xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/IntrinsicsAMDGPU.h"
28 #include "llvm/IR/IntrinsicsR600.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "si-lower"
35 
36 STATISTIC(NumTailCalls, "Number of tail calls");
37 
38 static cl::opt<bool> DisableLoopAlignment(
39   "amdgpu-disable-loop-alignment",
40   cl::desc("Do not align and prefetch loops"),
41   cl::init(false));
42 
43 static cl::opt<bool> VGPRReserveforSGPRSpill(
44     "amdgpu-reserve-vgpr-for-sgpr-spill",
45     cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
46 
47 static cl::opt<bool> UseDivergentRegisterIndexing(
48   "amdgpu-use-divergent-register-indexing",
49   cl::Hidden,
50   cl::desc("Use indirect register addressing for divergent indexes"),
51   cl::init(false));
52 
53 static bool hasFP32Denormals(const MachineFunction &MF) {
54   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
55   return Info->getMode().allFP32Denormals();
56 }
57 
58 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
59   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
60   return Info->getMode().allFP64FP16Denormals();
61 }
62 
63 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
64   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
65   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
66     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
67       return AMDGPU::SGPR0 + Reg;
68     }
69   }
70   llvm_unreachable("Cannot allocate sgpr");
71 }
72 
73 SITargetLowering::SITargetLowering(const TargetMachine &TM,
74                                    const GCNSubtarget &STI)
75     : AMDGPUTargetLowering(TM, STI),
76       Subtarget(&STI) {
77   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
78   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
79 
80   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
81   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
82 
83   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
84   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
85   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
86 
87   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
88   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
89 
90   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
91   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
92 
93   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
94   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
95 
96   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
97   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
98 
99   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
100   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
101 
102   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
103   addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass);
104 
105   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
106   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
107 
108   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
109   addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass);
110 
111   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
112   addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass);
113 
114   if (Subtarget->has16BitInsts()) {
115     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
116     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
117 
118     // Unless there are also VOP3P operations, not operations are really legal.
119     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
120     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
121     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
122     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
123   }
124 
125   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
126   addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
127 
128   computeRegisterProperties(Subtarget->getRegisterInfo());
129 
130   // The boolean content concept here is too inflexible. Compares only ever
131   // really produce a 1-bit result. Any copy/extend from these will turn into a
132   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
133   // it's what most targets use.
134   setBooleanContents(ZeroOrOneBooleanContent);
135   setBooleanVectorContents(ZeroOrOneBooleanContent);
136 
137   // We need to custom lower vector stores from local memory
138   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
139   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
140   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
141   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
142   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
143   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
144   setOperationAction(ISD::LOAD, MVT::i1, Custom);
145   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
146 
147   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
148   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
149   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
150   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
151   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
152   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
153   setOperationAction(ISD::STORE, MVT::i1, Custom);
154   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
155 
156   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
157   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
158   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
159   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
160   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
161   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
162   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
163   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
164   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
165   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
166   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
167   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
168   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
169   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
170   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
171   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
172 
173   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
174   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
175   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
176   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
177   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
178 
179   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
181 
182   setOperationAction(ISD::SELECT, MVT::i1, Promote);
183   setOperationAction(ISD::SELECT, MVT::i64, Custom);
184   setOperationAction(ISD::SELECT, MVT::f64, Promote);
185   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
186 
187   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
188   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
189   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
190   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
191   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
192 
193   setOperationAction(ISD::SETCC, MVT::i1, Promote);
194   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
195   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
196   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
197 
198   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
199   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
200   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
201   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
202   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
203   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
204   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
205   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
206 
207   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
208   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
209   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
210   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
211   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
212   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
213   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
214   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
215 
216   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
217   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
218   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
219   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
220   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
221   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
222 
223   setOperationAction(ISD::UADDO, MVT::i32, Legal);
224   setOperationAction(ISD::USUBO, MVT::i32, Legal);
225 
226   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
227   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
228 
229   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
230   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
231   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
232 
233 #if 0
234   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
235   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
236 #endif
237 
238   // We only support LOAD/STORE and vector manipulation ops for vectors
239   // with > 4 elements.
240   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
241                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
242                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
243                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
244     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
245       switch (Op) {
246       case ISD::LOAD:
247       case ISD::STORE:
248       case ISD::BUILD_VECTOR:
249       case ISD::BITCAST:
250       case ISD::EXTRACT_VECTOR_ELT:
251       case ISD::INSERT_VECTOR_ELT:
252       case ISD::INSERT_SUBVECTOR:
253       case ISD::EXTRACT_SUBVECTOR:
254       case ISD::SCALAR_TO_VECTOR:
255         break;
256       case ISD::CONCAT_VECTORS:
257         setOperationAction(Op, VT, Custom);
258         break;
259       default:
260         setOperationAction(Op, VT, Expand);
261         break;
262       }
263     }
264   }
265 
266   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
267 
268   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
269   // is expanded to avoid having two separate loops in case the index is a VGPR.
270 
271   // Most operations are naturally 32-bit vector operations. We only support
272   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
273   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
274     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
275     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
276 
277     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
278     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
279 
280     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
281     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
282 
283     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
284     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
285   }
286 
287   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
288     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
289     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
290 
291     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
292     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
293 
294     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
295     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
296 
297     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
298     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
299   }
300 
301   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
302     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
303     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
304 
305     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
306     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
307 
308     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
309     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
310 
311     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
312     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
313   }
314 
315   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
316     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
317     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
318 
319     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
320     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
321 
322     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
323     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
324 
325     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
326     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
327   }
328 
329   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
330   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
331   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
332   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
333 
334   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
335   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
336 
337   // Avoid stack access for these.
338   // TODO: Generalize to more vector types.
339   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
340   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
341   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
342   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
343 
344   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
345   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
346   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
347   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
348   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
349 
350   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
351   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
352   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
353 
354   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
355   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
356   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
357   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
358 
359   // Deal with vec3 vector operations when widened to vec4.
360   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
361   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
362   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
363   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
364 
365   // Deal with vec5 vector operations when widened to vec8.
366   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
367   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
368   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
369   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
370 
371   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
372   // and output demarshalling
373   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
374   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
375 
376   // We can't return success/failure, only the old value,
377   // let LLVM add the comparison
378   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
379   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
380 
381   if (Subtarget->hasFlatAddressSpace()) {
382     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
383     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
384   }
385 
386   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
387 
388   // FIXME: This should be narrowed to i32, but that only happens if i64 is
389   // illegal.
390   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
391   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
392   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
393 
394   // On SI this is s_memtime and s_memrealtime on VI.
395   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
396   setOperationAction(ISD::TRAP, MVT::Other, Custom);
397   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
398 
399   if (Subtarget->has16BitInsts()) {
400     setOperationAction(ISD::FPOW, MVT::f16, Promote);
401     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
402     setOperationAction(ISD::FLOG, MVT::f16, Custom);
403     setOperationAction(ISD::FEXP, MVT::f16, Custom);
404     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
405   }
406 
407   if (Subtarget->hasMadMacF32Insts())
408     setOperationAction(ISD::FMAD, MVT::f32, Legal);
409 
410   if (!Subtarget->hasBFI()) {
411     // fcopysign can be done in a single instruction with BFI.
412     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
413     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
414   }
415 
416   if (!Subtarget->hasBCNT(32))
417     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
418 
419   if (!Subtarget->hasBCNT(64))
420     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
421 
422   if (Subtarget->hasFFBH())
423     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
424 
425   if (Subtarget->hasFFBL())
426     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
427 
428   // We only really have 32-bit BFE instructions (and 16-bit on VI).
429   //
430   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
431   // effort to match them now. We want this to be false for i64 cases when the
432   // extraction isn't restricted to the upper or lower half. Ideally we would
433   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
434   // span the midpoint are probably relatively rare, so don't worry about them
435   // for now.
436   if (Subtarget->hasBFE())
437     setHasExtractBitsInsn(true);
438 
439   // Clamp modifier on add/sub
440   if (Subtarget->hasIntClamp()) {
441     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
442     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
443   }
444 
445   if (Subtarget->hasAddNoCarry()) {
446     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
447     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
448     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
449     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
450   }
451 
452   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
453   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
454   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
455   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
456 
457 
458   // These are really only legal for ieee_mode functions. We should be avoiding
459   // them for functions that don't have ieee_mode enabled, so just say they are
460   // legal.
461   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
462   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
463   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
464   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
465 
466 
467   if (Subtarget->haveRoundOpsF64()) {
468     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
469     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
470     setOperationAction(ISD::FRINT, MVT::f64, Legal);
471   } else {
472     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
473     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
474     setOperationAction(ISD::FRINT, MVT::f64, Custom);
475     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
476   }
477 
478   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
479 
480   setOperationAction(ISD::FSIN, MVT::f32, Custom);
481   setOperationAction(ISD::FCOS, MVT::f32, Custom);
482   setOperationAction(ISD::FDIV, MVT::f32, Custom);
483   setOperationAction(ISD::FDIV, MVT::f64, Custom);
484 
485   if (Subtarget->has16BitInsts()) {
486     setOperationAction(ISD::Constant, MVT::i16, Legal);
487 
488     setOperationAction(ISD::SMIN, MVT::i16, Legal);
489     setOperationAction(ISD::SMAX, MVT::i16, Legal);
490 
491     setOperationAction(ISD::UMIN, MVT::i16, Legal);
492     setOperationAction(ISD::UMAX, MVT::i16, Legal);
493 
494     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
495     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
496 
497     setOperationAction(ISD::ROTR, MVT::i16, Expand);
498     setOperationAction(ISD::ROTL, MVT::i16, Expand);
499 
500     setOperationAction(ISD::SDIV, MVT::i16, Promote);
501     setOperationAction(ISD::UDIV, MVT::i16, Promote);
502     setOperationAction(ISD::SREM, MVT::i16, Promote);
503     setOperationAction(ISD::UREM, MVT::i16, Promote);
504     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
505     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
506 
507     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
508 
509     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
510     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
511     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
512     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
513     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
514 
515     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
516 
517     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
518 
519     setOperationAction(ISD::LOAD, MVT::i16, Custom);
520 
521     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
522 
523     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
524     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
525     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
526     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
527 
528     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
529     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
530 
531     // F16 - Constant Actions.
532     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
533 
534     // F16 - Load/Store Actions.
535     setOperationAction(ISD::LOAD, MVT::f16, Promote);
536     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
537     setOperationAction(ISD::STORE, MVT::f16, Promote);
538     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
539 
540     // F16 - VOP1 Actions.
541     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
542     setOperationAction(ISD::FCOS, MVT::f16, Custom);
543     setOperationAction(ISD::FSIN, MVT::f16, Custom);
544 
545     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
546     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
547 
548     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
549     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
550     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
551     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
552     setOperationAction(ISD::FROUND, MVT::f16, Custom);
553 
554     // F16 - VOP2 Actions.
555     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
556     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
557 
558     setOperationAction(ISD::FDIV, MVT::f16, Custom);
559 
560     // F16 - VOP3 Actions.
561     setOperationAction(ISD::FMA, MVT::f16, Legal);
562     if (STI.hasMadF16())
563       setOperationAction(ISD::FMAD, MVT::f16, Legal);
564 
565     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
566       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
567         switch (Op) {
568         case ISD::LOAD:
569         case ISD::STORE:
570         case ISD::BUILD_VECTOR:
571         case ISD::BITCAST:
572         case ISD::EXTRACT_VECTOR_ELT:
573         case ISD::INSERT_VECTOR_ELT:
574         case ISD::INSERT_SUBVECTOR:
575         case ISD::EXTRACT_SUBVECTOR:
576         case ISD::SCALAR_TO_VECTOR:
577           break;
578         case ISD::CONCAT_VECTORS:
579           setOperationAction(Op, VT, Custom);
580           break;
581         default:
582           setOperationAction(Op, VT, Expand);
583           break;
584         }
585       }
586     }
587 
588     // v_perm_b32 can handle either of these.
589     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
590     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
591     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
592 
593     // XXX - Do these do anything? Vector constants turn into build_vector.
594     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
595     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
596 
597     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
598     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
599 
600     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
601     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
602     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
603     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
604 
605     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
606     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
607     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
608     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
609 
610     setOperationAction(ISD::AND, MVT::v2i16, Promote);
611     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
612     setOperationAction(ISD::OR, MVT::v2i16, Promote);
613     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
614     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
615     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
616 
617     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
618     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
619     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
620     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
621 
622     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
623     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
624     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
625     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
626 
627     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
628     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
629     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
630     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
631 
632     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
633     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
634     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
635 
636     if (!Subtarget->hasVOP3PInsts()) {
637       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
638       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
639     }
640 
641     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
642     // This isn't really legal, but this avoids the legalizer unrolling it (and
643     // allows matching fneg (fabs x) patterns)
644     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
645 
646     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
647     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
648     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
649     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
650 
651     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
652     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
653 
654     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
655     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
656   }
657 
658   if (Subtarget->hasVOP3PInsts()) {
659     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
660     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
661     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
662     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
663     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
664     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
665     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
666     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
667     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
668     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
669 
670     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
671     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
672     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
673     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
674 
675     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
676     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
677     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
678 
679     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
680     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
681 
682     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
683 
684     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
685     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
686 
687     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
688     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
689 
690     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
691     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
692     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
693     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
694     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
695     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
696 
697     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
698     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
699     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
700     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
701 
702     setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
703     setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
704     setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
705     setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
706 
707     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
708     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
709     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
710 
711     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
712     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
713 
714     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
715     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
716     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
717 
718     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
719     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
720     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
721   }
722 
723   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
724   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
725 
726   if (Subtarget->has16BitInsts()) {
727     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
728     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
729     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
730     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
731   } else {
732     // Legalization hack.
733     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
734     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
735 
736     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
737     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
738   }
739 
740   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
741     setOperationAction(ISD::SELECT, VT, Custom);
742   }
743 
744   setOperationAction(ISD::SMULO, MVT::i64, Custom);
745   setOperationAction(ISD::UMULO, MVT::i64, Custom);
746 
747   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
748   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
749   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
750   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
751   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
752   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
753   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
754 
755   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
756   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
757   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
758   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
759   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
760   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
761   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
762   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
763   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
764   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
765   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
766 
767   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
768   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
769   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
770   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
771   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
772   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
773   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
774   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
775   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
776   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
777 
778   setTargetDAGCombine(ISD::ADD);
779   setTargetDAGCombine(ISD::ADDCARRY);
780   setTargetDAGCombine(ISD::SUB);
781   setTargetDAGCombine(ISD::SUBCARRY);
782   setTargetDAGCombine(ISD::FADD);
783   setTargetDAGCombine(ISD::FSUB);
784   setTargetDAGCombine(ISD::FMINNUM);
785   setTargetDAGCombine(ISD::FMAXNUM);
786   setTargetDAGCombine(ISD::FMINNUM_IEEE);
787   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
788   setTargetDAGCombine(ISD::FMA);
789   setTargetDAGCombine(ISD::SMIN);
790   setTargetDAGCombine(ISD::SMAX);
791   setTargetDAGCombine(ISD::UMIN);
792   setTargetDAGCombine(ISD::UMAX);
793   setTargetDAGCombine(ISD::SETCC);
794   setTargetDAGCombine(ISD::AND);
795   setTargetDAGCombine(ISD::OR);
796   setTargetDAGCombine(ISD::XOR);
797   setTargetDAGCombine(ISD::SINT_TO_FP);
798   setTargetDAGCombine(ISD::UINT_TO_FP);
799   setTargetDAGCombine(ISD::FCANONICALIZE);
800   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
801   setTargetDAGCombine(ISD::ZERO_EXTEND);
802   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
803   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
804   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
805 
806   // All memory operations. Some folding on the pointer operand is done to help
807   // matching the constant offsets in the addressing modes.
808   setTargetDAGCombine(ISD::LOAD);
809   setTargetDAGCombine(ISD::STORE);
810   setTargetDAGCombine(ISD::ATOMIC_LOAD);
811   setTargetDAGCombine(ISD::ATOMIC_STORE);
812   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
813   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
814   setTargetDAGCombine(ISD::ATOMIC_SWAP);
815   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
816   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
817   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
818   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
819   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
820   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
821   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
822   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
823   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
824   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
825   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
826   setTargetDAGCombine(ISD::INTRINSIC_VOID);
827   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
828 
829   // FIXME: In other contexts we pretend this is a per-function property.
830   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
831 
832   setSchedulingPreference(Sched::RegPressure);
833 }
834 
835 const GCNSubtarget *SITargetLowering::getSubtarget() const {
836   return Subtarget;
837 }
838 
839 //===----------------------------------------------------------------------===//
840 // TargetLowering queries
841 //===----------------------------------------------------------------------===//
842 
843 // v_mad_mix* support a conversion from f16 to f32.
844 //
845 // There is only one special case when denormals are enabled we don't currently,
846 // where this is OK to use.
847 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
848                                        EVT DestVT, EVT SrcVT) const {
849   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
850           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
851     DestVT.getScalarType() == MVT::f32 &&
852     SrcVT.getScalarType() == MVT::f16 &&
853     // TODO: This probably only requires no input flushing?
854     !hasFP32Denormals(DAG.getMachineFunction());
855 }
856 
857 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
858   // SI has some legal vector types, but no legal vector operations. Say no
859   // shuffles are legal in order to prefer scalarizing some vector operations.
860   return false;
861 }
862 
863 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
864                                                     CallingConv::ID CC,
865                                                     EVT VT) const {
866   if (CC == CallingConv::AMDGPU_KERNEL)
867     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
868 
869   if (VT.isVector()) {
870     EVT ScalarVT = VT.getScalarType();
871     unsigned Size = ScalarVT.getSizeInBits();
872     if (Size == 16) {
873       if (Subtarget->has16BitInsts())
874         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
875       return VT.isInteger() ? MVT::i32 : MVT::f32;
876     }
877 
878     if (Size < 16)
879       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
880     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
881   }
882 
883   if (VT.getSizeInBits() > 32)
884     return MVT::i32;
885 
886   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
887 }
888 
889 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
890                                                          CallingConv::ID CC,
891                                                          EVT VT) const {
892   if (CC == CallingConv::AMDGPU_KERNEL)
893     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
894 
895   if (VT.isVector()) {
896     unsigned NumElts = VT.getVectorNumElements();
897     EVT ScalarVT = VT.getScalarType();
898     unsigned Size = ScalarVT.getSizeInBits();
899 
900     // FIXME: Should probably promote 8-bit vectors to i16.
901     if (Size == 16 && Subtarget->has16BitInsts())
902       return (NumElts + 1) / 2;
903 
904     if (Size <= 32)
905       return NumElts;
906 
907     if (Size > 32)
908       return NumElts * ((Size + 31) / 32);
909   } else if (VT.getSizeInBits() > 32)
910     return (VT.getSizeInBits() + 31) / 32;
911 
912   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
913 }
914 
915 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
916   LLVMContext &Context, CallingConv::ID CC,
917   EVT VT, EVT &IntermediateVT,
918   unsigned &NumIntermediates, MVT &RegisterVT) const {
919   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
920     unsigned NumElts = VT.getVectorNumElements();
921     EVT ScalarVT = VT.getScalarType();
922     unsigned Size = ScalarVT.getSizeInBits();
923     // FIXME: We should fix the ABI to be the same on targets without 16-bit
924     // support, but unless we can properly handle 3-vectors, it will be still be
925     // inconsistent.
926     if (Size == 16 && Subtarget->has16BitInsts()) {
927       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
928       IntermediateVT = RegisterVT;
929       NumIntermediates = (NumElts + 1) / 2;
930       return NumIntermediates;
931     }
932 
933     if (Size == 32) {
934       RegisterVT = ScalarVT.getSimpleVT();
935       IntermediateVT = RegisterVT;
936       NumIntermediates = NumElts;
937       return NumIntermediates;
938     }
939 
940     if (Size < 16 && Subtarget->has16BitInsts()) {
941       // FIXME: Should probably form v2i16 pieces
942       RegisterVT = MVT::i16;
943       IntermediateVT = ScalarVT;
944       NumIntermediates = NumElts;
945       return NumIntermediates;
946     }
947 
948 
949     if (Size != 16 && Size <= 32) {
950       RegisterVT = MVT::i32;
951       IntermediateVT = ScalarVT;
952       NumIntermediates = NumElts;
953       return NumIntermediates;
954     }
955 
956     if (Size > 32) {
957       RegisterVT = MVT::i32;
958       IntermediateVT = RegisterVT;
959       NumIntermediates = NumElts * ((Size + 31) / 32);
960       return NumIntermediates;
961     }
962   }
963 
964   return TargetLowering::getVectorTypeBreakdownForCallingConv(
965     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
966 }
967 
968 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
969   assert(DMaskLanes != 0);
970 
971   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
972     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
973     return EVT::getVectorVT(Ty->getContext(),
974                             EVT::getEVT(VT->getElementType()),
975                             NumElts);
976   }
977 
978   return EVT::getEVT(Ty);
979 }
980 
981 // Peek through TFE struct returns to only use the data size.
982 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
983   auto *ST = dyn_cast<StructType>(Ty);
984   if (!ST)
985     return memVTFromImageData(Ty, DMaskLanes);
986 
987   // Some intrinsics return an aggregate type - special case to work out the
988   // correct memVT.
989   //
990   // Only limited forms of aggregate type currently expected.
991   if (ST->getNumContainedTypes() != 2 ||
992       !ST->getContainedType(1)->isIntegerTy(32))
993     return EVT();
994   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
995 }
996 
997 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
998                                           const CallInst &CI,
999                                           MachineFunction &MF,
1000                                           unsigned IntrID) const {
1001   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1002           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1003     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1004                                                   (Intrinsic::ID)IntrID);
1005     if (Attr.hasFnAttribute(Attribute::ReadNone))
1006       return false;
1007 
1008     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1009 
1010     if (RsrcIntr->IsImage) {
1011       Info.ptrVal =
1012           MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1013       Info.align.reset();
1014     } else {
1015       Info.ptrVal =
1016           MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1017     }
1018 
1019     Info.flags = MachineMemOperand::MODereferenceable;
1020     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1021       unsigned DMaskLanes = 4;
1022 
1023       if (RsrcIntr->IsImage) {
1024         const AMDGPU::ImageDimIntrinsicInfo *Intr
1025           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1026         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1027           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1028 
1029         if (!BaseOpcode->Gather4) {
1030           // If this isn't a gather, we may have excess loaded elements in the
1031           // IR type. Check the dmask for the real number of elements loaded.
1032           unsigned DMask
1033             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1034           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1035         }
1036 
1037         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1038       } else
1039         Info.memVT = EVT::getEVT(CI.getType());
1040 
1041       // FIXME: What does alignment mean for an image?
1042       Info.opc = ISD::INTRINSIC_W_CHAIN;
1043       Info.flags |= MachineMemOperand::MOLoad;
1044     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1045       Info.opc = ISD::INTRINSIC_VOID;
1046 
1047       Type *DataTy = CI.getArgOperand(0)->getType();
1048       if (RsrcIntr->IsImage) {
1049         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1050         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1051         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1052       } else
1053         Info.memVT = EVT::getEVT(DataTy);
1054 
1055       Info.flags |= MachineMemOperand::MOStore;
1056     } else {
1057       // Atomic
1058       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1059                                             ISD::INTRINSIC_W_CHAIN;
1060       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1061       Info.flags = MachineMemOperand::MOLoad |
1062                    MachineMemOperand::MOStore |
1063                    MachineMemOperand::MODereferenceable;
1064 
1065       // XXX - Should this be volatile without known ordering?
1066       Info.flags |= MachineMemOperand::MOVolatile;
1067     }
1068     return true;
1069   }
1070 
1071   switch (IntrID) {
1072   case Intrinsic::amdgcn_atomic_inc:
1073   case Intrinsic::amdgcn_atomic_dec:
1074   case Intrinsic::amdgcn_ds_ordered_add:
1075   case Intrinsic::amdgcn_ds_ordered_swap:
1076   case Intrinsic::amdgcn_ds_fadd:
1077   case Intrinsic::amdgcn_ds_fmin:
1078   case Intrinsic::amdgcn_ds_fmax: {
1079     Info.opc = ISD::INTRINSIC_W_CHAIN;
1080     Info.memVT = MVT::getVT(CI.getType());
1081     Info.ptrVal = CI.getOperand(0);
1082     Info.align.reset();
1083     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1084 
1085     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1086     if (!Vol->isZero())
1087       Info.flags |= MachineMemOperand::MOVolatile;
1088 
1089     return true;
1090   }
1091   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1092     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1093 
1094     Info.opc = ISD::INTRINSIC_W_CHAIN;
1095     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1096     Info.ptrVal =
1097         MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1098     Info.align.reset();
1099     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1100 
1101     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1102     if (!Vol || !Vol->isZero())
1103       Info.flags |= MachineMemOperand::MOVolatile;
1104 
1105     return true;
1106   }
1107   case Intrinsic::amdgcn_ds_append:
1108   case Intrinsic::amdgcn_ds_consume: {
1109     Info.opc = ISD::INTRINSIC_W_CHAIN;
1110     Info.memVT = MVT::getVT(CI.getType());
1111     Info.ptrVal = CI.getOperand(0);
1112     Info.align.reset();
1113     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1114 
1115     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1116     if (!Vol->isZero())
1117       Info.flags |= MachineMemOperand::MOVolatile;
1118 
1119     return true;
1120   }
1121   case Intrinsic::amdgcn_global_atomic_csub: {
1122     Info.opc = ISD::INTRINSIC_W_CHAIN;
1123     Info.memVT = MVT::getVT(CI.getType());
1124     Info.ptrVal = CI.getOperand(0);
1125     Info.align.reset();
1126     Info.flags = MachineMemOperand::MOLoad |
1127                  MachineMemOperand::MOStore |
1128                  MachineMemOperand::MOVolatile;
1129     return true;
1130   }
1131   case Intrinsic::amdgcn_global_atomic_fadd: {
1132     Info.opc = ISD::INTRINSIC_W_CHAIN;
1133     Info.memVT = MVT::getVT(CI.getType());
1134     Info.ptrVal = CI.getOperand(0);
1135     Info.align.reset();
1136     Info.flags = MachineMemOperand::MOLoad |
1137                  MachineMemOperand::MOStore |
1138                  MachineMemOperand::MODereferenceable |
1139                  MachineMemOperand::MOVolatile;
1140     return true;
1141   }
1142   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1143     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1144     Info.opc = ISD::INTRINSIC_W_CHAIN;
1145     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1146     Info.ptrVal =
1147         MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1148     Info.align.reset();
1149     Info.flags = MachineMemOperand::MOLoad |
1150                  MachineMemOperand::MODereferenceable;
1151     return true;
1152   }
1153   case Intrinsic::amdgcn_ds_gws_init:
1154   case Intrinsic::amdgcn_ds_gws_barrier:
1155   case Intrinsic::amdgcn_ds_gws_sema_v:
1156   case Intrinsic::amdgcn_ds_gws_sema_br:
1157   case Intrinsic::amdgcn_ds_gws_sema_p:
1158   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1159     Info.opc = ISD::INTRINSIC_VOID;
1160 
1161     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1162     Info.ptrVal =
1163         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1164 
1165     // This is an abstract access, but we need to specify a type and size.
1166     Info.memVT = MVT::i32;
1167     Info.size = 4;
1168     Info.align = Align(4);
1169 
1170     Info.flags = MachineMemOperand::MOStore;
1171     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1172       Info.flags = MachineMemOperand::MOLoad;
1173     return true;
1174   }
1175   default:
1176     return false;
1177   }
1178 }
1179 
1180 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1181                                             SmallVectorImpl<Value*> &Ops,
1182                                             Type *&AccessTy) const {
1183   switch (II->getIntrinsicID()) {
1184   case Intrinsic::amdgcn_atomic_inc:
1185   case Intrinsic::amdgcn_atomic_dec:
1186   case Intrinsic::amdgcn_ds_ordered_add:
1187   case Intrinsic::amdgcn_ds_ordered_swap:
1188   case Intrinsic::amdgcn_ds_append:
1189   case Intrinsic::amdgcn_ds_consume:
1190   case Intrinsic::amdgcn_ds_fadd:
1191   case Intrinsic::amdgcn_ds_fmin:
1192   case Intrinsic::amdgcn_ds_fmax:
1193   case Intrinsic::amdgcn_global_atomic_fadd:
1194   case Intrinsic::amdgcn_global_atomic_csub: {
1195     Value *Ptr = II->getArgOperand(0);
1196     AccessTy = II->getType();
1197     Ops.push_back(Ptr);
1198     return true;
1199   }
1200   default:
1201     return false;
1202   }
1203 }
1204 
1205 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1206   if (!Subtarget->hasFlatInstOffsets()) {
1207     // Flat instructions do not have offsets, and only have the register
1208     // address.
1209     return AM.BaseOffs == 0 && AM.Scale == 0;
1210   }
1211 
1212   return AM.Scale == 0 &&
1213          (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1214                                   AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1215                                   /*Signed=*/false));
1216 }
1217 
1218 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1219   if (Subtarget->hasFlatGlobalInsts())
1220     return AM.Scale == 0 &&
1221            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1222                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1223                                     /*Signed=*/true));
1224 
1225   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1226       // Assume the we will use FLAT for all global memory accesses
1227       // on VI.
1228       // FIXME: This assumption is currently wrong.  On VI we still use
1229       // MUBUF instructions for the r + i addressing mode.  As currently
1230       // implemented, the MUBUF instructions only work on buffer < 4GB.
1231       // It may be possible to support > 4GB buffers with MUBUF instructions,
1232       // by setting the stride value in the resource descriptor which would
1233       // increase the size limit to (stride * 4GB).  However, this is risky,
1234       // because it has never been validated.
1235     return isLegalFlatAddressingMode(AM);
1236   }
1237 
1238   return isLegalMUBUFAddressingMode(AM);
1239 }
1240 
1241 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1242   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1243   // additionally can do r + r + i with addr64. 32-bit has more addressing
1244   // mode options. Depending on the resource constant, it can also do
1245   // (i64 r0) + (i32 r1) * (i14 i).
1246   //
1247   // Private arrays end up using a scratch buffer most of the time, so also
1248   // assume those use MUBUF instructions. Scratch loads / stores are currently
1249   // implemented as mubuf instructions with offen bit set, so slightly
1250   // different than the normal addr64.
1251   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1252     return false;
1253 
1254   // FIXME: Since we can split immediate into soffset and immediate offset,
1255   // would it make sense to allow any immediate?
1256 
1257   switch (AM.Scale) {
1258   case 0: // r + i or just i, depending on HasBaseReg.
1259     return true;
1260   case 1:
1261     return true; // We have r + r or r + i.
1262   case 2:
1263     if (AM.HasBaseReg) {
1264       // Reject 2 * r + r.
1265       return false;
1266     }
1267 
1268     // Allow 2 * r as r + r
1269     // Or  2 * r + i is allowed as r + r + i.
1270     return true;
1271   default: // Don't allow n * r
1272     return false;
1273   }
1274 }
1275 
1276 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1277                                              const AddrMode &AM, Type *Ty,
1278                                              unsigned AS, Instruction *I) const {
1279   // No global is ever allowed as a base.
1280   if (AM.BaseGV)
1281     return false;
1282 
1283   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1284     return isLegalGlobalAddressingMode(AM);
1285 
1286   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1287       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1288       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1289     // If the offset isn't a multiple of 4, it probably isn't going to be
1290     // correctly aligned.
1291     // FIXME: Can we get the real alignment here?
1292     if (AM.BaseOffs % 4 != 0)
1293       return isLegalMUBUFAddressingMode(AM);
1294 
1295     // There are no SMRD extloads, so if we have to do a small type access we
1296     // will use a MUBUF load.
1297     // FIXME?: We also need to do this if unaligned, but we don't know the
1298     // alignment here.
1299     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1300       return isLegalGlobalAddressingMode(AM);
1301 
1302     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1303       // SMRD instructions have an 8-bit, dword offset on SI.
1304       if (!isUInt<8>(AM.BaseOffs / 4))
1305         return false;
1306     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1307       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1308       // in 8-bits, it can use a smaller encoding.
1309       if (!isUInt<32>(AM.BaseOffs / 4))
1310         return false;
1311     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1312       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1313       if (!isUInt<20>(AM.BaseOffs))
1314         return false;
1315     } else
1316       llvm_unreachable("unhandled generation");
1317 
1318     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1319       return true;
1320 
1321     if (AM.Scale == 1 && AM.HasBaseReg)
1322       return true;
1323 
1324     return false;
1325 
1326   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1327     return isLegalMUBUFAddressingMode(AM);
1328   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1329              AS == AMDGPUAS::REGION_ADDRESS) {
1330     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1331     // field.
1332     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1333     // an 8-bit dword offset but we don't know the alignment here.
1334     if (!isUInt<16>(AM.BaseOffs))
1335       return false;
1336 
1337     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1338       return true;
1339 
1340     if (AM.Scale == 1 && AM.HasBaseReg)
1341       return true;
1342 
1343     return false;
1344   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1345              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1346     // For an unknown address space, this usually means that this is for some
1347     // reason being used for pure arithmetic, and not based on some addressing
1348     // computation. We don't have instructions that compute pointers with any
1349     // addressing modes, so treat them as having no offset like flat
1350     // instructions.
1351     return isLegalFlatAddressingMode(AM);
1352   }
1353 
1354   // Assume a user alias of global for unknown address spaces.
1355   return isLegalGlobalAddressingMode(AM);
1356 }
1357 
1358 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1359                                         const SelectionDAG &DAG) const {
1360   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1361     return (MemVT.getSizeInBits() <= 4 * 32);
1362   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1363     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1364     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1365   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1366     return (MemVT.getSizeInBits() <= 2 * 32);
1367   }
1368   return true;
1369 }
1370 
1371 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1372     unsigned Size, unsigned AddrSpace, Align Alignment,
1373     MachineMemOperand::Flags Flags, bool *IsFast) const {
1374   if (IsFast)
1375     *IsFast = false;
1376 
1377   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1378       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1379     // Check if alignment requirements for ds_read/write instructions are
1380     // disabled.
1381     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1382         !Subtarget->hasLDSMisalignedBug()) {
1383       if (IsFast)
1384         *IsFast = Alignment != Align(2);
1385       return true;
1386     }
1387 
1388     if (Size == 64) {
1389       // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1390       // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1391       // with adjacent offsets.
1392       bool AlignedBy4 = Alignment >= Align(4);
1393       if (IsFast)
1394         *IsFast = AlignedBy4;
1395 
1396       return AlignedBy4;
1397     }
1398     if (Size == 96) {
1399       // ds_read/write_b96 require 16-byte alignment on gfx8 and older.
1400       bool Aligned = Alignment >= Align(16);
1401       if (IsFast)
1402         *IsFast = Aligned;
1403 
1404       return Aligned;
1405     }
1406     if (Size == 128) {
1407       // ds_read/write_b128 require 16-byte alignment on gfx8 and older, but we
1408       // can do a 8 byte aligned, 16 byte access in a single operation using
1409       // ds_read2/write2_b64.
1410       bool Aligned = Alignment >= Align(8);
1411       if (IsFast)
1412         *IsFast = Aligned;
1413 
1414       return Aligned;
1415     }
1416   }
1417 
1418   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1419     bool AlignedBy4 = Alignment >= Align(4);
1420     if (IsFast)
1421       *IsFast = AlignedBy4;
1422 
1423     return AlignedBy4 ||
1424            Subtarget->enableFlatScratch() ||
1425            Subtarget->hasUnalignedScratchAccess();
1426   }
1427 
1428   // FIXME: We have to be conservative here and assume that flat operations
1429   // will access scratch.  If we had access to the IR function, then we
1430   // could determine if any private memory was used in the function.
1431   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1432       !Subtarget->hasUnalignedScratchAccess()) {
1433     bool AlignedBy4 = Alignment >= Align(4);
1434     if (IsFast)
1435       *IsFast = AlignedBy4;
1436 
1437     return AlignedBy4;
1438   }
1439 
1440   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1441       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1442         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1443     // If we have an uniform constant load, it still requires using a slow
1444     // buffer instruction if unaligned.
1445     if (IsFast) {
1446       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1447       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1448       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1449                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1450         Alignment >= Align(4) : Alignment != Align(2);
1451     }
1452 
1453     return true;
1454   }
1455 
1456   // Smaller than dword value must be aligned.
1457   if (Size < 32)
1458     return false;
1459 
1460   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1461   // byte-address are ignored, thus forcing Dword alignment.
1462   // This applies to private, global, and constant memory.
1463   if (IsFast)
1464     *IsFast = true;
1465 
1466   return Size >= 32 && Alignment >= Align(4);
1467 }
1468 
1469 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1470     EVT VT, unsigned AddrSpace, unsigned Alignment,
1471     MachineMemOperand::Flags Flags, bool *IsFast) const {
1472   if (IsFast)
1473     *IsFast = false;
1474 
1475   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1476   // which isn't a simple VT.
1477   // Until MVT is extended to handle this, simply check for the size and
1478   // rely on the condition below: allow accesses if the size is a multiple of 4.
1479   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1480                            VT.getStoreSize() > 16)) {
1481     return false;
1482   }
1483 
1484   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1485                                             Align(Alignment), Flags, IsFast);
1486 }
1487 
1488 EVT SITargetLowering::getOptimalMemOpType(
1489     const MemOp &Op, const AttributeList &FuncAttributes) const {
1490   // FIXME: Should account for address space here.
1491 
1492   // The default fallback uses the private pointer size as a guess for a type to
1493   // use. Make sure we switch these to 64-bit accesses.
1494 
1495   if (Op.size() >= 16 &&
1496       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1497     return MVT::v4i32;
1498 
1499   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1500     return MVT::v2i32;
1501 
1502   // Use the default.
1503   return MVT::Other;
1504 }
1505 
1506 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1507   const MemSDNode *MemNode = cast<MemSDNode>(N);
1508   const Value *Ptr = MemNode->getMemOperand()->getValue();
1509   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1510   return I && I->getMetadata("amdgpu.noclobber");
1511 }
1512 
1513 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1514   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1515          AS == AMDGPUAS::PRIVATE_ADDRESS;
1516 }
1517 
1518 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1519                                            unsigned DestAS) const {
1520   // Flat -> private/local is a simple truncate.
1521   // Flat -> global is no-op
1522   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1523     return true;
1524 
1525   const GCNTargetMachine &TM =
1526       static_cast<const GCNTargetMachine &>(getTargetMachine());
1527   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1528 }
1529 
1530 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1531   const MemSDNode *MemNode = cast<MemSDNode>(N);
1532 
1533   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1534 }
1535 
1536 TargetLoweringBase::LegalizeTypeAction
1537 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1538   int NumElts = VT.getVectorNumElements();
1539   if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1540     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1541   return TargetLoweringBase::getPreferredVectorAction(VT);
1542 }
1543 
1544 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1545                                                          Type *Ty) const {
1546   // FIXME: Could be smarter if called for vector constants.
1547   return true;
1548 }
1549 
1550 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1551   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1552     switch (Op) {
1553     case ISD::LOAD:
1554     case ISD::STORE:
1555 
1556     // These operations are done with 32-bit instructions anyway.
1557     case ISD::AND:
1558     case ISD::OR:
1559     case ISD::XOR:
1560     case ISD::SELECT:
1561       // TODO: Extensions?
1562       return true;
1563     default:
1564       return false;
1565     }
1566   }
1567 
1568   // SimplifySetCC uses this function to determine whether or not it should
1569   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1570   if (VT == MVT::i1 && Op == ISD::SETCC)
1571     return false;
1572 
1573   return TargetLowering::isTypeDesirableForOp(Op, VT);
1574 }
1575 
1576 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1577                                                    const SDLoc &SL,
1578                                                    SDValue Chain,
1579                                                    uint64_t Offset) const {
1580   const DataLayout &DL = DAG.getDataLayout();
1581   MachineFunction &MF = DAG.getMachineFunction();
1582   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1583 
1584   const ArgDescriptor *InputPtrReg;
1585   const TargetRegisterClass *RC;
1586   LLT ArgTy;
1587 
1588   std::tie(InputPtrReg, RC, ArgTy) =
1589       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1590 
1591   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1592   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1593   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1594     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1595 
1596   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1597 }
1598 
1599 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1600                                             const SDLoc &SL) const {
1601   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1602                                                FIRST_IMPLICIT);
1603   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1604 }
1605 
1606 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1607                                          const SDLoc &SL, SDValue Val,
1608                                          bool Signed,
1609                                          const ISD::InputArg *Arg) const {
1610   // First, if it is a widened vector, narrow it.
1611   if (VT.isVector() &&
1612       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1613     EVT NarrowedVT =
1614         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1615                          VT.getVectorNumElements());
1616     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1617                       DAG.getConstant(0, SL, MVT::i32));
1618   }
1619 
1620   // Then convert the vector elements or scalar value.
1621   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1622       VT.bitsLT(MemVT)) {
1623     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1624     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1625   }
1626 
1627   if (MemVT.isFloatingPoint())
1628     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1629   else if (Signed)
1630     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1631   else
1632     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1633 
1634   return Val;
1635 }
1636 
1637 SDValue SITargetLowering::lowerKernargMemParameter(
1638     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1639     uint64_t Offset, Align Alignment, bool Signed,
1640     const ISD::InputArg *Arg) const {
1641   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1642 
1643   // Try to avoid using an extload by loading earlier than the argument address,
1644   // and extracting the relevant bits. The load should hopefully be merged with
1645   // the previous argument.
1646   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1647     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1648     int64_t AlignDownOffset = alignDown(Offset, 4);
1649     int64_t OffsetDiff = Offset - AlignDownOffset;
1650 
1651     EVT IntVT = MemVT.changeTypeToInteger();
1652 
1653     // TODO: If we passed in the base kernel offset we could have a better
1654     // alignment than 4, but we don't really need it.
1655     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1656     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1657                                MachineMemOperand::MODereferenceable |
1658                                    MachineMemOperand::MOInvariant);
1659 
1660     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1661     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1662 
1663     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1664     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1665     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1666 
1667 
1668     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1669   }
1670 
1671   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1672   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1673                              MachineMemOperand::MODereferenceable |
1674                                  MachineMemOperand::MOInvariant);
1675 
1676   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1677   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1678 }
1679 
1680 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1681                                               const SDLoc &SL, SDValue Chain,
1682                                               const ISD::InputArg &Arg) const {
1683   MachineFunction &MF = DAG.getMachineFunction();
1684   MachineFrameInfo &MFI = MF.getFrameInfo();
1685 
1686   if (Arg.Flags.isByVal()) {
1687     unsigned Size = Arg.Flags.getByValSize();
1688     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1689     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1690   }
1691 
1692   unsigned ArgOffset = VA.getLocMemOffset();
1693   unsigned ArgSize = VA.getValVT().getStoreSize();
1694 
1695   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1696 
1697   // Create load nodes to retrieve arguments from the stack.
