1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/IntrinsicsR600.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "si-lower" 35 36 STATISTIC(NumTailCalls, "Number of tail calls"); 37 38 static cl::opt<bool> DisableLoopAlignment( 39 "amdgpu-disable-loop-alignment", 40 cl::desc("Do not align and prefetch loops"), 41 cl::init(false)); 42 43 static cl::opt<bool> VGPRReserveforSGPRSpill( 44 "amdgpu-reserve-vgpr-for-sgpr-spill", 45 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true)); 46 47 static cl::opt<bool> UseDivergentRegisterIndexing( 48 "amdgpu-use-divergent-register-indexing", 49 cl::Hidden, 50 cl::desc("Use indirect register addressing for divergent indexes"), 51 cl::init(false)); 52 53 static bool hasFP32Denormals(const MachineFunction &MF) { 54 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 55 return Info->getMode().allFP32Denormals(); 56 } 57 58 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 59 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 60 return Info->getMode().allFP64FP16Denormals(); 61 } 62 63 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 64 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 65 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 66 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 67 return AMDGPU::SGPR0 + Reg; 68 } 69 } 70 llvm_unreachable("Cannot allocate sgpr"); 71 } 72 73 SITargetLowering::SITargetLowering(const TargetMachine &TM, 74 const GCNSubtarget &STI) 75 : AMDGPUTargetLowering(TM, STI), 76 Subtarget(&STI) { 77 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 78 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 79 80 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 81 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 82 83 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 84 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 85 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 86 87 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 88 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); 89 90 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 91 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 92 93 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 94 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 95 96 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 97 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); 98 99 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 100 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 101 102 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 103 addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass); 104 105 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 106 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 107 108 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 109 addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass); 110 111 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 112 addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass); 113 114 if (Subtarget->has16BitInsts()) { 115 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 116 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 117 118 // Unless there are also VOP3P operations, not operations are really legal. 119 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 120 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 121 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 122 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 123 } 124 125 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 126 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass); 127 128 computeRegisterProperties(Subtarget->getRegisterInfo()); 129 130 // The boolean content concept here is too inflexible. Compares only ever 131 // really produce a 1-bit result. Any copy/extend from these will turn into a 132 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 133 // it's what most targets use. 134 setBooleanContents(ZeroOrOneBooleanContent); 135 setBooleanVectorContents(ZeroOrOneBooleanContent); 136 137 // We need to custom lower vector stores from local memory 138 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 139 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 140 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 141 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 142 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 143 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 144 setOperationAction(ISD::LOAD, MVT::i1, Custom); 145 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 146 147 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 148 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 149 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 150 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 151 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 152 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 153 setOperationAction(ISD::STORE, MVT::i1, Custom); 154 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 155 156 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 157 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 158 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 159 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 160 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 161 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 162 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 163 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 164 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 165 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 166 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 167 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 168 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 169 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 170 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 171 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 172 173 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 174 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 175 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 176 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 177 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 178 179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 180 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 181 182 setOperationAction(ISD::SELECT, MVT::i1, Promote); 183 setOperationAction(ISD::SELECT, MVT::i64, Custom); 184 setOperationAction(ISD::SELECT, MVT::f64, Promote); 185 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 186 187 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 188 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 189 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 190 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 191 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 192 193 setOperationAction(ISD::SETCC, MVT::i1, Promote); 194 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 195 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 196 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 197 198 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 199 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 200 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand); 201 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand); 202 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand); 203 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand); 204 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand); 205 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand); 206 207 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 208 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 209 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 210 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 211 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 212 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 215 216 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 217 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 218 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 219 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 220 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 221 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 222 223 setOperationAction(ISD::UADDO, MVT::i32, Legal); 224 setOperationAction(ISD::USUBO, MVT::i32, Legal); 225 226 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 227 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 228 229 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 230 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 231 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 232 233 #if 0 234 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 235 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 236 #endif 237 238 // We only support LOAD/STORE and vector manipulation ops for vectors 239 // with > 4 elements. 240 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 241 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 242 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 243 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) { 244 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 245 switch (Op) { 246 case ISD::LOAD: 247 case ISD::STORE: 248 case ISD::BUILD_VECTOR: 249 case ISD::BITCAST: 250 case ISD::EXTRACT_VECTOR_ELT: 251 case ISD::INSERT_VECTOR_ELT: 252 case ISD::INSERT_SUBVECTOR: 253 case ISD::EXTRACT_SUBVECTOR: 254 case ISD::SCALAR_TO_VECTOR: 255 break; 256 case ISD::CONCAT_VECTORS: 257 setOperationAction(Op, VT, Custom); 258 break; 259 default: 260 setOperationAction(Op, VT, Expand); 261 break; 262 } 263 } 264 } 265 266 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 267 268 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 269 // is expanded to avoid having two separate loops in case the index is a VGPR. 270 271 // Most operations are naturally 32-bit vector operations. We only support 272 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 273 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 274 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 275 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 276 277 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 278 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 279 280 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 281 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 282 283 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 284 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 285 } 286 287 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 288 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 289 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 290 291 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 292 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 293 294 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 295 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 296 297 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 298 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 299 } 300 301 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 302 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 303 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 304 305 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 306 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 307 308 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 309 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 310 311 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 312 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 313 } 314 315 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 316 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 317 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 318 319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 320 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 321 322 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 323 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 324 325 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 326 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 327 } 328 329 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 330 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 331 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 332 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 333 334 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 335 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 336 337 // Avoid stack access for these. 338 // TODO: Generalize to more vector types. 339 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 340 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 341 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 342 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 343 344 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 345 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 346 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 347 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 348 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 349 350 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 351 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 352 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 353 354 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 357 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 358 359 // Deal with vec3 vector operations when widened to vec4. 360 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 361 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 362 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 363 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 364 365 // Deal with vec5 vector operations when widened to vec8. 366 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 367 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 368 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 369 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 370 371 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 372 // and output demarshalling 373 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 374 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 375 376 // We can't return success/failure, only the old value, 377 // let LLVM add the comparison 378 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 379 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 380 381 if (Subtarget->hasFlatAddressSpace()) { 382 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 383 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 384 } 385 386 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 387 388 // FIXME: This should be narrowed to i32, but that only happens if i64 is 389 // illegal. 390 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 391 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 392 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 393 394 // On SI this is s_memtime and s_memrealtime on VI. 395 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 396 setOperationAction(ISD::TRAP, MVT::Other, Custom); 397 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 398 399 if (Subtarget->has16BitInsts()) { 400 setOperationAction(ISD::FPOW, MVT::f16, Promote); 401 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 402 setOperationAction(ISD::FLOG, MVT::f16, Custom); 403 setOperationAction(ISD::FEXP, MVT::f16, Custom); 404 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 405 } 406 407 if (Subtarget->hasMadMacF32Insts()) 408 setOperationAction(ISD::FMAD, MVT::f32, Legal); 409 410 if (!Subtarget->hasBFI()) { 411 // fcopysign can be done in a single instruction with BFI. 412 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 413 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 414 } 415 416 if (!Subtarget->hasBCNT(32)) 417 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 418 419 if (!Subtarget->hasBCNT(64)) 420 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 421 422 if (Subtarget->hasFFBH()) 423 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 424 425 if (Subtarget->hasFFBL()) 426 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 427 428 // We only really have 32-bit BFE instructions (and 16-bit on VI). 429 // 430 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 431 // effort to match them now. We want this to be false for i64 cases when the 432 // extraction isn't restricted to the upper or lower half. Ideally we would 433 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 434 // span the midpoint are probably relatively rare, so don't worry about them 435 // for now. 436 if (Subtarget->hasBFE()) 437 setHasExtractBitsInsn(true); 438 439 // Clamp modifier on add/sub 440 if (Subtarget->hasIntClamp()) { 441 setOperationAction(ISD::UADDSAT, MVT::i32, Legal); 442 setOperationAction(ISD::USUBSAT, MVT::i32, Legal); 443 } 444 445 if (Subtarget->hasAddNoCarry()) { 446 setOperationAction(ISD::SADDSAT, MVT::i16, Legal); 447 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal); 448 setOperationAction(ISD::SADDSAT, MVT::i32, Legal); 449 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal); 450 } 451 452 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 453 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 454 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 455 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 456 457 458 // These are really only legal for ieee_mode functions. We should be avoiding 459 // them for functions that don't have ieee_mode enabled, so just say they are 460 // legal. 461 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 462 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 463 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 464 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 465 466 467 if (Subtarget->haveRoundOpsF64()) { 468 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 469 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 470 setOperationAction(ISD::FRINT, MVT::f64, Legal); 471 } else { 472 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 473 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 474 setOperationAction(ISD::FRINT, MVT::f64, Custom); 475 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 476 } 477 478 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 479 480 setOperationAction(ISD::FSIN, MVT::f32, Custom); 481 setOperationAction(ISD::FCOS, MVT::f32, Custom); 482 setOperationAction(ISD::FDIV, MVT::f32, Custom); 483 setOperationAction(ISD::FDIV, MVT::f64, Custom); 484 485 if (Subtarget->has16BitInsts()) { 486 setOperationAction(ISD::Constant, MVT::i16, Legal); 487 488 setOperationAction(ISD::SMIN, MVT::i16, Legal); 489 setOperationAction(ISD::SMAX, MVT::i16, Legal); 490 491 setOperationAction(ISD::UMIN, MVT::i16, Legal); 492 setOperationAction(ISD::UMAX, MVT::i16, Legal); 493 494 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 495 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 496 497 setOperationAction(ISD::ROTR, MVT::i16, Expand); 498 setOperationAction(ISD::ROTL, MVT::i16, Expand); 499 500 setOperationAction(ISD::SDIV, MVT::i16, Promote); 501 setOperationAction(ISD::UDIV, MVT::i16, Promote); 502 setOperationAction(ISD::SREM, MVT::i16, Promote); 503 setOperationAction(ISD::UREM, MVT::i16, Promote); 504 setOperationAction(ISD::UADDSAT, MVT::i16, Legal); 505 setOperationAction(ISD::USUBSAT, MVT::i16, Legal); 506 507 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 508 509 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 510 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 511 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 512 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 513 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 514 515 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 516 517 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 518 519 setOperationAction(ISD::LOAD, MVT::i16, Custom); 520 521 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 522 523 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 524 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 525 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 526 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 527 528 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 529 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 530 531 // F16 - Constant Actions. 532 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 533 534 // F16 - Load/Store Actions. 535 setOperationAction(ISD::LOAD, MVT::f16, Promote); 536 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 537 setOperationAction(ISD::STORE, MVT::f16, Promote); 538 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 539 540 // F16 - VOP1 Actions. 541 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 542 setOperationAction(ISD::FCOS, MVT::f16, Custom); 543 setOperationAction(ISD::FSIN, MVT::f16, Custom); 544 545 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); 546 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); 547 548 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 549 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 550 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 551 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 552 setOperationAction(ISD::FROUND, MVT::f16, Custom); 553 554 // F16 - VOP2 Actions. 555 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 556 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 557 558 setOperationAction(ISD::FDIV, MVT::f16, Custom); 559 560 // F16 - VOP3 Actions. 561 setOperationAction(ISD::FMA, MVT::f16, Legal); 562 if (STI.hasMadF16()) 563 setOperationAction(ISD::FMAD, MVT::f16, Legal); 564 565 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 566 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 567 switch (Op) { 568 case ISD::LOAD: 569 case ISD::STORE: 570 case ISD::BUILD_VECTOR: 571 case ISD::BITCAST: 572 case ISD::EXTRACT_VECTOR_ELT: 573 case ISD::INSERT_VECTOR_ELT: 574 case ISD::INSERT_SUBVECTOR: 575 case ISD::EXTRACT_SUBVECTOR: 576 case ISD::SCALAR_TO_VECTOR: 577 break; 578 case ISD::CONCAT_VECTORS: 579 setOperationAction(Op, VT, Custom); 580 break; 581 default: 582 setOperationAction(Op, VT, Expand); 583 break; 584 } 585 } 586 } 587 588 // v_perm_b32 can handle either of these. 589 setOperationAction(ISD::BSWAP, MVT::i16, Legal); 590 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal); 591 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 592 593 // XXX - Do these do anything? Vector constants turn into build_vector. 594 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 595 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 596 597 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 598 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 599 600 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 601 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 602 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 603 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 604 605 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 606 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 607 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 608 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 609 610 setOperationAction(ISD::AND, MVT::v2i16, Promote); 611 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 612 setOperationAction(ISD::OR, MVT::v2i16, Promote); 613 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 614 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 615 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 616 617 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 618 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 619 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 620 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 621 622 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 623 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 624 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 625 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 626 627 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 628 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 629 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 630 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 631 632 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 633 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 634 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 635 636 if (!Subtarget->hasVOP3PInsts()) { 637 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 638 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 639 } 640 641 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 642 // This isn't really legal, but this avoids the legalizer unrolling it (and 643 // allows matching fneg (fabs x) patterns) 644 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 645 646 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 647 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 648 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 649 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 650 651 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 652 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 653 654 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 655 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 656 } 657 658 if (Subtarget->hasVOP3PInsts()) { 659 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 660 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 661 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 662 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 663 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 664 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 665 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 666 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 667 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 668 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 669 670 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal); 671 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal); 672 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal); 673 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal); 674 675 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 676 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 677 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 678 679 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 680 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 681 682 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 683 684 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 685 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 686 687 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 688 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 689 690 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 691 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 692 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 693 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 694 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 695 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 696 697 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 698 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 699 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 700 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 701 702 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom); 703 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom); 704 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom); 705 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom); 706 707 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 708 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 709 setOperationAction(ISD::FMA, MVT::v4f16, Custom); 710 711 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 712 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 713 714 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 715 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 716 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 717 718 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 719 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 720 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 721 } 722 723 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 724 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 725 726 if (Subtarget->has16BitInsts()) { 727 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 728 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 729 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 730 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 731 } else { 732 // Legalization hack. 733 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 734 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 735 736 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 737 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 738 } 739 740 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 741 setOperationAction(ISD::SELECT, VT, Custom); 742 } 743 744 setOperationAction(ISD::SMULO, MVT::i64, Custom); 745 setOperationAction(ISD::UMULO, MVT::i64, Custom); 746 747 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 748 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 749 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 750 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 751 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 752 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 753 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 754 755 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 756 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 757 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom); 758 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom); 759 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 760 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 761 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 762 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 763 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 764 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 765 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 766 767 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 768 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 769 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 770 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom); 771 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom); 772 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 773 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 774 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 775 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 776 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 777 778 setTargetDAGCombine(ISD::ADD); 779 setTargetDAGCombine(ISD::ADDCARRY); 780 setTargetDAGCombine(ISD::SUB); 781 setTargetDAGCombine(ISD::SUBCARRY); 782 setTargetDAGCombine(ISD::FADD); 783 setTargetDAGCombine(ISD::FSUB); 784 setTargetDAGCombine(ISD::FMINNUM); 785 setTargetDAGCombine(ISD::FMAXNUM); 786 setTargetDAGCombine(ISD::FMINNUM_IEEE); 787 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 788 setTargetDAGCombine(ISD::FMA); 789 setTargetDAGCombine(ISD::SMIN); 790 setTargetDAGCombine(ISD::SMAX); 791 setTargetDAGCombine(ISD::UMIN); 792 setTargetDAGCombine(ISD::UMAX); 793 setTargetDAGCombine(ISD::SETCC); 794 setTargetDAGCombine(ISD::AND); 795 setTargetDAGCombine(ISD::OR); 796 setTargetDAGCombine(ISD::XOR); 797 setTargetDAGCombine(ISD::SINT_TO_FP); 798 setTargetDAGCombine(ISD::UINT_TO_FP); 799 setTargetDAGCombine(ISD::FCANONICALIZE); 800 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 801 setTargetDAGCombine(ISD::ZERO_EXTEND); 802 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 803 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 804 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 805 806 // All memory operations. Some folding on the pointer operand is done to help 807 // matching the constant offsets in the addressing modes. 808 setTargetDAGCombine(ISD::LOAD); 809 setTargetDAGCombine(ISD::STORE); 810 setTargetDAGCombine(ISD::ATOMIC_LOAD); 811 setTargetDAGCombine(ISD::ATOMIC_STORE); 812 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 813 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 814 setTargetDAGCombine(ISD::ATOMIC_SWAP); 815 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 816 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 817 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 818 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 819 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 820 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 821 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 822 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 823 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 824 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 825 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 826 setTargetDAGCombine(ISD::INTRINSIC_VOID); 827 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 828 829 // FIXME: In other contexts we pretend this is a per-function property. 830 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 831 832 setSchedulingPreference(Sched::RegPressure); 833 } 834 835 const GCNSubtarget *SITargetLowering::getSubtarget() const { 836 return Subtarget; 837 } 838 839 //===----------------------------------------------------------------------===// 840 // TargetLowering queries 841 //===----------------------------------------------------------------------===// 842 843 // v_mad_mix* support a conversion from f16 to f32. 844 // 845 // There is only one special case when denormals are enabled we don't currently, 846 // where this is OK to use. 847 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 848 EVT DestVT, EVT SrcVT) const { 849 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 850 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 851 DestVT.getScalarType() == MVT::f32 && 852 SrcVT.getScalarType() == MVT::f16 && 853 // TODO: This probably only requires no input flushing? 854 !hasFP32Denormals(DAG.getMachineFunction()); 855 } 856 857 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 858 // SI has some legal vector types, but no legal vector operations. Say no 859 // shuffles are legal in order to prefer scalarizing some vector operations. 860 return false; 861 } 862 863 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 864 CallingConv::ID CC, 865 EVT VT) const { 866 if (CC == CallingConv::AMDGPU_KERNEL) 867 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 868 869 if (VT.isVector()) { 870 EVT ScalarVT = VT.getScalarType(); 871 unsigned Size = ScalarVT.getSizeInBits(); 872 if (Size == 16) { 873 if (Subtarget->has16BitInsts()) 874 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 875 return VT.isInteger() ? MVT::i32 : MVT::f32; 876 } 877 878 if (Size < 16) 879 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 880 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 881 } 882 883 if (VT.getSizeInBits() > 32) 884 return MVT::i32; 885 886 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 887 } 888 889 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 890 CallingConv::ID CC, 891 EVT VT) const { 892 if (CC == CallingConv::AMDGPU_KERNEL) 893 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 894 895 if (VT.isVector()) { 896 unsigned NumElts = VT.getVectorNumElements(); 897 EVT ScalarVT = VT.getScalarType(); 898 unsigned Size = ScalarVT.getSizeInBits(); 899 900 // FIXME: Should probably promote 8-bit vectors to i16. 901 if (Size == 16 && Subtarget->has16BitInsts()) 902 return (NumElts + 1) / 2; 903 904 if (Size <= 32) 905 return NumElts; 906 907 if (Size > 32) 908 return NumElts * ((Size + 31) / 32); 909 } else if (VT.getSizeInBits() > 32) 910 return (VT.getSizeInBits() + 31) / 32; 911 912 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 913 } 914 915 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 916 LLVMContext &Context, CallingConv::ID CC, 917 EVT VT, EVT &IntermediateVT, 918 unsigned &NumIntermediates, MVT &RegisterVT) const { 919 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 920 unsigned NumElts = VT.getVectorNumElements(); 921 EVT ScalarVT = VT.getScalarType(); 922 unsigned Size = ScalarVT.getSizeInBits(); 923 // FIXME: We should fix the ABI to be the same on targets without 16-bit 924 // support, but unless we can properly handle 3-vectors, it will be still be 925 // inconsistent. 926 if (Size == 16 && Subtarget->has16BitInsts()) { 927 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 928 IntermediateVT = RegisterVT; 929 NumIntermediates = (NumElts + 1) / 2; 930 return NumIntermediates; 931 } 932 933 if (Size == 32) { 934 RegisterVT = ScalarVT.getSimpleVT(); 935 IntermediateVT = RegisterVT; 936 NumIntermediates = NumElts; 937 return NumIntermediates; 938 } 939 940 if (Size < 16 && Subtarget->has16BitInsts()) { 941 // FIXME: Should probably form v2i16 pieces 942 RegisterVT = MVT::i16; 943 IntermediateVT = ScalarVT; 944 NumIntermediates = NumElts; 945 return NumIntermediates; 946 } 947 948 949 if (Size != 16 && Size <= 32) { 950 RegisterVT = MVT::i32; 951 IntermediateVT = ScalarVT; 952 NumIntermediates = NumElts; 953 return NumIntermediates; 954 } 955 956 if (Size > 32) { 957 RegisterVT = MVT::i32; 958 IntermediateVT = RegisterVT; 959 NumIntermediates = NumElts * ((Size + 31) / 32); 960 return NumIntermediates; 961 } 962 } 963 964 return TargetLowering::getVectorTypeBreakdownForCallingConv( 965 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 966 } 967 968 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 969 assert(DMaskLanes != 0); 970 971 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 972 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 973 return EVT::getVectorVT(Ty->getContext(), 974 EVT::getEVT(VT->getElementType()), 975 NumElts); 976 } 977 978 return EVT::getEVT(Ty); 979 } 980 981 // Peek through TFE struct returns to only use the data size. 982 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 983 auto *ST = dyn_cast<StructType>(Ty); 984 if (!ST) 985 return memVTFromImageData(Ty, DMaskLanes); 986 987 // Some intrinsics return an aggregate type - special case to work out the 988 // correct memVT. 989 // 990 // Only limited forms of aggregate type currently expected. 991 if (ST->getNumContainedTypes() != 2 || 992 !ST->getContainedType(1)->isIntegerTy(32)) 993 return EVT(); 994 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 995 } 996 997 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 998 const CallInst &CI, 999 MachineFunction &MF, 1000 unsigned IntrID) const { 1001 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1002 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1003 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1004 (Intrinsic::ID)IntrID); 1005 if (Attr.hasFnAttribute(Attribute::ReadNone)) 1006 return false; 1007 1008 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1009 1010 if (RsrcIntr->IsImage) { 1011 Info.ptrVal = 1012 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1013 Info.align.reset(); 1014 } else { 1015 Info.ptrVal = 1016 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1017 } 1018 1019 Info.flags = MachineMemOperand::MODereferenceable; 1020 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 1021 unsigned DMaskLanes = 4; 1022 1023 if (RsrcIntr->IsImage) { 1024 const AMDGPU::ImageDimIntrinsicInfo *Intr 1025 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1026 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1027 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1028 1029 if (!BaseOpcode->Gather4) { 1030 // If this isn't a gather, we may have excess loaded elements in the 1031 // IR type. Check the dmask for the real number of elements loaded. 1032 unsigned DMask 1033 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1034 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1035 } 1036 1037 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 1038 } else 1039 Info.memVT = EVT::getEVT(CI.getType()); 1040 1041 // FIXME: What does alignment mean for an image? 1042 Info.opc = ISD::INTRINSIC_W_CHAIN; 1043 Info.flags |= MachineMemOperand::MOLoad; 1044 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 1045 Info.opc = ISD::INTRINSIC_VOID; 1046 1047 Type *DataTy = CI.getArgOperand(0)->getType(); 1048 if (RsrcIntr->IsImage) { 1049 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1050 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1051 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1052 } else 1053 Info.memVT = EVT::getEVT(DataTy); 1054 1055 Info.flags |= MachineMemOperand::MOStore; 1056 } else { 1057 // Atomic 1058 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1059 ISD::INTRINSIC_W_CHAIN; 1060 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1061 Info.flags = MachineMemOperand::MOLoad | 1062 MachineMemOperand::MOStore | 1063 MachineMemOperand::MODereferenceable; 1064 1065 // XXX - Should this be volatile without known ordering? 1066 Info.flags |= MachineMemOperand::MOVolatile; 1067 } 1068 return true; 1069 } 1070 1071 switch (IntrID) { 1072 case Intrinsic::amdgcn_atomic_inc: 1073 case Intrinsic::amdgcn_atomic_dec: 1074 case Intrinsic::amdgcn_ds_ordered_add: 1075 case Intrinsic::amdgcn_ds_ordered_swap: 1076 case Intrinsic::amdgcn_ds_fadd: 1077 case Intrinsic::amdgcn_ds_fmin: 1078 case Intrinsic::amdgcn_ds_fmax: { 1079 Info.opc = ISD::INTRINSIC_W_CHAIN; 1080 Info.memVT = MVT::getVT(CI.getType()); 1081 Info.ptrVal = CI.getOperand(0); 1082 Info.align.reset(); 1083 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1084 1085 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1086 if (!Vol->isZero()) 1087 Info.flags |= MachineMemOperand::MOVolatile; 1088 1089 return true; 1090 } 1091 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1092 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1093 1094 Info.opc = ISD::INTRINSIC_W_CHAIN; 1095 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1096 Info.ptrVal = 1097 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1098 Info.align.reset(); 1099 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1100 1101 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1102 if (!Vol || !Vol->isZero()) 1103 Info.flags |= MachineMemOperand::MOVolatile; 1104 1105 return true; 1106 } 1107 case Intrinsic::amdgcn_ds_append: 1108 case Intrinsic::amdgcn_ds_consume: { 1109 Info.opc = ISD::INTRINSIC_W_CHAIN; 1110 Info.memVT = MVT::getVT(CI.getType()); 1111 Info.ptrVal = CI.getOperand(0); 1112 Info.align.reset(); 1113 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1114 1115 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1116 if (!Vol->isZero()) 1117 Info.flags |= MachineMemOperand::MOVolatile; 1118 1119 return true; 1120 } 1121 case Intrinsic::amdgcn_global_atomic_csub: { 1122 Info.opc = ISD::INTRINSIC_W_CHAIN; 1123 Info.memVT = MVT::getVT(CI.getType()); 1124 Info.ptrVal = CI.getOperand(0); 1125 Info.align.reset(); 1126 Info.flags = MachineMemOperand::MOLoad | 1127 MachineMemOperand::MOStore | 1128 MachineMemOperand::MOVolatile; 1129 return true; 1130 } 1131 case Intrinsic::amdgcn_global_atomic_fadd: { 1132 Info.opc = ISD::INTRINSIC_W_CHAIN; 1133 Info.memVT = MVT::getVT(CI.getType()); 1134 Info.ptrVal = CI.getOperand(0); 1135 Info.align.reset(); 1136 Info.flags = MachineMemOperand::MOLoad | 1137 MachineMemOperand::MOStore | 1138 MachineMemOperand::MODereferenceable | 1139 MachineMemOperand::MOVolatile; 1140 return true; 1141 } 1142 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1143 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1144 Info.opc = ISD::INTRINSIC_W_CHAIN; 1145 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1146 Info.ptrVal = 1147 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1148 Info.align.reset(); 1149 Info.flags = MachineMemOperand::MOLoad | 1150 MachineMemOperand::MODereferenceable; 1151 return true; 1152 } 1153 case Intrinsic::amdgcn_ds_gws_init: 1154 case Intrinsic::amdgcn_ds_gws_barrier: 1155 case Intrinsic::amdgcn_ds_gws_sema_v: 1156 case Intrinsic::amdgcn_ds_gws_sema_br: 1157 case Intrinsic::amdgcn_ds_gws_sema_p: 1158 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1159 Info.opc = ISD::INTRINSIC_VOID; 1160 1161 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1162 Info.ptrVal = 1163 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1164 1165 // This is an abstract access, but we need to specify a type and size. 1166 Info.memVT = MVT::i32; 1167 Info.size = 4; 1168 Info.align = Align(4); 1169 1170 Info.flags = MachineMemOperand::MOStore; 1171 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1172 Info.flags = MachineMemOperand::MOLoad; 1173 return true; 1174 } 1175 default: 1176 return false; 1177 } 1178 } 1179 1180 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1181 SmallVectorImpl<Value*> &Ops, 1182 Type *&AccessTy) const { 1183 switch (II->getIntrinsicID()) { 1184 case Intrinsic::amdgcn_atomic_inc: 1185 case Intrinsic::amdgcn_atomic_dec: 1186 case Intrinsic::amdgcn_ds_ordered_add: 1187 case Intrinsic::amdgcn_ds_ordered_swap: 1188 case Intrinsic::amdgcn_ds_append: 1189 case Intrinsic::amdgcn_ds_consume: 1190 case Intrinsic::amdgcn_ds_fadd: 1191 case Intrinsic::amdgcn_ds_fmin: 1192 case Intrinsic::amdgcn_ds_fmax: 1193 case Intrinsic::amdgcn_global_atomic_fadd: 1194 case Intrinsic::amdgcn_global_atomic_csub: { 1195 Value *Ptr = II->getArgOperand(0); 1196 AccessTy = II->getType(); 1197 Ops.push_back(Ptr); 1198 return true; 1199 } 1200 default: 1201 return false; 1202 } 1203 } 1204 1205 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1206 if (!Subtarget->hasFlatInstOffsets()) { 1207 // Flat instructions do not have offsets, and only have the register 1208 // address. 1209 return AM.BaseOffs == 0 && AM.Scale == 0; 1210 } 1211 1212 return AM.Scale == 0 && 1213 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1214 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, 1215 /*Signed=*/false)); 1216 } 1217 1218 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1219 if (Subtarget->hasFlatGlobalInsts()) 1220 return AM.Scale == 0 && 1221 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1222 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1223 /*Signed=*/true)); 1224 1225 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1226 // Assume the we will use FLAT for all global memory accesses 1227 // on VI. 1228 // FIXME: This assumption is currently wrong. On VI we still use 1229 // MUBUF instructions for the r + i addressing mode. As currently 1230 // implemented, the MUBUF instructions only work on buffer < 4GB. 1231 // It may be possible to support > 4GB buffers with MUBUF instructions, 1232 // by setting the stride value in the resource descriptor which would 1233 // increase the size limit to (stride * 4GB). However, this is risky, 1234 // because it has never been validated. 1235 return isLegalFlatAddressingMode(AM); 1236 } 1237 1238 return isLegalMUBUFAddressingMode(AM); 1239 } 1240 1241 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1242 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1243 // additionally can do r + r + i with addr64. 32-bit has more addressing 1244 // mode options. Depending on the resource constant, it can also do 1245 // (i64 r0) + (i32 r1) * (i14 i). 1246 // 1247 // Private arrays end up using a scratch buffer most of the time, so also 1248 // assume those use MUBUF instructions. Scratch loads / stores are currently 1249 // implemented as mubuf instructions with offen bit set, so slightly 1250 // different than the normal addr64. 1251 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1252 return false; 1253 1254 // FIXME: Since we can split immediate into soffset and immediate offset, 1255 // would it make sense to allow any immediate? 1256 1257 switch (AM.Scale) { 1258 case 0: // r + i or just i, depending on HasBaseReg. 1259 return true; 1260 case 1: 1261 return true; // We have r + r or r + i. 1262 case 2: 1263 if (AM.HasBaseReg) { 1264 // Reject 2 * r + r. 1265 return false; 1266 } 1267 1268 // Allow 2 * r as r + r 1269 // Or 2 * r + i is allowed as r + r + i. 1270 return true; 1271 default: // Don't allow n * r 1272 return false; 1273 } 1274 } 1275 1276 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1277 const AddrMode &AM, Type *Ty, 1278 unsigned AS, Instruction *I) const { 1279 // No global is ever allowed as a base. 1280 if (AM.BaseGV) 1281 return false; 1282 1283 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1284 return isLegalGlobalAddressingMode(AM); 1285 1286 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1287 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1288 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1289 // If the offset isn't a multiple of 4, it probably isn't going to be 1290 // correctly aligned. 1291 // FIXME: Can we get the real alignment here? 1292 if (AM.BaseOffs % 4 != 0) 1293 return isLegalMUBUFAddressingMode(AM); 1294 1295 // There are no SMRD extloads, so if we have to do a small type access we 1296 // will use a MUBUF load. 1297 // FIXME?: We also need to do this if unaligned, but we don't know the 1298 // alignment here. 1299 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1300 return isLegalGlobalAddressingMode(AM); 1301 1302 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1303 // SMRD instructions have an 8-bit, dword offset on SI. 1304 if (!isUInt<8>(AM.BaseOffs / 4)) 1305 return false; 1306 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1307 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1308 // in 8-bits, it can use a smaller encoding. 1309 if (!isUInt<32>(AM.BaseOffs / 4)) 1310 return false; 1311 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1312 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1313 if (!isUInt<20>(AM.BaseOffs)) 1314 return false; 1315 } else 1316 llvm_unreachable("unhandled generation"); 1317 1318 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1319 return true; 1320 1321 if (AM.Scale == 1 && AM.HasBaseReg) 1322 return true; 1323 1324 return false; 1325 1326 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1327 return isLegalMUBUFAddressingMode(AM); 1328 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1329 AS == AMDGPUAS::REGION_ADDRESS) { 1330 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1331 // field. 1332 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1333 // an 8-bit dword offset but we don't know the alignment here. 1334 if (!isUInt<16>(AM.BaseOffs)) 1335 return false; 1336 1337 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1338 return true; 1339 1340 if (AM.Scale == 1 && AM.HasBaseReg) 1341 return true; 1342 1343 return false; 1344 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1345 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1346 // For an unknown address space, this usually means that this is for some 1347 // reason being used for pure arithmetic, and not based on some addressing 1348 // computation. We don't have instructions that compute pointers with any 1349 // addressing modes, so treat them as having no offset like flat 1350 // instructions. 1351 return isLegalFlatAddressingMode(AM); 1352 } 1353 1354 // Assume a user alias of global for unknown address spaces. 1355 return isLegalGlobalAddressingMode(AM); 1356 } 1357 1358 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1359 const SelectionDAG &DAG) const { 1360 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1361 return (MemVT.getSizeInBits() <= 4 * 32); 1362 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1363 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1364 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1365 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1366 return (MemVT.getSizeInBits() <= 2 * 32); 1367 } 1368 return true; 1369 } 1370 1371 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1372 unsigned Size, unsigned AddrSpace, Align Alignment, 1373 MachineMemOperand::Flags Flags, bool *IsFast) const { 1374 if (IsFast) 1375 *IsFast = false; 1376 1377 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1378 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1379 // Check if alignment requirements for ds_read/write instructions are 1380 // disabled. 