORMAL | 8816 SIInstrFlags::N_SUBNORMAL | 8817 SIInstrFlags::N_ZERO | 8818 SIInstrFlags::P_ZERO | 8819 SIInstrFlags::P_SUBNORMAL | 8820 SIInstrFlags::P_NORMAL; 8821 8822 static_assert(((~(SIInstrFlags::S_NAN | 8823 SIInstrFlags::Q_NAN | 8824 SIInstrFlags::N_INFINITY | 8825 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 8826 "mask not equal"); 8827 8828 SDLoc DL(N); 8829 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8830 X, DAG.getConstant(Mask, DL, MVT::i32)); 8831 } 8832 } 8833 } 8834 8835 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 8836 std::swap(LHS, RHS); 8837 8838 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 8839 RHS.hasOneUse()) { 8840 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8841 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 8842 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 8843 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8844 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 8845 (RHS.getOperand(0) == LHS.getOperand(0) && 8846 LHS.getOperand(0) == LHS.getOperand(1))) { 8847 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 8848 unsigned NewMask = LCC == ISD::SETO ? 8849 Mask->getZExtValue() & ~OrdMask : 8850 Mask->getZExtValue() & OrdMask; 8851 8852 SDLoc DL(N); 8853 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 8854 DAG.getConstant(NewMask, DL, MVT::i32)); 8855 } 8856 } 8857 8858 if (VT == MVT::i32 && 8859 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 8860 // and x, (sext cc from i1) => select cc, x, 0 8861 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 8862 std::swap(LHS, RHS); 8863 if (isBoolSGPR(RHS.getOperand(0))) 8864 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 8865 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 8866 } 8867 8868 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8869 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8870 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8871 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8872 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8873 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8874 if (LHSMask != ~0u && RHSMask != ~0u) { 8875 // Canonicalize the expression in an attempt to have fewer unique masks 8876 // and therefore fewer registers used to hold the masks. 8877 if (LHSMask > RHSMask) { 8878 std::swap(LHSMask, RHSMask); 8879 std::swap(LHS, RHS); 8880 } 8881 8882 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8883 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8884 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8885 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8886 8887 // Check of we need to combine values from two sources within a byte. 8888 if (!(LHSUsedLanes & RHSUsedLanes) && 8889 // If we select high and lower word keep it for SDWA. 8890 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8891 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8892 // Each byte in each mask is either selector mask 0-3, or has higher 8893 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 8894 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 8895 // mask which is not 0xff wins. By anding both masks we have a correct 8896 // result except that 0x0c shall be corrected to give 0x0c only. 8897 uint32_t Mask = LHSMask & RHSMask; 8898 for (unsigned I = 0; I < 32; I += 8) { 8899 uint32_t ByteSel = 0xff << I; 8900 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 8901 Mask &= (0x0c << I) & 0xffffffff; 8902 } 8903 8904 // Add 4 to each active LHS lane. It will not affect any existing 0xff 8905 // or 0x0c. 8906 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 8907 SDLoc DL(N); 8908 8909 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8910 LHS.getOperand(0), RHS.getOperand(0), 8911 DAG.getConstant(Sel, DL, MVT::i32)); 8912 } 8913 } 8914 } 8915 8916 return SDValue(); 8917 } 8918 8919 SDValue SITargetLowering::performOrCombine(SDNode *N, 8920 DAGCombinerInfo &DCI) const { 8921 SelectionDAG &DAG = DCI.DAG; 8922 SDValue LHS = N->getOperand(0); 8923 SDValue RHS = N->getOperand(1); 8924 8925 EVT VT = N->getValueType(0); 8926 if (VT == MVT::i1) { 8927 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 8928 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 8929 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 8930 SDValue Src = LHS.getOperand(0); 8931 if (Src != RHS.getOperand(0)) 8932 return SDValue(); 8933 8934 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 8935 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8936 if (!CLHS || !CRHS) 8937 return SDValue(); 8938 8939 // Only 10 bits are used. 8940 static const uint32_t MaxMask = 0x3ff; 8941 8942 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 8943 SDLoc DL(N); 8944 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8945 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 8946 } 8947 8948 return SDValue(); 8949 } 8950 8951 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8952 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 8953 LHS.getOpcode() == AMDGPUISD::PERM && 8954 isa<ConstantSDNode>(LHS.getOperand(2))) { 8955 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 8956 if (!Sel) 8957 return SDValue(); 8958 8959 Sel |= LHS.getConstantOperandVal(2); 8960 SDLoc DL(N); 8961 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8962 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8963 } 8964 8965 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8966 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8967 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8968 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8969 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8970 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8971 if (LHSMask != ~0u && RHSMask != ~0u) { 8972 // Canonicalize the expression in an attempt to have fewer unique masks 8973 // and therefore fewer registers used to hold the masks. 8974 if (LHSMask > RHSMask) { 8975 std::swap(LHSMask, RHSMask); 8976 std::swap(LHS, RHS); 8977 } 8978 8979 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8980 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8981 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8982 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8983 8984 // Check of we need to combine values from two sources within a byte. 8985 if (!(LHSUsedLanes & RHSUsedLanes) && 8986 // If we select high and lower word keep it for SDWA. 8987 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8988 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8989 // Kill zero bytes selected by other mask. Zero value is 0xc. 8990 LHSMask &= ~RHSUsedLanes; 8991 RHSMask &= ~LHSUsedLanes; 8992 // Add 4 to each active LHS lane 8993 LHSMask |= LHSUsedLanes & 0x04040404; 8994 // Combine masks 8995 uint32_t Sel = LHSMask | RHSMask; 8996 SDLoc DL(N); 8997 8998 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8999 LHS.getOperand(0), RHS.getOperand(0), 9000 DAG.getConstant(Sel, DL, MVT::i32)); 9001 } 9002 } 9003 } 9004 9005 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9006 return SDValue(); 9007 9008 // TODO: This could be a generic combine with a predicate for extracting the 9009 // high half of an integer being free. 9010 9011 // (or i64:x, (zero_extend i32:y)) -> 9012 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9013 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9014 RHS.getOpcode() != ISD::ZERO_EXTEND) 9015 std::swap(LHS, RHS); 9016 9017 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9018 SDValue ExtSrc = RHS.getOperand(0); 9019 EVT SrcVT = ExtSrc.getValueType(); 9020 if (SrcVT == MVT::i32) { 9021 SDLoc SL(N); 9022 SDValue LowLHS, HiBits; 9023 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9024 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9025 9026 DCI.AddToWorklist(LowOr.getNode()); 9027 DCI.AddToWorklist(HiBits.getNode()); 9028 9029 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9030 LowOr, HiBits); 9031 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9032 } 9033 } 9034 9035 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9036 if (CRHS) { 9037 if (SDValue Split 9038 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 9039 return Split; 9040 } 9041 9042 return SDValue(); 9043 } 9044 9045 SDValue SITargetLowering::performXorCombine(SDNode *N, 9046 DAGCombinerInfo &DCI) const { 9047 EVT VT = N->getValueType(0); 9048 if (VT != MVT::i64) 9049 return SDValue(); 9050 9051 SDValue LHS = N->getOperand(0); 9052 SDValue RHS = N->getOperand(1); 9053 9054 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9055 if (CRHS) { 9056 if (SDValue Split 9057 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9058 return Split; 9059 } 9060 9061 return SDValue(); 9062 } 9063 9064 // Instructions that will be lowered with a final instruction that zeros the 9065 // high result bits. 9066 // XXX - probably only need to list legal operations. 9067 static bool fp16SrcZerosHighBits(unsigned Opc) { 9068 switch (Opc) { 9069 case ISD::FADD: 9070 case ISD::FSUB: 9071 case ISD::FMUL: 9072 case ISD::FDIV: 9073 case ISD::FREM: 9074 case ISD::FMA: 9075 case ISD::FMAD: 9076 case ISD::FCANONICALIZE: 9077 case ISD::FP_ROUND: 9078 case ISD::UINT_TO_FP: 9079 case ISD::SINT_TO_FP: 9080 case ISD::FABS: 9081 // Fabs is lowered to a bit operation, but it's an and which will clear the 9082 // high bits anyway. 9083 case ISD::FSQRT: 9084 case ISD::FSIN: 9085 case ISD::FCOS: 9086 case ISD::FPOWI: 9087 case ISD::FPOW: 9088 case ISD::FLOG: 9089 case ISD::FLOG2: 9090 case ISD::FLOG10: 9091 case ISD::FEXP: 9092 case ISD::FEXP2: 9093 case ISD::FCEIL: 9094 case ISD::FTRUNC: 9095 case ISD::FRINT: 9096 case ISD::FNEARBYINT: 9097 case ISD::FROUND: 9098 case ISD::FFLOOR: 9099 case ISD::FMINNUM: 9100 case ISD::FMAXNUM: 9101 case AMDGPUISD::FRACT: 9102 case AMDGPUISD::CLAMP: 9103 case AMDGPUISD::COS_HW: 9104 case AMDGPUISD::SIN_HW: 9105 case AMDGPUISD::FMIN3: 9106 case AMDGPUISD::FMAX3: 9107 case AMDGPUISD::FMED3: 9108 case AMDGPUISD::FMAD_FTZ: 9109 case AMDGPUISD::RCP: 9110 case AMDGPUISD::RSQ: 9111 case AMDGPUISD::RCP_IFLAG: 9112 case AMDGPUISD::LDEXP: 9113 return true; 9114 default: 9115 // fcopysign, select and others may be lowered to 32-bit bit operations 9116 // which don't zero the high bits. 9117 return false; 9118 } 9119 } 9120 9121 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9122 DAGCombinerInfo &DCI) const { 9123 if (!Subtarget->has16BitInsts() || 9124 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9125 return SDValue(); 9126 9127 EVT VT = N->getValueType(0); 9128 if (VT != MVT::i32) 9129 return SDValue(); 9130 9131 SDValue Src = N->getOperand(0); 9132 if (Src.getValueType() != MVT::i16) 9133 return SDValue(); 9134 9135 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 9136 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 9137 if (Src.getOpcode() == ISD::BITCAST) { 9138 SDValue BCSrc = Src.getOperand(0); 9139 if (BCSrc.getValueType() == MVT::f16 && 9140 fp16SrcZerosHighBits(BCSrc.getOpcode())) 9141 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 9142 } 9143 9144 return SDValue(); 9145 } 9146 9147 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9148 DAGCombinerInfo &DCI) 9149 const { 9150 SDValue Src = N->getOperand(0); 9151 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9152 9153 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9154 VTSign->getVT() == MVT::i8) || 9155 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9156 VTSign->getVT() == MVT::i16)) && 9157 Src.hasOneUse()) { 9158 auto *M = cast<MemSDNode>(Src); 9159 SDValue Ops[] = { 9160 Src.getOperand(0), // Chain 9161 Src.getOperand(1), // rsrc 9162 Src.getOperand(2), // vindex 9163 Src.getOperand(3), // voffset 9164 Src.getOperand(4), // soffset 9165 Src.getOperand(5), // offset 9166 Src.getOperand(6), 9167 Src.getOperand(7) 9168 }; 9169 // replace with BUFFER_LOAD_BYTE/SHORT 9170 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9171 Src.getOperand(0).getValueType()); 9172 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9173 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9174 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9175 ResList, 9176 Ops, M->getMemoryVT(), 9177 M->getMemOperand()); 