1698   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1699   SDValue ArgValue;
1700 
1701   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1702   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1703   MVT MemVT = VA.getValVT();
1704 
1705   switch (VA.getLocInfo()) {
1706   default:
1707     break;
1708   case CCValAssign::BCvt:
1709     MemVT = VA.getLocVT();
1710     break;
1711   case CCValAssign::SExt:
1712     ExtType = ISD::SEXTLOAD;
1713     break;
1714   case CCValAssign::ZExt:
1715     ExtType = ISD::ZEXTLOAD;
1716     break;
1717   case CCValAssign::AExt:
1718     ExtType = ISD::EXTLOAD;
1719     break;
1720   }
1721 
1722   ArgValue = DAG.getExtLoad(
1723     ExtType, SL, VA.getLocVT(), Chain, FIN,
1724     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1725     MemVT);
1726   return ArgValue;
1727 }
1728 
1729 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1730   const SIMachineFunctionInfo &MFI,
1731   EVT VT,
1732   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1733   const ArgDescriptor *Reg;
1734   const TargetRegisterClass *RC;
1735   LLT Ty;
1736 
1737   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1738   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1739 }
1740 
1741 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1742                                CallingConv::ID CallConv,
1743                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1744                                FunctionType *FType,
1745                                SIMachineFunctionInfo *Info) {
1746   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1747     const ISD::InputArg *Arg = &Ins[I];
1748 
1749     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1750            "vector type argument should have been split");
1751 
1752     // First check if it's a PS input addr.
1753     if (CallConv == CallingConv::AMDGPU_PS &&
1754         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1755       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1756 
1757       // Inconveniently only the first part of the split is marked as isSplit,
1758       // so skip to the end. We only want to increment PSInputNum once for the
1759       // entire split argument.
1760       if (Arg->Flags.isSplit()) {
1761         while (!Arg->Flags.isSplitEnd()) {
1762           assert((!Arg->VT.isVector() ||
1763                   Arg->VT.getScalarSizeInBits() == 16) &&
1764                  "unexpected vector split in ps argument type");
1765           if (!SkipArg)
1766             Splits.push_back(*Arg);
1767           Arg = &Ins[++I];
1768         }
1769       }
1770 
1771       if (SkipArg) {
1772         // We can safely skip PS inputs.
1773         Skipped.set(Arg->getOrigArgIndex());
1774         ++PSInputNum;
1775         continue;
1776       }
1777 
1778       Info->markPSInputAllocated(PSInputNum);
1779       if (Arg->Used)
1780         Info->markPSInputEnabled(PSInputNum);
1781 
1782       ++PSInputNum;
1783     }
1784 
1785     Splits.push_back(*Arg);
1786   }
1787 }
1788 
1789 // Allocate special inputs passed in VGPRs.
1790 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1791                                                       MachineFunction &MF,
1792                                                       const SIRegisterInfo &TRI,
1793                                                       SIMachineFunctionInfo &Info) const {
1794   const LLT S32 = LLT::scalar(32);
1795   MachineRegisterInfo &MRI = MF.getRegInfo();
1796 
1797   if (Info.hasWorkItemIDX()) {
1798     Register Reg = AMDGPU::VGPR0;
1799     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1800 
1801     CCInfo.AllocateReg(Reg);
1802     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1803   }
1804 
1805   if (Info.hasWorkItemIDY()) {
1806     Register Reg = AMDGPU::VGPR1;
1807     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1808 
1809     CCInfo.AllocateReg(Reg);
1810     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1811   }
1812 
1813   if (Info.hasWorkItemIDZ()) {
1814     Register Reg = AMDGPU::VGPR2;
1815     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1816 
1817     CCInfo.AllocateReg(Reg);
1818     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1819   }
1820 }
1821 
1822 // Try to allocate a VGPR at the end of the argument list, or if no argument
1823 // VGPRs are left allocating a stack slot.
1824 // If \p Mask is is given it indicates bitfield position in the register.
1825 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1826 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1827                                          ArgDescriptor Arg = ArgDescriptor()) {
1828   if (Arg.isSet())
1829     return ArgDescriptor::createArg(Arg, Mask);
1830 
1831   ArrayRef<MCPhysReg> ArgVGPRs
1832     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1833   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1834   if (RegIdx == ArgVGPRs.size()) {
1835     // Spill to stack required.
1836     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1837 
1838     return ArgDescriptor::createStack(Offset, Mask);
1839   }
1840 
1841   unsigned Reg = ArgVGPRs[RegIdx];
1842   Reg = CCInfo.AllocateReg(Reg);
1843   assert(Reg != AMDGPU::NoRegister);
1844 
1845   MachineFunction &MF = CCInfo.getMachineFunction();
1846   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1847   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1848   return ArgDescriptor::createRegister(Reg, Mask);
1849 }
1850 
1851 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1852                                              const TargetRegisterClass *RC,
1853                                              unsigned NumArgRegs) {
1854   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1855   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1856   if (RegIdx == ArgSGPRs.size())
1857     report_fatal_error("ran out of SGPRs for arguments");
1858 
1859   unsigned Reg = ArgSGPRs[RegIdx];
1860   Reg = CCInfo.AllocateReg(Reg);
1861   assert(Reg != AMDGPU::NoRegister);
1862 
1863   MachineFunction &MF = CCInfo.getMachineFunction();
1864   MF.addLiveIn(Reg, RC);
1865   return ArgDescriptor::createRegister(Reg);
1866 }
1867 
1868 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1869   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1870 }
1871 
1872 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1873   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1874 }
1875 
1876 /// Allocate implicit function VGPR arguments at the end of allocated user
1877 /// arguments.
1878 void SITargetLowering::allocateSpecialInputVGPRs(
1879   CCState &CCInfo, MachineFunction &MF,
1880   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1881   const unsigned Mask = 0x3ff;
1882   ArgDescriptor Arg;
1883 
1884   if (Info.hasWorkItemIDX()) {
1885     Arg = allocateVGPR32Input(CCInfo, Mask);
1886     Info.setWorkItemIDX(Arg);
1887   }
1888 
1889   if (Info.hasWorkItemIDY()) {
1890     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1891     Info.setWorkItemIDY(Arg);
1892   }
1893 
1894   if (Info.hasWorkItemIDZ())
1895     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1896 }
1897 
1898 /// Allocate implicit function VGPR arguments in fixed registers.
1899 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1900   CCState &CCInfo, MachineFunction &MF,
1901   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1902   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1903   if (!Reg)
1904     report_fatal_error("failed to allocated VGPR for implicit arguments");
1905 
1906   const unsigned Mask = 0x3ff;
1907   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1908   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1909   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1910 }
1911 
1912 void SITargetLowering::allocateSpecialInputSGPRs(
1913   CCState &CCInfo,
1914   MachineFunction &MF,
1915   const SIRegisterInfo &TRI,
1916   SIMachineFunctionInfo &Info) const {
1917   auto &ArgInfo = Info.getArgInfo();
1918 
1919   // TODO: Unify handling with private memory pointers.
1920 
1921   if (Info.hasDispatchPtr())
1922     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1923 
1924   if (Info.hasQueuePtr())
1925     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1926 
1927   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1928   // constant offset from the kernarg segment.
1929   if (Info.hasImplicitArgPtr())
1930     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1931 
1932   if (Info.hasDispatchID())
1933     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1934 
1935   // flat_scratch_init is not applicable for non-kernel functions.
1936 
1937   if (Info.hasWorkGroupIDX())
1938     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1939 
1940   if (Info.hasWorkGroupIDY())
1941     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1942 
1943   if (Info.hasWorkGroupIDZ())
1944     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1945 }
1946 
1947 // Allocate special inputs passed in user SGPRs.
1948 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1949                                             MachineFunction &MF,
1950                                             const SIRegisterInfo &TRI,
1951                                             SIMachineFunctionInfo &Info) const {
1952   if (Info.hasImplicitBufferPtr()) {
1953     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1954     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1955     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1956   }
1957 
1958   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1959   if (Info.hasPrivateSegmentBuffer()) {
1960     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1961     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1962     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1963   }
1964 
1965   if (Info.hasDispatchPtr()) {
1966     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
1967     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1968     CCInfo.AllocateReg(DispatchPtrReg);
1969   }
1970 
1971   if (Info.hasQueuePtr()) {
1972     Register QueuePtrReg = Info.addQueuePtr(TRI);
1973     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1974     CCInfo.AllocateReg(QueuePtrReg);
1975   }
1976 
1977   if (Info.hasKernargSegmentPtr()) {
1978     MachineRegisterInfo &MRI = MF.getRegInfo();
1979     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1980     CCInfo.AllocateReg(InputPtrReg);
1981 
1982     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1983     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1984   }
1985 
1986   if (Info.hasDispatchID()) {
1987     Register DispatchIDReg = Info.addDispatchID(TRI);
1988     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1989     CCInfo.AllocateReg(DispatchIDReg);
1990   }
1991 
1992   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
1993     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1994     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1995     CCInfo.AllocateReg(FlatScratchInitReg);
1996   }
1997 
1998   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1999   // these from the dispatch pointer.
2000 }
2001 
2002 // Allocate special input registers that are initialized per-wave.
2003 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2004                                            MachineFunction &MF,
2005                                            SIMachineFunctionInfo &Info,
2006                                            CallingConv::ID CallConv,
2007                                            bool IsShader) const {
2008   if (Info.hasWorkGroupIDX()) {
2009     Register Reg = Info.addWorkGroupIDX();
2010     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2011     CCInfo.AllocateReg(Reg);
2012   }
2013 
2014   if (Info.hasWorkGroupIDY()) {
2015     Register Reg = Info.addWorkGroupIDY();
2016     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2017     CCInfo.AllocateReg(Reg);
2018   }
2019 
2020   if (Info.hasWorkGroupIDZ()) {
2021     Register Reg = Info.addWorkGroupIDZ();
2022     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2023     CCInfo.AllocateReg(Reg);
2024   }
2025 
2026   if (Info.hasWorkGroupInfo()) {
2027     Register Reg = Info.addWorkGroupInfo();
2028     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2029     CCInfo.AllocateReg(Reg);
2030   }
2031 
2032   if (Info.hasPrivateSegmentWaveByteOffset()) {
2033     // Scratch wave offset passed in system SGPR.
2034     unsigned PrivateSegmentWaveByteOffsetReg;
2035 
2036     if (IsShader) {
2037       PrivateSegmentWaveByteOffsetReg =
2038         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2039 
2040       // This is true if the scratch wave byte offset doesn't have a fixed
2041       // location.
2042       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2043         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2044         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2045       }
2046     } else
2047       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2048 
2049     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2050     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2051   }
2052 }
2053 
2054 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2055                                      MachineFunction &MF,
2056                                      const SIRegisterInfo &TRI,
2057                                      SIMachineFunctionInfo &Info) {
2058   // Now that we've figured out where the scratch register inputs are, see if
2059   // should reserve the arguments and use them directly.
2060   MachineFrameInfo &MFI = MF.getFrameInfo();
2061   bool HasStackObjects = MFI.hasStackObjects();
2062   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2063 
2064   // Record that we know we have non-spill stack objects so we don't need to
2065   // check all stack objects later.
2066   if (HasStackObjects)
2067     Info.setHasNonSpillStackObjects(true);
2068 
2069   // Everything live out of a block is spilled with fast regalloc, so it's
2070   // almost certain that spilling will be required.
2071   if (TM.getOptLevel() == CodeGenOpt::None)
2072     HasStackObjects = true;
2073 
2074   // For now assume stack access is needed in any callee functions, so we need
2075   // the scratch registers to pass in.
2076   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2077 
2078   if (!ST.enableFlatScratch()) {
2079     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2080       // If we have stack objects, we unquestionably need the private buffer
2081       // resource. For the Code Object V2 ABI, this will be the first 4 user
2082       // SGPR inputs. We can reserve those and use them directly.
2083 
2084       Register PrivateSegmentBufferReg =
2085           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2086       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2087     } else {
2088       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2089       // We tentatively reserve the last registers (skipping the last registers
2090       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2091       // we'll replace these with the ones immediately after those which were
2092       // really allocated. In the prologue copies will be inserted from the
2093       // argument to these reserved registers.
2094 
2095       // Without HSA, relocations are used for the scratch pointer and the
2096       // buffer resource setup is always inserted in the prologue. Scratch wave
2097       // offset is still in an input SGPR.
2098       Info.setScratchRSrcReg(ReservedBufferReg);
2099     }
2100   }
2101 
2102   MachineRegisterInfo &MRI = MF.getRegInfo();
2103 
2104   // For entry functions we have to set up the stack pointer if we use it,
2105   // whereas non-entry functions get this "for free". This means there is no
2106   // intrinsic advantage to using S32 over S34 in cases where we do not have
2107   // calls but do need a frame pointer (i.e. if we are requested to have one
2108   // because frame pointer elimination is disabled). To keep things simple we
2109   // only ever use S32 as the call ABI stack pointer, and so using it does not
2110   // imply we need a separate frame pointer.
2111   //
2112   // Try to use s32 as the SP, but move it if it would interfere with input
2113   // arguments. This won't work with calls though.
2114   //
2115   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2116   // registers.
2117   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2118     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2119   } else {
2120     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2121 
2122     if (MFI.hasCalls())
2123       report_fatal_error("call in graphics shader with too many input SGPRs");
2124 
2125     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2126       if (!MRI.isLiveIn(Reg)) {
2127         Info.setStackPtrOffsetReg(Reg);
2128         break;
2129       }
2130     }
2131 
2132     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2133       report_fatal_error("failed to find register for SP");
2134   }
2135 
2136   // hasFP should be accurate for entry functions even before the frame is
2137   // finalized, because it does not rely on the known stack size, only
2138   // properties like whether variable sized objects are present.
2139   if (ST.getFrameLowering()->hasFP(MF)) {
2140     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2141   }
2142 }
2143 
2144 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2145   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2146   return !Info->isEntryFunction();
2147 }
2148 
2149 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2150 
2151 }
2152 
2153 void SITargetLowering::insertCopiesSplitCSR(
2154   MachineBasicBlock *Entry,
2155   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2156   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2157 
2158   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2159   if (!IStart)
2160     return;
2161 
2162   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2163   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2164   MachineBasicBlock::iterator MBBI = Entry->begin();
2165   for (const MCPhysReg *I = IStart; *I; ++I) {
2166     const TargetRegisterClass *RC = nullptr;
2167     if (AMDGPU::SReg_64RegClass.contains(*I))
2168       RC = &AMDGPU::SGPR_64RegClass;
2169     else if (AMDGPU::SReg_32RegClass.contains(*I))
2170       RC = &AMDGPU::SGPR_32RegClass;
2171     else
2172       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2173 
2174     Register NewVR = MRI->createVirtualRegister(RC);
2175     // Create copy from CSR to a virtual register.
2176     Entry->addLiveIn(*I);
2177     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2178       .addReg(*I);
2179 
2180     // Insert the copy-back instructions right before the terminator.
2181     for (auto *Exit : Exits)
2182       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2183               TII->get(TargetOpcode::COPY), *I)
2184         .addReg(NewVR);
2185   }
2186 }
2187 
2188 SDValue SITargetLowering::LowerFormalArguments(
2189     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2190     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2191     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2192   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2193 
2194   MachineFunction &MF = DAG.getMachineFunction();
2195   const Function &Fn = MF.getFunction();
2196   FunctionType *FType = MF.getFunction().getFunctionType();
2197   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2198 
2199   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2200     DiagnosticInfoUnsupported NoGraphicsHSA(
2201         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2202     DAG.getContext()->diagnose(NoGraphicsHSA);
2203     return DAG.getEntryNode();
2204   }
2205 
2206   SmallVector<ISD::InputArg, 16> Splits;
2207   SmallVector<CCValAssign, 16> ArgLocs;
2208   BitVector Skipped(Ins.size());
2209   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2210                  *DAG.getContext());
2211 
2212   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2213   bool IsKernel = AMDGPU::isKernel(CallConv);
2214   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2215 
2216   if (IsGraphics) {
2217     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2218            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2219            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2220            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2221            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2222            !Info->hasWorkItemIDZ());
2223   }
2224 
2225   if (CallConv == CallingConv::AMDGPU_PS) {
2226     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2227 
2228     // At least one interpolation mode must be enabled or else the GPU will
2229     // hang.
2230     //
2231     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2232     // set PSInputAddr, the user wants to enable some bits after the compilation
2233     // based on run-time states. Since we can't know what the final PSInputEna
2234     // will look like, so we shouldn't do anything here and the user should take
2235     // responsibility for the correct programming.
2236     //
2237     // Otherwise, the following restrictions apply:
2238     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2239     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2240     //   enabled too.
2241     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2242         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2243       CCInfo.AllocateReg(AMDGPU::VGPR0);
2244       CCInfo.AllocateReg(AMDGPU::VGPR1);
2245       Info->markPSInputAllocated(0);
2246       Info->markPSInputEnabled(0);
2247     }
2248     if (Subtarget->isAmdPalOS()) {
2249       // For isAmdPalOS, the user does not enable some bits after compilation
2250       // based on run-time states; the register values being generated here are
2251       // the final ones set in hardware. Therefore we need to apply the
2252       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2253       // a bit is set in PSInputAddr but not PSInputEnable is where the
2254       // frontend set up an input arg for a particular interpolation mode, but
2255       // nothing uses that input arg. Really we should have an earlier pass
2256       // that removes such an arg.)
2257       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2258       if ((PsInputBits & 0x7F) == 0 ||
2259           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2260         Info->markPSInputEnabled(
2261             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2262     }
2263   } else if (IsKernel) {
2264     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2265   } else {
2266     Splits.append(Ins.begin(), Ins.end());
2267   }
2268 
2269   if (IsEntryFunc) {
2270     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2271     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2272   } else {
2273     // For the fixed ABI, pass workitem IDs in the last argument register.
2274     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2275       allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2276   }
2277 
2278   if (IsKernel) {
2279     analyzeFormalArgumentsCompute(CCInfo, Ins);
2280   } else {
2281     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2282     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2283   }
2284 
2285   SmallVector<SDValue, 16> Chains;
2286 
2287   // FIXME: This is the minimum kernel argument alignment. We should improve
2288   // this to the maximum alignment of the arguments.
2289   //
2290   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2291   // kern arg offset.
2292   const Align KernelArgBaseAlign = Align(16);
2293 
2294   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2295     const ISD::InputArg &Arg = Ins[i];
2296     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2297       InVals.push_back(DAG.getUNDEF(Arg.VT));
2298       continue;
2299     }
2300 
2301     CCValAssign &VA = ArgLocs[ArgIdx++];
2302     MVT VT = VA.getLocVT();
2303 
2304     if (IsEntryFunc && VA.isMemLoc()) {
2305       VT = Ins[i].VT;
2306       EVT MemVT = VA.getLocVT();
2307 
2308       const uint64_t Offset = VA.getLocMemOffset();
2309       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2310 
2311       if (Arg.Flags.isByRef()) {
2312         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2313 
2314         const GCNTargetMachine &TM =
2315             static_cast<const GCNTargetMachine &>(getTargetMachine());
2316         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2317                                     Arg.Flags.getPointerAddrSpace())) {
2318           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2319                                      Arg.Flags.getPointerAddrSpace());
2320         }
2321 
2322         InVals.push_back(Ptr);
2323         continue;
2324       }
2325 
2326       SDValue Arg = lowerKernargMemParameter(
2327         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2328       Chains.push_back(Arg.getValue(1));
2329 
2330       auto *ParamTy =
2331         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2332       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2333           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2334                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2335         // On SI local pointers are just offsets into LDS, so they are always
2336         // less than 16-bits.  On CI and newer they could potentially be
2337         // real pointers, so we can't guarantee their size.
2338         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2339                           DAG.getValueType(MVT::i16));
2340       }
2341 
2342       InVals.push_back(Arg);
2343       continue;
2344     } else if (!IsEntryFunc && VA.isMemLoc()) {
2345       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2346       InVals.push_back(Val);
2347       if (!Arg.Flags.isByVal())
2348         Chains.push_back(Val.getValue(1));
2349       continue;
2350     }
2351 
2352     assert(VA.isRegLoc() && "Parameter must be in a register!");
2353 
2354     Register Reg = VA.getLocReg();
2355     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2356     EVT ValVT = VA.getValVT();
2357 
2358     Reg = MF.addLiveIn(Reg, RC);
2359     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2360 
2361     if (Arg.Flags.isSRet()) {
2362       // The return object should be reasonably addressable.
2363 
2364       // FIXME: This helps when the return is a real sret. If it is a
2365       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2366       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2367       unsigned NumBits
2368         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2369       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2370         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2371     }
2372 
2373     // If this is an 8 or 16-bit value, it is really passed promoted
2374     // to 32 bits. Insert an assert[sz]ext to capture this, then
2375     // truncate to the right size.
2376     switch (VA.getLocInfo()) {
2377     case CCValAssign::Full:
2378       break;
2379     case CCValAssign::BCvt:
2380       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2381       break;
2382     case CCValAssign::SExt:
2383       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2384                         DAG.getValueType(ValVT));
2385       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2386       break;
2387     case CCValAssign::ZExt:
2388       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2389                         DAG.getValueType(ValVT));
2390       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2391       break;
2392     case CCValAssign::AExt:
2393       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2394       break;
2395     default:
2396       llvm_unreachable("Unknown loc info!");
2397     }
2398 
2399     InVals.push_back(Val);
2400   }
2401 
2402   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2403     // Special inputs come after user arguments.
2404     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2405   }
2406 
2407   // Start adding system SGPRs.
2408   if (IsEntryFunc) {
2409     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2410   } else {
2411     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2412     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2413   }
2414 
2415   auto &ArgUsageInfo =
2416     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2417   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2418 
2419   unsigned StackArgSize = CCInfo.getNextStackOffset();
2420   Info->setBytesInStackArgArea(StackArgSize);
2421 
2422   return Chains.empty() ? Chain :
2423     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2424 }
2425 
2426 // TODO: If return values can't fit in registers, we should return as many as
2427 // possible in registers before passing on stack.
2428 bool SITargetLowering::CanLowerReturn(
2429   CallingConv::ID CallConv,
2430   MachineFunction &MF, bool IsVarArg,
2431   const SmallVectorImpl<ISD::OutputArg> &Outs,
2432   LLVMContext &Context) const {
2433   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2434   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2435   // for shaders. Vector types should be explicitly handled by CC.
2436   if (AMDGPU::isEntryFunctionCC(CallConv))
2437     return true;
2438 
2439   SmallVector<CCValAssign, 16> RVLocs;
2440   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2441   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2442 }
2443 
2444 SDValue
2445 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2446                               bool isVarArg,
2447                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2448                               const SmallVectorImpl<SDValue> &OutVals,
2449                               const SDLoc &DL, SelectionDAG &DAG) const {
2450   MachineFunction &MF = DAG.getMachineFunction();
2451   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2452 
2453   if (AMDGPU::isKernel(CallConv)) {
2454     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2455                                              OutVals, DL, DAG);
2456   }
2457 
2458   bool IsShader = AMDGPU::isShader(CallConv);
2459 
2460   Info->setIfReturnsVoid(Outs.empty());
2461   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2462 
2463   // CCValAssign - represent the assignment of the return value to a location.
2464   SmallVector<CCValAssign, 48> RVLocs;
2465   SmallVector<ISD::OutputArg, 48> Splits;
2466 
2467   // CCState - Info about the registers and stack slots.
2468   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2469                  *DAG.getContext());
2470 
2471   // Analyze outgoing return values.
2472   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2473 
2474   SDValue Flag;
2475   SmallVector<SDValue, 48> RetOps;
2476   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2477 
2478   // Add return address for callable functions.
2479   if (!Info->isEntryFunction()) {
2480     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2481     SDValue ReturnAddrReg = CreateLiveInRegister(
2482       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2483 
2484     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2485         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2486         MVT::i64);
2487     Chain =
2488         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2489     Flag = Chain.getValue(1);
2490     RetOps.push_back(ReturnAddrVirtualReg);
2491   }
2492 
2493   // Copy the result values into the output registers.
2494   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2495        ++I, ++RealRVLocIdx) {
2496     CCValAssign &VA = RVLocs[I];
2497     assert(VA.isRegLoc() && "Can only return in registers!");
2498     // TODO: Partially return in registers if return values don't fit.
2499     SDValue Arg = OutVals[RealRVLocIdx];
2500 
2501     // Copied from other backends.
2502     switch (VA.getLocInfo()) {
2503     case CCValAssign::Full:
2504       break;
2505     case CCValAssign::BCvt:
2506       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2507       break;
2508     case CCValAssign::SExt:
2509       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2510       break;
2511     case CCValAssign::ZExt:
2512       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2513       break;
2514     case CCValAssign::AExt:
2515       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2516       break;
2517     default:
2518       llvm_unreachable("Unknown loc info!");
2519     }
2520 
2521     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2522     Flag = Chain.getValue(1);
2523     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2524   }
2525 
2526   // FIXME: Does sret work properly?
2527   if (!Info->isEntryFunction()) {
2528     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2529     const MCPhysReg *I =
2530       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2531     if (I) {
2532       for (; *I; ++I) {
2533         if (AMDGPU::SReg_64RegClass.contains(*I))
2534           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2535         else if (AMDGPU::SReg_32RegClass.contains(*I))
2536           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2537         else
2538           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2539       }
2540     }
2541   }
2542 
2543   // Update chain and glue.
2544   RetOps[0] = Chain;
2545   if (Flag.getNode())
2546     RetOps.push_back(Flag);
2547 
2548   unsigned Opc = AMDGPUISD::ENDPGM;
2549   if (!IsWaveEnd)
2550     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2551   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2552 }
2553 
2554 SDValue SITargetLowering::LowerCallResult(
2555     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2556     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2557     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2558     SDValue ThisVal) const {
2559   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2560 
2561   // Assign locations to each value returned by this call.
2562   SmallVector<CCValAssign, 16> RVLocs;
2563   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2564                  *DAG.getContext());
2565   CCInfo.AnalyzeCallResult(Ins, RetCC);
2566 
2567   // Copy all of the result registers out of their specified physreg.
2568   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2569     CCValAssign VA = RVLocs[i];
2570     SDValue Val;
2571 
2572     if (VA.isRegLoc()) {
2573       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2574       Chain = Val.getValue(1);
2575       InFlag = Val.getValue(2);
2576     } else if (VA.isMemLoc()) {
2577       report_fatal_error("TODO: return values in memory");
2578     } else
2579       llvm_unreachable("unknown argument location type");
2580 
2581     switch (VA.getLocInfo()) {
2582     case CCValAssign::Full:
2583       break;
2584     case CCValAssign::BCvt:
2585       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2586       break;
2587     case CCValAssign::ZExt:
2588       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2589                         DAG.getValueType(VA.getValVT()));
2590       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2591       break;
2592     case CCValAssign::SExt:
2593       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2594                         DAG.getValueType(VA.getValVT()));
2595       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2596       break;
2597     case CCValAssign::AExt:
2598       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2599       break;
2600     default:
2601       llvm_unreachable("Unknown loc info!");
2602     }
2603 
2604     InVals.push_back(Val);
2605   }
2606 
2607   return Chain;
2608 }
2609 
2610 // Add code to pass special inputs required depending on used features separate
2611 // from the explicit user arguments present in the IR.
2612 void SITargetLowering::passSpecialInputs(
2613     CallLoweringInfo &CLI,
2614     CCState &CCInfo,
2615     const SIMachineFunctionInfo &Info,
2616     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2617     SmallVectorImpl<SDValue> &MemOpChains,
2618     SDValue Chain) const {
2619   // If we don't have a call site, this was a call inserted by
2620   // legalization. These can never use special inputs.
2621   if (!CLI.CB)
2622     return;
2623 
2624   SelectionDAG &DAG = CLI.DAG;
2625   const SDLoc &DL = CLI.DL;
2626 
2627   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2628   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2629 
2630   const AMDGPUFunctionArgInfo *CalleeArgInfo
2631     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2632   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2633     auto &ArgUsageInfo =
2634       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2635     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2636   }
2637 
2638   // TODO: Unify with private memory register handling. This is complicated by
2639   // the fact that at least in kernels, the input argument is not necessarily
2640   // in the same location as the input.
2641   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2642     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2643     AMDGPUFunctionArgInfo::QUEUE_PTR,
2644     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2645     AMDGPUFunctionArgInfo::DISPATCH_ID,
2646     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2647     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2648     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2649   };
2650 
2651   for (auto InputID : InputRegs) {
2652     const ArgDescriptor *OutgoingArg;
2653     const TargetRegisterClass *ArgRC;
2654     LLT ArgTy;
2655 
2656     std::tie(OutgoingArg, ArgRC, ArgTy) =
2657         CalleeArgInfo->getPreloadedValue(InputID);
2658     if (!OutgoingArg)
2659       continue;
2660 
2661     const ArgDescriptor *IncomingArg;
2662     const TargetRegisterClass *IncomingArgRC;
2663     LLT Ty;
2664     std::tie(IncomingArg, IncomingArgRC, Ty) =
2665         CallerArgInfo.getPreloadedValue(InputID);
2666     assert(IncomingArgRC == ArgRC);
2667 
2668     // All special arguments are ints for now.
2669     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2670     SDValue InputReg;
2671 
2672     if (IncomingArg) {
2673       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2674     } else {
2675       // The implicit arg ptr is special because it doesn't have a corresponding
2676       // input for kernels, and is computed from the kernarg segment pointer.
2677       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2678       InputReg = getImplicitArgPtr(DAG, DL);
2679     }
2680 
2681     if (OutgoingArg->isRegister()) {
2682       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2683       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2684         report_fatal_error("failed to allocate implicit input argument");
2685     } else {
2686       unsigned SpecialArgOffset =
2687           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2688       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2689                                               SpecialArgOffset);
2690       MemOpChains.push_back(ArgStore);
2691     }
2692   }
2693 
2694   // Pack workitem IDs into a single register or pass it as is if already
2695   // packed.
2696   const ArgDescriptor *OutgoingArg;
2697   const TargetRegisterClass *ArgRC;
2698   LLT Ty;
2699 
2700   std::tie(OutgoingArg, ArgRC, Ty) =
2701       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2702   if (!OutgoingArg)
2703     std::tie(OutgoingArg, ArgRC, Ty) =
2704         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2705   if (!OutgoingArg)
2706     std::tie(OutgoingArg, ArgRC, Ty) =
2707         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2708   if (!OutgoingArg)
2709     return;
2710 
2711   const ArgDescriptor *IncomingArgX = std::get<0>(
2712       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2713   const ArgDescriptor *IncomingArgY = std::get<0>(
2714       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2715   const ArgDescriptor *IncomingArgZ = std::get<0>(
2716       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2717 
2718   SDValue InputReg;
2719   SDLoc SL;
2720 
2721   // If incoming ids are not packed we need to pack them.
2722   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2723     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2724 
2725   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2726     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2727     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2728                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2729     InputReg = InputReg.getNode() ?
2730                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2731   }
2732 
2733   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2734     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2735     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2736                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2737     InputReg = InputReg.getNode() ?
2738                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2739   }
2740 
2741   if (!InputReg.getNode()) {
2742     // Workitem ids are already packed, any of present incoming arguments
2743     // will carry all required fields.
2744     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2745       IncomingArgX ? *IncomingArgX :
2746       IncomingArgY ? *IncomingArgY :
2747                      *IncomingArgZ, ~0u);
2748     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2749   }
2750 
2751   if (OutgoingArg->isRegister()) {
2752     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2753     CCInfo.AllocateReg(OutgoingArg->getRegister());
2754   } else {
2755     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2756     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2757                                             SpecialArgOffset);
2758     MemOpChains.push_back(ArgStore);
2759   }
2760 }
2761 
2762 static bool canGuaranteeTCO(CallingConv::ID CC) {
2763   return CC == CallingConv::Fast;
2764 }
2765 
2766 /// Return true if we might ever do TCO for calls with this calling convention.
2767 static bool mayTailCallThisCC(CallingConv::ID CC) {
2768   switch (CC) {
2769   case CallingConv::C:
2770     return true;
2771   default:
2772     return canGuaranteeTCO(CC);
2773   }
2774 }
2775 
2776 bool SITargetLowering::isEligibleForTailCallOptimization(
2777     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2778     const SmallVectorImpl<ISD::OutputArg> &Outs,
2779     const SmallVectorImpl<SDValue> &OutVals,
2780     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2781   if (!mayTailCallThisCC(CalleeCC))
2782     return false;
2783 
2784   MachineFunction &MF = DAG.getMachineFunction();
2785   const Function &CallerF = MF.getFunction();
2786   CallingConv::ID CallerCC = CallerF.getCallingConv();
2787   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2788   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2789 
2790   // Kernels aren't callable, and don't have a live in return address so it
2791   // doesn't make sense to do a tail call with entry functions.
2792   if (!CallerPreserved)
2793     return false;
2794 
2795   bool CCMatch = CallerCC == CalleeCC;
2796 
2797   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2798     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2799       return true;
2800     return false;
2801   }
2802 
2803   // TODO: Can we handle var args?
2804   if (IsVarArg)
2805     return false;
2806 
2807   for (const Argument &Arg : CallerF.args()) {
2808     if (Arg.hasByValAttr())
2809       return false;
2810   }
2811 
2812   LLVMContext &Ctx = *DAG.getContext();
2813 
2814   // Check that the call results are passed in the same way.
2815   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2816                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2817                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2818     return false;
2819 
2820   // The callee has to preserve all registers the caller needs to preserve.
2821   if (!CCMatch) {
2822     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2823     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2824       return false;
2825   }
2826 
2827   // Nothing more to check if the callee is taking no arguments.
2828   if (Outs.empty())
2829     return true;
2830 
2831   SmallVector<CCValAssign, 16> ArgLocs;
2832   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2833 
2834   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2835 
2836   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2837   // If the stack arguments for this call do not fit into our own save area then
2838   // the call cannot be made tail.
2839   // TODO: Is this really necessary?
2840   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2841     return false;
2842 
2843   const MachineRegisterInfo &MRI = MF.getRegInfo();
2844   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2845 }
2846 
2847 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2848   if (!CI->isTailCall())
2849     return false;
2850 
2851   const Function *ParentFn = CI->getParent()->getParent();
2852   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2853     return false;
2854   return true;
2855 }
2856 
2857 // The wave scratch offset register is used as the global base pointer.
2858 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2859                                     SmallVectorImpl<SDValue> &InVals) const {
2860   SelectionDAG &DAG = CLI.DAG;
2861   const SDLoc &DL = CLI.DL;
2862   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2863   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2864   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2865   SDValue Chain = CLI.Chain;
2866   SDValue Callee = CLI.Callee;
2867   bool &IsTailCall = CLI.IsTailCall;
2868   CallingConv::ID CallConv = CLI.CallConv;
2869   bool IsVarArg = CLI.IsVarArg;
2870   bool IsSibCall = false;
2871   bool IsThisReturn = false;
2872   MachineFunction &MF = DAG.getMachineFunction();
2873 
2874   if (Callee.isUndef() || isNullConstant(Callee)) {
2875     if (!CLI.IsTailCall) {
2876       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2877         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2878     }
2879 
2880     return Chain;
2881   }
2882 
2883   if (IsVarArg) {
2884     return lowerUnhandledCall(CLI, InVals,
2885                               "unsupported call to variadic function ");
2886   }
2887 
2888   if (!CLI.CB)
2889     report_fatal_error("unsupported libcall legalization");
2890 
2891   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
2892       !CLI.CB->getCalledFunction() && CallConv != CallingConv::AMDGPU_Gfx) {
2893     return lowerUnhandledCall(CLI, InVals,
2894                               "unsupported indirect call to function ");
2895   }
2896 
2897   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2898     return lowerUnhandledCall(CLI, InVals,
2899                               "unsupported required tail call to function ");
2900   }
2901 
2902   if (AMDGPU::isShader(CallConv)) {
2903     // Note the issue is with the CC of the called function, not of the call
2904     // itself.
2905     return lowerUnhandledCall(CLI, InVals,
2906                               "unsupported call to a shader function ");
2907   }
2908 
2909   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
2910       CallConv != CallingConv::AMDGPU_Gfx) {
2911     // Only allow calls with specific calling conventions.
2912     return lowerUnhandledCall(CLI, InVals,
2913                               "unsupported calling convention for call from "
2914                               "graphics shader of function ");
2915   }
2916 
2917   if (IsTailCall) {
2918     IsTailCall = isEligibleForTailCallOptimization(
2919       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2920     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2921       report_fatal_error("failed to perform tail call elimination on a call "
2922                          "site marked musttail");
2923     }
2924 
2925     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2926 
2927     // A sibling call is one where we're under the usual C ABI and not planning
2928     // to change that but can still do a tail call:
2929     if (!TailCallOpt && IsTailCall)
2930       IsSibCall = true;
2931 
2932     if (IsTailCall)
2933       ++NumTailCalls;
2934   }
2935 
2936   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2937   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2938   SmallVector<SDValue, 8> MemOpChains;
2939 
2940   // Analyze operands of the call, assigning locations to each operand.
2941   SmallVector<CCValAssign, 16> ArgLocs;
2942   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2943   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2944 
2945   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
2946       CallConv != CallingConv::AMDGPU_Gfx) {
2947     // With a fixed ABI, allocate fixed registers before user arguments.
2948     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2949   }
2950 
2951   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2952 
2953   // Get a count of how many bytes are to be pushed on the stack.
2954   unsigned NumBytes = CCInfo.getNextStackOffset();
2955 
2956   if (IsSibCall) {
2957     // Since we're not changing the ABI to make this a tail call, the memory
2958     // operands are already available in the caller's incoming argument space.
2959     NumBytes = 0;
2960   }
2961 
2962   // FPDiff is the byte offset of the call's argument area from the callee's.
2963   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2964   // by this amount for a tail call. In a sibling call it must be 0 because the
2965   // caller will deallocate the entire stack and the callee still expects its
2966   // arguments to begin at SP+0. Completely unused for non-tail calls.
2967   int32_t FPDiff = 0;
2968   MachineFrameInfo &MFI = MF.getFrameInfo();
2969 
2970   // Adjust the stack pointer for the new arguments...
2971   // These operations are automatically eliminated by the prolog/epilog pass
2972   if (!IsSibCall) {
2973     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2974 
2975     if (!Subtarget->enableFlatScratch()) {
2976       SmallVector<SDValue, 4> CopyFromChains;
2977 
2978       // In the HSA case, this should be an identity copy.
2979       SDValue ScratchRSrcReg
2980         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2981       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2982       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2983       Chain = DAG.getTokenFactor(DL, CopyFromChains);
2984     }
2985   }
2986 
2987   MVT PtrVT = MVT::i32;
2988 
2989   // Walk the register/memloc assignments, inserting copies/loads.
2990   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2991     CCValAssign &VA = ArgLocs[i];
2992     SDValue Arg = OutVals[i];
2993 
2994     // Promote the value if needed.
2995     switch (VA.getLocInfo()) {
2996     case CCValAssign::Full:
2997       break;
2998     case CCValAssign::BCvt:
2999       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3000       break;
3001     case CCValAssign::ZExt:
3002       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3003       break;
3004     case CCValAssign::SExt:
3005       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3006       break;
3007     case CCValAssign::AExt:
3008       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3009       break;
3010     case CCValAssign::FPExt:
3011       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3012       break;
3013     default:
3014       llvm_unreachable("Unknown loc info!");
3015     }
3016 
3017     if (VA.isRegLoc()) {
3018       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3019     } else {
3020       assert(VA.isMemLoc());
3021 
3022       SDValue DstAddr;
3023       MachinePointerInfo DstInfo;
3024 
3025       unsigned LocMemOffset = VA.getLocMemOffset();
3026       int32_t Offset = LocMemOffset;
3027 
3028       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3029       MaybeAlign Alignment;
3030 
3031       if (IsTailCall) {
3032         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3033         unsigned OpSize = Flags.isByVal() ?
3034           Flags.getByValSize() : VA.getValVT().getStoreSize();
3035 
3036         // FIXME: We can have better than the minimum byval required alignment.
3037         Alignment =
3038             Flags.isByVal()
3039                 ? Flags.getNonZeroByValAlign()
3040                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3041 
3042         Offset = Offset + FPDiff;
3043         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3044 
3045         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3046         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3047 
3048         // Make sure any stack arguments overlapping with where we're storing
3049         // are loaded before this eventual operation. Otherwise they'll be
3050         // clobbered.
3051 
3052         // FIXME: Why is this really necessary? This seems to just result in a
3053         // lot of code to copy the stack and write them back to the same
3054         // locations, which are supposed to be immutable?
3055         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3056       } else {
3057         DstAddr = PtrOff;
3058         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3059         Alignment =
3060             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3061       }
3062 
3063       if (Outs[i].Flags.isByVal()) {
3064         SDValue SizeNode =
3065             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3066         SDValue Cpy =
3067             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3068                           Outs[i].Flags.getNonZeroByValAlign(),
3069                           /*isVol = */ false, /*AlwaysInline = */ true,
3070                           /*isTailCall = */ false, DstInfo,
3071                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3072 
3073         MemOpChains.push_back(Cpy);
3074       } else {
3075         SDValue Store =
3076             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3077         MemOpChains.push_back(Store);
3078       }
3079     }
3080   }
3081 
3082   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3083       CallConv != CallingConv::AMDGPU_Gfx) {
3084     // Copy special input registers after user input arguments.
3085     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3086   }
3087 
3088   if (!MemOpChains.empty())
3089     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3090 
3091   // Build a sequence of copy-to-reg nodes chained together with token chain
3092   // and flag operands which copy the outgoing args into the appropriate regs.
3093   SDValue InFlag;
3094   for (auto &RegToPass : RegsToPass) {
3095     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3096                              RegToPass.second, InFlag);
3097     InFlag = Chain.getValue(1);
3098   }
3099 
3100 
3101   SDValue PhysReturnAddrReg;
3102   if (IsTailCall) {
3103     // Since the return is being combined with the call, we need to pass on the
3104     // return address.
3105 
3106     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3107     SDValue ReturnAddrReg = CreateLiveInRegister(
3108       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3109 
3110     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3111                                         MVT::i64);
3112     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3113     InFlag = Chain.getValue(1);
3114   }
3115 
3116   // We don't usually want to end the call-sequence here because we would tidy
3117   // the frame up *after* the call, however in the ABI-changing tail-call case
3118   // we've carefully laid out the parameters so that when sp is reset they'll be
3119   // in the correct location.
3120   if (IsTailCall && !IsSibCall) {
3121     Chain = DAG.getCALLSEQ_END(Chain,
3122                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3123                                DAG.getTargetConstant(0, DL, MVT::i32),
3124                                InFlag, DL);
3125     InFlag = Chain.getValue(1);
3126   }
3127 
3128   std::vector<SDValue> Ops;
3129   Ops.push_back(Chain);
3130   Ops.push_back(Callee);
3131   // Add a redundant copy of the callee global which will not be legalized, as
3132   // we need direct access to the callee later.