1381 if (Subtarget->hasUnalignedDSAccessEnabled() && 1382 !Subtarget->hasLDSMisalignedBug()) { 1383 if (IsFast) 1384 *IsFast = Alignment != Align(2); 1385 return true; 1386 } 1387 1388 if (Size == 64) { 1389 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 1390 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 1391 // with adjacent offsets. 1392 bool AlignedBy4 = Alignment >= Align(4); 1393 if (IsFast) 1394 *IsFast = AlignedBy4; 1395 1396 return AlignedBy4; 1397 } 1398 if (Size == 96) { 1399 // ds_read/write_b96 require 16-byte alignment on gfx8 and older. 1400 bool Aligned = Alignment >= Align(16); 1401 if (IsFast) 1402 *IsFast = Aligned; 1403 1404 return Aligned; 1405 } 1406 if (Size == 128) { 1407 // ds_read/write_b128 require 16-byte alignment on gfx8 and older, but we 1408 // can do a 8 byte aligned, 16 byte access in a single operation using 1409 // ds_read2/write2_b64. 1410 bool Aligned = Alignment >= Align(8); 1411 if (IsFast) 1412 *IsFast = Aligned; 1413 1414 return Aligned; 1415 } 1416 } 1417 1418 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1419 bool AlignedBy4 = Alignment >= Align(4); 1420 if (IsFast) 1421 *IsFast = AlignedBy4; 1422 1423 return AlignedBy4 || 1424 Subtarget->enableFlatScratch() || 1425 Subtarget->hasUnalignedScratchAccess(); 1426 } 1427 1428 // FIXME: We have to be conservative here and assume that flat operations 1429 // will access scratch. If we had access to the IR function, then we 1430 // could determine if any private memory was used in the function. 1431 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1432 !Subtarget->hasUnalignedScratchAccess()) { 1433 bool AlignedBy4 = Alignment >= Align(4); 1434 if (IsFast) 1435 *IsFast = AlignedBy4; 1436 1437 return AlignedBy4; 1438 } 1439 1440 if (Subtarget->hasUnalignedBufferAccessEnabled() && 1441 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1442 AddrSpace == AMDGPUAS::REGION_ADDRESS)) { 1443 // If we have an uniform constant load, it still requires using a slow 1444 // buffer instruction if unaligned. 1445 if (IsFast) { 1446 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1447 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss. 1448 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1449 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1450 Alignment >= Align(4) : Alignment != Align(2); 1451 } 1452 1453 return true; 1454 } 1455 1456 // Smaller than dword value must be aligned. 1457 if (Size < 32) 1458 return false; 1459 1460 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1461 // byte-address are ignored, thus forcing Dword alignment. 1462 // This applies to private, global, and constant memory. 1463 if (IsFast) 1464 *IsFast = true; 1465 1466 return Size >= 32 && Alignment >= Align(4); 1467 } 1468 1469 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1470 EVT VT, unsigned AddrSpace, unsigned Alignment, 1471 MachineMemOperand::Flags Flags, bool *IsFast) const { 1472 if (IsFast) 1473 *IsFast = false; 1474 1475 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1476 // which isn't a simple VT. 1477 // Until MVT is extended to handle this, simply check for the size and 1478 // rely on the condition below: allow accesses if the size is a multiple of 4. 1479 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1480 VT.getStoreSize() > 16)) { 1481 return false; 1482 } 1483 1484 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1485 Align(Alignment), Flags, IsFast); 1486 } 1487 1488 EVT SITargetLowering::getOptimalMemOpType( 1489 const MemOp &Op, const AttributeList &FuncAttributes) const { 1490 // FIXME: Should account for address space here. 1491 1492 // The default fallback uses the private pointer size as a guess for a type to 1493 // use. Make sure we switch these to 64-bit accesses. 1494 1495 if (Op.size() >= 16 && 1496 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1497 return MVT::v4i32; 1498 1499 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1500 return MVT::v2i32; 1501 1502 // Use the default. 1503 return MVT::Other; 1504 } 1505 1506 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1507 const MemSDNode *MemNode = cast<MemSDNode>(N); 1508 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1509 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1510 return I && I->getMetadata("amdgpu.noclobber"); 1511 } 1512 1513 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1514 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1515 AS == AMDGPUAS::PRIVATE_ADDRESS; 1516 } 1517 1518 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1519 unsigned DestAS) const { 1520 // Flat -> private/local is a simple truncate. 1521 // Flat -> global is no-op 1522 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1523 return true; 1524 1525 const GCNTargetMachine &TM = 1526 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1527 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1528 } 1529 1530 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1531 const MemSDNode *MemNode = cast<MemSDNode>(N); 1532 1533 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1534 } 1535 1536 TargetLoweringBase::LegalizeTypeAction 1537 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1538 int NumElts = VT.getVectorNumElements(); 1539 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16)) 1540 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1541 return TargetLoweringBase::getPreferredVectorAction(VT); 1542 } 1543 1544 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1545 Type *Ty) const { 1546 // FIXME: Could be smarter if called for vector constants. 1547 return true; 1548 } 1549 1550 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1551 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1552 switch (Op) { 1553 case ISD::LOAD: 1554 case ISD::STORE: 1555 1556 // These operations are done with 32-bit instructions anyway. 1557 case ISD::AND: 1558 case ISD::OR: 1559 case ISD::XOR: 1560 case ISD::SELECT: 1561 // TODO: Extensions? 1562 return true; 1563 default: 1564 return false; 1565 } 1566 } 1567 1568 // SimplifySetCC uses this function to determine whether or not it should 1569 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1570 if (VT == MVT::i1 && Op == ISD::SETCC) 1571 return false; 1572 1573 return TargetLowering::isTypeDesirableForOp(Op, VT); 1574 } 1575 1576 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1577 const SDLoc &SL, 1578 SDValue Chain, 1579 uint64_t Offset) const { 1580 const DataLayout &DL = DAG.getDataLayout(); 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1583 1584 const ArgDescriptor *InputPtrReg; 1585 const TargetRegisterClass *RC; 1586 LLT ArgTy; 1587 1588 std::tie(InputPtrReg, RC, ArgTy) = 1589 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1590 1591 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1592 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1593 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1594 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1595 1596 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1597 } 1598 1599 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1600 const SDLoc &SL) const { 1601 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1602 FIRST_IMPLICIT); 1603 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1604 } 1605 1606 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1607 const SDLoc &SL, SDValue Val, 1608 bool Signed, 1609 const ISD::InputArg *Arg) const { 1610 // First, if it is a widened vector, narrow it. 1611 if (VT.isVector() && 1612 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1613 EVT NarrowedVT = 1614 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1615 VT.getVectorNumElements()); 1616 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1617 DAG.getConstant(0, SL, MVT::i32)); 1618 } 1619 1620 // Then convert the vector elements or scalar value. 1621 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1622 VT.bitsLT(MemVT)) { 1623 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1624 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1625 } 1626 1627 if (MemVT.isFloatingPoint()) 1628 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1629 else if (Signed) 1630 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1631 else 1632 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1633 1634 return Val; 1635 } 1636 1637 SDValue SITargetLowering::lowerKernargMemParameter( 1638 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1639 uint64_t Offset, Align Alignment, bool Signed, 1640 const ISD::InputArg *Arg) const { 1641 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1642 1643 // Try to avoid using an extload by loading earlier than the argument address, 1644 // and extracting the relevant bits. The load should hopefully be merged with 1645 // the previous argument. 1646 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1647 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1648 int64_t AlignDownOffset = alignDown(Offset, 4); 1649 int64_t OffsetDiff = Offset - AlignDownOffset; 1650 1651 EVT IntVT = MemVT.changeTypeToInteger(); 1652 1653 // TODO: If we passed in the base kernel offset we could have a better 1654 // alignment than 4, but we don't really need it. 1655 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1656 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1657 MachineMemOperand::MODereferenceable | 1658 MachineMemOperand::MOInvariant); 1659 1660 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1661 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1662 1663 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1664 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1665 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1666 1667 1668 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1669 } 1670 1671 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1672 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1673 MachineMemOperand::MODereferenceable | 1674 MachineMemOperand::MOInvariant); 1675 1676 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1677 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1678 } 1679 1680 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1681 const SDLoc &SL, SDValue Chain, 1682 const ISD::InputArg &Arg) const { 1683 MachineFunction &MF = DAG.getMachineFunction(); 1684 MachineFrameInfo &MFI = MF.getFrameInfo(); 1685 1686 if (Arg.Flags.isByVal()) { 1687 unsigned Size = Arg.Flags.getByValSize(); 1688 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1689 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1690 } 1691 1692 unsigned ArgOffset = VA.getLocMemOffset(); 1693 unsigned ArgSize = VA.getValVT().getStoreSize(); 1694 1695 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1696 1697 // Create load nodes to retrieve arguments from the stack. 1698 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1699 SDValue ArgValue; 1700 1701 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1702 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1703 MVT MemVT = VA.getValVT(); 1704 1705 switch (VA.getLocInfo()) { 1706 default: 1707 break; 1708 case CCValAssign::BCvt: 1709 MemVT = VA.getLocVT(); 1710 break; 1711 case CCValAssign::SExt: 1712 ExtType = ISD::SEXTLOAD; 1713 break; 1714 case CCValAssign::ZExt: 1715 ExtType = ISD::ZEXTLOAD; 1716 break; 1717 case CCValAssign::AExt: 1718 ExtType = ISD::EXTLOAD; 1719 break; 1720 } 1721 1722 ArgValue = DAG.getExtLoad( 1723 ExtType, SL, VA.getLocVT(), Chain, FIN, 1724 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1725 MemVT); 1726 return ArgValue; 1727 } 1728 1729 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1730 const SIMachineFunctionInfo &MFI, 1731 EVT VT, 1732 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1733 const ArgDescriptor *Reg; 1734 const TargetRegisterClass *RC; 1735 LLT Ty; 1736 1737 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1738 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1739 } 1740 1741 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1742 CallingConv::ID CallConv, 1743 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1744 FunctionType *FType, 1745 SIMachineFunctionInfo *Info) { 1746 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1747 const ISD::InputArg *Arg = &Ins[I]; 1748 1749 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1750 "vector type argument should have been split"); 1751 1752 // First check if it's a PS input addr. 1753 if (CallConv == CallingConv::AMDGPU_PS && 1754 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1755 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1756 1757 // Inconveniently only the first part of the split is marked as isSplit, 1758 // so skip to the end. We only want to increment PSInputNum once for the 1759 // entire split argument. 1760 if (Arg->Flags.isSplit()) { 1761 while (!Arg->Flags.isSplitEnd()) { 1762 assert((!Arg->VT.isVector() || 1763 Arg->VT.getScalarSizeInBits() == 16) && 1764 "unexpected vector split in ps argument type"); 1765 if (!SkipArg) 1766 Splits.push_back(*Arg); 1767 Arg = &Ins[++I]; 1768 } 1769 } 1770 1771 if (SkipArg) { 1772 // We can safely skip PS inputs. 1773 Skipped.set(Arg->getOrigArgIndex()); 1774 ++PSInputNum; 1775 continue; 1776 } 1777 1778 Info->markPSInputAllocated(PSInputNum); 1779 if (Arg->Used) 1780 Info->markPSInputEnabled(PSInputNum); 1781 1782 ++PSInputNum; 1783 } 1784 1785 Splits.push_back(*Arg); 1786 } 1787 } 1788 1789 // Allocate special inputs passed in VGPRs. 1790 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1791 MachineFunction &MF, 1792 const SIRegisterInfo &TRI, 1793 SIMachineFunctionInfo &Info) const { 1794 const LLT S32 = LLT::scalar(32); 1795 MachineRegisterInfo &MRI = MF.getRegInfo(); 1796 1797 if (Info.hasWorkItemIDX()) { 1798 Register Reg = AMDGPU::VGPR0; 1799 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1800 1801 CCInfo.AllocateReg(Reg); 1802 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); 1803 } 1804 1805 if (Info.hasWorkItemIDY()) { 1806 Register Reg = AMDGPU::VGPR1; 1807 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1808 1809 CCInfo.AllocateReg(Reg); 1810 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1811 } 1812 1813 if (Info.hasWorkItemIDZ()) { 1814 Register Reg = AMDGPU::VGPR2; 1815 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1816 1817 CCInfo.AllocateReg(Reg); 1818 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1819 } 1820 } 1821 1822 // Try to allocate a VGPR at the end of the argument list, or if no argument 1823 // VGPRs are left allocating a stack slot. 1824 // If \p Mask is is given it indicates bitfield position in the register. 1825 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1826 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1827 ArgDescriptor Arg = ArgDescriptor()) { 1828 if (Arg.isSet()) 1829 return ArgDescriptor::createArg(Arg, Mask); 1830 1831 ArrayRef<MCPhysReg> ArgVGPRs 1832 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1833 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1834 if (RegIdx == ArgVGPRs.size()) { 1835 // Spill to stack required. 1836 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 1837 1838 return ArgDescriptor::createStack(Offset, Mask); 1839 } 1840 1841 unsigned Reg = ArgVGPRs[RegIdx]; 1842 Reg = CCInfo.AllocateReg(Reg); 1843 assert(Reg != AMDGPU::NoRegister); 1844 1845 MachineFunction &MF = CCInfo.getMachineFunction(); 1846 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1847 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1848 return ArgDescriptor::createRegister(Reg, Mask); 1849 } 1850 1851 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1852 const TargetRegisterClass *RC, 1853 unsigned NumArgRegs) { 1854 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1855 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1856 if (RegIdx == ArgSGPRs.size()) 1857 report_fatal_error("ran out of SGPRs for arguments"); 1858 1859 unsigned Reg = ArgSGPRs[RegIdx]; 1860 Reg = CCInfo.AllocateReg(Reg); 1861 assert(Reg != AMDGPU::NoRegister); 1862 1863 MachineFunction &MF = CCInfo.getMachineFunction(); 1864 MF.addLiveIn(Reg, RC); 1865 return ArgDescriptor::createRegister(Reg); 1866 } 1867 1868 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { 1869 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1870 } 1871 1872 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { 1873 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1874 } 1875 1876 /// Allocate implicit function VGPR arguments at the end of allocated user 1877 /// arguments. 1878 void SITargetLowering::allocateSpecialInputVGPRs( 1879 CCState &CCInfo, MachineFunction &MF, 1880 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1881 const unsigned Mask = 0x3ff; 1882 ArgDescriptor Arg; 1883 1884 if (Info.hasWorkItemIDX()) { 1885 Arg = allocateVGPR32Input(CCInfo, Mask); 1886 Info.setWorkItemIDX(Arg); 1887 } 1888 1889 if (Info.hasWorkItemIDY()) { 1890 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 1891 Info.setWorkItemIDY(Arg); 1892 } 1893 1894 if (Info.hasWorkItemIDZ()) 1895 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 1896 } 1897 1898 /// Allocate implicit function VGPR arguments in fixed registers. 1899 void SITargetLowering::allocateSpecialInputVGPRsFixed( 1900 CCState &CCInfo, MachineFunction &MF, 1901 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1902 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 1903 if (!Reg) 1904 report_fatal_error("failed to allocated VGPR for implicit arguments"); 1905 1906 const unsigned Mask = 0x3ff; 1907 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1908 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 1909 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 1910 } 1911 1912 void SITargetLowering::allocateSpecialInputSGPRs( 1913 CCState &CCInfo, 1914 MachineFunction &MF, 1915 const SIRegisterInfo &TRI, 1916 SIMachineFunctionInfo &Info) const { 1917 auto &ArgInfo = Info.getArgInfo(); 1918 1919 // TODO: Unify handling with private memory pointers. 1920 1921 if (Info.hasDispatchPtr()) 1922 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); 1923 1924 if (Info.hasQueuePtr()) 1925 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); 1926 1927 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 1928 // constant offset from the kernarg segment. 1929 if (Info.hasImplicitArgPtr()) 1930 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); 1931 1932 if (Info.hasDispatchID()) 1933 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); 1934 1935 // flat_scratch_init is not applicable for non-kernel functions. 1936 1937 if (Info.hasWorkGroupIDX()) 1938 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); 1939 1940 if (Info.hasWorkGroupIDY()) 1941 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); 1942 1943 if (Info.hasWorkGroupIDZ()) 1944 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); 1945 } 1946 1947 // Allocate special inputs passed in user SGPRs. 1948 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 1949 MachineFunction &MF, 1950 const SIRegisterInfo &TRI, 1951 SIMachineFunctionInfo &Info) const { 1952 if (Info.hasImplicitBufferPtr()) { 1953 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 1954 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 1955 CCInfo.AllocateReg(ImplicitBufferPtrReg); 1956 } 1957 1958 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 1959 if (Info.hasPrivateSegmentBuffer()) { 1960 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 1961 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 1962 CCInfo.AllocateReg(PrivateSegmentBufferReg); 1963 } 1964 1965 if (Info.hasDispatchPtr()) { 1966 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 1967 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 1968 CCInfo.AllocateReg(DispatchPtrReg); 1969 } 1970 1971 if (Info.hasQueuePtr()) { 1972 Register QueuePtrReg = Info.addQueuePtr(TRI); 1973 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 1974 CCInfo.AllocateReg(QueuePtrReg); 1975 } 1976 1977 if (Info.hasKernargSegmentPtr()) { 1978 MachineRegisterInfo &MRI = MF.getRegInfo(); 1979 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 1980 CCInfo.AllocateReg(InputPtrReg); 1981 1982 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 1983 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1984 } 1985 1986 if (Info.hasDispatchID()) { 1987 Register DispatchIDReg = Info.addDispatchID(TRI); 1988 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 1989 CCInfo.AllocateReg(DispatchIDReg); 1990 } 1991 1992 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 1993 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 1994 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 1995 CCInfo.AllocateReg(FlatScratchInitReg); 1996 } 1997 1998 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 1999 // these from the dispatch pointer. 2000 } 2001 2002 // Allocate special input registers that are initialized per-wave. 2003 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2004 MachineFunction &MF, 2005 SIMachineFunctionInfo &Info, 2006 CallingConv::ID CallConv, 2007 bool IsShader) const { 2008 if (Info.hasWorkGroupIDX()) { 2009 Register Reg = Info.addWorkGroupIDX(); 2010 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2011 CCInfo.AllocateReg(Reg); 2012 } 2013 2014 if (Info.hasWorkGroupIDY()) { 2015 Register Reg = Info.addWorkGroupIDY(); 2016 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2017 CCInfo.AllocateReg(Reg); 2018 } 2019 2020 if (Info.hasWorkGroupIDZ()) { 2021 Register Reg = Info.addWorkGroupIDZ(); 2022 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2023 CCInfo.AllocateReg(Reg); 2024 } 2025 2026 if (Info.hasWorkGroupInfo()) { 2027 Register Reg = Info.addWorkGroupInfo(); 2028 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2029 CCInfo.AllocateReg(Reg); 2030 } 2031 2032 if (Info.hasPrivateSegmentWaveByteOffset()) { 2033 // Scratch wave offset passed in system SGPR. 2034 unsigned PrivateSegmentWaveByteOffsetReg; 2035 2036 if (IsShader) { 2037 PrivateSegmentWaveByteOffsetReg = 2038 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2039 2040 // This is true if the scratch wave byte offset doesn't have a fixed 2041 // location. 2042 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2043 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2044 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2045 } 2046 } else 2047 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2048 2049 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2050 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2051 } 2052 } 2053 2054 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2055 MachineFunction &MF, 2056 const SIRegisterInfo &TRI, 2057 SIMachineFunctionInfo &Info) { 2058 // Now that we've figured out where the scratch register inputs are, see if 2059 // should reserve the arguments and use them directly. 2060 MachineFrameInfo &MFI = MF.getFrameInfo(); 2061 bool HasStackObjects = MFI.hasStackObjects(); 2062 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2063 2064 // Record that we know we have non-spill stack objects so we don't need to 2065 // check all stack objects later. 2066 if (HasStackObjects) 2067 Info.setHasNonSpillStackObjects(true); 2068 2069 // Everything live out of a block is spilled with fast regalloc, so it's 2070 // almost certain that spilling will be required. 2071 if (TM.getOptLevel() == CodeGenOpt::None) 2072 HasStackObjects = true; 2073 2074 // For now assume stack access is needed in any callee functions, so we need 2075 // the scratch registers to pass in. 2076 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2077 2078 if (!ST.enableFlatScratch()) { 2079 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2080 // If we have stack objects, we unquestionably need the private buffer 2081 // resource. For the Code Object V2 ABI, this will be the first 4 user 2082 // SGPR inputs. We can reserve those and use them directly. 2083 2084 Register PrivateSegmentBufferReg = 2085 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2086 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2087 } else { 2088 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2089 // We tentatively reserve the last registers (skipping the last registers 2090 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2091 // we'll replace these with the ones immediately after those which were 2092 // really allocated. In the prologue copies will be inserted from the 2093 // argument to these reserved registers. 2094 2095 // Without HSA, relocations are used for the scratch pointer and the 2096 // buffer resource setup is always inserted in the prologue. Scratch wave 2097 // offset is still in an input SGPR. 2098 Info.setScratchRSrcReg(ReservedBufferReg); 2099 } 2100 } 2101 2102 MachineRegisterInfo &MRI = MF.getRegInfo(); 2103 2104 // For entry functions we have to set up the stack pointer if we use it, 2105 // whereas non-entry functions get this "for free". This means there is no 2106 // intrinsic advantage to using S32 over S34 in cases where we do not have 2107 // calls but do need a frame pointer (i.e. if we are requested to have one 2108 // because frame pointer elimination is disabled). To keep things simple we 2109 // only ever use S32 as the call ABI stack pointer, and so using it does not 2110 // imply we need a separate frame pointer. 2111 // 2112 // Try to use s32 as the SP, but move it if it would interfere with input 2113 // arguments. This won't work with calls though. 2114 // 2115 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2116 // registers. 2117 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2118 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2119 } else { 2120 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2121 2122 if (MFI.hasCalls()) 2123 report_fatal_error("call in graphics shader with too many input SGPRs"); 2124 2125 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2126 if (!MRI.isLiveIn(Reg)) { 2127 Info.setStackPtrOffsetReg(Reg); 2128 break; 2129 } 2130 } 2131 2132 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2133 report_fatal_error("failed to find register for SP"); 2134 } 2135 2136 // hasFP should be accurate for entry functions even before the frame is 2137 // finalized, because it does not rely on the known stack size, only 2138 // properties like whether variable sized objects are present. 2139 if (ST.getFrameLowering()->hasFP(MF)) { 2140 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2141 } 2142 } 2143 2144 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2145 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2146 return !Info->isEntryFunction(); 2147 } 2148 2149 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2150 2151 } 2152 2153 void SITargetLowering::insertCopiesSplitCSR( 2154 MachineBasicBlock *Entry, 2155 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2156 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2157 2158 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2159 if (!IStart) 2160 return; 2161 2162 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2163 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2164 MachineBasicBlock::iterator MBBI = Entry->begin(); 2165 for (const MCPhysReg *I = IStart; *I; ++I) { 2166 const TargetRegisterClass *RC = nullptr; 2167 if (AMDGPU::SReg_64RegClass.contains(*I)) 2168 RC = &AMDGPU::SGPR_64RegClass; 2169 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2170 RC = &AMDGPU::SGPR_32RegClass; 2171 else 2172 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2173 2174 Register NewVR = MRI->createVirtualRegister(RC); 2175 // Create copy from CSR to a virtual register. 2176 Entry->addLiveIn(*I); 2177 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2178 .addReg(*I); 2179 2180 // Insert the copy-back instructions right before the terminator. 2181 for (auto *Exit : Exits) 2182 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2183 TII->get(TargetOpcode::COPY), *I) 2184 .addReg(NewVR); 2185 } 2186 } 2187 2188 SDValue SITargetLowering::LowerFormalArguments( 2189 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2190 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2191 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2192 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2193 2194 MachineFunction &MF = DAG.getMachineFunction(); 2195 const Function &Fn = MF.getFunction(); 2196 FunctionType *FType = MF.getFunction().getFunctionType(); 2197 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2198 2199 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2200 DiagnosticInfoUnsupported NoGraphicsHSA( 2201 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2202 DAG.getContext()->diagnose(NoGraphicsHSA); 2203 return DAG.getEntryNode(); 2204 } 2205 2206 SmallVector<ISD::InputArg, 16> Splits; 2207 SmallVector<CCValAssign, 16> ArgLocs; 2208 BitVector Skipped(Ins.size()); 2209 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2210 *DAG.getContext()); 2211 2212 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2213 bool IsKernel = AMDGPU::isKernel(CallConv); 2214 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2215 2216 if (IsGraphics) { 2217 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2218 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && 2219 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2220 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2221 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2222 !Info->hasWorkItemIDZ()); 2223 } 2224 2225 if (CallConv == CallingConv::AMDGPU_PS) { 2226 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2227 2228 // At least one interpolation mode must be enabled or else the GPU will 2229 // hang. 2230 // 2231 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2232 // set PSInputAddr, the user wants to enable some bits after the compilation 2233 // based on run-time states. Since we can't know what the final PSInputEna 2234 // will look like, so we shouldn't do anything here and the user should take 2235 // responsibility for the correct programming. 2236 // 2237 // Otherwise, the following restrictions apply: 2238 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2239 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2240 // enabled too. 2241 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2242 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2243 CCInfo.AllocateReg(AMDGPU::VGPR0); 2244 CCInfo.AllocateReg(AMDGPU::VGPR1); 2245 Info->markPSInputAllocated(0); 2246 Info->markPSInputEnabled(0); 2247 } 2248 if (Subtarget->isAmdPalOS()) { 2249 // For isAmdPalOS, the user does not enable some bits after compilation 2250 // based on run-time states; the register values being generated here are 2251 // the final ones set in hardware. Therefore we need to apply the 2252 // workaround to PSInputAddr and PSInputEnable together. (The case where 2253 // a bit is set in PSInputAddr but not PSInputEnable is where the 2254 // frontend set up an input arg for a particular interpolation mode, but 2255 // nothing uses that input arg. Really we should have an earlier pass 2256 // that removes such an arg.) 2257 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2258 if ((PsInputBits & 0x7F) == 0 || 2259 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2260 Info->markPSInputEnabled( 2261 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2262 } 2263 } else if (IsKernel) { 2264 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2265 } else { 2266 Splits.append(Ins.begin(), Ins.end()); 2267 } 2268 2269 if (IsEntryFunc) { 2270 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2271 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2272 } else { 2273 // For the fixed ABI, pass workitem IDs in the last argument register. 2274 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 2275 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2276 } 2277 2278 if (IsKernel) { 2279 analyzeFormalArgumentsCompute(CCInfo, Ins); 2280 } else { 2281 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2282 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2283 } 2284 2285 SmallVector<SDValue, 16> Chains; 2286 2287 // FIXME: This is the minimum kernel argument alignment. We should improve 2288 // this to the maximum alignment of the arguments. 2289 // 2290 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2291 // kern arg offset. 2292 const Align KernelArgBaseAlign = Align(16); 2293 2294 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2295 const ISD::InputArg &Arg = Ins[i]; 2296 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2297 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2298 continue; 2299 } 2300 2301 CCValAssign &VA = ArgLocs[ArgIdx++]; 2302 MVT VT = VA.getLocVT(); 2303 2304 if (IsEntryFunc && VA.isMemLoc()) { 2305 VT = Ins[i].VT; 2306 EVT MemVT = VA.getLocVT(); 2307 2308 const uint64_t Offset = VA.getLocMemOffset(); 2309 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2310 2311 if (Arg.Flags.isByRef()) { 2312 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2313 2314 const GCNTargetMachine &TM = 2315 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2316 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2317 Arg.Flags.getPointerAddrSpace())) { 2318 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2319 Arg.Flags.getPointerAddrSpace()); 2320 } 2321 2322 InVals.push_back(Ptr); 2323 continue; 2324 } 2325 2326 SDValue Arg = lowerKernargMemParameter( 2327 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2328 Chains.push_back(Arg.getValue(1)); 2329 2330 auto *ParamTy = 2331 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2332 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2333 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2334 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2335 // On SI local pointers are just offsets into LDS, so they are always 2336 // less than 16-bits. On CI and newer they could potentially be 2337 // real pointers, so we can't guarantee their size. 2338 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2339 DAG.getValueType(MVT::i16)); 2340 } 2341 2342 InVals.push_back(Arg); 2343 continue; 2344 } else if (!IsEntryFunc && VA.isMemLoc()) { 2345 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2346 InVals.push_back(Val); 2347 if (!Arg.Flags.isByVal()) 2348 Chains.push_back(Val.getValue(1)); 2349 continue; 2350 } 2351 2352 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2353 2354 Register Reg = VA.getLocReg(); 2355 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2356 EVT ValVT = VA.getValVT(); 2357 2358 Reg = MF.addLiveIn(Reg, RC); 2359 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2360 2361 if (Arg.Flags.isSRet()) { 2362 // The return object should be reasonably addressable. 2363 2364 // FIXME: This helps when the return is a real sret. If it is a 2365 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2366 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2367 unsigned NumBits 2368 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2369 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2370 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2371 } 2372 2373 // If this is an 8 or 16-bit value, it is really passed promoted 2374 // to 32 bits. Insert an assert[sz]ext to capture this, then 2375 // truncate to the right size. 2376 switch (VA.getLocInfo()) { 2377 case CCValAssign::Full: 2378 break; 2379 case CCValAssign::BCvt: 2380 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2381 break; 2382 case CCValAssign::SExt: 2383 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2384 DAG.getValueType(ValVT)); 2385 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2386 break; 2387 case CCValAssign::ZExt: 2388 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2389 DAG.getValueType(ValVT)); 2390 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2391 break; 2392 case CCValAssign::AExt: 2393 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2394 break; 2395 default: 2396 llvm_unreachable("Unknown loc info!"); 2397 } 2398 2399 InVals.push_back(Val); 2400 } 2401 2402 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 2403 // Special inputs come after user arguments. 2404 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2405 } 2406 2407 // Start adding system SGPRs. 2408 if (IsEntryFunc) { 2409 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2410 } else { 2411 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2412 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2413 } 2414 2415 auto &ArgUsageInfo = 2416 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2417 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2418 2419 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2420 Info->setBytesInStackArgArea(StackArgSize); 2421 2422 return Chains.empty() ? Chain : 2423 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2424 } 2425 2426 // TODO: If return values can't fit in registers, we should return as many as 2427 // possible in registers before passing on stack. 2428 bool SITargetLowering::CanLowerReturn( 2429 CallingConv::ID CallConv, 2430 MachineFunction &MF, bool IsVarArg, 2431 const SmallVectorImpl<ISD::OutputArg> &Outs, 2432 LLVMContext &Context) const { 2433 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2434 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2435 // for shaders. Vector types should be explicitly handled by CC. 2436 if (AMDGPU::isEntryFunctionCC(CallConv)) 2437 return true; 2438 2439 SmallVector<CCValAssign, 16> RVLocs; 2440 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2441 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2442 } 2443 2444 SDValue 2445 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2446 bool isVarArg, 2447 const SmallVectorImpl<ISD::OutputArg> &Outs, 2448 const SmallVectorImpl<SDValue> &OutVals, 2449 const SDLoc &DL, SelectionDAG &DAG) const { 2450 MachineFunction &MF = DAG.getMachineFunction(); 2451 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2452 2453 if (AMDGPU::isKernel(CallConv)) { 2454 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2455 OutVals, DL, DAG); 2456 } 2457 2458 bool IsShader = AMDGPU::isShader(CallConv); 2459 2460 Info->setIfReturnsVoid(Outs.empty()); 2461 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2462 2463 // CCValAssign - represent the assignment of the return value to a location. 2464 SmallVector<CCValAssign, 48> RVLocs; 2465 SmallVector<ISD::OutputArg, 48> Splits; 2466 2467 // CCState - Info about the registers and stack slots. 2468 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2469 *DAG.getContext()); 2470 2471 // Analyze outgoing return values. 2472 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2473 2474 SDValue Flag; 2475 SmallVector<SDValue, 48> RetOps; 2476 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2477 2478 // Add return address for callable functions. 2479 if (!Info->isEntryFunction()) { 2480 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2481 SDValue ReturnAddrReg = CreateLiveInRegister( 2482 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2483 2484 SDValue ReturnAddrVirtualReg = DAG.getRegister( 2485 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), 2486 MVT::i64); 2487 Chain = 2488 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2489 Flag = Chain.getValue(1); 2490 RetOps.push_back(ReturnAddrVirtualReg); 2491 } 2492 2493 // Copy the result values into the output registers. 2494 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2495 ++I, ++RealRVLocIdx) { 2496 CCValAssign &VA = RVLocs[I]; 2497 assert(VA.isRegLoc() && "Can only return in registers!"); 2498 // TODO: Partially return in registers if return values don't fit. 2499 SDValue Arg = OutVals[RealRVLocIdx]; 2500 2501 // Copied from other backends. 2502 switch (VA.getLocInfo()) { 2503 case CCValAssign::Full: 2504 break; 2505 case CCValAssign::BCvt: 2506 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2507 break; 2508 case CCValAssign::SExt: 2509 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2510 break; 2511 case CCValAssign::ZExt: 2512 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2513 break; 2514 case CCValAssign::AExt: 2515 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2516 break; 2517 default: 2518 llvm_unreachable("Unknown loc info!"); 2519 } 2520 2521 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2522 Flag = Chain.getValue(1); 2523 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2524 } 2525 2526 // FIXME: Does sret work properly? 2527 if (!Info->isEntryFunction()) { 2528 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2529 const MCPhysReg *I = 2530 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2531 if (I) { 2532 for (; *I; ++I) { 2533 if (AMDGPU::SReg_64RegClass.contains(*I)) 2534 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2535 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2536 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2537 else 2538 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2539 } 2540 } 2541 } 2542 2543 // Update chain and glue. 2544 RetOps[0] = Chain; 2545 if (Flag.getNode()) 2546 RetOps.push_back(Flag); 2547 2548 unsigned Opc = AMDGPUISD::ENDPGM; 2549 if (!IsWaveEnd) 2550 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2551 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2552 } 2553 2554 SDValue SITargetLowering::LowerCallResult( 2555 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2556 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2557 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2558 SDValue ThisVal) const { 2559 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2560 2561 // Assign locations to each value returned by this call. 2562 SmallVector<CCValAssign, 16> RVLocs; 2563 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2564 *DAG.getContext()); 2565 CCInfo.AnalyzeCallResult(Ins, RetCC); 2566 2567 // Copy all of the result registers out of their specified physreg. 2568 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2569 CCValAssign VA = RVLocs[i]; 2570 SDValue Val; 2571 2572 if (VA.isRegLoc()) { 2573 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2574 Chain = Val.getValue(1); 2575 InFlag = Val.getValue(2); 2576 } else if (VA.isMemLoc()) { 2577 report_fatal_error("TODO: return values in memory"); 2578 } else 2579 llvm_unreachable("unknown argument location type"); 2580 2581 switch (VA.getLocInfo()) { 2582 case CCValAssign::Full: 2583 break; 2584 case CCValAssign::BCvt: 2585 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2586 break; 2587 case CCValAssign::ZExt: 2588 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2589 DAG.getValueType(VA.getValVT())); 2590 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2591 break; 2592 case CCValAssign::SExt: 2593 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2594 DAG.getValueType(VA.getValVT())); 2595 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2596 break; 2597 case CCValAssign::AExt: 2598 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2599 break; 2600 default: 2601 llvm_unreachable("Unknown loc info!"); 2602 } 2603 2604 InVals.push_back(Val); 2605 } 2606 2607 return Chain; 2608 } 2609 2610 // Add code to pass special inputs required depending on used features separate 2611 // from the explicit user arguments present in the IR. 2612 void SITargetLowering::passSpecialInputs( 2613 CallLoweringInfo &CLI, 2614 CCState &CCInfo, 2615 const SIMachineFunctionInfo &Info, 2616 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2617 SmallVectorImpl<SDValue> &MemOpChains, 2618 SDValue Chain) const { 2619 // If we don't have a call site, this was a call inserted by 2620 // legalization. These can never use special inputs. 2621 if (!CLI.CB) 2622 return; 2623 2624 SelectionDAG &DAG = CLI.DAG; 2625 const SDLoc &DL = CLI.DL; 2626 2627 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2628 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2629 2630 const AMDGPUFunctionArgInfo *CalleeArgInfo 2631 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2632 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2633 auto &ArgUsageInfo = 2634 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2635 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2636 } 2637 2638 // TODO: Unify with private memory register handling. This is complicated by 2639 // the fact that at least in kernels, the input argument is not necessarily 2640 // in the same location as the input. 2641 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2642 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2643 AMDGPUFunctionArgInfo::QUEUE_PTR, 2644 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 2645 AMDGPUFunctionArgInfo::DISPATCH_ID, 2646 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2647 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2648 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 2649 }; 2650 2651 for (auto InputID : InputRegs) { 2652 const ArgDescriptor *OutgoingArg; 2653 const TargetRegisterClass *ArgRC; 2654 LLT ArgTy; 2655 2656 std::tie(OutgoingArg, ArgRC, ArgTy) = 2657 CalleeArgInfo->getPreloadedValue(InputID); 2658 if (!OutgoingArg) 2659 continue; 2660 2661 const ArgDescriptor *IncomingArg; 2662 const TargetRegisterClass *IncomingArgRC; 2663 LLT Ty; 2664 std::tie(IncomingArg, IncomingArgRC, Ty) = 2665 CallerArgInfo.getPreloadedValue(InputID); 2666 assert(IncomingArgRC == ArgRC); 2667 2668 // All special arguments are ints for now. 2669 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2670 SDValue InputReg; 2671 2672 if (IncomingArg) { 2673 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2674 } else { 2675 // The implicit arg ptr is special because it doesn't have a corresponding 2676 // input for kernels, and is computed from the kernarg segment pointer. 2677 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2678 InputReg = getImplicitArgPtr(DAG, DL); 2679 } 2680 2681 if (OutgoingArg->isRegister()) { 2682 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2683 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2684 report_fatal_error("failed to allocate implicit input argument"); 2685 } else { 2686 unsigned SpecialArgOffset = 2687 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2688 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2689 SpecialArgOffset); 2690 MemOpChains.push_back(ArgStore); 2691 } 2692 } 2693 2694 // Pack workitem IDs into a single register or pass it as is if already 2695 // packed. 2696 const ArgDescriptor *OutgoingArg; 2697 const TargetRegisterClass *ArgRC; 2698 LLT Ty; 2699 2700 std::tie(OutgoingArg, ArgRC, Ty) = 2701 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2702 if (!OutgoingArg) 2703 std::tie(OutgoingArg, ArgRC, Ty) = 2704 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2705 if (!OutgoingArg) 2706 std::tie(OutgoingArg, ArgRC, Ty) = 2707 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2708 if (!OutgoingArg) 2709 return; 2710 2711 const ArgDescriptor *IncomingArgX = std::get<0>( 2712 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2713 const ArgDescriptor *IncomingArgY = std::get<0>( 2714 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2715 const ArgDescriptor *IncomingArgZ = std::get<0>( 2716 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2717 2718 SDValue InputReg; 2719 SDLoc SL; 2720 2721 // If incoming ids are not packed we need to pack them. 2722 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) 2723 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2724 2725 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 2726 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2727 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2728 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2729 InputReg = InputReg.getNode() ? 2730 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2731 } 2732 2733 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 2734 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2735 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2736 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2737 InputReg = InputReg.getNode() ? 2738 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2739 } 2740 2741 if (!InputReg.getNode()) { 2742 // Workitem ids are already packed, any of present incoming arguments 2743 // will carry all required fields. 2744 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2745 IncomingArgX ? *IncomingArgX : 2746 IncomingArgY ? *IncomingArgY : 2747 *IncomingArgZ, ~0u); 2748 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2749 } 2750 2751 if (OutgoingArg->isRegister()) { 2752 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2753 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2754 } else { 2755 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2756 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2757 SpecialArgOffset); 2758 MemOpChains.push_back(ArgStore); 2759 } 2760 } 2761 2762 static bool canGuaranteeTCO(CallingConv::ID CC) { 2763 return CC == CallingConv::Fast; 2764 } 2765 2766 /// Return true if we might ever do TCO for calls with this calling convention. 2767 static bool mayTailCallThisCC(CallingConv::ID CC) { 2768 switch (CC) { 2769 case CallingConv::C: 2770 return true; 2771 default: 2772 return canGuaranteeTCO(CC); 2773 } 2774 } 2775 2776 bool SITargetLowering::isEligibleForTailCallOptimization( 2777 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2778 const SmallVectorImpl<ISD::OutputArg> &Outs, 2779 const SmallVectorImpl<SDValue> &OutVals, 2780 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2781 if (!mayTailCallThisCC(CalleeCC)) 2782 return false; 2783 2784 MachineFunction &MF = DAG.getMachineFunction(); 2785 const Function &CallerF = MF.getFunction(); 2786 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2787 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2788 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2789 2790 // Kernels aren't callable, and don't have a live in return address so it 2791 // doesn't make sense to do a tail call with entry functions. 2792 if (!CallerPreserved) 2793 return false; 2794 2795 bool CCMatch = CallerCC == CalleeCC; 2796 2797 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2798 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2799 return true; 2800 return false; 2801 } 2802 2803 // TODO: Can we handle var args? 2804 if (IsVarArg) 2805 return false; 2806 2807 for (const Argument &Arg : CallerF.args()) { 2808 if (Arg.hasByValAttr()) 2809 return false; 2810 } 2811 2812 LLVMContext &Ctx = *DAG.getContext(); 2813 2814 // Check that the call results are passed in the same way. 2815 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2816 CCAssignFnForCall(CalleeCC, IsVarArg), 2817 CCAssignFnForCall(CallerCC, IsVarArg))) 2818 return false; 2819 2820 // The callee has to preserve all registers the caller needs to preserve. 2821 if (!CCMatch) { 2822 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2823 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2824 return false; 2825 } 2826 2827 // Nothing more to check if the callee is taking no arguments. 2828 if (Outs.empty()) 2829 return true; 2830 2831 SmallVector<CCValAssign, 16> ArgLocs; 2832 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2833 2834 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2835 2836 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2837 // If the stack arguments for this call do not fit into our own save area then 2838 // the call cannot be made tail. 2839 // TODO: Is this really necessary? 2840 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2841 return false; 2842 2843 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2844 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2845 } 2846 2847 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2848 if (!CI->isTailCall()) 2849 return false; 2850 2851 const Function *ParentFn = CI->getParent()->getParent(); 2852 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2853 return false; 2854 return true; 2855 } 2856 2857 // The wave scratch offset register is used as the global base pointer. 