9178 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9179 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9180 } 9181 return SDValue(); 9182 } 9183 9184 SDValue SITargetLowering::performClassCombine(SDNode *N, 9185 DAGCombinerInfo &DCI) const { 9186 SelectionDAG &DAG = DCI.DAG; 9187 SDValue Mask = N->getOperand(1); 9188 9189 // fp_class x, 0 -> false 9190 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9191 if (CMask->isNullValue()) 9192 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9193 } 9194 9195 if (N->getOperand(0).isUndef()) 9196 return DAG.getUNDEF(MVT::i1); 9197 9198 return SDValue(); 9199 } 9200 9201 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9202 DAGCombinerInfo &DCI) const { 9203 EVT VT = N->getValueType(0); 9204 SDValue N0 = N->getOperand(0); 9205 9206 if (N0.isUndef()) 9207 return N0; 9208 9209 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9210 N0.getOpcode() == ISD::SINT_TO_FP)) { 9211 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9212 N->getFlags()); 9213 } 9214 9215 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9216 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9217 N0.getOperand(0), N->getFlags()); 9218 } 9219 9220 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9221 } 9222 9223 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9224 unsigned MaxDepth) const { 9225 unsigned Opcode = Op.getOpcode(); 9226 if (Opcode == ISD::FCANONICALIZE) 9227 return true; 9228 9229 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9230 auto F = CFP->getValueAPF(); 9231 if (F.isNaN() && F.isSignaling()) 9232 return false; 9233 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 9234 } 9235 9236 // If source is a result of another standard FP operation it is already in 9237 // canonical form. 9238 if (MaxDepth == 0) 9239 return false; 9240 9241 switch (Opcode) { 9242 // These will flush denorms if required. 9243 case ISD::FADD: 9244 case ISD::FSUB: 9245 case ISD::FMUL: 9246 case ISD::FCEIL: 9247 case ISD::FFLOOR: 9248 case ISD::FMA: 9249 case ISD::FMAD: 9250 case ISD::FSQRT: 9251 case ISD::FDIV: 9252 case ISD::FREM: 9253 case ISD::FP_ROUND: 9254 case ISD::FP_EXTEND: 9255 case AMDGPUISD::FMUL_LEGACY: 9256 case AMDGPUISD::FMAD_FTZ: 9257 case AMDGPUISD::RCP: 9258 case AMDGPUISD::RSQ: 9259 case AMDGPUISD::RSQ_CLAMP: 9260 case AMDGPUISD::RCP_LEGACY: 9261 case AMDGPUISD::RCP_IFLAG: 9262 case AMDGPUISD::DIV_SCALE: 9263 case AMDGPUISD::DIV_FMAS: 9264 case AMDGPUISD::DIV_FIXUP: 9265 case AMDGPUISD::FRACT: 9266 case AMDGPUISD::LDEXP: 9267 case AMDGPUISD::CVT_PKRTZ_F16_F32: 9268 case AMDGPUISD::CVT_F32_UBYTE0: 9269 case AMDGPUISD::CVT_F32_UBYTE1: 9270 case AMDGPUISD::CVT_F32_UBYTE2: 9271 case AMDGPUISD::CVT_F32_UBYTE3: 9272 return true; 9273 9274 // It can/will be lowered or combined as a bit operation. 9275 // Need to check their input recursively to handle. 9276 case ISD::FNEG: 9277 case ISD::FABS: 9278 case ISD::FCOPYSIGN: 9279 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9280 9281 case ISD::FSIN: 9282 case ISD::FCOS: 9283 case ISD::FSINCOS: 9284 return Op.getValueType().getScalarType() != MVT::f16; 9285 9286 case ISD::FMINNUM: 9287 case ISD::FMAXNUM: 9288 case ISD::FMINNUM_IEEE: 9289 case ISD::FMAXNUM_IEEE: 9290 case AMDGPUISD::CLAMP: 9291 case AMDGPUISD::FMED3: 9292 case AMDGPUISD::FMAX3: 9293 case AMDGPUISD::FMIN3: { 9294 // FIXME: Shouldn't treat the generic operations different based these. 9295 // However, we aren't really required to flush the result from 9296 // minnum/maxnum.. 9297 9298 // snans will be quieted, so we only need to worry about denormals. 9299 if (Subtarget->supportsMinMaxDenormModes() || 9300 denormalsEnabledForType(DAG, Op.getValueType())) 9301 return true; 9302 9303 // Flushing may be required. 9304 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 9305 // targets need to check their input recursively. 9306 9307 // FIXME: Does this apply with clamp? It's implemented with max. 9308 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 9309 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 9310 return false; 9311 } 9312 9313 return true; 9314 } 9315 case ISD::SELECT: { 9316 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 9317 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 9318 } 9319 case ISD::BUILD_VECTOR: { 9320 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 9321 SDValue SrcOp = Op.getOperand(i); 9322 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 9323 return false; 9324 } 9325 9326 return true; 9327 } 9328 case ISD::EXTRACT_VECTOR_ELT: 9329 case ISD::EXTRACT_SUBVECTOR: { 9330 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9331 } 9332 case ISD::INSERT_VECTOR_ELT: { 9333 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 9334 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 9335 } 9336 case ISD::UNDEF: 9337 // Could be anything. 9338 return false; 9339 9340 case ISD::BITCAST: { 9341 // Hack round the mess we make when legalizing extract_vector_elt 9342 SDValue Src = Op.getOperand(0); 9343 if (Src.getValueType() == MVT::i16 && 9344 Src.getOpcode() == ISD::TRUNCATE) { 9345 SDValue TruncSrc = Src.getOperand(0); 9346 if (TruncSrc.getValueType() == MVT::i32 && 9347 TruncSrc.getOpcode() == ISD::BITCAST && 9348 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 9349 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 9350 } 9351 } 9352 9353 return false; 9354 } 9355 case ISD::INTRINSIC_WO_CHAIN: { 9356 unsigned IntrinsicID 9357 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9358 // TODO: Handle more intrinsics 9359 switch (IntrinsicID) { 9360 case Intrinsic::amdgcn_cvt_pkrtz: 9361 case Intrinsic::amdgcn_cubeid: 9362 case Intrinsic::amdgcn_frexp_mant: 9363 case Intrinsic::amdgcn_fdot2: 9364 case Intrinsic::amdgcn_rcp: 9365 case Intrinsic::amdgcn_rsq: 9366 case Intrinsic::amdgcn_rsq_clamp: 9367 case Intrinsic::amdgcn_rcp_legacy: 9368 case Intrinsic::amdgcn_rsq_legacy: 9369 case Intrinsic::amdgcn_trig_preop: 9370 return true; 9371 default: 9372 break; 9373 } 9374 9375 LLVM_FALLTHROUGH; 9376 } 9377 default: 9378 return denormalsEnabledForType(DAG, Op.getValueType()) && 9379 DAG.isKnownNeverSNaN(Op); 9380 } 9381 9382 llvm_unreachable("invalid operation"); 9383 } 9384 9385 // Constant fold canonicalize. 9386 SDValue SITargetLowering::getCanonicalConstantFP( 9387 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 9388 // Flush denormals to 0 if not enabled. 9389 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 9390 return DAG.getConstantFP(0.0, SL, VT); 9391 9392 if (C.isNaN()) { 9393 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 9394 if (C.isSignaling()) { 9395 // Quiet a signaling NaN. 9396 // FIXME: Is this supposed to preserve payload bits? 9397 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9398 } 9399 9400 // Make sure it is the canonical NaN bitpattern. 9401 // 9402 // TODO: Can we use -1 as the canonical NaN value since it's an inline 9403 // immediate? 9404 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 9405 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9406 } 9407 9408 // Already canonical. 9409 return DAG.getConstantFP(C, SL, VT); 9410 } 9411 9412 static bool vectorEltWillFoldAway(SDValue Op) { 9413 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 9414 } 9415 9416 SDValue SITargetLowering::performFCanonicalizeCombine( 9417 SDNode *N, 9418 DAGCombinerInfo &DCI) const { 9419 SelectionDAG &DAG = DCI.DAG; 9420 SDValue N0 = N->getOperand(0); 9421 EVT VT = N->getValueType(0); 9422 9423 // fcanonicalize undef -> qnan 9424 if (N0.isUndef()) { 9425 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 9426 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 9427 } 9428 9429 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 9430 EVT VT = N->getValueType(0); 9431 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 9432 } 9433 9434 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 9435 // (fcanonicalize k) 9436 // 9437 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 9438 9439 // TODO: This could be better with wider vectors that will be split to v2f16, 9440 // and to consider uses since there aren't that many packed operations. 9441 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 9442 isTypeLegal(MVT::v2f16)) { 9443 SDLoc SL(N); 9444 SDValue NewElts[2]; 9445 SDValue Lo = N0.getOperand(0); 9446 SDValue Hi = N0.getOperand(1); 9447 EVT EltVT = Lo.getValueType(); 9448 9449 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 9450 for (unsigned I = 0; I != 2; ++I) { 9451 SDValue Op = N0.getOperand(I); 9452 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9453 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 9454 CFP->getValueAPF()); 9455 } else if (Op.isUndef()) { 9456 // Handled below based on what the other operand is. 9457 NewElts[I] = Op; 9458 } else { 9459 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 9460 } 9461 } 9462 9463 // If one half is undef, and one is constant, perfer a splat vector rather 9464 // than the normal qNaN. If it's a register, prefer 0.0 since that's 9465 // cheaper to use and may be free with a packed operation. 9466 if (NewElts[0].isUndef()) { 9467 if (isa<ConstantFPSDNode>(NewElts[1])) 9468 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 9469 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 9470 } 9471 9472 if (NewElts[1].isUndef()) { 9473 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 9474 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 9475 } 9476 9477 return DAG.getBuildVector(VT, SL, NewElts); 9478 } 9479 } 9480 9481 unsigned SrcOpc = N0.getOpcode(); 9482 9483 // If it's free to do so, push canonicalizes further up the source, which may 9484 // find a canonical source. 9485 // 9486 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 9487 // sNaNs. 9488 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 9489 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9490 if (CRHS && N0.hasOneUse()) { 9491 SDLoc SL(N); 9492 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 9493 N0.getOperand(0)); 9494 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 9495 DCI.AddToWorklist(Canon0.getNode()); 9496 9497 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 9498 } 9499 } 9500 9501 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 9502 } 9503 9504 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 9505 switch (Opc) { 9506 case ISD::FMAXNUM: 9507 case ISD::FMAXNUM_IEEE: 9508 return AMDGPUISD::FMAX3; 9509 case ISD::SMAX: 9510 return AMDGPUISD::SMAX3; 9511 case ISD::UMAX: 9512 return AMDGPUISD::UMAX3; 9513 case ISD::FMINNUM: 9514 case ISD::FMINNUM_IEEE: 9515 return AMDGPUISD::FMIN3; 9516 case ISD::SMIN: 9517 return AMDGPUISD::SMIN3; 9518 case ISD::UMIN: 9519 return AMDGPUISD::UMIN3; 9520 default: 9521 llvm_unreachable("Not a min/max opcode"); 9522 } 9523 } 9524 9525 SDValue SITargetLowering::performIntMed3ImmCombine( 9526 SelectionDAG &DAG, const SDLoc &SL, 9527 SDValue Op0, SDValue Op1, bool Signed) const { 9528 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 9529 if (!K1) 9530 return SDValue(); 9531 9532 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 9533 if (!K0) 9534 return SDValue(); 9535 9536 if (Signed) { 9537 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 9538 return SDValue(); 9539 } else { 9540 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 9541 return SDValue(); 9542 } 9543 9544 EVT VT = K0->getValueType(0); 9545 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 9546 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 9547 return DAG.getNode(Med3Opc, SL, VT, 9548 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 9549 } 9550 9551 // If there isn't a 16-bit med3 operation, convert to 32-bit. 9552 MVT NVT = MVT::i32; 9553 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9554 9555 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 9556 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 9557 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 9558 9559 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 9560 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 9561 } 9562 9563 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 9564 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 9565 return C; 9566 9567 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 9568 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 9569 return C; 9570 } 9571 9572 return nullptr; 9573 } 9574 9575 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 9576 const SDLoc &SL, 9577 SDValue Op0, 9578 SDValue Op1) const { 9579 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 9580 if (!K1) 9581 return SDValue(); 9582 9583 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 9584 if (!K0) 9585 return SDValue(); 9586 9587 // Ordered >= (although NaN inputs should have folded away by now). 