3133   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3134     const GlobalValue *GV = GSD->getGlobal();
3135     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3136   } else {
3137     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3138   }
3139 
3140   if (IsTailCall) {
3141     // Each tail call may have to adjust the stack by a different amount, so
3142     // this information must travel along with the operation for eventual
3143     // consumption by emitEpilogue.
3144     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3145 
3146     Ops.push_back(PhysReturnAddrReg);
3147   }
3148 
3149   // Add argument registers to the end of the list so that they are known live
3150   // into the call.
3151   for (auto &RegToPass : RegsToPass) {
3152     Ops.push_back(DAG.getRegister(RegToPass.first,
3153                                   RegToPass.second.getValueType()));
3154   }
3155 
3156   // Add a register mask operand representing the call-preserved registers.
3157 
3158   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3159   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3160   assert(Mask && "Missing call preserved mask for calling convention");
3161   Ops.push_back(DAG.getRegisterMask(Mask));
3162 
3163   if (InFlag.getNode())
3164     Ops.push_back(InFlag);
3165 
3166   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3167 
3168   // If we're doing a tall call, use a TC_RETURN here rather than an
3169   // actual call instruction.
3170   if (IsTailCall) {
3171     MFI.setHasTailCall();
3172     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3173   }
3174 
3175   // Returns a chain and a flag for retval copy to use.
3176   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3177   Chain = Call.getValue(0);
3178   InFlag = Call.getValue(1);
3179 
3180   uint64_t CalleePopBytes = NumBytes;
3181   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3182                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3183                              InFlag, DL);
3184   if (!Ins.empty())
3185     InFlag = Chain.getValue(1);
3186 
3187   // Handle result values, copying them out of physregs into vregs that we
3188   // return.
3189   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3190                          InVals, IsThisReturn,
3191                          IsThisReturn ? OutVals[0] : SDValue());
3192 }
3193 
3194 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3195 // except for applying the wave size scale to the increment amount.
3196 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3197     SDValue Op, SelectionDAG &DAG) const {
3198   const MachineFunction &MF = DAG.getMachineFunction();
3199   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3200 
3201   SDLoc dl(Op);
3202   EVT VT = Op.getValueType();
3203   SDValue Tmp1 = Op;
3204   SDValue Tmp2 = Op.getValue(1);
3205   SDValue Tmp3 = Op.getOperand(2);
3206   SDValue Chain = Tmp1.getOperand(0);
3207 
3208   Register SPReg = Info->getStackPtrOffsetReg();
3209 
3210   // Chain the dynamic stack allocation so that it doesn't modify the stack
3211   // pointer when other instructions are using the stack.
3212   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3213 
3214   SDValue Size  = Tmp2.getOperand(1);
3215   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3216   Chain = SP.getValue(1);
3217   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3218   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3219   const TargetFrameLowering *TFL = ST.getFrameLowering();
3220   unsigned Opc =
3221     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3222     ISD::ADD : ISD::SUB;
3223 
3224   SDValue ScaledSize = DAG.getNode(
3225       ISD::SHL, dl, VT, Size,
3226       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3227 
3228   Align StackAlign = TFL->getStackAlign();
3229   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3230   if (Alignment && *Alignment > StackAlign) {
3231     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3232                        DAG.getConstant(-(uint64_t)Alignment->value()
3233                                            << ST.getWavefrontSizeLog2(),
3234                                        dl, VT));
3235   }
3236 
3237   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3238   Tmp2 = DAG.getCALLSEQ_END(
3239       Chain, DAG.getIntPtrConstant(0, dl, true),
3240       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3241 
3242   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3243 }
3244 
3245 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3246                                                   SelectionDAG &DAG) const {
3247   // We only handle constant sizes here to allow non-entry block, static sized
3248   // allocas. A truly dynamic value is more difficult to support because we
3249   // don't know if the size value is uniform or not. If the size isn't uniform,
3250   // we would need to do a wave reduction to get the maximum size to know how
3251   // much to increment the uniform stack pointer.
3252   SDValue Size = Op.getOperand(1);
3253   if (isa<ConstantSDNode>(Size))
3254       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3255 
3256   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3257 }
3258 
3259 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3260                                              const MachineFunction &MF) const {
3261   Register Reg = StringSwitch<Register>(RegName)
3262     .Case("m0", AMDGPU::M0)
3263     .Case("exec", AMDGPU::EXEC)
3264     .Case("exec_lo", AMDGPU::EXEC_LO)
3265     .Case("exec_hi", AMDGPU::EXEC_HI)
3266     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3267     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3268     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3269     .Default(Register());
3270 
3271   if (Reg == AMDGPU::NoRegister) {
3272     report_fatal_error(Twine("invalid register name \""
3273                              + StringRef(RegName)  + "\"."));
3274 
3275   }
3276 
3277   if (!Subtarget->hasFlatScrRegister() &&
3278        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3279     report_fatal_error(Twine("invalid register \""
3280                              + StringRef(RegName)  + "\" for subtarget."));
3281   }
3282 
3283   switch (Reg) {
3284   case AMDGPU::M0:
3285   case AMDGPU::EXEC_LO:
3286   case AMDGPU::EXEC_HI:
3287   case AMDGPU::FLAT_SCR_LO:
3288   case AMDGPU::FLAT_SCR_HI:
3289     if (VT.getSizeInBits() == 32)
3290       return Reg;
3291     break;
3292   case AMDGPU::EXEC:
3293   case AMDGPU::FLAT_SCR:
3294     if (VT.getSizeInBits() == 64)
3295       return Reg;
3296     break;
3297   default:
3298     llvm_unreachable("missing register type checking");
3299   }
3300 
3301   report_fatal_error(Twine("invalid type for register \""
3302                            + StringRef(RegName) + "\"."));
3303 }
3304 
3305 // If kill is not the last instruction, split the block so kill is always a
3306 // proper terminator.
3307 MachineBasicBlock *
3308 SITargetLowering::splitKillBlock(MachineInstr &MI,
3309                                  MachineBasicBlock *BB) const {
3310   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3311   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3312   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3313   return SplitBB;
3314 }
3315 
3316 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3317 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3318 // be the first instruction in the remainder block.
3319 //
3320 /// \returns { LoopBody, Remainder }
3321 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3322 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3323   MachineFunction *MF = MBB.getParent();
3324   MachineBasicBlock::iterator I(&MI);
3325 
3326   // To insert the loop we need to split the block. Move everything after this
3327   // point to a new block, and insert a new empty block between the two.
3328   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3329   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3330   MachineFunction::iterator MBBI(MBB);
3331   ++MBBI;
3332 
3333   MF->insert(MBBI, LoopBB);
3334   MF->insert(MBBI, RemainderBB);
3335 
3336   LoopBB->addSuccessor(LoopBB);
3337   LoopBB->addSuccessor(RemainderBB);
3338 
3339   // Move the rest of the block into a new block.
3340   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3341 
3342   if (InstInLoop) {
3343     auto Next = std::next(I);
3344 
3345     // Move instruction to loop body.
3346     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3347 
3348     // Move the rest of the block.
3349     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3350   } else {
3351     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3352   }
3353 
3354   MBB.addSuccessor(LoopBB);
3355 
3356   return std::make_pair(LoopBB, RemainderBB);
3357 }
3358 
3359 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3360 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3361   MachineBasicBlock *MBB = MI.getParent();
3362   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3363   auto I = MI.getIterator();
3364   auto E = std::next(I);
3365 
3366   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3367     .addImm(0);
3368 
3369   MIBundleBuilder Bundler(*MBB, I, E);
3370   finalizeBundle(*MBB, Bundler.begin());
3371 }
3372 
3373 MachineBasicBlock *
3374 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3375                                          MachineBasicBlock *BB) const {
3376   const DebugLoc &DL = MI.getDebugLoc();
3377 
3378   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3379 
3380   MachineBasicBlock *LoopBB;
3381   MachineBasicBlock *RemainderBB;
3382   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3383 
3384   // Apparently kill flags are only valid if the def is in the same block?
3385   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3386     Src->setIsKill(false);
3387 
3388   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3389 
3390   MachineBasicBlock::iterator I = LoopBB->end();
3391 
3392   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3393     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3394 
3395   // Clear TRAP_STS.MEM_VIOL
3396   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3397     .addImm(0)
3398     .addImm(EncodedReg);
3399 
3400   bundleInstWithWaitcnt(MI);
3401 
3402   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3403 
3404   // Load and check TRAP_STS.MEM_VIOL
3405   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3406     .addImm(EncodedReg);
3407 
3408   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3409   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3410     .addReg(Reg, RegState::Kill)
3411     .addImm(0);
3412   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3413     .addMBB(LoopBB);
3414 
3415   return RemainderBB;
3416 }
3417 
3418 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3419 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3420 // will only do one iteration. In the worst case, this will loop 64 times.
3421 //
3422 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3423 static MachineBasicBlock::iterator
3424 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3425                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3426                        const DebugLoc &DL, const MachineOperand &Idx,
3427                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3428                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3429                        Register &SGPRIdxReg) {
3430 
3431   MachineFunction *MF = OrigBB.getParent();
3432   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3433   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3434   MachineBasicBlock::iterator I = LoopBB.begin();
3435 
3436   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3437   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3438   Register NewExec = MRI.createVirtualRegister(BoolRC);
3439   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3440   Register CondReg = MRI.createVirtualRegister(BoolRC);
3441 
3442   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3443     .addReg(InitReg)
3444     .addMBB(&OrigBB)
3445     .addReg(ResultReg)
3446     .addMBB(&LoopBB);
3447 
3448   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3449     .addReg(InitSaveExecReg)
3450     .addMBB(&OrigBB)
3451     .addReg(NewExec)
3452     .addMBB(&LoopBB);
3453 
3454   // Read the next variant <- also loop target.
3455   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3456       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3457 
3458   // Compare the just read M0 value to all possible Idx values.
3459   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3460       .addReg(CurrentIdxReg)
3461       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3462 
3463   // Update EXEC, save the original EXEC value to VCC.
3464   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3465                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3466           NewExec)
3467     .addReg(CondReg, RegState::Kill);
3468 
3469   MRI.setSimpleHint(NewExec, CondReg);
3470 
3471   if (UseGPRIdxMode) {
3472     if (Offset == 0) {
3473       SGPRIdxReg = CurrentIdxReg;
3474     } else {
3475       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3476       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3477           .addReg(CurrentIdxReg, RegState::Kill)
3478           .addImm(Offset);
3479     }
3480   } else {
3481     // Move index from VCC into M0
3482     if (Offset == 0) {
3483       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3484         .addReg(CurrentIdxReg, RegState::Kill);
3485     } else {
3486       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3487         .addReg(CurrentIdxReg, RegState::Kill)
3488         .addImm(Offset);
3489     }
3490   }
3491 
3492   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3493   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3494   MachineInstr *InsertPt =
3495     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3496                                                   : AMDGPU::S_XOR_B64_term), Exec)
3497       .addReg(Exec)
3498       .addReg(NewExec);
3499 
3500   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3501   // s_cbranch_scc0?
3502 
3503   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3504   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3505     .addMBB(&LoopBB);
3506 
3507   return InsertPt->getIterator();
3508 }
3509 
3510 // This has slightly sub-optimal regalloc when the source vector is killed by
3511 // the read. The register allocator does not understand that the kill is
3512 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3513 // subregister from it, using 1 more VGPR than necessary. This was saved when
3514 // this was expanded after register allocation.
3515 static MachineBasicBlock::iterator
3516 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3517                unsigned InitResultReg, unsigned PhiReg, int Offset,
3518                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3519   MachineFunction *MF = MBB.getParent();
3520   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3521   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3522   MachineRegisterInfo &MRI = MF->getRegInfo();
3523   const DebugLoc &DL = MI.getDebugLoc();
3524   MachineBasicBlock::iterator I(&MI);
3525 
3526   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3527   Register DstReg = MI.getOperand(0).getReg();
3528   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3529   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3530   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3531   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3532 
3533   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3534 
3535   // Save the EXEC mask
3536   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3537     .addReg(Exec);
3538 
3539   MachineBasicBlock *LoopBB;
3540   MachineBasicBlock *RemainderBB;
3541   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3542 
3543   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3544 
3545   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3546                                       InitResultReg, DstReg, PhiReg, TmpExec,
3547                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3548 
3549   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3550   MachineFunction::iterator MBBI(LoopBB);
3551   ++MBBI;
3552   MF->insert(MBBI, LandingPad);
3553   LoopBB->removeSuccessor(RemainderBB);
3554   LandingPad->addSuccessor(RemainderBB);
3555   LoopBB->addSuccessor(LandingPad);
3556   MachineBasicBlock::iterator First = LandingPad->begin();
3557   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3558     .addReg(SaveExec);
3559 
3560   return InsPt;
3561 }
3562 
3563 // Returns subreg index, offset
3564 static std::pair<unsigned, int>
3565 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3566                             const TargetRegisterClass *SuperRC,
3567                             unsigned VecReg,
3568                             int Offset) {
3569   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3570 
3571   // Skip out of bounds offsets, or else we would end up using an undefined
3572   // register.
3573   if (Offset >= NumElts || Offset < 0)
3574     return std::make_pair(AMDGPU::sub0, Offset);
3575 
3576   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3577 }
3578 
3579 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3580                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3581                                  int Offset) {
3582   MachineBasicBlock *MBB = MI.getParent();
3583   const DebugLoc &DL = MI.getDebugLoc();
3584   MachineBasicBlock::iterator I(&MI);
3585 
3586   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3587 
3588   assert(Idx->getReg() != AMDGPU::NoRegister);
3589 
3590   if (Offset == 0) {
3591     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3592   } else {
3593     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3594         .add(*Idx)
3595         .addImm(Offset);
3596   }
3597 }
3598 
3599 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3600                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3601                                    int Offset) {
3602   MachineBasicBlock *MBB = MI.getParent();
3603   const DebugLoc &DL = MI.getDebugLoc();
3604   MachineBasicBlock::iterator I(&MI);
3605 
3606   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3607 
3608   if (Offset == 0)
3609     return Idx->getReg();
3610 
3611   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3612   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3613       .add(*Idx)
3614       .addImm(Offset);
3615   return Tmp;
3616 }
3617 
3618 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3619                                           MachineBasicBlock &MBB,
3620                                           const GCNSubtarget &ST) {
3621   const SIInstrInfo *TII = ST.getInstrInfo();
3622   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3623   MachineFunction *MF = MBB.getParent();
3624   MachineRegisterInfo &MRI = MF->getRegInfo();
3625 
3626   Register Dst = MI.getOperand(0).getReg();
3627   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3628   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3629   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3630 
3631   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3632   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3633 
3634   unsigned SubReg;
3635   std::tie(SubReg, Offset)
3636     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3637 
3638   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3639 
3640   // Check for a SGPR index.
3641   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3642     MachineBasicBlock::iterator I(&MI);
3643     const DebugLoc &DL = MI.getDebugLoc();
3644 
3645     if (UseGPRIdxMode) {
3646       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3647       // to avoid interfering with other uses, so probably requires a new
3648       // optimization pass.
3649       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3650 
3651       const MCInstrDesc &GPRIDXDesc =
3652           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3653       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3654           .addReg(SrcReg)
3655           .addReg(Idx)
3656           .addImm(SubReg);
3657     } else {
3658       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3659 
3660       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3661         .addReg(SrcReg, 0, SubReg)
3662         .addReg(SrcReg, RegState::Implicit);
3663     }
3664 
3665     MI.eraseFromParent();
3666 
3667     return &MBB;
3668   }
3669 
3670   // Control flow needs to be inserted if indexing with a VGPR.
3671   const DebugLoc &DL = MI.getDebugLoc();
3672   MachineBasicBlock::iterator I(&MI);
3673 
3674   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3675   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3676 
3677   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3678 
3679   Register SGPRIdxReg;
3680   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3681                               UseGPRIdxMode, SGPRIdxReg);
3682 
3683   MachineBasicBlock *LoopBB = InsPt->getParent();
3684 
3685   if (UseGPRIdxMode) {
3686     const MCInstrDesc &GPRIDXDesc =
3687         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3688 
3689     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3690         .addReg(SrcReg)
3691         .addReg(SGPRIdxReg)
3692         .addImm(SubReg);
3693   } else {
3694     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3695       .addReg(SrcReg, 0, SubReg)
3696       .addReg(SrcReg, RegState::Implicit);
3697   }
3698 
3699   MI.eraseFromParent();
3700 
3701   return LoopBB;
3702 }
3703 
3704 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3705                                           MachineBasicBlock &MBB,
3706                                           const GCNSubtarget &ST) {
3707   const SIInstrInfo *TII = ST.getInstrInfo();
3708   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3709   MachineFunction *MF = MBB.getParent();
3710   MachineRegisterInfo &MRI = MF->getRegInfo();
3711 
3712   Register Dst = MI.getOperand(0).getReg();
3713   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3714   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3715   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3716   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3717   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3718   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3719 
3720   // This can be an immediate, but will be folded later.
3721   assert(Val->getReg());
3722 
3723   unsigned SubReg;
3724   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3725                                                          SrcVec->getReg(),
3726                                                          Offset);
3727   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3728 
3729   if (Idx->getReg() == AMDGPU::NoRegister) {
3730     MachineBasicBlock::iterator I(&MI);
3731     const DebugLoc &DL = MI.getDebugLoc();
3732 
3733     assert(Offset == 0);
3734 
3735     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3736         .add(*SrcVec)
3737         .add(*Val)
3738         .addImm(SubReg);
3739 
3740     MI.eraseFromParent();
3741     return &MBB;
3742   }
3743 
3744   // Check for a SGPR index.
3745   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3746     MachineBasicBlock::iterator I(&MI);
3747     const DebugLoc &DL = MI.getDebugLoc();
3748 
3749     if (UseGPRIdxMode) {
3750       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3751 
3752       const MCInstrDesc &GPRIDXDesc =
3753           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3754       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3755           .addReg(SrcVec->getReg())
3756           .add(*Val)
3757           .addReg(Idx)
3758           .addImm(SubReg);
3759     } else {
3760       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3761 
3762       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3763           TRI.getRegSizeInBits(*VecRC), 32, false);
3764       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3765           .addReg(SrcVec->getReg())
3766           .add(*Val)
3767           .addImm(SubReg);
3768     }
3769     MI.eraseFromParent();
3770     return &MBB;
3771   }
3772 
3773   // Control flow needs to be inserted if indexing with a VGPR.
3774   if (Val->isReg())
3775     MRI.clearKillFlags(Val->getReg());
3776 
3777   const DebugLoc &DL = MI.getDebugLoc();
3778 
3779   Register PhiReg = MRI.createVirtualRegister(VecRC);
3780 
3781   Register SGPRIdxReg;
3782   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3783                               UseGPRIdxMode, SGPRIdxReg);
3784   MachineBasicBlock *LoopBB = InsPt->getParent();
3785 
3786   if (UseGPRIdxMode) {
3787     const MCInstrDesc &GPRIDXDesc =
3788         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3789 
3790     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3791         .addReg(PhiReg)
3792         .add(*Val)
3793         .addReg(SGPRIdxReg)
3794         .addImm(AMDGPU::sub0);
3795   } else {
3796     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3797         TRI.getRegSizeInBits(*VecRC), 32, false);
3798     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3799         .addReg(PhiReg)
3800         .add(*Val)
3801         .addImm(AMDGPU::sub0);
3802   }
3803 
3804   MI.eraseFromParent();
3805   return LoopBB;
3806 }
3807 
3808 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3809   MachineInstr &MI, MachineBasicBlock *BB) const {
3810 
3811   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3812   MachineFunction *MF = BB->getParent();
3813   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3814 
3815   switch (MI.getOpcode()) {
3816   case AMDGPU::S_UADDO_PSEUDO:
3817   case AMDGPU::S_USUBO_PSEUDO: {
3818     const DebugLoc &DL = MI.getDebugLoc();
3819     MachineOperand &Dest0 = MI.getOperand(0);
3820     MachineOperand &Dest1 = MI.getOperand(1);
3821     MachineOperand &Src0 = MI.getOperand(2);
3822     MachineOperand &Src1 = MI.getOperand(3);
3823 
3824     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3825                        ? AMDGPU::S_ADD_I32
3826                        : AMDGPU::S_SUB_I32;
3827     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3828 
3829     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3830         .addImm(1)
3831         .addImm(0);
3832 
3833     MI.eraseFromParent();
3834     return BB;
3835   }
3836   case AMDGPU::S_ADD_U64_PSEUDO:
3837   case AMDGPU::S_SUB_U64_PSEUDO: {
3838     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3839     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3840     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3841     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3842     const DebugLoc &DL = MI.getDebugLoc();
3843 
3844     MachineOperand &Dest = MI.getOperand(0);
3845     MachineOperand &Src0 = MI.getOperand(1);
3846     MachineOperand &Src1 = MI.getOperand(2);
3847 
3848     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3849     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3850 
3851     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3852         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3853     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3854         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3855 
3856     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3857         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3858     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3859         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3860 
3861     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3862 
3863     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3864     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3865     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3866     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3867     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3868         .addReg(DestSub0)
3869         .addImm(AMDGPU::sub0)
3870         .addReg(DestSub1)
3871         .addImm(AMDGPU::sub1);
3872     MI.eraseFromParent();
3873     return BB;
3874   }
3875   case AMDGPU::V_ADD_U64_PSEUDO:
3876   case AMDGPU::V_SUB_U64_PSEUDO: {
3877     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3878     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3879     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3880     const DebugLoc &DL = MI.getDebugLoc();
3881 
3882     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3883 
3884     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3885 
3886     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3887     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3888 
3889     Register CarryReg = MRI.createVirtualRegister(CarryRC);
3890     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3891 
3892     MachineOperand &Dest = MI.getOperand(0);
3893     MachineOperand &Src0 = MI.getOperand(1);
3894     MachineOperand &Src1 = MI.getOperand(2);
3895 
3896     const TargetRegisterClass *Src0RC = Src0.isReg()
3897                                             ? MRI.getRegClass(Src0.getReg())
3898                                             : &AMDGPU::VReg_64RegClass;
3899     const TargetRegisterClass *Src1RC = Src1.isReg()
3900                                             ? MRI.getRegClass(Src1.getReg())
3901                                             : &AMDGPU::VReg_64RegClass;
3902 
3903     const TargetRegisterClass *Src0SubRC =
3904         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3905     const TargetRegisterClass *Src1SubRC =
3906         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3907 
3908     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3909         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3910     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3911         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3912 
3913     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3914         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3915     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3916         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3917 
3918     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
3919     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3920                                .addReg(CarryReg, RegState::Define)
3921                                .add(SrcReg0Sub0)
3922                                .add(SrcReg1Sub0)
3923                                .addImm(0); // clamp bit
3924 
3925     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3926     MachineInstr *HiHalf =
3927         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3928             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3929             .add(SrcReg0Sub1)
3930             .add(SrcReg1Sub1)
3931             .addReg(CarryReg, RegState::Kill)
3932             .addImm(0); // clamp bit
3933 
3934     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3935         .addReg(DestSub0)
3936         .addImm(AMDGPU::sub0)
3937         .addReg(DestSub1)
3938         .addImm(AMDGPU::sub1);
3939     TII->legalizeOperands(*LoHalf);
3940     TII->legalizeOperands(*HiHalf);
3941     MI.eraseFromParent();
3942     return BB;
3943   }
3944   case AMDGPU::S_ADD_CO_PSEUDO:
3945   case AMDGPU::S_SUB_CO_PSEUDO: {
3946     // This pseudo has a chance to be selected
3947     // only from uniform add/subcarry node. All the VGPR operands
3948     // therefore assumed to be splat vectors.
3949     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3950     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3951     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3952     MachineBasicBlock::iterator MII = MI;
3953     const DebugLoc &DL = MI.getDebugLoc();
3954     MachineOperand &Dest = MI.getOperand(0);
3955     MachineOperand &CarryDest = MI.getOperand(1);
3956     MachineOperand &Src0 = MI.getOperand(2);
3957     MachineOperand &Src1 = MI.getOperand(3);
3958     MachineOperand &Src2 = MI.getOperand(4);
3959     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
3960                        ? AMDGPU::S_ADDC_U32
3961                        : AMDGPU::S_SUBB_U32;
3962     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
3963       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3964       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
3965           .addReg(Src0.getReg());
3966       Src0.setReg(RegOp0);
3967     }
3968     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
3969       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3970       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
3971           .addReg(Src1.getReg());
3972       Src1.setReg(RegOp1);
3973     }
3974     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3975     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
3976       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
3977           .addReg(Src2.getReg());
3978       Src2.setReg(RegOp2);
3979     }
3980 
3981     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
3982     if (TRI->getRegSizeInBits(*Src2RC) == 64) {
3983       if (ST.hasScalarCompareEq64()) {
3984         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
3985             .addReg(Src2.getReg())
3986             .addImm(0);
3987       } else {
3988         const TargetRegisterClass *SubRC =
3989             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
3990         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
3991             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
3992         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
3993             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
3994         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3995 
3996         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
3997             .add(Src2Sub0)
3998             .add(Src2Sub1);
3999 
4000         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4001             .addReg(Src2_32, RegState::Kill)
4002             .addImm(0);
4003       }
4004     } else {
4005       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4006           .addReg(Src2.getReg())
4007           .addImm(0);
4008     }
4009 
4010     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4011 
4012     BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4013       .addReg(AMDGPU::SCC);
4014     MI.eraseFromParent();
4015     return BB;
4016   }
4017   case AMDGPU::SI_INIT_M0: {
4018     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4019             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4020         .add(MI.getOperand(0));
4021     MI.eraseFromParent();
4022     return BB;
4023   }
4024   case AMDGPU::GET_GROUPSTATICSIZE: {
4025     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4026            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4027     DebugLoc DL = MI.getDebugLoc();
4028     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4029         .add(MI.getOperand(0))
4030         .addImm(MFI->getLDSSize());
4031     MI.eraseFromParent();
4032     return BB;
4033   }
4034   case AMDGPU::SI_INDIRECT_SRC_V1:
4035   case AMDGPU::SI_INDIRECT_SRC_V2:
4036   case AMDGPU::SI_INDIRECT_SRC_V4:
4037   case AMDGPU::SI_INDIRECT_SRC_V8:
4038   case AMDGPU::SI_INDIRECT_SRC_V16:
4039   case AMDGPU::SI_INDIRECT_SRC_V32:
4040     return emitIndirectSrc(MI, *BB, *getSubtarget());
4041   case AMDGPU::SI_INDIRECT_DST_V1:
4042   case AMDGPU::SI_INDIRECT_DST_V2:
4043   case AMDGPU::SI_INDIRECT_DST_V4:
4044   case AMDGPU::SI_INDIRECT_DST_V8:
4045   case AMDGPU::SI_INDIRECT_DST_V16:
4046   case AMDGPU::SI_INDIRECT_DST_V32:
4047     return emitIndirectDst(MI, *BB, *getSubtarget());
4048   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4049   case AMDGPU::SI_KILL_I1_PSEUDO:
4050     return splitKillBlock(MI, BB);
4051   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4052     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4053     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4054     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4055 
4056     Register Dst = MI.getOperand(0).getReg();
4057     Register Src0 = MI.getOperand(1).getReg();
4058     Register Src1 = MI.getOperand(2).getReg();
4059     const DebugLoc &DL = MI.getDebugLoc();
4060     Register SrcCond = MI.getOperand(3).getReg();
4061 
4062     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4063     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4064     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4065     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4066 
4067     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4068       .addReg(SrcCond);
4069     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4070       .addImm(0)
4071       .addReg(Src0, 0, AMDGPU::sub0)
4072       .addImm(0)
4073       .addReg(Src1, 0, AMDGPU::sub0)
4074       .addReg(SrcCondCopy);
4075     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4076       .addImm(0)
4077       .addReg(Src0, 0, AMDGPU::sub1)
4078       .addImm(0)
4079       .addReg(Src1, 0, AMDGPU::sub1)
4080       .addReg(SrcCondCopy);
4081 
4082     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4083       .addReg(DstLo)
4084       .addImm(AMDGPU::sub0)
4085       .addReg(DstHi)
4086       .addImm(AMDGPU::sub1);
4087     MI.eraseFromParent();
4088     return BB;
4089   }
4090   case AMDGPU::SI_BR_UNDEF: {
4091     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4092     const DebugLoc &DL = MI.getDebugLoc();
4093     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4094                            .add(MI.getOperand(0));
4095     Br->getOperand(1).setIsUndef(true); // read undef SCC
4096     MI.eraseFromParent();
4097     return BB;
4098   }
4099   case AMDGPU::ADJCALLSTACKUP:
4100   case AMDGPU::ADJCALLSTACKDOWN: {
4101     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4102     MachineInstrBuilder MIB(*MF, &MI);
4103     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4104        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4105     return BB;
4106   }
4107   case AMDGPU::SI_CALL_ISEL: {
4108     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4109     const DebugLoc &DL = MI.getDebugLoc();
4110 
4111     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4112 
4113     MachineInstrBuilder MIB;
4114     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4115 
4116     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4117       MIB.add(MI.getOperand(I));
4118 
4119     MIB.cloneMemRefs(MI);
4120     MI.eraseFromParent();
4121     return BB;
4122   }
4123   case AMDGPU::V_ADD_CO_U32_e32:
4124   case AMDGPU::V_SUB_CO_U32_e32:
4125   case AMDGPU::V_SUBREV_CO_U32_e32: {
4126     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4127     const DebugLoc &DL = MI.getDebugLoc();
4128     unsigned Opc = MI.getOpcode();
4129 
4130     bool NeedClampOperand = false;
4131     if (TII->pseudoToMCOpcode(Opc) == -1) {
4132       Opc = AMDGPU::getVOPe64(Opc);
4133       NeedClampOperand = true;
4134     }
4135 
4136     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4137     if (TII->isVOP3(*I)) {
4138       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4139       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4140       I.addReg(TRI->getVCC(), RegState::Define);
4141     }
4142     I.add(MI.getOperand(1))
4143      .add(MI.getOperand(2));
4144     if (NeedClampOperand)
4145       I.addImm(0); // clamp bit for e64 encoding
4146 
4147     TII->legalizeOperands(*I);
4148 
4149     MI.eraseFromParent();
4150     return BB;
4151   }
4152   case AMDGPU::DS_GWS_INIT:
4153   case AMDGPU::DS_GWS_SEMA_V:
4154   case AMDGPU::DS_GWS_SEMA_BR:
4155   case AMDGPU::DS_GWS_SEMA_P:
4156   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4157   case AMDGPU::DS_GWS_BARRIER:
4158     // A s_waitcnt 0 is required to be the instruction immediately following.
4159     if (getSubtarget()->hasGWSAutoReplay()) {
4160       bundleInstWithWaitcnt(MI);
4161       return BB;
4162     }
4163 
4164     return emitGWSMemViolTestLoop(MI, BB);
4165   case AMDGPU::S_SETREG_B32: {
4166     // Try to optimize cases that only set the denormal mode or rounding mode.
4167     //
4168     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4169     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4170     // instead.
4171     //
4172     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4173     // allow you to have a no side effect instruction in the output of a
4174     // sideeffecting pattern.
4175     unsigned ID, Offset, Width;
4176     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4177     if (ID != AMDGPU::Hwreg::ID_MODE)
4178       return BB;
4179 
4180     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4181     const unsigned SetMask = WidthMask << Offset;
4182 
4183     if (getSubtarget()->hasDenormModeInst()) {
4184       unsigned SetDenormOp = 0;
4185       unsigned SetRoundOp = 0;
4186 
4187       // The dedicated instructions can only set the whole denorm or round mode
4188       // at once, not a subset of bits in either.
4189       if (SetMask ==
4190           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4191         // If this fully sets both the round and denorm mode, emit the two
4192         // dedicated instructions for these.
4193         SetRoundOp = AMDGPU::S_ROUND_MODE;
4194         SetDenormOp = AMDGPU::S_DENORM_MODE;
4195       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4196         SetRoundOp = AMDGPU::S_ROUND_MODE;
4197       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4198         SetDenormOp = AMDGPU::S_DENORM_MODE;
4199       }
4200 
4201       if (SetRoundOp || SetDenormOp) {
4202         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4203         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4204         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4205           unsigned ImmVal = Def->getOperand(1).getImm();
4206           if (SetRoundOp) {
4207             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4208                 .addImm(ImmVal & 0xf);
4209 
4210             // If we also have the denorm mode, get just the denorm mode bits.
4211             ImmVal >>= 4;
4212           }
4213 
4214           if (SetDenormOp) {
4215             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4216                 .addImm(ImmVal & 0xf);
4217           }
4218 
4219           MI.eraseFromParent();
4220           return BB;
4221         }
4222       }
4223     }
4224 
4225     // If only FP bits are touched, used the no side effects pseudo.
4226     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4227                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4228       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4229 
4230     return BB;
4231   }
4232   default:
4233     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4234   }
4235 }
4236 
4237 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4238   return isTypeLegal(VT.getScalarType());
4239 }
4240 
4241 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4242   // This currently forces unfolding various combinations of fsub into fma with
4243   // free fneg'd operands. As long as we have fast FMA (controlled by
4244   // isFMAFasterThanFMulAndFAdd), we should perform these.
4245 
4246   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4247   // most of these combines appear to be cycle neutral but save on instruction
4248   // count / code size.
4249   return true;
4250 }
4251 
4252 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4253                                          EVT VT) const {
4254   if (!VT.isVector()) {
4255     return MVT::i1;
4256   }
4257   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4258 }
4259 
4260 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4261   // TODO: Should i16 be used always if legal? For now it would force VALU
4262   // shifts.
4263   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4264 }
4265 
4266 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4267   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4268              ? Ty.changeElementSize(16)
4269              : Ty.changeElementSize(32);
4270 }
4271 
4272 // Answering this is somewhat tricky and depends on the specific device which
4273 // have different rates for fma or all f64 operations.
4274 //
4275 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4276 // regardless of which device (although the number of cycles differs between
4277 // devices), so it is always profitable for f64.
4278 //
4279 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4280 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4281 // which we can always do even without fused FP ops since it returns the same
4282 // result as the separate operations and since it is always full
4283 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4284 // however does not support denormals, so we do report fma as faster if we have
4285 // a fast fma device and require denormals.
4286 //
4287 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4288                                                   EVT VT) const {
4289   VT = VT.getScalarType();
4290 
4291   switch (VT.getSimpleVT().SimpleTy) {
4292   case MVT::f32: {
4293     // If mad is not available this depends only on if f32 fma is full rate.
4294     if (!Subtarget->hasMadMacF32Insts())
4295       return Subtarget->hasFastFMAF32();
4296 
4297     // Otherwise f32 mad is always full rate and returns the same result as
4298     // the separate operations so should be preferred over fma.
4299     // However does not support denomals.
4300     if (hasFP32Denormals(MF))
4301       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4302 
4303     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4304     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4305   }
4306   case MVT::f64:
4307     return true;
4308   case MVT::f16:
4309     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4310   default:
4311     break;
4312   }
4313 
4314   return false;
4315 }
4316 
4317 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4318                                    const SDNode *N) const {
4319   // TODO: Check future ftz flag
4320   // v_mad_f32/v_mac_f32 do not support denormals.
4321   EVT VT = N->getValueType(0);
4322   if (VT == MVT::f32)
4323     return Subtarget->hasMadMacF32Insts() &&
4324            !hasFP32Denormals(DAG.getMachineFunction());
4325   if (VT == MVT::f16) {
4326     return Subtarget->hasMadF16() &&
4327            !hasFP64FP16Denormals(DAG.getMachineFunction());
4328   }
4329 
4330   return false;
4331 }
4332 
4333 //===----------------------------------------------------------------------===//
4334 // Custom DAG Lowering Operations
4335 //===----------------------------------------------------------------------===//
4336 
4337 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4338 // wider vector type is legal.
4339 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4340                                              SelectionDAG &DAG) const {
4341   unsigned Opc = Op.getOpcode();
4342   EVT VT = Op.getValueType();
4343   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4344 
4345   SDValue Lo, Hi;
4346   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4347 
4348   SDLoc SL(Op);
4349   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4350                              Op->getFlags());
4351   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4352                              Op->getFlags());
4353 
4354   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4355 }
4356 
4357 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4358 // wider vector type is legal.
4359 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4360                                               SelectionDAG &DAG) const {
4361   unsigned Opc = Op.getOpcode();
4362   EVT VT = Op.getValueType();
4363   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4364 
4365   SDValue Lo0, Hi0;
4366   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4367   SDValue Lo1, Hi1;
4368   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4369 
4370   SDLoc SL(Op);
4371 
4372   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4373                              Op->getFlags());
4374   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4375                              Op->getFlags());
4376 
4377   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4378 }
4379 
4380 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4381                                               SelectionDAG &DAG) const {
4382   unsigned Opc = Op.getOpcode();
4383   EVT VT = Op.getValueType();
4384   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4385 
4386   SDValue Lo0, Hi0;
4387   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4388   SDValue Lo1, Hi1;
4389   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4390   SDValue Lo2, Hi2;
4391   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4392 
4393   SDLoc SL(Op);
4394 
4395   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4396                              Op->getFlags());
4397   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4398                              Op->getFlags());
4399 
4400   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4401 }
4402 
4403 
4404 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4405   switch (Op.getOpcode()) {
4406   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4407   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4408   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4409   case ISD::LOAD: {
4410     SDValue Result = LowerLOAD(Op, DAG);
4411     assert((!Result.getNode() ||
4412             Result.getNode()->getNumValues() == 2) &&
4413            "Load should return a value and a chain");
4414     return Result;
4415   }
4416 
4417   case ISD::FSIN:
4418   case ISD::FCOS:
4419     return LowerTrig(Op, DAG);
4420   case ISD::SELECT: return LowerSELECT(Op, DAG);
4421   case ISD::FDIV: return LowerFDIV(Op, DAG);
4422   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4423   case ISD::STORE: return LowerSTORE(Op, DAG);
4424   case ISD::GlobalAddress: {
4425     MachineFunction &MF = DAG.getMachineFunction();
4426     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4427     return LowerGlobalAddress(MFI, Op, DAG);
4428   }
4429   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4430   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4431   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4432   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4433   case ISD::INSERT_SUBVECTOR:
4434     return lowerINSERT_SUBVECTOR(Op, DAG);
4435   case ISD::INSERT_VECTOR_ELT:
4436     return lowerINSERT_VECTOR_ELT(Op, DAG);
4437   case ISD::EXTRACT_VECTOR_ELT:
4438     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4439   case ISD::VECTOR_SHUFFLE:
4440     return lowerVECTOR_SHUFFLE(Op, DAG);
4441   case ISD::BUILD_VECTOR:
4442     return lowerBUILD_VECTOR(Op, DAG);
4443   case ISD::FP_ROUND:
4444     return lowerFP_ROUND(Op, DAG);
4445   case ISD::TRAP:
4446     return lowerTRAP(Op, DAG);
4447   case ISD::DEBUGTRAP:
4448     return lowerDEBUGTRAP(Op, DAG);
4449   case ISD::FABS:
4450   case ISD::FNEG:
4451   case ISD::FCANONICALIZE:
4452   case ISD::BSWAP:
4453     return splitUnaryVectorOp(Op, DAG);
4454   case ISD::FMINNUM:
4455   case ISD::FMAXNUM:
4456     return lowerFMINNUM_FMAXNUM(Op, DAG);
4457   case ISD::FMA:
4458     return splitTernaryVectorOp(Op, DAG);
4459   case ISD::SHL:
4460   case ISD::SRA:
4461   case ISD::SRL:
4462   case ISD::ADD:
4463   case ISD::SUB:
4464   case ISD::MUL:
4465   case ISD::SMIN:
4466   case ISD::SMAX:
4467   case ISD::UMIN:
4468   case ISD::UMAX:
4469   case ISD::FADD:
4470   case ISD::FMUL:
4471   case ISD::FMINNUM_IEEE:
4472   case ISD::FMAXNUM_IEEE:
4473   case ISD::UADDSAT:
4474   case ISD::USUBSAT:
4475   case ISD::SADDSAT:
4476   case ISD::SSUBSAT:
4477     return splitBinaryVectorOp(Op, DAG);
4478   case ISD::SMULO:
4479   case ISD::UMULO:
4480     return lowerXMULO(Op, DAG);
4481   case ISD::DYNAMIC_STACKALLOC:
4482     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4483   }
4484   return SDValue();
4485 }
4486 
4487 // Used for D16: Casts the result of an instruction into the right vector,
4488 // packs values if loads return unpacked values.
4489 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4490                                        const SDLoc &DL,
4491                                        SelectionDAG &DAG, bool Unpacked) {
4492   if (!LoadVT.isVector())
4493     return Result;
4494 
4495   // Cast back to the original packed type or to a larger type that is a
4496   // multiple of 32 bit for D16. Widening the return type is a required for
4497   // legalization.
4498   EVT FittingLoadVT = LoadVT;
4499   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4500     FittingLoadVT =
4501         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4502                          LoadVT.getVectorNumElements() + 1);
4503   }
4504 
4505   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4506     // Truncate to v2i16/v4i16.
4507     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4508 
4509     // Workaround legalizer not scalarizing truncate after vector op
4510     // legalization but not creating intermediate vector trunc.
4511     SmallVector<SDValue, 4> Elts;
4512     DAG.ExtractVectorElements(Result, Elts);
4513     for (SDValue &Elt : Elts)
4514       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4515 
4516     // Pad illegal v1i16/v3fi6 to v4i16
4517     if ((LoadVT.getVectorNumElements() % 2) == 1)
4518       Elts.push_back(DAG.getUNDEF(MVT::i16));
4519 
4520     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4521 
4522     // Bitcast to original type (v2f16/v4f16).
4523     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4524   }
4525 
4526   // Cast back to the original packed type.
4527   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4528 }
4529 
4530 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4531                                               MemSDNode *M,
4532                                               SelectionDAG &DAG,
4533                                               ArrayRef<SDValue> Ops,
4534                                               bool IsIntrinsic) const {
4535   SDLoc DL(M);
4536 
4537   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4538   EVT LoadVT = M->getValueType(0);
4539 
4540   EVT EquivLoadVT = LoadVT;
4541   if (LoadVT.isVector()) {
4542     if (Unpacked) {
4543       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4544                                      LoadVT.getVectorNumElements());
4545     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4546       // Widen v3f16 to legal type
4547       EquivLoadVT =
4548           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4549                            LoadVT.getVectorNumElements() + 1);
4550     }
4551   }
4552 
4553   // Change from v4f16/v2f16 to EquivLoadVT.