2858 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2859 SmallVectorImpl<SDValue> &InVals) const { 2860 SelectionDAG &DAG = CLI.DAG; 2861 const SDLoc &DL = CLI.DL; 2862 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2863 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2864 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2865 SDValue Chain = CLI.Chain; 2866 SDValue Callee = CLI.Callee; 2867 bool &IsTailCall = CLI.IsTailCall; 2868 CallingConv::ID CallConv = CLI.CallConv; 2869 bool IsVarArg = CLI.IsVarArg; 2870 bool IsSibCall = false; 2871 bool IsThisReturn = false; 2872 MachineFunction &MF = DAG.getMachineFunction(); 2873 2874 if (Callee.isUndef() || isNullConstant(Callee)) { 2875 if (!CLI.IsTailCall) { 2876 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 2877 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 2878 } 2879 2880 return Chain; 2881 } 2882 2883 if (IsVarArg) { 2884 return lowerUnhandledCall(CLI, InVals, 2885 "unsupported call to variadic function "); 2886 } 2887 2888 if (!CLI.CB) 2889 report_fatal_error("unsupported libcall legalization"); 2890 2891 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 2892 !CLI.CB->getCalledFunction() && CallConv != CallingConv::AMDGPU_Gfx) { 2893 return lowerUnhandledCall(CLI, InVals, 2894 "unsupported indirect call to function "); 2895 } 2896 2897 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2898 return lowerUnhandledCall(CLI, InVals, 2899 "unsupported required tail call to function "); 2900 } 2901 2902 if (AMDGPU::isShader(CallConv)) { 2903 // Note the issue is with the CC of the called function, not of the call 2904 // itself. 2905 return lowerUnhandledCall(CLI, InVals, 2906 "unsupported call to a shader function "); 2907 } 2908 2909 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && 2910 CallConv != CallingConv::AMDGPU_Gfx) { 2911 // Only allow calls with specific calling conventions. 2912 return lowerUnhandledCall(CLI, InVals, 2913 "unsupported calling convention for call from " 2914 "graphics shader of function "); 2915 } 2916 2917 if (IsTailCall) { 2918 IsTailCall = isEligibleForTailCallOptimization( 2919 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2920 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 2921 report_fatal_error("failed to perform tail call elimination on a call " 2922 "site marked musttail"); 2923 } 2924 2925 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2926 2927 // A sibling call is one where we're under the usual C ABI and not planning 2928 // to change that but can still do a tail call: 2929 if (!TailCallOpt && IsTailCall) 2930 IsSibCall = true; 2931 2932 if (IsTailCall) 2933 ++NumTailCalls; 2934 } 2935 2936 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2937 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2938 SmallVector<SDValue, 8> MemOpChains; 2939 2940 // Analyze operands of the call, assigning locations to each operand. 2941 SmallVector<CCValAssign, 16> ArgLocs; 2942 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2943 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 2944 2945 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 2946 CallConv != CallingConv::AMDGPU_Gfx) { 2947 // With a fixed ABI, allocate fixed registers before user arguments. 2948 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2949 } 2950 2951 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 2952 2953 // Get a count of how many bytes are to be pushed on the stack. 2954 unsigned NumBytes = CCInfo.getNextStackOffset(); 2955 2956 if (IsSibCall) { 2957 // Since we're not changing the ABI to make this a tail call, the memory 2958 // operands are already available in the caller's incoming argument space. 2959 NumBytes = 0; 2960 } 2961 2962 // FPDiff is the byte offset of the call's argument area from the callee's. 2963 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2964 // by this amount for a tail call. In a sibling call it must be 0 because the 2965 // caller will deallocate the entire stack and the callee still expects its 2966 // arguments to begin at SP+0. Completely unused for non-tail calls. 2967 int32_t FPDiff = 0; 2968 MachineFrameInfo &MFI = MF.getFrameInfo(); 2969 2970 // Adjust the stack pointer for the new arguments... 2971 // These operations are automatically eliminated by the prolog/epilog pass 2972 if (!IsSibCall) { 2973 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 2974 2975 if (!Subtarget->enableFlatScratch()) { 2976 SmallVector<SDValue, 4> CopyFromChains; 2977 2978 // In the HSA case, this should be an identity copy. 2979 SDValue ScratchRSrcReg 2980 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 2981 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 2982 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 2983 Chain = DAG.getTokenFactor(DL, CopyFromChains); 2984 } 2985 } 2986 2987 MVT PtrVT = MVT::i32; 2988 2989 // Walk the register/memloc assignments, inserting copies/loads. 2990 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2991 CCValAssign &VA = ArgLocs[i]; 2992 SDValue Arg = OutVals[i]; 2993 2994 // Promote the value if needed. 2995 switch (VA.getLocInfo()) { 2996 case CCValAssign::Full: 2997 break; 2998 case CCValAssign::BCvt: 2999 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3000 break; 3001 case CCValAssign::ZExt: 3002 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3003 break; 3004 case CCValAssign::SExt: 3005 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3006 break; 3007 case CCValAssign::AExt: 3008 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3009 break; 3010 case CCValAssign::FPExt: 3011 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3012 break; 3013 default: 3014 llvm_unreachable("Unknown loc info!"); 3015 } 3016 3017 if (VA.isRegLoc()) { 3018 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3019 } else { 3020 assert(VA.isMemLoc()); 3021 3022 SDValue DstAddr; 3023 MachinePointerInfo DstInfo; 3024 3025 unsigned LocMemOffset = VA.getLocMemOffset(); 3026 int32_t Offset = LocMemOffset; 3027 3028 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3029 MaybeAlign Alignment; 3030 3031 if (IsTailCall) { 3032 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3033 unsigned OpSize = Flags.isByVal() ? 3034 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3035 3036 // FIXME: We can have better than the minimum byval required alignment. 3037 Alignment = 3038 Flags.isByVal() 3039 ? Flags.getNonZeroByValAlign() 3040 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3041 3042 Offset = Offset + FPDiff; 3043 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3044 3045 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3046 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3047 3048 // Make sure any stack arguments overlapping with where we're storing 3049 // are loaded before this eventual operation. Otherwise they'll be 3050 // clobbered. 3051 3052 // FIXME: Why is this really necessary? This seems to just result in a 3053 // lot of code to copy the stack and write them back to the same 3054 // locations, which are supposed to be immutable? 3055 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3056 } else { 3057 DstAddr = PtrOff; 3058 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3059 Alignment = 3060 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3061 } 3062 3063 if (Outs[i].Flags.isByVal()) { 3064 SDValue SizeNode = 3065 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3066 SDValue Cpy = 3067 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3068 Outs[i].Flags.getNonZeroByValAlign(), 3069 /*isVol = */ false, /*AlwaysInline = */ true, 3070 /*isTailCall = */ false, DstInfo, 3071 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3072 3073 MemOpChains.push_back(Cpy); 3074 } else { 3075 SDValue Store = 3076 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3077 MemOpChains.push_back(Store); 3078 } 3079 } 3080 } 3081 3082 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 3083 CallConv != CallingConv::AMDGPU_Gfx) { 3084 // Copy special input registers after user input arguments. 3085 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3086 } 3087 3088 if (!MemOpChains.empty()) 3089 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3090 3091 // Build a sequence of copy-to-reg nodes chained together with token chain 3092 // and flag operands which copy the outgoing args into the appropriate regs. 3093 SDValue InFlag; 3094 for (auto &RegToPass : RegsToPass) { 3095 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3096 RegToPass.second, InFlag); 3097 InFlag = Chain.getValue(1); 3098 } 3099 3100 3101 SDValue PhysReturnAddrReg; 3102 if (IsTailCall) { 3103 // Since the return is being combined with the call, we need to pass on the 3104 // return address. 3105 3106 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3107 SDValue ReturnAddrReg = CreateLiveInRegister( 3108 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 3109 3110 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 3111 MVT::i64); 3112 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 3113 InFlag = Chain.getValue(1); 3114 } 3115 3116 // We don't usually want to end the call-sequence here because we would tidy 3117 // the frame up *after* the call, however in the ABI-changing tail-call case 3118 // we've carefully laid out the parameters so that when sp is reset they'll be 3119 // in the correct location. 3120 if (IsTailCall && !IsSibCall) { 3121 Chain = DAG.getCALLSEQ_END(Chain, 3122 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3123 DAG.getTargetConstant(0, DL, MVT::i32), 3124 InFlag, DL); 3125 InFlag = Chain.getValue(1); 3126 } 3127 3128 std::vector<SDValue> Ops; 3129 Ops.push_back(Chain); 3130 Ops.push_back(Callee); 3131 // Add a redundant copy of the callee global which will not be legalized, as 3132 // we need direct access to the callee later. 3133 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3134 const GlobalValue *GV = GSD->getGlobal(); 3135 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3136 } else { 3137 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3138 } 3139 3140 if (IsTailCall) { 3141 // Each tail call may have to adjust the stack by a different amount, so 3142 // this information must travel along with the operation for eventual 3143 // consumption by emitEpilogue. 3144 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3145 3146 Ops.push_back(PhysReturnAddrReg); 3147 } 3148 3149 // Add argument registers to the end of the list so that they are known live 3150 // into the call. 3151 for (auto &RegToPass : RegsToPass) { 3152 Ops.push_back(DAG.getRegister(RegToPass.first, 3153 RegToPass.second.getValueType())); 3154 } 3155 3156 // Add a register mask operand representing the call-preserved registers. 3157 3158 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3159 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3160 assert(Mask && "Missing call preserved mask for calling convention"); 3161 Ops.push_back(DAG.getRegisterMask(Mask)); 3162 3163 if (InFlag.getNode()) 3164 Ops.push_back(InFlag); 3165 3166 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3167 3168 // If we're doing a tall call, use a TC_RETURN here rather than an 3169 // actual call instruction. 3170 if (IsTailCall) { 3171 MFI.setHasTailCall(); 3172 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3173 } 3174 3175 // Returns a chain and a flag for retval copy to use. 3176 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3177 Chain = Call.getValue(0); 3178 InFlag = Call.getValue(1); 3179 3180 uint64_t CalleePopBytes = NumBytes; 3181 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3182 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3183 InFlag, DL); 3184 if (!Ins.empty()) 3185 InFlag = Chain.getValue(1); 3186 3187 // Handle result values, copying them out of physregs into vregs that we 3188 // return. 3189 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3190 InVals, IsThisReturn, 3191 IsThisReturn ? OutVals[0] : SDValue()); 3192 } 3193 3194 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3195 // except for applying the wave size scale to the increment amount. 3196 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3197 SDValue Op, SelectionDAG &DAG) const { 3198 const MachineFunction &MF = DAG.getMachineFunction(); 3199 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3200 3201 SDLoc dl(Op); 3202 EVT VT = Op.getValueType(); 3203 SDValue Tmp1 = Op; 3204 SDValue Tmp2 = Op.getValue(1); 3205 SDValue Tmp3 = Op.getOperand(2); 3206 SDValue Chain = Tmp1.getOperand(0); 3207 3208 Register SPReg = Info->getStackPtrOffsetReg(); 3209 3210 // Chain the dynamic stack allocation so that it doesn't modify the stack 3211 // pointer when other instructions are using the stack. 3212 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3213 3214 SDValue Size = Tmp2.getOperand(1); 3215 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3216 Chain = SP.getValue(1); 3217 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3218 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3219 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3220 unsigned Opc = 3221 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3222 ISD::ADD : ISD::SUB; 3223 3224 SDValue ScaledSize = DAG.getNode( 3225 ISD::SHL, dl, VT, Size, 3226 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3227 3228 Align StackAlign = TFL->getStackAlign(); 3229 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3230 if (Alignment && *Alignment > StackAlign) { 3231 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3232 DAG.getConstant(-(uint64_t)Alignment->value() 3233 << ST.getWavefrontSizeLog2(), 3234 dl, VT)); 3235 } 3236 3237 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3238 Tmp2 = DAG.getCALLSEQ_END( 3239 Chain, DAG.getIntPtrConstant(0, dl, true), 3240 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3241 3242 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3243 } 3244 3245 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3246 SelectionDAG &DAG) const { 3247 // We only handle constant sizes here to allow non-entry block, static sized 3248 // allocas. A truly dynamic value is more difficult to support because we 3249 // don't know if the size value is uniform or not. If the size isn't uniform, 3250 // we would need to do a wave reduction to get the maximum size to know how 3251 // much to increment the uniform stack pointer. 3252 SDValue Size = Op.getOperand(1); 3253 if (isa<ConstantSDNode>(Size)) 3254 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3255 3256 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3257 } 3258 3259 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3260 const MachineFunction &MF) const { 3261 Register Reg = StringSwitch<Register>(RegName) 3262 .Case("m0", AMDGPU::M0) 3263 .Case("exec", AMDGPU::EXEC) 3264 .Case("exec_lo", AMDGPU::EXEC_LO) 3265 .Case("exec_hi", AMDGPU::EXEC_HI) 3266 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3267 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3268 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3269 .Default(Register()); 3270 3271 if (Reg == AMDGPU::NoRegister) { 3272 report_fatal_error(Twine("invalid register name \"" 3273 + StringRef(RegName) + "\".")); 3274 3275 } 3276 3277 if (!Subtarget->hasFlatScrRegister() && 3278 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3279 report_fatal_error(Twine("invalid register \"" 3280 + StringRef(RegName) + "\" for subtarget.")); 3281 } 3282 3283 switch (Reg) { 3284 case AMDGPU::M0: 3285 case AMDGPU::EXEC_LO: 3286 case AMDGPU::EXEC_HI: 3287 case AMDGPU::FLAT_SCR_LO: 3288 case AMDGPU::FLAT_SCR_HI: 3289 if (VT.getSizeInBits() == 32) 3290 return Reg; 3291 break; 3292 case AMDGPU::EXEC: 3293 case AMDGPU::FLAT_SCR: 3294 if (VT.getSizeInBits() == 64) 3295 return Reg; 3296 break; 3297 default: 3298 llvm_unreachable("missing register type checking"); 3299 } 3300 3301 report_fatal_error(Twine("invalid type for register \"" 3302 + StringRef(RegName) + "\".")); 3303 } 3304 3305 // If kill is not the last instruction, split the block so kill is always a 3306 // proper terminator. 3307 MachineBasicBlock * 3308 SITargetLowering::splitKillBlock(MachineInstr &MI, 3309 MachineBasicBlock *BB) const { 3310 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3311 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3312 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3313 return SplitBB; 3314 } 3315 3316 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3317 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3318 // be the first instruction in the remainder block. 3319 // 3320 /// \returns { LoopBody, Remainder } 3321 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3322 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3323 MachineFunction *MF = MBB.getParent(); 3324 MachineBasicBlock::iterator I(&MI); 3325 3326 // To insert the loop we need to split the block. Move everything after this 3327 // point to a new block, and insert a new empty block between the two. 3328 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3329 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3330 MachineFunction::iterator MBBI(MBB); 3331 ++MBBI; 3332 3333 MF->insert(MBBI, LoopBB); 3334 MF->insert(MBBI, RemainderBB); 3335 3336 LoopBB->addSuccessor(LoopBB); 3337 LoopBB->addSuccessor(RemainderBB); 3338 3339 // Move the rest of the block into a new block. 3340 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3341 3342 if (InstInLoop) { 3343 auto Next = std::next(I); 3344 3345 // Move instruction to loop body. 3346 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3347 3348 // Move the rest of the block. 3349 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3350 } else { 3351 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3352 } 3353 3354 MBB.addSuccessor(LoopBB); 3355 3356 return std::make_pair(LoopBB, RemainderBB); 3357 } 3358 3359 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3360 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3361 MachineBasicBlock *MBB = MI.getParent(); 3362 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3363 auto I = MI.getIterator(); 3364 auto E = std::next(I); 3365 3366 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3367 .addImm(0); 3368 3369 MIBundleBuilder Bundler(*MBB, I, E); 3370 finalizeBundle(*MBB, Bundler.begin()); 3371 } 3372 3373 MachineBasicBlock * 3374 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3375 MachineBasicBlock *BB) const { 3376 const DebugLoc &DL = MI.getDebugLoc(); 3377 3378 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3379 3380 MachineBasicBlock *LoopBB; 3381 MachineBasicBlock *RemainderBB; 3382 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3383 3384 // Apparently kill flags are only valid if the def is in the same block? 3385 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3386 Src->setIsKill(false); 3387 3388 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3389 3390 MachineBasicBlock::iterator I = LoopBB->end(); 3391 3392 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3393 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3394 3395 // Clear TRAP_STS.MEM_VIOL 3396 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3397 .addImm(0) 3398 .addImm(EncodedReg); 3399 3400 bundleInstWithWaitcnt(MI); 3401 3402 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3403 3404 // Load and check TRAP_STS.MEM_VIOL 3405 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3406 .addImm(EncodedReg); 3407 3408 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3409 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3410 .addReg(Reg, RegState::Kill) 3411 .addImm(0); 3412 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3413 .addMBB(LoopBB); 3414 3415 return RemainderBB; 3416 } 3417 3418 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3419 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3420 // will only do one iteration. In the worst case, this will loop 64 times. 3421 // 3422 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3423 static MachineBasicBlock::iterator 3424 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3425 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3426 const DebugLoc &DL, const MachineOperand &Idx, 3427 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3428 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3429 Register &SGPRIdxReg) { 3430 3431 MachineFunction *MF = OrigBB.getParent(); 3432 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3433 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3434 MachineBasicBlock::iterator I = LoopBB.begin(); 3435 3436 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3437 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3438 Register NewExec = MRI.createVirtualRegister(BoolRC); 3439 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3440 Register CondReg = MRI.createVirtualRegister(BoolRC); 3441 3442 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3443 .addReg(InitReg) 3444 .addMBB(&OrigBB) 3445 .addReg(ResultReg) 3446 .addMBB(&LoopBB); 3447 3448 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3449 .addReg(InitSaveExecReg) 3450 .addMBB(&OrigBB) 3451 .addReg(NewExec) 3452 .addMBB(&LoopBB); 3453 3454 // Read the next variant <- also loop target. 3455 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3456 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3457 3458 // Compare the just read M0 value to all possible Idx values. 3459 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3460 .addReg(CurrentIdxReg) 3461 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3462 3463 // Update EXEC, save the original EXEC value to VCC. 3464 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3465 : AMDGPU::S_AND_SAVEEXEC_B64), 3466 NewExec) 3467 .addReg(CondReg, RegState::Kill); 3468 3469 MRI.setSimpleHint(NewExec, CondReg); 3470 3471 if (UseGPRIdxMode) { 3472 if (Offset == 0) { 3473 SGPRIdxReg = CurrentIdxReg; 3474 } else { 3475 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3476 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3477 .addReg(CurrentIdxReg, RegState::Kill) 3478 .addImm(Offset); 3479 } 3480 } else { 3481 // Move index from VCC into M0 3482 if (Offset == 0) { 3483 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3484 .addReg(CurrentIdxReg, RegState::Kill); 3485 } else { 3486 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3487 .addReg(CurrentIdxReg, RegState::Kill) 3488 .addImm(Offset); 3489 } 3490 } 3491 3492 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3493 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3494 MachineInstr *InsertPt = 3495 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3496 : AMDGPU::S_XOR_B64_term), Exec) 3497 .addReg(Exec) 3498 .addReg(NewExec); 3499 3500 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3501 // s_cbranch_scc0? 3502 3503 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3504 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3505 .addMBB(&LoopBB); 3506 3507 return InsertPt->getIterator(); 3508 } 3509 3510 // This has slightly sub-optimal regalloc when the source vector is killed by 3511 // the read. The register allocator does not understand that the kill is 3512 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3513 // subregister from it, using 1 more VGPR than necessary. This was saved when 3514 // this was expanded after register allocation. 3515 static MachineBasicBlock::iterator 3516 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3517 unsigned InitResultReg, unsigned PhiReg, int Offset, 3518 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3519 MachineFunction *MF = MBB.getParent(); 3520 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3521 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3522 MachineRegisterInfo &MRI = MF->getRegInfo(); 3523 const DebugLoc &DL = MI.getDebugLoc(); 3524 MachineBasicBlock::iterator I(&MI); 3525 3526 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3527 Register DstReg = MI.getOperand(0).getReg(); 3528 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3529 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3530 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3531 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3532 3533 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3534 3535 // Save the EXEC mask 3536 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3537 .addReg(Exec); 3538 3539 MachineBasicBlock *LoopBB; 3540 MachineBasicBlock *RemainderBB; 3541 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3542 3543 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3544 3545 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3546 InitResultReg, DstReg, PhiReg, TmpExec, 3547 Offset, UseGPRIdxMode, SGPRIdxReg); 3548 3549 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3550 MachineFunction::iterator MBBI(LoopBB); 3551 ++MBBI; 3552 MF->insert(MBBI, LandingPad); 3553 LoopBB->removeSuccessor(RemainderBB); 3554 LandingPad->addSuccessor(RemainderBB); 3555 LoopBB->addSuccessor(LandingPad); 3556 MachineBasicBlock::iterator First = LandingPad->begin(); 3557 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3558 .addReg(SaveExec); 3559 3560 return InsPt; 3561 } 3562 3563 // Returns subreg index, offset 3564 static std::pair<unsigned, int> 3565 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3566 const TargetRegisterClass *SuperRC, 3567 unsigned VecReg, 3568 int Offset) { 3569 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3570 3571 // Skip out of bounds offsets, or else we would end up using an undefined 3572 // register. 3573 if (Offset >= NumElts || Offset < 0) 3574 return std::make_pair(AMDGPU::sub0, Offset); 3575 3576 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3577 } 3578 3579 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3580 MachineRegisterInfo &MRI, MachineInstr &MI, 3581 int Offset) { 3582 MachineBasicBlock *MBB = MI.getParent(); 3583 const DebugLoc &DL = MI.getDebugLoc(); 3584 MachineBasicBlock::iterator I(&MI); 3585 3586 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3587 3588 assert(Idx->getReg() != AMDGPU::NoRegister); 3589 3590 if (Offset == 0) { 3591 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3592 } else { 3593 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3594 .add(*Idx) 3595 .addImm(Offset); 3596 } 3597 } 3598 3599 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3600 MachineRegisterInfo &MRI, MachineInstr &MI, 3601 int Offset) { 3602 MachineBasicBlock *MBB = MI.getParent(); 3603 const DebugLoc &DL = MI.getDebugLoc(); 3604 MachineBasicBlock::iterator I(&MI); 3605 3606 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3607 3608 if (Offset == 0) 3609 return Idx->getReg(); 3610 3611 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3612 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3613 .add(*Idx) 3614 .addImm(Offset); 3615 return Tmp; 3616 } 3617 3618 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3619 MachineBasicBlock &MBB, 3620 const GCNSubtarget &ST) { 3621 const SIInstrInfo *TII = ST.getInstrInfo(); 3622 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3623 MachineFunction *MF = MBB.getParent(); 3624 MachineRegisterInfo &MRI = MF->getRegInfo(); 3625 3626 Register Dst = MI.getOperand(0).getReg(); 3627 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3628 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3629 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3630 3631 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3632 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3633 3634 unsigned SubReg; 3635 std::tie(SubReg, Offset) 3636 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3637 3638 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3639 3640 // Check for a SGPR index. 3641 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3642 MachineBasicBlock::iterator I(&MI); 3643 const DebugLoc &DL = MI.getDebugLoc(); 3644 3645 if (UseGPRIdxMode) { 3646 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3647 // to avoid interfering with other uses, so probably requires a new 3648 // optimization pass. 3649 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3650 3651 const MCInstrDesc &GPRIDXDesc = 3652 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3653 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3654 .addReg(SrcReg) 3655 .addReg(Idx) 3656 .addImm(SubReg); 3657 } else { 3658 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3659 3660 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3661 .addReg(SrcReg, 0, SubReg) 3662 .addReg(SrcReg, RegState::Implicit); 3663 } 3664 3665 MI.eraseFromParent(); 3666 3667 return &MBB; 3668 } 3669 3670 // Control flow needs to be inserted if indexing with a VGPR. 3671 const DebugLoc &DL = MI.getDebugLoc(); 3672 MachineBasicBlock::iterator I(&MI); 3673 3674 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3675 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3676 3677 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3678 3679 Register SGPRIdxReg; 3680 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3681 UseGPRIdxMode, SGPRIdxReg); 3682 3683 MachineBasicBlock *LoopBB = InsPt->getParent(); 3684 3685 if (UseGPRIdxMode) { 3686 const MCInstrDesc &GPRIDXDesc = 3687 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3688 3689 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3690 .addReg(SrcReg) 3691 .addReg(SGPRIdxReg) 3692 .addImm(SubReg); 3693 } else { 3694 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3695 .addReg(SrcReg, 0, SubReg) 3696 .addReg(SrcReg, RegState::Implicit); 3697 } 3698 3699 MI.eraseFromParent(); 3700 3701 return LoopBB; 3702 } 3703 3704 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3705 MachineBasicBlock &MBB, 3706 const GCNSubtarget &ST) { 3707 const SIInstrInfo *TII = ST.getInstrInfo(); 3708 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3709 MachineFunction *MF = MBB.getParent(); 3710 MachineRegisterInfo &MRI = MF->getRegInfo(); 3711 3712 Register Dst = MI.getOperand(0).getReg(); 3713 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3714 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3715 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3716 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3717 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3718 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3719 3720 // This can be an immediate, but will be folded later. 3721 assert(Val->getReg()); 3722 3723 unsigned SubReg; 3724 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3725 SrcVec->getReg(), 3726 Offset); 3727 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3728 3729 if (Idx->getReg() == AMDGPU::NoRegister) { 3730 MachineBasicBlock::iterator I(&MI); 3731 const DebugLoc &DL = MI.getDebugLoc(); 3732 3733 assert(Offset == 0); 3734 3735 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3736 .add(*SrcVec) 3737 .add(*Val) 3738 .addImm(SubReg); 3739 3740 MI.eraseFromParent(); 3741 return &MBB; 3742 } 3743 3744 // Check for a SGPR index. 3745 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3746 MachineBasicBlock::iterator I(&MI); 3747 const DebugLoc &DL = MI.getDebugLoc(); 3748 3749 if (UseGPRIdxMode) { 3750 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3751 3752 const MCInstrDesc &GPRIDXDesc = 3753 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3754 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3755 .addReg(SrcVec->getReg()) 3756 .add(*Val) 3757 .addReg(Idx) 3758 .addImm(SubReg); 3759 } else { 3760 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3761 3762 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3763 TRI.getRegSizeInBits(*VecRC), 32, false); 3764 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3765 .addReg(SrcVec->getReg()) 3766 .add(*Val) 3767 .addImm(SubReg); 3768 } 3769 MI.eraseFromParent(); 3770 return &MBB; 3771 } 3772 3773 // Control flow needs to be inserted if indexing with a VGPR. 3774 if (Val->isReg()) 3775 MRI.clearKillFlags(Val->getReg()); 3776 3777 const DebugLoc &DL = MI.getDebugLoc(); 3778 3779 Register PhiReg = MRI.createVirtualRegister(VecRC); 3780 3781 Register SGPRIdxReg; 3782 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 3783 UseGPRIdxMode, SGPRIdxReg); 3784 MachineBasicBlock *LoopBB = InsPt->getParent(); 3785 3786 if (UseGPRIdxMode) { 3787 const MCInstrDesc &GPRIDXDesc = 3788 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3789 3790 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3791 .addReg(PhiReg) 3792 .add(*Val) 3793 .addReg(SGPRIdxReg) 3794 .addImm(AMDGPU::sub0); 3795 } else { 3796 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3797 TRI.getRegSizeInBits(*VecRC), 32, false); 3798 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3799 .addReg(PhiReg) 3800 .add(*Val) 3801 .addImm(AMDGPU::sub0); 3802 } 3803 3804 MI.eraseFromParent(); 3805 return LoopBB; 3806 } 3807 3808 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3809 MachineInstr &MI, MachineBasicBlock *BB) const { 3810 3811 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3812 MachineFunction *MF = BB->getParent(); 3813 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3814 3815 switch (MI.getOpcode()) { 3816 case AMDGPU::S_UADDO_PSEUDO: 3817 case AMDGPU::S_USUBO_PSEUDO: { 3818 const DebugLoc &DL = MI.getDebugLoc(); 3819 MachineOperand &Dest0 = MI.getOperand(0); 3820 MachineOperand &Dest1 = MI.getOperand(1); 3821 MachineOperand &Src0 = MI.getOperand(2); 3822 MachineOperand &Src1 = MI.getOperand(3); 3823 3824 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3825 ? AMDGPU::S_ADD_I32 3826 : AMDGPU::S_SUB_I32; 3827 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3828 3829 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3830 .addImm(1) 3831 .addImm(0); 3832 3833 MI.eraseFromParent(); 3834 return BB; 3835 } 3836 case AMDGPU::S_ADD_U64_PSEUDO: 3837 case AMDGPU::S_SUB_U64_PSEUDO: { 3838 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3839 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3840 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3841 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3842 const DebugLoc &DL = MI.getDebugLoc(); 3843 3844 MachineOperand &Dest = MI.getOperand(0); 3845 MachineOperand &Src0 = MI.getOperand(1); 3846 MachineOperand &Src1 = MI.getOperand(2); 3847 3848 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3849 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3850 3851 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 3852 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3853 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 3854 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3855 3856 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 3857 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3858 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 3859 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3860 3861 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3862 3863 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3864 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3865 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 3866 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 3867 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3868 .addReg(DestSub0) 3869 .addImm(AMDGPU::sub0) 3870 .addReg(DestSub1) 3871 .addImm(AMDGPU::sub1); 3872 MI.eraseFromParent(); 3873 return BB; 3874 } 3875 case AMDGPU::V_ADD_U64_PSEUDO: 3876 case AMDGPU::V_SUB_U64_PSEUDO: { 3877 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3878 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3879 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3880 const DebugLoc &DL = MI.getDebugLoc(); 3881 3882 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 3883 3884 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3885 3886 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3887 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3888 3889 Register CarryReg = MRI.createVirtualRegister(CarryRC); 3890 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 3891 3892 MachineOperand &Dest = MI.getOperand(0); 3893 MachineOperand &Src0 = MI.getOperand(1); 3894 MachineOperand &Src1 = MI.getOperand(2); 3895 3896 const TargetRegisterClass *Src0RC = Src0.isReg() 3897 ? MRI.getRegClass(Src0.getReg()) 3898 : &AMDGPU::VReg_64RegClass; 3899 const TargetRegisterClass *Src1RC = Src1.isReg() 3900 ? MRI.getRegClass(Src1.getReg()) 3901 : &AMDGPU::VReg_64RegClass; 3902 3903 const TargetRegisterClass *Src0SubRC = 3904 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 3905 const TargetRegisterClass *Src1SubRC = 3906 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 3907 3908 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 3909 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 3910 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 3911 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 3912 3913 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 3914 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 3915 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 3916 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 3917 3918 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 3919 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3920 .addReg(CarryReg, RegState::Define) 3921 .add(SrcReg0Sub0) 3922 .add(SrcReg1Sub0) 3923 .addImm(0); // clamp bit 3924 3925 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 3926 MachineInstr *HiHalf = 3927 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 3928 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 3929 .add(SrcReg0Sub1) 3930 .add(SrcReg1Sub1) 3931 .addReg(CarryReg, RegState::Kill) 3932 .addImm(0); // clamp bit 3933 3934 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3935 .addReg(DestSub0) 3936 .addImm(AMDGPU::sub0) 3937 .addReg(DestSub1) 3938 .addImm(AMDGPU::sub1); 3939 TII->legalizeOperands(*LoHalf); 3940 TII->legalizeOperands(*HiHalf); 3941 MI.eraseFromParent(); 3942 return BB; 3943 } 3944 case AMDGPU::S_ADD_CO_PSEUDO: 3945 case AMDGPU::S_SUB_CO_PSEUDO: { 3946 // This pseudo has a chance to be selected 3947 // only from uniform add/subcarry node. All the VGPR operands 3948 // therefore assumed to be splat vectors. 3949 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3950 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3951 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3952 MachineBasicBlock::iterator MII = MI; 3953 const DebugLoc &DL = MI.getDebugLoc(); 3954 MachineOperand &Dest = MI.getOperand(0); 3955 MachineOperand &CarryDest = MI.getOperand(1); 3956 MachineOperand &Src0 = MI.getOperand(2); 3957 MachineOperand &Src1 = MI.getOperand(3); 3958 MachineOperand &Src2 = MI.getOperand(4); 3959 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 3960 ? AMDGPU::S_ADDC_U32 3961 : AMDGPU::S_SUBB_U32; 3962 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 3963 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3964 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 3965 .addReg(Src0.getReg()); 3966 Src0.setReg(RegOp0); 3967 } 3968 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 3969 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3970 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 3971 .addReg(Src1.getReg()); 3972 Src1.setReg(RegOp1); 3973 } 3974 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3975 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 3976 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 3977 .addReg(Src2.getReg()); 3978 Src2.setReg(RegOp2); 3979 } 3980 3981 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 3982 if (TRI->getRegSizeInBits(*Src2RC) == 64) { 3983 if (ST.hasScalarCompareEq64()) { 3984 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 3985 .addReg(Src2.getReg()) 3986 .addImm(0); 3987 } else { 3988 const TargetRegisterClass *SubRC = 3989 TRI->getSubRegClass(Src2RC, AMDGPU::sub0); 3990 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 3991 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 3992 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 3993 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 3994 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3995 3996 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 3997 .add(Src2Sub0) 3998 .add(Src2Sub1); 3999 4000 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4001 .addReg(Src2_32, RegState::Kill) 4002 .addImm(0); 4003 } 4004 } else { 4005 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 4006 .addReg(Src2.getReg()) 4007 .addImm(0); 4008 } 4009 4010 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4011 4012 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg()) 4013 .addReg(AMDGPU::SCC); 4014 MI.eraseFromParent(); 4015 return BB; 4016 } 4017 case AMDGPU::SI_INIT_M0: { 4018 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4019 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4020 .add(MI.getOperand(0)); 4021 MI.eraseFromParent(); 4022 return BB; 4023 } 4024 case AMDGPU::GET_GROUPSTATICSIZE: { 4025 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4026 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4027 DebugLoc DL = MI.getDebugLoc(); 4028 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4029 .add(MI.getOperand(0)) 4030 .addImm(MFI->getLDSSize()); 4031 MI.eraseFromParent(); 4032 return BB; 4033 } 4034 case AMDGPU::SI_INDIRECT_SRC_V1: 4035 case AMDGPU::SI_INDIRECT_SRC_V2: 4036 case AMDGPU::SI_INDIRECT_SRC_V4: 4037 case AMDGPU::SI_INDIRECT_SRC_V8: 4038 case AMDGPU::SI_INDIRECT_SRC_V16: 4039 case AMDGPU::SI_INDIRECT_SRC_V32: 4040 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4041 case AMDGPU::SI_INDIRECT_DST_V1: 4042 case AMDGPU::SI_INDIRECT_DST_V2: 4043 case AMDGPU::SI_INDIRECT_DST_V4: 4044 case AMDGPU::SI_INDIRECT_DST_V8: 4045 case AMDGPU::SI_INDIRECT_DST_V16: 4046 case AMDGPU::SI_INDIRECT_DST_V32: 4047 return emitIndirectDst(MI, *BB, *getSubtarget()); 4048 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4049 case AMDGPU::SI_KILL_I1_PSEUDO: 4050 return splitKillBlock(MI, BB); 4051 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4052 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4053 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4054 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4055 4056 Register Dst = MI.getOperand(0).getReg(); 4057 Register Src0 = MI.getOperand(1).getReg(); 4058 Register Src1 = MI.getOperand(2).getReg(); 4059 const DebugLoc &DL = MI.getDebugLoc(); 4060 Register SrcCond = MI.getOperand(3).getReg(); 4061 4062 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4063 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4064 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4065 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4066 4067 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4068 .addReg(SrcCond); 4069 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4070 .addImm(0) 4071 .addReg(Src0, 0, AMDGPU::sub0) 4072 .addImm(0) 4073 .addReg(Src1, 0, AMDGPU::sub0) 4074 .addReg(SrcCondCopy); 4075 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4076 .addImm(0) 4077 .addReg(Src0, 0, AMDGPU::sub1) 4078 .addImm(0) 4079 .addReg(Src1, 0, AMDGPU::sub1) 4080 .addReg(SrcCondCopy); 4081 4082 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4083 .addReg(DstLo) 4084 .addImm(AMDGPU::sub0) 4085 .addReg(DstHi) 4086 .addImm(AMDGPU::sub1); 4087 MI.eraseFromParent(); 4088 return BB; 4089 } 4090 case AMDGPU::SI_BR_UNDEF: { 4091 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4092 const DebugLoc &DL = MI.getDebugLoc(); 4093 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4094 .add(MI.getOperand(0)); 4095 Br->getOperand(1).setIsUndef(true); // read undef SCC 4096 MI.eraseFromParent(); 4097 return BB; 4098 } 4099 case AMDGPU::ADJCALLSTACKUP: 4100 case AMDGPU::ADJCALLSTACKDOWN: { 4101 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4102 MachineInstrBuilder MIB(*MF, &MI); 4103 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4104 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4105 return BB; 4106 } 4107 case AMDGPU::SI_CALL_ISEL: { 4108 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4109 const DebugLoc &DL = MI.getDebugLoc(); 4110 4111 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4112 4113 MachineInstrBuilder MIB; 4114 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4115 4116 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 4117 MIB.add(MI.getOperand(I)); 4118 4119 MIB.cloneMemRefs(MI); 4120 MI.eraseFromParent(); 4121 return BB; 4122 } 4123 case AMDGPU::V_ADD_CO_U32_e32: 4124 case AMDGPU::V_SUB_CO_U32_e32: 4125 case AMDGPU::V_SUBREV_CO_U32_e32: { 4126 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4127 const DebugLoc &DL = MI.getDebugLoc(); 4128 unsigned Opc = MI.getOpcode(); 4129 4130 bool NeedClampOperand = false; 4131 if (TII->pseudoToMCOpcode(Opc) == -1) { 4132 Opc = AMDGPU::getVOPe64(Opc); 4133 NeedClampOperand = true; 4134 } 4135 4136 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4137 if (TII->isVOP3(*I)) { 4138 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4139 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4140 I.addReg(TRI->getVCC(), RegState::Define); 4141 } 4142 I.add(MI.getOperand(1)) 4143 .add(MI.getOperand(2)); 4144 if (NeedClampOperand) 4145 I.addImm(0); // clamp bit for e64 encoding 4146 4147 TII->legalizeOperands(*I); 4148 4149 MI.eraseFromParent(); 4150 return BB; 4151 } 4152 case AMDGPU::DS_GWS_INIT: 4153 case AMDGPU::DS_GWS_SEMA_V: 4154 case AMDGPU::DS_GWS_SEMA_BR: 4155 case AMDGPU::DS_GWS_SEMA_P: 4156 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4157 case AMDGPU::DS_GWS_BARRIER: 4158 // A s_waitcnt 0 is required to be the instruction immediately following. 4159 if (getSubtarget()->hasGWSAutoReplay()) { 4160 bundleInstWithWaitcnt(MI); 4161 return BB; 4162 } 4163 4164 return emitGWSMemViolTestLoop(MI, BB); 4165 case AMDGPU::S_SETREG_B32: { 4166 // Try to optimize cases that only set the denormal mode or rounding mode. 4167 // 4168 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4169 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4170 // instead. 4171 // 4172 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4173 // allow you to have a no side effect instruction in the output of a 4174 // sideeffecting pattern. 4175 unsigned ID, Offset, Width; 4176 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4177 if (ID != AMDGPU::Hwreg::ID_MODE) 4178 return BB; 4179 4180 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4181 const unsigned SetMask = WidthMask << Offset; 4182 4183 if (getSubtarget()->hasDenormModeInst()) { 4184 unsigned SetDenormOp = 0; 4185 unsigned SetRoundOp = 0; 4186 4187 // The dedicated instructions can only set the whole denorm or round mode 4188 // at once, not a subset of bits in either. 4189 if (SetMask == 4190 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4191 // If this fully sets both the round and denorm mode, emit the two 4192 // dedicated instructions for these. 4193 SetRoundOp = AMDGPU::S_ROUND_MODE; 4194 SetDenormOp = AMDGPU::S_DENORM_MODE; 4195 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4196 SetRoundOp = AMDGPU::S_ROUND_MODE; 4197 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4198 SetDenormOp = AMDGPU::S_DENORM_MODE; 4199 } 4200 4201 if (SetRoundOp || SetDenormOp) { 4202 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4203 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4204 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4205 unsigned ImmVal = Def->getOperand(1).getImm(); 4206 if (SetRoundOp) { 4207 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4208 .addImm(ImmVal & 0xf); 4209 4210 // If we also have the denorm mode, get just the denorm mode bits. 4211 ImmVal >>= 4; 4212 } 4213 4214 if (SetDenormOp) { 4215 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4216 .addImm(ImmVal & 0xf); 4217 } 4218 4219 MI.eraseFromParent(); 4220 return BB; 4221 } 4222 } 4223 } 4224 4225 // If only FP bits are touched, used the no side effects pseudo. 4226 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4227 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4228 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4229 4230 return BB; 4231 } 4232 default: 4233 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4234 } 4235 } 4236 4237 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4238 return isTypeLegal(VT.getScalarType()); 4239 } 4240 4241 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4242 // This currently forces unfolding various combinations of fsub into fma with 4243 // free fneg'd operands. As long as we have fast FMA (controlled by 4244 // isFMAFasterThanFMulAndFAdd), we should perform these. 4245 4246 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4247 // most of these combines appear to be cycle neutral but save on instruction 4248 // count / code size. 4249 return true; 4250 } 4251 4252 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4253 EVT VT) const { 4254 if (!VT.isVector()) { 4255 return MVT::i1; 4256 } 4257 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4258 } 4259 4260 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4261 // TODO: Should i16 be used always if legal? For now it would force VALU 4262 // shifts. 4263 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4264 } 4265 4266 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4267 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4268 ? Ty.changeElementSize(16) 4269 : Ty.changeElementSize(32); 4270 } 4271 4272 // Answering this is somewhat tricky and depends on the specific device which 4273 // have different rates for fma or all f64 operations. 4274 // 4275 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4276 // regardless of which device (although the number of cycles differs between 4277 // devices), so it is always profitable for f64. 4278 // 4279 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4280 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4281 // which we can always do even without fused FP ops since it returns the same 4282 // result as the separate operations and since it is always full 4283 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4284 // however does not support denormals, so we do report fma as faster if we have 4285 // a fast fma device and require denormals. 4286 // 4287 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4288 EVT VT) const { 4289 VT = VT.getScalarType(); 4290 4291 switch (VT.getSimpleVT().SimpleTy) { 4292 case MVT::f32: { 4293 // If mad is not available this depends only on if f32 fma is full rate. 4294 if (!Subtarget->hasMadMacF32Insts()) 4295 return Subtarget->hasFastFMAF32(); 4296 4297 // Otherwise f32 mad is always full rate and returns the same result as 4298 // the separate operations so should be preferred over fma. 4299 // However does not support denomals. 4300 if (hasFP32Denormals(MF)) 4301 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4302 4303 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4304 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4305 } 4306 case MVT::f64: 4307 return true; 4308 case MVT::f16: 4309 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4310 default: 4311 break; 4312 } 4313 4314 return false; 4315 } 4316 4317 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4318 const SDNode *N) const { 4319 // TODO: Check future ftz flag 4320 // v_mad_f32/v_mac_f32 do not support denormals. 4321 EVT VT = N->getValueType(0); 4322 if (VT == MVT::f32) 4323 return Subtarget->hasMadMacF32Insts() && 4324 !hasFP32Denormals(DAG.getMachineFunction()); 4325 if (VT == MVT::f16) { 4326 return Subtarget->hasMadF16() && 4327 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4328 } 4329 4330 return false; 4331 } 4332 4333 //===----------------------------------------------------------------------===// 4334 // Custom DAG Lowering Operations 4335 //===----------------------------------------------------------------------===// 4336 4337 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4338 // wider vector type is legal. 4339 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4340 SelectionDAG &DAG) const { 4341 unsigned Opc = Op.getOpcode(); 4342 EVT VT = Op.getValueType(); 4343 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4344 4345 SDValue Lo, Hi; 4346 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4347 4348 SDLoc SL(Op); 4349 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4350 Op->getFlags()); 4351 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4352 Op->getFlags()); 4353 4354 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4355 } 4356 4357 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4358 // wider vector type is legal. 