9588 if (K0->getValueAPF() > K1->getValueAPF()) 9589 return SDValue(); 9590 9591 const MachineFunction &MF = DAG.getMachineFunction(); 9592 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9593 9594 // TODO: Check IEEE bit enabled? 9595 EVT VT = Op0.getValueType(); 9596 if (Info->getMode().DX10Clamp) { 9597 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 9598 // hardware fmed3 behavior converting to a min. 9599 // FIXME: Should this be allowing -0.0? 9600 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 9601 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 9602 } 9603 9604 // med3 for f16 is only available on gfx9+, and not available for v2f16. 9605 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 9606 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 9607 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 9608 // then give the other result, which is different from med3 with a NaN 9609 // input. 9610 SDValue Var = Op0.getOperand(0); 9611 if (!DAG.isKnownNeverSNaN(Var)) 9612 return SDValue(); 9613 9614 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9615 9616 if ((!K0->hasOneUse() || 9617 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 9618 (!K1->hasOneUse() || 9619 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 9620 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 9621 Var, SDValue(K0, 0), SDValue(K1, 0)); 9622 } 9623 } 9624 9625 return SDValue(); 9626 } 9627 9628 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 9629 DAGCombinerInfo &DCI) const { 9630 SelectionDAG &DAG = DCI.DAG; 9631 9632 EVT VT = N->getValueType(0); 9633 unsigned Opc = N->getOpcode(); 9634 SDValue Op0 = N->getOperand(0); 9635 SDValue Op1 = N->getOperand(1); 9636 9637 // Only do this if the inner op has one use since this will just increases 9638 // register pressure for no benefit. 9639 9640 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 9641 !VT.isVector() && 9642 (VT == MVT::i32 || VT == MVT::f32 || 9643 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 9644 // max(max(a, b), c) -> max3(a, b, c) 9645 // min(min(a, b), c) -> min3(a, b, c) 9646 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 9647 SDLoc DL(N); 9648 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9649 DL, 9650 N->getValueType(0), 9651 Op0.getOperand(0), 9652 Op0.getOperand(1), 9653 Op1); 9654 } 9655 9656 // Try commuted. 9657 // max(a, max(b, c)) -> max3(a, b, c) 9658 // min(a, min(b, c)) -> min3(a, b, c) 9659 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 9660 SDLoc DL(N); 9661 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9662 DL, 9663 N->getValueType(0), 9664 Op0, 9665 Op1.getOperand(0), 9666 Op1.getOperand(1)); 9667 } 9668 } 9669 9670 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 9671 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 9672 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 9673 return Med3; 9674 } 9675 9676 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 9677 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 9678 return Med3; 9679 } 9680 9681 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 9682 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 9683 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 9684 (Opc == AMDGPUISD::FMIN_LEGACY && 9685 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 9686 (VT == MVT::f32 || VT == MVT::f64 || 9687 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 9688 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 9689 Op0.hasOneUse()) { 9690 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 9691 return Res; 9692 } 9693 9694 return SDValue(); 9695 } 9696 9697 static bool isClampZeroToOne(SDValue A, SDValue B) { 9698 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 9699 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 9700 // FIXME: Should this be allowing -0.0? 9701 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 9702 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 9703 } 9704 } 9705 9706 return false; 9707 } 9708 9709 // FIXME: Should only worry about snans for version with chain. 9710 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 9711 DAGCombinerInfo &DCI) const { 9712 EVT VT = N->getValueType(0); 9713 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 9714 // NaNs. With a NaN input, the order of the operands may change the result. 9715 9716 SelectionDAG &DAG = DCI.DAG; 9717 SDLoc SL(N); 9718 9719 SDValue Src0 = N->getOperand(0); 9720 SDValue Src1 = N->getOperand(1); 9721 SDValue Src2 = N->getOperand(2); 9722 9723 if (isClampZeroToOne(Src0, Src1)) { 9724 // const_a, const_b, x -> clamp is safe in all cases including signaling 9725 // nans. 9726 // FIXME: Should this be allowing -0.0? 9727 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 9728 } 9729 9730 const MachineFunction &MF = DAG.getMachineFunction(); 9731 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9732 9733 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 9734 // handling no dx10-clamp? 9735 if (Info->getMode().DX10Clamp) { 9736 // If NaNs is clamped to 0, we are free to reorder the inputs. 9737 9738 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9739 std::swap(Src0, Src1); 9740 9741 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 9742 std::swap(Src1, Src2); 9743 9744 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9745 std::swap(Src0, Src1); 9746 9747 if (isClampZeroToOne(Src1, Src2)) 9748 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 9749 } 9750 9751 return SDValue(); 9752 } 9753 9754 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 9755 DAGCombinerInfo &DCI) const { 9756 SDValue Src0 = N->getOperand(0); 9757 SDValue Src1 = N->getOperand(1); 9758 if (Src0.isUndef() && Src1.isUndef()) 9759 return DCI.DAG.getUNDEF(N->getValueType(0)); 9760 return SDValue(); 9761 } 9762 9763 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 9764 // expanded into a set of cmp/select instructions. 9765 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 9766 unsigned NumElem, 9767 bool IsDivergentIdx) { 9768 if (UseDivergentRegisterIndexing) 9769 return false; 9770 9771 unsigned VecSize = EltSize * NumElem; 9772 9773 // Sub-dword vectors of size 2 dword or less have better implementation. 9774 if (VecSize <= 64 && EltSize < 32) 9775 return false; 9776 9777 // Always expand the rest of sub-dword instructions, otherwise it will be 9778 // lowered via memory. 9779 if (EltSize < 32) 9780 return true; 9781 9782 // Always do this if var-idx is divergent, otherwise it will become a loop. 9783 if (IsDivergentIdx) 9784 return true; 9785 9786 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 9787 unsigned NumInsts = NumElem /* Number of compares */ + 9788 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 9789 return NumInsts <= 16; 9790 } 9791 9792 static bool shouldExpandVectorDynExt(SDNode *N) { 9793 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 9794 if (isa<ConstantSDNode>(Idx)) 9795 return false; 9796 9797 SDValue Vec = N->getOperand(0); 9798 EVT VecVT = Vec.getValueType(); 9799 EVT EltVT = VecVT.getVectorElementType(); 9800 unsigned EltSize = EltVT.getSizeInBits(); 9801 unsigned NumElem = VecVT.getVectorNumElements(); 9802 9803 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem, 9804 Idx->isDivergent()); 9805 } 9806 9807 SDValue SITargetLowering::performExtractVectorEltCombine( 9808 SDNode *N, DAGCombinerInfo &DCI) const { 9809 SDValue Vec = N->getOperand(0); 9810 SelectionDAG &DAG = DCI.DAG; 9811 9812 EVT VecVT = Vec.getValueType(); 9813 EVT EltVT = VecVT.getVectorElementType(); 9814 9815 if ((Vec.getOpcode() == ISD::FNEG || 9816 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 9817 SDLoc SL(N); 9818 EVT EltVT = N->getValueType(0); 9819 SDValue Idx = N->getOperand(1); 9820 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9821 Vec.getOperand(0), Idx); 9822 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 9823 } 9824 9825 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 9826 // => 9827 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 9828 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 9829 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 9830 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 9831 SDLoc SL(N); 9832 EVT EltVT = N->getValueType(0); 9833 SDValue Idx = N->getOperand(1); 9834 unsigned Opc = Vec.getOpcode(); 9835 9836 switch(Opc) { 9837 default: 9838 break; 9839 // TODO: Support other binary operations. 9840 case ISD::FADD: 9841 case ISD::FSUB: 9842 case ISD::FMUL: 9843 case ISD::ADD: 9844 case ISD::UMIN: 9845 case ISD::UMAX: 9846 case ISD::SMIN: 9847 case ISD::SMAX: 9848 case ISD::FMAXNUM: 9849 case ISD::FMINNUM: 9850 case ISD::FMAXNUM_IEEE: 9851 case ISD::FMINNUM_IEEE: { 9852 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9853 Vec.getOperand(0), Idx); 9854 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9855 Vec.getOperand(1), Idx); 9856 9857 DCI.AddToWorklist(Elt0.getNode()); 9858 DCI.AddToWorklist(Elt1.getNode()); 9859 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 9860 } 9861 } 9862 } 9863 9864 unsigned VecSize = VecVT.getSizeInBits(); 9865 unsigned EltSize = EltVT.getSizeInBits(); 9866 9867 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 9868 if (::shouldExpandVectorDynExt(N)) { 9869 SDLoc SL(N); 9870 SDValue Idx = N->getOperand(1); 9871 SDValue V; 9872 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9873 SDValue IC = DAG.getVectorIdxConstant(I, SL); 9874 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9875 if (I == 0) 9876 V = Elt; 9877 else 9878 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 9879 } 9880 return V; 9881 } 9882 9883 if (!DCI.isBeforeLegalize()) 9884 return SDValue(); 9885 9886 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 9887 // elements. This exposes more load reduction opportunities by replacing 9888 // multiple small extract_vector_elements with a single 32-bit extract. 