4554   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4555 
4556   SDValue Load
4557     = DAG.getMemIntrinsicNode(
4558       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4559       VTList, Ops, M->getMemoryVT(),
4560       M->getMemOperand());
4561 
4562   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4563 
4564   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4565 }
4566 
4567 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4568                                              SelectionDAG &DAG,
4569                                              ArrayRef<SDValue> Ops) const {
4570   SDLoc DL(M);
4571   EVT LoadVT = M->getValueType(0);
4572   EVT EltType = LoadVT.getScalarType();
4573   EVT IntVT = LoadVT.changeTypeToInteger();
4574 
4575   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4576 
4577   unsigned Opc =
4578       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4579 
4580   if (IsD16) {
4581     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4582   }
4583 
4584   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4585   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4586     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4587 
4588   if (isTypeLegal(LoadVT)) {
4589     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4590                                M->getMemOperand(), DAG);
4591   }
4592 
4593   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4594   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4595   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4596                                         M->getMemOperand(), DAG);
4597   return DAG.getMergeValues(
4598       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4599       DL);
4600 }
4601 
4602 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4603                                   SDNode *N, SelectionDAG &DAG) {
4604   EVT VT = N->getValueType(0);
4605   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4606   unsigned CondCode = CD->getZExtValue();
4607   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4608     return DAG.getUNDEF(VT);
4609 
4610   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4611 
4612   SDValue LHS = N->getOperand(1);
4613   SDValue RHS = N->getOperand(2);
4614 
4615   SDLoc DL(N);
4616 
4617   EVT CmpVT = LHS.getValueType();
4618   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4619     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4620       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4621     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4622     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4623   }
4624 
4625   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4626 
4627   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4628   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4629 
4630   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4631                               DAG.getCondCode(CCOpcode));
4632   if (VT.bitsEq(CCVT))
4633     return SetCC;
4634   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4635 }
4636 
4637 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4638                                   SDNode *N, SelectionDAG &DAG) {
4639   EVT VT = N->getValueType(0);
4640   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4641 
4642   unsigned CondCode = CD->getZExtValue();
4643   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4644     return DAG.getUNDEF(VT);
4645 
4646   SDValue Src0 = N->getOperand(1);
4647   SDValue Src1 = N->getOperand(2);
4648   EVT CmpVT = Src0.getValueType();
4649   SDLoc SL(N);
4650 
4651   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4652     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4653     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4654   }
4655 
4656   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4657   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4658   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4659   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4660   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4661                               Src1, DAG.getCondCode(CCOpcode));
4662   if (VT.bitsEq(CCVT))
4663     return SetCC;
4664   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4665 }
4666 
4667 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4668                                     SelectionDAG &DAG) {
4669   EVT VT = N->getValueType(0);
4670   SDValue Src = N->getOperand(1);
4671   SDLoc SL(N);
4672 
4673   if (Src.getOpcode() == ISD::SETCC) {
4674     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4675     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4676                        Src.getOperand(1), Src.getOperand(2));
4677   }
4678   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4679     // (ballot 0) -> 0
4680     if (Arg->isNullValue())
4681       return DAG.getConstant(0, SL, VT);
4682 
4683     // (ballot 1) -> EXEC/EXEC_LO
4684     if (Arg->isOne()) {
4685       Register Exec;
4686       if (VT.getScalarSizeInBits() == 32)
4687         Exec = AMDGPU::EXEC_LO;
4688       else if (VT.getScalarSizeInBits() == 64)
4689         Exec = AMDGPU::EXEC;
4690       else
4691         return SDValue();
4692 
4693       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4694     }
4695   }
4696 
4697   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4698   // ISD::SETNE)
4699   return DAG.getNode(
4700       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4701       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4702 }
4703 
4704 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4705                                           SmallVectorImpl<SDValue> &Results,
4706                                           SelectionDAG &DAG) const {
4707   switch (N->getOpcode()) {
4708   case ISD::INSERT_VECTOR_ELT: {
4709     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4710       Results.push_back(Res);
4711     return;
4712   }
4713   case ISD::EXTRACT_VECTOR_ELT: {
4714     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4715       Results.push_back(Res);
4716     return;
4717   }
4718   case ISD::INTRINSIC_WO_CHAIN: {
4719     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4720     switch (IID) {
4721     case Intrinsic::amdgcn_cvt_pkrtz: {
4722       SDValue Src0 = N->getOperand(1);
4723       SDValue Src1 = N->getOperand(2);
4724       SDLoc SL(N);
4725       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4726                                 Src0, Src1);
4727       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4728       return;
4729     }
4730     case Intrinsic::amdgcn_cvt_pknorm_i16:
4731     case Intrinsic::amdgcn_cvt_pknorm_u16:
4732     case Intrinsic::amdgcn_cvt_pk_i16:
4733     case Intrinsic::amdgcn_cvt_pk_u16: {
4734       SDValue Src0 = N->getOperand(1);
4735       SDValue Src1 = N->getOperand(2);
4736       SDLoc SL(N);
4737       unsigned Opcode;
4738 
4739       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4740         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4741       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4742         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4743       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4744         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4745       else
4746         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4747 
4748       EVT VT = N->getValueType(0);
4749       if (isTypeLegal(VT))
4750         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4751       else {
4752         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4753         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4754       }
4755       return;
4756     }
4757     }
4758     break;
4759   }
4760   case ISD::INTRINSIC_W_CHAIN: {
4761     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4762       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4763         // FIXME: Hacky
4764         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4765           Results.push_back(Res.getOperand(I));
4766         }
4767       } else {
4768         Results.push_back(Res);
4769         Results.push_back(Res.getValue(1));
4770       }
4771       return;
4772     }
4773 
4774     break;
4775   }
4776   case ISD::SELECT: {
4777     SDLoc SL(N);
4778     EVT VT = N->getValueType(0);
4779     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4780     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4781     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4782 
4783     EVT SelectVT = NewVT;
4784     if (NewVT.bitsLT(MVT::i32)) {
4785       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4786       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4787       SelectVT = MVT::i32;
4788     }
4789 
4790     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4791                                     N->getOperand(0), LHS, RHS);
4792 
4793     if (NewVT != SelectVT)
4794       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4795     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4796     return;
4797   }
4798   case ISD::FNEG: {
4799     if (N->getValueType(0) != MVT::v2f16)
4800       break;
4801 
4802     SDLoc SL(N);
4803     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4804 
4805     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4806                              BC,
4807                              DAG.getConstant(0x80008000, SL, MVT::i32));
4808     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4809     return;
4810   }
4811   case ISD::FABS: {
4812     if (N->getValueType(0) != MVT::v2f16)
4813       break;
4814 
4815     SDLoc SL(N);
4816     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4817 
4818     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4819                              BC,
4820                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4821     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4822     return;
4823   }
4824   default:
4825     break;
4826   }
4827 }
4828 
4829 /// Helper function for LowerBRCOND
4830 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4831 
4832   SDNode *Parent = Value.getNode();
4833   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4834        I != E; ++I) {
4835 
4836     if (I.getUse().get() != Value)
4837       continue;
4838 
4839     if (I->getOpcode() == Opcode)
4840       return *I;
4841   }
4842   return nullptr;
4843 }
4844 
4845 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4846   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4847     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4848     case Intrinsic::amdgcn_if:
4849       return AMDGPUISD::IF;
4850     case Intrinsic::amdgcn_else:
4851       return AMDGPUISD::ELSE;
4852     case Intrinsic::amdgcn_loop:
4853       return AMDGPUISD::LOOP;
4854     case Intrinsic::amdgcn_end_cf:
4855       llvm_unreachable("should not occur");
4856     default:
4857       return 0;
4858     }
4859   }
4860 
4861   // break, if_break, else_break are all only used as inputs to loop, not
4862   // directly as branch conditions.
4863   return 0;
4864 }
4865 
4866 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4867   const Triple &TT = getTargetMachine().getTargetTriple();
4868   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4869           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4870          AMDGPU::shouldEmitConstantsToTextSection(TT);
4871 }
4872 
4873 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4874   // FIXME: Either avoid relying on address space here or change the default
4875   // address space for functions to avoid the explicit check.
4876   return (GV->getValueType()->isFunctionTy() ||
4877           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4878          !shouldEmitFixup(GV) &&
4879          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4880 }
4881 
4882 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4883   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4884 }
4885 
4886 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
4887   if (!GV->hasExternalLinkage())
4888     return true;
4889 
4890   const auto OS = getTargetMachine().getTargetTriple().getOS();
4891   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
4892 }
4893 
4894 /// This transforms the control flow intrinsics to get the branch destination as
4895 /// last parameter, also switches branch target with BR if the need arise
4896 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4897                                       SelectionDAG &DAG) const {
4898   SDLoc DL(BRCOND);
4899 
4900   SDNode *Intr = BRCOND.getOperand(1).getNode();
4901   SDValue Target = BRCOND.getOperand(2);
4902   SDNode *BR = nullptr;
4903   SDNode *SetCC = nullptr;
4904 
4905   if (Intr->getOpcode() == ISD::SETCC) {
4906     // As long as we negate the condition everything is fine
4907     SetCC = Intr;
4908     Intr = SetCC->getOperand(0).getNode();
4909 
4910   } else {
4911     // Get the target from BR if we don't negate the condition
4912     BR = findUser(BRCOND, ISD::BR);
4913     assert(BR && "brcond missing unconditional branch user");
4914     Target = BR->getOperand(1);
4915   }
4916 
4917   unsigned CFNode = isCFIntrinsic(Intr);
4918   if (CFNode == 0) {
4919     // This is a uniform branch so we don't need to legalize.
4920     return BRCOND;
4921   }
4922 
4923   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4924                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4925 
4926   assert(!SetCC ||
4927         (SetCC->getConstantOperandVal(1) == 1 &&
4928          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4929                                                              ISD::SETNE));
4930 
4931   // operands of the new intrinsic call
4932   SmallVector<SDValue, 4> Ops;
4933   if (HaveChain)
4934     Ops.push_back(BRCOND.getOperand(0));
4935 
4936   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4937   Ops.push_back(Target);
4938 
4939   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4940 
4941   // build the new intrinsic call
4942   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4943 
4944   if (!HaveChain) {
4945     SDValue Ops[] =  {
4946       SDValue(Result, 0),
4947       BRCOND.getOperand(0)
4948     };
4949 
4950     Result = DAG.getMergeValues(Ops, DL).getNode();
4951   }
4952 
4953   if (BR) {
4954     // Give the branch instruction our target
4955     SDValue Ops[] = {
4956       BR->getOperand(0),
4957       BRCOND.getOperand(2)
4958     };
4959     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4960     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4961   }
4962 
4963   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4964 
4965   // Copy the intrinsic results to registers
4966   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4967     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4968     if (!CopyToReg)
4969       continue;
4970 
4971     Chain = DAG.getCopyToReg(
4972       Chain, DL,
4973       CopyToReg->getOperand(1),
4974       SDValue(Result, i - 1),
4975       SDValue());
4976 
4977     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4978   }
4979 
4980   // Remove the old intrinsic from the chain
4981   DAG.ReplaceAllUsesOfValueWith(
4982     SDValue(Intr, Intr->getNumValues() - 1),
4983     Intr->getOperand(0));
4984 
4985   return Chain;
4986 }
4987 
4988 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4989                                           SelectionDAG &DAG) const {
4990   MVT VT = Op.getSimpleValueType();
4991   SDLoc DL(Op);
4992   // Checking the depth
4993   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4994     return DAG.getConstant(0, DL, VT);
4995 
4996   MachineFunction &MF = DAG.getMachineFunction();
4997   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4998   // Check for kernel and shader functions
4999   if (Info->isEntryFunction())
5000     return DAG.getConstant(0, DL, VT);
5001 
5002   MachineFrameInfo &MFI = MF.getFrameInfo();
5003   // There is a call to @llvm.returnaddress in this function
5004   MFI.setReturnAddressIsTaken(true);
5005 
5006   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5007   // Get the return address reg and mark it as an implicit live-in
5008   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5009 
5010   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5011 }
5012 
5013 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5014                                             SDValue Op,
5015                                             const SDLoc &DL,
5016                                             EVT VT) const {
5017   return Op.getValueType().bitsLE(VT) ?
5018       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5019     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5020                 DAG.getTargetConstant(0, DL, MVT::i32));
5021 }
5022 
5023 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5024   assert(Op.getValueType() == MVT::f16 &&
5025          "Do not know how to custom lower FP_ROUND for non-f16 type");
5026 
5027   SDValue Src = Op.getOperand(0);
5028   EVT SrcVT = Src.getValueType();
5029   if (SrcVT != MVT::f64)
5030     return Op;
5031 
5032   SDLoc DL(Op);
5033 
5034   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5035   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5036   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5037 }
5038 
5039 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5040                                                SelectionDAG &DAG) const {
5041   EVT VT = Op.getValueType();
5042   const MachineFunction &MF = DAG.getMachineFunction();
5043   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5044   bool IsIEEEMode = Info->getMode().IEEE;
5045 
5046   // FIXME: Assert during selection that this is only selected for
5047   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5048   // mode functions, but this happens to be OK since it's only done in cases
5049   // where there is known no sNaN.
5050   if (IsIEEEMode)
5051     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5052 
5053   if (VT == MVT::v4f16)
5054     return splitBinaryVectorOp(Op, DAG);
5055   return Op;
5056 }
5057 
5058 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5059   EVT VT = Op.getValueType();
5060   SDLoc SL(Op);
5061   SDValue LHS = Op.getOperand(0);
5062   SDValue RHS = Op.getOperand(1);
5063   bool isSigned = Op.getOpcode() == ISD::SMULO;
5064 
5065   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5066     const APInt &C = RHSC->getAPIntValue();
5067     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5068     if (C.isPowerOf2()) {
5069       // smulo(x, signed_min) is same as umulo(x, signed_min).
5070       bool UseArithShift = isSigned && !C.isMinSignedValue();
5071       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5072       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5073       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5074           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5075                       SL, VT, Result, ShiftAmt),
5076           LHS, ISD::SETNE);
5077       return DAG.getMergeValues({ Result, Overflow }, SL);
5078     }
5079   }
5080 
5081   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5082   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5083                             SL, VT, LHS, RHS);
5084 
5085   SDValue Sign = isSigned
5086     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5087                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5088     : DAG.getConstant(0, SL, VT);
5089   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5090 
5091   return DAG.getMergeValues({ Result, Overflow }, SL);
5092 }
5093 
5094 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5095   SDLoc SL(Op);
5096   SDValue Chain = Op.getOperand(0);
5097 
5098   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5099       !Subtarget->isTrapHandlerEnabled())
5100     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5101 
5102   MachineFunction &MF = DAG.getMachineFunction();
5103   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5104   Register UserSGPR = Info->getQueuePtrUserSGPR();
5105   assert(UserSGPR != AMDGPU::NoRegister);
5106   SDValue QueuePtr = CreateLiveInRegister(
5107     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5108   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5109   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5110                                    QueuePtr, SDValue());
5111   SDValue Ops[] = {
5112     ToReg,
5113     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
5114     SGPR01,
5115     ToReg.getValue(1)
5116   };
5117   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5118 }
5119 
5120 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5121   SDLoc SL(Op);
5122   SDValue Chain = Op.getOperand(0);
5123   MachineFunction &MF = DAG.getMachineFunction();
5124 
5125   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5126       !Subtarget->isTrapHandlerEnabled()) {
5127     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5128                                      "debugtrap handler not supported",
5129                                      Op.getDebugLoc(),
5130                                      DS_Warning);
5131     LLVMContext &Ctx = MF.getFunction().getContext();
5132     Ctx.diagnose(NoTrap);
5133     return Chain;
5134   }
5135 
5136   SDValue Ops[] = {
5137     Chain,
5138     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
5139   };
5140   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5141 }
5142 
5143 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5144                                              SelectionDAG &DAG) const {
5145   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5146   if (Subtarget->hasApertureRegs()) {
5147     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5148         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5149         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5150     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5151         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5152         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5153     unsigned Encoding =
5154         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5155         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5156         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5157 
5158     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5159     SDValue ApertureReg = SDValue(
5160         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5161     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5162     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5163   }
5164 
5165   MachineFunction &MF = DAG.getMachineFunction();
5166   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5167   Register UserSGPR = Info->getQueuePtrUserSGPR();
5168   assert(UserSGPR != AMDGPU::NoRegister);
5169 
5170   SDValue QueuePtr = CreateLiveInRegister(
5171     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5172 
5173   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5174   // private_segment_aperture_base_hi.
5175   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5176 
5177   SDValue Ptr =
5178       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5179 
5180   // TODO: Use custom target PseudoSourceValue.
5181   // TODO: We should use the value from the IR intrinsic call, but it might not
5182   // be available and how do we get it?
5183   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5184   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5185                      commonAlignment(Align(64), StructOffset),
5186                      MachineMemOperand::MODereferenceable |
5187                          MachineMemOperand::MOInvariant);
5188 }
5189 
5190 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5191                                              SelectionDAG &DAG) const {
5192   SDLoc SL(Op);
5193   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5194 
5195   SDValue Src = ASC->getOperand(0);
5196   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5197 
5198   const AMDGPUTargetMachine &TM =
5199     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5200 
5201   // flat -> local/private
5202   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5203     unsigned DestAS = ASC->getDestAddressSpace();
5204 
5205     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5206         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5207       unsigned NullVal = TM.getNullPointerValue(DestAS);
5208       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5209       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5210       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5211 
5212       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5213                          NonNull, Ptr, SegmentNullPtr);
5214     }
5215   }
5216 
5217   // local/private -> flat
5218   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5219     unsigned SrcAS = ASC->getSrcAddressSpace();
5220 
5221     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5222         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5223       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5224       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5225 
5226       SDValue NonNull
5227         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5228 
5229       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5230       SDValue CvtPtr
5231         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5232 
5233       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5234                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5235                          FlatNullPtr);
5236     }
5237   }
5238 
5239   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5240       Src.getValueType() == MVT::i64)
5241     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5242 
5243   // global <-> flat are no-ops and never emitted.
5244 
5245   const MachineFunction &MF = DAG.getMachineFunction();
5246   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5247     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5248   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5249 
5250   return DAG.getUNDEF(ASC->getValueType(0));
5251 }
5252 
5253 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5254 // the small vector and inserting them into the big vector. That is better than
5255 // the default expansion of doing it via a stack slot. Even though the use of
5256 // the stack slot would be optimized away afterwards, the stack slot itself
5257 // remains.
5258 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5259                                                 SelectionDAG &DAG) const {
5260   SDValue Vec = Op.getOperand(0);
5261   SDValue Ins = Op.getOperand(1);
5262   SDValue Idx = Op.getOperand(2);
5263   EVT VecVT = Vec.getValueType();
5264   EVT InsVT = Ins.getValueType();
5265   EVT EltVT = VecVT.getVectorElementType();
5266   unsigned InsNumElts = InsVT.getVectorNumElements();
5267   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5268   SDLoc SL(Op);
5269 
5270   for (unsigned I = 0; I != InsNumElts; ++I) {
5271     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5272                               DAG.getConstant(I, SL, MVT::i32));
5273     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5274                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5275   }
5276   return Vec;
5277 }
5278 
5279 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5280                                                  SelectionDAG &DAG) const {
5281   SDValue Vec = Op.getOperand(0);
5282   SDValue InsVal = Op.getOperand(1);
5283   SDValue Idx = Op.getOperand(2);
5284   EVT VecVT = Vec.getValueType();
5285   EVT EltVT = VecVT.getVectorElementType();
5286   unsigned VecSize = VecVT.getSizeInBits();
5287   unsigned EltSize = EltVT.getSizeInBits();
5288 
5289 
5290   assert(VecSize <= 64);
5291 
5292   unsigned NumElts = VecVT.getVectorNumElements();
5293   SDLoc SL(Op);
5294   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5295 
5296   if (NumElts == 4 && EltSize == 16 && KIdx) {
5297     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5298 
5299     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5300                                  DAG.getConstant(0, SL, MVT::i32));
5301     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5302                                  DAG.getConstant(1, SL, MVT::i32));
5303 
5304     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5305     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5306 
5307     unsigned Idx = KIdx->getZExtValue();
5308     bool InsertLo = Idx < 2;
5309     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5310       InsertLo ? LoVec : HiVec,
5311       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5312       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5313 
5314     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5315 
5316     SDValue Concat = InsertLo ?
5317       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5318       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5319 
5320     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5321   }
5322 
5323   if (isa<ConstantSDNode>(Idx))
5324     return SDValue();
5325 
5326   MVT IntVT = MVT::getIntegerVT(VecSize);
5327 
5328   // Avoid stack access for dynamic indexing.
5329   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5330 
5331   // Create a congruent vector with the target value in each element so that
5332   // the required element can be masked and ORed into the target vector.
5333   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5334                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5335 
5336   assert(isPowerOf2_32(EltSize));
5337   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5338 
5339   // Convert vector index to bit-index.
5340   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5341 
5342   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5343   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5344                             DAG.getConstant(0xffff, SL, IntVT),
5345                             ScaledIdx);
5346 
5347   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5348   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5349                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5350 
5351   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5352   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5353 }
5354 
5355 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5356                                                   SelectionDAG &DAG) const {
5357   SDLoc SL(Op);
5358 
5359   EVT ResultVT = Op.getValueType();
5360   SDValue Vec = Op.getOperand(0);
5361   SDValue Idx = Op.getOperand(1);
5362   EVT VecVT = Vec.getValueType();
5363   unsigned VecSize = VecVT.getSizeInBits();
5364   EVT EltVT = VecVT.getVectorElementType();
5365   assert(VecSize <= 64);
5366 
5367   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5368 
5369   // Make sure we do any optimizations that will make it easier to fold
5370   // source modifiers before obscuring it with bit operations.
5371 
5372   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5373   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5374     return Combined;
5375 
5376   unsigned EltSize = EltVT.getSizeInBits();
5377   assert(isPowerOf2_32(EltSize));
5378 
5379   MVT IntVT = MVT::getIntegerVT(VecSize);
5380   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5381 
5382   // Convert vector index to bit-index (* EltSize)
5383   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5384 
5385   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5386   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5387 
5388   if (ResultVT == MVT::f16) {
5389     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5390     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5391   }
5392 
5393   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5394 }
5395 
5396 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5397   assert(Elt % 2 == 0);
5398   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5399 }
5400 
5401 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5402                                               SelectionDAG &DAG) const {
5403   SDLoc SL(Op);
5404   EVT ResultVT = Op.getValueType();
5405   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5406 
5407   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5408   EVT EltVT = PackVT.getVectorElementType();
5409   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5410 
5411   // vector_shuffle <0,1,6,7> lhs, rhs
5412   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5413   //
5414   // vector_shuffle <6,7,2,3> lhs, rhs
5415   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5416   //
5417   // vector_shuffle <6,7,0,1> lhs, rhs
5418   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5419 
5420   // Avoid scalarizing when both halves are reading from consecutive elements.
5421   SmallVector<SDValue, 4> Pieces;
5422   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5423     if (elementPairIsContiguous(SVN->getMask(), I)) {
5424       const int Idx = SVN->getMaskElt(I);
5425       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5426       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5427       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5428                                     PackVT, SVN->getOperand(VecIdx),
5429                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5430       Pieces.push_back(SubVec);
5431     } else {
5432       const int Idx0 = SVN->getMaskElt(I);
5433       const int Idx1 = SVN->getMaskElt(I + 1);
5434       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5435       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5436       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5437       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5438 
5439       SDValue Vec0 = SVN->getOperand(VecIdx0);
5440       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5441                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5442 
5443       SDValue Vec1 = SVN->getOperand(VecIdx1);
5444       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5445                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5446       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5447     }
5448   }
5449 
5450   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5451 }
5452 
5453 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5454                                             SelectionDAG &DAG) const {
5455   SDLoc SL(Op);
5456   EVT VT = Op.getValueType();
5457 
5458   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5459     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5460 
5461     // Turn into pair of packed build_vectors.
5462     // TODO: Special case for constants that can be materialized with s_mov_b64.
5463     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5464                                     { Op.getOperand(0), Op.getOperand(1) });
5465     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5466                                     { Op.getOperand(2), Op.getOperand(3) });
5467 
5468     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5469     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5470 
5471     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5472     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5473   }
5474 
5475   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5476   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5477 
5478   SDValue Lo = Op.getOperand(0);
5479   SDValue Hi = Op.getOperand(1);
5480 
5481   // Avoid adding defined bits with the zero_extend.
5482   if (Hi.isUndef()) {
5483     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5484     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5485     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5486   }
5487 
5488   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5489   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5490 
5491   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5492                               DAG.getConstant(16, SL, MVT::i32));
5493   if (Lo.isUndef())
5494     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5495 
5496   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5497   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5498 
5499   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5500   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5501 }
5502 
5503 bool
5504 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5505   // We can fold offsets for anything that doesn't require a GOT relocation.
5506   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5507           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5508           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5509          !shouldEmitGOTReloc(GA->getGlobal());
5510 }
5511 
5512 static SDValue
5513 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5514                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5515                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5516   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5517   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5518   // lowered to the following code sequence:
5519   //
5520   // For constant address space:
5521   //   s_getpc_b64 s[0:1]
5522   //   s_add_u32 s0, s0, $symbol
5523   //   s_addc_u32 s1, s1, 0
5524   //
5525   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5526   //   a fixup or relocation is emitted to replace $symbol with a literal
5527   //   constant, which is a pc-relative offset from the encoding of the $symbol
5528   //   operand to the global variable.
5529   //
5530   // For global address space:
5531   //   s_getpc_b64 s[0:1]
5532   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5533   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5534   //
5535   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5536   //   fixups or relocations are emitted to replace $symbol@*@lo and
5537   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5538   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5539   //   operand to the global variable.
5540   //
5541   // What we want here is an offset from the value returned by s_getpc
5542   // (which is the address of the s_add_u32 instruction) to the global
5543   // variable, but since the encoding of $symbol starts 4 bytes after the start
5544   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5545   // small. This requires us to add 4 to the global variable offset in order to
5546   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5547   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5548   // instruction.
5549   SDValue PtrLo =
5550       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5551   SDValue PtrHi;
5552   if (GAFlags == SIInstrInfo::MO_NONE) {
5553     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5554   } else {
5555     PtrHi =
5556         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5557   }
5558   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5559 }
5560 
5561 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5562                                              SDValue Op,
5563                                              SelectionDAG &DAG) const {
5564   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5565   SDLoc DL(GSD);
5566   EVT PtrVT = Op.getValueType();
5567 
5568   const GlobalValue *GV = GSD->getGlobal();
5569   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5570        shouldUseLDSConstAddress(GV)) ||
5571       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5572       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5573     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5574         GV->hasExternalLinkage()) {
5575       Type *Ty = GV->getValueType();
5576       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5577       // zero-sized type in other languages to declare the dynamic shared
5578       // memory which size is not known at the compile time. They will be
5579       // allocated by the runtime and placed directly after the static
5580       // allocated ones. They all share the same offset.
5581       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5582         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5583         // Adjust alignment for that dynamic shared memory array.
5584         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5585         return SDValue(
5586             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5587       }
5588     }
5589     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5590   }
5591 
5592   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5593     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5594                                             SIInstrInfo::MO_ABS32_LO);
5595     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5596   }
5597 
5598   if (shouldEmitFixup(GV))
5599     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5600   else if (shouldEmitPCReloc(GV))
5601     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5602                                    SIInstrInfo::MO_REL32);
5603 
5604   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5605                                             SIInstrInfo::MO_GOTPCREL32);
5606 
5607   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5608   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5609   const DataLayout &DataLayout = DAG.getDataLayout();
5610   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5611   MachinePointerInfo PtrInfo
5612     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5613 
5614   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5615                      MachineMemOperand::MODereferenceable |
5616                          MachineMemOperand::MOInvariant);
5617 }
5618 
5619 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5620                                    const SDLoc &DL, SDValue V) const {
5621   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5622   // the destination register.
5623   //
5624   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5625   // so we will end up with redundant moves to m0.
5626   //
5627   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5628 
5629   // A Null SDValue creates a glue result.
5630   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5631                                   V, Chain);
5632   return SDValue(M0, 0);
5633 }
5634 
5635 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5636                                                  SDValue Op,
5637                                                  MVT VT,
5638                                                  unsigned Offset) const {
5639   SDLoc SL(Op);
5640   SDValue Param = lowerKernargMemParameter(
5641       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5642   // The local size values will have the hi 16-bits as zero.
5643   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5644                      DAG.getValueType(VT));
5645 }
5646 
5647 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5648                                         EVT VT) {
5649   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5650                                       "non-hsa intrinsic with hsa target",
5651                                       DL.getDebugLoc());
5652   DAG.getContext()->diagnose(BadIntrin);
5653   return DAG.getUNDEF(VT);
5654 }
5655 
5656 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5657                                          EVT VT) {
5658   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5659                                       "intrinsic not supported on subtarget",
5660                                       DL.getDebugLoc());
5661   DAG.getContext()->diagnose(BadIntrin);
5662   return DAG.getUNDEF(VT);
5663 }
5664 
5665 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5666                                     ArrayRef<SDValue> Elts) {
5667   assert(!Elts.empty());
5668   MVT Type;
5669   unsigned NumElts;
5670 
5671   if (Elts.size() == 1) {
5672     Type = MVT::f32;
5673     NumElts = 1;
5674   } else if (Elts.size() == 2) {
5675     Type = MVT::v2f32;
5676     NumElts = 2;
5677   } else if (Elts.size() == 3) {
5678     Type = MVT::v3f32;
5679     NumElts = 3;
5680   } else if (Elts.size() <= 4) {
5681     Type = MVT::v4f32;
5682     NumElts = 4;
5683   } else if (Elts.size() <= 8) {
5684     Type = MVT::v8f32;
5685     NumElts = 8;
5686   } else {
5687     assert(Elts.size() <= 16);
5688     Type = MVT::v16f32;
5689     NumElts = 16;
5690   }
5691 
5692   SmallVector<SDValue, 16> VecElts(NumElts);
5693   for (unsigned i = 0; i < Elts.size(); ++i) {
5694     SDValue Elt = Elts[i];
5695     if (Elt.getValueType() != MVT::f32)
5696       Elt = DAG.getBitcast(MVT::f32, Elt);
5697     VecElts[i] = Elt;
5698   }
5699   for (unsigned i = Elts.size(); i < NumElts; ++i)
5700     VecElts[i] = DAG.getUNDEF(MVT::f32);
5701 
5702   if (NumElts == 1)
5703     return VecElts[0];
5704   return DAG.getBuildVector(Type, DL, VecElts);
5705 }
5706 
5707 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5708                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5709   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5710 
5711   uint64_t Value = CachePolicyConst->getZExtValue();
5712   SDLoc DL(CachePolicy);
5713   if (GLC) {
5714     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5715     Value &= ~(uint64_t)0x1;
5716   }
5717   if (SLC) {
5718     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5719     Value &= ~(uint64_t)0x2;
5720   }
5721   if (DLC) {
5722     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5723     Value &= ~(uint64_t)0x4;
5724   }
5725 
5726   return Value == 0;
5727 }
5728 
5729 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5730                               SDValue Src, int ExtraElts) {
5731   EVT SrcVT = Src.getValueType();
5732 
5733   SmallVector<SDValue, 8> Elts;
5734 
5735   if (SrcVT.isVector())
5736     DAG.ExtractVectorElements(Src, Elts);
5737   else
5738     Elts.push_back(Src);
5739 
5740   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5741   while (ExtraElts--)
5742     Elts.push_back(Undef);
5743 
5744   return DAG.getBuildVector(CastVT, DL, Elts);
5745 }
5746 
5747 // Re-construct the required return value for a image load intrinsic.
5748 // This is more complicated due to the optional use TexFailCtrl which means the required
5749 // return type is an aggregate
5750 static SDValue constructRetValue(SelectionDAG &DAG,
5751                                  MachineSDNode *Result,
5752                                  ArrayRef<EVT> ResultTypes,
5753                                  bool IsTexFail, bool Unpacked, bool IsD16,
5754                                  int DMaskPop, int NumVDataDwords,
5755                                  const SDLoc &DL, LLVMContext &Context) {
5756   // Determine the required return type. This is the same regardless of IsTexFail flag
5757   EVT ReqRetVT = ResultTypes[0];
5758   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5759   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5760     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5761 
5762   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5763     DMaskPop : (DMaskPop + 1) / 2;
5764 
5765   MVT DataDwordVT = NumDataDwords == 1 ?
5766     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5767 
5768   MVT MaskPopVT = MaskPopDwords == 1 ?
5769     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5770 
5771   SDValue Data(Result, 0);
5772   SDValue TexFail;
5773 
5774   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5775     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5776     if (MaskPopVT.isVector()) {
5777       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5778                          SDValue(Result, 0), ZeroIdx);
5779     } else {
5780       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5781                          SDValue(Result, 0), ZeroIdx);
5782     }
5783   }
5784 
5785   if (DataDwordVT.isVector())
5786     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5787                           NumDataDwords - MaskPopDwords);
5788 
5789   if (IsD16)
5790     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5791 
5792   EVT LegalReqRetVT = ReqRetVT;
5793   if (!ReqRetVT.isVector()) {
5794     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5795   } else {
5796     // We need to widen the return vector to a legal type
5797     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5798         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5799       LegalReqRetVT =
5800           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5801                            ReqRetVT.getVectorNumElements() + 1);
5802     }
5803   }
5804   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5805 
5806   if (IsTexFail) {
5807     TexFail =
5808         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5809                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5810 
5811     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5812   }
5813 
5814   if (Result->getNumValues() == 1)
5815     return Data;
5816 
5817   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5818 }
5819 
5820 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5821                          SDValue *LWE, bool &IsTexFail) {
5822   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5823 
5824   uint64_t Value = TexFailCtrlConst->getZExtValue();
5825   if (Value) {
5826     IsTexFail = true;
5827   }
5828 
5829   SDLoc DL(TexFailCtrlConst);
5830   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5831   Value &= ~(uint64_t)0x1;
5832   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5833   Value &= ~(uint64_t)0x2;
5834 
5835   return Value == 0;
5836 }
5837 
5838 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op,
5839                                         MVT PackVectorVT,
5840                                         SmallVectorImpl<SDValue> &PackedAddrs,
5841                                         unsigned DimIdx, unsigned EndIdx,
5842                                         unsigned NumGradients) {
5843   SDLoc DL(Op);
5844   for (unsigned I = DimIdx; I < EndIdx; I++) {
5845     SDValue Addr = Op.getOperand(I);
5846 
5847     // Gradients are packed with undef for each coordinate.
5848     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5849     // 1D: undef,dx/dh; undef,dx/dv
5850     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5851     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5852     if (((I + 1) >= EndIdx) ||
5853         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5854                                          I == DimIdx + NumGradients - 1))) {
5855       if (Addr.getValueType() != MVT::i16)
5856         Addr = DAG.getBitcast(MVT::i16, Addr);
5857       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5858     } else {
5859       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5860       I++;
5861     }
5862     Addr = DAG.getBitcast(MVT::f32, Addr);
5863     PackedAddrs.push_back(Addr);
5864   }
5865 }
5866 
5867 SDValue SITargetLowering::lowerImage(SDValue Op,
5868                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5869                                      SelectionDAG &DAG, bool WithChain) const {
5870   SDLoc DL(Op);
5871   MachineFunction &MF = DAG.getMachineFunction();
5872   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5873   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5874       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5875   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5876   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5877       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5878   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5879       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5880   unsigned IntrOpcode = Intr->BaseOpcode;
5881   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
5882 
5883   SmallVector<EVT, 3> ResultTypes(Op->values());
5884   SmallVector<EVT, 3> OrigResultTypes(Op->values());
5885   bool IsD16 = false;
5886   bool IsG16 = false;
5887   bool IsA16 = false;
5888   SDValue VData;
5889   int NumVDataDwords;
5890   bool AdjustRetType = false;
5891 
5892   // Offset of intrinsic arguments
5893   const unsigned ArgOffset = WithChain ? 2 : 1;
5894 
5895   unsigned DMask;
5896   unsigned DMaskLanes = 0;
5897 
5898   if (BaseOpcode->Atomic) {
5899     VData = Op.getOperand(2);
5900 
5901     bool Is64Bit = VData.getValueType() == MVT::i64;
5902     if (BaseOpcode->AtomicX2) {
5903       SDValue VData2 = Op.getOperand(3);
5904       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5905                                  {VData, VData2});
5906       if (Is64Bit)
5907         VData = DAG.getBitcast(MVT::v4i32, VData);
5908 
5909       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5910       DMask = Is64Bit ? 0xf : 0x3;
5911       NumVDataDwords = Is64Bit ? 4 : 2;
5912     } else {
5913       DMask = Is64Bit ? 0x3 : 0x1;
5914       NumVDataDwords = Is64Bit ? 2 : 1;
5915     }
5916   } else {
5917     auto *DMaskConst =
5918         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
5919     DMask = DMaskConst->getZExtValue();
5920     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5921 
5922     if (BaseOpcode->Store) {
5923       VData = Op.getOperand(2);
5924 
5925       MVT StoreVT = VData.getSimpleValueType();
5926       if (StoreVT.getScalarType() == MVT::f16) {
5927         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5928           return Op; // D16 is unsupported for this instruction
5929 
5930         IsD16 = true;
5931         VData = handleD16VData(VData, DAG, true);
5932       }
5933 
5934       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5935     } else {
5936       // Work out the num dwords based on the dmask popcount and underlying type
5937       // and whether packing is supported.
5938       MVT LoadVT = ResultTypes[0].getSimpleVT();
5939       if (LoadVT.getScalarType() == MVT::f16) {
5940         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5941           return Op; // D16 is unsupported for this instruction
5942 
5943         IsD16 = true;
5944       }
5945 
5946       // Confirm that the return type is large enough for the dmask specified
5947       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5948           (!LoadVT.isVector() && DMaskLanes > 1))
5949           return Op;
5950 
5951       // The sq block of gfx8 and gfx9 do not estimate register use correctly
5952       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
5953       // instructions.
5954       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
5955           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
5956         NumVDataDwords = (DMaskLanes + 1) / 2;
5957       else
5958         NumVDataDwords = DMaskLanes;
5959 
5960       AdjustRetType = true;
5961     }
5962   }
5963 
5964   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
5965   SmallVector<SDValue, 4> VAddrs;
5966 
5967   // Optimize _L to _LZ when _L is zero
5968   if (LZMappingInfo) {
5969     if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
5970             Op.getOperand(ArgOffset + Intr->LodIndex))) {
5971       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5972         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
5973         VAddrEnd--;                      // remove 'lod'
5974       }
5975     }
5976   }
5977 
5978   // Optimize _mip away, when 'lod' is zero
5979   if (MIPMappingInfo) {
5980     if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
5981             Op.getOperand(ArgOffset + Intr->MipIndex))) {
5982       if (ConstantLod->isNullValue()) {
5983         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
5984         VAddrEnd--;                           // remove 'mip'
5985       }
5986     }
5987   }
5988 
5989   // Push back extra arguments.
5990   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
5991     VAddrs.push_back(Op.getOperand(ArgOffset + I));
5992 
5993   // Check for 16 bit addresses or derivatives and pack if true.
5994   MVT VAddrVT =
5995       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
5996   MVT VAddrScalarVT = VAddrVT.getScalarType();
5997   MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5998   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
5999 
6000   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6001   VAddrScalarVT = VAddrVT.getScalarType();
6002   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6003   if (IsA16 || IsG16) {
6004     if (IsA16) {
6005       if (!ST->hasA16()) {
6006         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6007                              "support 16 bit addresses\n");
6008         return Op;
6009       }
6010       if (!IsG16) {
6011         LLVM_DEBUG(
6012             dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6013                       "need 16 bit derivatives but got 32 bit derivatives\n");
6014         return Op;
6015       }
6016     } else if (!ST->hasG16()) {
6017       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6018                            "support 16 bit derivatives\n");
6019       return Op;
6020     }
6021 
6022     if (BaseOpcode->Gradients && !IsA16) {
6023       if (!ST->hasG16()) {
6024         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6025                              "support 16 bit derivatives\n");
6026         return Op;
6027       }
6028       // Activate g16
6029       const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6030           AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6031       IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6032     }
6033 
6034     // Don't compress addresses for G16
6035     const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6036     packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs,
6037                                 ArgOffset + Intr->GradientStart, PackEndIdx,
6038                                 Intr->NumGradients);
6039 
6040     if (!IsA16) {
6041       // Add uncompressed address
6042       for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6043         VAddrs.push_back(Op.getOperand(I));
6044     }
6045   } else {
6046     for (unsigned I = ArgOffset + Intr->GradientStart; I < VAddrEnd; I++)
6047       VAddrs.push_back(Op.getOperand(I));
6048   }
6049 
6050   // If the register allocator cannot place the address registers contiguously
6051   // without introducing moves, then using the non-sequential address encoding
6052   // is always preferable, since it saves VALU instructions and is usually a
6053   // wash in terms of code size or even better.
6054   //
6055   // However, we currently have no way of hinting to the register allocator that
6056   // MIMG addresses should be placed contiguously when it is possible to do so,
6057   // so force non-NSA for the common 2-address case as a heuristic.
6058   //
6059   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6060   // allocation when possible.
6061   bool UseNSA =
6062       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6063   SDValue VAddr;
6064   if (!UseNSA)
6065     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6066 
6067   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6068   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6069   SDValue Unorm;
6070   if (!BaseOpcode->Sampler) {
6071     Unorm = True;
6072   } else {
6073     auto UnormConst =
6074         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6075 
6076     Unorm = UnormConst->getZExtValue() ? True : False;
6077   }
6078 
6079   SDValue TFE;
6080   SDValue LWE;
6081   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6082   bool IsTexFail = false;
6083   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6084     return Op;
6085 
6086   if (IsTexFail) {
6087     if (!DMaskLanes) {
6088       // Expecting to get an error flag since TFC is on - and dmask is 0
6089       // Force dmask to be at least 1 otherwise the instruction will fail
6090       DMask = 0x1;
6091       DMaskLanes = 1;
6092       NumVDataDwords = 1;
6093     }
6094     NumVDataDwords += 1;
6095     AdjustRetType = true;
6096   }
6097 
6098   // Has something earlier tagged that the return type needs adjusting
6099   // This happens if the instruction is a load or has set TexFailCtrl flags
6100   if (AdjustRetType) {
6101     // NumVDataDwords reflects the true number of dwords required in the return type
6102     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6103       // This is a no-op load. This can be eliminated
6104       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6105       if (isa<MemSDNode>(Op))
6106         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6107       return Undef;
6108     }
6109 
6110     EVT NewVT = NumVDataDwords > 1 ?
6111                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6112                 : MVT::i32;
6113 
6114     ResultTypes[0] = NewVT;
6115     if (ResultTypes.size() == 3) {
6116       // Original result was aggregate type used for TexFailCtrl results
6117       // The actual instruction returns as a vector type which has now been
6118       // created. Remove the aggregate result.