4359 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4360 SelectionDAG &DAG) const { 4361 unsigned Opc = Op.getOpcode(); 4362 EVT VT = Op.getValueType(); 4363 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4364 4365 SDValue Lo0, Hi0; 4366 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4367 SDValue Lo1, Hi1; 4368 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4369 4370 SDLoc SL(Op); 4371 4372 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4373 Op->getFlags()); 4374 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4375 Op->getFlags()); 4376 4377 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4378 } 4379 4380 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4381 SelectionDAG &DAG) const { 4382 unsigned Opc = Op.getOpcode(); 4383 EVT VT = Op.getValueType(); 4384 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4385 4386 SDValue Lo0, Hi0; 4387 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4388 SDValue Lo1, Hi1; 4389 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4390 SDValue Lo2, Hi2; 4391 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4392 4393 SDLoc SL(Op); 4394 4395 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, 4396 Op->getFlags()); 4397 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, 4398 Op->getFlags()); 4399 4400 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4401 } 4402 4403 4404 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4405 switch (Op.getOpcode()) { 4406 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4407 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4408 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4409 case ISD::LOAD: { 4410 SDValue Result = LowerLOAD(Op, DAG); 4411 assert((!Result.getNode() || 4412 Result.getNode()->getNumValues() == 2) && 4413 "Load should return a value and a chain"); 4414 return Result; 4415 } 4416 4417 case ISD::FSIN: 4418 case ISD::FCOS: 4419 return LowerTrig(Op, DAG); 4420 case ISD::SELECT: return LowerSELECT(Op, DAG); 4421 case ISD::FDIV: return LowerFDIV(Op, DAG); 4422 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4423 case ISD::STORE: return LowerSTORE(Op, DAG); 4424 case ISD::GlobalAddress: { 4425 MachineFunction &MF = DAG.getMachineFunction(); 4426 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4427 return LowerGlobalAddress(MFI, Op, DAG); 4428 } 4429 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4430 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4431 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4432 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4433 case ISD::INSERT_SUBVECTOR: 4434 return lowerINSERT_SUBVECTOR(Op, DAG); 4435 case ISD::INSERT_VECTOR_ELT: 4436 return lowerINSERT_VECTOR_ELT(Op, DAG); 4437 case ISD::EXTRACT_VECTOR_ELT: 4438 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4439 case ISD::VECTOR_SHUFFLE: 4440 return lowerVECTOR_SHUFFLE(Op, DAG); 4441 case ISD::BUILD_VECTOR: 4442 return lowerBUILD_VECTOR(Op, DAG); 4443 case ISD::FP_ROUND: 4444 return lowerFP_ROUND(Op, DAG); 4445 case ISD::TRAP: 4446 return lowerTRAP(Op, DAG); 4447 case ISD::DEBUGTRAP: 4448 return lowerDEBUGTRAP(Op, DAG); 4449 case ISD::FABS: 4450 case ISD::FNEG: 4451 case ISD::FCANONICALIZE: 4452 case ISD::BSWAP: 4453 return splitUnaryVectorOp(Op, DAG); 4454 case ISD::FMINNUM: 4455 case ISD::FMAXNUM: 4456 return lowerFMINNUM_FMAXNUM(Op, DAG); 4457 case ISD::FMA: 4458 return splitTernaryVectorOp(Op, DAG); 4459 case ISD::SHL: 4460 case ISD::SRA: 4461 case ISD::SRL: 4462 case ISD::ADD: 4463 case ISD::SUB: 4464 case ISD::MUL: 4465 case ISD::SMIN: 4466 case ISD::SMAX: 4467 case ISD::UMIN: 4468 case ISD::UMAX: 4469 case ISD::FADD: 4470 case ISD::FMUL: 4471 case ISD::FMINNUM_IEEE: 4472 case ISD::FMAXNUM_IEEE: 4473 case ISD::UADDSAT: 4474 case ISD::USUBSAT: 4475 case ISD::SADDSAT: 4476 case ISD::SSUBSAT: 4477 return splitBinaryVectorOp(Op, DAG); 4478 case ISD::SMULO: 4479 case ISD::UMULO: 4480 return lowerXMULO(Op, DAG); 4481 case ISD::DYNAMIC_STACKALLOC: 4482 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4483 } 4484 return SDValue(); 4485 } 4486 4487 // Used for D16: Casts the result of an instruction into the right vector, 4488 // packs values if loads return unpacked values. 4489 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4490 const SDLoc &DL, 4491 SelectionDAG &DAG, bool Unpacked) { 4492 if (!LoadVT.isVector()) 4493 return Result; 4494 4495 // Cast back to the original packed type or to a larger type that is a 4496 // multiple of 32 bit for D16. Widening the return type is a required for 4497 // legalization. 4498 EVT FittingLoadVT = LoadVT; 4499 if ((LoadVT.getVectorNumElements() % 2) == 1) { 4500 FittingLoadVT = 4501 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4502 LoadVT.getVectorNumElements() + 1); 4503 } 4504 4505 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4506 // Truncate to v2i16/v4i16. 4507 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 4508 4509 // Workaround legalizer not scalarizing truncate after vector op 4510 // legalization but not creating intermediate vector trunc. 4511 SmallVector<SDValue, 4> Elts; 4512 DAG.ExtractVectorElements(Result, Elts); 4513 for (SDValue &Elt : Elts) 4514 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4515 4516 // Pad illegal v1i16/v3fi6 to v4i16 4517 if ((LoadVT.getVectorNumElements() % 2) == 1) 4518 Elts.push_back(DAG.getUNDEF(MVT::i16)); 4519 4520 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4521 4522 // Bitcast to original type (v2f16/v4f16). 4523 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4524 } 4525 4526 // Cast back to the original packed type. 4527 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4528 } 4529 4530 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4531 MemSDNode *M, 4532 SelectionDAG &DAG, 4533 ArrayRef<SDValue> Ops, 4534 bool IsIntrinsic) const { 4535 SDLoc DL(M); 4536 4537 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4538 EVT LoadVT = M->getValueType(0); 4539 4540 EVT EquivLoadVT = LoadVT; 4541 if (LoadVT.isVector()) { 4542 if (Unpacked) { 4543 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4544 LoadVT.getVectorNumElements()); 4545 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 4546 // Widen v3f16 to legal type 4547 EquivLoadVT = 4548 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4549 LoadVT.getVectorNumElements() + 1); 4550 } 4551 } 4552 4553 // Change from v4f16/v2f16 to EquivLoadVT. 4554 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4555 4556 SDValue Load 4557 = DAG.getMemIntrinsicNode( 4558 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4559 VTList, Ops, M->getMemoryVT(), 4560 M->getMemOperand()); 4561 4562 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4563 4564 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4565 } 4566 4567 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4568 SelectionDAG &DAG, 4569 ArrayRef<SDValue> Ops) const { 4570 SDLoc DL(M); 4571 EVT LoadVT = M->getValueType(0); 4572 EVT EltType = LoadVT.getScalarType(); 4573 EVT IntVT = LoadVT.changeTypeToInteger(); 4574 4575 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4576 4577 unsigned Opc = 4578 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4579 4580 if (IsD16) { 4581 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4582 } 4583 4584 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4585 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4586 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4587 4588 if (isTypeLegal(LoadVT)) { 4589 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4590 M->getMemOperand(), DAG); 4591 } 4592 4593 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4594 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4595 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4596 M->getMemOperand(), DAG); 4597 return DAG.getMergeValues( 4598 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4599 DL); 4600 } 4601 4602 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4603 SDNode *N, SelectionDAG &DAG) { 4604 EVT VT = N->getValueType(0); 4605 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4606 unsigned CondCode = CD->getZExtValue(); 4607 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4608 return DAG.getUNDEF(VT); 4609 4610 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4611 4612 SDValue LHS = N->getOperand(1); 4613 SDValue RHS = N->getOperand(2); 4614 4615 SDLoc DL(N); 4616 4617 EVT CmpVT = LHS.getValueType(); 4618 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4619 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4620 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4621 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4622 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4623 } 4624 4625 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4626 4627 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4628 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4629 4630 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4631 DAG.getCondCode(CCOpcode)); 4632 if (VT.bitsEq(CCVT)) 4633 return SetCC; 4634 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4635 } 4636 4637 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4638 SDNode *N, SelectionDAG &DAG) { 4639 EVT VT = N->getValueType(0); 4640 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4641 4642 unsigned CondCode = CD->getZExtValue(); 4643 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4644 return DAG.getUNDEF(VT); 4645 4646 SDValue Src0 = N->getOperand(1); 4647 SDValue Src1 = N->getOperand(2); 4648 EVT CmpVT = Src0.getValueType(); 4649 SDLoc SL(N); 4650 4651 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4652 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4653 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4654 } 4655 4656 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4657 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4658 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4659 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4660 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4661 Src1, DAG.getCondCode(CCOpcode)); 4662 if (VT.bitsEq(CCVT)) 4663 return SetCC; 4664 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4665 } 4666 4667 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4668 SelectionDAG &DAG) { 4669 EVT VT = N->getValueType(0); 4670 SDValue Src = N->getOperand(1); 4671 SDLoc SL(N); 4672 4673 if (Src.getOpcode() == ISD::SETCC) { 4674 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4675 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4676 Src.getOperand(1), Src.getOperand(2)); 4677 } 4678 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4679 // (ballot 0) -> 0 4680 if (Arg->isNullValue()) 4681 return DAG.getConstant(0, SL, VT); 4682 4683 // (ballot 1) -> EXEC/EXEC_LO 4684 if (Arg->isOne()) { 4685 Register Exec; 4686 if (VT.getScalarSizeInBits() == 32) 4687 Exec = AMDGPU::EXEC_LO; 4688 else if (VT.getScalarSizeInBits() == 64) 4689 Exec = AMDGPU::EXEC; 4690 else 4691 return SDValue(); 4692 4693 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4694 } 4695 } 4696 4697 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4698 // ISD::SETNE) 4699 return DAG.getNode( 4700 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4701 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4702 } 4703 4704 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4705 SmallVectorImpl<SDValue> &Results, 4706 SelectionDAG &DAG) const { 4707 switch (N->getOpcode()) { 4708 case ISD::INSERT_VECTOR_ELT: { 4709 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4710 Results.push_back(Res); 4711 return; 4712 } 4713 case ISD::EXTRACT_VECTOR_ELT: { 4714 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4715 Results.push_back(Res); 4716 return; 4717 } 4718 case ISD::INTRINSIC_WO_CHAIN: { 4719 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4720 switch (IID) { 4721 case Intrinsic::amdgcn_cvt_pkrtz: { 4722 SDValue Src0 = N->getOperand(1); 4723 SDValue Src1 = N->getOperand(2); 4724 SDLoc SL(N); 4725 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4726 Src0, Src1); 4727 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4728 return; 4729 } 4730 case Intrinsic::amdgcn_cvt_pknorm_i16: 4731 case Intrinsic::amdgcn_cvt_pknorm_u16: 4732 case Intrinsic::amdgcn_cvt_pk_i16: 4733 case Intrinsic::amdgcn_cvt_pk_u16: { 4734 SDValue Src0 = N->getOperand(1); 4735 SDValue Src1 = N->getOperand(2); 4736 SDLoc SL(N); 4737 unsigned Opcode; 4738 4739 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 4740 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 4741 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 4742 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 4743 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 4744 Opcode = AMDGPUISD::CVT_PK_I16_I32; 4745 else 4746 Opcode = AMDGPUISD::CVT_PK_U16_U32; 4747 4748 EVT VT = N->getValueType(0); 4749 if (isTypeLegal(VT)) 4750 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 4751 else { 4752 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 4753 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 4754 } 4755 return; 4756 } 4757 } 4758 break; 4759 } 4760 case ISD::INTRINSIC_W_CHAIN: { 4761 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 4762 if (Res.getOpcode() == ISD::MERGE_VALUES) { 4763 // FIXME: Hacky 4764 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 4765 Results.push_back(Res.getOperand(I)); 4766 } 4767 } else { 4768 Results.push_back(Res); 4769 Results.push_back(Res.getValue(1)); 4770 } 4771 return; 4772 } 4773 4774 break; 4775 } 4776 case ISD::SELECT: { 4777 SDLoc SL(N); 4778 EVT VT = N->getValueType(0); 4779 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 4780 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 4781 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 4782 4783 EVT SelectVT = NewVT; 4784 if (NewVT.bitsLT(MVT::i32)) { 4785 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 4786 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 4787 SelectVT = MVT::i32; 4788 } 4789 4790 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 4791 N->getOperand(0), LHS, RHS); 4792 4793 if (NewVT != SelectVT) 4794 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 4795 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 4796 return; 4797 } 4798 case ISD::FNEG: { 4799 if (N->getValueType(0) != MVT::v2f16) 4800 break; 4801 4802 SDLoc SL(N); 4803 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4804 4805 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 4806 BC, 4807 DAG.getConstant(0x80008000, SL, MVT::i32)); 4808 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4809 return; 4810 } 4811 case ISD::FABS: { 4812 if (N->getValueType(0) != MVT::v2f16) 4813 break; 4814 4815 SDLoc SL(N); 4816 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4817 4818 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 4819 BC, 4820 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 4821 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4822 return; 4823 } 4824 default: 4825 break; 4826 } 4827 } 4828 4829 /// Helper function for LowerBRCOND 4830 static SDNode *findUser(SDValue Value, unsigned Opcode) { 4831 4832 SDNode *Parent = Value.getNode(); 4833 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 4834 I != E; ++I) { 4835 4836 if (I.getUse().get() != Value) 4837 continue; 4838 4839 if (I->getOpcode() == Opcode) 4840 return *I; 4841 } 4842 return nullptr; 4843 } 4844 4845 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 4846 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 4847 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 4848 case Intrinsic::amdgcn_if: 4849 return AMDGPUISD::IF; 4850 case Intrinsic::amdgcn_else: 4851 return AMDGPUISD::ELSE; 4852 case Intrinsic::amdgcn_loop: 4853 return AMDGPUISD::LOOP; 4854 case Intrinsic::amdgcn_end_cf: 4855 llvm_unreachable("should not occur"); 4856 default: 4857 return 0; 4858 } 4859 } 4860 4861 // break, if_break, else_break are all only used as inputs to loop, not 4862 // directly as branch conditions. 4863 return 0; 4864 } 4865 4866 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 4867 const Triple &TT = getTargetMachine().getTargetTriple(); 4868 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4869 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4870 AMDGPU::shouldEmitConstantsToTextSection(TT); 4871 } 4872 4873 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 4874 // FIXME: Either avoid relying on address space here or change the default 4875 // address space for functions to avoid the explicit check. 4876 return (GV->getValueType()->isFunctionTy() || 4877 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 4878 !shouldEmitFixup(GV) && 4879 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 4880 } 4881 4882 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 4883 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 4884 } 4885 4886 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 4887 if (!GV->hasExternalLinkage()) 4888 return true; 4889 4890 const auto OS = getTargetMachine().getTargetTriple().getOS(); 4891 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 4892 } 4893 4894 /// This transforms the control flow intrinsics to get the branch destination as 4895 /// last parameter, also switches branch target with BR if the need arise 4896 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 4897 SelectionDAG &DAG) const { 4898 SDLoc DL(BRCOND); 4899 4900 SDNode *Intr = BRCOND.getOperand(1).getNode(); 4901 SDValue Target = BRCOND.getOperand(2); 4902 SDNode *BR = nullptr; 4903 SDNode *SetCC = nullptr; 4904 4905 if (Intr->getOpcode() == ISD::SETCC) { 4906 // As long as we negate the condition everything is fine 4907 SetCC = Intr; 4908 Intr = SetCC->getOperand(0).getNode(); 4909 4910 } else { 4911 // Get the target from BR if we don't negate the condition 4912 BR = findUser(BRCOND, ISD::BR); 4913 assert(BR && "brcond missing unconditional branch user"); 4914 Target = BR->getOperand(1); 4915 } 4916 4917 unsigned CFNode = isCFIntrinsic(Intr); 4918 if (CFNode == 0) { 4919 // This is a uniform branch so we don't need to legalize. 4920 return BRCOND; 4921 } 4922 4923 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 4924 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 4925 4926 assert(!SetCC || 4927 (SetCC->getConstantOperandVal(1) == 1 && 4928 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 4929 ISD::SETNE)); 4930 4931 // operands of the new intrinsic call 4932 SmallVector<SDValue, 4> Ops; 4933 if (HaveChain) 4934 Ops.push_back(BRCOND.getOperand(0)); 4935 4936 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 4937 Ops.push_back(Target); 4938 4939 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 4940 4941 // build the new intrinsic call 4942 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 4943 4944 if (!HaveChain) { 4945 SDValue Ops[] = { 4946 SDValue(Result, 0), 4947 BRCOND.getOperand(0) 4948 }; 4949 4950 Result = DAG.getMergeValues(Ops, DL).getNode(); 4951 } 4952 4953 if (BR) { 4954 // Give the branch instruction our target 4955 SDValue Ops[] = { 4956 BR->getOperand(0), 4957 BRCOND.getOperand(2) 4958 }; 4959 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 4960 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 4961 } 4962 4963 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 4964 4965 // Copy the intrinsic results to registers 4966 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 4967 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 4968 if (!CopyToReg) 4969 continue; 4970 4971 Chain = DAG.getCopyToReg( 4972 Chain, DL, 4973 CopyToReg->getOperand(1), 4974 SDValue(Result, i - 1), 4975 SDValue()); 4976 4977 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 4978 } 4979 4980 // Remove the old intrinsic from the chain 4981 DAG.ReplaceAllUsesOfValueWith( 4982 SDValue(Intr, Intr->getNumValues() - 1), 4983 Intr->getOperand(0)); 4984 4985 return Chain; 4986 } 4987 4988 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 4989 SelectionDAG &DAG) const { 4990 MVT VT = Op.getSimpleValueType(); 4991 SDLoc DL(Op); 4992 // Checking the depth 4993 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 4994 return DAG.getConstant(0, DL, VT); 4995 4996 MachineFunction &MF = DAG.getMachineFunction(); 4997 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4998 // Check for kernel and shader functions 4999 if (Info->isEntryFunction()) 5000 return DAG.getConstant(0, DL, VT); 5001 5002 MachineFrameInfo &MFI = MF.getFrameInfo(); 5003 // There is a call to @llvm.returnaddress in this function 5004 MFI.setReturnAddressIsTaken(true); 5005 5006 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5007 // Get the return address reg and mark it as an implicit live-in 5008 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5009 5010 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5011 } 5012 5013 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5014 SDValue Op, 5015 const SDLoc &DL, 5016 EVT VT) const { 5017 return Op.getValueType().bitsLE(VT) ? 5018 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5019 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5020 DAG.getTargetConstant(0, DL, MVT::i32)); 5021 } 5022 5023 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5024 assert(Op.getValueType() == MVT::f16 && 5025 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5026 5027 SDValue Src = Op.getOperand(0); 5028 EVT SrcVT = Src.getValueType(); 5029 if (SrcVT != MVT::f64) 5030 return Op; 5031 5032 SDLoc DL(Op); 5033 5034 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5035 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5036 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5037 } 5038 5039 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5040 SelectionDAG &DAG) const { 5041 EVT VT = Op.getValueType(); 5042 const MachineFunction &MF = DAG.getMachineFunction(); 5043 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5044 bool IsIEEEMode = Info->getMode().IEEE; 5045 5046 // FIXME: Assert during selection that this is only selected for 5047 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5048 // mode functions, but this happens to be OK since it's only done in cases 5049 // where there is known no sNaN. 5050 if (IsIEEEMode) 5051 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5052 5053 if (VT == MVT::v4f16) 5054 return splitBinaryVectorOp(Op, DAG); 5055 return Op; 5056 } 5057 5058 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5059 EVT VT = Op.getValueType(); 5060 SDLoc SL(Op); 5061 SDValue LHS = Op.getOperand(0); 5062 SDValue RHS = Op.getOperand(1); 5063 bool isSigned = Op.getOpcode() == ISD::SMULO; 5064 5065 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5066 const APInt &C = RHSC->getAPIntValue(); 5067 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5068 if (C.isPowerOf2()) { 5069 // smulo(x, signed_min) is same as umulo(x, signed_min). 5070 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5071 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5072 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5073 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5074 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5075 SL, VT, Result, ShiftAmt), 5076 LHS, ISD::SETNE); 5077 return DAG.getMergeValues({ Result, Overflow }, SL); 5078 } 5079 } 5080 5081 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5082 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5083 SL, VT, LHS, RHS); 5084 5085 SDValue Sign = isSigned 5086 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5087 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5088 : DAG.getConstant(0, SL, VT); 5089 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5090 5091 return DAG.getMergeValues({ Result, Overflow }, SL); 5092 } 5093 5094 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5095 SDLoc SL(Op); 5096 SDValue Chain = Op.getOperand(0); 5097 5098 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 5099 !Subtarget->isTrapHandlerEnabled()) 5100 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5101 5102 MachineFunction &MF = DAG.getMachineFunction(); 5103 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5104 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5105 assert(UserSGPR != AMDGPU::NoRegister); 5106 SDValue QueuePtr = CreateLiveInRegister( 5107 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5108 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5109 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5110 QueuePtr, SDValue()); 5111 SDValue Ops[] = { 5112 ToReg, 5113 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), 5114 SGPR01, 5115 ToReg.getValue(1) 5116 }; 5117 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5118 } 5119 5120 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5121 SDLoc SL(Op); 5122 SDValue Chain = Op.getOperand(0); 5123 MachineFunction &MF = DAG.getMachineFunction(); 5124 5125 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 5126 !Subtarget->isTrapHandlerEnabled()) { 5127 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5128 "debugtrap handler not supported", 5129 Op.getDebugLoc(), 5130 DS_Warning); 5131 LLVMContext &Ctx = MF.getFunction().getContext(); 5132 Ctx.diagnose(NoTrap); 5133 return Chain; 5134 } 5135 5136 SDValue Ops[] = { 5137 Chain, 5138 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) 5139 }; 5140 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5141 } 5142 5143 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5144 SelectionDAG &DAG) const { 5145 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5146 if (Subtarget->hasApertureRegs()) { 5147 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5148 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5149 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5150 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5151 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5152 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5153 unsigned Encoding = 5154 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5155 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5156 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5157 5158 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5159 SDValue ApertureReg = SDValue( 5160 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5161 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5162 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5163 } 5164 5165 MachineFunction &MF = DAG.getMachineFunction(); 5166 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5167 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5168 assert(UserSGPR != AMDGPU::NoRegister); 5169 5170 SDValue QueuePtr = CreateLiveInRegister( 5171 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5172 5173 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5174 // private_segment_aperture_base_hi. 5175 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5176 5177 SDValue Ptr = 5178 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5179 5180 // TODO: Use custom target PseudoSourceValue. 5181 // TODO: We should use the value from the IR intrinsic call, but it might not 5182 // be available and how do we get it? 5183 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5184 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5185 commonAlignment(Align(64), StructOffset), 5186 MachineMemOperand::MODereferenceable | 5187 MachineMemOperand::MOInvariant); 5188 } 5189 5190 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5191 SelectionDAG &DAG) const { 5192 SDLoc SL(Op); 5193 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5194 5195 SDValue Src = ASC->getOperand(0); 5196 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5197 5198 const AMDGPUTargetMachine &TM = 5199 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5200 5201 // flat -> local/private 5202 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5203 unsigned DestAS = ASC->getDestAddressSpace(); 5204 5205 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5206 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5207 unsigned NullVal = TM.getNullPointerValue(DestAS); 5208 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5209 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5210 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5211 5212 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 5213 NonNull, Ptr, SegmentNullPtr); 5214 } 5215 } 5216 5217 // local/private -> flat 5218 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5219 unsigned SrcAS = ASC->getSrcAddressSpace(); 5220 5221 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5222 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5223 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5224 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5225 5226 SDValue NonNull 5227 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5228 5229 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5230 SDValue CvtPtr 5231 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5232 5233 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 5234 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 5235 FlatNullPtr); 5236 } 5237 } 5238 5239 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5240 Src.getValueType() == MVT::i64) 5241 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5242 5243 // global <-> flat are no-ops and never emitted. 5244 5245 const MachineFunction &MF = DAG.getMachineFunction(); 5246 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5247 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5248 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5249 5250 return DAG.getUNDEF(ASC->getValueType(0)); 5251 } 5252 5253 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5254 // the small vector and inserting them into the big vector. That is better than 5255 // the default expansion of doing it via a stack slot. Even though the use of 5256 // the stack slot would be optimized away afterwards, the stack slot itself 5257 // remains. 5258 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5259 SelectionDAG &DAG) const { 5260 SDValue Vec = Op.getOperand(0); 5261 SDValue Ins = Op.getOperand(1); 5262 SDValue Idx = Op.getOperand(2); 5263 EVT VecVT = Vec.getValueType(); 5264 EVT InsVT = Ins.getValueType(); 5265 EVT EltVT = VecVT.getVectorElementType(); 5266 unsigned InsNumElts = InsVT.getVectorNumElements(); 5267 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5268 SDLoc SL(Op); 5269 5270 for (unsigned I = 0; I != InsNumElts; ++I) { 5271 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5272 DAG.getConstant(I, SL, MVT::i32)); 5273 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5274 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5275 } 5276 return Vec; 5277 } 5278 5279 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5280 SelectionDAG &DAG) const { 5281 SDValue Vec = Op.getOperand(0); 5282 SDValue InsVal = Op.getOperand(1); 5283 SDValue Idx = Op.getOperand(2); 5284 EVT VecVT = Vec.getValueType(); 5285 EVT EltVT = VecVT.getVectorElementType(); 5286 unsigned VecSize = VecVT.getSizeInBits(); 5287 unsigned EltSize = EltVT.getSizeInBits(); 5288 5289 5290 assert(VecSize <= 64); 5291 5292 unsigned NumElts = VecVT.getVectorNumElements(); 5293 SDLoc SL(Op); 5294 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5295 5296 if (NumElts == 4 && EltSize == 16 && KIdx) { 5297 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5298 5299 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5300 DAG.getConstant(0, SL, MVT::i32)); 5301 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5302 DAG.getConstant(1, SL, MVT::i32)); 5303 5304 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5305 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5306 5307 unsigned Idx = KIdx->getZExtValue(); 5308 bool InsertLo = Idx < 2; 5309 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5310 InsertLo ? LoVec : HiVec, 5311 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5312 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5313 5314 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5315 5316 SDValue Concat = InsertLo ? 5317 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5318 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5319 5320 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5321 } 5322 5323 if (isa<ConstantSDNode>(Idx)) 5324 return SDValue(); 5325 5326 MVT IntVT = MVT::getIntegerVT(VecSize); 5327 5328 // Avoid stack access for dynamic indexing. 5329 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5330 5331 // Create a congruent vector with the target value in each element so that 5332 // the required element can be masked and ORed into the target vector. 5333 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5334 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5335 5336 assert(isPowerOf2_32(EltSize)); 5337 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5338 5339 // Convert vector index to bit-index. 5340 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5341 5342 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5343 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5344 DAG.getConstant(0xffff, SL, IntVT), 5345 ScaledIdx); 5346 5347 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5348 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5349 DAG.getNOT(SL, BFM, IntVT), BCVec); 5350 5351 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5352 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5353 } 5354 5355 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5356 SelectionDAG &DAG) const { 5357 SDLoc SL(Op); 5358 5359 EVT ResultVT = Op.getValueType(); 5360 SDValue Vec = Op.getOperand(0); 5361 SDValue Idx = Op.getOperand(1); 5362 EVT VecVT = Vec.getValueType(); 5363 unsigned VecSize = VecVT.getSizeInBits(); 5364 EVT EltVT = VecVT.getVectorElementType(); 5365 assert(VecSize <= 64); 5366 5367 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5368 5369 // Make sure we do any optimizations that will make it easier to fold 5370 // source modifiers before obscuring it with bit operations. 5371 5372 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5373 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5374 return Combined; 5375 5376 unsigned EltSize = EltVT.getSizeInBits(); 5377 assert(isPowerOf2_32(EltSize)); 5378 5379 MVT IntVT = MVT::getIntegerVT(VecSize); 5380 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5381 5382 // Convert vector index to bit-index (* EltSize) 5383 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5384 5385 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5386 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5387 5388 if (ResultVT == MVT::f16) { 5389 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5390 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5391 } 5392 5393 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5394 } 5395 5396 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5397 assert(Elt % 2 == 0); 5398 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5399 } 5400 5401 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5402 SelectionDAG &DAG) const { 5403 SDLoc SL(Op); 5404 EVT ResultVT = Op.getValueType(); 5405 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5406 5407 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5408 EVT EltVT = PackVT.getVectorElementType(); 5409 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5410 5411 // vector_shuffle <0,1,6,7> lhs, rhs 5412 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5413 // 5414 // vector_shuffle <6,7,2,3> lhs, rhs 5415 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5416 // 5417 // vector_shuffle <6,7,0,1> lhs, rhs 5418 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5419 5420 // Avoid scalarizing when both halves are reading from consecutive elements. 5421 SmallVector<SDValue, 4> Pieces; 5422 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5423 if (elementPairIsContiguous(SVN->getMask(), I)) { 5424 const int Idx = SVN->getMaskElt(I); 5425 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5426 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5427 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5428 PackVT, SVN->getOperand(VecIdx), 5429 DAG.getConstant(EltIdx, SL, MVT::i32)); 5430 Pieces.push_back(SubVec); 5431 } else { 5432 const int Idx0 = SVN->getMaskElt(I); 5433 const int Idx1 = SVN->getMaskElt(I + 1); 5434 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5435 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5436 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5437 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5438 5439 SDValue Vec0 = SVN->getOperand(VecIdx0); 5440 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5441 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5442 5443 SDValue Vec1 = SVN->getOperand(VecIdx1); 5444 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5445 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5446 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5447 } 5448 } 5449 5450 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5451 } 5452 5453 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5454 SelectionDAG &DAG) const { 5455 SDLoc SL(Op); 5456 EVT VT = Op.getValueType(); 5457 5458 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 5459 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 5460 5461 // Turn into pair of packed build_vectors. 5462 // TODO: Special case for constants that can be materialized with s_mov_b64. 5463 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 5464 { Op.getOperand(0), Op.getOperand(1) }); 5465 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 5466 { Op.getOperand(2), Op.getOperand(3) }); 5467 5468 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 5469 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 5470 5471 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 5472 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5473 } 5474 5475 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5476 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5477 5478 SDValue Lo = Op.getOperand(0); 5479 SDValue Hi = Op.getOperand(1); 5480 5481 // Avoid adding defined bits with the zero_extend. 5482 if (Hi.isUndef()) { 5483 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5484 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5485 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5486 } 5487 5488 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5489 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5490 5491 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5492 DAG.getConstant(16, SL, MVT::i32)); 5493 if (Lo.isUndef()) 5494 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5495 5496 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5497 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5498 5499 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5500 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5501 } 5502 5503 bool 5504 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5505 // We can fold offsets for anything that doesn't require a GOT relocation. 5506 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5507 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5508 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5509 !shouldEmitGOTReloc(GA->getGlobal()); 5510 } 5511 5512 static SDValue 5513 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5514 const SDLoc &DL, int64_t Offset, EVT PtrVT, 5515 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5516 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 5517 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5518 // lowered to the following code sequence: 5519 // 5520 // For constant address space: 5521 // s_getpc_b64 s[0:1] 5522 // s_add_u32 s0, s0, $symbol 5523 // s_addc_u32 s1, s1, 0 5524 // 5525 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5526 // a fixup or relocation is emitted to replace $symbol with a literal 5527 // constant, which is a pc-relative offset from the encoding of the $symbol 5528 // operand to the global variable. 5529 // 5530 // For global address space: 5531 // s_getpc_b64 s[0:1] 5532 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5533 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5534 // 5535 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5536 // fixups or relocations are emitted to replace $symbol@*@lo and 5537 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5538 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5539 // operand to the global variable. 5540 // 5541 // What we want here is an offset from the value returned by s_getpc 5542 // (which is the address of the s_add_u32 instruction) to the global 5543 // variable, but since the encoding of $symbol starts 4 bytes after the start 5544 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5545 // small. This requires us to add 4 to the global variable offset in order to 5546 // compute the correct address. Similarly for the s_addc_u32 instruction, the 5547 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 5548 // instruction. 5549 SDValue PtrLo = 5550 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5551 SDValue PtrHi; 5552 if (GAFlags == SIInstrInfo::MO_NONE) { 5553 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5554 } else { 5555 PtrHi = 5556 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 5557 } 5558 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5559 } 5560 5561 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5562 SDValue Op, 5563 SelectionDAG &DAG) const { 5564 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5565 SDLoc DL(GSD); 5566 EVT PtrVT = Op.getValueType(); 5567 5568 const GlobalValue *GV = GSD->getGlobal(); 5569 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5570 shouldUseLDSConstAddress(GV)) || 5571 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5572 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 5573 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5574 GV->hasExternalLinkage()) { 5575 Type *Ty = GV->getValueType(); 5576 // HIP uses an unsized array `extern __shared__ T s[]` or similar 5577 // zero-sized type in other languages to declare the dynamic shared 5578 // memory which size is not known at the compile time. They will be 5579 // allocated by the runtime and placed directly after the static 5580 // allocated ones. They all share the same offset. 5581 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 5582 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 5583 // Adjust alignment for that dynamic shared memory array. 5584 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); 5585 return SDValue( 5586 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 5587 } 5588 } 5589 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 5590 } 5591 5592 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 5593 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 5594 SIInstrInfo::MO_ABS32_LO); 5595 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 5596 } 5597 5598 if (shouldEmitFixup(GV)) 5599 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 5600 else if (shouldEmitPCReloc(GV)) 5601 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 5602 SIInstrInfo::MO_REL32); 5603 5604 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 5605 SIInstrInfo::MO_GOTPCREL32); 5606 5607 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 5608 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 5609 const DataLayout &DataLayout = DAG.getDataLayout(); 5610 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 5611 MachinePointerInfo PtrInfo 5612 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 5613 5614 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 5615 MachineMemOperand::MODereferenceable | 5616 MachineMemOperand::MOInvariant); 5617 } 5618 5619 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 5620 const SDLoc &DL, SDValue V) const { 5621 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 5622 // the destination register. 5623 // 5624 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 5625 // so we will end up with redundant moves to m0. 5626 // 5627 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 5628 5629 // A Null SDValue creates a glue result. 5630 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 5631 V, Chain); 5632 return SDValue(M0, 0); 5633 } 5634 5635 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 5636 SDValue Op, 5637 MVT VT, 5638 unsigned Offset) const { 5639 SDLoc SL(Op); 5640 SDValue Param = lowerKernargMemParameter( 5641 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 5642 // The local size values will have the hi 16-bits as zero. 5643 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 5644 DAG.getValueType(VT)); 5645 } 5646 5647 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5648 EVT VT) { 5649 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5650 "non-hsa intrinsic with hsa target", 5651 DL.getDebugLoc()); 5652 DAG.getContext()->diagnose(BadIntrin); 5653 return DAG.getUNDEF(VT); 5654 } 5655 5656 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5657 EVT VT) { 5658 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5659 "intrinsic not supported on subtarget", 5660 DL.getDebugLoc()); 5661 DAG.getContext()->diagnose(BadIntrin); 5662 return DAG.getUNDEF(VT); 5663 } 5664 5665 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 5666 ArrayRef<SDValue> Elts) { 5667 assert(!Elts.empty()); 5668 MVT Type; 5669 unsigned NumElts; 5670 5671 if (Elts.size() == 1) { 5672 Type = MVT::f32; 5673 NumElts = 1; 5674 } else if (Elts.size() == 2) { 5675 Type = MVT::v2f32; 5676 NumElts = 2; 5677 } else if (Elts.size() == 3) { 5678 Type = MVT::v3f32; 5679 NumElts = 3; 5680 } else if (Elts.size() <= 4) { 5681 Type = MVT::v4f32; 5682 NumElts = 4; 5683 } else if (Elts.size() <= 8) { 5684 Type = MVT::v8f32; 5685 NumElts = 8; 5686 } else { 5687 assert(Elts.size() <= 16); 5688 Type = MVT::v16f32; 5689 NumElts = 16; 5690 } 5691 5692 SmallVector<SDValue, 16> VecElts(NumElts); 5693 for (unsigned i = 0; i < Elts.size(); ++i) { 5694 SDValue Elt = Elts[i]; 5695 if (Elt.getValueType() != MVT::f32) 5696 Elt = DAG.getBitcast(MVT::f32, Elt); 5697 VecElts[i] = Elt; 5698 } 5699 for (unsigned i = Elts.size(); i < NumElts; ++i) 5700 VecElts[i] = DAG.getUNDEF(MVT::f32); 5701 5702 if (NumElts == 1) 5703 return VecElts[0]; 5704 return DAG.getBuildVector(Type, DL, VecElts); 5705 } 5706 5707 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, 5708 SDValue *GLC, SDValue *SLC, SDValue *DLC) { 5709 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); 5710 5711 uint64_t Value = CachePolicyConst->getZExtValue(); 5712 SDLoc DL(CachePolicy); 5713 if (GLC) { 5714 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5715 Value &= ~(uint64_t)0x1; 5716 } 5717 if (SLC) { 5718 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5719 Value &= ~(uint64_t)0x2; 5720 } 5721 if (DLC) { 5722 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); 5723 Value &= ~(uint64_t)0x4; 5724 } 5725 5726 return Value == 0; 5727 } 5728 5729 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 5730 SDValue Src, int ExtraElts) { 5731 EVT SrcVT = Src.getValueType(); 5732 5733 SmallVector<SDValue, 8> Elts; 5734 5735 if (SrcVT.isVector()) 5736 DAG.ExtractVectorElements(Src, Elts); 5737 else 5738 Elts.push_back(Src); 5739 5740 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 5741 while (ExtraElts--) 5742 Elts.push_back(Undef); 5743 5744 return DAG.getBuildVector(CastVT, DL, Elts); 5745 } 5746 5747 // Re-construct the required return value for a image load intrinsic. 5748 // This is more complicated due to the optional use TexFailCtrl which means the required 5749 // return type is an aggregate 5750 static SDValue constructRetValue(SelectionDAG &DAG, 5751 MachineSDNode *Result, 5752 ArrayRef<EVT> ResultTypes, 5753 bool IsTexFail, bool Unpacked, bool IsD16, 5754 int DMaskPop, int NumVDataDwords, 5755 const SDLoc &DL, LLVMContext &Context) { 5756 // Determine the required return type. This is the same regardless of IsTexFail flag 5757 EVT ReqRetVT = ResultTypes[0]; 5758 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 5759 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5760 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 5761 5762 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5763 DMaskPop : (DMaskPop + 1) / 2; 5764 5765 MVT DataDwordVT = NumDataDwords == 1 ? 5766 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 5767 5768 MVT MaskPopVT = MaskPopDwords == 1 ? 5769 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 5770 5771 SDValue Data(Result, 0); 5772 SDValue TexFail; 5773 5774 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 5775 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 5776 if (MaskPopVT.isVector()) { 5777 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 5778 SDValue(Result, 0), ZeroIdx); 5779 } else { 5780 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 5781 SDValue(Result, 0), ZeroIdx); 5782 } 5783 } 5784 5785 if (DataDwordVT.isVector()) 5786 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 5787 NumDataDwords - MaskPopDwords); 5788 5789 if (IsD16) 5790 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 5791 5792 EVT LegalReqRetVT = ReqRetVT; 5793 if (!ReqRetVT.isVector()) { 5794 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 5795 } else { 5796 // We need to widen the return vector to a legal type 5797 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 5798 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 5799 LegalReqRetVT = 5800 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 5801 ReqRetVT.getVectorNumElements() + 1); 5802 } 5803 } 5804 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 5805 5806 if (IsTexFail) { 5807 TexFail = 5808 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 5809 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 5810 5811 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 5812 } 5813 5814 if (Result->getNumValues() == 1) 5815 return Data; 5816 5817 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 5818 } 5819 5820 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 5821 SDValue *LWE, bool &IsTexFail) { 5822 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 5823 5824 uint64_t Value = TexFailCtrlConst->getZExtValue(); 5825 if (Value) { 5826 IsTexFail = true; 5827 } 5828 5829 SDLoc DL(TexFailCtrlConst); 5830 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5831 Value &= ~(uint64_t)0x1; 5832 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5833 Value &= ~(uint64_t)0x2; 5834 5835 return Value == 0; 5836 } 5837 5838 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op, 5839 MVT PackVectorVT, 5840 SmallVectorImpl<SDValue> &PackedAddrs, 5841 unsigned DimIdx, unsigned EndIdx, 5842 unsigned NumGradients) { 5843 SDLoc DL(Op); 5844 for (unsigned I = DimIdx; I < EndIdx; I++) { 5845 SDValue Addr = Op.getOperand(I); 5846 5847 // Gradients are packed with undef for each coordinate. 5848 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 5849 // 1D: undef,dx/dh; undef,dx/dv 5850 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 5851 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 5852 if (((I + 1) >= EndIdx) || 5853 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 5854 I == DimIdx + NumGradients - 1))) { 5855 if (Addr.getValueType() != MVT::i16) 5856 Addr = DAG.getBitcast(MVT::i16, Addr); 5857 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 5858 } else { 5859 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 5860 I++; 5861 } 5862 Addr = DAG.getBitcast(MVT::f32, Addr); 5863 PackedAddrs.push_back(Addr); 5864 } 5865 } 5866 5867 SDValue SITargetLowering::lowerImage(SDValue Op, 5868 const AMDGPU::ImageDimIntrinsicInfo *Intr, 5869 SelectionDAG &DAG, bool WithChain) const { 5870 SDLoc DL(Op); 5871 MachineFunction &MF = DAG.getMachineFunction(); 5872 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 5873 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5874 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 5875 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 5876 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 5877 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 5878 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = 5879 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); 5880 unsigned IntrOpcode = Intr->BaseOpcode; 5881 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 5882 5883 SmallVector<EVT, 3> ResultTypes(Op->values()); 5884 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 5885 bool IsD16 = false; 5886 bool IsG16 = false; 5887 bool IsA16 = false; 5888 SDValue VData; 5889 int NumVDataDwords; 5890 bool AdjustRetType = false; 5891 5892 // Offset of intrinsic arguments 5893 const unsigned ArgOffset = WithChain ? 