9889 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9890 if (isa<MemSDNode>(Vec) && 9891 EltSize <= 16 && 9892 EltVT.isByteSized() && 9893 VecSize > 32 && 9894 VecSize % 32 == 0 && 9895 Idx) { 9896 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 9897 9898 unsigned BitIndex = Idx->getZExtValue() * EltSize; 9899 unsigned EltIdx = BitIndex / 32; 9900 unsigned LeftoverBitIdx = BitIndex % 32; 9901 SDLoc SL(N); 9902 9903 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 9904 DCI.AddToWorklist(Cast.getNode()); 9905 9906 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 9907 DAG.getConstant(EltIdx, SL, MVT::i32)); 9908 DCI.AddToWorklist(Elt.getNode()); 9909 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 9910 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 9911 DCI.AddToWorklist(Srl.getNode()); 9912 9913 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 9914 DCI.AddToWorklist(Trunc.getNode()); 9915 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 9916 } 9917 9918 return SDValue(); 9919 } 9920 9921 SDValue 9922 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 9923 DAGCombinerInfo &DCI) const { 9924 SDValue Vec = N->getOperand(0); 9925 SDValue Idx = N->getOperand(2); 9926 EVT VecVT = Vec.getValueType(); 9927 EVT EltVT = VecVT.getVectorElementType(); 9928 9929 // INSERT_VECTOR_ELT (<n x e>, var-idx) 9930 // => BUILD_VECTOR n x select (e, const-idx) 9931 if (!::shouldExpandVectorDynExt(N)) 9932 return SDValue(); 9933 9934 SelectionDAG &DAG = DCI.DAG; 9935 SDLoc SL(N); 9936 SDValue Ins = N->getOperand(1); 9937 EVT IdxVT = Idx.getValueType(); 9938 9939 SmallVector<SDValue, 16> Ops; 9940 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9941 SDValue IC = DAG.getConstant(I, SL, IdxVT); 9942 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9943 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 9944 Ops.push_back(V); 9945 } 9946 9947 return DAG.getBuildVector(VecVT, SL, Ops); 9948 } 9949 9950 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 9951 const SDNode *N0, 9952 const SDNode *N1) const { 9953 EVT VT = N0->getValueType(0); 9954 9955 // Only do this if we are not trying to support denormals. v_mad_f32 does not 9956 // support denormals ever. 9957 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 9958 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 9959 getSubtarget()->hasMadF16())) && 9960 isOperationLegal(ISD::FMAD, VT)) 9961 return ISD::FMAD; 9962 9963 const TargetOptions &Options = DAG.getTarget().Options; 9964 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 9965 (N0->getFlags().hasAllowContract() && 9966 N1->getFlags().hasAllowContract())) && 9967 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 9968 return ISD::FMA; 9969 } 9970 9971 return 0; 9972 } 9973 9974 // For a reassociatable opcode perform: 9975 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 9976 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 9977 SelectionDAG &DAG) const { 9978 EVT VT = N->getValueType(0); 9979 if (VT != MVT::i32 && VT != MVT::i64) 9980 return SDValue(); 9981 9982 unsigned Opc = N->getOpcode(); 9983 SDValue Op0 = N->getOperand(0); 9984 SDValue Op1 = N->getOperand(1); 9985 9986 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 9987 return SDValue(); 9988 9989 if (Op0->isDivergent()) 9990 std::swap(Op0, Op1); 9991 9992 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 9993 return SDValue(); 9994 9995 SDValue Op2 = Op1.getOperand(1); 9996 Op1 = Op1.getOperand(0); 9997 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 9998 return SDValue(); 9999 10000 if (Op1->isDivergent()) 10001 std::swap(Op1, Op2); 10002 10003 // If either operand is constant this will conflict with 10004 // DAGCombiner::ReassociateOps(). 10005 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 10006 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 10007 return SDValue(); 10008 10009 SDLoc SL(N); 10010 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10011 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10012 } 10013 10014 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10015 EVT VT, 10016 SDValue N0, SDValue N1, SDValue N2, 10017 bool Signed) { 10018 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10019 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10020 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10021 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10022 } 10023 10024 SDValue SITargetLowering::performAddCombine(SDNode *N, 10025 DAGCombinerInfo &DCI) const { 10026 SelectionDAG &DAG = DCI.DAG; 10027 EVT VT = N->getValueType(0); 10028 SDLoc SL(N); 10029 SDValue LHS = N->getOperand(0); 10030 SDValue RHS = N->getOperand(1); 10031 10032 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 10033 && Subtarget->hasMad64_32() && 10034 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 10035 VT.getScalarSizeInBits() <= 64) { 10036 if (LHS.getOpcode() != ISD::MUL) 10037 std::swap(LHS, RHS); 10038 10039 SDValue MulLHS = LHS.getOperand(0); 10040 SDValue MulRHS = LHS.getOperand(1); 10041 SDValue AddRHS = RHS; 10042 10043 // TODO: Maybe restrict if SGPR inputs. 10044 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 10045 numBitsUnsigned(MulRHS, DAG) <= 32) { 10046 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 10047 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 10048 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 10049 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 10050 } 10051 10052 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 10053 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 10054 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 10055 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 10056 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 10057 } 10058 10059 return SDValue(); 10060 } 10061 10062 if (SDValue V = reassociateScalarOps(N, DAG)) { 10063 return V; 10064 } 10065 10066 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10067 return SDValue(); 10068 10069 // add x, zext (setcc) => addcarry x, 0, setcc 10070 // add x, sext (setcc) => subcarry x, 0, setcc 10071 unsigned Opc = LHS.getOpcode(); 10072 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 10073 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 10074 std::swap(RHS, LHS); 10075 10076 Opc = RHS.getOpcode(); 10077 switch (Opc) { 10078 default: break; 10079 case ISD::ZERO_EXTEND: 10080 case ISD::SIGN_EXTEND: 10081 case ISD::ANY_EXTEND: { 10082 auto Cond = RHS.getOperand(0); 10083 // If this won't be a real VOPC output, we would still need to insert an 10084 // extra instruction anyway. 10085 if (!isBoolSGPR(Cond)) 10086 break; 10087 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10088 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10089 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 10090 return DAG.getNode(Opc, SL, VTList, Args); 10091 } 10092 case ISD::ADDCARRY: { 10093 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 10094 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 10095 if (!C || C->getZExtValue() != 0) break; 10096 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 10097 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 10098 } 10099 } 10100 return SDValue(); 10101 } 10102 10103 SDValue SITargetLowering::performSubCombine(SDNode *N, 10104 DAGCombinerInfo &DCI) const { 10105 SelectionDAG &DAG = DCI.DAG; 10106 EVT VT = N->getValueType(0); 10107 10108 if (VT != MVT::i32) 10109 return SDValue(); 10110 10111 SDLoc SL(N); 10112 SDValue LHS = N->getOperand(0); 10113 SDValue RHS = N->getOperand(1); 10114 10115 // sub x, zext (setcc) => subcarry x, 0, setcc 10116 // sub x, sext (setcc) => addcarry x, 0, setcc 10117 unsigned Opc = RHS.getOpcode(); 10118 switch (Opc) { 10119 default: break; 10120 case ISD::ZERO_EXTEND: 10121 case ISD::SIGN_EXTEND: 10122 case ISD::ANY_EXTEND: { 10123 auto Cond = RHS.getOperand(0); 10124 // If this won't be a real VOPC output, we would still need to insert an 10125 // extra instruction anyway. 10126 if (!isBoolSGPR(Cond)) 10127 break; 10128 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10129 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10130 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 10131 return DAG.getNode(Opc, SL, VTList, Args); 10132 } 10133 } 10134 10135 if (LHS.getOpcode() == ISD::SUBCARRY) { 10136 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 10137 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 10138 if (!C || !C->isNullValue()) 10139 return SDValue(); 10140 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 10141 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 10142 } 10143 return SDValue(); 10144 } 10145 10146 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 10147 DAGCombinerInfo &DCI) const { 10148 10149 if (N->getValueType(0) != MVT::i32) 10150 return SDValue(); 10151 10152 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10153 if (!C || C->getZExtValue() != 0) 10154 return SDValue(); 10155 10156 SelectionDAG &DAG = DCI.DAG; 10157 SDValue LHS = N->getOperand(0); 10158 10159 // addcarry (add x, y), 0, cc => addcarry x, y, cc 10160 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 10161 unsigned LHSOpc = LHS.getOpcode(); 10162 unsigned Opc = N->getOpcode(); 10163 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 10164 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 10165 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 10166 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 10167 } 10168 return SDValue(); 10169 } 10170 10171 SDValue SITargetLowering::performFAddCombine(SDNode *N, 10172 DAGCombinerInfo &DCI) const { 10173 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10174 return SDValue(); 10175 10176 SelectionDAG &DAG = DCI.DAG; 10177 EVT VT = N->getValueType(0); 10178 10179 SDLoc SL(N); 10180 SDValue LHS = N->getOperand(0); 10181 SDValue RHS = N->getOperand(1); 10182 10183 // These should really be instruction patterns, but writing patterns with 10184 // source modiifiers is a pain. 10185 10186 // fadd (fadd (a, a), b) -> mad 2.0, a, b 10187 if (LHS.getOpcode() == ISD::FADD) { 10188 SDValue A = LHS.getOperand(0); 10189 if (A == LHS.getOperand(1)) { 10190 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10191 if (FusedOp != 0) { 10192 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10193 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 10194 } 10195 } 10196 } 10197 10198 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 10199 if (RHS.getOpcode() == ISD::FADD) { 10200 SDValue A = RHS.getOperand(0); 10201 if (A == RHS.getOperand(1)) { 10202 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10203 if (FusedOp != 0) { 10204 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10205 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 10206 } 10207 } 10208 } 10209 10210 return SDValue(); 10211 } 10212 10213 SDValue SITargetLowering::performFSubCombine(SDNode *N, 10214 DAGCombinerInfo &DCI) const { 10215 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10216 return SDValue(); 10217 10218 SelectionDAG &DAG = DCI.DAG; 10219 SDLoc SL(N); 10220 EVT VT = N->getValueType(0); 10221 assert(!VT.isVector()); 10222 10223 // Try to get the fneg to fold into the source modifier. This undoes generic 10224 // DAG combines and folds them into the mad. 10225 // 10226 // Only do this if we are not trying to support denormals. v_mad_f32 does 10227 // not support denormals ever. 10228 SDValue LHS = N->getOperand(0); 10229 SDValue RHS = N->getOperand(1); 10230 if (LHS.getOpcode() == ISD::FADD) { 10231 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 10232 SDValue A = LHS.getOperand(0); 10233 if (A == LHS.getOperand(1)) { 10234 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10235 if (FusedOp != 0){ 10236 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10237 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10238 10239 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 10240 } 10241 } 10242 } 10243 10244 if (RHS.getOpcode() == ISD::FADD) { 10245 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 10246 10247 SDValue A = RHS.getOperand(0); 10248 if (A == RHS.getOperand(1)) { 10249 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10250 if (FusedOp != 0){ 10251 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 10252 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 10253 } 10254 } 10255 } 10256 10257 return SDValue(); 10258 } 10259 10260 SDValue SITargetLowering::performFMACombine(SDNode *N, 10261 DAGCombinerInfo &DCI) const { 10262 SelectionDAG &DAG = DCI.DAG; 10263 EVT VT = N->getValueType(0); 10264 SDLoc SL(N); 10265 10266 if (!Subtarget->hasDot2Insts() || VT != MVT::f32) 10267 return SDValue(); 10268 10269 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 10270 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 10271 SDValue Op1 = N->getOperand(0); 10272 SDValue Op2 = N->getOperand(1); 10273 SDValue FMA = N->getOperand(2); 10274 10275 if (FMA.getOpcode() != ISD::FMA || 10276 Op1.getOpcode() != ISD::FP_EXTEND || 10277 Op2.getOpcode() != ISD::FP_EXTEND) 10278 return SDValue(); 10279 10280 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 10281 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 10282 // is sufficient to allow generaing fdot2. 