6119       ResultTypes.erase(&ResultTypes[1]);
6120     }
6121   }
6122 
6123   SDValue GLC;
6124   SDValue SLC;
6125   SDValue DLC;
6126   if (BaseOpcode->Atomic) {
6127     GLC = True; // TODO no-return optimization
6128     if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6129                           DAG, nullptr, &SLC, IsGFX10Plus ? &DLC : nullptr))
6130       return Op;
6131   } else {
6132     if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6133                           DAG, &GLC, &SLC, IsGFX10Plus ? &DLC : nullptr))
6134       return Op;
6135   }
6136 
6137   SmallVector<SDValue, 26> Ops;
6138   if (BaseOpcode->Store || BaseOpcode->Atomic)
6139     Ops.push_back(VData); // vdata
6140   if (UseNSA)
6141     append_range(Ops, VAddrs);
6142   else
6143     Ops.push_back(VAddr);
6144   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6145   if (BaseOpcode->Sampler)
6146     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6147   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6148   if (IsGFX10Plus)
6149     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6150   Ops.push_back(Unorm);
6151   if (IsGFX10Plus)
6152     Ops.push_back(DLC);
6153   Ops.push_back(GLC);
6154   Ops.push_back(SLC);
6155   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6156                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6157   if (IsGFX10Plus)
6158     Ops.push_back(IsA16 ? True : False);
6159   Ops.push_back(TFE);
6160   Ops.push_back(LWE);
6161   if (!IsGFX10Plus)
6162     Ops.push_back(DimInfo->DA ? True : False);
6163   if (BaseOpcode->HasD16)
6164     Ops.push_back(IsD16 ? True : False);
6165   if (isa<MemSDNode>(Op))
6166     Ops.push_back(Op.getOperand(0)); // chain
6167 
6168   int NumVAddrDwords =
6169       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6170   int Opcode = -1;
6171 
6172   if (IsGFX10Plus) {
6173     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6174                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6175                                           : AMDGPU::MIMGEncGfx10Default,
6176                                    NumVDataDwords, NumVAddrDwords);
6177   } else {
6178     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6179       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6180                                      NumVDataDwords, NumVAddrDwords);
6181     if (Opcode == -1)
6182       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6183                                      NumVDataDwords, NumVAddrDwords);
6184   }
6185   assert(Opcode != -1);
6186 
6187   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6188   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6189     MachineMemOperand *MemRef = MemOp->getMemOperand();
6190     DAG.setNodeMemRefs(NewNode, {MemRef});
6191   }
6192 
6193   if (BaseOpcode->AtomicX2) {
6194     SmallVector<SDValue, 1> Elt;
6195     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6196     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6197   } else if (!BaseOpcode->Store) {
6198     return constructRetValue(DAG, NewNode,
6199                              OrigResultTypes, IsTexFail,
6200                              Subtarget->hasUnpackedD16VMem(), IsD16,
6201                              DMaskLanes, NumVDataDwords, DL,
6202                              *DAG.getContext());
6203   }
6204 
6205   return SDValue(NewNode, 0);
6206 }
6207 
6208 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6209                                        SDValue Offset, SDValue CachePolicy,
6210                                        SelectionDAG &DAG) const {
6211   MachineFunction &MF = DAG.getMachineFunction();
6212 
6213   const DataLayout &DataLayout = DAG.getDataLayout();
6214   Align Alignment =
6215       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6216 
6217   MachineMemOperand *MMO = MF.getMachineMemOperand(
6218       MachinePointerInfo(),
6219       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6220           MachineMemOperand::MOInvariant,
6221       VT.getStoreSize(), Alignment);
6222 
6223   if (!Offset->isDivergent()) {
6224     SDValue Ops[] = {
6225         Rsrc,
6226         Offset, // Offset
6227         CachePolicy
6228     };
6229 
6230     // Widen vec3 load to vec4.
6231     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6232       EVT WidenedVT =
6233           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6234       auto WidenedOp = DAG.getMemIntrinsicNode(
6235           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6236           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6237       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6238                                    DAG.getVectorIdxConstant(0, DL));
6239       return Subvector;
6240     }
6241 
6242     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6243                                    DAG.getVTList(VT), Ops, VT, MMO);
6244   }
6245 
6246   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6247   // assume that the buffer is unswizzled.
6248   SmallVector<SDValue, 4> Loads;
6249   unsigned NumLoads = 1;
6250   MVT LoadVT = VT.getSimpleVT();
6251   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6252   assert((LoadVT.getScalarType() == MVT::i32 ||
6253           LoadVT.getScalarType() == MVT::f32));
6254 
6255   if (NumElts == 8 || NumElts == 16) {
6256     NumLoads = NumElts / 4;
6257     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6258   }
6259 
6260   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6261   SDValue Ops[] = {
6262       DAG.getEntryNode(),                               // Chain
6263       Rsrc,                                             // rsrc
6264       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6265       {},                                               // voffset
6266       {},                                               // soffset
6267       {},                                               // offset
6268       CachePolicy,                                      // cachepolicy
6269       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6270   };
6271 
6272   // Use the alignment to ensure that the required offsets will fit into the
6273   // immediate offsets.
6274   setBufferOffsets(Offset, DAG, &Ops[3],
6275                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6276 
6277   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6278   for (unsigned i = 0; i < NumLoads; ++i) {
6279     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6280     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6281                                         LoadVT, MMO, DAG));
6282   }
6283 
6284   if (NumElts == 8 || NumElts == 16)
6285     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6286 
6287   return Loads[0];
6288 }
6289 
6290 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6291                                                   SelectionDAG &DAG) const {
6292   MachineFunction &MF = DAG.getMachineFunction();
6293   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6294 
6295   EVT VT = Op.getValueType();
6296   SDLoc DL(Op);
6297   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6298 
6299   // TODO: Should this propagate fast-math-flags?
6300 
6301   switch (IntrinsicID) {
6302   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6303     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6304       return emitNonHSAIntrinsicError(DAG, DL, VT);
6305     return getPreloadedValue(DAG, *MFI, VT,
6306                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6307   }
6308   case Intrinsic::amdgcn_dispatch_ptr:
6309   case Intrinsic::amdgcn_queue_ptr: {
6310     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6311       DiagnosticInfoUnsupported BadIntrin(
6312           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6313           DL.getDebugLoc());
6314       DAG.getContext()->diagnose(BadIntrin);
6315       return DAG.getUNDEF(VT);
6316     }
6317 
6318     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6319       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6320     return getPreloadedValue(DAG, *MFI, VT, RegID);
6321   }
6322   case Intrinsic::amdgcn_implicitarg_ptr: {
6323     if (MFI->isEntryFunction())
6324       return getImplicitArgPtr(DAG, DL);
6325     return getPreloadedValue(DAG, *MFI, VT,
6326                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6327   }
6328   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6329     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6330       // This only makes sense to call in a kernel, so just lower to null.
6331       return DAG.getConstant(0, DL, VT);
6332     }
6333 
6334     return getPreloadedValue(DAG, *MFI, VT,
6335                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6336   }
6337   case Intrinsic::amdgcn_dispatch_id: {
6338     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6339   }
6340   case Intrinsic::amdgcn_rcp:
6341     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6342   case Intrinsic::amdgcn_rsq:
6343     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6344   case Intrinsic::amdgcn_rsq_legacy:
6345     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6346       return emitRemovedIntrinsicError(DAG, DL, VT);
6347     return SDValue();
6348   case Intrinsic::amdgcn_rcp_legacy:
6349     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6350       return emitRemovedIntrinsicError(DAG, DL, VT);
6351     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6352   case Intrinsic::amdgcn_rsq_clamp: {
6353     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6354       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6355 
6356     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6357     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6358     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6359 
6360     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6361     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6362                               DAG.getConstantFP(Max, DL, VT));
6363     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6364                        DAG.getConstantFP(Min, DL, VT));
6365   }
6366   case Intrinsic::r600_read_ngroups_x:
6367     if (Subtarget->isAmdHsaOS())
6368       return emitNonHSAIntrinsicError(DAG, DL, VT);
6369 
6370     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6371                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6372                                     false);
6373   case Intrinsic::r600_read_ngroups_y:
6374     if (Subtarget->isAmdHsaOS())
6375       return emitNonHSAIntrinsicError(DAG, DL, VT);
6376 
6377     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6378                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6379                                     false);
6380   case Intrinsic::r600_read_ngroups_z:
6381     if (Subtarget->isAmdHsaOS())
6382       return emitNonHSAIntrinsicError(DAG, DL, VT);
6383 
6384     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6385                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6386                                     false);
6387   case Intrinsic::r600_read_global_size_x:
6388     if (Subtarget->isAmdHsaOS())
6389       return emitNonHSAIntrinsicError(DAG, DL, VT);
6390 
6391     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6392                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6393                                     Align(4), false);
6394   case Intrinsic::r600_read_global_size_y:
6395     if (Subtarget->isAmdHsaOS())
6396       return emitNonHSAIntrinsicError(DAG, DL, VT);
6397 
6398     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6399                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6400                                     Align(4), false);
6401   case Intrinsic::r600_read_global_size_z:
6402     if (Subtarget->isAmdHsaOS())
6403       return emitNonHSAIntrinsicError(DAG, DL, VT);
6404 
6405     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6406                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6407                                     Align(4), false);
6408   case Intrinsic::r600_read_local_size_x:
6409     if (Subtarget->isAmdHsaOS())
6410       return emitNonHSAIntrinsicError(DAG, DL, VT);
6411 
6412     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6413                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6414   case Intrinsic::r600_read_local_size_y:
6415     if (Subtarget->isAmdHsaOS())
6416       return emitNonHSAIntrinsicError(DAG, DL, VT);
6417 
6418     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6419                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6420   case Intrinsic::r600_read_local_size_z:
6421     if (Subtarget->isAmdHsaOS())
6422       return emitNonHSAIntrinsicError(DAG, DL, VT);
6423 
6424     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6425                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6426   case Intrinsic::amdgcn_workgroup_id_x:
6427     return getPreloadedValue(DAG, *MFI, VT,
6428                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6429   case Intrinsic::amdgcn_workgroup_id_y:
6430     return getPreloadedValue(DAG, *MFI, VT,
6431                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6432   case Intrinsic::amdgcn_workgroup_id_z:
6433     return getPreloadedValue(DAG, *MFI, VT,
6434                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6435   case Intrinsic::amdgcn_workitem_id_x:
6436     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6437                           SDLoc(DAG.getEntryNode()),
6438                           MFI->getArgInfo().WorkItemIDX);
6439   case Intrinsic::amdgcn_workitem_id_y:
6440     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6441                           SDLoc(DAG.getEntryNode()),
6442                           MFI->getArgInfo().WorkItemIDY);
6443   case Intrinsic::amdgcn_workitem_id_z:
6444     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6445                           SDLoc(DAG.getEntryNode()),
6446                           MFI->getArgInfo().WorkItemIDZ);
6447   case Intrinsic::amdgcn_wavefrontsize:
6448     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6449                            SDLoc(Op), MVT::i32);
6450   case Intrinsic::amdgcn_s_buffer_load: {
6451     bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6452     SDValue GLC;
6453     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
6454     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
6455                           IsGFX10Plus ? &DLC : nullptr))
6456       return Op;
6457     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6458                         DAG);
6459   }
6460   case Intrinsic::amdgcn_fdiv_fast:
6461     return lowerFDIV_FAST(Op, DAG);
6462   case Intrinsic::amdgcn_sin:
6463     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6464 
6465   case Intrinsic::amdgcn_cos:
6466     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6467 
6468   case Intrinsic::amdgcn_mul_u24:
6469     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6470   case Intrinsic::amdgcn_mul_i24:
6471     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6472 
6473   case Intrinsic::amdgcn_log_clamp: {
6474     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6475       return SDValue();
6476 
6477     return emitRemovedIntrinsicError(DAG, DL, VT);
6478   }
6479   case Intrinsic::amdgcn_ldexp:
6480     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6481                        Op.getOperand(1), Op.getOperand(2));
6482 
6483   case Intrinsic::amdgcn_fract:
6484     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6485 
6486   case Intrinsic::amdgcn_class:
6487     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6488                        Op.getOperand(1), Op.getOperand(2));
6489   case Intrinsic::amdgcn_div_fmas:
6490     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6491                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6492                        Op.getOperand(4));
6493 
6494   case Intrinsic::amdgcn_div_fixup:
6495     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6496                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6497 
6498   case Intrinsic::amdgcn_div_scale: {
6499     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6500 
6501     // Translate to the operands expected by the machine instruction. The
6502     // first parameter must be the same as the first instruction.
6503     SDValue Numerator = Op.getOperand(1);
6504     SDValue Denominator = Op.getOperand(2);
6505 
6506     // Note this order is opposite of the machine instruction's operations,
6507     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6508     // intrinsic has the numerator as the first operand to match a normal
6509     // division operation.
6510 
6511     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6512 
6513     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6514                        Denominator, Numerator);
6515   }
6516   case Intrinsic::amdgcn_icmp: {
6517     // There is a Pat that handles this variant, so return it as-is.
6518     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6519         Op.getConstantOperandVal(2) == 0 &&
6520         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6521       return Op;
6522     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6523   }
6524   case Intrinsic::amdgcn_fcmp: {
6525     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6526   }
6527   case Intrinsic::amdgcn_ballot:
6528     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6529   case Intrinsic::amdgcn_fmed3:
6530     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6531                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6532   case Intrinsic::amdgcn_fdot2:
6533     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6534                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6535                        Op.getOperand(4));
6536   case Intrinsic::amdgcn_fmul_legacy:
6537     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6538                        Op.getOperand(1), Op.getOperand(2));
6539   case Intrinsic::amdgcn_sffbh:
6540     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6541   case Intrinsic::amdgcn_sbfe:
6542     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6543                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6544   case Intrinsic::amdgcn_ubfe:
6545     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6546                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6547   case Intrinsic::amdgcn_cvt_pkrtz:
6548   case Intrinsic::amdgcn_cvt_pknorm_i16:
6549   case Intrinsic::amdgcn_cvt_pknorm_u16:
6550   case Intrinsic::amdgcn_cvt_pk_i16:
6551   case Intrinsic::amdgcn_cvt_pk_u16: {
6552     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6553     EVT VT = Op.getValueType();
6554     unsigned Opcode;
6555 
6556     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6557       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6558     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6559       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6560     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6561       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6562     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6563       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6564     else
6565       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6566 
6567     if (isTypeLegal(VT))
6568       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6569 
6570     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6571                                Op.getOperand(1), Op.getOperand(2));
6572     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6573   }
6574   case Intrinsic::amdgcn_fmad_ftz:
6575     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6576                        Op.getOperand(2), Op.getOperand(3));
6577 
6578   case Intrinsic::amdgcn_if_break:
6579     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6580                                       Op->getOperand(1), Op->getOperand(2)), 0);
6581 
6582   case Intrinsic::amdgcn_groupstaticsize: {
6583     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6584     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6585       return Op;
6586 
6587     const Module *M = MF.getFunction().getParent();
6588     const GlobalValue *GV =
6589         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6590     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6591                                             SIInstrInfo::MO_ABS32_LO);
6592     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6593   }
6594   case Intrinsic::amdgcn_is_shared:
6595   case Intrinsic::amdgcn_is_private: {
6596     SDLoc SL(Op);
6597     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6598       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6599     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6600     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6601                                  Op.getOperand(1));
6602 
6603     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6604                                 DAG.getConstant(1, SL, MVT::i32));
6605     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6606   }
6607   case Intrinsic::amdgcn_alignbit:
6608     return DAG.getNode(ISD::FSHR, DL, VT,
6609                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6610   case Intrinsic::amdgcn_reloc_constant: {
6611     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6612     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6613     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6614     auto RelocSymbol = cast<GlobalVariable>(
6615         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6616     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6617                                             SIInstrInfo::MO_ABS32_LO);
6618     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6619   }
6620   default:
6621     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6622             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6623       return lowerImage(Op, ImageDimIntr, DAG, false);
6624 
6625     return Op;
6626   }
6627 }
6628 
6629 // This function computes an appropriate offset to pass to
6630 // MachineMemOperand::setOffset() based on the offset inputs to
6631 // an intrinsic.  If any of the offsets are non-contstant or
6632 // if VIndex is non-zero then this function returns 0.  Otherwise,
6633 // it returns the sum of VOffset, SOffset, and Offset.
6634 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6635                                       SDValue SOffset,
6636                                       SDValue Offset,
6637                                       SDValue VIndex = SDValue()) {
6638 
6639   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6640       !isa<ConstantSDNode>(Offset))
6641     return 0;
6642 
6643   if (VIndex) {
6644     if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6645       return 0;
6646   }
6647 
6648   return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6649          cast<ConstantSDNode>(SOffset)->getSExtValue() +
6650          cast<ConstantSDNode>(Offset)->getSExtValue();
6651 }
6652 
6653 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6654                                                      SelectionDAG &DAG,
6655                                                      unsigned NewOpcode) const {
6656   SDLoc DL(Op);
6657 
6658   SDValue VData = Op.getOperand(2);
6659   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6660   SDValue Ops[] = {
6661     Op.getOperand(0), // Chain
6662     VData,            // vdata
6663     Op.getOperand(3), // rsrc
6664     DAG.getConstant(0, DL, MVT::i32), // vindex
6665     Offsets.first,    // voffset
6666     Op.getOperand(5), // soffset
6667     Offsets.second,   // offset
6668     Op.getOperand(6), // cachepolicy
6669     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6670   };
6671 
6672   auto *M = cast<MemSDNode>(Op);
6673   M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6674 
6675   EVT MemVT = VData.getValueType();
6676   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6677                                  M->getMemOperand());
6678 }
6679 
6680 SDValue
6681 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6682                                                 unsigned NewOpcode) const {
6683   SDLoc DL(Op);
6684 
6685   SDValue VData = Op.getOperand(2);
6686   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6687   SDValue Ops[] = {
6688     Op.getOperand(0), // Chain
6689     VData,            // vdata
6690     Op.getOperand(3), // rsrc
6691     Op.getOperand(4), // vindex
6692     Offsets.first,    // voffset
6693     Op.getOperand(6), // soffset
6694     Offsets.second,   // offset
6695     Op.getOperand(7), // cachepolicy
6696     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6697   };
6698 
6699   auto *M = cast<MemSDNode>(Op);
6700   M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6701                                                       Ops[3]));
6702 
6703   EVT MemVT = VData.getValueType();
6704   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6705                                  M->getMemOperand());
6706 }
6707 
6708 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6709                                                  SelectionDAG &DAG) const {
6710   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6711   SDLoc DL(Op);
6712 
6713   switch (IntrID) {
6714   case Intrinsic::amdgcn_ds_ordered_add:
6715   case Intrinsic::amdgcn_ds_ordered_swap: {
6716     MemSDNode *M = cast<MemSDNode>(Op);
6717     SDValue Chain = M->getOperand(0);
6718     SDValue M0 = M->getOperand(2);
6719     SDValue Value = M->getOperand(3);
6720     unsigned IndexOperand = M->getConstantOperandVal(7);
6721     unsigned WaveRelease = M->getConstantOperandVal(8);
6722     unsigned WaveDone = M->getConstantOperandVal(9);
6723 
6724     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6725     IndexOperand &= ~0x3f;
6726     unsigned CountDw = 0;
6727 
6728     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6729       CountDw = (IndexOperand >> 24) & 0xf;
6730       IndexOperand &= ~(0xf << 24);
6731 
6732       if (CountDw < 1 || CountDw > 4) {
6733         report_fatal_error(
6734             "ds_ordered_count: dword count must be between 1 and 4");
6735       }
6736     }
6737 
6738     if (IndexOperand)
6739       report_fatal_error("ds_ordered_count: bad index operand");
6740 
6741     if (WaveDone && !WaveRelease)
6742       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6743 
6744     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6745     unsigned ShaderType =
6746         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6747     unsigned Offset0 = OrderedCountIndex << 2;
6748     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6749                        (Instruction << 4);
6750 
6751     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6752       Offset1 |= (CountDw - 1) << 6;
6753 
6754     unsigned Offset = Offset0 | (Offset1 << 8);
6755 
6756     SDValue Ops[] = {
6757       Chain,
6758       Value,
6759       DAG.getTargetConstant(Offset, DL, MVT::i16),
6760       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6761     };
6762     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6763                                    M->getVTList(), Ops, M->getMemoryVT(),
6764                                    M->getMemOperand());
6765   }
6766   case Intrinsic::amdgcn_ds_fadd: {
6767     MemSDNode *M = cast<MemSDNode>(Op);
6768     unsigned Opc;
6769     switch (IntrID) {
6770     case Intrinsic::amdgcn_ds_fadd:
6771       Opc = ISD::ATOMIC_LOAD_FADD;
6772       break;
6773     }
6774 
6775     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6776                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6777                          M->getMemOperand());
6778   }
6779   case Intrinsic::amdgcn_atomic_inc:
6780   case Intrinsic::amdgcn_atomic_dec:
6781   case Intrinsic::amdgcn_ds_fmin:
6782   case Intrinsic::amdgcn_ds_fmax: {
6783     MemSDNode *M = cast<MemSDNode>(Op);
6784     unsigned Opc;
6785     switch (IntrID) {
6786     case Intrinsic::amdgcn_atomic_inc:
6787       Opc = AMDGPUISD::ATOMIC_INC;
6788       break;
6789     case Intrinsic::amdgcn_atomic_dec:
6790       Opc = AMDGPUISD::ATOMIC_DEC;
6791       break;
6792     case Intrinsic::amdgcn_ds_fmin:
6793       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6794       break;
6795     case Intrinsic::amdgcn_ds_fmax:
6796       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6797       break;
6798     default:
6799       llvm_unreachable("Unknown intrinsic!");
6800     }
6801     SDValue Ops[] = {
6802       M->getOperand(0), // Chain
6803       M->getOperand(2), // Ptr
6804       M->getOperand(3)  // Value
6805     };
6806 
6807     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6808                                    M->getMemoryVT(), M->getMemOperand());
6809   }
6810   case Intrinsic::amdgcn_buffer_load:
6811   case Intrinsic::amdgcn_buffer_load_format: {
6812     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6813     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6814     unsigned IdxEn = 1;
6815     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6816       IdxEn = Idx->getZExtValue() != 0;
6817     SDValue Ops[] = {
6818       Op.getOperand(0), // Chain
6819       Op.getOperand(2), // rsrc
6820       Op.getOperand(3), // vindex
6821       SDValue(),        // voffset -- will be set by setBufferOffsets
6822       SDValue(),        // soffset -- will be set by setBufferOffsets
6823       SDValue(),        // offset -- will be set by setBufferOffsets
6824       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6825       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6826     };
6827 
6828     unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6829     // We don't know the offset if vindex is non-zero, so clear it.
6830     if (IdxEn)
6831       Offset = 0;
6832 
6833     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6834         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6835 
6836     EVT VT = Op.getValueType();
6837     EVT IntVT = VT.changeTypeToInteger();
6838     auto *M = cast<MemSDNode>(Op);
6839     M->getMemOperand()->setOffset(Offset);
6840     EVT LoadVT = Op.getValueType();
6841 
6842     if (LoadVT.getScalarType() == MVT::f16)
6843       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6844                                  M, DAG, Ops);
6845 
6846     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6847     if (LoadVT.getScalarType() == MVT::i8 ||
6848         LoadVT.getScalarType() == MVT::i16)
6849       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6850 
6851     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6852                                M->getMemOperand(), DAG);
6853   }
6854   case Intrinsic::amdgcn_raw_buffer_load:
6855   case Intrinsic::amdgcn_raw_buffer_load_format: {
6856     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6857 
6858     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6859     SDValue Ops[] = {
6860       Op.getOperand(0), // Chain
6861       Op.getOperand(2), // rsrc
6862       DAG.getConstant(0, DL, MVT::i32), // vindex
6863       Offsets.first,    // voffset
6864       Op.getOperand(4), // soffset
6865       Offsets.second,   // offset
6866       Op.getOperand(5), // cachepolicy, swizzled buffer
6867       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6868     };
6869 
6870     auto *M = cast<MemSDNode>(Op);
6871     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6872     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6873   }
6874   case Intrinsic::amdgcn_struct_buffer_load:
6875   case Intrinsic::amdgcn_struct_buffer_load_format: {
6876     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6877 
6878     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6879     SDValue Ops[] = {
6880       Op.getOperand(0), // Chain
6881       Op.getOperand(2), // rsrc
6882       Op.getOperand(3), // vindex
6883       Offsets.first,    // voffset
6884       Op.getOperand(5), // soffset
6885       Offsets.second,   // offset
6886       Op.getOperand(6), // cachepolicy, swizzled buffer
6887       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6888     };
6889 
6890     auto *M = cast<MemSDNode>(Op);
6891     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6892                                                         Ops[2]));
6893     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6894   }
6895   case Intrinsic::amdgcn_tbuffer_load: {
6896     MemSDNode *M = cast<MemSDNode>(Op);
6897     EVT LoadVT = Op.getValueType();
6898 
6899     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6900     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6901     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6902     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6903     unsigned IdxEn = 1;
6904     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6905       IdxEn = Idx->getZExtValue() != 0;
6906     SDValue Ops[] = {
6907       Op.getOperand(0),  // Chain
6908       Op.getOperand(2),  // rsrc
6909       Op.getOperand(3),  // vindex
6910       Op.getOperand(4),  // voffset
6911       Op.getOperand(5),  // soffset
6912       Op.getOperand(6),  // offset
6913       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6914       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6915       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6916     };
6917 
6918     if (LoadVT.getScalarType() == MVT::f16)
6919       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6920                                  M, DAG, Ops);
6921     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6922                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6923                                DAG);
6924   }
6925   case Intrinsic::amdgcn_raw_tbuffer_load: {
6926     MemSDNode *M = cast<MemSDNode>(Op);
6927     EVT LoadVT = Op.getValueType();
6928     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6929 
6930     SDValue Ops[] = {
6931       Op.getOperand(0),  // Chain
6932       Op.getOperand(2),  // rsrc
6933       DAG.getConstant(0, DL, MVT::i32), // vindex
6934       Offsets.first,     // voffset
6935       Op.getOperand(4),  // soffset
6936       Offsets.second,    // offset
6937       Op.getOperand(5),  // format
6938       Op.getOperand(6),  // cachepolicy, swizzled buffer
6939       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6940     };
6941 
6942     if (LoadVT.getScalarType() == MVT::f16)
6943       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6944                                  M, DAG, Ops);
6945     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6946                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6947                                DAG);
6948   }
6949   case Intrinsic::amdgcn_struct_tbuffer_load: {
6950     MemSDNode *M = cast<MemSDNode>(Op);
6951     EVT LoadVT = Op.getValueType();
6952     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6953 
6954     SDValue Ops[] = {
6955       Op.getOperand(0),  // Chain
6956       Op.getOperand(2),  // rsrc
6957       Op.getOperand(3),  // vindex
6958       Offsets.first,     // voffset
6959       Op.getOperand(5),  // soffset
6960       Offsets.second,    // offset
6961       Op.getOperand(6),  // format
6962       Op.getOperand(7),  // cachepolicy, swizzled buffer
6963       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6964     };
6965 
6966     if (LoadVT.getScalarType() == MVT::f16)
6967       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6968                                  M, DAG, Ops);
6969     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6970                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6971                                DAG);
6972   }
6973   case Intrinsic::amdgcn_buffer_atomic_swap:
6974   case Intrinsic::amdgcn_buffer_atomic_add:
6975   case Intrinsic::amdgcn_buffer_atomic_sub:
6976   case Intrinsic::amdgcn_buffer_atomic_csub:
6977   case Intrinsic::amdgcn_buffer_atomic_smin:
6978   case Intrinsic::amdgcn_buffer_atomic_umin:
6979   case Intrinsic::amdgcn_buffer_atomic_smax:
6980   case Intrinsic::amdgcn_buffer_atomic_umax:
6981   case Intrinsic::amdgcn_buffer_atomic_and:
6982   case Intrinsic::amdgcn_buffer_atomic_or:
6983   case Intrinsic::amdgcn_buffer_atomic_xor:
6984   case Intrinsic::amdgcn_buffer_atomic_fadd: {
6985     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6986     unsigned IdxEn = 1;
6987     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6988       IdxEn = Idx->getZExtValue() != 0;
6989     SDValue Ops[] = {
6990       Op.getOperand(0), // Chain
6991       Op.getOperand(2), // vdata
6992       Op.getOperand(3), // rsrc
6993       Op.getOperand(4), // vindex
6994       SDValue(),        // voffset -- will be set by setBufferOffsets
6995       SDValue(),        // soffset -- will be set by setBufferOffsets
6996       SDValue(),        // offset -- will be set by setBufferOffsets
6997       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6998       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6999     };
7000     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7001     // We don't know the offset if vindex is non-zero, so clear it.
7002     if (IdxEn)
7003       Offset = 0;
7004     EVT VT = Op.getValueType();
7005 
7006     auto *M = cast<MemSDNode>(Op);
7007     M->getMemOperand()->setOffset(Offset);
7008     unsigned Opcode = 0;
7009 
7010     switch (IntrID) {
7011     case Intrinsic::amdgcn_buffer_atomic_swap:
7012       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7013       break;
7014     case Intrinsic::amdgcn_buffer_atomic_add:
7015       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7016       break;
7017     case Intrinsic::amdgcn_buffer_atomic_sub:
7018       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7019       break;
7020     case Intrinsic::amdgcn_buffer_atomic_csub:
7021       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7022       break;
7023     case Intrinsic::amdgcn_buffer_atomic_smin:
7024       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7025       break;
7026     case Intrinsic::amdgcn_buffer_atomic_umin:
7027       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7028       break;
7029     case Intrinsic::amdgcn_buffer_atomic_smax:
7030       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7031       break;
7032     case Intrinsic::amdgcn_buffer_atomic_umax:
7033       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7034       break;
7035     case Intrinsic::amdgcn_buffer_atomic_and:
7036       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7037       break;
7038     case Intrinsic::amdgcn_buffer_atomic_or:
7039       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7040       break;
7041     case Intrinsic::amdgcn_buffer_atomic_xor:
7042       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7043       break;
7044     case Intrinsic::amdgcn_buffer_atomic_fadd:
7045       if (!Op.getValue(0).use_empty()) {
7046         DiagnosticInfoUnsupported
7047           NoFpRet(DAG.getMachineFunction().getFunction(),
7048                   "return versions of fp atomics not supported",
7049                   DL.getDebugLoc(), DS_Error);
7050         DAG.getContext()->diagnose(NoFpRet);
7051         return SDValue();
7052       }
7053       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7054       break;
7055     default:
7056       llvm_unreachable("unhandled atomic opcode");
7057     }
7058 
7059     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7060                                    M->getMemOperand());
7061   }
7062   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7063     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7064   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7065     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7066   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7067     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7068   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7069     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7070   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7071     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7072   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7073     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7074   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7075     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7076   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7077     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7078   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7079     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7080   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7081     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7082   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7083     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7084   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7085     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7086   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7087     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7088   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7089     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7090   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7091     return lowerStructBufferAtomicIntrin(Op, DAG,
7092                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7093   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7094     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7095   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7096     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7097   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7098     return lowerStructBufferAtomicIntrin(Op, DAG,
7099                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7100   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7101     return lowerStructBufferAtomicIntrin(Op, DAG,
7102                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7103   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7104     return lowerStructBufferAtomicIntrin(Op, DAG,
7105                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7106   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7107     return lowerStructBufferAtomicIntrin(Op, DAG,
7108                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7109   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7110     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7111   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7112     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7113   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7114     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7115   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7116     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7117   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7118     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7119 
7120   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7121     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7122     unsigned IdxEn = 1;
7123     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7124       IdxEn = Idx->getZExtValue() != 0;
7125     SDValue Ops[] = {
7126       Op.getOperand(0), // Chain
7127       Op.getOperand(2), // src
7128       Op.getOperand(3), // cmp
7129       Op.getOperand(4), // rsrc
7130       Op.getOperand(5), // vindex
7131       SDValue(),        // voffset -- will be set by setBufferOffsets
7132       SDValue(),        // soffset -- will be set by setBufferOffsets
7133       SDValue(),        // offset -- will be set by setBufferOffsets
7134       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7135       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7136     };
7137     unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7138     // We don't know the offset if vindex is non-zero, so clear it.
7139     if (IdxEn)
7140       Offset = 0;
7141     EVT VT = Op.getValueType();
7142     auto *M = cast<MemSDNode>(Op);
7143     M->getMemOperand()->setOffset(Offset);
7144 
7145     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7146                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7147   }
7148   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7149     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7150     SDValue Ops[] = {
7151       Op.getOperand(0), // Chain
7152       Op.getOperand(2), // src
7153       Op.getOperand(3), // cmp
7154       Op.getOperand(4), // rsrc
7155       DAG.getConstant(0, DL, MVT::i32), // vindex
7156       Offsets.first,    // voffset
7157       Op.getOperand(6), // soffset
7158       Offsets.second,   // offset
7159       Op.getOperand(7), // cachepolicy
7160       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7161     };
7162     EVT VT = Op.getValueType();
7163     auto *M = cast<MemSDNode>(Op);
7164     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7165 
7166     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7167                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7168   }
7169   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7170     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7171     SDValue Ops[] = {
7172       Op.getOperand(0), // Chain
7173       Op.getOperand(2), // src
7174       Op.getOperand(3), // cmp
7175       Op.getOperand(4), // rsrc
7176       Op.getOperand(5), // vindex
7177       Offsets.first,    // voffset
7178       Op.getOperand(7), // soffset
7179       Offsets.second,   // offset
7180       Op.getOperand(8), // cachepolicy
7181       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7182     };
7183     EVT VT = Op.getValueType();
7184     auto *M = cast<MemSDNode>(Op);
7185     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7186                                                         Ops[4]));
7187 
7188     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7189                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7190   }
7191   case Intrinsic::amdgcn_global_atomic_fadd: {
7192     if (!Op.getValue(0).use_empty()) {
7193       DiagnosticInfoUnsupported
7194         NoFpRet(DAG.getMachineFunction().getFunction(),
7195                 "return versions of fp atomics not supported",
7196                 DL.getDebugLoc(), DS_Error);
7197       DAG.getContext()->diagnose(NoFpRet);
7198       return SDValue();
7199     }
7200     MemSDNode *M = cast<MemSDNode>(Op);
7201     SDValue Ops[] = {
7202       M->getOperand(0), // Chain
7203       M->getOperand(2), // Ptr
7204       M->getOperand(3)  // Value
7205     };
7206 
7207     EVT VT = Op.getOperand(3).getValueType();
7208     return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7209                          DAG.getVTList(VT, MVT::Other), Ops,
7210                          M->getMemOperand());
7211   }
7212   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7213     SDLoc DL(Op);
7214     MemSDNode *M = cast<MemSDNode>(Op);
7215     SDValue NodePtr = M->getOperand(2);
7216     SDValue RayExtent = M->getOperand(3);
7217     SDValue RayOrigin = M->getOperand(4);
7218     SDValue RayDir = M->getOperand(5);
7219     SDValue RayInvDir = M->getOperand(6);
7220     SDValue TDescr = M->getOperand(7);
7221 
7222     assert(NodePtr.getValueType() == MVT::i32 ||
7223            NodePtr.getValueType() == MVT::i64);
7224     assert(RayDir.getValueType() == MVT::v4f16 ||
7225            RayDir.getValueType() == MVT::v4f32);
7226 
7227     bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7228     bool Is64 = NodePtr.getValueType() == MVT::i64;
7229     unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7230                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7231                             : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7232                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7233 
7234     SmallVector<SDValue, 16> Ops;
7235 
7236     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7237       SmallVector<SDValue, 3> Lanes;
7238       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7239       if (Lanes[0].getValueSizeInBits() == 32) {
7240         for (unsigned I = 0; I < 3; ++I)
7241           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7242       } else {
7243         if (IsAligned) {
7244           Ops.push_back(
7245             DAG.getBitcast(MVT::i32,
7246                            DAG.getBuildVector(MVT::v2f16, DL,
7247                                               { Lanes[0], Lanes[1] })));
7248           Ops.push_back(Lanes[2]);
7249         } else {
7250           SDValue Elt0 = Ops.pop_back_val();
7251           Ops.push_back(
7252             DAG.getBitcast(MVT::i32,
7253                            DAG.getBuildVector(MVT::v2f16, DL,
7254                                               { Elt0, Lanes[0] })));
7255           Ops.push_back(
7256             DAG.getBitcast(MVT::i32,
7257                            DAG.getBuildVector(MVT::v2f16, DL,
7258                                               { Lanes[1], Lanes[2] })));
7259         }
7260       }
7261     };
7262 
7263     if (Is64)
7264       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7265     else
7266       Ops.push_back(NodePtr);
7267 
7268     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7269     packLanes(RayOrigin, true);
7270     packLanes(RayDir, true);
7271     packLanes(RayInvDir, false);
7272     Ops.push_back(TDescr);
7273     if (IsA16)
7274       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7275     Ops.push_back(M->getChain());
7276 
7277     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7278     MachineMemOperand *MemRef = M->getMemOperand();
7279     DAG.setNodeMemRefs(NewNode, {MemRef});
7280     return SDValue(NewNode, 0);
7281   }
7282   default:
7283     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7284             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7285       return lowerImage(Op, ImageDimIntr, DAG, true);
7286 
7287     return SDValue();
7288   }
7289 }
7290 
7291 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7292 // dwordx4 if on SI.
7293 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7294                                               SDVTList VTList,
7295                                               ArrayRef<SDValue> Ops, EVT MemVT,
7296                                               MachineMemOperand *MMO,
7297                                               SelectionDAG &DAG) const {
7298   EVT VT = VTList.VTs[0];
7299   EVT WidenedVT = VT;
7300   EVT WidenedMemVT = MemVT;
7301   if (!Subtarget->hasDwordx3LoadStores() &&
7302       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7303     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7304                                  WidenedVT.getVectorElementType(), 4);
7305     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7306                                     WidenedMemVT.getVectorElementType(), 4);
7307     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7308   }
7309 
7310   assert(VTList.NumVTs == 2);
7311   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7312 
7313   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7314                                        WidenedMemVT, MMO);
7315   if (WidenedVT != VT) {
7316     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7317                                DAG.getVectorIdxConstant(0, DL));
7318     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7319   }
7320   return NewOp;
7321 }
7322 
7323 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7324                                          bool ImageStore) const {
7325   EVT StoreVT = VData.getValueType();
7326 
7327   // No change for f16 and legal vector D16 types.
7328   if (!StoreVT.isVector())
7329     return VData;
7330 
7331   SDLoc DL(VData);
7332   unsigned NumElements = StoreVT.getVectorNumElements();
7333 
7334   if (Subtarget->hasUnpackedD16VMem()) {
7335     // We need to unpack the packed data to store.
7336     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7337     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7338 
7339     EVT EquivStoreVT =
7340         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7341     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7342     return DAG.UnrollVectorOp(ZExt.getNode());
7343   }
7344 
7345   // The sq block of gfx8.1 does not estimate register use correctly for d16
7346   // image store instructions. The data operand is computed as if it were not a
7347   // d16 image instruction.
7348   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7349     // Bitcast to i16
7350     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7351     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7352 
7353     // Decompose into scalars
7354     SmallVector<SDValue, 4> Elts;
7355     DAG.ExtractVectorElements(IntVData, Elts);
7356 
7357     // Group pairs of i16 into v2i16 and bitcast to i32
7358     SmallVector<SDValue, 4> PackedElts;
7359     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7360       SDValue Pair =
7361           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7362       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7363       PackedElts.push_back(IntPair);
7364     }
7365     if ((NumElements % 2) == 1) {
7366       // Handle v3i16
7367       unsigned I = Elts.size() / 2;
7368       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7369                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7370       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7371       PackedElts.push_back(IntPair);
7372     }
7373 
7374     // Pad using UNDEF
7375     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7376 
7377     // Build final vector
7378     EVT VecVT =
7379         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7380     return DAG.getBuildVector(VecVT, DL, PackedElts);
7381   }
7382 
7383   if (NumElements == 3) {
7384     EVT IntStoreVT =
7385         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7386     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7387 
7388     EVT WidenedStoreVT = EVT::getVectorVT(
7389         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7390     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7391                                          WidenedStoreVT.getStoreSizeInBits());
7392     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7393     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7394   }
7395 
7396   assert(isTypeLegal(StoreVT));
7397   return VData;
7398 }
7399 
7400 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7401                                               SelectionDAG &DAG) const {
7402   SDLoc DL(Op);
7403   SDValue Chain = Op.getOperand(0);
7404   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7405   MachineFunction &MF = DAG.getMachineFunction();
7406 
7407   switch (IntrinsicID) {
7408   case Intrinsic::amdgcn_exp_compr: {
7409     SDValue Src0 = Op.getOperand(4);
7410     SDValue Src1 = Op.getOperand(5);
7411     // Hack around illegal type on SI by directly selecting it.