2 : 1; 5894 5895 unsigned DMask; 5896 unsigned DMaskLanes = 0; 5897 5898 if (BaseOpcode->Atomic) { 5899 VData = Op.getOperand(2); 5900 5901 bool Is64Bit = VData.getValueType() == MVT::i64; 5902 if (BaseOpcode->AtomicX2) { 5903 SDValue VData2 = Op.getOperand(3); 5904 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 5905 {VData, VData2}); 5906 if (Is64Bit) 5907 VData = DAG.getBitcast(MVT::v4i32, VData); 5908 5909 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 5910 DMask = Is64Bit ? 0xf : 0x3; 5911 NumVDataDwords = Is64Bit ? 4 : 2; 5912 } else { 5913 DMask = Is64Bit ? 0x3 : 0x1; 5914 NumVDataDwords = Is64Bit ? 2 : 1; 5915 } 5916 } else { 5917 auto *DMaskConst = 5918 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 5919 DMask = DMaskConst->getZExtValue(); 5920 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 5921 5922 if (BaseOpcode->Store) { 5923 VData = Op.getOperand(2); 5924 5925 MVT StoreVT = VData.getSimpleValueType(); 5926 if (StoreVT.getScalarType() == MVT::f16) { 5927 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5928 return Op; // D16 is unsupported for this instruction 5929 5930 IsD16 = true; 5931 VData = handleD16VData(VData, DAG, true); 5932 } 5933 5934 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 5935 } else { 5936 // Work out the num dwords based on the dmask popcount and underlying type 5937 // and whether packing is supported. 5938 MVT LoadVT = ResultTypes[0].getSimpleVT(); 5939 if (LoadVT.getScalarType() == MVT::f16) { 5940 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5941 return Op; // D16 is unsupported for this instruction 5942 5943 IsD16 = true; 5944 } 5945 5946 // Confirm that the return type is large enough for the dmask specified 5947 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 5948 (!LoadVT.isVector() && DMaskLanes > 1)) 5949 return Op; 5950 5951 // The sq block of gfx8 and gfx9 do not estimate register use correctly 5952 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 5953 // instructions. 5954 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 5955 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 5956 NumVDataDwords = (DMaskLanes + 1) / 2; 5957 else 5958 NumVDataDwords = DMaskLanes; 5959 5960 AdjustRetType = true; 5961 } 5962 } 5963 5964 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 5965 SmallVector<SDValue, 4> VAddrs; 5966 5967 // Optimize _L to _LZ when _L is zero 5968 if (LZMappingInfo) { 5969 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>( 5970 Op.getOperand(ArgOffset + Intr->LodIndex))) { 5971 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 5972 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 5973 VAddrEnd--; // remove 'lod' 5974 } 5975 } 5976 } 5977 5978 // Optimize _mip away, when 'lod' is zero 5979 if (MIPMappingInfo) { 5980 if (auto *ConstantLod = dyn_cast<ConstantSDNode>( 5981 Op.getOperand(ArgOffset + Intr->MipIndex))) { 5982 if (ConstantLod->isNullValue()) { 5983 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip 5984 VAddrEnd--; // remove 'mip' 5985 } 5986 } 5987 } 5988 5989 // Push back extra arguments. 5990 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) 5991 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 5992 5993 // Check for 16 bit addresses or derivatives and pack if true. 5994 MVT VAddrVT = 5995 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 5996 MVT VAddrScalarVT = VAddrVT.getScalarType(); 5997 MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 5998 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 5999 6000 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6001 VAddrScalarVT = VAddrVT.getScalarType(); 6002 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6003 if (IsA16 || IsG16) { 6004 if (IsA16) { 6005 if (!ST->hasA16()) { 6006 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6007 "support 16 bit addresses\n"); 6008 return Op; 6009 } 6010 if (!IsG16) { 6011 LLVM_DEBUG( 6012 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6013 "need 16 bit derivatives but got 32 bit derivatives\n"); 6014 return Op; 6015 } 6016 } else if (!ST->hasG16()) { 6017 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6018 "support 16 bit derivatives\n"); 6019 return Op; 6020 } 6021 6022 if (BaseOpcode->Gradients && !IsA16) { 6023 if (!ST->hasG16()) { 6024 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6025 "support 16 bit derivatives\n"); 6026 return Op; 6027 } 6028 // Activate g16 6029 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6030 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6031 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6032 } 6033 6034 // Don't compress addresses for G16 6035 const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6036 packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs, 6037 ArgOffset + Intr->GradientStart, PackEndIdx, 6038 Intr->NumGradients); 6039 6040 if (!IsA16) { 6041 // Add uncompressed address 6042 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6043 VAddrs.push_back(Op.getOperand(I)); 6044 } 6045 } else { 6046 for (unsigned I = ArgOffset + Intr->GradientStart; I < VAddrEnd; I++) 6047 VAddrs.push_back(Op.getOperand(I)); 6048 } 6049 6050 // If the register allocator cannot place the address registers contiguously 6051 // without introducing moves, then using the non-sequential address encoding 6052 // is always preferable, since it saves VALU instructions and is usually a 6053 // wash in terms of code size or even better. 6054 // 6055 // However, we currently have no way of hinting to the register allocator that 6056 // MIMG addresses should be placed contiguously when it is possible to do so, 6057 // so force non-NSA for the common 2-address case as a heuristic. 6058 // 6059 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6060 // allocation when possible. 6061 bool UseNSA = 6062 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; 6063 SDValue VAddr; 6064 if (!UseNSA) 6065 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6066 6067 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6068 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6069 SDValue Unorm; 6070 if (!BaseOpcode->Sampler) { 6071 Unorm = True; 6072 } else { 6073 auto UnormConst = 6074 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6075 6076 Unorm = UnormConst->getZExtValue() ? True : False; 6077 } 6078 6079 SDValue TFE; 6080 SDValue LWE; 6081 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6082 bool IsTexFail = false; 6083 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6084 return Op; 6085 6086 if (IsTexFail) { 6087 if (!DMaskLanes) { 6088 // Expecting to get an error flag since TFC is on - and dmask is 0 6089 // Force dmask to be at least 1 otherwise the instruction will fail 6090 DMask = 0x1; 6091 DMaskLanes = 1; 6092 NumVDataDwords = 1; 6093 } 6094 NumVDataDwords += 1; 6095 AdjustRetType = true; 6096 } 6097 6098 // Has something earlier tagged that the return type needs adjusting 6099 // This happens if the instruction is a load or has set TexFailCtrl flags 6100 if (AdjustRetType) { 6101 // NumVDataDwords reflects the true number of dwords required in the return type 6102 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6103 // This is a no-op load. This can be eliminated 6104 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6105 if (isa<MemSDNode>(Op)) 6106 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6107 return Undef; 6108 } 6109 6110 EVT NewVT = NumVDataDwords > 1 ? 6111 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6112 : MVT::i32; 6113 6114 ResultTypes[0] = NewVT; 6115 if (ResultTypes.size() == 3) { 6116 // Original result was aggregate type used for TexFailCtrl results 6117 // The actual instruction returns as a vector type which has now been 6118 // created. Remove the aggregate result. 6119 ResultTypes.erase(&ResultTypes[1]); 6120 } 6121 } 6122 6123 SDValue GLC; 6124 SDValue SLC; 6125 SDValue DLC; 6126 if (BaseOpcode->Atomic) { 6127 GLC = True; // TODO no-return optimization 6128 if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex), 6129 DAG, nullptr, &SLC, IsGFX10Plus ? &DLC : nullptr)) 6130 return Op; 6131 } else { 6132 if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex), 6133 DAG, &GLC, &SLC, IsGFX10Plus ? &DLC : nullptr)) 6134 return Op; 6135 } 6136 6137 SmallVector<SDValue, 26> Ops; 6138 if (BaseOpcode->Store || BaseOpcode->Atomic) 6139 Ops.push_back(VData); // vdata 6140 if (UseNSA) 6141 append_range(Ops, VAddrs); 6142 else 6143 Ops.push_back(VAddr); 6144 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6145 if (BaseOpcode->Sampler) 6146 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6147 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6148 if (IsGFX10Plus) 6149 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6150 Ops.push_back(Unorm); 6151 if (IsGFX10Plus) 6152 Ops.push_back(DLC); 6153 Ops.push_back(GLC); 6154 Ops.push_back(SLC); 6155 Ops.push_back(IsA16 && // r128, a16 for gfx9 6156 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6157 if (IsGFX10Plus) 6158 Ops.push_back(IsA16 ? True : False); 6159 Ops.push_back(TFE); 6160 Ops.push_back(LWE); 6161 if (!IsGFX10Plus) 6162 Ops.push_back(DimInfo->DA ? True : False); 6163 if (BaseOpcode->HasD16) 6164 Ops.push_back(IsD16 ? True : False); 6165 if (isa<MemSDNode>(Op)) 6166 Ops.push_back(Op.getOperand(0)); // chain 6167 6168 int NumVAddrDwords = 6169 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6170 int Opcode = -1; 6171 6172 if (IsGFX10Plus) { 6173 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6174 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6175 : AMDGPU::MIMGEncGfx10Default, 6176 NumVDataDwords, NumVAddrDwords); 6177 } else { 6178 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6179 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6180 NumVDataDwords, NumVAddrDwords); 6181 if (Opcode == -1) 6182 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6183 NumVDataDwords, NumVAddrDwords); 6184 } 6185 assert(Opcode != -1); 6186 6187 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6188 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6189 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6190 DAG.setNodeMemRefs(NewNode, {MemRef}); 6191 } 6192 6193 if (BaseOpcode->AtomicX2) { 6194 SmallVector<SDValue, 1> Elt; 6195 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6196 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6197 } else if (!BaseOpcode->Store) { 6198 return constructRetValue(DAG, NewNode, 6199 OrigResultTypes, IsTexFail, 6200 Subtarget->hasUnpackedD16VMem(), IsD16, 6201 DMaskLanes, NumVDataDwords, DL, 6202 *DAG.getContext()); 6203 } 6204 6205 return SDValue(NewNode, 0); 6206 } 6207 6208 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6209 SDValue Offset, SDValue CachePolicy, 6210 SelectionDAG &DAG) const { 6211 MachineFunction &MF = DAG.getMachineFunction(); 6212 6213 const DataLayout &DataLayout = DAG.getDataLayout(); 6214 Align Alignment = 6215 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6216 6217 MachineMemOperand *MMO = MF.getMachineMemOperand( 6218 MachinePointerInfo(), 6219 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6220 MachineMemOperand::MOInvariant, 6221 VT.getStoreSize(), Alignment); 6222 6223 if (!Offset->isDivergent()) { 6224 SDValue Ops[] = { 6225 Rsrc, 6226 Offset, // Offset 6227 CachePolicy 6228 }; 6229 6230 // Widen vec3 load to vec4. 6231 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6232 EVT WidenedVT = 6233 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6234 auto WidenedOp = DAG.getMemIntrinsicNode( 6235 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6236 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6237 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6238 DAG.getVectorIdxConstant(0, DL)); 6239 return Subvector; 6240 } 6241 6242 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6243 DAG.getVTList(VT), Ops, VT, MMO); 6244 } 6245 6246 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6247 // assume that the buffer is unswizzled. 6248 SmallVector<SDValue, 4> Loads; 6249 unsigned NumLoads = 1; 6250 MVT LoadVT = VT.getSimpleVT(); 6251 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6252 assert((LoadVT.getScalarType() == MVT::i32 || 6253 LoadVT.getScalarType() == MVT::f32)); 6254 6255 if (NumElts == 8 || NumElts == 16) { 6256 NumLoads = NumElts / 4; 6257 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6258 } 6259 6260 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6261 SDValue Ops[] = { 6262 DAG.getEntryNode(), // Chain 6263 Rsrc, // rsrc 6264 DAG.getConstant(0, DL, MVT::i32), // vindex 6265 {}, // voffset 6266 {}, // soffset 6267 {}, // offset 6268 CachePolicy, // cachepolicy 6269 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6270 }; 6271 6272 // Use the alignment to ensure that the required offsets will fit into the 6273 // immediate offsets. 6274 setBufferOffsets(Offset, DAG, &Ops[3], 6275 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6276 6277 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6278 for (unsigned i = 0; i < NumLoads; ++i) { 6279 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6280 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6281 LoadVT, MMO, DAG)); 6282 } 6283 6284 if (NumElts == 8 || NumElts == 16) 6285 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6286 6287 return Loads[0]; 6288 } 6289 6290 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6291 SelectionDAG &DAG) const { 6292 MachineFunction &MF = DAG.getMachineFunction(); 6293 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6294 6295 EVT VT = Op.getValueType(); 6296 SDLoc DL(Op); 6297 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6298 6299 // TODO: Should this propagate fast-math-flags? 6300 6301 switch (IntrinsicID) { 6302 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6303 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6304 return emitNonHSAIntrinsicError(DAG, DL, VT); 6305 return getPreloadedValue(DAG, *MFI, VT, 6306 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6307 } 6308 case Intrinsic::amdgcn_dispatch_ptr: 6309 case Intrinsic::amdgcn_queue_ptr: { 6310 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6311 DiagnosticInfoUnsupported BadIntrin( 6312 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6313 DL.getDebugLoc()); 6314 DAG.getContext()->diagnose(BadIntrin); 6315 return DAG.getUNDEF(VT); 6316 } 6317 6318 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6319 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6320 return getPreloadedValue(DAG, *MFI, VT, RegID); 6321 } 6322 case Intrinsic::amdgcn_implicitarg_ptr: { 6323 if (MFI->isEntryFunction()) 6324 return getImplicitArgPtr(DAG, DL); 6325 return getPreloadedValue(DAG, *MFI, VT, 6326 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6327 } 6328 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6329 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6330 // This only makes sense to call in a kernel, so just lower to null. 6331 return DAG.getConstant(0, DL, VT); 6332 } 6333 6334 return getPreloadedValue(DAG, *MFI, VT, 6335 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6336 } 6337 case Intrinsic::amdgcn_dispatch_id: { 6338 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6339 } 6340 case Intrinsic::amdgcn_rcp: 6341 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6342 case Intrinsic::amdgcn_rsq: 6343 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6344 case Intrinsic::amdgcn_rsq_legacy: 6345 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6346 return emitRemovedIntrinsicError(DAG, DL, VT); 6347 return SDValue(); 6348 case Intrinsic::amdgcn_rcp_legacy: 6349 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6350 return emitRemovedIntrinsicError(DAG, DL, VT); 6351 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6352 case Intrinsic::amdgcn_rsq_clamp: { 6353 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6354 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6355 6356 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6357 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6358 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6359 6360 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6361 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6362 DAG.getConstantFP(Max, DL, VT)); 6363 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6364 DAG.getConstantFP(Min, DL, VT)); 6365 } 6366 case Intrinsic::r600_read_ngroups_x: 6367 if (Subtarget->isAmdHsaOS()) 6368 return emitNonHSAIntrinsicError(DAG, DL, VT); 6369 6370 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6371 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6372 false); 6373 case Intrinsic::r600_read_ngroups_y: 6374 if (Subtarget->isAmdHsaOS()) 6375 return emitNonHSAIntrinsicError(DAG, DL, VT); 6376 6377 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6378 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6379 false); 6380 case Intrinsic::r600_read_ngroups_z: 6381 if (Subtarget->isAmdHsaOS()) 6382 return emitNonHSAIntrinsicError(DAG, DL, VT); 6383 6384 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6385 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6386 false); 6387 case Intrinsic::r600_read_global_size_x: 6388 if (Subtarget->isAmdHsaOS()) 6389 return emitNonHSAIntrinsicError(DAG, DL, VT); 6390 6391 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6392 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6393 Align(4), false); 6394 case Intrinsic::r600_read_global_size_y: 6395 if (Subtarget->isAmdHsaOS()) 6396 return emitNonHSAIntrinsicError(DAG, DL, VT); 6397 6398 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6399 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6400 Align(4), false); 6401 case Intrinsic::r600_read_global_size_z: 6402 if (Subtarget->isAmdHsaOS()) 6403 return emitNonHSAIntrinsicError(DAG, DL, VT); 6404 6405 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6406 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6407 Align(4), false); 6408 case Intrinsic::r600_read_local_size_x: 6409 if (Subtarget->isAmdHsaOS()) 6410 return emitNonHSAIntrinsicError(DAG, DL, VT); 6411 6412 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6413 SI::KernelInputOffsets::LOCAL_SIZE_X); 6414 case Intrinsic::r600_read_local_size_y: 6415 if (Subtarget->isAmdHsaOS()) 6416 return emitNonHSAIntrinsicError(DAG, DL, VT); 6417 6418 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6419 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6420 case Intrinsic::r600_read_local_size_z: 6421 if (Subtarget->isAmdHsaOS()) 6422 return emitNonHSAIntrinsicError(DAG, DL, VT); 6423 6424 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6425 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6426 case Intrinsic::amdgcn_workgroup_id_x: 6427 return getPreloadedValue(DAG, *MFI, VT, 6428 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6429 case Intrinsic::amdgcn_workgroup_id_y: 6430 return getPreloadedValue(DAG, *MFI, VT, 6431 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6432 case Intrinsic::amdgcn_workgroup_id_z: 6433 return getPreloadedValue(DAG, *MFI, VT, 6434 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6435 case Intrinsic::amdgcn_workitem_id_x: 6436 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6437 SDLoc(DAG.getEntryNode()), 6438 MFI->getArgInfo().WorkItemIDX); 6439 case Intrinsic::amdgcn_workitem_id_y: 6440 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6441 SDLoc(DAG.getEntryNode()), 6442 MFI->getArgInfo().WorkItemIDY); 6443 case Intrinsic::amdgcn_workitem_id_z: 6444 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6445 SDLoc(DAG.getEntryNode()), 6446 MFI->getArgInfo().WorkItemIDZ); 6447 case Intrinsic::amdgcn_wavefrontsize: 6448 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6449 SDLoc(Op), MVT::i32); 6450 case Intrinsic::amdgcn_s_buffer_load: { 6451 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 6452 SDValue GLC; 6453 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); 6454 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, 6455 IsGFX10Plus ? &DLC : nullptr)) 6456 return Op; 6457 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6458 DAG); 6459 } 6460 case Intrinsic::amdgcn_fdiv_fast: 6461 return lowerFDIV_FAST(Op, DAG); 6462 case Intrinsic::amdgcn_sin: 6463 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6464 6465 case Intrinsic::amdgcn_cos: 6466 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6467 6468 case Intrinsic::amdgcn_mul_u24: 6469 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6470 case Intrinsic::amdgcn_mul_i24: 6471 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6472 6473 case Intrinsic::amdgcn_log_clamp: { 6474 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6475 return SDValue(); 6476 6477 return emitRemovedIntrinsicError(DAG, DL, VT); 6478 } 6479 case Intrinsic::amdgcn_ldexp: 6480 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6481 Op.getOperand(1), Op.getOperand(2)); 6482 6483 case Intrinsic::amdgcn_fract: 6484 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6485 6486 case Intrinsic::amdgcn_class: 6487 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6488 Op.getOperand(1), Op.getOperand(2)); 6489 case Intrinsic::amdgcn_div_fmas: 6490 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6491 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6492 Op.getOperand(4)); 6493 6494 case Intrinsic::amdgcn_div_fixup: 6495 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6496 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6497 6498 case Intrinsic::amdgcn_div_scale: { 6499 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6500 6501 // Translate to the operands expected by the machine instruction. The 6502 // first parameter must be the same as the first instruction. 6503 SDValue Numerator = Op.getOperand(1); 6504 SDValue Denominator = Op.getOperand(2); 6505 6506 // Note this order is opposite of the machine instruction's operations, 6507 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6508 // intrinsic has the numerator as the first operand to match a normal 6509 // division operation. 6510 6511 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 6512 6513 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6514 Denominator, Numerator); 6515 } 6516 case Intrinsic::amdgcn_icmp: { 6517 // There is a Pat that handles this variant, so return it as-is. 6518 if (Op.getOperand(1).getValueType() == MVT::i1 && 6519 Op.getConstantOperandVal(2) == 0 && 6520 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6521 return Op; 6522 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6523 } 6524 case Intrinsic::amdgcn_fcmp: { 6525 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6526 } 6527 case Intrinsic::amdgcn_ballot: 6528 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 6529 case Intrinsic::amdgcn_fmed3: 6530 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6531 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6532 case Intrinsic::amdgcn_fdot2: 6533 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6534 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6535 Op.getOperand(4)); 6536 case Intrinsic::amdgcn_fmul_legacy: 6537 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6538 Op.getOperand(1), Op.getOperand(2)); 6539 case Intrinsic::amdgcn_sffbh: 6540 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6541 case Intrinsic::amdgcn_sbfe: 6542 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6543 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6544 case Intrinsic::amdgcn_ubfe: 6545 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6546 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6547 case Intrinsic::amdgcn_cvt_pkrtz: 6548 case Intrinsic::amdgcn_cvt_pknorm_i16: 6549 case Intrinsic::amdgcn_cvt_pknorm_u16: 6550 case Intrinsic::amdgcn_cvt_pk_i16: 6551 case Intrinsic::amdgcn_cvt_pk_u16: { 6552 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6553 EVT VT = Op.getValueType(); 6554 unsigned Opcode; 6555 6556 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6557 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6558 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6559 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6560 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6561 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6562 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6563 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6564 else 6565 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6566 6567 if (isTypeLegal(VT)) 6568 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6569 6570 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6571 Op.getOperand(1), Op.getOperand(2)); 6572 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6573 } 6574 case Intrinsic::amdgcn_fmad_ftz: 6575 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6576 Op.getOperand(2), Op.getOperand(3)); 6577 6578 case Intrinsic::amdgcn_if_break: 6579 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6580 Op->getOperand(1), Op->getOperand(2)), 0); 6581 6582 case Intrinsic::amdgcn_groupstaticsize: { 6583 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6584 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6585 return Op; 6586 6587 const Module *M = MF.getFunction().getParent(); 6588 const GlobalValue *GV = 6589 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6590 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6591 SIInstrInfo::MO_ABS32_LO); 6592 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6593 } 6594 case Intrinsic::amdgcn_is_shared: 6595 case Intrinsic::amdgcn_is_private: { 6596 SDLoc SL(Op); 6597 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6598 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6599 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6600 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6601 Op.getOperand(1)); 6602 6603 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6604 DAG.getConstant(1, SL, MVT::i32)); 6605 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 6606 } 6607 case Intrinsic::amdgcn_alignbit: 6608 return DAG.getNode(ISD::FSHR, DL, VT, 6609 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6610 case Intrinsic::amdgcn_reloc_constant: { 6611 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 6612 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 6613 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 6614 auto RelocSymbol = cast<GlobalVariable>( 6615 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 6616 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 6617 SIInstrInfo::MO_ABS32_LO); 6618 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6619 } 6620 default: 6621 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6622 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 6623 return lowerImage(Op, ImageDimIntr, DAG, false); 6624 6625 return Op; 6626 } 6627 } 6628 6629 // This function computes an appropriate offset to pass to 6630 // MachineMemOperand::setOffset() based on the offset inputs to 6631 // an intrinsic. If any of the offsets are non-contstant or 6632 // if VIndex is non-zero then this function returns 0. Otherwise, 6633 // it returns the sum of VOffset, SOffset, and Offset. 6634 static unsigned getBufferOffsetForMMO(SDValue VOffset, 6635 SDValue SOffset, 6636 SDValue Offset, 6637 SDValue VIndex = SDValue()) { 6638 6639 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 6640 !isa<ConstantSDNode>(Offset)) 6641 return 0; 6642 6643 if (VIndex) { 6644 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue()) 6645 return 0; 6646 } 6647 6648 return cast<ConstantSDNode>(VOffset)->getSExtValue() + 6649 cast<ConstantSDNode>(SOffset)->getSExtValue() + 6650 cast<ConstantSDNode>(Offset)->getSExtValue(); 6651 } 6652 6653 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 6654 SelectionDAG &DAG, 6655 unsigned NewOpcode) const { 6656 SDLoc DL(Op); 6657 6658 SDValue VData = Op.getOperand(2); 6659 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6660 SDValue Ops[] = { 6661 Op.getOperand(0), // Chain 6662 VData, // vdata 6663 Op.getOperand(3), // rsrc 6664 DAG.getConstant(0, DL, MVT::i32), // vindex 6665 Offsets.first, // voffset 6666 Op.getOperand(5), // soffset 6667 Offsets.second, // offset 6668 Op.getOperand(6), // cachepolicy 6669 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6670 }; 6671 6672 auto *M = cast<MemSDNode>(Op); 6673 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 6674 6675 EVT MemVT = VData.getValueType(); 6676 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 6677 M->getMemOperand()); 6678 } 6679 6680 SDValue 6681 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 6682 unsigned NewOpcode) const { 6683 SDLoc DL(Op); 6684 6685 SDValue VData = Op.getOperand(2); 6686 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6687 SDValue Ops[] = { 6688 Op.getOperand(0), // Chain 6689 VData, // vdata 6690 Op.getOperand(3), // rsrc 6691 Op.getOperand(4), // vindex 6692 Offsets.first, // voffset 6693 Op.getOperand(6), // soffset 6694 Offsets.second, // offset 6695 Op.getOperand(7), // cachepolicy 6696 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6697 }; 6698 6699 auto *M = cast<MemSDNode>(Op); 6700 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 6701 Ops[3])); 6702 6703 EVT MemVT = VData.getValueType(); 6704 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 6705 M->getMemOperand()); 6706 } 6707 6708 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 6709 SelectionDAG &DAG) const { 6710 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6711 SDLoc DL(Op); 6712 6713 switch (IntrID) { 6714 case Intrinsic::amdgcn_ds_ordered_add: 6715 case Intrinsic::amdgcn_ds_ordered_swap: { 6716 MemSDNode *M = cast<MemSDNode>(Op); 6717 SDValue Chain = M->getOperand(0); 6718 SDValue M0 = M->getOperand(2); 6719 SDValue Value = M->getOperand(3); 6720 unsigned IndexOperand = M->getConstantOperandVal(7); 6721 unsigned WaveRelease = M->getConstantOperandVal(8); 6722 unsigned WaveDone = M->getConstantOperandVal(9); 6723 6724 unsigned OrderedCountIndex = IndexOperand & 0x3f; 6725 IndexOperand &= ~0x3f; 6726 unsigned CountDw = 0; 6727 6728 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 6729 CountDw = (IndexOperand >> 24) & 0xf; 6730 IndexOperand &= ~(0xf << 24); 6731 6732 if (CountDw < 1 || CountDw > 4) { 6733 report_fatal_error( 6734 "ds_ordered_count: dword count must be between 1 and 4"); 6735 } 6736 } 6737 6738 if (IndexOperand) 6739 report_fatal_error("ds_ordered_count: bad index operand"); 6740 6741 if (WaveDone && !WaveRelease) 6742 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 6743 6744 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 6745 unsigned ShaderType = 6746 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 6747 unsigned Offset0 = OrderedCountIndex << 2; 6748 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 6749 (Instruction << 4); 6750 6751 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 6752 Offset1 |= (CountDw - 1) << 6; 6753 6754 unsigned Offset = Offset0 | (Offset1 << 8); 6755 6756 SDValue Ops[] = { 6757 Chain, 6758 Value, 6759 DAG.getTargetConstant(Offset, DL, MVT::i16), 6760 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 6761 }; 6762 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 6763 M->getVTList(), Ops, M->getMemoryVT(), 6764 M->getMemOperand()); 6765 } 6766 case Intrinsic::amdgcn_ds_fadd: { 6767 MemSDNode *M = cast<MemSDNode>(Op); 6768 unsigned Opc; 6769 switch (IntrID) { 6770 case Intrinsic::amdgcn_ds_fadd: 6771 Opc = ISD::ATOMIC_LOAD_FADD; 6772 break; 6773 } 6774 6775 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 6776 M->getOperand(0), M->getOperand(2), M->getOperand(3), 6777 M->getMemOperand()); 6778 } 6779 case Intrinsic::amdgcn_atomic_inc: 6780 case Intrinsic::amdgcn_atomic_dec: 6781 case Intrinsic::amdgcn_ds_fmin: 6782 case Intrinsic::amdgcn_ds_fmax: { 6783 MemSDNode *M = cast<MemSDNode>(Op); 6784 unsigned Opc; 6785 switch (IntrID) { 6786 case Intrinsic::amdgcn_atomic_inc: 6787 Opc = AMDGPUISD::ATOMIC_INC; 6788 break; 6789 case Intrinsic::amdgcn_atomic_dec: 6790 Opc = AMDGPUISD::ATOMIC_DEC; 6791 break; 6792 case Intrinsic::amdgcn_ds_fmin: 6793 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 6794 break; 6795 case Intrinsic::amdgcn_ds_fmax: 6796 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 6797 break; 6798 default: 6799 llvm_unreachable("Unknown intrinsic!"); 6800 } 6801 SDValue Ops[] = { 6802 M->getOperand(0), // Chain 6803 M->getOperand(2), // Ptr 6804 M->getOperand(3) // Value 6805 }; 6806 6807 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 6808 M->getMemoryVT(), M->getMemOperand()); 6809 } 6810 case Intrinsic::amdgcn_buffer_load: 6811 case Intrinsic::amdgcn_buffer_load_format: { 6812 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 6813 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6814 unsigned IdxEn = 1; 6815 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6816 IdxEn = Idx->getZExtValue() != 0; 6817 SDValue Ops[] = { 6818 Op.getOperand(0), // Chain 6819 Op.getOperand(2), // rsrc 6820 Op.getOperand(3), // vindex 6821 SDValue(), // voffset -- will be set by setBufferOffsets 6822 SDValue(), // soffset -- will be set by setBufferOffsets 6823 SDValue(), // offset -- will be set by setBufferOffsets 6824 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6825 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6826 }; 6827 6828 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 6829 // We don't know the offset if vindex is non-zero, so clear it. 6830 if (IdxEn) 6831 Offset = 0; 6832 6833 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 6834 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 6835 6836 EVT VT = Op.getValueType(); 6837 EVT IntVT = VT.changeTypeToInteger(); 6838 auto *M = cast<MemSDNode>(Op); 6839 M->getMemOperand()->setOffset(Offset); 6840 EVT LoadVT = Op.getValueType(); 6841 6842 if (LoadVT.getScalarType() == MVT::f16) 6843 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 6844 M, DAG, Ops); 6845 6846 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 6847 if (LoadVT.getScalarType() == MVT::i8 || 6848 LoadVT.getScalarType() == MVT::i16) 6849 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 6850 6851 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 6852 M->getMemOperand(), DAG); 6853 } 6854 case Intrinsic::amdgcn_raw_buffer_load: 6855 case Intrinsic::amdgcn_raw_buffer_load_format: { 6856 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 6857 6858 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6859 SDValue Ops[] = { 6860 Op.getOperand(0), // Chain 6861 Op.getOperand(2), // rsrc 6862 DAG.getConstant(0, DL, MVT::i32), // vindex 6863 Offsets.first, // voffset 6864 Op.getOperand(4), // soffset 6865 Offsets.second, // offset 6866 Op.getOperand(5), // cachepolicy, swizzled buffer 6867 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6868 }; 6869 6870 auto *M = cast<MemSDNode>(Op); 6871 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5])); 6872 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 6873 } 6874 case Intrinsic::amdgcn_struct_buffer_load: 6875 case Intrinsic::amdgcn_struct_buffer_load_format: { 6876 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 6877 6878 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6879 SDValue Ops[] = { 6880 Op.getOperand(0), // Chain 6881 Op.getOperand(2), // rsrc 6882 Op.getOperand(3), // vindex 6883 Offsets.first, // voffset 6884 Op.getOperand(5), // soffset 6885 Offsets.second, // offset 6886 Op.getOperand(6), // cachepolicy, swizzled buffer 6887 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6888 }; 6889 6890 auto *M = cast<MemSDNode>(Op); 6891 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5], 6892 Ops[2])); 6893 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6894 } 6895 case Intrinsic::amdgcn_tbuffer_load: { 6896 MemSDNode *M = cast<MemSDNode>(Op); 6897 EVT LoadVT = Op.getValueType(); 6898 6899 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6900 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6901 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6902 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6903 unsigned IdxEn = 1; 6904 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6905 IdxEn = Idx->getZExtValue() != 0; 6906 SDValue Ops[] = { 6907 Op.getOperand(0), // Chain 6908 Op.getOperand(2), // rsrc 6909 Op.getOperand(3), // vindex 6910 Op.getOperand(4), // voffset 6911 Op.getOperand(5), // soffset 6912 Op.getOperand(6), // offset 6913 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6914 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6915 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 6916 }; 6917 6918 if (LoadVT.getScalarType() == MVT::f16) 6919 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6920 M, DAG, Ops); 6921 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6922 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6923 DAG); 6924 } 6925 case Intrinsic::amdgcn_raw_tbuffer_load: { 6926 MemSDNode *M = cast<MemSDNode>(Op); 6927 EVT LoadVT = Op.getValueType(); 6928 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6929 6930 SDValue Ops[] = { 6931 Op.getOperand(0), // Chain 6932 Op.getOperand(2), // rsrc 6933 DAG.getConstant(0, DL, MVT::i32), // vindex 6934 Offsets.first, // voffset 6935 Op.getOperand(4), // soffset 6936 Offsets.second, // offset 6937 Op.getOperand(5), // format 6938 Op.getOperand(6), // cachepolicy, swizzled buffer 6939 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6940 }; 6941 6942 if (LoadVT.getScalarType() == MVT::f16) 6943 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6944 M, DAG, Ops); 6945 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6946 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6947 DAG); 6948 } 6949 case Intrinsic::amdgcn_struct_tbuffer_load: { 6950 MemSDNode *M = cast<MemSDNode>(Op); 6951 EVT LoadVT = Op.getValueType(); 6952 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6953 6954 SDValue Ops[] = { 6955 Op.getOperand(0), // Chain 6956 Op.getOperand(2), // rsrc 6957 Op.getOperand(3), // vindex 6958 Offsets.first, // voffset 6959 Op.getOperand(5), // soffset 6960 Offsets.second, // offset 6961 Op.getOperand(6), // format 6962 Op.getOperand(7), // cachepolicy, swizzled buffer 6963 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6964 }; 6965 6966 if (LoadVT.getScalarType() == MVT::f16) 6967 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6968 M, DAG, Ops); 6969 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6970 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6971 DAG); 6972 } 6973 case Intrinsic::amdgcn_buffer_atomic_swap: 6974 case Intrinsic::amdgcn_buffer_atomic_add: 6975 case Intrinsic::amdgcn_buffer_atomic_sub: 6976 case Intrinsic::amdgcn_buffer_atomic_csub: 6977 case Intrinsic::amdgcn_buffer_atomic_smin: 6978 case Intrinsic::amdgcn_buffer_atomic_umin: 6979 case Intrinsic::amdgcn_buffer_atomic_smax: 6980 case Intrinsic::amdgcn_buffer_atomic_umax: 6981 case Intrinsic::amdgcn_buffer_atomic_and: 6982 case Intrinsic::amdgcn_buffer_atomic_or: 6983 case Intrinsic::amdgcn_buffer_atomic_xor: 6984 case Intrinsic::amdgcn_buffer_atomic_fadd: { 6985 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6986 unsigned IdxEn = 1; 6987 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6988 IdxEn = Idx->getZExtValue() != 0; 6989 SDValue Ops[] = { 6990 Op.getOperand(0), // Chain 6991 Op.getOperand(2), // vdata 6992 Op.getOperand(3), // rsrc 6993 Op.getOperand(4), // vindex 6994 SDValue(), // voffset -- will be set by setBufferOffsets 6995 SDValue(), // soffset -- will be set by setBufferOffsets 6996 SDValue(), // offset -- will be set by setBufferOffsets 6997 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6998 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6999 }; 7000 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7001 // We don't know the offset if vindex is non-zero, so clear it. 7002 if (IdxEn) 7003 Offset = 0; 7004 EVT VT = Op.getValueType(); 7005 7006 auto *M = cast<MemSDNode>(Op); 7007 M->getMemOperand()->setOffset(Offset); 7008 unsigned Opcode = 0; 7009 7010 switch (IntrID) { 7011 case Intrinsic::amdgcn_buffer_atomic_swap: 7012 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7013 break; 7014 case Intrinsic::amdgcn_buffer_atomic_add: 7015 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7016 break; 7017 case Intrinsic::amdgcn_buffer_atomic_sub: 7018 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7019 break; 7020 case Intrinsic::amdgcn_buffer_atomic_csub: 7021 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7022 break; 7023 case Intrinsic::amdgcn_buffer_atomic_smin: 7024 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7025 break; 7026 case Intrinsic::amdgcn_buffer_atomic_umin: 7027 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7028 break; 7029 case Intrinsic::amdgcn_buffer_atomic_smax: 7030 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7031 break; 7032 case Intrinsic::amdgcn_buffer_atomic_umax: 7033 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7034 break; 7035 case Intrinsic::amdgcn_buffer_atomic_and: 7036 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7037 break; 7038 case Intrinsic::amdgcn_buffer_atomic_or: 7039 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7040 break; 7041 case Intrinsic::amdgcn_buffer_atomic_xor: 7042 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7043 break; 7044 case Intrinsic::amdgcn_buffer_atomic_fadd: 7045 if (!Op.getValue(0).use_empty()) { 7046 DiagnosticInfoUnsupported 7047 NoFpRet(DAG.getMachineFunction().getFunction(), 7048 "return versions of fp atomics not supported", 7049 DL.getDebugLoc(), DS_Error); 7050 DAG.getContext()->diagnose(NoFpRet); 7051 return SDValue(); 7052 } 7053 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7054 break; 7055 default: 7056 llvm_unreachable("unhandled atomic opcode"); 7057 } 7058 7059 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7060 M->getMemOperand()); 7061 } 7062 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7063 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7064 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7065 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7066 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7067 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7068 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7069 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7070 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7071 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7072 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7073 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7074 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7075 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7076 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7077 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7078 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7079 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7080 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7081 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7082 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7083 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7084 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7085 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7086 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7087 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7088 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7089 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7090 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7091 return lowerStructBufferAtomicIntrin(Op, DAG, 7092 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7093 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7094 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7095 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7096 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7097 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7098 return lowerStructBufferAtomicIntrin(Op, DAG, 7099 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7100 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7101 return lowerStructBufferAtomicIntrin(Op, DAG, 7102 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7103 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7104 return lowerStructBufferAtomicIntrin(Op, DAG, 7105 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7106 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7107 return lowerStructBufferAtomicIntrin(Op, DAG, 7108 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7109 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7110 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7111 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7112 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7113 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7114 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7115 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7116 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7117 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7118 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7119 7120 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7121 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7122 unsigned IdxEn = 1; 7123 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 7124 IdxEn = Idx->getZExtValue() != 0; 7125 SDValue Ops[] = { 7126 Op.getOperand(0), // Chain 7127 Op.getOperand(2), // src 7128 Op.getOperand(3), // cmp 7129 Op.getOperand(4), // rsrc 7130 Op.getOperand(5), // vindex 7131 SDValue(), // voffset -- will be set by setBufferOffsets 7132 SDValue(), // soffset -- will be set by setBufferOffsets 7133 SDValue(), // offset -- will be set by setBufferOffsets 7134 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7135 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7136 }; 7137 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7138 // We don't know the offset if vindex is non-zero, so clear it. 7139 if (IdxEn) 7140 Offset = 0; 7141 EVT VT = Op.getValueType(); 7142 auto *M = cast<MemSDNode>(Op); 7143 M->getMemOperand()->setOffset(Offset); 7144 7145 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7146 Op->getVTList(), Ops, VT, M->getMemOperand()); 7147 } 7148 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7149 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7150 SDValue Ops[] = { 7151 Op.getOperand(0), // Chain 7152 Op.getOperand(2), // src 7153 Op.getOperand(3), // cmp 7154 Op.getOperand(4), // rsrc 7155 DAG.getConstant(0, DL, MVT::i32), // vindex 7156 Offsets.first, // voffset 7157 Op.getOperand(6), // soffset 7158 Offsets.second, // offset 7159 Op.getOperand(7), // cachepolicy 7160 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7161 }; 7162 EVT VT = Op.getValueType(); 7163 auto *M = cast<MemSDNode>(Op); 7164 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7])); 7165 7166 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7167 Op->getVTList(), Ops, VT, M->getMemOperand()); 7168 } 7169 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7170 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7171 SDValue Ops[] = { 7172 Op.getOperand(0), // Chain 7173 Op.getOperand(2), // src 7174 Op.getOperand(3), // cmp 7175 Op.getOperand(4), // rsrc 7176 Op.getOperand(5), // vindex 7177 Offsets.first, // voffset 7178 Op.getOperand(7), // soffset 7179 Offsets.second, // offset 7180 Op.getOperand(8), // cachepolicy 7181 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7182 }; 7183 EVT VT = Op.getValueType(); 7184 auto *M = cast<MemSDNode>(Op); 7185 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7], 7186 Ops[4])); 7187 7188 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7189 Op->getVTList(), Ops, VT, M->getMemOperand()); 7190 } 7191 case Intrinsic::amdgcn_global_atomic_fadd: { 7192 if (!Op.getValue(0).use_empty()) { 7193 DiagnosticInfoUnsupported 7194 NoFpRet(DAG.getMachineFunction().getFunction(), 7195 "return versions of fp atomics not supported", 7196 DL.getDebugLoc(), DS_Error); 7197 DAG.getContext()->diagnose(NoFpRet); 7198 return SDValue(); 7199 } 7200 MemSDNode *M = cast<MemSDNode>(Op); 7201 SDValue Ops[] = { 7202 M->getOperand(0), // Chain 7203 M->getOperand(2), // Ptr 7204 M->getOperand(3) // Value 7205 }; 7206 7207 EVT VT = Op.getOperand(3).getValueType(); 7208 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7209 DAG.getVTList(VT, MVT::Other), Ops, 7210 M->getMemOperand()); 7211 } 7212 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 7213 SDLoc DL(Op); 7214 MemSDNode *M = cast<MemSDNode>(Op); 7215 SDValue NodePtr = M->getOperand(2); 7216 SDValue RayExtent = M->getOperand(3); 7217 SDValue RayOrigin = M->getOperand(4); 7218 SDValue RayDir = M->getOperand(5); 7219 SDValue RayInvDir = M->getOperand(6); 7220 SDValue TDescr = M->getOperand(7); 7221 7222 assert(NodePtr.getValueType() == MVT::i32 || 7223 NodePtr.getValueType() == MVT::i64); 7224 assert(RayDir.getValueType() == MVT::v4f16 || 7225 RayDir.getValueType() == MVT::v4f32); 7226 7227 bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 7228 bool Is64 = NodePtr.getValueType() == MVT::i64; 7229 unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa 7230 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa 7231 : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa 7232 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa; 7233 7234 SmallVector<SDValue, 16> Ops; 7235 7236 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 7237 SmallVector<SDValue, 3> Lanes; 7238 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 7239 if (Lanes[0].getValueSizeInBits() == 32) { 7240 for (unsigned I = 0; I < 3; ++I) 7241 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 7242 } else { 7243 if (IsAligned) { 7244 Ops.push_back( 7245 DAG.getBitcast(MVT::i32, 7246 DAG.getBuildVector(MVT::v2f16, DL, 7247 { Lanes[0], Lanes[1] }))); 7248 Ops.push_back(Lanes[2]); 7249 } else { 7250 SDValue Elt0 = Ops.pop_back_val(); 7251 Ops.push_back( 7252 DAG.getBitcast(MVT::i32, 7253 DAG.getBuildVector(MVT::v2f16, DL, 7254 { Elt0, Lanes[0] }))); 7255 Ops.push_back( 7256 DAG.getBitcast(MVT::i32, 7257 DAG.getBuildVector(MVT::v2f16, DL, 7258 { Lanes[1], Lanes[2] }))); 7259 } 7260 } 7261 }; 7262 7263 if (Is64) 7264 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2); 7265 else 7266 Ops.push_back(NodePtr); 7267 7268 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7269 packLanes(RayOrigin, true); 7270 packLanes(RayDir, true); 7271 packLanes(RayInvDir, false); 7272 Ops.push_back(TDescr); 7273 if (IsA16) 7274 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); 7275 Ops.push_back(M->getChain()); 7276 7277 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 7278 MachineMemOperand *MemRef = M->getMemOperand(); 7279 DAG.setNodeMemRefs(NewNode, {MemRef}); 7280 return SDValue(NewNode, 0); 7281 } 7282 default: 7283 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7284 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7285 return lowerImage(Op, ImageDimIntr, DAG, true); 7286 7287 return SDValue(); 7288 } 7289 } 7290 7291 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7292 // dwordx4 if on SI. 7293 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7294 SDVTList VTList, 7295 ArrayRef<SDValue> Ops, EVT MemVT, 7296 MachineMemOperand *MMO, 7297 SelectionDAG &DAG) const { 7298 EVT VT = VTList.VTs[0]; 7299 EVT WidenedVT = VT; 7300 EVT WidenedMemVT = MemVT; 7301 if (!Subtarget->hasDwordx3LoadStores() && 7302 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7303 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7304 WidenedVT.getVectorElementType(), 4); 7305 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7306 WidenedMemVT.getVectorElementType(), 4); 7307 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7308 } 7309 7310 assert(VTList.NumVTs == 2); 7311 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7312 7313 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7314 WidenedMemVT, MMO); 7315 if (WidenedVT != VT) { 7316 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7317 DAG.getVectorIdxConstant(0, DL)); 7318 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7319 } 7320 return NewOp; 7321 } 7322 7323 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 7324 bool ImageStore) const { 7325 EVT StoreVT = VData.getValueType(); 7326 7327 // No change for f16 and legal vector D16 types. 