10283 const TargetOptions &Options = DAG.getTarget().Options; 10284 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10285 (N->getFlags().hasAllowContract() && 10286 FMA->getFlags().hasAllowContract())) { 10287 Op1 = Op1.getOperand(0); 10288 Op2 = Op2.getOperand(0); 10289 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10290 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10291 return SDValue(); 10292 10293 SDValue Vec1 = Op1.getOperand(0); 10294 SDValue Idx1 = Op1.getOperand(1); 10295 SDValue Vec2 = Op2.getOperand(0); 10296 10297 SDValue FMAOp1 = FMA.getOperand(0); 10298 SDValue FMAOp2 = FMA.getOperand(1); 10299 SDValue FMAAcc = FMA.getOperand(2); 10300 10301 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 10302 FMAOp2.getOpcode() != ISD::FP_EXTEND) 10303 return SDValue(); 10304 10305 FMAOp1 = FMAOp1.getOperand(0); 10306 FMAOp2 = FMAOp2.getOperand(0); 10307 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10308 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10309 return SDValue(); 10310 10311 SDValue Vec3 = FMAOp1.getOperand(0); 10312 SDValue Vec4 = FMAOp2.getOperand(0); 10313 SDValue Idx2 = FMAOp1.getOperand(1); 10314 10315 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 10316 // Idx1 and Idx2 cannot be the same. 10317 Idx1 == Idx2) 10318 return SDValue(); 10319 10320 if (Vec1 == Vec2 || Vec3 == Vec4) 10321 return SDValue(); 10322 10323 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 10324 return SDValue(); 10325 10326 if ((Vec1 == Vec3 && Vec2 == Vec4) || 10327 (Vec1 == Vec4 && Vec2 == Vec3)) { 10328 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 10329 DAG.getTargetConstant(0, SL, MVT::i1)); 10330 } 10331 } 10332 return SDValue(); 10333 } 10334 10335 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 10336 DAGCombinerInfo &DCI) const { 10337 SelectionDAG &DAG = DCI.DAG; 10338 SDLoc SL(N); 10339 10340 SDValue LHS = N->getOperand(0); 10341 SDValue RHS = N->getOperand(1); 10342 EVT VT = LHS.getValueType(); 10343 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10344 10345 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 10346 if (!CRHS) { 10347 CRHS = dyn_cast<ConstantSDNode>(LHS); 10348 if (CRHS) { 10349 std::swap(LHS, RHS); 10350 CC = getSetCCSwappedOperands(CC); 10351 } 10352 } 10353 10354 if (CRHS) { 10355 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 10356 isBoolSGPR(LHS.getOperand(0))) { 10357 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 10358 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 10359 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 10360 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 10361 if ((CRHS->isAllOnesValue() && 10362 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 10363 (CRHS->isNullValue() && 10364 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 10365 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10366 DAG.getConstant(-1, SL, MVT::i1)); 10367 if ((CRHS->isAllOnesValue() && 10368 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 10369 (CRHS->isNullValue() && 10370 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 10371 return LHS.getOperand(0); 10372 } 10373 10374 uint64_t CRHSVal = CRHS->getZExtValue(); 10375 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 10376 LHS.getOpcode() == ISD::SELECT && 10377 isa<ConstantSDNode>(LHS.getOperand(1)) && 10378 isa<ConstantSDNode>(LHS.getOperand(2)) && 10379 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 10380 isBoolSGPR(LHS.getOperand(0))) { 10381 // Given CT != FT: 10382 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 10383 // setcc (select cc, CT, CF), CF, ne => cc 10384 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 10385 // setcc (select cc, CT, CF), CT, eq => cc 10386 uint64_t CT = LHS.getConstantOperandVal(1); 10387 uint64_t CF = LHS.getConstantOperandVal(2); 10388 10389 if ((CF == CRHSVal && CC == ISD::SETEQ) || 10390 (CT == CRHSVal && CC == ISD::SETNE)) 10391 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10392 DAG.getConstant(-1, SL, MVT::i1)); 10393 if ((CF == CRHSVal && CC == ISD::SETNE) || 10394 (CT == CRHSVal && CC == ISD::SETEQ)) 10395 return LHS.getOperand(0); 10396 } 10397 } 10398 10399 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 10400 VT != MVT::f16)) 10401 return SDValue(); 10402 10403 // Match isinf/isfinite pattern 10404 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 10405 // (fcmp one (fabs x), inf) -> (fp_class x, 10406 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 10407 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 10408 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 10409 if (!CRHS) 10410 return SDValue(); 10411 10412 const APFloat &APF = CRHS->getValueAPF(); 10413 if (APF.isInfinity() && !APF.isNegative()) { 10414 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 10415 SIInstrFlags::N_INFINITY; 10416 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 10417 SIInstrFlags::P_ZERO | 10418 SIInstrFlags::N_NORMAL | 10419 SIInstrFlags::P_NORMAL | 10420 SIInstrFlags::N_SUBNORMAL | 10421 SIInstrFlags::P_SUBNORMAL; 10422 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 10423 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 10424 DAG.getConstant(Mask, SL, MVT::i32)); 10425 } 10426 } 10427 10428 return SDValue(); 10429 } 10430 10431 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 10432 DAGCombinerInfo &DCI) const { 10433 SelectionDAG &DAG = DCI.DAG; 10434 SDLoc SL(N); 10435 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 10436 10437 SDValue Src = N->getOperand(0); 10438 SDValue Shift = N->getOperand(0); 10439 10440 // TODO: Extend type shouldn't matter (assuming legal types). 10441 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 10442 Shift = Shift.getOperand(0); 10443 10444 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 10445 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 10446 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 10447 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 10448 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 10449 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 10450 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 10451 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0), 10452 SDLoc(Shift.getOperand(0)), MVT::i32); 10453 10454 unsigned ShiftOffset = 8 * Offset; 10455 if (Shift.getOpcode() == ISD::SHL) 10456 ShiftOffset -= C->getZExtValue(); 10457 else 10458 ShiftOffset += C->getZExtValue(); 10459 10460 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 10461 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 10462 MVT::f32, Shift); 10463 } 10464 } 10465 } 10466 10467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10468 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 10469 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 10470 // We simplified Src. If this node is not dead, visit it again so it is 10471 // folded properly. 10472 if (N->getOpcode() != ISD::DELETED_NODE) 10473 DCI.AddToWorklist(N); 10474 return SDValue(N, 0); 10475 } 10476 10477 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 10478 if (SDValue DemandedSrc = 10479 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 10480 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 10481 10482 return SDValue(); 10483 } 10484 10485 SDValue SITargetLowering::performClampCombine(SDNode *N, 10486 DAGCombinerInfo &DCI) const { 10487 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 10488 if (!CSrc) 10489 return SDValue(); 10490 10491 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 10492 const APFloat &F = CSrc->getValueAPF(); 10493 APFloat Zero = APFloat::getZero(F.getSemantics()); 10494 if (F < Zero || 10495 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 10496 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 10497 } 10498 10499 APFloat One(F.getSemantics(), "1.0"); 10500 if (F > One) 10501 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 10502 10503 return SDValue(CSrc, 0); 10504 } 10505 10506 10507 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 10508 DAGCombinerInfo &DCI) const { 10509 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 10510 return SDValue(); 10511 switch (N->getOpcode()) { 10512 default: 10513 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10514 case ISD::ADD: 10515 return performAddCombine(N, DCI); 10516 case ISD::SUB: 10517 return performSubCombine(N, DCI); 10518 case ISD::ADDCARRY: 10519 case ISD::SUBCARRY: 10520 return performAddCarrySubCarryCombine(N, DCI); 10521 case ISD::FADD: 10522 return performFAddCombine(N, DCI); 10523 case ISD::FSUB: 10524 return performFSubCombine(N, DCI); 10525 case ISD::SETCC: 10526 return performSetCCCombine(N, DCI); 10527 case ISD::FMAXNUM: 10528 case ISD::FMINNUM: 10529 case ISD::FMAXNUM_IEEE: 10530 case ISD::FMINNUM_IEEE: 10531 case ISD::SMAX: 10532 case ISD::SMIN: 10533 case ISD::UMAX: 10534 case ISD::UMIN: 10535 case AMDGPUISD::FMIN_LEGACY: 10536 case AMDGPUISD::FMAX_LEGACY: 10537 return performMinMaxCombine(N, DCI); 10538 case ISD::FMA: 10539 return performFMACombine(N, DCI); 10540 case ISD::LOAD: { 10541 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 10542 return Widended; 10543 LLVM_FALLTHROUGH; 10544 } 10545 case ISD::STORE: 10546 case ISD::ATOMIC_LOAD: 10547 case ISD::ATOMIC_STORE: 10548 case ISD::ATOMIC_CMP_SWAP: 10549 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 10550 case ISD::ATOMIC_SWAP: 10551 case ISD::ATOMIC_LOAD_ADD: 10552 case ISD::ATOMIC_LOAD_SUB: 10553 case ISD::ATOMIC_LOAD_AND: 10554 case ISD::ATOMIC_LOAD_OR: 10555 case ISD::ATOMIC_LOAD_XOR: 10556 case ISD::ATOMIC_LOAD_NAND: 10557 case ISD::ATOMIC_LOAD_MIN: 10558 case ISD::ATOMIC_LOAD_MAX: 10559 case ISD::ATOMIC_LOAD_UMIN: 10560 case ISD::ATOMIC_LOAD_UMAX: 10561 case ISD::ATOMIC_LOAD_FADD: 10562 case AMDGPUISD::ATOMIC_INC: 10563 case AMDGPUISD::ATOMIC_DEC: 10564 case AMDGPUISD::ATOMIC_LOAD_FMIN: 10565 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. 10566 if (DCI.isBeforeLegalize()) 10567 break; 10568 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); 10569 case ISD::AND: 10570 return performAndCombine(N, DCI); 10571 case ISD::OR: 10572 return performOrCombine(N, DCI); 10573 case ISD::XOR: 10574 return performXorCombine(N, DCI); 10575 case ISD::ZERO_EXTEND: 10576 return performZeroExtendCombine(N, DCI); 10577 case ISD::SIGN_EXTEND_INREG: 10578 return performSignExtendInRegCombine(N , DCI); 10579 case AMDGPUISD::FP_CLASS: 10580 return performClassCombine(N, DCI); 10581 case ISD::FCANONICALIZE: 10582 return performFCanonicalizeCombine(N, DCI); 10583 case AMDGPUISD::RCP: 10584 return performRcpCombine(N, DCI); 10585 case AMDGPUISD::FRACT: 10586 case AMDGPUISD::RSQ: 10587 case AMDGPUISD::RCP_LEGACY: 10588 case AMDGPUISD::RCP_IFLAG: 10589 case AMDGPUISD::RSQ_CLAMP: 10590 case AMDGPUISD::LDEXP: { 10591 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 10592 SDValue Src = N->getOperand(0); 10593 if (Src.isUndef()) 10594 return Src; 10595 break; 10596 } 10597 case ISD::SINT_TO_FP: 10598 case ISD::UINT_TO_FP: 10599 return performUCharToFloatCombine(N, DCI); 10600 case AMDGPUISD::CVT_F32_UBYTE0: 10601 case AMDGPUISD::CVT_F32_UBYTE1: 10602 case AMDGPUISD::CVT_F32_UBYTE2: 10603 case AMDGPUISD::CVT_F32_UBYTE3: 10604 return performCvtF32UByteNCombine(N, DCI); 10605 case AMDGPUISD::FMED3: 10606 return performFMed3Combine(N, DCI); 10607 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10608 return performCvtPkRTZCombine(N, DCI); 10609 case AMDGPUISD::CLAMP: 10610 return performClampCombine(N, DCI); 10611 case ISD::SCALAR_TO_VECTOR: { 10612 SelectionDAG &DAG = DCI.DAG; 10613 EVT VT = N->getValueType(0); 10614 10615 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 10616 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 10617 SDLoc SL(N); 10618 SDValue Src = N->getOperand(0); 10619 EVT EltVT = Src.getValueType(); 10620 if (EltVT == MVT::f16) 10621 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 10622 10623 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 10624 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 10625 } 10626 10627 break; 10628 } 10629 case ISD::EXTRACT_VECTOR_ELT: 10630 return performExtractVectorEltCombine(N, DCI); 10631 case ISD::INSERT_VECTOR_ELT: 10632 return performInsertVectorEltCombine(N, DCI); 10633 } 10634 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10635 } 10636 10637 /// Helper function for adjustWritemask 10638 static unsigned SubIdx2Lane(unsigned Idx) { 10639 switch (Idx) { 10640 default: return 0; 10641 case AMDGPU::sub0: return 0; 10642 case AMDGPU::sub1: return 1; 10643 case AMDGPU::sub2: return 2; 10644 case AMDGPU::sub3: return 3; 10645 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 10646 } 10647 } 10648 10649 /// Adjust the writemask of MIMG instructions 10650 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 10651 SelectionDAG &DAG) const { 10652 unsigned Opcode = Node->getMachineOpcode(); 10653 10654 // Subtract 1 because the vdata output is not a MachineSDNode operand. 