7412     if (isTypeLegal(Src0.getValueType()))
7413       return SDValue();
7414 
7415     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7416     SDValue Undef = DAG.getUNDEF(MVT::f32);
7417     const SDValue Ops[] = {
7418       Op.getOperand(2), // tgt
7419       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7420       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7421       Undef, // src2
7422       Undef, // src3
7423       Op.getOperand(7), // vm
7424       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7425       Op.getOperand(3), // en
7426       Op.getOperand(0) // Chain
7427     };
7428 
7429     unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7430     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7431   }
7432   case Intrinsic::amdgcn_s_barrier: {
7433     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7434       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7435       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7436       if (WGSize <= ST.getWavefrontSize())
7437         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7438                                           Op.getOperand(0)), 0);
7439     }
7440     return SDValue();
7441   };
7442   case Intrinsic::amdgcn_tbuffer_store: {
7443     SDValue VData = Op.getOperand(2);
7444     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7445     if (IsD16)
7446       VData = handleD16VData(VData, DAG);
7447     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7448     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7449     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7450     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7451     unsigned IdxEn = 1;
7452     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7453       IdxEn = Idx->getZExtValue() != 0;
7454     SDValue Ops[] = {
7455       Chain,
7456       VData,             // vdata
7457       Op.getOperand(3),  // rsrc
7458       Op.getOperand(4),  // vindex
7459       Op.getOperand(5),  // voffset
7460       Op.getOperand(6),  // soffset
7461       Op.getOperand(7),  // offset
7462       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7463       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7464       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7465     };
7466     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7467                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7468     MemSDNode *M = cast<MemSDNode>(Op);
7469     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7470                                    M->getMemoryVT(), M->getMemOperand());
7471   }
7472 
7473   case Intrinsic::amdgcn_struct_tbuffer_store: {
7474     SDValue VData = Op.getOperand(2);
7475     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7476     if (IsD16)
7477       VData = handleD16VData(VData, DAG);
7478     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7479     SDValue Ops[] = {
7480       Chain,
7481       VData,             // vdata
7482       Op.getOperand(3),  // rsrc
7483       Op.getOperand(4),  // vindex
7484       Offsets.first,     // voffset
7485       Op.getOperand(6),  // soffset
7486       Offsets.second,    // offset
7487       Op.getOperand(7),  // format
7488       Op.getOperand(8),  // cachepolicy, swizzled buffer
7489       DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7490     };
7491     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7492                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7493     MemSDNode *M = cast<MemSDNode>(Op);
7494     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7495                                    M->getMemoryVT(), M->getMemOperand());
7496   }
7497 
7498   case Intrinsic::amdgcn_raw_tbuffer_store: {
7499     SDValue VData = Op.getOperand(2);
7500     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7501     if (IsD16)
7502       VData = handleD16VData(VData, DAG);
7503     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7504     SDValue Ops[] = {
7505       Chain,
7506       VData,             // vdata
7507       Op.getOperand(3),  // rsrc
7508       DAG.getConstant(0, DL, MVT::i32), // vindex
7509       Offsets.first,     // voffset
7510       Op.getOperand(5),  // soffset
7511       Offsets.second,    // offset
7512       Op.getOperand(6),  // format
7513       Op.getOperand(7),  // cachepolicy, swizzled buffer
7514       DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7515     };
7516     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7517                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7518     MemSDNode *M = cast<MemSDNode>(Op);
7519     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7520                                    M->getMemoryVT(), M->getMemOperand());
7521   }
7522 
7523   case Intrinsic::amdgcn_buffer_store:
7524   case Intrinsic::amdgcn_buffer_store_format: {
7525     SDValue VData = Op.getOperand(2);
7526     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7527     if (IsD16)
7528       VData = handleD16VData(VData, DAG);
7529     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7530     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7531     unsigned IdxEn = 1;
7532     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7533       IdxEn = Idx->getZExtValue() != 0;
7534     SDValue Ops[] = {
7535       Chain,
7536       VData,
7537       Op.getOperand(3), // rsrc
7538       Op.getOperand(4), // vindex
7539       SDValue(), // voffset -- will be set by setBufferOffsets
7540       SDValue(), // soffset -- will be set by setBufferOffsets
7541       SDValue(), // offset -- will be set by setBufferOffsets
7542       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7543       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7544     };
7545     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7546     // We don't know the offset if vindex is non-zero, so clear it.
7547     if (IdxEn)
7548       Offset = 0;
7549     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7550                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7551     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7552     MemSDNode *M = cast<MemSDNode>(Op);
7553     M->getMemOperand()->setOffset(Offset);
7554 
7555     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7556     EVT VDataType = VData.getValueType().getScalarType();
7557     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7558       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7559 
7560     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7561                                    M->getMemoryVT(), M->getMemOperand());
7562   }
7563 
7564   case Intrinsic::amdgcn_raw_buffer_store:
7565   case Intrinsic::amdgcn_raw_buffer_store_format: {
7566     const bool IsFormat =
7567         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7568 
7569     SDValue VData = Op.getOperand(2);
7570     EVT VDataVT = VData.getValueType();
7571     EVT EltType = VDataVT.getScalarType();
7572     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7573     if (IsD16) {
7574       VData = handleD16VData(VData, DAG);
7575       VDataVT = VData.getValueType();
7576     }
7577 
7578     if (!isTypeLegal(VDataVT)) {
7579       VData =
7580           DAG.getNode(ISD::BITCAST, DL,
7581                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7582     }
7583 
7584     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7585     SDValue Ops[] = {
7586       Chain,
7587       VData,
7588       Op.getOperand(3), // rsrc
7589       DAG.getConstant(0, DL, MVT::i32), // vindex
7590       Offsets.first,    // voffset
7591       Op.getOperand(5), // soffset
7592       Offsets.second,   // offset
7593       Op.getOperand(6), // cachepolicy, swizzled buffer
7594       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7595     };
7596     unsigned Opc =
7597         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7598     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7599     MemSDNode *M = cast<MemSDNode>(Op);
7600     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7601 
7602     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7603     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7604       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7605 
7606     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7607                                    M->getMemoryVT(), M->getMemOperand());
7608   }
7609 
7610   case Intrinsic::amdgcn_struct_buffer_store:
7611   case Intrinsic::amdgcn_struct_buffer_store_format: {
7612     const bool IsFormat =
7613         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7614 
7615     SDValue VData = Op.getOperand(2);
7616     EVT VDataVT = VData.getValueType();
7617     EVT EltType = VDataVT.getScalarType();
7618     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7619 
7620     if (IsD16) {
7621       VData = handleD16VData(VData, DAG);
7622       VDataVT = VData.getValueType();
7623     }
7624 
7625     if (!isTypeLegal(VDataVT)) {
7626       VData =
7627           DAG.getNode(ISD::BITCAST, DL,
7628                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7629     }
7630 
7631     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7632     SDValue Ops[] = {
7633       Chain,
7634       VData,
7635       Op.getOperand(3), // rsrc
7636       Op.getOperand(4), // vindex
7637       Offsets.first,    // voffset
7638       Op.getOperand(6), // soffset
7639       Offsets.second,   // offset
7640       Op.getOperand(7), // cachepolicy, swizzled buffer
7641       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7642     };
7643     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7644                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7645     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7646     MemSDNode *M = cast<MemSDNode>(Op);
7647     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7648                                                         Ops[3]));
7649 
7650     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7651     EVT VDataType = VData.getValueType().getScalarType();
7652     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7653       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7654 
7655     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7656                                    M->getMemoryVT(), M->getMemOperand());
7657   }
7658   case Intrinsic::amdgcn_end_cf:
7659     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7660                                       Op->getOperand(2), Chain), 0);
7661 
7662   default: {
7663     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7664             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7665       return lowerImage(Op, ImageDimIntr, DAG, true);
7666 
7667     return Op;
7668   }
7669   }
7670 }
7671 
7672 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7673 // offset (the offset that is included in bounds checking and swizzling, to be
7674 // split between the instruction's voffset and immoffset fields) and soffset
7675 // (the offset that is excluded from bounds checking and swizzling, to go in
7676 // the instruction's soffset field).  This function takes the first kind of
7677 // offset and figures out how to split it between voffset and immoffset.
7678 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7679     SDValue Offset, SelectionDAG &DAG) const {
7680   SDLoc DL(Offset);
7681   const unsigned MaxImm = 4095;
7682   SDValue N0 = Offset;
7683   ConstantSDNode *C1 = nullptr;
7684 
7685   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7686     N0 = SDValue();
7687   else if (DAG.isBaseWithConstantOffset(N0)) {
7688     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7689     N0 = N0.getOperand(0);
7690   }
7691 
7692   if (C1) {
7693     unsigned ImmOffset = C1->getZExtValue();
7694     // If the immediate value is too big for the immoffset field, put the value
7695     // and -4096 into the immoffset field so that the value that is copied/added
7696     // for the voffset field is a multiple of 4096, and it stands more chance
7697     // of being CSEd with the copy/add for another similar load/store.
7698     // However, do not do that rounding down to a multiple of 4096 if that is a
7699     // negative number, as it appears to be illegal to have a negative offset
7700     // in the vgpr, even if adding the immediate offset makes it positive.
7701     unsigned Overflow = ImmOffset & ~MaxImm;
7702     ImmOffset -= Overflow;
7703     if ((int32_t)Overflow < 0) {
7704       Overflow += ImmOffset;
7705       ImmOffset = 0;
7706     }
7707     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7708     if (Overflow) {
7709       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7710       if (!N0)
7711         N0 = OverflowVal;
7712       else {
7713         SDValue Ops[] = { N0, OverflowVal };
7714         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7715       }
7716     }
7717   }
7718   if (!N0)
7719     N0 = DAG.getConstant(0, DL, MVT::i32);
7720   if (!C1)
7721     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7722   return {N0, SDValue(C1, 0)};
7723 }
7724 
7725 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7726 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7727 // pointed to by Offsets.
7728 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7729                                             SelectionDAG &DAG, SDValue *Offsets,
7730                                             Align Alignment) const {
7731   SDLoc DL(CombinedOffset);
7732   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7733     uint32_t Imm = C->getZExtValue();
7734     uint32_t SOffset, ImmOffset;
7735     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7736                                  Alignment)) {
7737       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7738       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7739       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7740       return SOffset + ImmOffset;
7741     }
7742   }
7743   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7744     SDValue N0 = CombinedOffset.getOperand(0);
7745     SDValue N1 = CombinedOffset.getOperand(1);
7746     uint32_t SOffset, ImmOffset;
7747     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7748     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7749                                                 Subtarget, Alignment)) {
7750       Offsets[0] = N0;
7751       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7752       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7753       return 0;
7754     }
7755   }
7756   Offsets[0] = CombinedOffset;
7757   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7758   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7759   return 0;
7760 }
7761 
7762 // Handle 8 bit and 16 bit buffer loads
7763 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7764                                                      EVT LoadVT, SDLoc DL,
7765                                                      ArrayRef<SDValue> Ops,
7766                                                      MemSDNode *M) const {
7767   EVT IntVT = LoadVT.changeTypeToInteger();
7768   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7769          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7770 
7771   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7772   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7773                                                Ops, IntVT,
7774                                                M->getMemOperand());
7775   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7776   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7777 
7778   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7779 }
7780 
7781 // Handle 8 bit and 16 bit buffer stores
7782 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7783                                                       EVT VDataType, SDLoc DL,
7784                                                       SDValue Ops[],
7785                                                       MemSDNode *M) const {
7786   if (VDataType == MVT::f16)
7787     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7788 
7789   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7790   Ops[1] = BufferStoreExt;
7791   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7792                                  AMDGPUISD::BUFFER_STORE_SHORT;
7793   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7794   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7795                                      M->getMemOperand());
7796 }
7797 
7798 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7799                                  ISD::LoadExtType ExtType, SDValue Op,
7800                                  const SDLoc &SL, EVT VT) {
7801   if (VT.bitsLT(Op.getValueType()))
7802     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7803 
7804   switch (ExtType) {
7805   case ISD::SEXTLOAD:
7806     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7807   case ISD::ZEXTLOAD:
7808     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7809   case ISD::EXTLOAD:
7810     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7811   case ISD::NON_EXTLOAD:
7812     return Op;
7813   }
7814 
7815   llvm_unreachable("invalid ext type");
7816 }
7817 
7818 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7819   SelectionDAG &DAG = DCI.DAG;
7820   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7821     return SDValue();
7822 
7823   // FIXME: Constant loads should all be marked invariant.
7824   unsigned AS = Ld->getAddressSpace();
7825   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7826       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7827       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7828     return SDValue();
7829 
7830   // Don't do this early, since it may interfere with adjacent load merging for
7831   // illegal types. We can avoid losing alignment information for exotic types
7832   // pre-legalize.
7833   EVT MemVT = Ld->getMemoryVT();
7834   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7835       MemVT.getSizeInBits() >= 32)
7836     return SDValue();
7837 
7838   SDLoc SL(Ld);
7839 
7840   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7841          "unexpected vector extload");
7842 
7843   // TODO: Drop only high part of range.
7844   SDValue Ptr = Ld->getBasePtr();
7845   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7846                                 MVT::i32, SL, Ld->getChain(), Ptr,
7847                                 Ld->getOffset(),
7848                                 Ld->getPointerInfo(), MVT::i32,
7849                                 Ld->getAlignment(),
7850                                 Ld->getMemOperand()->getFlags(),
7851                                 Ld->getAAInfo(),
7852                                 nullptr); // Drop ranges
7853 
7854   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7855   if (MemVT.isFloatingPoint()) {
7856     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7857            "unexpected fp extload");
7858     TruncVT = MemVT.changeTypeToInteger();
7859   }
7860 
7861   SDValue Cvt = NewLoad;
7862   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7863     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7864                       DAG.getValueType(TruncVT));
7865   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7866              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7867     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7868   } else {
7869     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7870   }
7871 
7872   EVT VT = Ld->getValueType(0);
7873   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7874 
7875   DCI.AddToWorklist(Cvt.getNode());
7876 
7877   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7878   // the appropriate extension from the 32-bit load.
7879   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7880   DCI.AddToWorklist(Cvt.getNode());
7881 
7882   // Handle conversion back to floating point if necessary.
7883   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7884 
7885   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7886 }
7887 
7888 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7889   SDLoc DL(Op);
7890   LoadSDNode *Load = cast<LoadSDNode>(Op);
7891   ISD::LoadExtType ExtType = Load->getExtensionType();
7892   EVT MemVT = Load->getMemoryVT();
7893 
7894   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7895     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7896       return SDValue();
7897 
7898     // FIXME: Copied from PPC
7899     // First, load into 32 bits, then truncate to 1 bit.
7900 
7901     SDValue Chain = Load->getChain();
7902     SDValue BasePtr = Load->getBasePtr();
7903     MachineMemOperand *MMO = Load->getMemOperand();
7904 
7905     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7906 
7907     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7908                                    BasePtr, RealMemVT, MMO);
7909 
7910     if (!MemVT.isVector()) {
7911       SDValue Ops[] = {
7912         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7913         NewLD.getValue(1)
7914       };
7915 
7916       return DAG.getMergeValues(Ops, DL);
7917     }
7918 
7919     SmallVector<SDValue, 3> Elts;
7920     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7921       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7922                                 DAG.getConstant(I, DL, MVT::i32));
7923 
7924       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7925     }
7926 
7927     SDValue Ops[] = {
7928       DAG.getBuildVector(MemVT, DL, Elts),
7929       NewLD.getValue(1)
7930     };
7931 
7932     return DAG.getMergeValues(Ops, DL);
7933   }
7934 
7935   if (!MemVT.isVector())
7936     return SDValue();
7937 
7938   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7939          "Custom lowering for non-i32 vectors hasn't been implemented.");
7940 
7941   unsigned Alignment = Load->getAlignment();
7942   unsigned AS = Load->getAddressSpace();
7943   if (Subtarget->hasLDSMisalignedBug() &&
7944       AS == AMDGPUAS::FLAT_ADDRESS &&
7945       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7946     return SplitVectorLoad(Op, DAG);
7947   }
7948 
7949   MachineFunction &MF = DAG.getMachineFunction();
7950   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7951   // If there is a possibilty that flat instruction access scratch memory
7952   // then we need to use the same legalization rules we use for private.
7953   if (AS == AMDGPUAS::FLAT_ADDRESS &&
7954       !Subtarget->hasMultiDwordFlatScratchAddressing())
7955     AS = MFI->hasFlatScratchInit() ?
7956          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7957 
7958   unsigned NumElements = MemVT.getVectorNumElements();
7959 
7960   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7961       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7962     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7963       if (MemVT.isPow2VectorType())
7964         return SDValue();
7965       return WidenOrSplitVectorLoad(Op, DAG);
7966     }
7967     // Non-uniform loads will be selected to MUBUF instructions, so they
7968     // have the same legalization requirements as global and private
7969     // loads.
7970     //
7971   }
7972 
7973   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7974       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7975       AS == AMDGPUAS::GLOBAL_ADDRESS) {
7976     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7977         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
7978         Alignment >= 4 && NumElements < 32) {
7979       if (MemVT.isPow2VectorType())
7980         return SDValue();
7981       return WidenOrSplitVectorLoad(Op, DAG);
7982     }
7983     // Non-uniform loads will be selected to MUBUF instructions, so they
7984     // have the same legalization requirements as global and private
7985     // loads.
7986     //
7987   }
7988   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7989       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7990       AS == AMDGPUAS::GLOBAL_ADDRESS ||
7991       AS == AMDGPUAS::FLAT_ADDRESS) {
7992     if (NumElements > 4)
7993       return SplitVectorLoad(Op, DAG);
7994     // v3 loads not supported on SI.
7995     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7996       return WidenOrSplitVectorLoad(Op, DAG);
7997 
7998     // v3 and v4 loads are supported for private and global memory.
7999     return SDValue();
8000   }
8001   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8002     // Depending on the setting of the private_element_size field in the
8003     // resource descriptor, we can only make private accesses up to a certain
8004     // size.
8005     switch (Subtarget->getMaxPrivateElementSize()) {
8006     case 4: {
8007       SDValue Ops[2];
8008       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8009       return DAG.getMergeValues(Ops, DL);
8010     }
8011     case 8:
8012       if (NumElements > 2)
8013         return SplitVectorLoad(Op, DAG);
8014       return SDValue();
8015     case 16:
8016       // Same as global/flat
8017       if (NumElements > 4)
8018         return SplitVectorLoad(Op, DAG);
8019       // v3 loads not supported on SI.
8020       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8021         return WidenOrSplitVectorLoad(Op, DAG);
8022 
8023       return SDValue();
8024     default:
8025       llvm_unreachable("unsupported private_element_size");
8026     }
8027   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8028     // Use ds_read_b128 or ds_read_b96 when possible.
8029     if (Subtarget->hasDS96AndDS128() &&
8030         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8031          MemVT.getStoreSize() == 12) &&
8032         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8033                                            Load->getAlign()))
8034       return SDValue();
8035 
8036     if (NumElements > 2)
8037       return SplitVectorLoad(Op, DAG);
8038 
8039     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8040     // address is negative, then the instruction is incorrectly treated as
8041     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8042     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8043     // load later in the SILoadStoreOptimizer.
8044     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8045         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8046         Load->getAlignment() < 8) {
8047       return SplitVectorLoad(Op, DAG);
8048     }
8049   }
8050 
8051   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8052                                       MemVT, *Load->getMemOperand())) {
8053     SDValue Ops[2];
8054     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8055     return DAG.getMergeValues(Ops, DL);
8056   }
8057 
8058   return SDValue();
8059 }
8060 
8061 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8062   EVT VT = Op.getValueType();
8063   assert(VT.getSizeInBits() == 64);
8064 
8065   SDLoc DL(Op);
8066   SDValue Cond = Op.getOperand(0);
8067 
8068   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8069   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8070 
8071   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8072   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8073 
8074   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8075   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8076 
8077   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8078 
8079   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8080   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8081 
8082   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8083 
8084   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8085   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8086 }
8087 
8088 // Catch division cases where we can use shortcuts with rcp and rsq
8089 // instructions.
8090 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8091                                               SelectionDAG &DAG) const {
8092   SDLoc SL(Op);
8093   SDValue LHS = Op.getOperand(0);
8094   SDValue RHS = Op.getOperand(1);
8095   EVT VT = Op.getValueType();
8096   const SDNodeFlags Flags = Op->getFlags();
8097 
8098   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8099 
8100   // Without !fpmath accuracy information, we can't do more because we don't
8101   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8102   if (!AllowInaccurateRcp)
8103     return SDValue();
8104 
8105   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8106     if (CLHS->isExactlyValue(1.0)) {
8107       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8108       // the CI documentation has a worst case error of 1 ulp.
8109       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8110       // use it as long as we aren't trying to use denormals.
8111       //
8112       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8113 
8114       // 1.0 / sqrt(x) -> rsq(x)
8115 
8116       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8117       // error seems really high at 2^29 ULP.
8118       if (RHS.getOpcode() == ISD::FSQRT)
8119         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8120 
8121       // 1.0 / x -> rcp(x)
8122       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8123     }
8124 
8125     // Same as for 1.0, but expand the sign out of the constant.
8126     if (CLHS->isExactlyValue(-1.0)) {
8127       // -1.0 / x -> rcp (fneg x)
8128       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8129       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8130     }
8131   }
8132 
8133   // Turn into multiply by the reciprocal.
8134   // x / y -> x * (1.0 / y)
8135   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8136   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8137 }
8138 
8139 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8140                                                 SelectionDAG &DAG) const {
8141   SDLoc SL(Op);
8142   SDValue X = Op.getOperand(0);
8143   SDValue Y = Op.getOperand(1);
8144   EVT VT = Op.getValueType();
8145   const SDNodeFlags Flags = Op->getFlags();
8146 
8147   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8148                             DAG.getTarget().Options.UnsafeFPMath;
8149   if (!AllowInaccurateDiv)
8150     return SDValue();
8151 
8152   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8153   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8154 
8155   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8156   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8157 
8158   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8159   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8160   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8161   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8162   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8163   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8164 }
8165 
8166 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8167                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8168                           SDNodeFlags Flags) {
8169   if (GlueChain->getNumValues() <= 1) {
8170     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8171   }
8172 
8173   assert(GlueChain->getNumValues() == 3);
8174 
8175   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8176   switch (Opcode) {
8177   default: llvm_unreachable("no chain equivalent for opcode");
8178   case ISD::FMUL:
8179     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8180     break;
8181   }
8182 
8183   return DAG.getNode(Opcode, SL, VTList,
8184                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8185                      Flags);
8186 }
8187 
8188 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8189                            EVT VT, SDValue A, SDValue B, SDValue C,
8190                            SDValue GlueChain, SDNodeFlags Flags) {
8191   if (GlueChain->getNumValues() <= 1) {
8192     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8193   }
8194 
8195   assert(GlueChain->getNumValues() == 3);
8196 
8197   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8198   switch (Opcode) {
8199   default: llvm_unreachable("no chain equivalent for opcode");
8200   case ISD::FMA:
8201     Opcode = AMDGPUISD::FMA_W_CHAIN;
8202     break;
8203   }
8204 
8205   return DAG.getNode(Opcode, SL, VTList,
8206                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8207                      Flags);
8208 }
8209 
8210 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8211   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8212     return FastLowered;
8213 
8214   SDLoc SL(Op);
8215   SDValue Src0 = Op.getOperand(0);
8216   SDValue Src1 = Op.getOperand(1);
8217 
8218   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8219   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8220 
8221   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8222   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8223 
8224   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8225   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8226 
8227   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8228 }
8229 
8230 // Faster 2.5 ULP division that does not support denormals.
8231 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8232   SDLoc SL(Op);
8233   SDValue LHS = Op.getOperand(1);
8234   SDValue RHS = Op.getOperand(2);
8235 
8236   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8237 
8238   const APFloat K0Val(BitsToFloat(0x6f800000));
8239   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8240 
8241   const APFloat K1Val(BitsToFloat(0x2f800000));
8242   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8243 
8244   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8245 
8246   EVT SetCCVT =
8247     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8248 
8249   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8250 
8251   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8252 
8253   // TODO: Should this propagate fast-math-flags?
8254   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8255 
8256   // rcp does not support denormals.
8257   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8258 
8259   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8260 
8261   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8262 }
8263 
8264 // Returns immediate value for setting the F32 denorm mode when using the
8265 // S_DENORM_MODE instruction.
8266 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8267                                           const SDLoc &SL, const GCNSubtarget *ST) {
8268   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8269   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8270                                 ? FP_DENORM_FLUSH_NONE
8271                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8272 
8273   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8274   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8275 }
8276 
8277 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8278   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8279     return FastLowered;
8280 
8281   // The selection matcher assumes anything with a chain selecting to a
8282   // mayRaiseFPException machine instruction. Since we're introducing a chain
8283   // here, we need to explicitly report nofpexcept for the regular fdiv
8284   // lowering.
8285   SDNodeFlags Flags = Op->getFlags();
8286   Flags.setNoFPExcept(true);
8287 
8288   SDLoc SL(Op);
8289   SDValue LHS = Op.getOperand(0);
8290   SDValue RHS = Op.getOperand(1);
8291 
8292   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8293 
8294   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8295 
8296   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8297                                           {RHS, RHS, LHS}, Flags);
8298   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8299                                         {LHS, RHS, LHS}, Flags);
8300 
8301   // Denominator is scaled to not be denormal, so using rcp is ok.
8302   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8303                                   DenominatorScaled, Flags);
8304   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8305                                      DenominatorScaled, Flags);
8306 
8307   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8308                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8309                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8310   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8311 
8312   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8313 
8314   if (!HasFP32Denormals) {
8315     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8316     // lowering. The chain dependence is insufficient, and we need glue. We do
8317     // not need the glue variants in a strictfp function.
8318 
8319     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8320 
8321     SDNode *EnableDenorm;
8322     if (Subtarget->hasDenormModeInst()) {
8323       const SDValue EnableDenormValue =
8324           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8325 
8326       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8327                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8328     } else {
8329       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8330                                                         SL, MVT::i32);
8331       EnableDenorm =
8332           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8333                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8334     }
8335 
8336     SDValue Ops[3] = {
8337       NegDivScale0,
8338       SDValue(EnableDenorm, 0),
8339       SDValue(EnableDenorm, 1)
8340     };
8341 
8342     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8343   }
8344 
8345   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8346                              ApproxRcp, One, NegDivScale0, Flags);
8347 
8348   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8349                              ApproxRcp, Fma0, Flags);
8350 
8351   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8352                            Fma1, Fma1, Flags);
8353 
8354   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8355                              NumeratorScaled, Mul, Flags);
8356 
8357   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8358                              Fma2, Fma1, Mul, Fma2, Flags);
8359 
8360   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8361                              NumeratorScaled, Fma3, Flags);
8362 
8363   if (!HasFP32Denormals) {
8364     SDNode *DisableDenorm;
8365     if (Subtarget->hasDenormModeInst()) {
8366       const SDValue DisableDenormValue =
8367           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8368 
8369       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8370                                   Fma4.getValue(1), DisableDenormValue,
8371                                   Fma4.getValue(2)).getNode();
8372     } else {
8373       const SDValue DisableDenormValue =
8374           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8375 
8376       DisableDenorm = DAG.getMachineNode(
8377           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8378           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8379     }
8380 
8381     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8382                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8383     DAG.setRoot(OutputChain);
8384   }
8385 
8386   SDValue Scale = NumeratorScaled.getValue(1);
8387   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8388                              {Fma4, Fma1, Fma3, Scale}, Flags);
8389 
8390   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8391 }
8392 
8393 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8394   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8395     return FastLowered;
8396 
8397   SDLoc SL(Op);
8398   SDValue X = Op.getOperand(0);
8399   SDValue Y = Op.getOperand(1);
8400 
8401   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8402 
8403   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8404 
8405   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8406 
8407   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8408 
8409   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8410 
8411   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8412 
8413   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8414 
8415   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8416 
8417   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8418 
8419   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8420   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8421 
8422   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8423                              NegDivScale0, Mul, DivScale1);
8424 
8425   SDValue Scale;
8426 
8427   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8428     // Workaround a hardware bug on SI where the condition output from div_scale
8429     // is not usable.
8430 
8431     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8432 
8433     // Figure out if the scale to use for div_fmas.
8434     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8435     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8436     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8437     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8438 
8439     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8440     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8441 
8442     SDValue Scale0Hi
8443       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8444     SDValue Scale1Hi
8445       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8446 
8447     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8448     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8449     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8450   } else {
8451     Scale = DivScale1.getValue(1);
8452   }
8453 
8454   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8455                              Fma4, Fma3, Mul, Scale);
8456 
8457   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8458 }
8459 
8460 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8461   EVT VT = Op.getValueType();
8462 
8463   if (VT == MVT::f32)
8464     return LowerFDIV32(Op, DAG);
8465 
8466   if (VT == MVT::f64)
8467     return LowerFDIV64(Op, DAG);
8468 
8469   if (VT == MVT::f16)
8470     return LowerFDIV16(Op, DAG);
8471 
8472   llvm_unreachable("Unexpected type for fdiv");
8473 }
8474 
8475 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8476   SDLoc DL(Op);
8477   StoreSDNode *Store = cast<StoreSDNode>(Op);
8478   EVT VT = Store->getMemoryVT();
8479 
8480   if (VT == MVT::i1) {
8481     return DAG.getTruncStore(Store->getChain(), DL,
8482        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8483        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8484   }
8485 
8486   assert(VT.isVector() &&
8487          Store->getValue().getValueType().getScalarType() == MVT::i32);
8488 
8489   unsigned AS = Store->getAddressSpace();
8490   if (Subtarget->hasLDSMisalignedBug() &&
8491       AS == AMDGPUAS::FLAT_ADDRESS &&
8492       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8493     return SplitVectorStore(Op, DAG);
8494   }
8495 
8496   MachineFunction &MF = DAG.getMachineFunction();
8497   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8498   // If there is a possibilty that flat instruction access scratch memory
8499   // then we need to use the same legalization rules we use for private.
8500   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8501       !Subtarget->hasMultiDwordFlatScratchAddressing())
8502     AS = MFI->hasFlatScratchInit() ?
8503          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8504 
8505   unsigned NumElements = VT.getVectorNumElements();
8506   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8507       AS == AMDGPUAS::FLAT_ADDRESS) {
8508     if (NumElements > 4)
8509       return SplitVectorStore(Op, DAG);
8510     // v3 stores not supported on SI.
8511     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8512       return SplitVectorStore(Op, DAG);
8513 
8514     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8515                                         VT, *Store->getMemOperand()))
8516       return expandUnalignedStore(Store, DAG);
8517 
8518     return SDValue();
8519   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8520     switch (Subtarget->getMaxPrivateElementSize()) {
8521     case 4:
8522       return scalarizeVectorStore(Store, DAG);
8523     case 8:
8524       if (NumElements > 2)
8525         return SplitVectorStore(Op, DAG);
8526       return SDValue();
8527     case 16:
8528       if (NumElements > 4 ||
8529           (NumElements == 3 && !Subtarget->enableFlatScratch()))
8530         return SplitVectorStore(Op, DAG);
8531       return SDValue();
8532     default:
8533       llvm_unreachable("unsupported private_element_size");
8534     }
8535   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8536     // Use ds_write_b128 or ds_write_b96 when possible.
8537     if (Subtarget->hasDS96AndDS128() &&
8538         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8539          (VT.getStoreSize() == 12)) &&
8540         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8541                                            Store->getAlign()))
8542       return SDValue();
8543 
8544     if (NumElements > 2)
8545       return SplitVectorStore(Op, DAG);
8546 
8547     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8548     // address is negative, then the instruction is incorrectly treated as
8549     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8550     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8551     // store later in the SILoadStoreOptimizer.
8552     if (!Subtarget->hasUsableDSOffset() &&
8553         NumElements == 2 && VT.getStoreSize() == 8 &&
8554         Store->getAlignment() < 8) {
8555       return SplitVectorStore(Op, DAG);
8556     }
8557 
8558     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8559                                         VT, *Store->getMemOperand())) {
8560       if (VT.isVector())
8561         return SplitVectorStore(Op, DAG);
8562       return expandUnalignedStore(Store, DAG);
8563     }
8564 
8565     return SDValue();
8566   } else {
8567     llvm_unreachable("unhandled address space");
8568   }
8569 }
8570 
8571 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8572   SDLoc DL(Op);
8573   EVT VT = Op.getValueType();
8574   SDValue Arg = Op.getOperand(0);
8575   SDValue TrigVal;
8576 
8577   // Propagate fast-math flags so that the multiply we introduce can be folded
8578   // if Arg is already the result of a multiply by constant.
8579   auto Flags = Op->getFlags();
8580 
8581   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8582 
8583   if (Subtarget->hasTrigReducedRange()) {
8584     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8585     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8586   } else {
8587     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8588   }
8589 
8590   switch (Op.getOpcode()) {
8591   case ISD::FCOS:
8592     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8593   case ISD::FSIN:
8594     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8595   default:
8596     llvm_unreachable("Wrong trig opcode");
8597   }
8598 }
8599 
8600 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8601   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8602   assert(AtomicNode->isCompareAndSwap());
8603   unsigned AS = AtomicNode->getAddressSpace();
8604 
8605   // No custom lowering required for local address space
8606   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8607     return Op;
8608 
8609   // Non-local address space requires custom lowering for atomic compare
8610   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8611   SDLoc DL(Op);
8612   SDValue ChainIn = Op.getOperand(0);
8613   SDValue Addr = Op.getOperand(1);
8614   SDValue Old = Op.getOperand(2);
8615   SDValue New = Op.getOperand(3);
8616   EVT VT = Op.getValueType();
8617   MVT SimpleVT = VT.getSimpleVT();
8618   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8619 
8620   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8621   SDValue Ops[] = { ChainIn, Addr, NewOld };
8622 
8623   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8624                                  Ops, VT, AtomicNode->getMemOperand());
8625 }
8626 
8627 //===----------------------------------------------------------------------===//
8628 // Custom DAG optimizations
8629 //===----------------------------------------------------------------------===//
8630 
8631 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8632                                                      DAGCombinerInfo &DCI) const {
8633   EVT VT = N->getValueType(0);
8634   EVT ScalarVT = VT.getScalarType();
8635   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8636     return SDValue();
8637 
8638   SelectionDAG &DAG = DCI.DAG;
8639   SDLoc DL(N);
8640 
8641   SDValue Src = N->getOperand(0);
8642   EVT SrcVT = Src.getValueType();
8643 
8644   // TODO: We could try to match extracting the higher bytes, which would be
8645   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8646   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8647   // about in practice.
8648   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8649     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8650       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8651       DCI.AddToWorklist(Cvt.getNode());
8652 
8653       // For the f16 case, fold to a cast to f32 and then cast back to f16.
8654       if (ScalarVT != MVT::f32) {
8655         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8656                           DAG.getTargetConstant(0, DL, MVT::i32));
8657       }
8658       return Cvt;
8659     }
8660   }
8661 
8662   return SDValue();
8663 }
8664 
8665 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8666 
8667 // This is a variant of
8668 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8669 //
8670 // The normal DAG combiner will do this, but only if the add has one use since
8671 // that would increase the number of instructions.
8672 //
8673 // This prevents us from seeing a constant offset that can be folded into a
8674 // memory instruction's addressing mode. If we know the resulting add offset of
8675 // a pointer can be folded into an addressing offset, we can replace the pointer
8676 // operand with the add of new constant offset. This eliminates one of the uses,
8677 // and may allow the remaining use to also be simplified.
8678 //
8679 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8680                                                unsigned AddrSpace,
8681                                                EVT MemVT,
8682                                                DAGCombinerInfo &DCI) const {
8683   SDValue N0 = N->getOperand(0);
8684   SDValue N1 = N->getOperand(1);
8685 
8686   // We only do this to handle cases where it's profitable when there are
8687   // multiple uses of the add, so defer to the standard combine.
8688   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8689       N0->hasOneUse())
8690     return SDValue();
8691 
8692   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8693   if (!CN1)
8694     return SDValue();
8695 
8696   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8697   if (!CAdd)
8698     return SDValue();
8699 
8700   // If the resulting offset is too large, we can't fold it into the addressing
8701   // mode offset.
8702   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8703   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8704 
8705   AddrMode AM;
8706   AM.HasBaseReg = true;
8707   AM.BaseOffs = Offset.getSExtValue();
8708   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8709     return SDValue();
8710 
8711   SelectionDAG &DAG = DCI.DAG;
8712   SDLoc SL(N);
8713   EVT VT = N->getValueType(0);
8714 
8715   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8716   SDValue COffset = DAG.getConstant(Offset, SL, VT);
8717 
8718   SDNodeFlags Flags;
8719   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8720                           (N0.getOpcode() == ISD::OR ||
8721                            N0->getFlags().hasNoUnsignedWrap()));
8722 
8723   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8724 }
8725 
8726 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8727 /// by the chain and intrinsic ID. Theoretically we would also need to check the
8728 /// specific intrinsic, but they all place the pointer operand first.
8729 static unsigned getBasePtrIndex(const MemSDNode *N) {
8730   switch (N->getOpcode()) {
8731   case ISD::STORE:
8732   case ISD::INTRINSIC_W_CHAIN:
8733   case ISD::INTRINSIC_VOID:
8734     return 2;
8735   default:
8736     return 1;
8737   }
8738 }
8739 
8740 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8741                                                   DAGCombinerInfo &DCI) const {
8742   SelectionDAG &DAG = DCI.DAG;
8743   SDLoc SL(N);
8744 
8745   unsigned PtrIdx = getBasePtrIndex(N);
8746   SDValue Ptr = N->getOperand(PtrIdx);
8747 
8748   // TODO: We could also do this for multiplies.
8749   if (Ptr.getOpcode() == ISD::SHL) {
8750     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8751                                           N->getMemoryVT(), DCI);
8752     if (NewPtr) {
8753       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8754 
8755       NewOps[PtrIdx] = NewPtr;
8756       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8757     }
8758   }
8759 
8760   return SDValue();
8761 }
8762 
8763 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8764   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8765          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8766          (Opc == ISD::XOR && Val == 0);
8767 }
8768 
8769 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8770 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8771 // integer combine opportunities since most 64-bit operations are decomposed
8772 // this way.  TODO: We won't want this for SALU especially if it is an inline
8773 // immediate.
8774 SDValue SITargetLowering::splitBinaryBitConstantOp(
8775   DAGCombinerInfo &DCI,
8776   const SDLoc &SL,
8777   unsigned Opc, SDValue LHS,
8778   const ConstantSDNode *CRHS) const {
8779   uint64_t Val = CRHS->getZExtValue();
8780   uint32_t ValLo = Lo_32(Val);
8781   uint32_t ValHi = Hi_32(Val);
8782   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8783 
8784     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8785          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8786         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8787     // If we need to materialize a 64-bit immediate, it will be split up later
8788     // anyway. Avoid creating the harder to understand 64-bit immediate
8789     // materialization.
8790     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8791   }
8792 
8793   return SDValue();
8794 }
8795 
8796 // Returns true if argument is a boolean value which is not serialized into
8797 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8798 static bool isBoolSGPR(SDValue V) {
8799   if (V.getValueType() != MVT::i1)
8800     return false;
8801   switch (V.getOpcode()) {
8802   default: break;
8803   case ISD::SETCC:
8804   case ISD::AND:
8805   case ISD::OR:
8806   case ISD::XOR:
8807   case AMDGPUISD::FP_CLASS:
8808     return true;
8809   }
8810   return false;
8811 }
8812 
8813 // If a constant has all zeroes or all ones within each byte return it.
8814 // Otherwise return 0.
8815 static uint32_t getConstantPermuteMask(uint32_t C) {
8816   // 0xff for any zero byte in the mask
8817   uint32_t ZeroByteMask = 0;
8818   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8819   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8820   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8821   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8822   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8823   if ((NonZeroByteMask & C) != NonZeroByteMask)
8824     return 0; // Partial bytes selected.
8825   return C;
8826 }
8827 
8828 // Check if a node selects whole bytes from its operand 0 starting at a byte
8829 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8830 // or -1 if not succeeded.
8831 // Note byte select encoding:
8832 // value 0-3 selects corresponding source byte;
8833 // value 0xc selects zero;
8834 // value 0xff selects 0xff.
8835 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8836   assert(V.getValueSizeInBits() == 32);
8837 
8838   if (V.getNumOperands() != 2)
8839     return ~0;
8840 
8841   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8842   if (!N1)
8843     return ~0;
8844 
8845   uint32_t C = N1->getZExtValue();
8846 
8847   switch (V.getOpcode()) {
8848   default:
8849     break;
8850   case ISD::AND:
8851     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8852       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8853     }
8854     break;
8855 
8856   case ISD::OR:
8857     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8858       return (0x03020100 & ~ConstMask) | ConstMask;
8859     }
8860     break;
8861 
8862   case ISD::SHL:
8863     if (C % 8)
8864       return ~0;
8865 
8866     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8867 
8868   case ISD::SRL:
8869     if (C % 8)
8870       return ~0;
8871 
8872     return uint32_t(0x0c0c0c0c03020100ull >> C);
8873   }
8874 
8875   return ~0;
8876 }
8877 
8878 SDValue SITargetLowering::performAndCombine(SDNode *N,
8879                                             DAGCombinerInfo &DCI) const {
8880   if (DCI.isBeforeLegalize())
8881     return SDValue();
8882 
8883   SelectionDAG &DAG = DCI.DAG;
8884   EVT VT = N->getValueType(0);
8885   SDValue LHS = N->getOperand(0);
8886   SDValue RHS = N->getOperand(1);
8887 
8888 
8889   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8890   if (VT == MVT::i64 && CRHS) {
8891     if (SDValue Split
8892         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8893       return Split;
8894   }
8895 
8896   if (CRHS && VT == MVT::i32) {
8897     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8898     // nb = number of trailing zeroes in mask
8899     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8900     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8901     uint64_t Mask = CRHS->getZExtValue();
8902     unsigned Bits = countPopulation(Mask);
8903     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8904         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8905       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8906         unsigned Shift = CShift->getZExtValue();
8907         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8908         unsigned Offset = NB + Shift;
8909         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8910           SDLoc SL(N);
8911           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8912                                     LHS->getOperand(0),
8913                                     DAG.getConstant(Offset, SL, MVT::i32),
8914                                     DAG.getConstant(Bits, SL, MVT::i32));
8915           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8916           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8917                                     DAG.getValueType(NarrowVT));
8918           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8919                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8920           return Shl;
8921         }
8922       }
8923     }
8924 
8925     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8926     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8927         isa<ConstantSDNode>(LHS.getOperand(2))) {
8928       uint32_t Sel = getConstantPermuteMask(Mask);
8929       if (!Sel)
8930         return SDValue();
8931 
8932       // Select 0xc for all zero bytes
8933       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8934       SDLoc DL(N);
8935       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8936                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8937     }
8938   }
8939 
8940   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8941   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8942   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8943     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8944     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8945 
8946     SDValue X = LHS.getOperand(0);
8947     SDValue Y = RHS.getOperand(0);
8948     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8949       return SDValue();
8950 
8951     if (LCC == ISD::SETO) {
8952       if (X != LHS.getOperand(1))
8953         return SDValue();
8954 
8955       if (RCC == ISD::SETUNE) {
8956         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8957         if (!C1 || !C1->isInfinity() || C1->isNegative())
8958           return SDValue();
8959 
8960         const uint32_t Mask = SIInstrFlags::N_NORMAL |
8961                               SIInstrFlags::N_SUBNORMAL |
8962                               SIInstrFlags::N_ZERO |
8963                               SIInstrFlags::P_ZERO |
8964                               SIInstrFlags::P_SUBNORMAL |
8965                               SIInstrFlags::P_NORMAL;
8966 
8967         static_assert(((~(SIInstrFlags::S_NAN |
8968                           SIInstrFlags::Q_NAN |
8969                           SIInstrFlags::N_INFINITY |
8970                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8971                       "mask not equal");
8972 
8973         SDLoc DL(N);
8974         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8975                            X, DAG.getConstant(Mask, DL, MVT::i32));
8976       }
8977     }
8978   }
8979 
8980   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8981     std::swap(LHS, RHS);
8982 
8983   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8984       RHS.hasOneUse()) {
8985     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8986     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8987     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8988     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8989     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8990         (RHS.getOperand(0) == LHS.getOperand(0) &&
8991          LHS.getOperand(0) == LHS.getOperand(1))) {
8992       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8993       unsigned NewMask = LCC == ISD::SETO ?