7328 if (!StoreVT.isVector()) 7329 return VData; 7330 7331 SDLoc DL(VData); 7332 unsigned NumElements = StoreVT.getVectorNumElements(); 7333 7334 if (Subtarget->hasUnpackedD16VMem()) { 7335 // We need to unpack the packed data to store. 7336 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7337 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7338 7339 EVT EquivStoreVT = 7340 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 7341 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7342 return DAG.UnrollVectorOp(ZExt.getNode()); 7343 } 7344 7345 // The sq block of gfx8.1 does not estimate register use correctly for d16 7346 // image store instructions. The data operand is computed as if it were not a 7347 // d16 image instruction. 7348 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 7349 // Bitcast to i16 7350 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7351 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7352 7353 // Decompose into scalars 7354 SmallVector<SDValue, 4> Elts; 7355 DAG.ExtractVectorElements(IntVData, Elts); 7356 7357 // Group pairs of i16 into v2i16 and bitcast to i32 7358 SmallVector<SDValue, 4> PackedElts; 7359 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 7360 SDValue Pair = 7361 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 7362 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7363 PackedElts.push_back(IntPair); 7364 } 7365 if ((NumElements % 2) == 1) { 7366 // Handle v3i16 7367 unsigned I = Elts.size() / 2; 7368 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 7369 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 7370 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7371 PackedElts.push_back(IntPair); 7372 } 7373 7374 // Pad using UNDEF 7375 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 7376 7377 // Build final vector 7378 EVT VecVT = 7379 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 7380 return DAG.getBuildVector(VecVT, DL, PackedElts); 7381 } 7382 7383 if (NumElements == 3) { 7384 EVT IntStoreVT = 7385 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 7386 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7387 7388 EVT WidenedStoreVT = EVT::getVectorVT( 7389 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 7390 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 7391 WidenedStoreVT.getStoreSizeInBits()); 7392 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 7393 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 7394 } 7395 7396 assert(isTypeLegal(StoreVT)); 7397 return VData; 7398 } 7399 7400 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7401 SelectionDAG &DAG) const { 7402 SDLoc DL(Op); 7403 SDValue Chain = Op.getOperand(0); 7404 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7405 MachineFunction &MF = DAG.getMachineFunction(); 7406 7407 switch (IntrinsicID) { 7408 case Intrinsic::amdgcn_exp_compr: { 7409 SDValue Src0 = Op.getOperand(4); 7410 SDValue Src1 = Op.getOperand(5); 7411 // Hack around illegal type on SI by directly selecting it. 7412 if (isTypeLegal(Src0.getValueType())) 7413 return SDValue(); 7414 7415 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7416 SDValue Undef = DAG.getUNDEF(MVT::f32); 7417 const SDValue Ops[] = { 7418 Op.getOperand(2), // tgt 7419 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7420 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7421 Undef, // src2 7422 Undef, // src3 7423 Op.getOperand(7), // vm 7424 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7425 Op.getOperand(3), // en 7426 Op.getOperand(0) // Chain 7427 }; 7428 7429 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 7430 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 7431 } 7432 case Intrinsic::amdgcn_s_barrier: { 7433 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 7434 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 7435 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 7436 if (WGSize <= ST.getWavefrontSize()) 7437 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 7438 Op.getOperand(0)), 0); 7439 } 7440 return SDValue(); 7441 }; 7442 case Intrinsic::amdgcn_tbuffer_store: { 7443 SDValue VData = Op.getOperand(2); 7444 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7445 if (IsD16) 7446 VData = handleD16VData(VData, DAG); 7447 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7448 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7449 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7450 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 7451 unsigned IdxEn = 1; 7452 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7453 IdxEn = Idx->getZExtValue() != 0; 7454 SDValue Ops[] = { 7455 Chain, 7456 VData, // vdata 7457 Op.getOperand(3), // rsrc 7458 Op.getOperand(4), // vindex 7459 Op.getOperand(5), // voffset 7460 Op.getOperand(6), // soffset 7461 Op.getOperand(7), // offset 7462 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7463 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7464 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen 7465 }; 7466 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7467 AMDGPUISD::TBUFFER_STORE_FORMAT; 7468 MemSDNode *M = cast<MemSDNode>(Op); 7469 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7470 M->getMemoryVT(), M->getMemOperand()); 7471 } 7472 7473 case Intrinsic::amdgcn_struct_tbuffer_store: { 7474 SDValue VData = Op.getOperand(2); 7475 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7476 if (IsD16) 7477 VData = handleD16VData(VData, DAG); 7478 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7479 SDValue Ops[] = { 7480 Chain, 7481 VData, // vdata 7482 Op.getOperand(3), // rsrc 7483 Op.getOperand(4), // vindex 7484 Offsets.first, // voffset 7485 Op.getOperand(6), // soffset 7486 Offsets.second, // offset 7487 Op.getOperand(7), // format 7488 Op.getOperand(8), // cachepolicy, swizzled buffer 7489 DAG.getTargetConstant(1, DL, MVT::i1), // idexen 7490 }; 7491 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7492 AMDGPUISD::TBUFFER_STORE_FORMAT; 7493 MemSDNode *M = cast<MemSDNode>(Op); 7494 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7495 M->getMemoryVT(), M->getMemOperand()); 7496 } 7497 7498 case Intrinsic::amdgcn_raw_tbuffer_store: { 7499 SDValue VData = Op.getOperand(2); 7500 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7501 if (IsD16) 7502 VData = handleD16VData(VData, DAG); 7503 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7504 SDValue Ops[] = { 7505 Chain, 7506 VData, // vdata 7507 Op.getOperand(3), // rsrc 7508 DAG.getConstant(0, DL, MVT::i32), // vindex 7509 Offsets.first, // voffset 7510 Op.getOperand(5), // soffset 7511 Offsets.second, // offset 7512 Op.getOperand(6), // format 7513 Op.getOperand(7), // cachepolicy, swizzled buffer 7514 DAG.getTargetConstant(0, DL, MVT::i1), // idexen 7515 }; 7516 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7517 AMDGPUISD::TBUFFER_STORE_FORMAT; 7518 MemSDNode *M = cast<MemSDNode>(Op); 7519 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7520 M->getMemoryVT(), M->getMemOperand()); 7521 } 7522 7523 case Intrinsic::amdgcn_buffer_store: 7524 case Intrinsic::amdgcn_buffer_store_format: { 7525 SDValue VData = Op.getOperand(2); 7526 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7527 if (IsD16) 7528 VData = handleD16VData(VData, DAG); 7529 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7530 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7531 unsigned IdxEn = 1; 7532 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7533 IdxEn = Idx->getZExtValue() != 0; 7534 SDValue Ops[] = { 7535 Chain, 7536 VData, 7537 Op.getOperand(3), // rsrc 7538 Op.getOperand(4), // vindex 7539 SDValue(), // voffset -- will be set by setBufferOffsets 7540 SDValue(), // soffset -- will be set by setBufferOffsets 7541 SDValue(), // offset -- will be set by setBufferOffsets 7542 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7543 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7544 }; 7545 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7546 // We don't know the offset if vindex is non-zero, so clear it. 7547 if (IdxEn) 7548 Offset = 0; 7549 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 7550 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7551 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7552 MemSDNode *M = cast<MemSDNode>(Op); 7553 M->getMemOperand()->setOffset(Offset); 7554 7555 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7556 EVT VDataType = VData.getValueType().getScalarType(); 7557 if (VDataType == MVT::i8 || VDataType == MVT::i16) 7558 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7559 7560 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7561 M->getMemoryVT(), M->getMemOperand()); 7562 } 7563 7564 case Intrinsic::amdgcn_raw_buffer_store: 7565 case Intrinsic::amdgcn_raw_buffer_store_format: { 7566 const bool IsFormat = 7567 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 7568 7569 SDValue VData = Op.getOperand(2); 7570 EVT VDataVT = VData.getValueType(); 7571 EVT EltType = VDataVT.getScalarType(); 7572 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7573 if (IsD16) { 7574 VData = handleD16VData(VData, DAG); 7575 VDataVT = VData.getValueType(); 7576 } 7577 7578 if (!isTypeLegal(VDataVT)) { 7579 VData = 7580 DAG.getNode(ISD::BITCAST, DL, 7581 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7582 } 7583 7584 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7585 SDValue Ops[] = { 7586 Chain, 7587 VData, 7588 Op.getOperand(3), // rsrc 7589 DAG.getConstant(0, DL, MVT::i32), // vindex 7590 Offsets.first, // voffset 7591 Op.getOperand(5), // soffset 7592 Offsets.second, // offset 7593 Op.getOperand(6), // cachepolicy, swizzled buffer 7594 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7595 }; 7596 unsigned Opc = 7597 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 7598 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7599 MemSDNode *M = cast<MemSDNode>(Op); 7600 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 7601 7602 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7603 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7604 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 7605 7606 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7607 M->getMemoryVT(), M->getMemOperand()); 7608 } 7609 7610 case Intrinsic::amdgcn_struct_buffer_store: 7611 case Intrinsic::amdgcn_struct_buffer_store_format: { 7612 const bool IsFormat = 7613 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 7614 7615 SDValue VData = Op.getOperand(2); 7616 EVT VDataVT = VData.getValueType(); 7617 EVT EltType = VDataVT.getScalarType(); 7618 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7619 7620 if (IsD16) { 7621 VData = handleD16VData(VData, DAG); 7622 VDataVT = VData.getValueType(); 7623 } 7624 7625 if (!isTypeLegal(VDataVT)) { 7626 VData = 7627 DAG.getNode(ISD::BITCAST, DL, 7628 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7629 } 7630 7631 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7632 SDValue Ops[] = { 7633 Chain, 7634 VData, 7635 Op.getOperand(3), // rsrc 7636 Op.getOperand(4), // vindex 7637 Offsets.first, // voffset 7638 Op.getOperand(6), // soffset 7639 Offsets.second, // offset 7640 Op.getOperand(7), // cachepolicy, swizzled buffer 7641 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7642 }; 7643 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 7644 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7645 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7646 MemSDNode *M = cast<MemSDNode>(Op); 7647 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 7648 Ops[3])); 7649 7650 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7651 EVT VDataType = VData.getValueType().getScalarType(); 7652 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7653 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7654 7655 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7656 M->getMemoryVT(), M->getMemOperand()); 7657 } 7658 case Intrinsic::amdgcn_end_cf: 7659 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 7660 Op->getOperand(2), Chain), 0); 7661 7662 default: { 7663 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7664 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7665 return lowerImage(Op, ImageDimIntr, DAG, true); 7666 7667 return Op; 7668 } 7669 } 7670 } 7671 7672 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 7673 // offset (the offset that is included in bounds checking and swizzling, to be 7674 // split between the instruction's voffset and immoffset fields) and soffset 7675 // (the offset that is excluded from bounds checking and swizzling, to go in 7676 // the instruction's soffset field). This function takes the first kind of 7677 // offset and figures out how to split it between voffset and immoffset. 7678 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 7679 SDValue Offset, SelectionDAG &DAG) const { 7680 SDLoc DL(Offset); 7681 const unsigned MaxImm = 4095; 7682 SDValue N0 = Offset; 7683 ConstantSDNode *C1 = nullptr; 7684 7685 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 7686 N0 = SDValue(); 7687 else if (DAG.isBaseWithConstantOffset(N0)) { 7688 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 7689 N0 = N0.getOperand(0); 7690 } 7691 7692 if (C1) { 7693 unsigned ImmOffset = C1->getZExtValue(); 7694 // If the immediate value is too big for the immoffset field, put the value 7695 // and -4096 into the immoffset field so that the value that is copied/added 7696 // for the voffset field is a multiple of 4096, and it stands more chance 7697 // of being CSEd with the copy/add for another similar load/store. 7698 // However, do not do that rounding down to a multiple of 4096 if that is a 7699 // negative number, as it appears to be illegal to have a negative offset 7700 // in the vgpr, even if adding the immediate offset makes it positive. 7701 unsigned Overflow = ImmOffset & ~MaxImm; 7702 ImmOffset -= Overflow; 7703 if ((int32_t)Overflow < 0) { 7704 Overflow += ImmOffset; 7705 ImmOffset = 0; 7706 } 7707 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 7708 if (Overflow) { 7709 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 7710 if (!N0) 7711 N0 = OverflowVal; 7712 else { 7713 SDValue Ops[] = { N0, OverflowVal }; 7714 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 7715 } 7716 } 7717 } 7718 if (!N0) 7719 N0 = DAG.getConstant(0, DL, MVT::i32); 7720 if (!C1) 7721 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 7722 return {N0, SDValue(C1, 0)}; 7723 } 7724 7725 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 7726 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 7727 // pointed to by Offsets. 7728 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 7729 SelectionDAG &DAG, SDValue *Offsets, 7730 Align Alignment) const { 7731 SDLoc DL(CombinedOffset); 7732 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 7733 uint32_t Imm = C->getZExtValue(); 7734 uint32_t SOffset, ImmOffset; 7735 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 7736 Alignment)) { 7737 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 7738 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7739 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7740 return SOffset + ImmOffset; 7741 } 7742 } 7743 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 7744 SDValue N0 = CombinedOffset.getOperand(0); 7745 SDValue N1 = CombinedOffset.getOperand(1); 7746 uint32_t SOffset, ImmOffset; 7747 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 7748 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 7749 Subtarget, Alignment)) { 7750 Offsets[0] = N0; 7751 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7752 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7753 return 0; 7754 } 7755 } 7756 Offsets[0] = CombinedOffset; 7757 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 7758 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 7759 return 0; 7760 } 7761 7762 // Handle 8 bit and 16 bit buffer loads 7763 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 7764 EVT LoadVT, SDLoc DL, 7765 ArrayRef<SDValue> Ops, 7766 MemSDNode *M) const { 7767 EVT IntVT = LoadVT.changeTypeToInteger(); 7768 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 7769 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 7770 7771 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 7772 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 7773 Ops, IntVT, 7774 M->getMemOperand()); 7775 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 7776 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 7777 7778 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 7779 } 7780 7781 // Handle 8 bit and 16 bit buffer stores 7782 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 7783 EVT VDataType, SDLoc DL, 7784 SDValue Ops[], 7785 MemSDNode *M) const { 7786 if (VDataType == MVT::f16) 7787 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 7788 7789 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 7790 Ops[1] = BufferStoreExt; 7791 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 7792 AMDGPUISD::BUFFER_STORE_SHORT; 7793 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 7794 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 7795 M->getMemOperand()); 7796 } 7797 7798 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 7799 ISD::LoadExtType ExtType, SDValue Op, 7800 const SDLoc &SL, EVT VT) { 7801 if (VT.bitsLT(Op.getValueType())) 7802 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 7803 7804 switch (ExtType) { 7805 case ISD::SEXTLOAD: 7806 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 7807 case ISD::ZEXTLOAD: 7808 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 7809 case ISD::EXTLOAD: 7810 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 7811 case ISD::NON_EXTLOAD: 7812 return Op; 7813 } 7814 7815 llvm_unreachable("invalid ext type"); 7816 } 7817 7818 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 7819 SelectionDAG &DAG = DCI.DAG; 7820 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 7821 return SDValue(); 7822 7823 // FIXME: Constant loads should all be marked invariant. 7824 unsigned AS = Ld->getAddressSpace(); 7825 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 7826 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 7827 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 7828 return SDValue(); 7829 7830 // Don't do this early, since it may interfere with adjacent load merging for 7831 // illegal types. We can avoid losing alignment information for exotic types 7832 // pre-legalize. 7833 EVT MemVT = Ld->getMemoryVT(); 7834 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 7835 MemVT.getSizeInBits() >= 32) 7836 return SDValue(); 7837 7838 SDLoc SL(Ld); 7839 7840 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 7841 "unexpected vector extload"); 7842 7843 // TODO: Drop only high part of range. 7844 SDValue Ptr = Ld->getBasePtr(); 7845 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 7846 MVT::i32, SL, Ld->getChain(), Ptr, 7847 Ld->getOffset(), 7848 Ld->getPointerInfo(), MVT::i32, 7849 Ld->getAlignment(), 7850 Ld->getMemOperand()->getFlags(), 7851 Ld->getAAInfo(), 7852 nullptr); // Drop ranges 7853 7854 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 7855 if (MemVT.isFloatingPoint()) { 7856 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 7857 "unexpected fp extload"); 7858 TruncVT = MemVT.changeTypeToInteger(); 7859 } 7860 7861 SDValue Cvt = NewLoad; 7862 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 7863 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 7864 DAG.getValueType(TruncVT)); 7865 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 7866 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 7867 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 7868 } else { 7869 assert(Ld->getExtensionType() == ISD::EXTLOAD); 7870 } 7871 7872 EVT VT = Ld->getValueType(0); 7873 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7874 7875 DCI.AddToWorklist(Cvt.getNode()); 7876 7877 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 7878 // the appropriate extension from the 32-bit load. 7879 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 7880 DCI.AddToWorklist(Cvt.getNode()); 7881 7882 // Handle conversion back to floating point if necessary. 7883 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 7884 7885 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 7886 } 7887 7888 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7889 SDLoc DL(Op); 7890 LoadSDNode *Load = cast<LoadSDNode>(Op); 7891 ISD::LoadExtType ExtType = Load->getExtensionType(); 7892 EVT MemVT = Load->getMemoryVT(); 7893 7894 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 7895 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 7896 return SDValue(); 7897 7898 // FIXME: Copied from PPC 7899 // First, load into 32 bits, then truncate to 1 bit. 7900 7901 SDValue Chain = Load->getChain(); 7902 SDValue BasePtr = Load->getBasePtr(); 7903 MachineMemOperand *MMO = Load->getMemOperand(); 7904 7905 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 7906 7907 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 7908 BasePtr, RealMemVT, MMO); 7909 7910 if (!MemVT.isVector()) { 7911 SDValue Ops[] = { 7912 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 7913 NewLD.getValue(1) 7914 }; 7915 7916 return DAG.getMergeValues(Ops, DL); 7917 } 7918 7919 SmallVector<SDValue, 3> Elts; 7920 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 7921 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 7922 DAG.getConstant(I, DL, MVT::i32)); 7923 7924 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 7925 } 7926 7927 SDValue Ops[] = { 7928 DAG.getBuildVector(MemVT, DL, Elts), 7929 NewLD.getValue(1) 7930 }; 7931 7932 return DAG.getMergeValues(Ops, DL); 7933 } 7934 7935 if (!MemVT.isVector()) 7936 return SDValue(); 7937 7938 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 7939 "Custom lowering for non-i32 vectors hasn't been implemented."); 7940 7941 unsigned Alignment = Load->getAlignment(); 7942 unsigned AS = Load->getAddressSpace(); 7943 if (Subtarget->hasLDSMisalignedBug() && 7944 AS == AMDGPUAS::FLAT_ADDRESS && 7945 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 7946 return SplitVectorLoad(Op, DAG); 7947 } 7948 7949 MachineFunction &MF = DAG.getMachineFunction(); 7950 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7951 // If there is a possibilty that flat instruction access scratch memory 7952 // then we need to use the same legalization rules we use for private. 7953 if (AS == AMDGPUAS::FLAT_ADDRESS && 7954 !Subtarget->hasMultiDwordFlatScratchAddressing()) 7955 AS = MFI->hasFlatScratchInit() ? 7956 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7957 7958 unsigned NumElements = MemVT.getVectorNumElements(); 7959 7960 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7961 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 7962 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 7963 if (MemVT.isPow2VectorType()) 7964 return SDValue(); 7965 return WidenOrSplitVectorLoad(Op, DAG); 7966 } 7967 // Non-uniform loads will be selected to MUBUF instructions, so they 7968 // have the same legalization requirements as global and private 7969 // loads. 7970 // 7971 } 7972 7973 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7974 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7975 AS == AMDGPUAS::GLOBAL_ADDRESS) { 7976 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 7977 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 7978 Alignment >= 4 && NumElements < 32) { 7979 if (MemVT.isPow2VectorType()) 7980 return SDValue(); 7981 return WidenOrSplitVectorLoad(Op, DAG); 7982 } 7983 // Non-uniform loads will be selected to MUBUF instructions, so they 7984 // have the same legalization requirements as global and private 7985 // loads. 7986 // 7987 } 7988 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7989 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7990 AS == AMDGPUAS::GLOBAL_ADDRESS || 7991 AS == AMDGPUAS::FLAT_ADDRESS) { 7992 if (NumElements > 4) 7993 return SplitVectorLoad(Op, DAG); 7994 // v3 loads not supported on SI. 7995 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7996 return WidenOrSplitVectorLoad(Op, DAG); 7997 7998 // v3 and v4 loads are supported for private and global memory. 7999 return SDValue(); 8000 } 8001 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8002 // Depending on the setting of the private_element_size field in the 8003 // resource descriptor, we can only make private accesses up to a certain 8004 // size. 8005 switch (Subtarget->getMaxPrivateElementSize()) { 8006 case 4: { 8007 SDValue Ops[2]; 8008 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 8009 return DAG.getMergeValues(Ops, DL); 8010 } 8011 case 8: 8012 if (NumElements > 2) 8013 return SplitVectorLoad(Op, DAG); 8014 return SDValue(); 8015 case 16: 8016 // Same as global/flat 8017 if (NumElements > 4) 8018 return SplitVectorLoad(Op, DAG); 8019 // v3 loads not supported on SI. 8020 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8021 return WidenOrSplitVectorLoad(Op, DAG); 8022 8023 return SDValue(); 8024 default: 8025 llvm_unreachable("unsupported private_element_size"); 8026 } 8027 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8028 // Use ds_read_b128 or ds_read_b96 when possible. 8029 if (Subtarget->hasDS96AndDS128() && 8030 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) || 8031 MemVT.getStoreSize() == 12) && 8032 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 8033 Load->getAlign())) 8034 return SDValue(); 8035 8036 if (NumElements > 2) 8037 return SplitVectorLoad(Op, DAG); 8038 8039 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8040 // address is negative, then the instruction is incorrectly treated as 8041 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8042 // loads here to avoid emitting ds_read2_b32. We may re-combine the 8043 // load later in the SILoadStoreOptimizer. 8044 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 8045 NumElements == 2 && MemVT.getStoreSize() == 8 && 8046 Load->getAlignment() < 8) { 8047 return SplitVectorLoad(Op, DAG); 8048 } 8049 } 8050 8051 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8052 MemVT, *Load->getMemOperand())) { 8053 SDValue Ops[2]; 8054 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 8055 return DAG.getMergeValues(Ops, DL); 8056 } 8057 8058 return SDValue(); 8059 } 8060 8061 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 8062 EVT VT = Op.getValueType(); 8063 assert(VT.getSizeInBits() == 64); 8064 8065 SDLoc DL(Op); 8066 SDValue Cond = Op.getOperand(0); 8067 8068 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 8069 SDValue One = DAG.getConstant(1, DL, MVT::i32); 8070 8071 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 8072 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 8073 8074 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 8075 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 8076 8077 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 8078 8079 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 8080 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 8081 8082 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 8083 8084 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 8085 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 8086 } 8087 8088 // Catch division cases where we can use shortcuts with rcp and rsq 8089 // instructions. 8090 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 8091 SelectionDAG &DAG) const { 8092 SDLoc SL(Op); 8093 SDValue LHS = Op.getOperand(0); 8094 SDValue RHS = Op.getOperand(1); 8095 EVT VT = Op.getValueType(); 8096 const SDNodeFlags Flags = Op->getFlags(); 8097 8098 bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); 8099 8100 // Without !fpmath accuracy information, we can't do more because we don't 8101 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8102 if (!AllowInaccurateRcp) 8103 return SDValue(); 8104 8105 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8106 if (CLHS->isExactlyValue(1.0)) { 8107 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8108 // the CI documentation has a worst case error of 1 ulp. 8109 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8110 // use it as long as we aren't trying to use denormals. 8111 // 8112 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8113 8114 // 1.0 / sqrt(x) -> rsq(x) 8115 8116 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8117 // error seems really high at 2^29 ULP. 8118 if (RHS.getOpcode() == ISD::FSQRT) 8119 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8120 8121 // 1.0 / x -> rcp(x) 8122 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8123 } 8124 8125 // Same as for 1.0, but expand the sign out of the constant. 8126 if (CLHS->isExactlyValue(-1.0)) { 8127 // -1.0 / x -> rcp (fneg x) 8128 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8129 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8130 } 8131 } 8132 8133 // Turn into multiply by the reciprocal. 8134 // x / y -> x * (1.0 / y) 8135 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8136 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8137 } 8138 8139 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 8140 SelectionDAG &DAG) const { 8141 SDLoc SL(Op); 8142 SDValue X = Op.getOperand(0); 8143 SDValue Y = Op.getOperand(1); 8144 EVT VT = Op.getValueType(); 8145 const SDNodeFlags Flags = Op->getFlags(); 8146 8147 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 8148 DAG.getTarget().Options.UnsafeFPMath; 8149 if (!AllowInaccurateDiv) 8150 return SDValue(); 8151 8152 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 8153 SDValue One = DAG.getConstantFP(1.0, SL, VT); 8154 8155 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 8156 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8157 8158 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 8159 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8160 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 8161 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 8162 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 8163 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 8164 } 8165 8166 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8167 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8168 SDNodeFlags Flags) { 8169 if (GlueChain->getNumValues() <= 1) { 8170 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8171 } 8172 8173 assert(GlueChain->getNumValues() == 3); 8174 8175 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8176 switch (Opcode) { 8177 default: llvm_unreachable("no chain equivalent for opcode"); 8178 case ISD::FMUL: 8179 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8180 break; 8181 } 8182 8183 return DAG.getNode(Opcode, SL, VTList, 8184 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8185 Flags); 8186 } 8187 8188 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8189 EVT VT, SDValue A, SDValue B, SDValue C, 8190 SDValue GlueChain, SDNodeFlags Flags) { 8191 if (GlueChain->getNumValues() <= 1) { 8192 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8193 } 8194 8195 assert(GlueChain->getNumValues() == 3); 8196 8197 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8198 switch (Opcode) { 8199 default: llvm_unreachable("no chain equivalent for opcode"); 8200 case ISD::FMA: 8201 Opcode = AMDGPUISD::FMA_W_CHAIN; 8202 break; 8203 } 8204 8205 return DAG.getNode(Opcode, SL, VTList, 8206 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8207 Flags); 8208 } 8209 8210 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8211 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8212 return FastLowered; 8213 8214 SDLoc SL(Op); 8215 SDValue Src0 = Op.getOperand(0); 8216 SDValue Src1 = Op.getOperand(1); 8217 8218 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8219 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8220 8221 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8222 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8223 8224 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8225 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8226 8227 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8228 } 8229 8230 // Faster 2.5 ULP division that does not support denormals. 8231 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8232 SDLoc SL(Op); 8233 SDValue LHS = Op.getOperand(1); 8234 SDValue RHS = Op.getOperand(2); 8235 8236 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8237 8238 const APFloat K0Val(BitsToFloat(0x6f800000)); 8239 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8240 8241 const APFloat K1Val(BitsToFloat(0x2f800000)); 8242 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8243 8244 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8245 8246 EVT SetCCVT = 8247 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8248 8249 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8250 8251 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8252 8253 // TODO: Should this propagate fast-math-flags? 8254 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8255 8256 // rcp does not support denormals. 8257 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8258 8259 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8260 8261 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8262 } 8263 8264 // Returns immediate value for setting the F32 denorm mode when using the 8265 // S_DENORM_MODE instruction. 8266 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8267 const SDLoc &SL, const GCNSubtarget *ST) { 8268 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8269 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8270 ? FP_DENORM_FLUSH_NONE 8271 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8272 8273 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8274 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8275 } 8276 8277 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8278 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8279 return FastLowered; 8280 8281 // The selection matcher assumes anything with a chain selecting to a 8282 // mayRaiseFPException machine instruction. Since we're introducing a chain 8283 // here, we need to explicitly report nofpexcept for the regular fdiv 8284 // lowering. 8285 SDNodeFlags Flags = Op->getFlags(); 8286 Flags.setNoFPExcept(true); 8287 8288 SDLoc SL(Op); 8289 SDValue LHS = Op.getOperand(0); 8290 SDValue RHS = Op.getOperand(1); 8291 8292 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8293 8294 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 8295 8296 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8297 {RHS, RHS, LHS}, Flags); 8298 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8299 {LHS, RHS, LHS}, Flags); 8300 8301 // Denominator is scaled to not be denormal, so using rcp is ok. 8302 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 8303 DenominatorScaled, Flags); 8304 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 8305 DenominatorScaled, Flags); 8306 8307 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 8308 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 8309 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 8310 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 8311 8312 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 8313 8314 if (!HasFP32Denormals) { 8315 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 8316 // lowering. The chain dependence is insufficient, and we need glue. We do 8317 // not need the glue variants in a strictfp function. 8318 8319 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 8320 8321 SDNode *EnableDenorm; 8322 if (Subtarget->hasDenormModeInst()) { 8323 const SDValue EnableDenormValue = 8324 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 8325 8326 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 8327 DAG.getEntryNode(), EnableDenormValue).getNode(); 8328 } else { 8329 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 8330 SL, MVT::i32); 8331 EnableDenorm = 8332 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 8333 {EnableDenormValue, BitField, DAG.getEntryNode()}); 8334 } 8335 8336 SDValue Ops[3] = { 8337 NegDivScale0, 8338 SDValue(EnableDenorm, 0), 8339 SDValue(EnableDenorm, 1) 8340 }; 8341 8342 NegDivScale0 = DAG.getMergeValues(Ops, SL); 8343 } 8344 8345 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 8346 ApproxRcp, One, NegDivScale0, Flags); 8347 8348 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 8349 ApproxRcp, Fma0, Flags); 8350 8351 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 8352 Fma1, Fma1, Flags); 8353 8354 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 8355 NumeratorScaled, Mul, Flags); 8356 8357 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 8358 Fma2, Fma1, Mul, Fma2, Flags); 8359 8360 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 8361 NumeratorScaled, Fma3, Flags); 8362 8363 if (!HasFP32Denormals) { 8364 SDNode *DisableDenorm; 8365 if (Subtarget->hasDenormModeInst()) { 8366 const SDValue DisableDenormValue = 8367 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 8368 8369 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 8370 Fma4.getValue(1), DisableDenormValue, 8371 Fma4.getValue(2)).getNode(); 8372 } else { 8373 const SDValue DisableDenormValue = 8374 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 8375 8376 DisableDenorm = DAG.getMachineNode( 8377 AMDGPU::S_SETREG_B32, SL, MVT::Other, 8378 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 8379 } 8380 8381 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 8382 SDValue(DisableDenorm, 0), DAG.getRoot()); 8383 DAG.setRoot(OutputChain); 8384 } 8385 8386 SDValue Scale = NumeratorScaled.getValue(1); 8387 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 8388 {Fma4, Fma1, Fma3, Scale}, Flags); 8389 8390 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 8391 } 8392 8393 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 8394 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 8395 return FastLowered; 8396 8397 SDLoc SL(Op); 8398 SDValue X = Op.getOperand(0); 8399 SDValue Y = Op.getOperand(1); 8400 8401 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 8402 8403 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 8404 8405 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 8406 8407 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 8408 8409 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 8410 8411 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 8412 8413 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 8414 8415 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 8416 8417 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 8418 8419 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 8420 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 8421 8422 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 8423 NegDivScale0, Mul, DivScale1); 8424 8425 SDValue Scale; 8426 8427 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 8428 // Workaround a hardware bug on SI where the condition output from div_scale 8429 // is not usable. 8430 8431 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 8432 8433 // Figure out if the scale to use for div_fmas. 8434 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 8435 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 8436 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 8437 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 8438 8439 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 8440 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 8441 8442 SDValue Scale0Hi 8443 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 8444 SDValue Scale1Hi 8445 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 8446 8447 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 8448 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 8449 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 8450 } else { 8451 Scale = DivScale1.getValue(1); 8452 } 8453 8454 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 8455 Fma4, Fma3, Mul, Scale); 8456 8457 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 8458 } 8459 8460 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 8461 EVT VT = Op.getValueType(); 8462 8463 if (VT == MVT::f32) 8464 return LowerFDIV32(Op, DAG); 8465 8466 if (VT == MVT::f64) 8467 return LowerFDIV64(Op, DAG); 8468 8469 if (VT == MVT::f16) 8470 return LowerFDIV16(Op, DAG); 8471 8472 llvm_unreachable("Unexpected type for fdiv"); 8473 } 8474 8475 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8476 SDLoc DL(Op); 8477 StoreSDNode *Store = cast<StoreSDNode>(Op); 8478 EVT VT = Store->getMemoryVT(); 8479 8480 if (VT == MVT::i1) { 8481 return DAG.getTruncStore(Store->getChain(), DL, 8482 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 8483 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 8484 } 8485 8486 assert(VT.isVector() && 8487 Store->getValue().getValueType().getScalarType() == MVT::i32); 8488 8489 unsigned AS = Store->getAddressSpace(); 8490 if (Subtarget->hasLDSMisalignedBug() && 8491 AS == AMDGPUAS::FLAT_ADDRESS && 8492 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 8493 return SplitVectorStore(Op, DAG); 8494 } 8495 8496 MachineFunction &MF = DAG.getMachineFunction(); 8497 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8498 // If there is a possibilty that flat instruction access scratch memory 8499 // then we need to use the same legalization rules we use for private. 8500 if (AS == AMDGPUAS::FLAT_ADDRESS && 8501 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8502 AS = MFI->hasFlatScratchInit() ? 8503 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8504 8505 unsigned NumElements = VT.getVectorNumElements(); 8506 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 8507 AS == AMDGPUAS::FLAT_ADDRESS) { 8508 if (NumElements > 4) 8509 return SplitVectorStore(Op, DAG); 8510 // v3 stores not supported on SI. 8511 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8512 return SplitVectorStore(Op, DAG); 8513 8514 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8515 VT, *Store->getMemOperand())) 8516 return expandUnalignedStore(Store, DAG); 8517 8518 return SDValue(); 8519 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8520 switch (Subtarget->getMaxPrivateElementSize()) { 8521 case 4: 8522 return scalarizeVectorStore(Store, DAG); 8523 case 8: 8524 if (NumElements > 2) 8525 return SplitVectorStore(Op, DAG); 8526 return SDValue(); 8527 case 16: 8528 if (NumElements > 4 || 8529 (NumElements == 3 && !Subtarget->enableFlatScratch())) 8530 return SplitVectorStore(Op, DAG); 8531 return SDValue(); 8532 default: 8533 llvm_unreachable("unsupported private_element_size"); 8534 } 8535 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8536 // Use ds_write_b128 or ds_write_b96 when possible. 8537 if (Subtarget->hasDS96AndDS128() && 8538 ((Subtarget->useDS128() && VT.getStoreSize() == 16) || 8539 (VT.getStoreSize() == 12)) && 8540 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 8541 Store->getAlign())) 8542 return SDValue(); 8543 8544 if (NumElements > 2) 8545 return SplitVectorStore(Op, DAG); 8546 8547 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8548 // address is negative, then the instruction is incorrectly treated as 8549 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8550 // stores here to avoid emitting ds_write2_b32. We may re-combine the 8551 // store later in the SILoadStoreOptimizer. 8552 if (!Subtarget->hasUsableDSOffset() && 8553 NumElements == 2 && VT.getStoreSize() == 8 && 8554 Store->getAlignment() < 8) { 8555 return SplitVectorStore(Op, DAG); 8556 } 8557 8558 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8559 VT, *Store->getMemOperand())) { 8560 if (VT.isVector()) 8561 return SplitVectorStore(Op, DAG); 8562 return expandUnalignedStore(Store, DAG); 8563 } 8564 8565 return SDValue(); 8566 } else { 8567 llvm_unreachable("unhandled address space"); 8568 } 8569 } 8570 8571 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 8572 SDLoc DL(Op); 8573 EVT VT = Op.getValueType(); 8574 SDValue Arg = Op.getOperand(0); 8575 SDValue TrigVal; 8576 8577 // Propagate fast-math flags so that the multiply we introduce can be folded 8578 // if Arg is already the result of a multiply by constant. 8579 auto Flags = Op->getFlags(); 8580 8581 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 8582 8583 if (Subtarget->hasTrigReducedRange()) { 8584 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8585 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 8586 } else { 8587 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8588 } 8589 8590 switch (Op.getOpcode()) { 8591 case ISD::FCOS: 8592 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 8593 case ISD::FSIN: 8594 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 8595 default: 8596 llvm_unreachable("Wrong trig opcode"); 8597 } 8598 } 8599 8600 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 8601 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 8602 assert(AtomicNode->isCompareAndSwap()); 8603 unsigned AS = AtomicNode->getAddressSpace(); 8604 8605 // No custom lowering required for local address space 8606 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 8607 return Op; 8608 8609 // Non-local address space requires custom lowering for atomic compare 8610 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 8611 SDLoc DL(Op); 8612 SDValue ChainIn = Op.getOperand(0); 8613 SDValue Addr = Op.getOperand(1); 8614 SDValue Old = Op.getOperand(2); 8615 SDValue New = Op.getOperand(3); 8616 EVT VT = Op.getValueType(); 8617 MVT SimpleVT = VT.getSimpleVT(); 8618 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 8619 8620 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 8621 SDValue Ops[] = { ChainIn, Addr, NewOld }; 8622 8623 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 8624 Ops, VT, AtomicNode->getMemOperand()); 8625 } 8626 8627 //===----------------------------------------------------------------------===// 8628 // Custom DAG optimizations 8629 //===----------------------------------------------------------------------===// 8630 8631 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 8632 DAGCombinerInfo &DCI) const { 8633 EVT VT = N->getValueType(0); 8634 EVT ScalarVT = VT.getScalarType(); 8635 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 8636 return SDValue(); 8637 8638 SelectionDAG &DAG = DCI.DAG; 8639 SDLoc DL(N); 8640 8641 SDValue Src = N->getOperand(0); 8642 EVT SrcVT = Src.getValueType(); 8643 8644 // TODO: We could try to match extracting the higher bytes, which would be 8645 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 8646 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 8647 // about in practice. 8648 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 8649 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 8650 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 8651 DCI.AddToWorklist(Cvt.getNode()); 8652 8653 // For the f16 case, fold to a cast to f32 and then cast back to f16. 8654 if (ScalarVT != MVT::f32) { 8655 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 8656 DAG.getTargetConstant(0, DL, MVT::i32)); 8657 } 8658 return Cvt; 8659 } 8660 } 8661 8662 return SDValue(); 8663 } 8664 8665 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 8666 8667 // This is a variant of 8668 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 8669 // 8670 // The normal DAG combiner will do this, but only if the add has one use since 8671 // that would increase the number of instructions. 8672 // 8673 // This prevents us from seeing a constant offset that can be folded into a 8674 // memory instruction's addressing mode. If we know the resulting add offset of 8675 // a pointer can be folded into an addressing offset, we can replace the pointer 8676 // operand with the add of new constant offset. This eliminates one of the uses, 8677 // and may allow the remaining use to also be simplified. 8678 // 8679 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 8680 unsigned AddrSpace, 8681 EVT MemVT, 8682 DAGCombinerInfo &DCI) const { 8683 SDValue N0 = N->getOperand(0); 8684 SDValue N1 = N->getOperand(1); 8685 8686 // We only do this to handle cases where it's profitable when there are 8687 // multiple uses of the add, so defer to the standard combine. 8688 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 8689 N0->hasOneUse()) 8690 return SDValue(); 8691 8692 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 8693 if (!CN1) 8694 return SDValue(); 8695 8696 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 8697 if (!CAdd) 8698 return SDValue(); 8699 8700 // If the resulting offset is too large, we can't fold it into the addressing 8701 // mode offset. 8702 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 8703 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 8704 8705 AddrMode AM; 8706 AM.HasBaseReg = true; 8707 AM.BaseOffs = Offset.getSExtValue(); 8708 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 8709 return SDValue(); 8710 8711 SelectionDAG &DAG = DCI.DAG; 8712 SDLoc SL(N); 8713 EVT VT = N->getValueType(0); 8714 8715 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 8716 SDValue COffset = DAG.getConstant(Offset, SL, VT); 8717 8718 SDNodeFlags Flags; 8719 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 8720 (N0.getOpcode() == ISD::OR || 8721 N0->getFlags().hasNoUnsignedWrap())); 8722 8723 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 8724 } 8725 8726 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 8727 /// by the chain and intrinsic ID. Theoretically we would also need to check the 8728 /// specific intrinsic, but they all place the pointer operand first. 8729 static unsigned getBasePtrIndex(const MemSDNode *N) { 8730 switch (N->getOpcode()) { 8731 case ISD::STORE: 8732 case ISD::INTRINSIC_W_CHAIN: 8733 case ISD::INTRINSIC_VOID: 8734 return 2; 8735 default: 8736 return 1; 8737 } 8738 } 8739 8740 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 8741 DAGCombinerInfo &DCI) const { 8742 SelectionDAG &DAG = DCI.DAG; 8743 SDLoc SL(N); 8744 8745 unsigned PtrIdx = getBasePtrIndex(N); 8746 SDValue Ptr = N->getOperand(PtrIdx); 8747 8748 // TODO: We could also do this for multiplies. 8749 if (Ptr.getOpcode() == ISD::SHL) { 8750 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 8751 N->getMemoryVT(), DCI); 8752 if (NewPtr) { 8753 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 8754 8755 NewOps[PtrIdx] = NewPtr; 8756 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 8757 } 8758 } 8759 8760 return SDValue(); 8761 } 8762 8763 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 8764 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 8765 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 8766 (Opc == ISD::XOR && Val == 0); 8767 } 8768 8769 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 8770 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 8771 // integer combine opportunities since most 64-bit operations are decomposed 8772 // this way. TODO: We won't want this for SALU especially if it is an inline 8773 // immediate. 8774 SDValue SITargetLowering::splitBinaryBitConstantOp( 8775 DAGCombinerInfo &DCI, 8776 const SDLoc &SL, 8777 unsigned Opc, SDValue LHS, 8778 const ConstantSDNode *CRHS) const { 8779 uint64_t Val = CRHS->getZExtValue(); 8780 uint32_t ValLo = Lo_32(Val); 8781 uint32_t ValHi = Hi_32(Val); 8782 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8783 8784 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 8785 bitOpWithConstantIsReducible(Opc, ValHi)) || 8786 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 8787 // If we need to materialize a 64-bit immediate, it will be split up later 8788 // anyway. Avoid creating the harder to understand 64-bit immediate 8789 // materialization. 