10655 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 10656 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 10657 return Node; // not implemented for D16 10658 10659 SDNode *Users[5] = { nullptr }; 10660 unsigned Lane = 0; 10661 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 10662 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 10663 unsigned NewDmask = 0; 10664 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 10665 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 10666 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || 10667 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; 10668 unsigned TFCLane = 0; 10669 bool HasChain = Node->getNumValues() > 1; 10670 10671 if (OldDmask == 0) { 10672 // These are folded out, but on the chance it happens don't assert. 10673 return Node; 10674 } 10675 10676 unsigned OldBitsSet = countPopulation(OldDmask); 10677 // Work out which is the TFE/LWE lane if that is enabled. 10678 if (UsesTFC) { 10679 TFCLane = OldBitsSet; 10680 } 10681 10682 // Try to figure out the used register components 10683 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 10684 I != E; ++I) { 10685 10686 // Don't look at users of the chain. 10687 if (I.getUse().getResNo() != 0) 10688 continue; 10689 10690 // Abort if we can't understand the usage 10691 if (!I->isMachineOpcode() || 10692 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 10693 return Node; 10694 10695 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 10696 // Note that subregs are packed, i.e. Lane==0 is the first bit set 10697 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 10698 // set, etc. 10699 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 10700 10701 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 10702 if (UsesTFC && Lane == TFCLane) { 10703 Users[Lane] = *I; 10704 } else { 10705 // Set which texture component corresponds to the lane. 10706 unsigned Comp; 10707 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 10708 Comp = countTrailingZeros(Dmask); 10709 Dmask &= ~(1 << Comp); 10710 } 10711 10712 // Abort if we have more than one user per component. 10713 if (Users[Lane]) 10714 return Node; 10715 10716 Users[Lane] = *I; 10717 NewDmask |= 1 << Comp; 10718 } 10719 } 10720 10721 // Don't allow 0 dmask, as hardware assumes one channel enabled. 10722 bool NoChannels = !NewDmask; 10723 if (NoChannels) { 10724 if (!UsesTFC) { 10725 // No uses of the result and not using TFC. Then do nothing. 10726 return Node; 10727 } 10728 // If the original dmask has one channel - then nothing to do 10729 if (OldBitsSet == 1) 10730 return Node; 10731 // Use an arbitrary dmask - required for the instruction to work 10732 NewDmask = 1; 10733 } 10734 // Abort if there's no change 10735 if (NewDmask == OldDmask) 10736 return Node; 10737 10738 unsigned BitsSet = countPopulation(NewDmask); 10739 10740 // Check for TFE or LWE - increase the number of channels by one to account 10741 // for the extra return value 10742 // This will need adjustment for D16 if this is also included in 10743 // adjustWriteMask (this function) but at present D16 are excluded. 10744 unsigned NewChannels = BitsSet + UsesTFC; 10745 10746 int NewOpcode = 10747 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 10748 assert(NewOpcode != -1 && 10749 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 10750 "failed to find equivalent MIMG op"); 10751 10752 // Adjust the writemask in the node 10753 SmallVector<SDValue, 12> Ops; 10754 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 10755 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 10756 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 10757 10758 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 10759 10760 MVT ResultVT = NewChannels == 1 ? 10761 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 10762 NewChannels == 5 ? 8 : NewChannels); 10763 SDVTList NewVTList = HasChain ? 10764 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 10765 10766 10767 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 10768 NewVTList, Ops); 10769 10770 if (HasChain) { 10771 // Update chain. 10772 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 10773 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 10774 } 10775 10776 if (NewChannels == 1) { 10777 assert(Node->hasNUsesOfValue(1, 0)); 10778 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 10779 SDLoc(Node), Users[Lane]->getValueType(0), 10780 SDValue(NewNode, 0)); 10781 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 10782 return nullptr; 10783 } 10784 10785 // Update the users of the node with the new indices 10786 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 10787 SDNode *User = Users[i]; 10788 if (!User) { 10789 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 10790 // Users[0] is still nullptr because channel 0 doesn't really have a use. 10791 if (i || !NoChannels) 10792 continue; 10793 } else { 10794 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 10795 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 10796 } 10797 10798 switch (Idx) { 10799 default: break; 10800 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 10801 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 10802 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 10803 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 10804 } 10805 } 10806 10807 DAG.RemoveDeadNode(Node); 10808 return nullptr; 10809 } 10810 10811 static bool isFrameIndexOp(SDValue Op) { 10812 if (Op.getOpcode() == ISD::AssertZext) 10813 Op = Op.getOperand(0); 10814 10815 return isa<FrameIndexSDNode>(Op); 10816 } 10817 10818 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 10819 /// with frame index operands. 10820 /// LLVM assumes that inputs are to these instructions are registers. 10821 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 10822 SelectionDAG &DAG) const { 10823 if (Node->getOpcode() == ISD::CopyToReg) { 10824 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 10825 SDValue SrcVal = Node->getOperand(2); 10826 10827 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 10828 // to try understanding copies to physical registers. 10829 if (SrcVal.getValueType() == MVT::i1 && 10830 Register::isPhysicalRegister(DestReg->getReg())) { 10831 SDLoc SL(Node); 10832 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10833 SDValue VReg = DAG.getRegister( 10834 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 10835 10836 SDNode *Glued = Node->getGluedNode(); 10837 SDValue ToVReg 10838 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 10839 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 10840 SDValue ToResultReg 10841 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 10842 VReg, ToVReg.getValue(1)); 10843 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 10844 DAG.RemoveDeadNode(Node); 10845 return ToResultReg.getNode(); 10846 } 10847 } 10848 10849 SmallVector<SDValue, 8> Ops; 10850 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 10851 if (!isFrameIndexOp(Node->getOperand(i))) { 10852 Ops.push_back(Node->getOperand(i)); 10853 continue; 10854 } 10855 10856 SDLoc DL(Node); 10857 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 10858 Node->getOperand(i).getValueType(), 10859 Node->getOperand(i)), 0)); 10860 } 10861 10862 return DAG.UpdateNodeOperands(Node, Ops); 10863 } 10864 10865 /// Fold the instructions after selecting them. 10866 /// Returns null if users were already updated. 10867 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 10868 SelectionDAG &DAG) const { 10869 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10870 unsigned Opcode = Node->getMachineOpcode(); 10871 10872 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 10873 !TII->isGather4(Opcode)) { 10874 return adjustWritemask(Node, DAG); 10875 } 10876 10877 if (Opcode == AMDGPU::INSERT_SUBREG || 10878 Opcode == AMDGPU::REG_SEQUENCE) { 10879 legalizeTargetIndependentNode(Node, DAG); 10880 return Node; 10881 } 10882 10883 switch (Opcode) { 10884 case AMDGPU::V_DIV_SCALE_F32: 10885 case AMDGPU::V_DIV_SCALE_F64: { 10886 // Satisfy the operand register constraint when one of the inputs is 10887 // undefined. Ordinarily each undef value will have its own implicit_def of 10888 // a vreg, so force these to use a single register. 10889 SDValue Src0 = Node->getOperand(0); 10890 SDValue Src1 = Node->getOperand(1); 10891 SDValue Src2 = Node->getOperand(2); 10892 10893 if ((Src0.isMachineOpcode() && 10894 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 10895 (Src0 == Src1 || Src0 == Src2)) 10896 break; 10897 10898 MVT VT = Src0.getValueType().getSimpleVT(); 10899 const TargetRegisterClass *RC = 10900 getRegClassFor(VT, Src0.getNode()->isDivergent()); 10901 10902 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10903 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 10904 10905 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 10906 UndefReg, Src0, SDValue()); 10907 10908 // src0 must be the same register as src1 or src2, even if the value is 10909 // undefined, so make sure we don't violate this constraint. 10910 if (Src0.isMachineOpcode() && 10911 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 10912 if (Src1.isMachineOpcode() && 10913 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10914 Src0 = Src1; 10915 else if (Src2.isMachineOpcode() && 10916 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10917 Src0 = Src2; 10918 else { 10919 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 10920 Src0 = UndefReg; 10921 Src1 = UndefReg; 10922 } 10923 } else 10924 break; 10925 10926 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; 10927 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) 10928 Ops.push_back(Node->getOperand(I)); 10929 10930 Ops.push_back(ImpDef.getValue(1)); 10931 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 10932 } 10933 default: 10934 break; 10935 } 10936 10937 return Node; 10938 } 10939 10940 /// Assign the register class depending on the number of 10941 /// bits set in the writemask 10942 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 10943 SDNode *Node) const { 10944 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10945 10946 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 10947 10948 if (TII->isVOP3(MI.getOpcode())) { 10949 // Make sure constant bus requirements are respected. 10950 TII->legalizeOperandsVOP3(MRI, MI); 10951 10952 // Prefer VGPRs over AGPRs in mAI instructions where possible. 10953 // This saves a chain-copy of registers and better ballance register 10954 // use between vgpr and agpr as agpr tuples tend to be big. 10955 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { 10956 unsigned Opc = MI.getOpcode(); 10957 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10958 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 10959 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 10960 if (I == -1) 10961 break; 10962 MachineOperand &Op = MI.getOperand(I); 10963 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && 10964 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || 10965 !Register::isVirtualRegister(Op.getReg()) || 10966 !TRI->isAGPR(MRI, Op.getReg())) 10967 continue; 10968 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 10969 if (!Src || !Src->isCopy() || 10970 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 10971 continue; 10972 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 10973 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 10974 // All uses of agpr64 and agpr32 can also accept vgpr except for 10975 // v_accvgpr_read, but we do not produce agpr reads during selection, 10976 // so no use checks are needed. 10977 MRI.setRegClass(Op.getReg(), NewRC); 10978 } 10979 } 10980 10981 return; 10982 } 10983 10984 // Replace unused atomics with the no return version. 10985 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 10986 if (NoRetAtomicOp != -1) { 10987 if (!Node->hasAnyUseOfValue(0)) { 10988 MI.setDesc(TII->get(NoRetAtomicOp)); 10989 MI.RemoveOperand(0); 10990 return; 10991 } 10992 10993 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 10994 // instruction, because the return type of these instructions is a vec2 of 10995 // the memory type, so it can be tied to the input operand. 