8994         Mask->getZExtValue() & ~OrdMask :
8995         Mask->getZExtValue() & OrdMask;
8996 
8997       SDLoc DL(N);
8998       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8999                          DAG.getConstant(NewMask, DL, MVT::i32));
9000     }
9001   }
9002 
9003   if (VT == MVT::i32 &&
9004       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9005     // and x, (sext cc from i1) => select cc, x, 0
9006     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9007       std::swap(LHS, RHS);
9008     if (isBoolSGPR(RHS.getOperand(0)))
9009       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9010                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9011   }
9012 
9013   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9014   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9015   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9016       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9017     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9018     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9019     if (LHSMask != ~0u && RHSMask != ~0u) {
9020       // Canonicalize the expression in an attempt to have fewer unique masks
9021       // and therefore fewer registers used to hold the masks.
9022       if (LHSMask > RHSMask) {
9023         std::swap(LHSMask, RHSMask);
9024         std::swap(LHS, RHS);
9025       }
9026 
9027       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9028       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9029       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9030       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9031 
9032       // Check of we need to combine values from two sources within a byte.
9033       if (!(LHSUsedLanes & RHSUsedLanes) &&
9034           // If we select high and lower word keep it for SDWA.
9035           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9036           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9037         // Each byte in each mask is either selector mask 0-3, or has higher
9038         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9039         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9040         // mask which is not 0xff wins. By anding both masks we have a correct
9041         // result except that 0x0c shall be corrected to give 0x0c only.
9042         uint32_t Mask = LHSMask & RHSMask;
9043         for (unsigned I = 0; I < 32; I += 8) {
9044           uint32_t ByteSel = 0xff << I;
9045           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9046             Mask &= (0x0c << I) & 0xffffffff;
9047         }
9048 
9049         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9050         // or 0x0c.
9051         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9052         SDLoc DL(N);
9053 
9054         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9055                            LHS.getOperand(0), RHS.getOperand(0),
9056                            DAG.getConstant(Sel, DL, MVT::i32));
9057       }
9058     }
9059   }
9060 
9061   return SDValue();
9062 }
9063 
9064 SDValue SITargetLowering::performOrCombine(SDNode *N,
9065                                            DAGCombinerInfo &DCI) const {
9066   SelectionDAG &DAG = DCI.DAG;
9067   SDValue LHS = N->getOperand(0);
9068   SDValue RHS = N->getOperand(1);
9069 
9070   EVT VT = N->getValueType(0);
9071   if (VT == MVT::i1) {
9072     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9073     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9074         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9075       SDValue Src = LHS.getOperand(0);
9076       if (Src != RHS.getOperand(0))
9077         return SDValue();
9078 
9079       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9080       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9081       if (!CLHS || !CRHS)
9082         return SDValue();
9083 
9084       // Only 10 bits are used.
9085       static const uint32_t MaxMask = 0x3ff;
9086 
9087       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9088       SDLoc DL(N);
9089       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9090                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9091     }
9092 
9093     return SDValue();
9094   }
9095 
9096   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9097   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9098       LHS.getOpcode() == AMDGPUISD::PERM &&
9099       isa<ConstantSDNode>(LHS.getOperand(2))) {
9100     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9101     if (!Sel)
9102       return SDValue();
9103 
9104     Sel |= LHS.getConstantOperandVal(2);
9105     SDLoc DL(N);
9106     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9107                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9108   }
9109 
9110   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9111   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9112   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9113       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9114     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9115     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9116     if (LHSMask != ~0u && RHSMask != ~0u) {
9117       // Canonicalize the expression in an attempt to have fewer unique masks
9118       // and therefore fewer registers used to hold the masks.
9119       if (LHSMask > RHSMask) {
9120         std::swap(LHSMask, RHSMask);
9121         std::swap(LHS, RHS);
9122       }
9123 
9124       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9125       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9126       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9127       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9128 
9129       // Check of we need to combine values from two sources within a byte.
9130       if (!(LHSUsedLanes & RHSUsedLanes) &&
9131           // If we select high and lower word keep it for SDWA.
9132           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9133           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9134         // Kill zero bytes selected by other mask. Zero value is 0xc.
9135         LHSMask &= ~RHSUsedLanes;
9136         RHSMask &= ~LHSUsedLanes;
9137         // Add 4 to each active LHS lane
9138         LHSMask |= LHSUsedLanes & 0x04040404;
9139         // Combine masks
9140         uint32_t Sel = LHSMask | RHSMask;
9141         SDLoc DL(N);
9142 
9143         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9144                            LHS.getOperand(0), RHS.getOperand(0),
9145                            DAG.getConstant(Sel, DL, MVT::i32));
9146       }
9147     }
9148   }
9149 
9150   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9151     return SDValue();
9152 
9153   // TODO: This could be a generic combine with a predicate for extracting the
9154   // high half of an integer being free.
9155 
9156   // (or i64:x, (zero_extend i32:y)) ->
9157   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9158   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9159       RHS.getOpcode() != ISD::ZERO_EXTEND)
9160     std::swap(LHS, RHS);
9161 
9162   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9163     SDValue ExtSrc = RHS.getOperand(0);
9164     EVT SrcVT = ExtSrc.getValueType();
9165     if (SrcVT == MVT::i32) {
9166       SDLoc SL(N);
9167       SDValue LowLHS, HiBits;
9168       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9169       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9170 
9171       DCI.AddToWorklist(LowOr.getNode());
9172       DCI.AddToWorklist(HiBits.getNode());
9173 
9174       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9175                                 LowOr, HiBits);
9176       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9177     }
9178   }
9179 
9180   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9181   if (CRHS) {
9182     if (SDValue Split
9183           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9184       return Split;
9185   }
9186 
9187   return SDValue();
9188 }
9189 
9190 SDValue SITargetLowering::performXorCombine(SDNode *N,
9191                                             DAGCombinerInfo &DCI) const {
9192   EVT VT = N->getValueType(0);
9193   if (VT != MVT::i64)
9194     return SDValue();
9195 
9196   SDValue LHS = N->getOperand(0);
9197   SDValue RHS = N->getOperand(1);
9198 
9199   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9200   if (CRHS) {
9201     if (SDValue Split
9202           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9203       return Split;
9204   }
9205 
9206   return SDValue();
9207 }
9208 
9209 // Instructions that will be lowered with a final instruction that zeros the
9210 // high result bits.
9211 // XXX - probably only need to list legal operations.
9212 static bool fp16SrcZerosHighBits(unsigned Opc) {
9213   switch (Opc) {
9214   case ISD::FADD:
9215   case ISD::FSUB:
9216   case ISD::FMUL:
9217   case ISD::FDIV:
9218   case ISD::FREM:
9219   case ISD::FMA:
9220   case ISD::FMAD:
9221   case ISD::FCANONICALIZE:
9222   case ISD::FP_ROUND:
9223   case ISD::UINT_TO_FP:
9224   case ISD::SINT_TO_FP:
9225   case ISD::FABS:
9226     // Fabs is lowered to a bit operation, but it's an and which will clear the
9227     // high bits anyway.
9228   case ISD::FSQRT:
9229   case ISD::FSIN:
9230   case ISD::FCOS:
9231   case ISD::FPOWI:
9232   case ISD::FPOW:
9233   case ISD::FLOG:
9234   case ISD::FLOG2:
9235   case ISD::FLOG10:
9236   case ISD::FEXP:
9237   case ISD::FEXP2:
9238   case ISD::FCEIL:
9239   case ISD::FTRUNC:
9240   case ISD::FRINT:
9241   case ISD::FNEARBYINT:
9242   case ISD::FROUND:
9243   case ISD::FFLOOR:
9244   case ISD::FMINNUM:
9245   case ISD::FMAXNUM:
9246   case AMDGPUISD::FRACT:
9247   case AMDGPUISD::CLAMP:
9248   case AMDGPUISD::COS_HW:
9249   case AMDGPUISD::SIN_HW:
9250   case AMDGPUISD::FMIN3:
9251   case AMDGPUISD::FMAX3:
9252   case AMDGPUISD::FMED3:
9253   case AMDGPUISD::FMAD_FTZ:
9254   case AMDGPUISD::RCP:
9255   case AMDGPUISD::RSQ:
9256   case AMDGPUISD::RCP_IFLAG:
9257   case AMDGPUISD::LDEXP:
9258     return true;
9259   default:
9260     // fcopysign, select and others may be lowered to 32-bit bit operations
9261     // which don't zero the high bits.
9262     return false;
9263   }
9264 }
9265 
9266 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9267                                                    DAGCombinerInfo &DCI) const {
9268   if (!Subtarget->has16BitInsts() ||
9269       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9270     return SDValue();
9271 
9272   EVT VT = N->getValueType(0);
9273   if (VT != MVT::i32)
9274     return SDValue();
9275 
9276   SDValue Src = N->getOperand(0);
9277   if (Src.getValueType() != MVT::i16)
9278     return SDValue();
9279 
9280   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9281   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9282   if (Src.getOpcode() == ISD::BITCAST) {
9283     SDValue BCSrc = Src.getOperand(0);
9284     if (BCSrc.getValueType() == MVT::f16 &&
9285         fp16SrcZerosHighBits(BCSrc.getOpcode()))
9286       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9287   }
9288 
9289   return SDValue();
9290 }
9291 
9292 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9293                                                         DAGCombinerInfo &DCI)
9294                                                         const {
9295   SDValue Src = N->getOperand(0);
9296   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9297 
9298   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9299       VTSign->getVT() == MVT::i8) ||
9300       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9301       VTSign->getVT() == MVT::i16)) &&
9302       Src.hasOneUse()) {
9303     auto *M = cast<MemSDNode>(Src);
9304     SDValue Ops[] = {
9305       Src.getOperand(0), // Chain
9306       Src.getOperand(1), // rsrc
9307       Src.getOperand(2), // vindex
9308       Src.getOperand(3), // voffset
9309       Src.getOperand(4), // soffset
9310       Src.getOperand(5), // offset
9311       Src.getOperand(6),
9312       Src.getOperand(7)
9313     };
9314     // replace with BUFFER_LOAD_BYTE/SHORT
9315     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9316                                          Src.getOperand(0).getValueType());
9317     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9318                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9319     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9320                                                           ResList,
9321                                                           Ops, M->getMemoryVT(),
9322                                                           M->getMemOperand());
9323     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9324                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9325   }
9326   return SDValue();
9327 }
9328 
9329 SDValue SITargetLowering::performClassCombine(SDNode *N,
9330                                               DAGCombinerInfo &DCI) const {
9331   SelectionDAG &DAG = DCI.DAG;
9332   SDValue Mask = N->getOperand(1);
9333 
9334   // fp_class x, 0 -> false
9335   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9336     if (CMask->isNullValue())
9337       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9338   }
9339 
9340   if (N->getOperand(0).isUndef())
9341     return DAG.getUNDEF(MVT::i1);
9342 
9343   return SDValue();
9344 }
9345 
9346 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9347                                             DAGCombinerInfo &DCI) const {
9348   EVT VT = N->getValueType(0);
9349   SDValue N0 = N->getOperand(0);
9350 
9351   if (N0.isUndef())
9352     return N0;
9353 
9354   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9355                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9356     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9357                            N->getFlags());
9358   }
9359 
9360   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9361     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9362                            N0.getOperand(0), N->getFlags());
9363   }
9364 
9365   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9366 }
9367 
9368 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9369                                        unsigned MaxDepth) const {
9370   unsigned Opcode = Op.getOpcode();
9371   if (Opcode == ISD::FCANONICALIZE)
9372     return true;
9373 
9374   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9375     auto F = CFP->getValueAPF();
9376     if (F.isNaN() && F.isSignaling())
9377       return false;
9378     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9379   }
9380 
9381   // If source is a result of another standard FP operation it is already in
9382   // canonical form.
9383   if (MaxDepth == 0)
9384     return false;
9385 
9386   switch (Opcode) {
9387   // These will flush denorms if required.
9388   case ISD::FADD:
9389   case ISD::FSUB:
9390   case ISD::FMUL:
9391   case ISD::FCEIL:
9392   case ISD::FFLOOR:
9393   case ISD::FMA:
9394   case ISD::FMAD:
9395   case ISD::FSQRT:
9396   case ISD::FDIV:
9397   case ISD::FREM:
9398   case ISD::FP_ROUND:
9399   case ISD::FP_EXTEND:
9400   case AMDGPUISD::FMUL_LEGACY:
9401   case AMDGPUISD::FMAD_FTZ:
9402   case AMDGPUISD::RCP:
9403   case AMDGPUISD::RSQ:
9404   case AMDGPUISD::RSQ_CLAMP:
9405   case AMDGPUISD::RCP_LEGACY:
9406   case AMDGPUISD::RCP_IFLAG:
9407   case AMDGPUISD::DIV_SCALE:
9408   case AMDGPUISD::DIV_FMAS:
9409   case AMDGPUISD::DIV_FIXUP:
9410   case AMDGPUISD::FRACT:
9411   case AMDGPUISD::LDEXP:
9412   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9413   case AMDGPUISD::CVT_F32_UBYTE0:
9414   case AMDGPUISD::CVT_F32_UBYTE1:
9415   case AMDGPUISD::CVT_F32_UBYTE2:
9416   case AMDGPUISD::CVT_F32_UBYTE3:
9417     return true;
9418 
9419   // It can/will be lowered or combined as a bit operation.
9420   // Need to check their input recursively to handle.
9421   case ISD::FNEG:
9422   case ISD::FABS:
9423   case ISD::FCOPYSIGN:
9424     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9425 
9426   case ISD::FSIN:
9427   case ISD::FCOS:
9428   case ISD::FSINCOS:
9429     return Op.getValueType().getScalarType() != MVT::f16;
9430 
9431   case ISD::FMINNUM:
9432   case ISD::FMAXNUM:
9433   case ISD::FMINNUM_IEEE:
9434   case ISD::FMAXNUM_IEEE:
9435   case AMDGPUISD::CLAMP:
9436   case AMDGPUISD::FMED3:
9437   case AMDGPUISD::FMAX3:
9438   case AMDGPUISD::FMIN3: {
9439     // FIXME: Shouldn't treat the generic operations different based these.
9440     // However, we aren't really required to flush the result from
9441     // minnum/maxnum..
9442 
9443     // snans will be quieted, so we only need to worry about denormals.
9444     if (Subtarget->supportsMinMaxDenormModes() ||
9445         denormalsEnabledForType(DAG, Op.getValueType()))
9446       return true;
9447 
9448     // Flushing may be required.
9449     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9450     // targets need to check their input recursively.
9451 
9452     // FIXME: Does this apply with clamp? It's implemented with max.
9453     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9454       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9455         return false;
9456     }
9457 
9458     return true;
9459   }
9460   case ISD::SELECT: {
9461     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9462            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9463   }
9464   case ISD::BUILD_VECTOR: {
9465     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9466       SDValue SrcOp = Op.getOperand(i);
9467       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9468         return false;
9469     }
9470 
9471     return true;
9472   }
9473   case ISD::EXTRACT_VECTOR_ELT:
9474   case ISD::EXTRACT_SUBVECTOR: {
9475     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9476   }
9477   case ISD::INSERT_VECTOR_ELT: {
9478     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9479            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9480   }
9481   case ISD::UNDEF:
9482     // Could be anything.
9483     return false;
9484 
9485   case ISD::BITCAST: {
9486     // Hack round the mess we make when legalizing extract_vector_elt
9487     SDValue Src = Op.getOperand(0);
9488     if (Src.getValueType() == MVT::i16 &&
9489         Src.getOpcode() == ISD::TRUNCATE) {
9490       SDValue TruncSrc = Src.getOperand(0);
9491       if (TruncSrc.getValueType() == MVT::i32 &&
9492           TruncSrc.getOpcode() == ISD::BITCAST &&
9493           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9494         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9495       }
9496     }
9497 
9498     return false;
9499   }
9500   case ISD::INTRINSIC_WO_CHAIN: {
9501     unsigned IntrinsicID
9502       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9503     // TODO: Handle more intrinsics
9504     switch (IntrinsicID) {
9505     case Intrinsic::amdgcn_cvt_pkrtz:
9506     case Intrinsic::amdgcn_cubeid:
9507     case Intrinsic::amdgcn_frexp_mant:
9508     case Intrinsic::amdgcn_fdot2:
9509     case Intrinsic::amdgcn_rcp:
9510     case Intrinsic::amdgcn_rsq:
9511     case Intrinsic::amdgcn_rsq_clamp:
9512     case Intrinsic::amdgcn_rcp_legacy:
9513     case Intrinsic::amdgcn_rsq_legacy:
9514     case Intrinsic::amdgcn_trig_preop:
9515       return true;
9516     default:
9517       break;
9518     }
9519 
9520     LLVM_FALLTHROUGH;
9521   }
9522   default:
9523     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9524            DAG.isKnownNeverSNaN(Op);
9525   }
9526 
9527   llvm_unreachable("invalid operation");
9528 }
9529 
9530 // Constant fold canonicalize.
9531 SDValue SITargetLowering::getCanonicalConstantFP(
9532   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9533   // Flush denormals to 0 if not enabled.
9534   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9535     return DAG.getConstantFP(0.0, SL, VT);
9536 
9537   if (C.isNaN()) {
9538     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9539     if (C.isSignaling()) {
9540       // Quiet a signaling NaN.
9541       // FIXME: Is this supposed to preserve payload bits?
9542       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9543     }
9544 
9545     // Make sure it is the canonical NaN bitpattern.
9546     //
9547     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9548     // immediate?
9549     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9550       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9551   }
9552 
9553   // Already canonical.
9554   return DAG.getConstantFP(C, SL, VT);
9555 }
9556 
9557 static bool vectorEltWillFoldAway(SDValue Op) {
9558   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9559 }
9560 
9561 SDValue SITargetLowering::performFCanonicalizeCombine(
9562   SDNode *N,
9563   DAGCombinerInfo &DCI) const {
9564   SelectionDAG &DAG = DCI.DAG;
9565   SDValue N0 = N->getOperand(0);
9566   EVT VT = N->getValueType(0);
9567 
9568   // fcanonicalize undef -> qnan
9569   if (N0.isUndef()) {
9570     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9571     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9572   }
9573 
9574   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9575     EVT VT = N->getValueType(0);
9576     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9577   }
9578 
9579   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9580   //                                                   (fcanonicalize k)
9581   //
9582   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9583 
9584   // TODO: This could be better with wider vectors that will be split to v2f16,
9585   // and to consider uses since there aren't that many packed operations.
9586   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9587       isTypeLegal(MVT::v2f16)) {
9588     SDLoc SL(N);
9589     SDValue NewElts[2];
9590     SDValue Lo = N0.getOperand(0);
9591     SDValue Hi = N0.getOperand(1);
9592     EVT EltVT = Lo.getValueType();
9593 
9594     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9595       for (unsigned I = 0; I != 2; ++I) {
9596         SDValue Op = N0.getOperand(I);
9597         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9598           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9599                                               CFP->getValueAPF());
9600         } else if (Op.isUndef()) {
9601           // Handled below based on what the other operand is.
9602           NewElts[I] = Op;
9603         } else {
9604           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9605         }
9606       }
9607 
9608       // If one half is undef, and one is constant, perfer a splat vector rather
9609       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9610       // cheaper to use and may be free with a packed operation.
9611       if (NewElts[0].isUndef()) {
9612         if (isa<ConstantFPSDNode>(NewElts[1]))
9613           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9614             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9615       }
9616 
9617       if (NewElts[1].isUndef()) {
9618         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9619           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9620       }
9621 
9622       return DAG.getBuildVector(VT, SL, NewElts);
9623     }
9624   }
9625 
9626   unsigned SrcOpc = N0.getOpcode();
9627 
9628   // If it's free to do so, push canonicalizes further up the source, which may
9629   // find a canonical source.
9630   //
9631   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9632   // sNaNs.
9633   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9634     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9635     if (CRHS && N0.hasOneUse()) {
9636       SDLoc SL(N);
9637       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9638                                    N0.getOperand(0));
9639       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9640       DCI.AddToWorklist(Canon0.getNode());
9641 
9642       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9643     }
9644   }
9645 
9646   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9647 }
9648 
9649 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9650   switch (Opc) {
9651   case ISD::FMAXNUM:
9652   case ISD::FMAXNUM_IEEE:
9653     return AMDGPUISD::FMAX3;
9654   case ISD::SMAX:
9655     return AMDGPUISD::SMAX3;
9656   case ISD::UMAX:
9657     return AMDGPUISD::UMAX3;
9658   case ISD::FMINNUM:
9659   case ISD::FMINNUM_IEEE:
9660     return AMDGPUISD::FMIN3;
9661   case ISD::SMIN:
9662     return AMDGPUISD::SMIN3;
9663   case ISD::UMIN:
9664     return AMDGPUISD::UMIN3;
9665   default:
9666     llvm_unreachable("Not a min/max opcode");
9667   }
9668 }
9669 
9670 SDValue SITargetLowering::performIntMed3ImmCombine(
9671   SelectionDAG &DAG, const SDLoc &SL,
9672   SDValue Op0, SDValue Op1, bool Signed) const {
9673   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9674   if (!K1)
9675     return SDValue();
9676 
9677   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9678   if (!K0)
9679     return SDValue();
9680 
9681   if (Signed) {
9682     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9683       return SDValue();
9684   } else {
9685     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9686       return SDValue();
9687   }
9688 
9689   EVT VT = K0->getValueType(0);
9690   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9691   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9692     return DAG.getNode(Med3Opc, SL, VT,
9693                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9694   }
9695 
9696   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9697   MVT NVT = MVT::i32;
9698   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9699 
9700   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9701   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9702   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9703 
9704   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9705   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9706 }
9707 
9708 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9709   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9710     return C;
9711 
9712   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9713     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9714       return C;
9715   }
9716 
9717   return nullptr;
9718 }
9719 
9720 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9721                                                   const SDLoc &SL,
9722                                                   SDValue Op0,
9723                                                   SDValue Op1) const {
9724   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9725   if (!K1)
9726     return SDValue();
9727 
9728   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9729   if (!K0)
9730     return SDValue();
9731 
9732   // Ordered >= (although NaN inputs should have folded away by now).
9733   if (K0->getValueAPF() > K1->getValueAPF())
9734     return SDValue();
9735 
9736   const MachineFunction &MF = DAG.getMachineFunction();
9737   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9738 
9739   // TODO: Check IEEE bit enabled?
9740   EVT VT = Op0.getValueType();
9741   if (Info->getMode().DX10Clamp) {
9742     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9743     // hardware fmed3 behavior converting to a min.
9744     // FIXME: Should this be allowing -0.0?
9745     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9746       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9747   }
9748 
9749   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9750   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9751     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9752     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9753     // then give the other result, which is different from med3 with a NaN
9754     // input.
9755     SDValue Var = Op0.getOperand(0);
9756     if (!DAG.isKnownNeverSNaN(Var))
9757       return SDValue();
9758 
9759     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9760 
9761     if ((!K0->hasOneUse() ||
9762          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9763         (!K1->hasOneUse() ||
9764          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9765       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9766                          Var, SDValue(K0, 0), SDValue(K1, 0));
9767     }
9768   }
9769 
9770   return SDValue();
9771 }
9772 
9773 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9774                                                DAGCombinerInfo &DCI) const {
9775   SelectionDAG &DAG = DCI.DAG;
9776 
9777   EVT VT = N->getValueType(0);
9778   unsigned Opc = N->getOpcode();
9779   SDValue Op0 = N->getOperand(0);
9780   SDValue Op1 = N->getOperand(1);
9781 
9782   // Only do this if the inner op has one use since this will just increases
9783   // register pressure for no benefit.
9784 
9785   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9786       !VT.isVector() &&
9787       (VT == MVT::i32 || VT == MVT::f32 ||
9788        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9789     // max(max(a, b), c) -> max3(a, b, c)
9790     // min(min(a, b), c) -> min3(a, b, c)
9791     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9792       SDLoc DL(N);
9793       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9794                          DL,
9795                          N->getValueType(0),
9796                          Op0.getOperand(0),
9797                          Op0.getOperand(1),
9798                          Op1);
9799     }
9800 
9801     // Try commuted.
9802     // max(a, max(b, c)) -> max3(a, b, c)
9803     // min(a, min(b, c)) -> min3(a, b, c)
9804     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9805       SDLoc DL(N);
9806       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9807                          DL,
9808                          N->getValueType(0),
9809                          Op0,
9810                          Op1.getOperand(0),
9811                          Op1.getOperand(1));
9812     }
9813   }
9814 
9815   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9816   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9817     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9818       return Med3;
9819   }
9820 
9821   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9822     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9823       return Med3;
9824   }
9825 
9826   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9827   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9828        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9829        (Opc == AMDGPUISD::FMIN_LEGACY &&
9830         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9831       (VT == MVT::f32 || VT == MVT::f64 ||
9832        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9833        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9834       Op0.hasOneUse()) {
9835     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9836       return Res;
9837   }
9838 
9839   return SDValue();
9840 }
9841 
9842 static bool isClampZeroToOne(SDValue A, SDValue B) {
9843   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9844     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9845       // FIXME: Should this be allowing -0.0?
9846       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9847              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9848     }
9849   }
9850 
9851   return false;
9852 }
9853 
9854 // FIXME: Should only worry about snans for version with chain.
9855 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9856                                               DAGCombinerInfo &DCI) const {
9857   EVT VT = N->getValueType(0);
9858   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9859   // NaNs. With a NaN input, the order of the operands may change the result.
9860 
9861   SelectionDAG &DAG = DCI.DAG;
9862   SDLoc SL(N);
9863 
9864   SDValue Src0 = N->getOperand(0);
9865   SDValue Src1 = N->getOperand(1);
9866   SDValue Src2 = N->getOperand(2);
9867 
9868   if (isClampZeroToOne(Src0, Src1)) {
9869     // const_a, const_b, x -> clamp is safe in all cases including signaling
9870     // nans.
9871     // FIXME: Should this be allowing -0.0?
9872     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9873   }
9874 
9875   const MachineFunction &MF = DAG.getMachineFunction();
9876   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9877 
9878   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9879   // handling no dx10-clamp?
9880   if (Info->getMode().DX10Clamp) {
9881     // If NaNs is clamped to 0, we are free to reorder the inputs.
9882 
9883     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9884       std::swap(Src0, Src1);
9885 
9886     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9887       std::swap(Src1, Src2);
9888 
9889     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9890       std::swap(Src0, Src1);
9891 
9892     if (isClampZeroToOne(Src1, Src2))
9893       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9894   }
9895 
9896   return SDValue();
9897 }
9898 
9899 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9900                                                  DAGCombinerInfo &DCI) const {
9901   SDValue Src0 = N->getOperand(0);
9902   SDValue Src1 = N->getOperand(1);
9903   if (Src0.isUndef() && Src1.isUndef())
9904     return DCI.DAG.getUNDEF(N->getValueType(0));
9905   return SDValue();
9906 }
9907 
9908 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
9909 // expanded into a set of cmp/select instructions.
9910 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
9911                                                 unsigned NumElem,
9912                                                 bool IsDivergentIdx) {
9913   if (UseDivergentRegisterIndexing)
9914     return false;
9915 
9916   unsigned VecSize = EltSize * NumElem;
9917 
9918   // Sub-dword vectors of size 2 dword or less have better implementation.
9919   if (VecSize <= 64 && EltSize < 32)
9920     return false;
9921 
9922   // Always expand the rest of sub-dword instructions, otherwise it will be
9923   // lowered via memory.
9924   if (EltSize < 32)
9925     return true;
9926 
9927   // Always do this if var-idx is divergent, otherwise it will become a loop.
9928   if (IsDivergentIdx)
9929     return true;
9930 
9931   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
9932   unsigned NumInsts = NumElem /* Number of compares */ +
9933                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
9934   return NumInsts <= 16;
9935 }
9936 
9937 static bool shouldExpandVectorDynExt(SDNode *N) {
9938   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
9939   if (isa<ConstantSDNode>(Idx))
9940     return false;
9941 
9942   SDValue Vec = N->getOperand(0);
9943   EVT VecVT = Vec.getValueType();
9944   EVT EltVT = VecVT.getVectorElementType();
9945   unsigned EltSize = EltVT.getSizeInBits();
9946   unsigned NumElem = VecVT.getVectorNumElements();
9947 
9948   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
9949                                                     Idx->isDivergent());
9950 }
9951 
9952 SDValue SITargetLowering::performExtractVectorEltCombine(
9953   SDNode *N, DAGCombinerInfo &DCI) const {
9954   SDValue Vec = N->getOperand(0);
9955   SelectionDAG &DAG = DCI.DAG;
9956 
9957   EVT VecVT = Vec.getValueType();
9958   EVT EltVT = VecVT.getVectorElementType();
9959 
9960   if ((Vec.getOpcode() == ISD::FNEG ||
9961        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9962     SDLoc SL(N);
9963     EVT EltVT = N->getValueType(0);
9964     SDValue Idx = N->getOperand(1);
9965     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9966                               Vec.getOperand(0), Idx);
9967     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9968   }
9969 
9970   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9971   //    =>
9972   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9973   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9974   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9975   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9976     SDLoc SL(N);
9977     EVT EltVT = N->getValueType(0);
9978     SDValue Idx = N->getOperand(1);
9979     unsigned Opc = Vec.getOpcode();
9980 
9981     switch(Opc) {
9982     default:
9983       break;
9984       // TODO: Support other binary operations.
9985     case ISD::FADD:
9986     case ISD::FSUB:
9987     case ISD::FMUL:
9988     case ISD::ADD:
9989     case ISD::UMIN:
9990     case ISD::UMAX:
9991     case ISD::SMIN:
9992     case ISD::SMAX:
9993     case ISD::FMAXNUM:
9994     case ISD::FMINNUM:
9995     case ISD::FMAXNUM_IEEE:
9996     case ISD::FMINNUM_IEEE: {
9997       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9998                                  Vec.getOperand(0), Idx);
9999       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10000                                  Vec.getOperand(1), Idx);
10001 
10002       DCI.AddToWorklist(Elt0.getNode());
10003       DCI.AddToWorklist(Elt1.getNode());
10004       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10005     }
10006     }
10007   }
10008 
10009   unsigned VecSize = VecVT.getSizeInBits();
10010   unsigned EltSize = EltVT.getSizeInBits();
10011 
10012   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10013   if (::shouldExpandVectorDynExt(N)) {
10014     SDLoc SL(N);
10015     SDValue Idx = N->getOperand(1);
10016     SDValue V;
10017     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10018       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10019       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10020       if (I == 0)
10021         V = Elt;
10022       else
10023         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10024     }
10025     return V;
10026   }
10027 
10028   if (!DCI.isBeforeLegalize())
10029     return SDValue();
10030 
10031   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10032   // elements. This exposes more load reduction opportunities by replacing
10033   // multiple small extract_vector_elements with a single 32-bit extract.
10034   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10035   if (isa<MemSDNode>(Vec) &&
10036       EltSize <= 16 &&
10037       EltVT.isByteSized() &&
10038       VecSize > 32 &&
10039       VecSize % 32 == 0 &&
10040       Idx) {
10041     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10042 
10043     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10044     unsigned EltIdx = BitIndex / 32;
10045     unsigned LeftoverBitIdx = BitIndex % 32;
10046     SDLoc SL(N);
10047 
10048     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10049     DCI.AddToWorklist(Cast.getNode());
10050 
10051     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10052                               DAG.getConstant(EltIdx, SL, MVT::i32));
10053     DCI.AddToWorklist(Elt.getNode());
10054     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10055                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10056     DCI.AddToWorklist(Srl.getNode());
10057 
10058     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10059     DCI.AddToWorklist(Trunc.getNode());
10060     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10061   }
10062 
10063   return SDValue();
10064 }
10065 
10066 SDValue
10067 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10068                                                 DAGCombinerInfo &DCI) const {
10069   SDValue Vec = N->getOperand(0);
10070   SDValue Idx = N->getOperand(2);
10071   EVT VecVT = Vec.getValueType();
10072   EVT EltVT = VecVT.getVectorElementType();
10073 
10074   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10075   // => BUILD_VECTOR n x select (e, const-idx)
10076   if (!::shouldExpandVectorDynExt(N))
10077     return SDValue();
10078 
10079   SelectionDAG &DAG = DCI.DAG;
10080   SDLoc SL(N);
10081   SDValue Ins = N->getOperand(1);
10082   EVT IdxVT = Idx.getValueType();
10083 
10084   SmallVector<SDValue, 16> Ops;
10085   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10086     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10087     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10088     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10089     Ops.push_back(V);
10090   }
10091 
10092   return DAG.getBuildVector(VecVT, SL, Ops);
10093 }
10094 
10095 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10096                                           const SDNode *N0,
10097                                           const SDNode *N1) const {
10098   EVT VT = N0->getValueType(0);
10099 
10100   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10101   // support denormals ever.
10102   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10103        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10104         getSubtarget()->hasMadF16())) &&
10105        isOperationLegal(ISD::FMAD, VT))
10106     return ISD::FMAD;
10107 
10108   const TargetOptions &Options = DAG.getTarget().Options;
10109   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10110        (N0->getFlags().hasAllowContract() &&
10111         N1->getFlags().hasAllowContract())) &&
10112       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10113     return ISD::FMA;
10114   }
10115 
10116   return 0;
10117 }
10118 
10119 // For a reassociatable opcode perform:
10120 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10121 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10122                                                SelectionDAG &DAG) const {
10123   EVT VT = N->getValueType(0);
10124   if (VT != MVT::i32 && VT != MVT::i64)
10125     return SDValue();
10126 
10127   unsigned Opc = N->getOpcode();
10128   SDValue Op0 = N->getOperand(0);
10129   SDValue Op1 = N->getOperand(1);
10130 
10131   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10132     return SDValue();
10133 
10134   if (Op0->isDivergent())
10135     std::swap(Op0, Op1);
10136 
10137   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10138     return SDValue();
10139 
10140   SDValue Op2 = Op1.getOperand(1);
10141   Op1 = Op1.getOperand(0);
10142   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10143     return SDValue();
10144 
10145   if (Op1->isDivergent())
10146     std::swap(Op1, Op2);
10147 
10148   // If either operand is constant this will conflict with
10149   // DAGCombiner::ReassociateOps().
10150   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10151       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10152     return SDValue();
10153 
10154   SDLoc SL(N);
10155   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10156   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10157 }
10158 
10159 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10160                            EVT VT,
10161                            SDValue N0, SDValue N1, SDValue N2,
10162                            bool Signed) {
10163   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10164   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10165   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10166   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10167 }
10168 
10169 SDValue SITargetLowering::performAddCombine(SDNode *N,
10170                                             DAGCombinerInfo &DCI) const {
10171   SelectionDAG &DAG = DCI.DAG;
10172   EVT VT = N->getValueType(0);
10173   SDLoc SL(N);
10174   SDValue LHS = N->getOperand(0);
10175   SDValue RHS = N->getOperand(1);
10176 
10177   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10178       && Subtarget->hasMad64_32() &&
10179       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10180       VT.getScalarSizeInBits() <= 64) {
10181     if (LHS.getOpcode() != ISD::MUL)
10182       std::swap(LHS, RHS);
10183 
10184     SDValue MulLHS = LHS.getOperand(0);
10185     SDValue MulRHS = LHS.getOperand(1);
10186     SDValue AddRHS = RHS;
10187 
10188     // TODO: Maybe restrict if SGPR inputs.
10189     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10190         numBitsUnsigned(MulRHS, DAG) <= 32) {
10191       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10192       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10193       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10194       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10195     }
10196 
10197     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10198       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10199       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10200       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10201       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10202     }
10203 
10204     return SDValue();
10205   }
10206 
10207   if (SDValue V = reassociateScalarOps(N, DAG)) {
10208     return V;
10209   }
10210 
10211   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10212     return SDValue();
10213 
10214   // add x, zext (setcc) => addcarry x, 0, setcc
10215   // add x, sext (setcc) => subcarry x, 0, setcc
10216   unsigned Opc = LHS.getOpcode();
10217   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10218       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10219     std::swap(RHS, LHS);
10220 
10221   Opc = RHS.getOpcode();
10222   switch (Opc) {
10223   default: break;
10224   case ISD::ZERO_EXTEND:
10225   case ISD::SIGN_EXTEND:
10226   case ISD::ANY_EXTEND: {
10227     auto Cond = RHS.getOperand(0);
10228     // If this won't be a real VOPC output, we would still need to insert an
10229     // extra instruction anyway.
10230     if (!isBoolSGPR(Cond))
10231       break;
10232     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10233     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10234     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10235     return DAG.getNode(Opc, SL, VTList, Args);
10236   }
10237   case ISD::ADDCARRY: {
10238     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10239     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10240     if (!C || C->getZExtValue() != 0) break;
10241     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10242     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10243   }
10244   }
10245   return SDValue();
10246 }
10247 
10248 SDValue SITargetLowering::performSubCombine(SDNode *N,
10249                                             DAGCombinerInfo &DCI) const {
10250   SelectionDAG &DAG = DCI.DAG;
10251   EVT VT = N->getValueType(0);
10252 
10253   if (VT != MVT::i32)
10254     return SDValue();
10255 
10256   SDLoc SL(N);
10257   SDValue LHS = N->getOperand(0);
10258   SDValue RHS = N->getOperand(1);
10259 
10260   // sub x, zext (setcc) => subcarry x, 0, setcc
10261   // sub x, sext (setcc) => addcarry x, 0, setcc
10262   unsigned Opc = RHS.getOpcode();
10263   switch (Opc) {
10264   default: break;
10265   case ISD::ZERO_EXTEND:
10266   case ISD::SIGN_EXTEND:
10267   case ISD::ANY_EXTEND: {
10268     auto Cond = RHS.getOperand(0);
10269     // If this won't be a real VOPC output, we would still need to insert an
10270     // extra instruction anyway.
10271     if (!isBoolSGPR(Cond))
10272       break;
10273     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10274     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10275     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10276     return DAG.getNode(Opc, SL, VTList, Args);
10277   }
10278   }
10279 
10280   if (LHS.getOpcode() == ISD::SUBCARRY) {
10281     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10282     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10283     if (!C || !C->isNullValue())
10284       return SDValue();
10285     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10286     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10287   }
10288   return SDValue();
10289 }
10290 
10291 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10292   DAGCombinerInfo &DCI) const {
10293 
10294   if (N->getValueType(0) != MVT::i32)
10295     return SDValue();
10296 
10297   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10298   if (!C || C->getZExtValue() != 0)
10299     return SDValue();
10300 
10301   SelectionDAG &DAG = DCI.DAG;
10302   SDValue LHS = N->getOperand(0);
10303 
10304   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10305   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10306   unsigned LHSOpc = LHS.getOpcode();
10307   unsigned Opc = N->getOpcode();
10308   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10309       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10310     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10311     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10312   }
10313   return SDValue();
10314 }
10315 
10316 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10317                                              DAGCombinerInfo &DCI) const {
10318   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10319     return SDValue();
10320 
10321   SelectionDAG &DAG = DCI.DAG;
10322   EVT VT = N->getValueType(0);
10323 
10324   SDLoc SL(N);
10325   SDValue LHS = N->getOperand(0);
10326   SDValue RHS = N->getOperand(1);
10327 
10328   // These should really be instruction patterns, but writing patterns with
10329   // source modiifiers is a pain.
10330 
10331   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10332   if (LHS.getOpcode() == ISD::FADD) {
10333     SDValue A = LHS.getOperand(0);
10334     if (A == LHS.getOperand(1)) {
10335       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10336       if (FusedOp != 0) {
10337         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10338         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10339       }
10340     }
10341   }
10342 
10343   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10344   if (RHS.getOpcode() == ISD::FADD) {
10345     SDValue A = RHS.getOperand(0);
10346     if (A == RHS.getOperand(1)) {
10347       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10348       if (FusedOp != 0) {
10349         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10350         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10351       }
10352     }
10353   }
10354 
10355   return SDValue();
10356 }
10357 
10358 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10359                                              DAGCombinerInfo &DCI) const {
10360   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10361     return SDValue();
10362 
10363   SelectionDAG &DAG = DCI.DAG;
10364   SDLoc SL(N);
10365   EVT VT = N->getValueType(0);
10366   assert(!VT.isVector());
10367 
10368   // Try to get the fneg to fold into the source modifier. This undoes generic
10369   // DAG combines and folds them into the mad.
10370   //
10371   // Only do this if we are not trying to support denormals. v_mad_f32 does
10372   // not support denormals ever.
10373   SDValue LHS = N->getOperand(0);
10374   SDValue RHS = N->getOperand(1);
10375   if (LHS.getOpcode() == ISD::FADD) {
10376     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10377     SDValue A = LHS.getOperand(0);
10378     if (A == LHS.getOperand(1)) {
10379       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10380       if (FusedOp != 0){
10381         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10382         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10383 
10384         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10385       }
10386     }
10387   }
10388 
10389   if (RHS.getOpcode() == ISD::FADD) {
10390     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10391 
10392     SDValue A = RHS.getOperand(0);
10393     if (A == RHS.getOperand(1)) {
10394       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10395       if (FusedOp != 0){
10396         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10397         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10398       }
10399     }
10400   }
10401 
10402   return SDValue();
10403 }
10404 
10405 SDValue SITargetLowering::performFMACombine(SDNode *N,
10406                                             DAGCombinerInfo &DCI) const {
10407   SelectionDAG &DAG = DCI.DAG;
10408   EVT VT = N->getValueType(0);
10409   SDLoc SL(N);
10410 
10411   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
10412     return SDValue();
10413 
10414   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10415   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10416   SDValue Op1 = N->getOperand(0);
10417   SDValue Op2 = N->getOperand(1);
10418   SDValue FMA = N->getOperand(2);
10419 
10420   if (FMA.getOpcode() != ISD::FMA ||
10421       Op1.getOpcode() != ISD::FP_EXTEND ||
10422       Op2.getOpcode() != ISD::FP_EXTEND)
10423     return SDValue();
10424 
10425   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10426   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10427   // is sufficient to allow generaing fdot2.
10428   const TargetOptions &Options = DAG.getTarget().Options;
10429   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10430       (N->getFlags().hasAllowContract() &&
10431        FMA->getFlags().hasAllowContract())) {
10432     Op1 = Op1.getOperand(0);
10433     Op2 = Op2.getOperand(0);
10434     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10435         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10436       return SDValue();
10437 
10438     SDValue Vec1 = Op1.getOperand(0);
10439     SDValue Idx1 = Op1.getOperand(1);
10440     SDValue Vec2 = Op2.getOperand(0);
10441 
10442     SDValue FMAOp1 = FMA.getOperand(0);
10443     SDValue FMAOp2 = FMA.getOperand(1);
10444     SDValue FMAAcc = FMA.getOperand(2);
10445 
10446     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10447         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10448       return SDValue();
10449 
10450     FMAOp1 = FMAOp1.getOperand(0);
10451     FMAOp2 = FMAOp2.getOperand(0);
10452     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10453         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10454       return SDValue();
10455 
10456     SDValue Vec3 = FMAOp1.getOperand(0);
10457     SDValue Vec4 = FMAOp2.getOperand(0);
10458     SDValue Idx2 = FMAOp1.getOperand(1);
10459 
10460     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10461         // Idx1 and Idx2 cannot be the same.