8790 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 8791 } 8792 8793 return SDValue(); 8794 } 8795 8796 // Returns true if argument is a boolean value which is not serialized into 8797 // memory or argument and does not require v_cmdmask_b32 to be deserialized. 8798 static bool isBoolSGPR(SDValue V) { 8799 if (V.getValueType() != MVT::i1) 8800 return false; 8801 switch (V.getOpcode()) { 8802 default: break; 8803 case ISD::SETCC: 8804 case ISD::AND: 8805 case ISD::OR: 8806 case ISD::XOR: 8807 case AMDGPUISD::FP_CLASS: 8808 return true; 8809 } 8810 return false; 8811 } 8812 8813 // If a constant has all zeroes or all ones within each byte return it. 8814 // Otherwise return 0. 8815 static uint32_t getConstantPermuteMask(uint32_t C) { 8816 // 0xff for any zero byte in the mask 8817 uint32_t ZeroByteMask = 0; 8818 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 8819 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 8820 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 8821 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 8822 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 8823 if ((NonZeroByteMask & C) != NonZeroByteMask) 8824 return 0; // Partial bytes selected. 8825 return C; 8826 } 8827 8828 // Check if a node selects whole bytes from its operand 0 starting at a byte 8829 // boundary while masking the rest. Returns select mask as in the v_perm_b32 8830 // or -1 if not succeeded. 8831 // Note byte select encoding: 8832 // value 0-3 selects corresponding source byte; 8833 // value 0xc selects zero; 8834 // value 0xff selects 0xff. 8835 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 8836 assert(V.getValueSizeInBits() == 32); 8837 8838 if (V.getNumOperands() != 2) 8839 return ~0; 8840 8841 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 8842 if (!N1) 8843 return ~0; 8844 8845 uint32_t C = N1->getZExtValue(); 8846 8847 switch (V.getOpcode()) { 8848 default: 8849 break; 8850 case ISD::AND: 8851 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8852 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 8853 } 8854 break; 8855 8856 case ISD::OR: 8857 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8858 return (0x03020100 & ~ConstMask) | ConstMask; 8859 } 8860 break; 8861 8862 case ISD::SHL: 8863 if (C % 8) 8864 return ~0; 8865 8866 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 8867 8868 case ISD::SRL: 8869 if (C % 8) 8870 return ~0; 8871 8872 return uint32_t(0x0c0c0c0c03020100ull >> C); 8873 } 8874 8875 return ~0; 8876 } 8877 8878 SDValue SITargetLowering::performAndCombine(SDNode *N, 8879 DAGCombinerInfo &DCI) const { 8880 if (DCI.isBeforeLegalize()) 8881 return SDValue(); 8882 8883 SelectionDAG &DAG = DCI.DAG; 8884 EVT VT = N->getValueType(0); 8885 SDValue LHS = N->getOperand(0); 8886 SDValue RHS = N->getOperand(1); 8887 8888 8889 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8890 if (VT == MVT::i64 && CRHS) { 8891 if (SDValue Split 8892 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 8893 return Split; 8894 } 8895 8896 if (CRHS && VT == MVT::i32) { 8897 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 8898 // nb = number of trailing zeroes in mask 8899 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 8900 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 8901 uint64_t Mask = CRHS->getZExtValue(); 8902 unsigned Bits = countPopulation(Mask); 8903 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 8904 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 8905 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 8906 unsigned Shift = CShift->getZExtValue(); 8907 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 8908 unsigned Offset = NB + Shift; 8909 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 8910 SDLoc SL(N); 8911 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 8912 LHS->getOperand(0), 8913 DAG.getConstant(Offset, SL, MVT::i32), 8914 DAG.getConstant(Bits, SL, MVT::i32)); 8915 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8916 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 8917 DAG.getValueType(NarrowVT)); 8918 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 8919 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 8920 return Shl; 8921 } 8922 } 8923 } 8924 8925 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8926 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 8927 isa<ConstantSDNode>(LHS.getOperand(2))) { 8928 uint32_t Sel = getConstantPermuteMask(Mask); 8929 if (!Sel) 8930 return SDValue(); 8931 8932 // Select 0xc for all zero bytes 8933 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 8934 SDLoc DL(N); 8935 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8936 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8937 } 8938 } 8939 8940 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 8941 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 8942 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 8943 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8944 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 8945 8946 SDValue X = LHS.getOperand(0); 8947 SDValue Y = RHS.getOperand(0); 8948 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 8949 return SDValue(); 8950 8951 if (LCC == ISD::SETO) { 8952 if (X != LHS.getOperand(1)) 8953 return SDValue(); 8954 8955 if (RCC == ISD::SETUNE) { 8956 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 8957 if (!C1 || !C1->isInfinity() || C1->isNegative()) 8958 return SDValue(); 8959 8960 const uint32_t Mask = SIInstrFlags::N_NORMAL | 8961 SIInstrFlags::N_SUBNORMAL | 8962 SIInstrFlags::N_ZERO | 8963 SIInstrFlags::P_ZERO | 8964 SIInstrFlags::P_SUBNORMAL | 8965 SIInstrFlags::P_NORMAL; 8966 8967 static_assert(((~(SIInstrFlags::S_NAN | 8968 SIInstrFlags::Q_NAN | 8969 SIInstrFlags::N_INFINITY | 8970 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 8971 "mask not equal"); 8972 8973 SDLoc DL(N); 8974 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8975 X, DAG.getConstant(Mask, DL, MVT::i32)); 8976 } 8977 } 8978 } 8979 8980 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 8981 std::swap(LHS, RHS); 8982 8983 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 8984 RHS.hasOneUse()) { 8985 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8986 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 8987 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 8988 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8989 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 8990 (RHS.getOperand(0) == LHS.getOperand(0) && 8991 LHS.getOperand(0) == LHS.getOperand(1))) { 8992 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 8993 unsigned NewMask = LCC == ISD::SETO ? 8994 Mask->getZExtValue() & ~OrdMask : 8995 Mask->getZExtValue() & OrdMask; 8996 8997 SDLoc DL(N); 8998 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 8999 DAG.getConstant(NewMask, DL, MVT::i32)); 9000 } 9001 } 9002 9003 if (VT == MVT::i32 && 9004 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 9005 // and x, (sext cc from i1) => select cc, x, 0 9006 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 9007 std::swap(LHS, RHS); 9008 if (isBoolSGPR(RHS.getOperand(0))) 9009 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 9010 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 9011 } 9012 9013 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9014 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9015 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9016 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9017 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9018 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9019 if (LHSMask != ~0u && RHSMask != ~0u) { 9020 // Canonicalize the expression in an attempt to have fewer unique masks 9021 // and therefore fewer registers used to hold the masks. 9022 if (LHSMask > RHSMask) { 9023 std::swap(LHSMask, RHSMask); 9024 std::swap(LHS, RHS); 9025 } 9026 9027 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9028 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9029 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9030 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9031 9032 // Check of we need to combine values from two sources within a byte. 9033 if (!(LHSUsedLanes & RHSUsedLanes) && 9034 // If we select high and lower word keep it for SDWA. 9035 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9036 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9037 // Each byte in each mask is either selector mask 0-3, or has higher 9038 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 9039 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 9040 // mask which is not 0xff wins. By anding both masks we have a correct 9041 // result except that 0x0c shall be corrected to give 0x0c only. 9042 uint32_t Mask = LHSMask & RHSMask; 9043 for (unsigned I = 0; I < 32; I += 8) { 9044 uint32_t ByteSel = 0xff << I; 9045 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 9046 Mask &= (0x0c << I) & 0xffffffff; 9047 } 9048 9049 // Add 4 to each active LHS lane. It will not affect any existing 0xff 9050 // or 0x0c. 9051 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 9052 SDLoc DL(N); 9053 9054 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9055 LHS.getOperand(0), RHS.getOperand(0), 9056 DAG.getConstant(Sel, DL, MVT::i32)); 9057 } 9058 } 9059 } 9060 9061 return SDValue(); 9062 } 9063 9064 SDValue SITargetLowering::performOrCombine(SDNode *N, 9065 DAGCombinerInfo &DCI) const { 9066 SelectionDAG &DAG = DCI.DAG; 9067 SDValue LHS = N->getOperand(0); 9068 SDValue RHS = N->getOperand(1); 9069 9070 EVT VT = N->getValueType(0); 9071 if (VT == MVT::i1) { 9072 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 9073 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 9074 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 9075 SDValue Src = LHS.getOperand(0); 9076 if (Src != RHS.getOperand(0)) 9077 return SDValue(); 9078 9079 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9080 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9081 if (!CLHS || !CRHS) 9082 return SDValue(); 9083 9084 // Only 10 bits are used. 9085 static const uint32_t MaxMask = 0x3ff; 9086 9087 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 9088 SDLoc DL(N); 9089 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9090 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 9091 } 9092 9093 return SDValue(); 9094 } 9095 9096 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9097 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 9098 LHS.getOpcode() == AMDGPUISD::PERM && 9099 isa<ConstantSDNode>(LHS.getOperand(2))) { 9100 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 9101 if (!Sel) 9102 return SDValue(); 9103 9104 Sel |= LHS.getConstantOperandVal(2); 9105 SDLoc DL(N); 9106 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9107 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9108 } 9109 9110 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9111 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9112 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9113 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9114 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9115 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9116 if (LHSMask != ~0u && RHSMask != ~0u) { 9117 // Canonicalize the expression in an attempt to have fewer unique masks 9118 // and therefore fewer registers used to hold the masks. 9119 if (LHSMask > RHSMask) { 9120 std::swap(LHSMask, RHSMask); 9121 std::swap(LHS, RHS); 9122 } 9123 9124 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9125 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9126 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9127 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9128 9129 // Check of we need to combine values from two sources within a byte. 9130 if (!(LHSUsedLanes & RHSUsedLanes) && 9131 // If we select high and lower word keep it for SDWA. 9132 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9133 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9134 // Kill zero bytes selected by other mask. Zero value is 0xc. 9135 LHSMask &= ~RHSUsedLanes; 9136 RHSMask &= ~LHSUsedLanes; 9137 // Add 4 to each active LHS lane 9138 LHSMask |= LHSUsedLanes & 0x04040404; 9139 // Combine masks 9140 uint32_t Sel = LHSMask | RHSMask; 9141 SDLoc DL(N); 9142 9143 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9144 LHS.getOperand(0), RHS.getOperand(0), 9145 DAG.getConstant(Sel, DL, MVT::i32)); 9146 } 9147 } 9148 } 9149 9150 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9151 return SDValue(); 9152 9153 // TODO: This could be a generic combine with a predicate for extracting the 9154 // high half of an integer being free. 9155 9156 // (or i64:x, (zero_extend i32:y)) -> 9157 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9158 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9159 RHS.getOpcode() != ISD::ZERO_EXTEND) 9160 std::swap(LHS, RHS); 9161 9162 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9163 SDValue ExtSrc = RHS.getOperand(0); 9164 EVT SrcVT = ExtSrc.getValueType(); 9165 if (SrcVT == MVT::i32) { 9166 SDLoc SL(N); 9167 SDValue LowLHS, HiBits; 9168 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9169 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9170 9171 DCI.AddToWorklist(LowOr.getNode()); 9172 DCI.AddToWorklist(HiBits.getNode()); 9173 9174 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9175 LowOr, HiBits); 9176 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9177 } 9178 } 9179 9180 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9181 if (CRHS) { 9182 if (SDValue Split 9183 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 9184 return Split; 9185 } 9186 9187 return SDValue(); 9188 } 9189 9190 SDValue SITargetLowering::performXorCombine(SDNode *N, 9191 DAGCombinerInfo &DCI) const { 9192 EVT VT = N->getValueType(0); 9193 if (VT != MVT::i64) 9194 return SDValue(); 9195 9196 SDValue LHS = N->getOperand(0); 9197 SDValue RHS = N->getOperand(1); 9198 9199 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9200 if (CRHS) { 9201 if (SDValue Split 9202 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9203 return Split; 9204 } 9205 9206 return SDValue(); 9207 } 9208 9209 // Instructions that will be lowered with a final instruction that zeros the 9210 // high result bits. 9211 // XXX - probably only need to list legal operations. 9212 static bool fp16SrcZerosHighBits(unsigned Opc) { 9213 switch (Opc) { 9214 case ISD::FADD: 9215 case ISD::FSUB: 9216 case ISD::FMUL: 9217 case ISD::FDIV: 9218 case ISD::FREM: 9219 case ISD::FMA: 9220 case ISD::FMAD: 9221 case ISD::FCANONICALIZE: 9222 case ISD::FP_ROUND: 9223 case ISD::UINT_TO_FP: 9224 case ISD::SINT_TO_FP: 9225 case ISD::FABS: 9226 // Fabs is lowered to a bit operation, but it's an and which will clear the 9227 // high bits anyway. 9228 case ISD::FSQRT: 9229 case ISD::FSIN: 9230 case ISD::FCOS: 9231 case ISD::FPOWI: 9232 case ISD::FPOW: 9233 case ISD::FLOG: 9234 case ISD::FLOG2: 9235 case ISD::FLOG10: 9236 case ISD::FEXP: 9237 case ISD::FEXP2: 9238 case ISD::FCEIL: 9239 case ISD::FTRUNC: 9240 case ISD::FRINT: 9241 case ISD::FNEARBYINT: 9242 case ISD::FROUND: 9243 case ISD::FFLOOR: 9244 case ISD::FMINNUM: 9245 case ISD::FMAXNUM: 9246 case AMDGPUISD::FRACT: 9247 case AMDGPUISD::CLAMP: 9248 case AMDGPUISD::COS_HW: 9249 case AMDGPUISD::SIN_HW: 9250 case AMDGPUISD::FMIN3: 9251 case AMDGPUISD::FMAX3: 9252 case AMDGPUISD::FMED3: 9253 case AMDGPUISD::FMAD_FTZ: 9254 case AMDGPUISD::RCP: 9255 case AMDGPUISD::RSQ: 9256 case AMDGPUISD::RCP_IFLAG: 9257 case AMDGPUISD::LDEXP: 9258 return true; 9259 default: 9260 // fcopysign, select and others may be lowered to 32-bit bit operations 9261 // which don't zero the high bits. 9262 return false; 9263 } 9264 } 9265 9266 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9267 DAGCombinerInfo &DCI) const { 9268 if (!Subtarget->has16BitInsts() || 9269 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9270 return SDValue(); 9271 9272 EVT VT = N->getValueType(0); 9273 if (VT != MVT::i32) 9274 return SDValue(); 9275 9276 SDValue Src = N->getOperand(0); 9277 if (Src.getValueType() != MVT::i16) 9278 return SDValue(); 9279 9280 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 9281 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 9282 if (Src.getOpcode() == ISD::BITCAST) { 9283 SDValue BCSrc = Src.getOperand(0); 9284 if (BCSrc.getValueType() == MVT::f16 && 9285 fp16SrcZerosHighBits(BCSrc.getOpcode())) 9286 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 9287 } 9288 9289 return SDValue(); 9290 } 9291 9292 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9293 DAGCombinerInfo &DCI) 9294 const { 9295 SDValue Src = N->getOperand(0); 9296 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9297 9298 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9299 VTSign->getVT() == MVT::i8) || 9300 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9301 VTSign->getVT() == MVT::i16)) && 9302 Src.hasOneUse()) { 9303 auto *M = cast<MemSDNode>(Src); 9304 SDValue Ops[] = { 9305 Src.getOperand(0), // Chain 9306 Src.getOperand(1), // rsrc 9307 Src.getOperand(2), // vindex 9308 Src.getOperand(3), // voffset 9309 Src.getOperand(4), // soffset 9310 Src.getOperand(5), // offset 9311 Src.getOperand(6), 9312 Src.getOperand(7) 9313 }; 9314 // replace with BUFFER_LOAD_BYTE/SHORT 9315 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9316 Src.getOperand(0).getValueType()); 9317 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9318 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9319 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9320 ResList, 9321 Ops, M->getMemoryVT(), 9322 M->getMemOperand()); 9323 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9324 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9325 } 9326 return SDValue(); 9327 } 9328 9329 SDValue SITargetLowering::performClassCombine(SDNode *N, 9330 DAGCombinerInfo &DCI) const { 9331 SelectionDAG &DAG = DCI.DAG; 9332 SDValue Mask = N->getOperand(1); 9333 9334 // fp_class x, 0 -> false 9335 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9336 if (CMask->isNullValue()) 9337 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9338 } 9339 9340 if (N->getOperand(0).isUndef()) 9341 return DAG.getUNDEF(MVT::i1); 9342 9343 return SDValue(); 9344 } 9345 9346 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9347 DAGCombinerInfo &DCI) const { 9348 EVT VT = N->getValueType(0); 9349 SDValue N0 = N->getOperand(0); 9350 9351 if (N0.isUndef()) 9352 return N0; 9353 9354 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9355 N0.getOpcode() == ISD::SINT_TO_FP)) { 9356 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9357 N->getFlags()); 9358 } 9359 9360 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9361 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9362 N0.getOperand(0), N->getFlags()); 9363 } 9364 9365 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9366 } 9367 9368 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9369 unsigned MaxDepth) const { 9370 unsigned Opcode = Op.getOpcode(); 9371 if (Opcode == ISD::FCANONICALIZE) 9372 return true; 9373 9374 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9375 auto F = CFP->getValueAPF(); 9376 if (F.isNaN() && F.isSignaling()) 9377 return false; 9378 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 9379 } 9380 9381 // If source is a result of another standard FP operation it is already in 9382 // canonical form. 9383 if (MaxDepth == 0) 9384 return false; 9385 9386 switch (Opcode) { 9387 // These will flush denorms if required. 9388 case ISD::FADD: 9389 case ISD::FSUB: 9390 case ISD::FMUL: 9391 case ISD::FCEIL: 9392 case ISD::FFLOOR: 9393 case ISD::FMA: 9394 case ISD::FMAD: 9395 case ISD::FSQRT: 9396 case ISD::FDIV: 9397 case ISD::FREM: 9398 case ISD::FP_ROUND: 9399 case ISD::FP_EXTEND: 9400 case AMDGPUISD::FMUL_LEGACY: 9401 case AMDGPUISD::FMAD_FTZ: 9402 case AMDGPUISD::RCP: 9403 case AMDGPUISD::RSQ: 9404 case AMDGPUISD::RSQ_CLAMP: 9405 case AMDGPUISD::RCP_LEGACY: 9406 case AMDGPUISD::RCP_IFLAG: 9407 case AMDGPUISD::DIV_SCALE: 9408 case AMDGPUISD::DIV_FMAS: 9409 case AMDGPUISD::DIV_FIXUP: 9410 case AMDGPUISD::FRACT: 9411 case AMDGPUISD::LDEXP: 9412 case AMDGPUISD::CVT_PKRTZ_F16_F32: 9413 case AMDGPUISD::CVT_F32_UBYTE0: 9414 case AMDGPUISD::CVT_F32_UBYTE1: 9415 case AMDGPUISD::CVT_F32_UBYTE2: 9416 case AMDGPUISD::CVT_F32_UBYTE3: 9417 return true; 9418 9419 // It can/will be lowered or combined as a bit operation. 9420 // Need to check their input recursively to handle. 9421 case ISD::FNEG: 9422 case ISD::FABS: 9423 case ISD::FCOPYSIGN: 9424 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9425 9426 case ISD::FSIN: 9427 case ISD::FCOS: 9428 case ISD::FSINCOS: 9429 return Op.getValueType().getScalarType() != MVT::f16; 9430 9431 case ISD::FMINNUM: 9432 case ISD::FMAXNUM: 9433 case ISD::FMINNUM_IEEE: 9434 case ISD::FMAXNUM_IEEE: 9435 case AMDGPUISD::CLAMP: 9436 case AMDGPUISD::FMED3: 9437 case AMDGPUISD::FMAX3: 9438 case AMDGPUISD::FMIN3: { 9439 // FIXME: Shouldn't treat the generic operations different based these. 9440 // However, we aren't really required to flush the result from 9441 // minnum/maxnum.. 9442 9443 // snans will be quieted, so we only need to worry about denormals. 9444 if (Subtarget->supportsMinMaxDenormModes() || 9445 denormalsEnabledForType(DAG, Op.getValueType())) 9446 return true; 9447 9448 // Flushing may be required. 9449 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 9450 // targets need to check their input recursively. 9451 9452 // FIXME: Does this apply with clamp? It's implemented with max. 9453 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 9454 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 9455 return false; 9456 } 9457 9458 return true; 9459 } 9460 case ISD::SELECT: { 9461 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 9462 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 9463 } 9464 case ISD::BUILD_VECTOR: { 9465 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 9466 SDValue SrcOp = Op.getOperand(i); 9467 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 9468 return false; 9469 } 9470 9471 return true; 9472 } 9473 case ISD::EXTRACT_VECTOR_ELT: 9474 case ISD::EXTRACT_SUBVECTOR: { 9475 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9476 } 9477 case ISD::INSERT_VECTOR_ELT: { 9478 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 9479 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 9480 } 9481 case ISD::UNDEF: 9482 // Could be anything. 9483 return false; 9484 9485 case ISD::BITCAST: { 9486 // Hack round the mess we make when legalizing extract_vector_elt 9487 SDValue Src = Op.getOperand(0); 9488 if (Src.getValueType() == MVT::i16 && 9489 Src.getOpcode() == ISD::TRUNCATE) { 9490 SDValue TruncSrc = Src.getOperand(0); 9491 if (TruncSrc.getValueType() == MVT::i32 && 9492 TruncSrc.getOpcode() == ISD::BITCAST && 9493 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 9494 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 9495 } 9496 } 9497 9498 return false; 9499 } 9500 case ISD::INTRINSIC_WO_CHAIN: { 9501 unsigned IntrinsicID 9502 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9503 // TODO: Handle more intrinsics 9504 switch (IntrinsicID) { 9505 case Intrinsic::amdgcn_cvt_pkrtz: 9506 case Intrinsic::amdgcn_cubeid: 9507 case Intrinsic::amdgcn_frexp_mant: 9508 case Intrinsic::amdgcn_fdot2: 9509 case Intrinsic::amdgcn_rcp: 9510 case Intrinsic::amdgcn_rsq: 9511 case Intrinsic::amdgcn_rsq_clamp: 9512 case Intrinsic::amdgcn_rcp_legacy: 9513 case Intrinsic::amdgcn_rsq_legacy: 9514 case Intrinsic::amdgcn_trig_preop: 9515 return true; 9516 default: 9517 break; 9518 } 9519 9520 LLVM_FALLTHROUGH; 9521 } 9522 default: 9523 return denormalsEnabledForType(DAG, Op.getValueType()) && 9524 DAG.isKnownNeverSNaN(Op); 9525 } 9526 9527 llvm_unreachable("invalid operation"); 9528 } 9529 9530 // Constant fold canonicalize. 9531 SDValue SITargetLowering::getCanonicalConstantFP( 9532 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 9533 // Flush denormals to 0 if not enabled. 9534 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 9535 return DAG.getConstantFP(0.0, SL, VT); 9536 9537 if (C.isNaN()) { 9538 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 9539 if (C.isSignaling()) { 9540 // Quiet a signaling NaN. 9541 // FIXME: Is this supposed to preserve payload bits? 9542 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9543 } 9544 9545 // Make sure it is the canonical NaN bitpattern. 9546 // 9547 // TODO: Can we use -1 as the canonical NaN value since it's an inline 9548 // immediate? 9549 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 9550 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9551 } 9552 9553 // Already canonical. 9554 return DAG.getConstantFP(C, SL, VT); 9555 } 9556 9557 static bool vectorEltWillFoldAway(SDValue Op) { 9558 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 9559 } 9560 9561 SDValue SITargetLowering::performFCanonicalizeCombine( 9562 SDNode *N, 9563 DAGCombinerInfo &DCI) const { 9564 SelectionDAG &DAG = DCI.DAG; 9565 SDValue N0 = N->getOperand(0); 9566 EVT VT = N->getValueType(0); 9567 9568 // fcanonicalize undef -> qnan 9569 if (N0.isUndef()) { 9570 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 9571 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 9572 } 9573 9574 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 9575 EVT VT = N->getValueType(0); 9576 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 9577 } 9578 9579 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 9580 // (fcanonicalize k) 9581 // 9582 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 9583 9584 // TODO: This could be better with wider vectors that will be split to v2f16, 9585 // and to consider uses since there aren't that many packed operations. 9586 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 9587 isTypeLegal(MVT::v2f16)) { 9588 SDLoc SL(N); 9589 SDValue NewElts[2]; 9590 SDValue Lo = N0.getOperand(0); 9591 SDValue Hi = N0.getOperand(1); 9592 EVT EltVT = Lo.getValueType(); 9593 9594 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 9595 for (unsigned I = 0; I != 2; ++I) { 9596 SDValue Op = N0.getOperand(I); 9597 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9598 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 9599 CFP->getValueAPF()); 9600 } else if (Op.isUndef()) { 9601 // Handled below based on what the other operand is. 9602 NewElts[I] = Op; 9603 } else { 9604 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 9605 } 9606 } 9607 9608 // If one half is undef, and one is constant, perfer a splat vector rather 9609 // than the normal qNaN. If it's a register, prefer 0.0 since that's 9610 // cheaper to use and may be free with a packed operation. 9611 if (NewElts[0].isUndef()) { 9612 if (isa<ConstantFPSDNode>(NewElts[1])) 9613 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 9614 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 9615 } 9616 9617 if (NewElts[1].isUndef()) { 9618 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 9619 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 9620 } 9621 9622 return DAG.getBuildVector(VT, SL, NewElts); 9623 } 9624 } 9625 9626 unsigned SrcOpc = N0.getOpcode(); 9627 9628 // If it's free to do so, push canonicalizes further up the source, which may 9629 // find a canonical source. 9630 // 9631 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 9632 // sNaNs. 9633 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 9634 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9635 if (CRHS && N0.hasOneUse()) { 9636 SDLoc SL(N); 9637 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 9638 N0.getOperand(0)); 9639 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 9640 DCI.AddToWorklist(Canon0.getNode()); 9641 9642 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 9643 } 9644 } 9645 9646 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 9647 } 9648 9649 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 9650 switch (Opc) { 9651 case ISD::FMAXNUM: 9652 case ISD::FMAXNUM_IEEE: 9653 return AMDGPUISD::FMAX3; 9654 case ISD::SMAX: 9655 return AMDGPUISD::SMAX3; 9656 case ISD::UMAX: 9657 return AMDGPUISD::UMAX3; 9658 case ISD::FMINNUM: 9659 case ISD::FMINNUM_IEEE: 9660 return AMDGPUISD::FMIN3; 9661 case ISD::SMIN: 9662 return AMDGPUISD::SMIN3; 9663 case ISD::UMIN: 9664 return AMDGPUISD::UMIN3; 9665 default: 9666 llvm_unreachable("Not a min/max opcode"); 9667 } 9668 } 9669 9670 SDValue SITargetLowering::performIntMed3ImmCombine( 9671 SelectionDAG &DAG, const SDLoc &SL, 9672 SDValue Op0, SDValue Op1, bool Signed) const { 9673 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 9674 if (!K1) 9675 return SDValue(); 9676 9677 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 9678 if (!K0) 9679 return SDValue(); 9680 9681 if (Signed) { 9682 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 9683 return SDValue(); 9684 } else { 9685 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 9686 return SDValue(); 9687 } 9688 9689 EVT VT = K0->getValueType(0); 9690 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 9691 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 9692 return DAG.getNode(Med3Opc, SL, VT, 9693 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 9694 } 9695 9696 // If there isn't a 16-bit med3 operation, convert to 32-bit. 9697 MVT NVT = MVT::i32; 9698 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9699 9700 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 9701 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 9702 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 9703 9704 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 9705 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 9706 } 9707 9708 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 9709 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 9710 return C; 9711 9712 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 9713 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 9714 return C; 9715 } 9716 9717 return nullptr; 9718 } 9719 9720 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 9721 const SDLoc &SL, 9722 SDValue Op0, 9723 SDValue Op1) const { 9724 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 9725 if (!K1) 9726 return SDValue(); 9727 9728 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 9729 if (!K0) 9730 return SDValue(); 9731 9732 // Ordered >= (although NaN inputs should have folded away by now). 9733 if (K0->getValueAPF() > K1->getValueAPF()) 9734 return SDValue(); 9735 9736 const MachineFunction &MF = DAG.getMachineFunction(); 9737 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9738 9739 // TODO: Check IEEE bit enabled? 9740 EVT VT = Op0.getValueType(); 9741 if (Info->getMode().DX10Clamp) { 9742 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 9743 // hardware fmed3 behavior converting to a min. 9744 // FIXME: Should this be allowing -0.0? 9745 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 9746 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 9747 } 9748 9749 // med3 for f16 is only available on gfx9+, and not available for v2f16. 9750 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 9751 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 9752 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 9753 // then give the other result, which is different from med3 with a NaN 9754 // input. 9755 SDValue Var = Op0.getOperand(0); 9756 if (!DAG.isKnownNeverSNaN(Var)) 9757 return SDValue(); 9758 9759 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9760 9761 if ((!K0->hasOneUse() || 9762 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 9763 (!K1->hasOneUse() || 9764 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 9765 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 9766 Var, SDValue(K0, 0), SDValue(K1, 0)); 9767 } 9768 } 9769 9770 return SDValue(); 9771 } 9772 9773 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 9774 DAGCombinerInfo &DCI) const { 9775 SelectionDAG &DAG = DCI.DAG; 9776 9777 EVT VT = N->getValueType(0); 9778 unsigned Opc = N->getOpcode(); 9779 SDValue Op0 = N->getOperand(0); 9780 SDValue Op1 = N->getOperand(1); 9781 9782 // Only do this if the inner op has one use since this will just increases 9783 // register pressure for no benefit. 9784 9785 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 9786 !VT.isVector() && 9787 (VT == MVT::i32 || VT == MVT::f32 || 9788 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 9789 // max(max(a, b), c) -> max3(a, b, c) 9790 // min(min(a, b), c) -> min3(a, b, c) 9791 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 9792 SDLoc DL(N); 9793 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9794 DL, 9795 N->getValueType(0), 9796 Op0.getOperand(0), 9797 Op0.getOperand(1), 9798 Op1); 9799 } 9800 9801 // Try commuted. 9802 // max(a, max(b, c)) -> max3(a, b, c) 9803 // min(a, min(b, c)) -> min3(a, b, c) 9804 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 9805 SDLoc DL(N); 9806 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9807 DL, 9808 N->getValueType(0), 9809 Op0, 9810 Op1.getOperand(0), 9811 Op1.getOperand(1)); 9812 } 9813 } 9814 9815 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 9816 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 9817 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 9818 return Med3; 9819 } 9820 9821 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 9822 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 9823 return Med3; 9824 } 9825 9826 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 9827 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 9828 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 9829 (Opc == AMDGPUISD::FMIN_LEGACY && 9830 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 9831 (VT == MVT::f32 || VT == MVT::f64 || 9832 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 9833 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 9834 Op0.hasOneUse()) { 9835 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 9836 return Res; 9837 } 9838 9839 return SDValue(); 9840 } 9841 9842 static bool isClampZeroToOne(SDValue A, SDValue B) { 9843 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 9844 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 9845 // FIXME: Should this be allowing -0.0? 9846 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 9847 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 9848 } 9849 } 9850 9851 return false; 9852 } 9853 9854 // FIXME: Should only worry about snans for version with chain. 9855 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 9856 DAGCombinerInfo &DCI) const { 9857 EVT VT = N->getValueType(0); 9858 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 9859 // NaNs. With a NaN input, the order of the operands may change the result. 9860 9861 SelectionDAG &DAG = DCI.DAG; 9862 SDLoc SL(N); 9863 9864 SDValue Src0 = N->getOperand(0); 9865 SDValue Src1 = N->getOperand(1); 9866 SDValue Src2 = N->getOperand(2); 9867 9868 if (isClampZeroToOne(Src0, Src1)) { 9869 // const_a, const_b, x -> clamp is safe in all cases including signaling 9870 // nans. 9871 // FIXME: Should this be allowing -0.0? 9872 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 9873 } 9874 9875 const MachineFunction &MF = DAG.getMachineFunction(); 9876 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9877 9878 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 9879 // handling no dx10-clamp? 9880 if (Info->getMode().DX10Clamp) { 9881 // If NaNs is clamped to 0, we are free to reorder the inputs. 9882 9883 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9884 std::swap(Src0, Src1); 9885 9886 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 9887 std::swap(Src1, Src2); 9888 9889 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9890 std::swap(Src0, Src1); 9891 9892 if (isClampZeroToOne(Src1, Src2)) 9893 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 9894 } 9895 9896 return SDValue(); 9897 } 9898 9899 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 9900 DAGCombinerInfo &DCI) const { 9901 SDValue Src0 = N->getOperand(0); 9902 SDValue Src1 = N->getOperand(1); 9903 if (Src0.isUndef() && Src1.isUndef()) 9904 return DCI.DAG.getUNDEF(N->getValueType(0)); 9905 return SDValue(); 9906 } 9907 9908 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 9909 // expanded into a set of cmp/select instructions. 9910 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 9911 unsigned NumElem, 9912 bool IsDivergentIdx) { 9913 if (UseDivergentRegisterIndexing) 9914 return false; 9915 9916 unsigned VecSize = EltSize * NumElem; 9917 9918 // Sub-dword vectors of size 2 dword or less have better implementation. 9919 if (VecSize <= 64 && EltSize < 32) 9920 return false; 9921 9922 // Always expand the rest of sub-dword instructions, otherwise it will be 9923 // lowered via memory. 9924 if (EltSize < 32) 9925 return true; 9926 9927 // Always do this if var-idx is divergent, otherwise it will become a loop. 9928 if (IsDivergentIdx) 9929 return true; 9930 9931 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 9932 unsigned NumInsts = NumElem /* Number of compares */ + 9933 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 9934 return NumInsts <= 16; 9935 } 9936 9937 static bool shouldExpandVectorDynExt(SDNode *N) { 9938 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 9939 if (isa<ConstantSDNode>(Idx)) 9940 return false; 9941 9942 SDValue Vec = N->getOperand(0); 9943 EVT VecVT = Vec.getValueType(); 9944 EVT EltVT = VecVT.getVectorElementType(); 9945 unsigned EltSize = EltVT.getSizeInBits(); 9946 unsigned NumElem = VecVT.getVectorNumElements(); 9947 9948 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem, 9949 Idx->isDivergent()); 9950 } 9951 9952 SDValue SITargetLowering::performExtractVectorEltCombine( 9953 SDNode *N, DAGCombinerInfo &DCI) const { 9954 SDValue Vec = N->getOperand(0); 9955 SelectionDAG &DAG = DCI.DAG; 9956 9957 EVT VecVT = Vec.getValueType(); 9958 EVT EltVT = VecVT.getVectorElementType(); 9959 9960 if ((Vec.getOpcode() == ISD::FNEG || 9961 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 9962 SDLoc SL(N); 9963 EVT EltVT = N->getValueType(0); 9964 SDValue Idx = N->getOperand(1); 9965 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9966 Vec.getOperand(0), Idx); 9967 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 9968 } 9969 9970 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 9971 // => 9972 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 9973 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 9974 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 9975 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 9976 SDLoc SL(N); 9977 EVT EltVT = N->getValueType(0); 9978 SDValue Idx = N->getOperand(1); 9979 unsigned Opc = Vec.getOpcode(); 9980 9981 switch(Opc) { 9982 default: 9983 break; 9984 // TODO: Support other binary operations. 9985 case ISD::FADD: 9986 case ISD::FSUB: 9987 case ISD::FMUL: 9988 case ISD::ADD: 9989 case ISD::UMIN: 9990 case ISD::UMAX: 9991 case ISD::SMIN: 9992 case ISD::SMAX: 9993 case ISD::FMAXNUM: 9994 case ISD::FMINNUM: 9995 case ISD::FMAXNUM_IEEE: 9996 case ISD::FMINNUM_IEEE: { 9997 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9998 Vec.getOperand(0), Idx); 9999 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10000 Vec.getOperand(1), Idx); 10001 10002 DCI.AddToWorklist(Elt0.getNode()); 10003 DCI.AddToWorklist(Elt1.getNode()); 10004 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 10005 } 10006 } 10007 } 10008 10009 unsigned VecSize = VecVT.getSizeInBits(); 10010 unsigned EltSize = EltVT.getSizeInBits(); 10011 10012 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 10013 if (::shouldExpandVectorDynExt(N)) { 10014 SDLoc SL(N); 10015 SDValue Idx = N->getOperand(1); 10016 SDValue V; 10017 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10018 SDValue IC = DAG.getVectorIdxConstant(I, SL); 10019 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10020 if (I == 0) 10021 V = Elt; 10022 else 10023 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 10024 } 10025 return V; 10026 } 10027 10028 if (!DCI.isBeforeLegalize()) 10029 return SDValue(); 10030 10031 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 10032 // elements. This exposes more load reduction opportunities by replacing 10033 // multiple small extract_vector_elements with a single 32-bit extract. 10034 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10035 if (isa<MemSDNode>(Vec) && 10036 EltSize <= 16 && 10037 EltVT.isByteSized() && 10038 VecSize > 32 && 10039 VecSize % 32 == 0 && 10040 Idx) { 10041 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 10042 10043 unsigned BitIndex = Idx->getZExtValue() * EltSize; 10044 unsigned EltIdx = BitIndex / 32; 10045 unsigned LeftoverBitIdx = BitIndex % 32; 10046 SDLoc SL(N); 10047 10048 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 10049 DCI.AddToWorklist(Cast.getNode()); 10050 10051 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 10052 DAG.getConstant(EltIdx, SL, MVT::i32)); 10053 DCI.AddToWorklist(Elt.getNode()); 10054 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 10055 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 10056 DCI.AddToWorklist(Srl.getNode()); 10057 10058 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 10059 DCI.AddToWorklist(Trunc.getNode()); 10060 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 10061 } 10062 10063 return SDValue(); 10064 } 10065 10066 SDValue 10067 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 10068 DAGCombinerInfo &DCI) const { 10069 SDValue Vec = N->getOperand(0); 10070 SDValue Idx = N->getOperand(2); 10071 EVT VecVT = Vec.getValueType(); 10072 EVT EltVT = VecVT.getVectorElementType(); 10073 10074 // INSERT_VECTOR_ELT (<n x e>, var-idx) 10075 // => BUILD_VECTOR n x select (e, const-idx) 10076 if (!::shouldExpandVectorDynExt(N)) 10077 return SDValue(); 10078 10079 SelectionDAG &DAG = DCI.DAG; 10080 SDLoc SL(N); 10081 SDValue Ins = N->getOperand(1); 10082 EVT IdxVT = Idx.getValueType(); 10083 10084 SmallVector<SDValue, 16> Ops; 10085 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10086 SDValue IC = DAG.getConstant(I, SL, IdxVT); 10087 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10088 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 10089 Ops.push_back(V); 10090 } 10091 10092 return DAG.getBuildVector(VecVT, SL, Ops); 10093 } 10094 10095 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 10096 const SDNode *N0, 10097 const SDNode *N1) const { 10098 EVT VT = N0->getValueType(0); 10099 10100 // Only do this if we are not trying to support denormals. v_mad_f32 does not 10101 // support denormals ever. 10102 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 10103 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 10104 getSubtarget()->hasMadF16())) && 10105 isOperationLegal(ISD::FMAD, VT)) 10106 return ISD::FMAD; 10107 10108 const TargetOptions &Options = DAG.getTarget().Options; 10109 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10110 (N0->getFlags().hasAllowContract() && 10111 N1->getFlags().hasAllowContract())) && 10112 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 10113 return ISD::FMA; 10114 } 10115 10116 return 0; 10117 } 10118 10119 // For a reassociatable opcode perform: 10120 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 10121 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 10122 SelectionDAG &DAG) const { 10123 EVT VT = N->getValueType(0); 10124 if (VT != MVT::i32 && VT != MVT::i64) 10125 return SDValue(); 10126 10127 unsigned Opc = N->getOpcode(); 10128 SDValue Op0 = N->getOperand(0); 10129 SDValue Op1 = N->getOperand(1); 10130 10131 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 10132 return SDValue(); 10133 10134 if (Op0->isDivergent()) 10135 std::swap(Op0, Op1); 10136 10137 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 10138 return SDValue(); 10139 10140 SDValue Op2 = Op1.getOperand(1); 10141 Op1 = Op1.getOperand(0); 10142 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 10143 return SDValue(); 10144 10145 if (Op1->isDivergent()) 10146 std::swap(Op1, Op2); 10147 10148 // If either operand is constant this will conflict with 10149 // DAGCombiner::ReassociateOps(). 10150 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 10151 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 10152 return SDValue(); 10153 10154 SDLoc SL(N); 10155 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10156 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10157 } 10158 10159 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10160 EVT VT, 10161 SDValue N0, SDValue N1, SDValue N2, 10162 bool Signed) { 10163 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10164 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10165 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10166 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10167 } 10168 10169 SDValue SITargetLowering::performAddCombine(SDNode *N, 10170 DAGCombinerInfo &DCI) const { 10171 SelectionDAG &DAG = DCI.DAG; 10172 EVT VT = N->getValueType(0); 10173 SDLoc SL(N); 10174 SDValue LHS = N->getOperand(0); 10175 SDValue RHS = N->getOperand(1); 10176 10177 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 10178 && Subtarget->hasMad64_32() && 10179 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 10180 VT.getScalarSizeInBits() <= 64) { 10181 if (LHS.getOpcode() != ISD::MUL) 10182 std::swap(LHS, RHS); 10183 10184 SDValue MulLHS = LHS.getOperand(0); 10185 SDValue MulRHS = LHS.getOperand(1); 10186 SDValue AddRHS = RHS; 10187 10188 // TODO: Maybe restrict if SGPR inputs. 10189 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 10190 numBitsUnsigned(MulRHS, DAG) <= 32) { 10191 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 10192 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 10193 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 10194 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 10195 } 10196 10197 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 10198 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 10199 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 10200 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 10201 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 10202 } 10203 10204 return SDValue(); 10205 } 10206 10207 if (SDValue V = reassociateScalarOps(N, DAG)) { 10208 return V; 10209 } 10210 10211 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10212 return SDValue(); 10213 10214 // add x, zext (setcc) => addcarry x, 0, setcc 10215 // add x, sext (setcc) => subcarry x, 0, setcc 10216 unsigned Opc = LHS.getOpcode(); 10217 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 10218 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 10219 std::swap(RHS, LHS); 10220 10221 Opc = RHS.getOpcode(); 10222 switch (Opc) { 10223 default: break; 10224 case ISD::ZERO_EXTEND: 10225 case ISD::SIGN_EXTEND: 10226 case ISD::ANY_EXTEND: { 10227 auto Cond = RHS.getOperand(0); 10228 // If this won't be a real VOPC output, we would still need to insert an 10229 // extra instruction anyway. 10230 if (!isBoolSGPR(Cond)) 10231 break; 10232 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10233 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10234 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 10235 return DAG.getNode(Opc, SL, VTList, Args); 10236 } 10237 case ISD::ADDCARRY: { 10238 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 10239 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 10240 if (!C || C->getZExtValue() != 0) break; 10241 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 10242 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 10243 } 10244 } 10245 return SDValue(); 10246 } 10247 10248 SDValue SITargetLowering::performSubCombine(SDNode *N, 10249 DAGCombinerInfo &DCI) const { 10250 SelectionDAG &DAG = DCI.DAG; 10251 EVT VT = N->getValueType(0); 10252 10253 if (VT != MVT::i32) 10254 return SDValue(); 10255 10256 SDLoc SL(N); 10257 SDValue LHS = N->getOperand(0); 10258 SDValue RHS = N->getOperand(1); 10259 10260 // sub x, zext (setcc) => subcarry x, 0, setcc 10261 // sub x, sext (setcc) => addcarry x, 0, setcc 10262 unsigned Opc = RHS.getOpcode(); 10263 switch (Opc) { 10264 default: break; 10265 case ISD::ZERO_EXTEND: 10266 case ISD::SIGN_EXTEND: 10267 case ISD::ANY_EXTEND: { 10268 auto Cond = RHS.getOperand(0); 10269 // If this won't be a real VOPC output, we would still need to insert an 10270 // extra instruction anyway. 10271 if (!isBoolSGPR(Cond)) 10272 break; 10273 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10274 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10275 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 10276 return DAG.getNode(Opc, SL, VTList, Args); 10277 } 10278 } 10279 10280 if (LHS.getOpcode() == ISD::SUBCARRY) { 10281 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 10282 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 10283 if (!C || !C->isNullValue()) 10284 return SDValue(); 10285 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 10286 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 10287 } 10288 return SDValue(); 10289 } 10290 10291 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 10292 DAGCombinerInfo &DCI) const { 10293 10294 if (N->getValueType(0) != MVT::i32) 10295 return SDValue(); 10296 10297 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10298 if (!C || C->getZExtValue() != 0) 10299 return SDValue(); 10300 10301 SelectionDAG &DAG = DCI.DAG; 10302 SDValue LHS = N->getOperand(0); 10303 10304 // addcarry (add x, y), 0, cc => addcarry x, y, cc 10305 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 10306 unsigned LHSOpc = LHS.getOpcode(); 10307 unsigned Opc = N->getOpcode(); 10308 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 10309 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 10310 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 10311 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 10312 } 10313 return SDValue(); 10314 } 10315 10316 SDValue SITargetLowering::performFAddCombine(SDNode *N, 10317 DAGCombinerInfo &DCI) const { 10318 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10319 return SDValue(); 10320 10321 SelectionDAG &DAG = DCI.DAG; 10322 EVT VT = N->getValueType(0); 10323 10324 SDLoc SL(N); 10325 SDValue LHS = N->getOperand(0); 10326 SDValue RHS = N->getOperand(1); 10327 10328 // These should really be instruction patterns, but writing patterns with 10329 // source modiifiers is a pain. 10330 10331 // fadd (fadd (a, a), b) -> mad 2.0, a, b 10332 if (LHS.getOpcode() == ISD::FADD) { 10333 SDValue A = LHS.getOperand(0); 10334 if (A == LHS.getOperand(1)) { 10335 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10336 if (FusedOp != 0) { 10337 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10338 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 10339 } 10340 } 10341 } 10342 10343 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 10344 if (RHS.getOpcode() == ISD::FADD) { 10345 SDValue A = RHS.getOperand(0); 10346 if (A == RHS.getOperand(1)) { 10347 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10348 if (FusedOp != 0) { 10349 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10350 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 10351 } 10352 } 10353 } 10354 10355 return SDValue(); 10356 } 10357 10358 SDValue SITargetLowering::performFSubCombine(SDNode *N, 10359 DAGCombinerInfo &DCI) const { 10360 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10361 return SDValue(); 10362 10363 SelectionDAG &DAG = DCI.DAG; 10364 SDLoc SL(N); 10365 EVT VT = N->getValueType(0); 10366 assert(!VT.isVector()); 10367 10368 // Try to get the fneg to fold into the source modifier. This undoes generic 10369 // DAG combines and folds them into the mad. 10370 // 10371 // Only do this if we are not trying to support denormals. v_mad_f32 does 10372 // not support denormals ever. 10373 SDValue LHS = N->getOperand(0); 10374 SDValue RHS = N->getOperand(1); 10375 if (LHS.getOpcode() == ISD::FADD) { 10376 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 10377 SDValue A = LHS.getOperand(0); 10378 if (A == LHS.getOperand(1)) { 10379 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10380 if (FusedOp != 0){ 10381 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10382 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10383 10384 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 10385 } 10386 } 10387 } 10388 10389 if (RHS.getOpcode() == ISD::FADD) { 10390 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 10391 10392 SDValue A = RHS.getOperand(0); 10393 if (A == RHS.getOperand(1)) { 10394 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10395 if (FusedOp != 0){ 10396 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 10397 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 10398 } 10399 } 10400 } 10401 10402 return SDValue(); 10403 } 10404 10405 SDValue SITargetLowering::performFMACombine(SDNode *N, 10406 DAGCombinerInfo &DCI) const { 10407 SelectionDAG &DAG = DCI.DAG; 10408 EVT VT = N->getValueType(0); 10409 SDLoc SL(N); 10410 10411 if (!Subtarget->hasDot2Insts() || VT != MVT::f32) 10412 return SDValue(); 10413 10414 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 10415 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 10416 SDValue Op1 = N->getOperand(0); 10417 SDValue Op2 = N->getOperand(1); 10418 SDValue FMA = N->getOperand(2); 10419 10420 if (FMA.getOpcode() != ISD::FMA || 10421 Op1.getOpcode() != ISD::FP_EXTEND || 10422 Op2.getOpcode() != ISD::FP_EXTEND) 10423 return SDValue(); 10424 10425 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 10426 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 10427 // is sufficient to allow generaing fdot2. 