10996 // This means these instructions always have a use, so we need to add a 10997 // special case to check if the atomic has only one extract_subreg use, 10998 // which itself has no uses. 10999 if ((Node->hasNUsesOfValue(1, 0) && 11000 Node->use_begin()->isMachineOpcode() && 11001 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 11002 !Node->use_begin()->hasAnyUseOfValue(0))) { 11003 Register Def = MI.getOperand(0).getReg(); 11004 11005 // Change this into a noret atomic. 11006 MI.setDesc(TII->get(NoRetAtomicOp)); 11007 MI.RemoveOperand(0); 11008 11009 // If we only remove the def operand from the atomic instruction, the 11010 // extract_subreg will be left with a use of a vreg without a def. 11011 // So we need to insert an implicit_def to avoid machine verifier 11012 // errors. 11013 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 11014 TII->get(AMDGPU::IMPLICIT_DEF), Def); 11015 } 11016 return; 11017 } 11018 } 11019 11020 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 11021 uint64_t Val) { 11022 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 11023 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 11024 } 11025 11026 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 11027 const SDLoc &DL, 11028 SDValue Ptr) const { 11029 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11030 11031 // Build the half of the subregister with the constants before building the 11032 // full 128-bit register. If we are building multiple resource descriptors, 11033 // this will allow CSEing of the 2-component register. 11034 const SDValue Ops0[] = { 11035 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 11036 buildSMovImm32(DAG, DL, 0), 11037 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11038 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 11039 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 11040 }; 11041 11042 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 11043 MVT::v2i32, Ops0), 0); 11044 11045 // Combine the constants and the pointer. 11046 const SDValue Ops1[] = { 11047 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11048 Ptr, 11049 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 11050 SubRegHi, 11051 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 11052 }; 11053 11054 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 11055 } 11056 11057 /// Return a resource descriptor with the 'Add TID' bit enabled 11058 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 11059 /// of the resource descriptor) to create an offset, which is added to 11060 /// the resource pointer. 11061 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 11062 SDValue Ptr, uint32_t RsrcDword1, 11063 uint64_t RsrcDword2And3) const { 11064 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 11065 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 11066 if (RsrcDword1) { 11067 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 11068 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 11069 0); 11070 } 11071 11072 SDValue DataLo = buildSMovImm32(DAG, DL, 11073 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 11074 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 11075 11076 const SDValue Ops[] = { 11077 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11078 PtrLo, 11079 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11080 PtrHi, 11081 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 11082 DataLo, 11083 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 11084 DataHi, 11085 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 11086 }; 11087 11088 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 11089 } 11090 11091 //===----------------------------------------------------------------------===// 11092 // SI Inline Assembly Support 11093 //===----------------------------------------------------------------------===// 11094 11095 std::pair<unsigned, const TargetRegisterClass *> 11096 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11097 StringRef Constraint, 11098 MVT VT) const { 11099 const TargetRegisterClass *RC = nullptr; 11100 if (Constraint.size() == 1) { 11101 const unsigned BitWidth = VT.getSizeInBits(); 11102 switch (Constraint[0]) { 11103 default: 11104 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11105 case 's': 11106 case 'r': 11107 switch (BitWidth) { 11108 case 16: 11109 RC = &AMDGPU::SReg_32RegClass; 11110 break; 11111 case 64: 11112 RC = &AMDGPU::SGPR_64RegClass; 11113 break; 11114 default: 11115 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 11116 if (!RC) 11117 return std::make_pair(0U, nullptr); 11118 break; 11119 } 11120 break; 11121 case 'v': 11122 switch (BitWidth) { 11123 case 16: 11124 RC = &AMDGPU::VGPR_32RegClass; 11125 break; 11126 default: 11127 RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth); 11128 if (!RC) 11129 return std::make_pair(0U, nullptr); 11130 break; 11131 } 11132 break; 11133 case 'a': 11134 if (!Subtarget->hasMAIInsts()) 11135 break; 11136 switch (BitWidth) { 11137 case 16: 11138 RC = &AMDGPU::AGPR_32RegClass; 11139 break; 11140 default: 11141 RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth); 11142 if (!RC) 11143 return std::make_pair(0U, nullptr); 11144 break; 11145 } 11146 break; 11147 } 11148 // We actually support i128, i16 and f16 as inline parameters 11149 // even if they are not reported as legal 11150 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 11151 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 11152 return std::make_pair(0U, RC); 11153 } 11154 11155 if (Constraint.size() > 1) { 11156 if (Constraint[1] == 'v') { 11157 RC = &AMDGPU::VGPR_32RegClass; 11158 } else if (Constraint[1] == 's') { 11159 RC = &AMDGPU::SGPR_32RegClass; 11160 } else if (Constraint[1] == 'a') { 11161 RC = &AMDGPU::AGPR_32RegClass; 11162 } 11163 11164 if (RC) { 11165 uint32_t Idx; 11166 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 11167 if (!Failed && Idx < RC->getNumRegs()) 11168 return std::make_pair(RC->getRegister(Idx), RC); 11169 } 11170 } 11171 11172 // FIXME: Returns VS_32 for physical SGPR constraints 11173 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11174 } 11175 11176 static bool isImmConstraint(StringRef Constraint) { 11177 if (Constraint.size() == 1) { 11178 switch (Constraint[0]) { 11179 default: break; 11180 case 'I': 11181 case 'J': 11182 case 'A': 11183 case 'B': 11184 case 'C': 11185 return true; 11186 } 11187 } else if (Constraint == "DA" || 11188 Constraint == "DB") { 11189 return true; 11190 } 11191 return false; 11192 } 11193 11194 SITargetLowering::ConstraintType 11195 SITargetLowering::getConstraintType(StringRef Constraint) const { 11196 if (Constraint.size() == 1) { 11197 switch (Constraint[0]) { 11198 default: break; 11199 case 's': 11200 case 'v': 11201 case 'a': 11202 return C_RegisterClass; 11203 } 11204 } 11205 if (isImmConstraint(Constraint)) { 11206 return C_Other; 11207 } 11208 return TargetLowering::getConstraintType(Constraint); 11209 } 11210 11211 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 11212 if (!AMDGPU::isInlinableIntLiteral(Val)) { 11213 Val = Val & maskTrailingOnes<uint64_t>(Size); 11214 } 11215 return Val; 11216 } 11217 11218 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11219 std::string &Constraint, 11220 std::vector<SDValue> &Ops, 11221 SelectionDAG &DAG) const { 11222 if (isImmConstraint(Constraint)) { 11223 uint64_t Val; 11224 if (getAsmOperandConstVal(Op, Val) && 11225 checkAsmConstraintVal(Op, Constraint, Val)) { 11226 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 11227 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 11228 } 11229 } else { 11230 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11231 } 11232 } 11233 11234 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 11235 unsigned Size = Op.getScalarValueSizeInBits(); 11236 if (Size > 64) 11237 return false; 11238 11239 if (Size == 16 && !Subtarget->has16BitInsts()) 11240 return false; 11241 11242 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 11243 Val = C->getSExtValue(); 11244 return true; 11245 } 11246 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 11247 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11248 return true; 11249 } 11250 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 11251 if (Size != 16 || Op.getNumOperands() != 2) 11252 return false; 11253 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 11254 return false; 11255 if (ConstantSDNode *C = V->getConstantSplatNode()) { 11256 Val = C->getSExtValue(); 11257 return true; 11258 } 11259 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 11260 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11261 return true; 11262 } 11263 } 11264 11265 return false; 11266 } 11267 11268 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 11269 const std::string &Constraint, 11270 uint64_t Val) const { 11271 if (Constraint.size() == 1) { 11272 switch (Constraint[0]) { 11273 case 'I': 11274 return AMDGPU::isInlinableIntLiteral(Val); 11275 case 'J': 11276 return isInt<16>(Val); 11277 case 'A': 11278 return checkAsmConstraintValA(Op, Val); 11279 case 'B': 11280 return isInt<32>(Val); 11281 case 'C': 11282 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 11283 AMDGPU::isInlinableIntLiteral(Val); 11284 default: 11285 break; 11286 } 11287 } else if (Constraint.size() == 2) { 11288 if (Constraint == "DA") { 11289 int64_t HiBits = static_cast<int32_t>(Val >> 32); 11290 int64_t LoBits = static_cast<int32_t>(Val); 11291 return checkAsmConstraintValA(Op, HiBits, 32) && 11292 checkAsmConstraintValA(Op, LoBits, 32); 11293 } 11294 if (Constraint == "DB") { 11295 return true; 11296 } 11297 } 11298 llvm_unreachable("Invalid asm constraint"); 11299 } 11300 11301 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 11302 uint64_t Val, 11303 unsigned MaxSize) const { 11304 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 11305 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 11306 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 11307 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 11308 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 11309 return true; 11310 } 11311 return false; 11312 } 11313 11314 // Figure out which registers should be reserved for stack access. Only after 11315 // the function is legalized do we know all of the non-spill stack objects or if 11316 // calls are present. 11317 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 11318 MachineRegisterInfo &MRI = MF.getRegInfo(); 11319 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11320 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 11321 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11322 11323 if (Info->isEntryFunction()) { 11324 // Callable functions have fixed registers used for stack access. 11325 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 11326 } 11327 11328 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 11329 Info->getStackPtrOffsetReg())); 11330 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 11331 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 11332 11333 // We need to worry about replacing the default register with itself in case 11334 // of MIR testcases missing the MFI. 11335 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 11336 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 11337 11338 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 11339 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 11340 11341 Info->limitOccupancy(MF); 11342 11343 if (ST.isWave32() && !MF.empty()) { 11344 // Add VCC_HI def because many instructions marked as imp-use VCC where 11345 // we may only define VCC_LO. If nothing defines VCC_HI we may end up 11346 // having a use of undef. 11347 11348 const SIInstrInfo *TII = ST.getInstrInfo(); 11349 DebugLoc DL; 11350 11351 MachineBasicBlock &MBB = MF.front(); 11352 MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr(); 11353 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI); 11354 11355 for (auto &MBB : MF) { 11356 for (auto &MI : MBB) { 11357 TII->fixImplicitOperands(MI); 11358 } 11359 } 11360 } 11361 11362 TargetLoweringBase::finalizeLowering(MF); 11363 11364 // Allocate a VGPR for future SGPR Spill if 11365 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used 11366 // FIXME: We won't need this hack if we split SGPR allocation from VGPR 11367 if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill && 11368 !