10462         Idx1 == Idx2)
10463       return SDValue();
10464 
10465     if (Vec1 == Vec2 || Vec3 == Vec4)
10466       return SDValue();
10467 
10468     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10469       return SDValue();
10470 
10471     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10472         (Vec1 == Vec4 && Vec2 == Vec3)) {
10473       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10474                          DAG.getTargetConstant(0, SL, MVT::i1));
10475     }
10476   }
10477   return SDValue();
10478 }
10479 
10480 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10481                                               DAGCombinerInfo &DCI) const {
10482   SelectionDAG &DAG = DCI.DAG;
10483   SDLoc SL(N);
10484 
10485   SDValue LHS = N->getOperand(0);
10486   SDValue RHS = N->getOperand(1);
10487   EVT VT = LHS.getValueType();
10488   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10489 
10490   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10491   if (!CRHS) {
10492     CRHS = dyn_cast<ConstantSDNode>(LHS);
10493     if (CRHS) {
10494       std::swap(LHS, RHS);
10495       CC = getSetCCSwappedOperands(CC);
10496     }
10497   }
10498 
10499   if (CRHS) {
10500     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10501         isBoolSGPR(LHS.getOperand(0))) {
10502       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10503       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10504       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10505       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10506       if ((CRHS->isAllOnesValue() &&
10507            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10508           (CRHS->isNullValue() &&
10509            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10510         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10511                            DAG.getConstant(-1, SL, MVT::i1));
10512       if ((CRHS->isAllOnesValue() &&
10513            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10514           (CRHS->isNullValue() &&
10515            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10516         return LHS.getOperand(0);
10517     }
10518 
10519     uint64_t CRHSVal = CRHS->getZExtValue();
10520     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10521         LHS.getOpcode() == ISD::SELECT &&
10522         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10523         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10524         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10525         isBoolSGPR(LHS.getOperand(0))) {
10526       // Given CT != FT:
10527       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10528       // setcc (select cc, CT, CF), CF, ne => cc
10529       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10530       // setcc (select cc, CT, CF), CT, eq => cc
10531       uint64_t CT = LHS.getConstantOperandVal(1);
10532       uint64_t CF = LHS.getConstantOperandVal(2);
10533 
10534       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10535           (CT == CRHSVal && CC == ISD::SETNE))
10536         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10537                            DAG.getConstant(-1, SL, MVT::i1));
10538       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10539           (CT == CRHSVal && CC == ISD::SETEQ))
10540         return LHS.getOperand(0);
10541     }
10542   }
10543 
10544   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10545                                            VT != MVT::f16))
10546     return SDValue();
10547 
10548   // Match isinf/isfinite pattern
10549   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10550   // (fcmp one (fabs x), inf) -> (fp_class x,
10551   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10552   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10553     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10554     if (!CRHS)
10555       return SDValue();
10556 
10557     const APFloat &APF = CRHS->getValueAPF();
10558     if (APF.isInfinity() && !APF.isNegative()) {
10559       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10560                                  SIInstrFlags::N_INFINITY;
10561       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10562                                     SIInstrFlags::P_ZERO |
10563                                     SIInstrFlags::N_NORMAL |
10564                                     SIInstrFlags::P_NORMAL |
10565                                     SIInstrFlags::N_SUBNORMAL |
10566                                     SIInstrFlags::P_SUBNORMAL;
10567       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10568       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10569                          DAG.getConstant(Mask, SL, MVT::i32));
10570     }
10571   }
10572 
10573   return SDValue();
10574 }
10575 
10576 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10577                                                      DAGCombinerInfo &DCI) const {
10578   SelectionDAG &DAG = DCI.DAG;
10579   SDLoc SL(N);
10580   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10581 
10582   SDValue Src = N->getOperand(0);
10583   SDValue Shift = N->getOperand(0);
10584 
10585   // TODO: Extend type shouldn't matter (assuming legal types).
10586   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10587     Shift = Shift.getOperand(0);
10588 
10589   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10590     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10591     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10592     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10593     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10594     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10595     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10596       Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10597                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10598 
10599       unsigned ShiftOffset = 8 * Offset;
10600       if (Shift.getOpcode() == ISD::SHL)
10601         ShiftOffset -= C->getZExtValue();
10602       else
10603         ShiftOffset += C->getZExtValue();
10604 
10605       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10606         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10607                            MVT::f32, Shift);
10608       }
10609     }
10610   }
10611 
10612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10613   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10614   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10615     // We simplified Src. If this node is not dead, visit it again so it is
10616     // folded properly.
10617     if (N->getOpcode() != ISD::DELETED_NODE)
10618       DCI.AddToWorklist(N);
10619     return SDValue(N, 0);
10620   }
10621 
10622   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10623   if (SDValue DemandedSrc =
10624           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10625     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10626 
10627   return SDValue();
10628 }
10629 
10630 SDValue SITargetLowering::performClampCombine(SDNode *N,
10631                                               DAGCombinerInfo &DCI) const {
10632   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10633   if (!CSrc)
10634     return SDValue();
10635 
10636   const MachineFunction &MF = DCI.DAG.getMachineFunction();
10637   const APFloat &F = CSrc->getValueAPF();
10638   APFloat Zero = APFloat::getZero(F.getSemantics());
10639   if (F < Zero ||
10640       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10641     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10642   }
10643 
10644   APFloat One(F.getSemantics(), "1.0");
10645   if (F > One)
10646     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10647 
10648   return SDValue(CSrc, 0);
10649 }
10650 
10651 
10652 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10653                                             DAGCombinerInfo &DCI) const {
10654   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10655     return SDValue();
10656   switch (N->getOpcode()) {
10657   case ISD::ADD:
10658     return performAddCombine(N, DCI);
10659   case ISD::SUB:
10660     return performSubCombine(N, DCI);
10661   case ISD::ADDCARRY:
10662   case ISD::SUBCARRY:
10663     return performAddCarrySubCarryCombine(N, DCI);
10664   case ISD::FADD:
10665     return performFAddCombine(N, DCI);
10666   case ISD::FSUB:
10667     return performFSubCombine(N, DCI);
10668   case ISD::SETCC:
10669     return performSetCCCombine(N, DCI);
10670   case ISD::FMAXNUM:
10671   case ISD::FMINNUM:
10672   case ISD::FMAXNUM_IEEE:
10673   case ISD::FMINNUM_IEEE:
10674   case ISD::SMAX:
10675   case ISD::SMIN:
10676   case ISD::UMAX:
10677   case ISD::UMIN:
10678   case AMDGPUISD::FMIN_LEGACY:
10679   case AMDGPUISD::FMAX_LEGACY:
10680     return performMinMaxCombine(N, DCI);
10681   case ISD::FMA:
10682     return performFMACombine(N, DCI);
10683   case ISD::AND:
10684     return performAndCombine(N, DCI);
10685   case ISD::OR:
10686     return performOrCombine(N, DCI);
10687   case ISD::XOR:
10688     return performXorCombine(N, DCI);
10689   case ISD::ZERO_EXTEND:
10690     return performZeroExtendCombine(N, DCI);
10691   case ISD::SIGN_EXTEND_INREG:
10692     return performSignExtendInRegCombine(N , DCI);
10693   case AMDGPUISD::FP_CLASS:
10694     return performClassCombine(N, DCI);
10695   case ISD::FCANONICALIZE:
10696     return performFCanonicalizeCombine(N, DCI);
10697   case AMDGPUISD::RCP:
10698     return performRcpCombine(N, DCI);
10699   case AMDGPUISD::FRACT:
10700   case AMDGPUISD::RSQ:
10701   case AMDGPUISD::RCP_LEGACY:
10702   case AMDGPUISD::RCP_IFLAG:
10703   case AMDGPUISD::RSQ_CLAMP:
10704   case AMDGPUISD::LDEXP: {
10705     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10706     SDValue Src = N->getOperand(0);
10707     if (Src.isUndef())
10708       return Src;
10709     break;
10710   }
10711   case ISD::SINT_TO_FP:
10712   case ISD::UINT_TO_FP:
10713     return performUCharToFloatCombine(N, DCI);
10714   case AMDGPUISD::CVT_F32_UBYTE0:
10715   case AMDGPUISD::CVT_F32_UBYTE1:
10716   case AMDGPUISD::CVT_F32_UBYTE2:
10717   case AMDGPUISD::CVT_F32_UBYTE3:
10718     return performCvtF32UByteNCombine(N, DCI);
10719   case AMDGPUISD::FMED3:
10720     return performFMed3Combine(N, DCI);
10721   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10722     return performCvtPkRTZCombine(N, DCI);
10723   case AMDGPUISD::CLAMP:
10724     return performClampCombine(N, DCI);
10725   case ISD::SCALAR_TO_VECTOR: {
10726     SelectionDAG &DAG = DCI.DAG;
10727     EVT VT = N->getValueType(0);
10728 
10729     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10730     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10731       SDLoc SL(N);
10732       SDValue Src = N->getOperand(0);
10733       EVT EltVT = Src.getValueType();
10734       if (EltVT == MVT::f16)
10735         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10736 
10737       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10738       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10739     }
10740 
10741     break;
10742   }
10743   case ISD::EXTRACT_VECTOR_ELT:
10744     return performExtractVectorEltCombine(N, DCI);
10745   case ISD::INSERT_VECTOR_ELT:
10746     return performInsertVectorEltCombine(N, DCI);
10747   case ISD::LOAD: {
10748     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10749       return Widended;
10750     LLVM_FALLTHROUGH;
10751   }
10752   default: {
10753     if (!DCI.isBeforeLegalize()) {
10754       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10755         return performMemSDNodeCombine(MemNode, DCI);
10756     }
10757 
10758     break;
10759   }
10760   }
10761 
10762   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10763 }
10764 
10765 /// Helper function for adjustWritemask
10766 static unsigned SubIdx2Lane(unsigned Idx) {
10767   switch (Idx) {
10768   default: return ~0u;
10769   case AMDGPU::sub0: return 0;
10770   case AMDGPU::sub1: return 1;
10771   case AMDGPU::sub2: return 2;
10772   case AMDGPU::sub3: return 3;
10773   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10774   }
10775 }
10776 
10777 /// Adjust the writemask of MIMG instructions
10778 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10779                                           SelectionDAG &DAG) const {
10780   unsigned Opcode = Node->getMachineOpcode();
10781 
10782   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10783   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10784   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10785     return Node; // not implemented for D16
10786 
10787   SDNode *Users[5] = { nullptr };
10788   unsigned Lane = 0;
10789   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10790   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10791   unsigned NewDmask = 0;
10792   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10793   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10794   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10795                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10796   unsigned TFCLane = 0;
10797   bool HasChain = Node->getNumValues() > 1;
10798 
10799   if (OldDmask == 0) {
10800     // These are folded out, but on the chance it happens don't assert.
10801     return Node;
10802   }
10803 
10804   unsigned OldBitsSet = countPopulation(OldDmask);
10805   // Work out which is the TFE/LWE lane if that is enabled.
10806   if (UsesTFC) {
10807     TFCLane = OldBitsSet;
10808   }
10809 
10810   // Try to figure out the used register components
10811   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10812        I != E; ++I) {
10813 
10814     // Don't look at users of the chain.
10815     if (I.getUse().getResNo() != 0)
10816       continue;
10817 
10818     // Abort if we can't understand the usage
10819     if (!I->isMachineOpcode() ||
10820         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10821       return Node;
10822 
10823     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10824     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10825     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10826     // set, etc.
10827     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10828     if (Lane == ~0u)
10829       return Node;
10830 
10831     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10832     if (UsesTFC && Lane == TFCLane) {
10833       Users[Lane] = *I;
10834     } else {
10835       // Set which texture component corresponds to the lane.
10836       unsigned Comp;
10837       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10838         Comp = countTrailingZeros(Dmask);
10839         Dmask &= ~(1 << Comp);
10840       }
10841 
10842       // Abort if we have more than one user per component.
10843       if (Users[Lane])
10844         return Node;
10845 
10846       Users[Lane] = *I;
10847       NewDmask |= 1 << Comp;
10848     }
10849   }
10850 
10851   // Don't allow 0 dmask, as hardware assumes one channel enabled.
10852   bool NoChannels = !NewDmask;
10853   if (NoChannels) {
10854     if (!UsesTFC) {
10855       // No uses of the result and not using TFC. Then do nothing.
10856       return Node;
10857     }
10858     // If the original dmask has one channel - then nothing to do
10859     if (OldBitsSet == 1)
10860       return Node;
10861     // Use an arbitrary dmask - required for the instruction to work
10862     NewDmask = 1;
10863   }
10864   // Abort if there's no change
10865   if (NewDmask == OldDmask)
10866     return Node;
10867 
10868   unsigned BitsSet = countPopulation(NewDmask);
10869 
10870   // Check for TFE or LWE - increase the number of channels by one to account
10871   // for the extra return value
10872   // This will need adjustment for D16 if this is also included in
10873   // adjustWriteMask (this function) but at present D16 are excluded.
10874   unsigned NewChannels = BitsSet + UsesTFC;
10875 
10876   int NewOpcode =
10877       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10878   assert(NewOpcode != -1 &&
10879          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10880          "failed to find equivalent MIMG op");
10881 
10882   // Adjust the writemask in the node
10883   SmallVector<SDValue, 12> Ops;
10884   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10885   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10886   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10887 
10888   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10889 
10890   MVT ResultVT = NewChannels == 1 ?
10891     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10892                            NewChannels == 5 ? 8 : NewChannels);
10893   SDVTList NewVTList = HasChain ?
10894     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10895 
10896 
10897   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10898                                               NewVTList, Ops);
10899 
10900   if (HasChain) {
10901     // Update chain.
10902     DAG.setNodeMemRefs(NewNode, Node->memoperands());
10903     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10904   }
10905 
10906   if (NewChannels == 1) {
10907     assert(Node->hasNUsesOfValue(1, 0));
10908     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10909                                       SDLoc(Node), Users[Lane]->getValueType(0),
10910                                       SDValue(NewNode, 0));
10911     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10912     return nullptr;
10913   }
10914 
10915   // Update the users of the node with the new indices
10916   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10917     SDNode *User = Users[i];
10918     if (!User) {
10919       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10920       // Users[0] is still nullptr because channel 0 doesn't really have a use.
10921       if (i || !NoChannels)
10922         continue;
10923     } else {
10924       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10925       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10926     }
10927 
10928     switch (Idx) {
10929     default: break;
10930     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10931     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10932     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10933     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10934     }
10935   }
10936 
10937   DAG.RemoveDeadNode(Node);
10938   return nullptr;
10939 }
10940 
10941 static bool isFrameIndexOp(SDValue Op) {
10942   if (Op.getOpcode() == ISD::AssertZext)
10943     Op = Op.getOperand(0);
10944 
10945   return isa<FrameIndexSDNode>(Op);
10946 }
10947 
10948 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
10949 /// with frame index operands.
10950 /// LLVM assumes that inputs are to these instructions are registers.
10951 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10952                                                         SelectionDAG &DAG) const {
10953   if (Node->getOpcode() == ISD::CopyToReg) {
10954     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10955     SDValue SrcVal = Node->getOperand(2);
10956 
10957     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10958     // to try understanding copies to physical registers.
10959     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
10960       SDLoc SL(Node);
10961       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10962       SDValue VReg = DAG.getRegister(
10963         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10964 
10965       SDNode *Glued = Node->getGluedNode();
10966       SDValue ToVReg
10967         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10968                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10969       SDValue ToResultReg
10970         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10971                            VReg, ToVReg.getValue(1));
10972       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10973       DAG.RemoveDeadNode(Node);
10974       return ToResultReg.getNode();
10975     }
10976   }
10977 
10978   SmallVector<SDValue, 8> Ops;
10979   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10980     if (!isFrameIndexOp(Node->getOperand(i))) {
10981       Ops.push_back(Node->getOperand(i));
10982       continue;
10983     }
10984 
10985     SDLoc DL(Node);
10986     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10987                                      Node->getOperand(i).getValueType(),
10988                                      Node->getOperand(i)), 0));
10989   }
10990 
10991   return DAG.UpdateNodeOperands(Node, Ops);
10992 }
10993 
10994 /// Fold the instructions after selecting them.
10995 /// Returns null if users were already updated.
10996 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10997                                           SelectionDAG &DAG) const {
10998   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10999   unsigned Opcode = Node->getMachineOpcode();
11000 
11001   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11002       !TII->isGather4(Opcode) &&
11003       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11004     return adjustWritemask(Node, DAG);
11005   }
11006 
11007   if (Opcode == AMDGPU::INSERT_SUBREG ||
11008       Opcode == AMDGPU::REG_SEQUENCE) {
11009     legalizeTargetIndependentNode(Node, DAG);
11010     return Node;
11011   }
11012 
11013   switch (Opcode) {
11014   case AMDGPU::V_DIV_SCALE_F32_e64:
11015   case AMDGPU::V_DIV_SCALE_F64_e64: {
11016     // Satisfy the operand register constraint when one of the inputs is
11017     // undefined. Ordinarily each undef value will have its own implicit_def of
11018     // a vreg, so force these to use a single register.
11019     SDValue Src0 = Node->getOperand(1);
11020     SDValue Src1 = Node->getOperand(3);
11021     SDValue Src2 = Node->getOperand(5);
11022 
11023     if ((Src0.isMachineOpcode() &&
11024          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11025         (Src0 == Src1 || Src0 == Src2))
11026       break;
11027 
11028     MVT VT = Src0.getValueType().getSimpleVT();
11029     const TargetRegisterClass *RC =
11030         getRegClassFor(VT, Src0.getNode()->isDivergent());
11031 
11032     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11033     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11034 
11035     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11036                                       UndefReg, Src0, SDValue());
11037 
11038     // src0 must be the same register as src1 or src2, even if the value is
11039     // undefined, so make sure we don't violate this constraint.
11040     if (Src0.isMachineOpcode() &&
11041         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11042       if (Src1.isMachineOpcode() &&
11043           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11044         Src0 = Src1;
11045       else if (Src2.isMachineOpcode() &&
11046                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11047         Src0 = Src2;
11048       else {
11049         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11050         Src0 = UndefReg;
11051         Src1 = UndefReg;
11052       }
11053     } else
11054       break;
11055 
11056     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11057     Ops[1] = Src0;
11058     Ops[3] = Src1;
11059     Ops[5] = Src2;
11060     Ops.push_back(ImpDef.getValue(1));
11061     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11062   }
11063   default:
11064     break;
11065   }
11066 
11067   return Node;
11068 }
11069 
11070 /// Assign the register class depending on the number of
11071 /// bits set in the writemask
11072 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11073                                                      SDNode *Node) const {
11074   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11075 
11076   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11077 
11078   if (TII->isVOP3(MI.getOpcode())) {
11079     // Make sure constant bus requirements are respected.
11080     TII->legalizeOperandsVOP3(MRI, MI);
11081 
11082     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11083     // This saves a chain-copy of registers and better ballance register
11084     // use between vgpr and agpr as agpr tuples tend to be big.
11085     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11086       unsigned Opc = MI.getOpcode();
11087       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11088       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11089                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11090         if (I == -1)
11091           break;
11092         MachineOperand &Op = MI.getOperand(I);
11093         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11094              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11095             !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11096           continue;
11097         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11098         if (!Src || !Src->isCopy() ||
11099             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11100           continue;
11101         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11102         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11103         // All uses of agpr64 and agpr32 can also accept vgpr except for
11104         // v_accvgpr_read, but we do not produce agpr reads during selection,
11105         // so no use checks are needed.
11106         MRI.setRegClass(Op.getReg(), NewRC);
11107       }
11108     }
11109 
11110     return;
11111   }
11112 
11113   // Replace unused atomics with the no return version.
11114   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11115   if (NoRetAtomicOp != -1) {
11116     if (!Node->hasAnyUseOfValue(0)) {
11117       int Glc1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11118                                                AMDGPU::OpName::glc1);
11119       if (Glc1Idx != -1)
11120         MI.RemoveOperand(Glc1Idx);
11121       MI.RemoveOperand(0);
11122       MI.setDesc(TII->get(NoRetAtomicOp));
11123       return;
11124     }
11125 
11126     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11127     // instruction, because the return type of these instructions is a vec2 of
11128     // the memory type, so it can be tied to the input operand.
11129     // This means these instructions always have a use, so we need to add a
11130     // special case to check if the atomic has only one extract_subreg use,
11131     // which itself has no uses.
11132     if ((Node->hasNUsesOfValue(1, 0) &&
11133          Node->use_begin()->isMachineOpcode() &&
11134          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11135          !Node->use_begin()->hasAnyUseOfValue(0))) {
11136       Register Def = MI.getOperand(0).getReg();
11137 
11138       // Change this into a noret atomic.
11139       MI.setDesc(TII->get(NoRetAtomicOp));
11140       MI.RemoveOperand(0);
11141 
11142       // If we only remove the def operand from the atomic instruction, the
11143       // extract_subreg will be left with a use of a vreg without a def.
11144       // So we need to insert an implicit_def to avoid machine verifier
11145       // errors.
11146       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11147               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11148     }
11149     return;
11150   }
11151 }
11152 
11153 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11154                               uint64_t Val) {
11155   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11156   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11157 }
11158 
11159 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11160                                                 const SDLoc &DL,
11161                                                 SDValue Ptr) const {
11162   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11163 
11164   // Build the half of the subregister with the constants before building the
11165   // full 128-bit register. If we are building multiple resource descriptors,
11166   // this will allow CSEing of the 2-component register.
11167   const SDValue Ops0[] = {
11168     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11169     buildSMovImm32(DAG, DL, 0),
11170     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11171     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11172     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11173   };
11174 
11175   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11176                                                 MVT::v2i32, Ops0), 0);
11177 
11178   // Combine the constants and the pointer.
11179   const SDValue Ops1[] = {
11180     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11181     Ptr,
11182     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11183     SubRegHi,
11184     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11185   };
11186 
11187   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11188 }
11189 
11190 /// Return a resource descriptor with the 'Add TID' bit enabled
11191 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11192 ///        of the resource descriptor) to create an offset, which is added to
11193 ///        the resource pointer.
11194 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11195                                            SDValue Ptr, uint32_t RsrcDword1,
11196                                            uint64_t RsrcDword2And3) const {
11197   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11198   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11199   if (RsrcDword1) {
11200     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11201                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11202                     0);
11203   }
11204 
11205   SDValue DataLo = buildSMovImm32(DAG, DL,
11206                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11207   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11208 
11209   const SDValue Ops[] = {
11210     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11211     PtrLo,
11212     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11213     PtrHi,
11214     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11215     DataLo,
11216     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11217     DataHi,
11218     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11219   };
11220 
11221   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11222 }
11223 
11224 //===----------------------------------------------------------------------===//
11225 //                         SI Inline Assembly Support
11226 //===----------------------------------------------------------------------===//
11227 
11228 std::pair<unsigned, const TargetRegisterClass *>
11229 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11230                                                StringRef Constraint,
11231                                                MVT VT) const {
11232   const TargetRegisterClass *RC = nullptr;
11233   if (Constraint.size() == 1) {
11234     const unsigned BitWidth = VT.getSizeInBits();
11235     switch (Constraint[0]) {
11236     default:
11237       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11238     case 's':
11239     case 'r':
11240       switch (BitWidth) {
11241       case 16:
11242         RC = &AMDGPU::SReg_32RegClass;
11243         break;
11244       case 64:
11245         RC = &AMDGPU::SGPR_64RegClass;
11246         break;
11247       default:
11248         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11249         if (!RC)
11250           return std::make_pair(0U, nullptr);
11251         break;
11252       }
11253       break;
11254     case 'v':
11255       switch (BitWidth) {
11256       case 16:
11257         RC = &AMDGPU::VGPR_32RegClass;
11258         break;
11259       default:
11260         RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth);
11261         if (!RC)
11262           return std::make_pair(0U, nullptr);
11263         break;
11264       }
11265       break;
11266     case 'a':
11267       if (!Subtarget->hasMAIInsts())
11268         break;
11269       switch (BitWidth) {
11270       case 16:
11271         RC = &AMDGPU::AGPR_32RegClass;
11272         break;
11273       default:
11274         RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth);
11275         if (!RC)
11276           return std::make_pair(0U, nullptr);
11277         break;
11278       }
11279       break;
11280     }
11281     // We actually support i128, i16 and f16 as inline parameters
11282     // even if they are not reported as legal
11283     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11284                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11285       return std::make_pair(0U, RC);
11286   }
11287 
11288   if (Constraint.size() > 1) {
11289     if (Constraint[1] == 'v') {
11290       RC = &AMDGPU::VGPR_32RegClass;
11291     } else if (Constraint[1] == 's') {
11292       RC = &AMDGPU::SGPR_32RegClass;
11293     } else if (Constraint[1] == 'a') {
11294       RC = &AMDGPU::AGPR_32RegClass;
11295     }
11296 
11297     if (RC) {
11298       uint32_t Idx;
11299       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11300       if (!Failed && Idx < RC->getNumRegs())
11301         return std::make_pair(RC->getRegister(Idx), RC);
11302     }
11303   }
11304 
11305   // FIXME: Returns VS_32 for physical SGPR constraints
11306   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11307 }
11308 
11309 static bool isImmConstraint(StringRef Constraint) {
11310   if (Constraint.size() == 1) {
11311     switch (Constraint[0]) {
11312     default: break;
11313     case 'I':
11314     case 'J':
11315     case 'A':
11316     case 'B':
11317     case 'C':
11318       return true;
11319     }
11320   } else if (Constraint == "DA" ||
11321              Constraint == "DB") {
11322     return true;
11323   }
11324   return false;
11325 }
11326 
11327 SITargetLowering::ConstraintType
11328 SITargetLowering::getConstraintType(StringRef Constraint) const {
11329   if (Constraint.size() == 1) {
11330     switch (Constraint[0]) {
11331     default: break;
11332     case 's':
11333     case 'v':
11334     case 'a':
11335       return C_RegisterClass;
11336     }
11337   }
11338   if (isImmConstraint(Constraint)) {
11339     return C_Other;
11340   }
11341   return TargetLowering::getConstraintType(Constraint);
11342 }
11343 
11344 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11345   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11346     Val = Val & maskTrailingOnes<uint64_t>(Size);
11347   }
11348   return Val;
11349 }
11350 
11351 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11352                                                     std::string &Constraint,
11353                                                     std::vector<SDValue> &Ops,
11354                                                     SelectionDAG &DAG) const {
11355   if (isImmConstraint(Constraint)) {
11356     uint64_t Val;
11357     if (getAsmOperandConstVal(Op, Val) &&
11358         checkAsmConstraintVal(Op, Constraint, Val)) {
11359       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11360       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11361     }
11362   } else {
11363     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11364   }
11365 }
11366 
11367 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11368   unsigned Size = Op.getScalarValueSizeInBits();
11369   if (Size > 64)
11370     return false;
11371 
11372   if (Size == 16 && !Subtarget->has16BitInsts())
11373     return false;
11374 
11375   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11376     Val = C->getSExtValue();
11377     return true;
11378   }
11379   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11380     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11381     return true;
11382   }
11383   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11384     if (Size != 16 || Op.getNumOperands() != 2)
11385       return false;
11386     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11387       return false;
11388     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11389       Val = C->getSExtValue();
11390       return true;
11391     }
11392     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11393       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11394       return true;
11395     }
11396   }
11397 
11398   return false;
11399 }
11400 
11401 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11402                                              const std::string &Constraint,
11403                                              uint64_t Val) const {
11404   if (Constraint.size() == 1) {
11405     switch (Constraint[0]) {
11406     case 'I':
11407       return AMDGPU::isInlinableIntLiteral(Val);
11408     case 'J':
11409       return isInt<16>(Val);
11410     case 'A':
11411       return checkAsmConstraintValA(Op, Val);
11412     case 'B':
11413       return isInt<32>(Val);
11414     case 'C':
11415       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11416              AMDGPU::isInlinableIntLiteral(Val);
11417     default:
11418       break;
11419     }
11420   } else if (Constraint.size() == 2) {
11421     if (Constraint == "DA") {
11422       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11423       int64_t LoBits = static_cast<int32_t>(Val);
11424       return checkAsmConstraintValA(Op, HiBits, 32) &&
11425              checkAsmConstraintValA(Op, LoBits, 32);
11426     }
11427     if (Constraint == "DB") {
11428       return true;
11429     }
11430   }
11431   llvm_unreachable("Invalid asm constraint");
11432 }
11433 
11434 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11435                                               uint64_t Val,
11436                                               unsigned MaxSize) const {
11437   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11438   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11439   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11440       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11441       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11442     return true;
11443   }
11444   return false;
11445 }
11446 
11447 // Figure out which registers should be reserved for stack access. Only after
11448 // the function is legalized do we know all of the non-spill stack objects or if
11449 // calls are present.
11450 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11451   MachineRegisterInfo &MRI = MF.getRegInfo();
11452   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11453   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11454   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11455 
11456   if (Info->isEntryFunction()) {
11457     // Callable functions have fixed registers used for stack access.
11458     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11459   }
11460 
11461   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11462                              Info->getStackPtrOffsetReg()));
11463   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11464     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11465 
11466   // We need to worry about replacing the default register with itself in case
11467   // of MIR testcases missing the MFI.
11468   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11469     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11470 
11471   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11472     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11473 
11474   Info->limitOccupancy(MF);
11475 
11476   if (ST.isWave32() && !MF.empty()) {
11477     const SIInstrInfo *TII = ST.getInstrInfo();
11478     for (auto &MBB : MF) {
11479       for (auto &MI : MBB) {
11480         TII->fixImplicitOperands(MI);
11481       }
11482     }
11483   }
11484 
11485   TargetLoweringBase::finalizeLowering(MF);
11486 
11487   // Allocate a VGPR for future SGPR Spill if
11488   // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11489   // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11490   if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill &&
11491       !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects())
11492     Info->reserveVGPRforSGPRSpills(MF);
11493 }
11494 
11495 void SITargetLowering::computeKnownBitsForFrameIndex(
11496   const int FI, KnownBits &Known, const MachineFunction &MF) const {
11497   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11498 
11499   // Set the high bits to zero based on the maximum allowed scratch size per
11500   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11501   // calculation won't overflow, so assume the sign bit is never set.
11502   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11503 }
11504 
11505 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11506                                    KnownBits &Known, unsigned Dim) {
11507   unsigned MaxValue =
11508       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11509   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11510 }
11511 
11512 void SITargetLowering::computeKnownBitsForTargetInstr(
11513     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11514     const MachineRegisterInfo &MRI, unsigned Depth) const {
11515   const MachineInstr *MI = MRI.getVRegDef(R);
11516   switch (MI->getOpcode()) {
11517   case AMDGPU::G_INTRINSIC: {
11518     switch (MI->getIntrinsicID()) {
11519     case Intrinsic::amdgcn_workitem_id_x:
11520       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11521       break;
11522     case Intrinsic::amdgcn_workitem_id_y:
11523       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11524       break;
11525     case Intrinsic::amdgcn_workitem_id_z:
11526       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11527       break;
11528     case Intrinsic::amdgcn_mbcnt_lo:
11529     case Intrinsic::amdgcn_mbcnt_hi: {
11530       // These return at most the wavefront size - 1.
11531       unsigned Size = MRI.getType(R).getSizeInBits();
11532       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11533       break;
11534     }
11535     case Intrinsic::amdgcn_groupstaticsize: {
11536       // We can report everything over the maximum size as 0. We can't report
11537       // based on the actual size because we don't know if it's accurate or not
11538       // at any given point.
11539       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11540       break;
11541     }
11542     }
11543     break;
11544   }
11545   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11546     Known.Zero.setHighBits(24);
11547     break;
11548   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11549     Known.Zero.setHighBits(16);
11550     break;
11551   }
11552 }
11553 
11554 Align SITargetLowering::computeKnownAlignForTargetInstr(
11555   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11556   unsigned Depth) const {
11557   const MachineInstr *MI = MRI.getVRegDef(R);
11558   switch (MI->getOpcode()) {
11559   case AMDGPU::G_INTRINSIC:
11560   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11561     // FIXME: Can this move to generic code? What about the case where the call
11562     // site specifies a lower alignment?
11563     Intrinsic::ID IID = MI->getIntrinsicID();
11564     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11565     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11566     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11567       return *RetAlign;
11568     return Align(1);
11569   }
11570   default:
11571     return Align(1);
11572   }
11573 }
11574 
11575 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11576   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11577   const Align CacheLineAlign = Align(64);
11578 
11579   // Pre-GFX10 target did not benefit from loop alignment
11580   if (!ML || DisableLoopAlignment ||
11581       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11582       getSubtarget()->hasInstFwdPrefetchBug())
11583     return PrefAlign;
11584 
11585   // On GFX10 I$ is 4 x 64 bytes cache lines.
11586   // By default prefetcher keeps one cache line behind and reads two ahead.
11587   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11588   // behind and one ahead.
11589   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11590   // If loop fits 64 bytes it always spans no more than two cache lines and
11591   // does not need an alignment.
11592   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11593   // Else if loop is less or equal 192 bytes we need two lines behind.
11594 
11595   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11596   const MachineBasicBlock *Header = ML->getHeader();
11597   if (Header->getAlignment() != PrefAlign)
11598     return Header->getAlignment(); // Already processed.
11599 
11600   unsigned LoopSize = 0;
11601   for (const MachineBasicBlock *MBB : ML->blocks()) {
11602     // If inner loop block is aligned assume in average half of the alignment
11603     // size to be added as nops.
11604     if (MBB != Header)
11605       LoopSize += MBB->getAlignment().value() / 2;
11606 
11607     for (const MachineInstr &MI : *MBB) {
11608       LoopSize += TII->getInstSizeInBytes(MI);
11609       if (LoopSize > 192)
11610         return PrefAlign;
11611     }
11612   }
11613 
11614   if (LoopSize <= 64)
11615     return PrefAlign;
11616 
11617   if (LoopSize <= 128)
11618     return CacheLineAlign;
11619 
11620   // If any of parent loops is surrounded by prefetch instructions do not
11621   // insert new for inner loop, which would reset parent's settings.
11622   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11623     if (MachineBasicBlock *Exit = P->getExitBlock()) {
11624       auto I = Exit->getFirstNonDebugInstr();
11625       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11626         return CacheLineAlign;
11627     }
11628   }
11629 
11630   MachineBasicBlock *Pre = ML->getLoopPreheader();
11631   MachineBasicBlock *Exit = ML->getExitBlock();
11632 
11633   if (Pre && Exit) {
11634     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11635             TII->get(AMDGPU::S_INST_PREFETCH))
11636       .addImm(1); // prefetch 2 lines behind PC
11637 
11638     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11639             TII->get(AMDGPU::S_INST_PREFETCH))
11640       .addImm(2); // prefetch 1 line behind PC
11641   }
11642 
11643   return CacheLineAlign;
11644 }
11645 
11646 LLVM_ATTRIBUTE_UNUSED
11647 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11648   assert(N->getOpcode() == ISD::CopyFromReg);
11649   do {
11650     // Follow the chain until we find an INLINEASM node.
11651     N = N->getOperand(0).getNode();
11652     if (N->getOpcode() == ISD::INLINEASM ||
11653         N->getOpcode() == ISD::INLINEASM_BR)
11654       return true;
11655   } while (N->getOpcode() == ISD::CopyFromReg);
11656   return false;
11657 }
11658 
11659 bool SITargetLowering::isSDNodeSourceOfDivergence(
11660     const SDNode *N, FunctionLoweringInfo *FLI,
11661     LegacyDivergenceAnalysis *KDA) const {
11662   switch (N->getOpcode()) {
11663   case ISD::CopyFromReg: {
11664     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11665     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11666     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11667     Register Reg = R->getReg();
11668 
11669     // FIXME: Why does this need to consider isLiveIn?
11670     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11671       return !TRI->isSGPRReg(MRI, Reg);
11672 
11673     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11674       return KDA->isDivergent(V);
11675 
11676     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
11677     return !TRI->isSGPRReg(MRI, Reg);
11678   }
11679   case ISD::LOAD: {
11680     const LoadSDNode *L = cast<LoadSDNode>(N);
11681     unsigned AS = L->getAddressSpace();
11682     // A flat load may access private memory.
11683     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11684   }
11685   case ISD::CALLSEQ_END:
11686     return true;
11687   case ISD::INTRINSIC_WO_CHAIN:
11688     return AMDGPU::isIntrinsicSourceOfDivergence(
11689         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11690   case ISD::INTRINSIC_W_CHAIN:
11691     return AMDGPU::isIntrinsicSourceOfDivergence(
11692         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
11693   }
11694   return false;
11695 }
11696 
11697 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
11698                                                EVT VT) const {
11699   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
11700   case MVT::f32:
11701     return hasFP32Denormals(DAG.getMachineFunction());
11702   case MVT::f64:
11703   case MVT::f16:
11704     return hasFP64FP16Denormals(DAG.getMachineFunction());
11705   default:
11706     return false;
11707   }
11708 }
11709 
11710 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
11711                                                     const SelectionDAG &DAG,
11712                                                     bool SNaN,
11713                                                     unsigned Depth) const {
11714   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
11715     const MachineFunction &MF = DAG.getMachineFunction();
11716     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11717 
11718     if (Info->getMode().DX10Clamp)
11719       return true; // Clamped to 0.
11720     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
11721   }
11722 
11723   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
11724                                                             SNaN, Depth);
11725 }
11726 
11727 // Global FP atomic instructions have a hardcoded FP mode and do not support
11728 // FP32 denormals, and only support v2f16 denormals.
11729 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
11730   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
11731   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
11732   if (&Flt == &APFloat::IEEEsingle())
11733     return DenormMode == DenormalMode::getPreserveSign();
11734   return DenormMode == DenormalMode::getIEEE();
11735 }
11736 
11737 TargetLowering::AtomicExpansionKind
11738 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
11739   switch (RMW->getOperation()) {
11740   case AtomicRMWInst::FAdd: {
11741     Type *Ty = RMW->getType();
11742 
11743     // We don't have a way to support 16-bit atomics now, so just leave them
11744     // as-is.
11745     if (Ty->isHalfTy())
11746       return AtomicExpansionKind::None;
11747 
11748     if (!Ty->isFloatTy())
11749       return AtomicExpansionKind::CmpXChg;
11750 
11751     // TODO: Do have these for flat. Older targets also had them for buffers.
11752     unsigned AS = RMW->getPointerAddressSpace();
11753 
11754     if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
11755       if (!fpModeMatchesGlobalFPAtomicMode(RMW))
11756         return AtomicExpansionKind::CmpXChg;
11757 
11758       return RMW->use_empty() ? AtomicExpansionKind::None :
11759                                 AtomicExpansionKind::CmpXChg;
11760     }
11761 
11762     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
11763     // to round-to-nearest-even.
11764     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
11765       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
11766   }
11767   default:
11768     break;
11769   }
11770 
11771   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
11772 }
11773 
11774 const TargetRegisterClass *
11775 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
11776   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
11777   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11778   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
11779     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
11780                                                : &AMDGPU::SReg_32RegClass;
11781   if (!TRI->isSGPRClass(RC) && !isDivergent)
11782     return TRI->getEquivalentSGPRClass(RC);
11783   else if (TRI->isSGPRClass(RC) && isDivergent)
11784     return TRI->getEquivalentVGPRClass(RC);
11785 
11786   return RC;
11787 }
11788 
11789 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
11790 // uniform values (as produced by the mask results of control flow intrinsics)
11791 // used outside of divergent blocks. The phi users need to also be treated as
11792 // always uniform.
11793 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
11794                       unsigned WaveSize) {
11795   // FIXME: We asssume we never cast the mask results of a control flow
11796   // intrinsic.
11797   // Early exit if the type won't be consistent as a compile time hack.
11798   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
11799   if (!IT || IT->getBitWidth() != WaveSize)
11800     return false;
11801 
11802   if (!isa<Instruction>(V))
11803     return false;
11804   if (!Visited.insert(V).second)
11805     return false;
11806   bool Result = false;
11807   for (auto U : V->users()) {
11808     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11809       if (V == U->getOperand(1)) {
11810         switch (Intrinsic->getIntrinsicID()) {
11811         default:
11812           Result = false;
11813           break;
11814         case Intrinsic::amdgcn_if_break:
11815         case Intrinsic::amdgcn_if:
11816         case Intrinsic::amdgcn_else:
11817           Result = true;
11818           break;
11819         }
11820       }
11821       if (V == U->getOperand(0)) {
11822         switch (Intrinsic->getIntrinsicID()) {
11823         default:
11824           Result = false;
11825           break;
11826         case Intrinsic::amdgcn_end_cf:
11827         case Intrinsic::amdgcn_loop:
11828           Result = true;
11829           break;
11830         }
11831       }
11832     } else {
11833       Result = hasCFUser(U, Visited, WaveSize);
11834     }
11835     if (Result)
11836       break;
11837   }
11838   return Result;
11839 }
11840 
11841 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11842                                                const Value *V) const {
11843   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11844     if (CI->isInlineAsm()) {
11845       // FIXME: This cannot give a correct answer. This should only trigger in
11846       // the case where inline asm returns mixed SGPR and VGPR results, used
11847       // outside the defining block. We don't have a specific result to
11848       // consider, so this assumes if any value is SGPR, the overall register
11849       // also needs to be SGPR.
11850       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11851       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11852           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
11853       for (auto &TC : TargetConstraints) {
11854         if (TC.Type == InlineAsm::isOutput) {
11855           ComputeConstraintToUse(TC, SDValue());
11856           unsigned AssignedReg;
11857           const TargetRegisterClass *RC;
11858           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11859               SIRI, TC.ConstraintCode, TC.ConstraintVT);
11860           if (RC) {
11861             MachineRegisterInfo &MRI = MF.getRegInfo();
11862             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11863               return true;
11864             else if (SIRI->isSGPRClass(RC))
11865               return true;
11866           }
11867         }
11868       }
11869     }
11870   }
11871   SmallPtrSet<const Value *, 16> Visited;
11872   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
11873 }
11874 
11875 std::pair<int, MVT>
11876 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
11877                                           Type *Ty) const {
11878   auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
11879   auto Size = DL.getTypeSizeInBits(Ty);
11880   // Maximum load or store can handle 8 dwords for scalar and 4 for
11881   // vector ALU. Let's assume anything above 8 dwords is expensive
11882   // even if legal.
11883   if (Size <= 256)
11884     return Cost;
11885 
11886   Cost.first = (Size + 255) / 256;
11887   return Cost;
11888 }
11889