10428 const TargetOptions &Options = DAG.getTarget().Options; 10429 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10430 (N->getFlags().hasAllowContract() && 10431 FMA->getFlags().hasAllowContract())) { 10432 Op1 = Op1.getOperand(0); 10433 Op2 = Op2.getOperand(0); 10434 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10435 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10436 return SDValue(); 10437 10438 SDValue Vec1 = Op1.getOperand(0); 10439 SDValue Idx1 = Op1.getOperand(1); 10440 SDValue Vec2 = Op2.getOperand(0); 10441 10442 SDValue FMAOp1 = FMA.getOperand(0); 10443 SDValue FMAOp2 = FMA.getOperand(1); 10444 SDValue FMAAcc = FMA.getOperand(2); 10445 10446 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 10447 FMAOp2.getOpcode() != ISD::FP_EXTEND) 10448 return SDValue(); 10449 10450 FMAOp1 = FMAOp1.getOperand(0); 10451 FMAOp2 = FMAOp2.getOperand(0); 10452 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10453 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10454 return SDValue(); 10455 10456 SDValue Vec3 = FMAOp1.getOperand(0); 10457 SDValue Vec4 = FMAOp2.getOperand(0); 10458 SDValue Idx2 = FMAOp1.getOperand(1); 10459 10460 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 10461 // Idx1 and Idx2 cannot be the same. 10462 Idx1 == Idx2) 10463 return SDValue(); 10464 10465 if (Vec1 == Vec2 || Vec3 == Vec4) 10466 return SDValue(); 10467 10468 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 10469 return SDValue(); 10470 10471 if ((Vec1 == Vec3 && Vec2 == Vec4) || 10472 (Vec1 == Vec4 && Vec2 == Vec3)) { 10473 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 10474 DAG.getTargetConstant(0, SL, MVT::i1)); 10475 } 10476 } 10477 return SDValue(); 10478 } 10479 10480 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 10481 DAGCombinerInfo &DCI) const { 10482 SelectionDAG &DAG = DCI.DAG; 10483 SDLoc SL(N); 10484 10485 SDValue LHS = N->getOperand(0); 10486 SDValue RHS = N->getOperand(1); 10487 EVT VT = LHS.getValueType(); 10488 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10489 10490 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 10491 if (!CRHS) { 10492 CRHS = dyn_cast<ConstantSDNode>(LHS); 10493 if (CRHS) { 10494 std::swap(LHS, RHS); 10495 CC = getSetCCSwappedOperands(CC); 10496 } 10497 } 10498 10499 if (CRHS) { 10500 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 10501 isBoolSGPR(LHS.getOperand(0))) { 10502 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 10503 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 10504 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 10505 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 10506 if ((CRHS->isAllOnesValue() && 10507 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 10508 (CRHS->isNullValue() && 10509 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 10510 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10511 DAG.getConstant(-1, SL, MVT::i1)); 10512 if ((CRHS->isAllOnesValue() && 10513 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 10514 (CRHS->isNullValue() && 10515 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 10516 return LHS.getOperand(0); 10517 } 10518 10519 uint64_t CRHSVal = CRHS->getZExtValue(); 10520 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 10521 LHS.getOpcode() == ISD::SELECT && 10522 isa<ConstantSDNode>(LHS.getOperand(1)) && 10523 isa<ConstantSDNode>(LHS.getOperand(2)) && 10524 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 10525 isBoolSGPR(LHS.getOperand(0))) { 10526 // Given CT != FT: 10527 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 10528 // setcc (select cc, CT, CF), CF, ne => cc 10529 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 10530 // setcc (select cc, CT, CF), CT, eq => cc 10531 uint64_t CT = LHS.getConstantOperandVal(1); 10532 uint64_t CF = LHS.getConstantOperandVal(2); 10533 10534 if ((CF == CRHSVal && CC == ISD::SETEQ) || 10535 (CT == CRHSVal && CC == ISD::SETNE)) 10536 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10537 DAG.getConstant(-1, SL, MVT::i1)); 10538 if ((CF == CRHSVal && CC == ISD::SETNE) || 10539 (CT == CRHSVal && CC == ISD::SETEQ)) 10540 return LHS.getOperand(0); 10541 } 10542 } 10543 10544 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 10545 VT != MVT::f16)) 10546 return SDValue(); 10547 10548 // Match isinf/isfinite pattern 10549 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 10550 // (fcmp one (fabs x), inf) -> (fp_class x, 10551 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 10552 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 10553 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 10554 if (!CRHS) 10555 return SDValue(); 10556 10557 const APFloat &APF = CRHS->getValueAPF(); 10558 if (APF.isInfinity() && !APF.isNegative()) { 10559 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 10560 SIInstrFlags::N_INFINITY; 10561 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 10562 SIInstrFlags::P_ZERO | 10563 SIInstrFlags::N_NORMAL | 10564 SIInstrFlags::P_NORMAL | 10565 SIInstrFlags::N_SUBNORMAL | 10566 SIInstrFlags::P_SUBNORMAL; 10567 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 10568 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 10569 DAG.getConstant(Mask, SL, MVT::i32)); 10570 } 10571 } 10572 10573 return SDValue(); 10574 } 10575 10576 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 10577 DAGCombinerInfo &DCI) const { 10578 SelectionDAG &DAG = DCI.DAG; 10579 SDLoc SL(N); 10580 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 10581 10582 SDValue Src = N->getOperand(0); 10583 SDValue Shift = N->getOperand(0); 10584 10585 // TODO: Extend type shouldn't matter (assuming legal types). 10586 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 10587 Shift = Shift.getOperand(0); 10588 10589 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 10590 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 10591 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 10592 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 10593 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 10594 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 10595 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 10596 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0), 10597 SDLoc(Shift.getOperand(0)), MVT::i32); 10598 10599 unsigned ShiftOffset = 8 * Offset; 10600 if (Shift.getOpcode() == ISD::SHL) 10601 ShiftOffset -= C->getZExtValue(); 10602 else 10603 ShiftOffset += C->getZExtValue(); 10604 10605 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 10606 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 10607 MVT::f32, Shift); 10608 } 10609 } 10610 } 10611 10612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10613 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 10614 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 10615 // We simplified Src. If this node is not dead, visit it again so it is 10616 // folded properly. 10617 if (N->getOpcode() != ISD::DELETED_NODE) 10618 DCI.AddToWorklist(N); 10619 return SDValue(N, 0); 10620 } 10621 10622 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 10623 if (SDValue DemandedSrc = 10624 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 10625 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 10626 10627 return SDValue(); 10628 } 10629 10630 SDValue SITargetLowering::performClampCombine(SDNode *N, 10631 DAGCombinerInfo &DCI) const { 10632 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 10633 if (!CSrc) 10634 return SDValue(); 10635 10636 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 10637 const APFloat &F = CSrc->getValueAPF(); 10638 APFloat Zero = APFloat::getZero(F.getSemantics()); 10639 if (F < Zero || 10640 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 10641 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 10642 } 10643 10644 APFloat One(F.getSemantics(), "1.0"); 10645 if (F > One) 10646 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 10647 10648 return SDValue(CSrc, 0); 10649 } 10650 10651 10652 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 10653 DAGCombinerInfo &DCI) const { 10654 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 10655 return SDValue(); 10656 switch (N->getOpcode()) { 10657 case ISD::ADD: 10658 return performAddCombine(N, DCI); 10659 case ISD::SUB: 10660 return performSubCombine(N, DCI); 10661 case ISD::ADDCARRY: 10662 case ISD::SUBCARRY: 10663 return performAddCarrySubCarryCombine(N, DCI); 10664 case ISD::FADD: 10665 return performFAddCombine(N, DCI); 10666 case ISD::FSUB: 10667 return performFSubCombine(N, DCI); 10668 case ISD::SETCC: 10669 return performSetCCCombine(N, DCI); 10670 case ISD::FMAXNUM: 10671 case ISD::FMINNUM: 10672 case ISD::FMAXNUM_IEEE: 10673 case ISD::FMINNUM_IEEE: 10674 case ISD::SMAX: 10675 case ISD::SMIN: 10676 case ISD::UMAX: 10677 case ISD::UMIN: 10678 case AMDGPUISD::FMIN_LEGACY: 10679 case AMDGPUISD::FMAX_LEGACY: 10680 return performMinMaxCombine(N, DCI); 10681 case ISD::FMA: 10682 return performFMACombine(N, DCI); 10683 case ISD::AND: 10684 return performAndCombine(N, DCI); 10685 case ISD::OR: 10686 return performOrCombine(N, DCI); 10687 case ISD::XOR: 10688 return performXorCombine(N, DCI); 10689 case ISD::ZERO_EXTEND: 10690 return performZeroExtendCombine(N, DCI); 10691 case ISD::SIGN_EXTEND_INREG: 10692 return performSignExtendInRegCombine(N , DCI); 10693 case AMDGPUISD::FP_CLASS: 10694 return performClassCombine(N, DCI); 10695 case ISD::FCANONICALIZE: 10696 return performFCanonicalizeCombine(N, DCI); 10697 case AMDGPUISD::RCP: 10698 return performRcpCombine(N, DCI); 10699 case AMDGPUISD::FRACT: 10700 case AMDGPUISD::RSQ: 10701 case AMDGPUISD::RCP_LEGACY: 10702 case AMDGPUISD::RCP_IFLAG: 10703 case AMDGPUISD::RSQ_CLAMP: 10704 case AMDGPUISD::LDEXP: { 10705 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 10706 SDValue Src = N->getOperand(0); 10707 if (Src.isUndef()) 10708 return Src; 10709 break; 10710 } 10711 case ISD::SINT_TO_FP: 10712 case ISD::UINT_TO_FP: 10713 return performUCharToFloatCombine(N, DCI); 10714 case AMDGPUISD::CVT_F32_UBYTE0: 10715 case AMDGPUISD::CVT_F32_UBYTE1: 10716 case AMDGPUISD::CVT_F32_UBYTE2: 10717 case AMDGPUISD::CVT_F32_UBYTE3: 10718 return performCvtF32UByteNCombine(N, DCI); 10719 case AMDGPUISD::FMED3: 10720 return performFMed3Combine(N, DCI); 10721 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10722 return performCvtPkRTZCombine(N, DCI); 10723 case AMDGPUISD::CLAMP: 10724 return performClampCombine(N, DCI); 10725 case ISD::SCALAR_TO_VECTOR: { 10726 SelectionDAG &DAG = DCI.DAG; 10727 EVT VT = N->getValueType(0); 10728 10729 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 10730 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 10731 SDLoc SL(N); 10732 SDValue Src = N->getOperand(0); 10733 EVT EltVT = Src.getValueType(); 10734 if (EltVT == MVT::f16) 10735 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 10736 10737 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 10738 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 10739 } 10740 10741 break; 10742 } 10743 case ISD::EXTRACT_VECTOR_ELT: 10744 return performExtractVectorEltCombine(N, DCI); 10745 case ISD::INSERT_VECTOR_ELT: 10746 return performInsertVectorEltCombine(N, DCI); 10747 case ISD::LOAD: { 10748 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 10749 return Widended; 10750 LLVM_FALLTHROUGH; 10751 } 10752 default: { 10753 if (!DCI.isBeforeLegalize()) { 10754 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 10755 return performMemSDNodeCombine(MemNode, DCI); 10756 } 10757 10758 break; 10759 } 10760 } 10761 10762 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10763 } 10764 10765 /// Helper function for adjustWritemask 10766 static unsigned SubIdx2Lane(unsigned Idx) { 10767 switch (Idx) { 10768 default: return ~0u; 10769 case AMDGPU::sub0: return 0; 10770 case AMDGPU::sub1: return 1; 10771 case AMDGPU::sub2: return 2; 10772 case AMDGPU::sub3: return 3; 10773 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 10774 } 10775 } 10776 10777 /// Adjust the writemask of MIMG instructions 10778 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 10779 SelectionDAG &DAG) const { 10780 unsigned Opcode = Node->getMachineOpcode(); 10781 10782 // Subtract 1 because the vdata output is not a MachineSDNode operand. 10783 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 10784 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 10785 return Node; // not implemented for D16 10786 10787 SDNode *Users[5] = { nullptr }; 10788 unsigned Lane = 0; 10789 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 10790 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 10791 unsigned NewDmask = 0; 10792 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 10793 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 10794 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || 10795 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; 10796 unsigned TFCLane = 0; 10797 bool HasChain = Node->getNumValues() > 1; 10798 10799 if (OldDmask == 0) { 10800 // These are folded out, but on the chance it happens don't assert. 10801 return Node; 10802 } 10803 10804 unsigned OldBitsSet = countPopulation(OldDmask); 10805 // Work out which is the TFE/LWE lane if that is enabled. 10806 if (UsesTFC) { 10807 TFCLane = OldBitsSet; 10808 } 10809 10810 // Try to figure out the used register components 10811 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 10812 I != E; ++I) { 10813 10814 // Don't look at users of the chain. 10815 if (I.getUse().getResNo() != 0) 10816 continue; 10817 10818 // Abort if we can't understand the usage 10819 if (!I->isMachineOpcode() || 10820 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 10821 return Node; 10822 10823 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 10824 // Note that subregs are packed, i.e. Lane==0 is the first bit set 10825 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 10826 // set, etc. 10827 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 10828 if (Lane == ~0u) 10829 return Node; 10830 10831 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 10832 if (UsesTFC && Lane == TFCLane) { 10833 Users[Lane] = *I; 10834 } else { 10835 // Set which texture component corresponds to the lane. 10836 unsigned Comp; 10837 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 10838 Comp = countTrailingZeros(Dmask); 10839 Dmask &= ~(1 << Comp); 10840 } 10841 10842 // Abort if we have more than one user per component. 10843 if (Users[Lane]) 10844 return Node; 10845 10846 Users[Lane] = *I; 10847 NewDmask |= 1 << Comp; 10848 } 10849 } 10850 10851 // Don't allow 0 dmask, as hardware assumes one channel enabled. 10852 bool NoChannels = !NewDmask; 10853 if (NoChannels) { 10854 if (!UsesTFC) { 10855 // No uses of the result and not using TFC. Then do nothing. 10856 return Node; 10857 } 10858 // If the original dmask has one channel - then nothing to do 10859 if (OldBitsSet == 1) 10860 return Node; 10861 // Use an arbitrary dmask - required for the instruction to work 10862 NewDmask = 1; 10863 } 10864 // Abort if there's no change 10865 if (NewDmask == OldDmask) 10866 return Node; 10867 10868 unsigned BitsSet = countPopulation(NewDmask); 10869 10870 // Check for TFE or LWE - increase the number of channels by one to account 10871 // for the extra return value 10872 // This will need adjustment for D16 if this is also included in 10873 // adjustWriteMask (this function) but at present D16 are excluded. 10874 unsigned NewChannels = BitsSet + UsesTFC; 10875 10876 int NewOpcode = 10877 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 10878 assert(NewOpcode != -1 && 10879 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 10880 "failed to find equivalent MIMG op"); 10881 10882 // Adjust the writemask in the node 10883 SmallVector<SDValue, 12> Ops; 10884 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 10885 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 10886 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 10887 10888 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 10889 10890 MVT ResultVT = NewChannels == 1 ? 10891 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 10892 NewChannels == 5 ? 8 : NewChannels); 10893 SDVTList NewVTList = HasChain ? 10894 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 10895 10896 10897 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 10898 NewVTList, Ops); 10899 10900 if (HasChain) { 10901 // Update chain. 10902 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 10903 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 10904 } 10905 10906 if (NewChannels == 1) { 10907 assert(Node->hasNUsesOfValue(1, 0)); 10908 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 10909 SDLoc(Node), Users[Lane]->getValueType(0), 10910 SDValue(NewNode, 0)); 10911 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 10912 return nullptr; 10913 } 10914 10915 // Update the users of the node with the new indices 10916 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 10917 SDNode *User = Users[i]; 10918 if (!User) { 10919 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 10920 // Users[0] is still nullptr because channel 0 doesn't really have a use. 10921 if (i || !NoChannels) 10922 continue; 10923 } else { 10924 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 10925 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 10926 } 10927 10928 switch (Idx) { 10929 default: break; 10930 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 10931 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 10932 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 10933 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 10934 } 10935 } 10936 10937 DAG.RemoveDeadNode(Node); 10938 return nullptr; 10939 } 10940 10941 static bool isFrameIndexOp(SDValue Op) { 10942 if (Op.getOpcode() == ISD::AssertZext) 10943 Op = Op.getOperand(0); 10944 10945 return isa<FrameIndexSDNode>(Op); 10946 } 10947 10948 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 10949 /// with frame index operands. 10950 /// LLVM assumes that inputs are to these instructions are registers. 10951 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 10952 SelectionDAG &DAG) const { 10953 if (Node->getOpcode() == ISD::CopyToReg) { 10954 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 10955 SDValue SrcVal = Node->getOperand(2); 10956 10957 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 10958 // to try understanding copies to physical registers. 10959 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 10960 SDLoc SL(Node); 10961 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10962 SDValue VReg = DAG.getRegister( 10963 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 10964 10965 SDNode *Glued = Node->getGluedNode(); 10966 SDValue ToVReg 10967 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 10968 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 10969 SDValue ToResultReg 10970 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 10971 VReg, ToVReg.getValue(1)); 10972 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 10973 DAG.RemoveDeadNode(Node); 10974 return ToResultReg.getNode(); 10975 } 10976 } 10977 10978 SmallVector<SDValue, 8> Ops; 10979 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 10980 if (!isFrameIndexOp(Node->getOperand(i))) { 10981 Ops.push_back(Node->getOperand(i)); 10982 continue; 10983 } 10984 10985 SDLoc DL(Node); 10986 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 10987 Node->getOperand(i).getValueType(), 10988 Node->getOperand(i)), 0)); 10989 } 10990 10991 return DAG.UpdateNodeOperands(Node, Ops); 10992 } 10993 10994 /// Fold the instructions after selecting them. 10995 /// Returns null if users were already updated. 10996 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 10997 SelectionDAG &DAG) const { 10998 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10999 unsigned Opcode = Node->getMachineOpcode(); 11000 11001 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 11002 !TII->isGather4(Opcode) && 11003 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { 11004 return adjustWritemask(Node, DAG); 11005 } 11006 11007 if (Opcode == AMDGPU::INSERT_SUBREG || 11008 Opcode == AMDGPU::REG_SEQUENCE) { 11009 legalizeTargetIndependentNode(Node, DAG); 11010 return Node; 11011 } 11012 11013 switch (Opcode) { 11014 case AMDGPU::V_DIV_SCALE_F32_e64: 11015 case AMDGPU::V_DIV_SCALE_F64_e64: { 11016 // Satisfy the operand register constraint when one of the inputs is 11017 // undefined. Ordinarily each undef value will have its own implicit_def of 11018 // a vreg, so force these to use a single register. 11019 SDValue Src0 = Node->getOperand(1); 11020 SDValue Src1 = Node->getOperand(3); 11021 SDValue Src2 = Node->getOperand(5); 11022 11023 if ((Src0.isMachineOpcode() && 11024 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 11025 (Src0 == Src1 || Src0 == Src2)) 11026 break; 11027 11028 MVT VT = Src0.getValueType().getSimpleVT(); 11029 const TargetRegisterClass *RC = 11030 getRegClassFor(VT, Src0.getNode()->isDivergent()); 11031 11032 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11033 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 11034 11035 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 11036 UndefReg, Src0, SDValue()); 11037 11038 // src0 must be the same register as src1 or src2, even if the value is 11039 // undefined, so make sure we don't violate this constraint. 11040 if (Src0.isMachineOpcode() && 11041 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 11042 if (Src1.isMachineOpcode() && 11043 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11044 Src0 = Src1; 11045 else if (Src2.isMachineOpcode() && 11046 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11047 Src0 = Src2; 11048 else { 11049 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 11050 Src0 = UndefReg; 11051 Src1 = UndefReg; 11052 } 11053 } else 11054 break; 11055 11056 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 11057 Ops[1] = Src0; 11058 Ops[3] = Src1; 11059 Ops[5] = Src2; 11060 Ops.push_back(ImpDef.getValue(1)); 11061 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 11062 } 11063 default: 11064 break; 11065 } 11066 11067 return Node; 11068 } 11069 11070 /// Assign the register class depending on the number of 11071 /// bits set in the writemask 11072 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 11073 SDNode *Node) const { 11074 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11075 11076 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 11077 11078 if (TII->isVOP3(MI.getOpcode())) { 11079 // Make sure constant bus requirements are respected. 11080 TII->legalizeOperandsVOP3(MRI, MI); 11081 11082 // Prefer VGPRs over AGPRs in mAI instructions where possible. 11083 // This saves a chain-copy of registers and better ballance register 11084 // use between vgpr and agpr as agpr tuples tend to be big. 11085 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { 11086 unsigned Opc = MI.getOpcode(); 11087 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11088 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 11089 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 11090 if (I == -1) 11091 break; 11092 MachineOperand &Op = MI.getOperand(I); 11093 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && 11094 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || 11095 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg())) 11096 continue; 11097 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 11098 if (!Src || !Src->isCopy() || 11099 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 11100 continue; 11101 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 11102 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 11103 // All uses of agpr64 and agpr32 can also accept vgpr except for 11104 // v_accvgpr_read, but we do not produce agpr reads during selection, 11105 // so no use checks are needed. 11106 MRI.setRegClass(Op.getReg(), NewRC); 11107 } 11108 } 11109 11110 return; 11111 } 11112 11113 // Replace unused atomics with the no return version. 11114 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 11115 if (NoRetAtomicOp != -1) { 11116 if (!Node->hasAnyUseOfValue(0)) { 11117 int Glc1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 11118 AMDGPU::OpName::glc1); 11119 if (Glc1Idx != -1) 11120 MI.RemoveOperand(Glc1Idx); 11121 MI.RemoveOperand(0); 11122 MI.setDesc(TII->get(NoRetAtomicOp)); 11123 return; 11124 } 11125 11126 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 11127 // instruction, because the return type of these instructions is a vec2 of 11128 // the memory type, so it can be tied to the input operand. 11129 // This means these instructions always have a use, so we need to add a 11130 // special case to check if the atomic has only one extract_subreg use, 11131 // which itself has no uses. 11132 if ((Node->hasNUsesOfValue(1, 0) && 11133 Node->use_begin()->isMachineOpcode() && 11134 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 11135 !Node->use_begin()->hasAnyUseOfValue(0))) { 11136 Register Def = MI.getOperand(0).getReg(); 11137 11138 // Change this into a noret atomic. 11139 MI.setDesc(TII->get(NoRetAtomicOp)); 11140 MI.RemoveOperand(0); 11141 11142 // If we only remove the def operand from the atomic instruction, the 11143 // extract_subreg will be left with a use of a vreg without a def. 11144 // So we need to insert an implicit_def to avoid machine verifier 11145 // errors. 11146 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 11147 TII->get(AMDGPU::IMPLICIT_DEF), Def); 11148 } 11149 return; 11150 } 11151 } 11152 11153 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 11154 uint64_t Val) { 11155 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 11156 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 11157 } 11158 11159 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 11160 const SDLoc &DL, 11161 SDValue Ptr) const { 11162 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11163 11164 // Build the half of the subregister with the constants before building the 11165 // full 128-bit register. If we are building multiple resource descriptors, 11166 // this will allow CSEing of the 2-component register. 11167 const SDValue Ops0[] = { 11168 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 11169 buildSMovImm32(DAG, DL, 0), 11170 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11171 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 11172 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 11173 }; 11174 11175 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 11176 MVT::v2i32, Ops0), 0); 11177 11178 // Combine the constants and the pointer. 11179 const SDValue Ops1[] = { 11180 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11181 Ptr, 11182 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 11183 SubRegHi, 11184 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 11185 }; 11186 11187 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 11188 } 11189 11190 /// Return a resource descriptor with the 'Add TID' bit enabled 11191 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 11192 /// of the resource descriptor) to create an offset, which is added to 11193 /// the resource pointer. 11194 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 11195 SDValue Ptr, uint32_t RsrcDword1, 11196 uint64_t RsrcDword2And3) const { 11197 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 11198 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 11199 if (RsrcDword1) { 11200 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 11201 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 11202 0); 11203 } 11204 11205 SDValue DataLo = buildSMovImm32(DAG, DL, 11206 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 11207 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 11208 11209 const SDValue Ops[] = { 11210 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11211 PtrLo, 11212 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11213 PtrHi, 11214 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 11215 DataLo, 11216 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 11217 DataHi, 11218 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 11219 }; 11220 11221 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 11222 } 11223 11224 //===----------------------------------------------------------------------===// 11225 // SI Inline Assembly Support 11226 //===----------------------------------------------------------------------===// 11227 11228 std::pair<unsigned, const TargetRegisterClass *> 11229 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11230 StringRef Constraint, 11231 MVT VT) const { 11232 const TargetRegisterClass *RC = nullptr; 11233 if (Constraint.size() == 1) { 11234 const unsigned BitWidth = VT.getSizeInBits(); 11235 switch (Constraint[0]) { 11236 default: 11237 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11238 case 's': 11239 case 'r': 11240 switch (BitWidth) { 11241 case 16: 11242 RC = &AMDGPU::SReg_32RegClass; 11243 break; 11244 case 64: 11245 RC = &AMDGPU::SGPR_64RegClass; 11246 break; 11247 default: 11248 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 11249 if (!RC) 11250 return std::make_pair(0U, nullptr); 11251 break; 11252 } 11253 break; 11254 case 'v': 11255 switch (BitWidth) { 11256 case 16: 11257 RC = &AMDGPU::VGPR_32RegClass; 11258 break; 11259 default: 11260 RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth); 11261 if (!RC) 11262 return std::make_pair(0U, nullptr); 11263 break; 11264 } 11265 break; 11266 case 'a': 11267 if (!Subtarget->hasMAIInsts()) 11268 break; 11269 switch (BitWidth) { 11270 case 16: 11271 RC = &AMDGPU::AGPR_32RegClass; 11272 break; 11273 default: 11274 RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth); 11275 if (!RC) 11276 return std::make_pair(0U, nullptr); 11277 break; 11278 } 11279 break; 11280 } 11281 // We actually support i128, i16 and f16 as inline parameters 11282 // even if they are not reported as legal 11283 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 11284 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 11285 return std::make_pair(0U, RC); 11286 } 11287 11288 if (Constraint.size() > 1) { 11289 if (Constraint[1] == 'v') { 11290 RC = &AMDGPU::VGPR_32RegClass; 11291 } else if (Constraint[1] == 's') { 11292 RC = &AMDGPU::SGPR_32RegClass; 11293 } else if (Constraint[1] == 'a') { 11294 RC = &AMDGPU::AGPR_32RegClass; 11295 } 11296 11297 if (RC) { 11298 uint32_t Idx; 11299 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 11300 if (!Failed && Idx < RC->getNumRegs()) 11301 return std::make_pair(RC->getRegister(Idx), RC); 11302 } 11303 } 11304 11305 // FIXME: Returns VS_32 for physical SGPR constraints 11306 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11307 } 11308 11309 static bool isImmConstraint(StringRef Constraint) { 11310 if (Constraint.size() == 1) { 11311 switch (Constraint[0]) { 11312 default: break; 11313 case 'I': 11314 case 'J': 11315 case 'A': 11316 case 'B': 11317 case 'C': 11318 return true; 11319 } 11320 } else if (Constraint == "DA" || 11321 Constraint == "DB") { 11322 return true; 11323 } 11324 return false; 11325 } 11326 11327 SITargetLowering::ConstraintType 11328 SITargetLowering::getConstraintType(StringRef Constraint) const { 11329 if (Constraint.size() == 1) { 11330 switch (Constraint[0]) { 11331 default: break; 11332 case 's': 11333 case 'v': 11334 case 'a': 11335 return C_RegisterClass; 11336 } 11337 } 11338 if (isImmConstraint(Constraint)) { 11339 return C_Other; 11340 } 11341 return TargetLowering::getConstraintType(Constraint); 11342 } 11343 11344 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 11345 if (!AMDGPU::isInlinableIntLiteral(Val)) { 11346 Val = Val & maskTrailingOnes<uint64_t>(Size); 11347 } 11348 return Val; 11349 } 11350 11351 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11352 std::string &Constraint, 11353 std::vector<SDValue> &Ops, 11354 SelectionDAG &DAG) const { 11355 if (isImmConstraint(Constraint)) { 11356 uint64_t Val; 11357 if (getAsmOperandConstVal(Op, Val) && 11358 checkAsmConstraintVal(Op, Constraint, Val)) { 11359 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 11360 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 11361 } 11362 } else { 11363 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11364 } 11365 } 11366 11367 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 11368 unsigned Size = Op.getScalarValueSizeInBits(); 11369 if (Size > 64) 11370 return false; 11371 11372 if (Size == 16 && !Subtarget->has16BitInsts()) 11373 return false; 11374 11375 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 11376 Val = C->getSExtValue(); 11377 return true; 11378 } 11379 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 11380 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11381 return true; 11382 } 11383 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 11384 if (Size != 16 || Op.getNumOperands() != 2) 11385 return false; 11386 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 11387 return false; 11388 if (ConstantSDNode *C = V->getConstantSplatNode()) { 11389 Val = C->getSExtValue(); 11390 return true; 11391 } 11392 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 11393 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11394 return true; 11395 } 11396 } 11397 11398 return false; 11399 } 11400 11401 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 11402 const std::string &Constraint, 11403 uint64_t Val) const { 11404 if (Constraint.size() == 1) { 11405 switch (Constraint[0]) { 11406 case 'I': 11407 return AMDGPU::isInlinableIntLiteral(Val); 11408 case 'J': 11409 return isInt<16>(Val); 11410 case 'A': 11411 return checkAsmConstraintValA(Op, Val); 11412 case 'B': 11413 return isInt<32>(Val); 11414 case 'C': 11415 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 11416 AMDGPU::isInlinableIntLiteral(Val); 11417 default: 11418 break; 11419 } 11420 } else if (Constraint.size() == 2) { 11421 if (Constraint == "DA") { 11422 int64_t HiBits = static_cast<int32_t>(Val >> 32); 11423 int64_t LoBits = static_cast<int32_t>(Val); 11424 return checkAsmConstraintValA(Op, HiBits, 32) && 11425 checkAsmConstraintValA(Op, LoBits, 32); 11426 } 11427 if (Constraint == "DB") { 11428 return true; 11429 } 11430 } 11431 llvm_unreachable("Invalid asm constraint"); 11432 } 11433 11434 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 11435 uint64_t Val, 11436 unsigned MaxSize) const { 11437 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 11438 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 11439 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 11440 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 11441 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 11442 return true; 11443 } 11444 return false; 11445 } 11446 11447 // Figure out which registers should be reserved for stack access. Only after 11448 // the function is legalized do we know all of the non-spill stack objects or if 11449 // calls are present. 11450 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 11451 MachineRegisterInfo &MRI = MF.getRegInfo(); 11452 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11453 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 11454 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11455 11456 if (Info->isEntryFunction()) { 11457 // Callable functions have fixed registers used for stack access. 11458 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 11459 } 11460 11461 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 11462 Info->getStackPtrOffsetReg())); 11463 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 11464 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 11465 11466 // We need to worry about replacing the default register with itself in case 11467 // of MIR testcases missing the MFI. 11468 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 11469 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 11470 11471 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 11472 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 11473 11474 Info->limitOccupancy(MF); 11475 11476 if (ST.isWave32() && !MF.empty()) { 11477 const SIInstrInfo *TII = ST.getInstrInfo(); 11478 for (auto &MBB : MF) { 11479 for (auto &MI : MBB) { 11480 TII->fixImplicitOperands(MI); 11481 } 11482 } 11483 } 11484 11485 TargetLoweringBase::finalizeLowering(MF); 11486 11487 // Allocate a VGPR for future SGPR Spill if 11488 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used 11489 // FIXME: We won't need this hack if we split SGPR allocation from VGPR 11490 if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill && 11491 !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects()) 11492 Info->reserveVGPRforSGPRSpills(MF); 11493 } 11494 11495 void SITargetLowering::computeKnownBitsForFrameIndex( 11496 const int FI, KnownBits &Known, const MachineFunction &MF) const { 11497 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 11498 11499 // Set the high bits to zero based on the maximum allowed scratch size per 11500 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 11501 // calculation won't overflow, so assume the sign bit is never set. 11502 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 11503 } 11504 11505 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 11506 KnownBits &Known, unsigned Dim) { 11507 unsigned MaxValue = 11508 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 11509 Known.Zero.setHighBits(countLeadingZeros(MaxValue)); 11510 } 11511 11512 void SITargetLowering::computeKnownBitsForTargetInstr( 11513 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 11514 const MachineRegisterInfo &MRI, unsigned Depth) const { 11515 const MachineInstr *MI = MRI.getVRegDef(R); 11516 switch (MI->getOpcode()) { 11517 case AMDGPU::G_INTRINSIC: { 11518 switch (MI->getIntrinsicID()) { 11519 case Intrinsic::amdgcn_workitem_id_x: 11520 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 11521 break; 11522 case Intrinsic::amdgcn_workitem_id_y: 11523 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 11524 break; 11525 case Intrinsic::amdgcn_workitem_id_z: 11526 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 11527 break; 11528 case Intrinsic::amdgcn_mbcnt_lo: 11529 case Intrinsic::amdgcn_mbcnt_hi: { 11530 // These return at most the wavefront size - 1. 11531 unsigned Size = MRI.getType(R).getSizeInBits(); 11532 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 11533 break; 11534 } 11535 case Intrinsic::amdgcn_groupstaticsize: { 11536 // We can report everything over the maximum size as 0. We can't report 11537 // based on the actual size because we don't know if it's accurate or not 11538 // at any given point. 11539 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); 11540 break; 11541 } 11542 } 11543 break; 11544 } 11545 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 11546 Known.Zero.setHighBits(24); 11547 break; 11548 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 11549 Known.Zero.setHighBits(16); 11550 break; 11551 } 11552 } 11553 11554 Align SITargetLowering::computeKnownAlignForTargetInstr( 11555 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 11556 unsigned Depth) const { 11557 const MachineInstr *MI = MRI.getVRegDef(R); 11558 switch (MI->getOpcode()) { 11559 case AMDGPU::G_INTRINSIC: 11560 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 11561 // FIXME: Can this move to generic code? What about the case where the call 11562 // site specifies a lower alignment? 11563 Intrinsic::ID IID = MI->getIntrinsicID(); 11564 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 11565 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 11566 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 11567 return *RetAlign; 11568 return Align(1); 11569 } 11570 default: 11571 return Align(1); 11572 } 11573 } 11574 11575 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11576 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 11577 const Align CacheLineAlign = Align(64); 11578 11579 // Pre-GFX10 target did not benefit from loop alignment 11580 if (!ML || DisableLoopAlignment || 11581 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 11582 getSubtarget()->hasInstFwdPrefetchBug()) 11583 return PrefAlign; 11584 11585 // On GFX10 I$ is 4 x 64 bytes cache lines. 11586 // By default prefetcher keeps one cache line behind and reads two ahead. 11587 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 11588 // behind and one ahead. 11589 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 11590 // If loop fits 64 bytes it always spans no more than two cache lines and 11591 // does not need an alignment. 11592 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 11593 // Else if loop is less or equal 192 bytes we need two lines behind. 11594 11595 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11596 const MachineBasicBlock *Header = ML->getHeader(); 11597 if (Header->getAlignment() != PrefAlign) 11598 return Header->getAlignment(); // Already processed. 11599 11600 unsigned LoopSize = 0; 11601 for (const MachineBasicBlock *MBB : ML->blocks()) { 11602 // If inner loop block is aligned assume in average half of the alignment 11603 // size to be added as nops. 11604 if (MBB != Header) 11605 LoopSize += MBB->getAlignment().value() / 2; 11606 11607 for (const MachineInstr &MI : *MBB) { 11608 LoopSize += TII->getInstSizeInBytes(MI); 11609 if (LoopSize > 192) 11610 return PrefAlign; 11611 } 11612 } 11613 11614 if (LoopSize <= 64) 11615 return PrefAlign; 11616 11617 if (LoopSize <= 128) 11618 return CacheLineAlign; 11619 11620 // If any of parent loops is surrounded by prefetch instructions do not 11621 // insert new for inner loop, which would reset parent's settings. 11622 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 11623 if (MachineBasicBlock *Exit = P->getExitBlock()) { 11624 auto I = Exit->getFirstNonDebugInstr(); 11625 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 11626 return CacheLineAlign; 11627 } 11628 } 11629 11630 MachineBasicBlock *Pre = ML->getLoopPreheader(); 11631 MachineBasicBlock *Exit = ML->getExitBlock(); 11632 11633 if (Pre && Exit) { 11634 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 11635 TII->get(AMDGPU::S_INST_PREFETCH)) 11636 .addImm(1); // prefetch 2 lines behind PC 11637 11638 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 11639 TII->get(AMDGPU::S_INST_PREFETCH)) 11640 .addImm(2); // prefetch 1 line behind PC 11641 } 11642 11643 return CacheLineAlign; 11644 } 11645 11646 LLVM_ATTRIBUTE_UNUSED 11647 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 11648 assert(N->getOpcode() == ISD::CopyFromReg); 11649 do { 11650 // Follow the chain until we find an INLINEASM node. 11651 N = N->getOperand(0).getNode(); 11652 if (N->getOpcode() == ISD::INLINEASM || 11653 N->getOpcode() == ISD::INLINEASM_BR) 11654 return true; 11655 } while (N->getOpcode() == ISD::CopyFromReg); 11656 return false; 11657 } 11658 11659 bool SITargetLowering::isSDNodeSourceOfDivergence( 11660 const SDNode *N, FunctionLoweringInfo *FLI, 11661 LegacyDivergenceAnalysis *KDA) const { 11662 switch (N->getOpcode()) { 11663 case ISD::CopyFromReg: { 11664 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 11665 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 11666 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11667 Register Reg = R->getReg(); 11668 11669 // FIXME: Why does this need to consider isLiveIn? 11670 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 11671 return !TRI->isSGPRReg(MRI, Reg); 11672 11673 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 11674 return KDA->isDivergent(V); 11675 11676 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 11677 return !TRI->isSGPRReg(MRI, Reg); 11678 } 11679 case ISD::LOAD: { 11680 const LoadSDNode *L = cast<LoadSDNode>(N); 11681 unsigned AS = L->getAddressSpace(); 11682 // A flat load may access private memory. 11683 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 11684 } 11685 case ISD::CALLSEQ_END: 11686 return true; 11687 case ISD::INTRINSIC_WO_CHAIN: 11688 return AMDGPU::isIntrinsicSourceOfDivergence( 11689 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 11690 case ISD::INTRINSIC_W_CHAIN: 11691 return AMDGPU::isIntrinsicSourceOfDivergence( 11692 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 11693 } 11694 return false; 11695 } 11696 11697 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 11698 EVT VT) const { 11699 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 11700 case MVT::f32: 11701 return hasFP32Denormals(DAG.getMachineFunction()); 11702 case MVT::f64: 11703 case MVT::f16: 11704 return hasFP64FP16Denormals(DAG.getMachineFunction()); 11705 default: 11706 return false; 11707 } 11708 } 11709 11710 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 11711 const SelectionDAG &DAG, 11712 bool SNaN, 11713 unsigned Depth) const { 11714 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 11715 const MachineFunction &MF = DAG.getMachineFunction(); 11716 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11717 11718 if (Info->getMode().DX10Clamp) 11719 return true; // Clamped to 0. 11720 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 11721 } 11722 11723 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 11724 SNaN, Depth); 11725 } 11726 11727 // Global FP atomic instructions have a hardcoded FP mode and do not support 11728 // FP32 denormals, and only support v2f16 denormals. 11729 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 11730 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 11731 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 11732 if (&Flt == &APFloat::IEEEsingle()) 11733 return DenormMode == DenormalMode::getPreserveSign(); 11734 return DenormMode == DenormalMode::getIEEE(); 11735 } 11736 11737 TargetLowering::AtomicExpansionKind 11738 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 11739 switch (RMW->getOperation()) { 11740 case AtomicRMWInst::FAdd: { 11741 Type *Ty = RMW->getType(); 11742 11743 // We don't have a way to support 16-bit atomics now, so just leave them 11744 // as-is. 11745 if (Ty->isHalfTy()) 11746 return AtomicExpansionKind::None; 11747 11748 if (!Ty->isFloatTy()) 11749 return AtomicExpansionKind::CmpXChg; 11750 11751 // TODO: Do have these for flat. Older targets also had them for buffers. 11752 unsigned AS = RMW->getPointerAddressSpace(); 11753 11754 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) { 11755 if (!fpModeMatchesGlobalFPAtomicMode(RMW)) 11756 return AtomicExpansionKind::CmpXChg; 11757 11758 return RMW->use_empty() ? AtomicExpansionKind::None : 11759 AtomicExpansionKind::CmpXChg; 11760 } 11761 11762 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed 11763 // to round-to-nearest-even. 11764 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? 11765 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; 11766 } 11767 default: 11768 break; 11769 } 11770 11771 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 11772 } 11773 11774 const TargetRegisterClass * 11775 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 11776 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 11777 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11778 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 11779 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 11780 : &AMDGPU::SReg_32RegClass; 11781 if (!TRI->isSGPRClass(RC) && !isDivergent) 11782 return TRI->getEquivalentSGPRClass(RC); 11783 else if (TRI->isSGPRClass(RC) && isDivergent) 11784 return TRI->getEquivalentVGPRClass(RC); 11785 11786 return RC; 11787 } 11788 11789 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 11790 // uniform values (as produced by the mask results of control flow intrinsics) 11791 // used outside of divergent blocks. The phi users need to also be treated as 11792 // always uniform. 11793 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 11794 unsigned WaveSize) { 11795 // FIXME: We asssume we never cast the mask results of a control flow 11796 // intrinsic. 11797 // Early exit if the type won't be consistent as a compile time hack. 11798 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 11799 if (!IT || IT->getBitWidth() != WaveSize) 11800 return false; 11801 11802 if (!isa<Instruction>(V)) 11803 return false; 11804 if (!Visited.insert(V).second) 11805 return false; 11806 bool Result = false; 11807 for (auto U : V->users()) { 11808 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 11809 if (V == U->getOperand(1)) { 11810 switch (Intrinsic->getIntrinsicID()) { 11811 default: 11812 Result = false; 11813 break; 11814 case Intrinsic::amdgcn_if_break: 11815 case Intrinsic::amdgcn_if: 11816 case Intrinsic::amdgcn_else: 11817 Result = true; 11818 break; 11819 } 11820 } 11821 if (V == U->getOperand(0)) { 11822 switch (Intrinsic->getIntrinsicID()) { 11823 default: 11824 Result = false; 11825 break; 11826 case Intrinsic::amdgcn_end_cf: 11827 case Intrinsic::amdgcn_loop: 11828 Result = true; 11829 break; 11830 } 11831 } 11832 } else { 11833 Result = hasCFUser(U, Visited, WaveSize); 11834 } 11835 if (Result) 11836 break; 11837 } 11838 return Result; 11839 } 11840 11841 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 11842 const Value *V) const { 11843 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 11844 if (CI->isInlineAsm()) { 11845 // FIXME: This cannot give a correct answer. This should only trigger in 11846 // the case where inline asm returns mixed SGPR and VGPR results, used 11847 // outside the defining block. We don't have a specific result to 11848 // consider, so this assumes if any value is SGPR, the overall register 11849 // also needs to be SGPR. 11850 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 11851 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 11852 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 11853 for (auto &TC : TargetConstraints) { 11854 if (TC.Type == InlineAsm::isOutput) { 11855 ComputeConstraintToUse(TC, SDValue()); 11856 unsigned AssignedReg; 11857 const TargetRegisterClass *RC; 11858 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint( 11859 SIRI, TC.ConstraintCode, TC.ConstraintVT); 11860 if (RC) { 11861 MachineRegisterInfo &MRI = MF.getRegInfo(); 11862 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg)) 11863 return true; 11864 else if (SIRI->isSGPRClass(RC)) 11865 return true; 11866 } 11867 } 11868 } 11869 } 11870 } 11871 SmallPtrSet<const Value *, 16> Visited; 11872 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 11873 } 11874 11875 std::pair<int, MVT> 11876 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 11877 Type *Ty) const { 11878 auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 11879 auto Size = DL.getTypeSizeInBits(Ty); 11880 // Maximum load or store can handle 8 dwords for scalar and 4 for 11881 // vector ALU. Let's assume anything above 8 dwords is expensive 11882 // even if legal. 11883 if (Size <= 256) 11884 return Cost; 11885 11886 Cost.first = (Size + 255) / 256; 11887 return Cost; 11888 } 11889