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects()) 11369 Info->reserveVGPRforSGPRSpills(MF); 11370 } 11371 11372 void SITargetLowering::computeKnownBitsForFrameIndex( 11373 const int FI, KnownBits &Known, const MachineFunction &MF) const { 11374 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 11375 11376 // Set the high bits to zero based on the maximum allowed scratch size per 11377 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 11378 // calculation won't overflow, so assume the sign bit is never set. 11379 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 11380 } 11381 11382 Align SITargetLowering::computeKnownAlignForTargetInstr( 11383 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 11384 unsigned Depth) const { 11385 const MachineInstr *MI = MRI.getVRegDef(R); 11386 switch (MI->getOpcode()) { 11387 case AMDGPU::G_INTRINSIC: 11388 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 11389 // FIXME: Can this move to generic code? What about the case where the call 11390 // site specifies a lower alignment? 11391 Intrinsic::ID IID = MI->getIntrinsicID(); 11392 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 11393 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 11394 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 11395 return *RetAlign; 11396 return Align(1); 11397 } 11398 default: 11399 return Align(1); 11400 } 11401 } 11402 11403 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11404 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 11405 const Align CacheLineAlign = Align(64); 11406 11407 // Pre-GFX10 target did not benefit from loop alignment 11408 if (!ML || DisableLoopAlignment || 11409 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 11410 getSubtarget()->hasInstFwdPrefetchBug()) 11411 return PrefAlign; 11412 11413 // On GFX10 I$ is 4 x 64 bytes cache lines. 11414 // By default prefetcher keeps one cache line behind and reads two ahead. 11415 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 11416 // behind and one ahead. 11417 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 11418 // If loop fits 64 bytes it always spans no more than two cache lines and 11419 // does not need an alignment. 11420 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 11421 // Else if loop is less or equal 192 bytes we need two lines behind. 11422 11423 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11424 const MachineBasicBlock *Header = ML->getHeader(); 11425 if (Header->getAlignment() != PrefAlign) 11426 return Header->getAlignment(); // Already processed. 11427 11428 unsigned LoopSize = 0; 11429 for (const MachineBasicBlock *MBB : ML->blocks()) { 11430 // If inner loop block is aligned assume in average half of the alignment 11431 // size to be added as nops. 11432 if (MBB != Header) 11433 LoopSize += MBB->getAlignment().value() / 2; 11434 11435 for (const MachineInstr &MI : *MBB) { 11436 LoopSize += TII->getInstSizeInBytes(MI); 11437 if (LoopSize > 192) 11438 return PrefAlign; 11439 } 11440 } 11441 11442 if (LoopSize <= 64) 11443 return PrefAlign; 11444 11445 if (LoopSize <= 128) 11446 return CacheLineAlign; 11447 11448 // If any of parent loops is surrounded by prefetch instructions do not 11449 // insert new for inner loop, which would reset parent's settings. 11450 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 11451 if (MachineBasicBlock *Exit = P->getExitBlock()) { 11452 auto I = Exit->getFirstNonDebugInstr(); 11453 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 11454 return CacheLineAlign; 11455 } 11456 } 11457 11458 MachineBasicBlock *Pre = ML->getLoopPreheader(); 11459 MachineBasicBlock *Exit = ML->getExitBlock(); 11460 11461 if (Pre && Exit) { 11462 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 11463 TII->get(AMDGPU::S_INST_PREFETCH)) 11464 .addImm(1); // prefetch 2 lines behind PC 11465 11466 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 11467 TII->get(AMDGPU::S_INST_PREFETCH)) 11468 .addImm(2); // prefetch 1 line behind PC 11469 } 11470 11471 return CacheLineAlign; 11472 } 11473 11474 LLVM_ATTRIBUTE_UNUSED 11475 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 11476 assert(N->getOpcode() == ISD::CopyFromReg); 11477 do { 11478 // Follow the chain until we find an INLINEASM node. 11479 N = N->getOperand(0).getNode(); 11480 if (N->getOpcode() == ISD::INLINEASM || 11481 N->getOpcode() == ISD::INLINEASM_BR) 11482 return true; 11483 } while (N->getOpcode() == ISD::CopyFromReg); 11484 return false; 11485 } 11486 11487 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 11488 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const 11489 { 11490 switch (N->getOpcode()) { 11491 case ISD::CopyFromReg: 11492 { 11493 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 11494 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 11495 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11496 Register Reg = R->getReg(); 11497 11498 // FIXME: Why does this need to consider isLiveIn? 11499 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 11500 return !TRI->isSGPRReg(MRI, Reg); 11501 11502 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 11503 return KDA->isDivergent(V); 11504 11505 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 11506 return !TRI->isSGPRReg(MRI, Reg); 11507 } 11508 break; 11509 case ISD::LOAD: { 11510 const LoadSDNode *L = cast<LoadSDNode>(N); 11511 unsigned AS = L->getAddressSpace(); 11512 // A flat load may access private memory. 11513 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 11514 } break; 11515 case ISD::CALLSEQ_END: 11516 return true; 11517 break; 11518 case ISD::INTRINSIC_WO_CHAIN: 11519 { 11520 11521 } 11522 return AMDGPU::isIntrinsicSourceOfDivergence( 11523 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 11524 case ISD::INTRINSIC_W_CHAIN: 11525 return AMDGPU::isIntrinsicSourceOfDivergence( 11526 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 11527 } 11528 return false; 11529 } 11530 11531 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 11532 EVT VT) const { 11533 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 11534 case MVT::f32: 11535 return hasFP32Denormals(DAG.getMachineFunction()); 11536 case MVT::f64: 11537 case MVT::f16: 11538 return hasFP64FP16Denormals(DAG.getMachineFunction()); 11539 default: 11540 return false; 11541 } 11542 } 11543 11544 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 11545 const SelectionDAG &DAG, 11546 bool SNaN, 11547 unsigned Depth) const { 11548 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 11549 const MachineFunction &MF = DAG.getMachineFunction(); 11550 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11551 11552 if (Info->getMode().DX10Clamp) 11553 return true; // Clamped to 0. 11554 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 11555 } 11556 11557 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 11558 SNaN, Depth); 11559 } 11560 11561 TargetLowering::AtomicExpansionKind 11562 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 11563 switch (RMW->getOperation()) { 11564 case AtomicRMWInst::FAdd: { 11565 Type *Ty = RMW->getType(); 11566 11567 // We don't have a way to support 16-bit atomics now, so just leave them 11568 // as-is. 11569 if (Ty->isHalfTy()) 11570 return AtomicExpansionKind::None; 11571 11572 if (!Ty->isFloatTy()) 11573 return AtomicExpansionKind::CmpXChg; 11574 11575 // TODO: Do have these for flat. Older targets also had them for buffers. 11576 unsigned AS = RMW->getPointerAddressSpace(); 11577 11578 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) { 11579 return RMW->use_empty() ? AtomicExpansionKind::None : 11580 AtomicExpansionKind::CmpXChg; 11581 } 11582 11583 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? 11584 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; 11585 } 11586 default: 11587 break; 11588 } 11589 11590 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 11591 } 11592 11593 const TargetRegisterClass * 11594 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 11595 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 11596 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11597 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 11598 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 11599 : &AMDGPU::SReg_32RegClass; 11600 if (!TRI->isSGPRClass(RC) && !isDivergent) 11601 return TRI->getEquivalentSGPRClass(RC); 11602 else if (TRI->isSGPRClass(RC) && isDivergent) 11603 return TRI->getEquivalentVGPRClass(RC); 11604 11605 return RC; 11606 } 11607 11608 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 11609 // uniform values (as produced by the mask results of control flow intrinsics) 11610 // used outside of divergent blocks. The phi users need to also be treated as 11611 // always uniform. 11612 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 11613 unsigned WaveSize) { 11614 // FIXME: We asssume we never cast the mask results of a control flow 11615 // intrinsic. 11616 // Early exit if the type won't be consistent as a compile time hack. 11617 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 11618 if (!IT || IT->getBitWidth() != WaveSize) 11619 return false; 11620 11621 if (!isa<Instruction>(V)) 11622 return false; 11623 if (!Visited.insert(V).second) 11624 return false; 11625 bool Result = false; 11626 for (auto U : V->users()) { 11627 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 11628 if (V == U->getOperand(1)) { 11629 switch (Intrinsic->getIntrinsicID()) { 11630 default: 11631 Result = false; 11632 break; 11633 case Intrinsic::amdgcn_if_break: 11634 case Intrinsic::amdgcn_if: 11635 case Intrinsic::amdgcn_else: 11636 Result = true; 11637 break; 11638 } 11639 } 11640 if (V == U->getOperand(0)) { 11641 switch (Intrinsic->getIntrinsicID()) { 11642 default: 11643 Result = false; 11644 break; 11645 case Intrinsic::amdgcn_end_cf: 11646 case Intrinsic::amdgcn_loop: 11647 Result = true; 11648 break; 11649 } 11650 } 11651 } else { 11652 Result = hasCFUser(U, Visited, WaveSize); 11653 } 11654 if (Result) 11655 break; 11656 } 11657 return Result; 11658 } 11659 11660 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 11661 const Value *V) const { 11662 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 11663 if (CI->isInlineAsm()) { 11664 // FIXME: This cannot give a correct answer. This should only trigger in 11665 // the case where inline asm returns mixed SGPR and VGPR results, used 11666 // outside the defining block. We don't have a specific result to 11667 // consider, so this assumes if any value is SGPR, the overall register 11668 // also needs to be SGPR. 11669 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 11670 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 11671 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 11672 for (auto &TC : TargetConstraints) { 11673 if (TC.Type == InlineAsm::isOutput) { 11674 ComputeConstraintToUse(TC, SDValue()); 11675 unsigned AssignedReg; 11676 const TargetRegisterClass *RC; 11677 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint( 11678 SIRI, TC.ConstraintCode, TC.ConstraintVT); 11679 if (RC) { 11680 MachineRegisterInfo &MRI = MF.getRegInfo(); 11681 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg)) 11682 return true; 11683 else if (SIRI->isSGPRClass(RC)) 11684 return true; 11685 } 11686 } 11687 } 11688 } 11689 } 11690 SmallPtrSet<const Value *, 16> Visited; 11691 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 11692 } 11693 11694 std::pair<int, MVT> 11695 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 11696 Type *Ty) const { 11697 auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 11698 auto Size = DL.getTypeSizeInBits(Ty); 11699 // Maximum load or store can handle 8 dwords for scalar and 4 for 11700 // vector ALU. Let's assume anything above 8 dwords is expensive 11701 // even if legal. 11702 if (Size <= 256) 11703 return Cost; 11704 11705 Cost.first = (Size + 255) / 256; 11706 return Cost; 11707 } 11708