1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/BinaryFormat/ELF.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/IntrinsicsAMDGPU.h" 35 #include "llvm/IR/IntrinsicsR600.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "si-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 static cl::opt<bool> DisableLoopAlignment( 46 "amdgpu-disable-loop-alignment", 47 cl::desc("Do not align and prefetch loops"), 48 cl::init(false)); 49 50 static cl::opt<bool> UseDivergentRegisterIndexing( 51 "amdgpu-use-divergent-register-indexing", 52 cl::Hidden, 53 cl::desc("Use indirect register addressing for divergent indexes"), 54 cl::init(false)); 55 56 static bool hasFP32Denormals(const MachineFunction &MF) { 57 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 58 return Info->getMode().allFP32Denormals(); 59 } 60 61 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 62 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 63 return Info->getMode().allFP64FP16Denormals(); 64 } 65 66 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 67 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 68 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 69 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 70 return AMDGPU::SGPR0 + Reg; 71 } 72 } 73 llvm_unreachable("Cannot allocate sgpr"); 74 } 75 76 SITargetLowering::SITargetLowering(const TargetMachine &TM, 77 const GCNSubtarget &STI) 78 : AMDGPUTargetLowering(TM, STI), 79 Subtarget(&STI) { 80 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 81 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 82 83 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 84 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 85 86 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 87 88 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 89 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 90 91 addRegisterClass(MVT::f64, V64RegClass); 92 addRegisterClass(MVT::v2f32, V64RegClass); 93 94 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 95 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 96 97 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 98 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 99 100 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 101 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 102 103 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 104 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 105 106 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 107 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 108 109 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 110 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 111 112 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 113 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 114 115 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 116 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 117 118 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 119 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 120 121 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 122 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 123 124 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 125 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 126 127 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 128 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 129 130 if (Subtarget->has16BitInsts()) { 131 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 132 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 133 134 // Unless there are also VOP3P operations, not operations are really legal. 135 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 136 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 137 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 138 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 139 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 140 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 141 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); 142 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); 143 } 144 145 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 146 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 147 148 computeRegisterProperties(Subtarget->getRegisterInfo()); 149 150 // The boolean content concept here is too inflexible. Compares only ever 151 // really produce a 1-bit result. Any copy/extend from these will turn into a 152 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 153 // it's what most targets use. 154 setBooleanContents(ZeroOrOneBooleanContent); 155 setBooleanVectorContents(ZeroOrOneBooleanContent); 156 157 // We need to custom lower vector stores from local memory 158 setOperationAction(ISD::LOAD, 159 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 160 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1, 161 MVT::v32i32}, 162 Custom); 163 164 setOperationAction(ISD::STORE, 165 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 166 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1, 167 MVT::v32i32}, 168 Custom); 169 170 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 171 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 172 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 173 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 174 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 175 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 177 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 178 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 179 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 180 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 181 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 182 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 183 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 184 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 185 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 186 187 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 188 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 189 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 190 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 191 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 192 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 193 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 194 195 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); 196 197 setOperationAction(ISD::SELECT, MVT::i1, Promote); 198 setOperationAction(ISD::SELECT, MVT::i64, Custom); 199 setOperationAction(ISD::SELECT, MVT::f64, Promote); 200 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 201 202 setOperationAction(ISD::SELECT_CC, 203 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); 204 205 setOperationAction(ISD::SETCC, MVT::i1, Promote); 206 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); 207 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 208 209 setOperationAction(ISD::TRUNCATE, 210 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 211 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32}, 212 Expand); 213 setOperationAction(ISD::FP_ROUND, 214 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, 215 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32}, 216 Expand); 217 218 setOperationAction(ISD::SIGN_EXTEND_INREG, 219 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, 220 MVT::v3i16, MVT::v4i16, MVT::Other}, 221 Custom); 222 223 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 224 setOperationAction(ISD::BR_CC, 225 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); 226 227 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); 228 229 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal); 230 231 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, 232 Expand); 233 234 #if 0 235 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal); 236 #endif 237 238 // We only support LOAD/STORE and vector manipulation ops for vectors 239 // with > 4 elements. 240 for (MVT VT : 241 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, 242 MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v3i64, MVT::v3f64, 243 MVT::v6i32, MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, 244 MVT::v8f64, MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16, 245 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32}) { 246 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 247 switch (Op) { 248 case ISD::LOAD: 249 case ISD::STORE: 250 case ISD::BUILD_VECTOR: 251 case ISD::BITCAST: 252 case ISD::EXTRACT_VECTOR_ELT: 253 case ISD::INSERT_VECTOR_ELT: 254 case ISD::EXTRACT_SUBVECTOR: 255 case ISD::SCALAR_TO_VECTOR: 256 break; 257 case ISD::INSERT_SUBVECTOR: 258 case ISD::CONCAT_VECTORS: 259 setOperationAction(Op, VT, Custom); 260 break; 261 default: 262 setOperationAction(Op, VT, Expand); 263 break; 264 } 265 } 266 } 267 268 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 269 270 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 271 // is expanded to avoid having two separate loops in case the index is a VGPR. 272 273 // Most operations are naturally 32-bit vector operations. We only support 274 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 275 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 276 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 277 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 278 279 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 280 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 281 282 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 283 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 284 285 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 286 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 287 } 288 289 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 290 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 291 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 292 293 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 294 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 295 296 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 297 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 298 299 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 300 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 301 } 302 303 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 304 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 305 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 306 307 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 308 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 309 310 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 311 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 312 313 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 314 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 315 } 316 317 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 318 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 319 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 320 321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 322 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 323 324 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 325 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 326 327 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 328 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 329 } 330 331 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 332 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 333 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 334 335 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 336 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 337 338 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 339 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 340 341 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 342 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 343 } 344 345 setOperationAction(ISD::VECTOR_SHUFFLE, 346 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, 347 Expand); 348 349 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); 350 351 // Avoid stack access for these. 352 // TODO: Generalize to more vector types. 353 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, 354 {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 355 MVT::v4i16, MVT::v4f16}, 356 Custom); 357 358 // Deal with vec3 vector operations when widened to vec4. 359 setOperationAction(ISD::INSERT_SUBVECTOR, 360 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); 361 362 // Deal with vec5/6/7 vector operations when widened to vec8. 363 setOperationAction(ISD::INSERT_SUBVECTOR, 364 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, 365 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32}, 366 Custom); 367 368 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 369 // and output demarshalling 370 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); 371 372 // We can't return success/failure, only the old value, 373 // let LLVM add the comparison 374 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, 375 Expand); 376 377 if (Subtarget->hasFlatAddressSpace()) 378 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); 379 380 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); 381 382 // FIXME: This should be narrowed to i32, but that only happens if i64 is 383 // illegal. 384 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 385 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); 386 387 // On SI this is s_memtime and s_memrealtime on VI. 388 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 389 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); 390 391 if (Subtarget->has16BitInsts()) { 392 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); 393 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); 394 } 395 396 if (Subtarget->hasMadMacF32Insts()) 397 setOperationAction(ISD::FMAD, MVT::f32, Legal); 398 399 if (!Subtarget->hasBFI()) 400 // fcopysign can be done in a single instruction with BFI. 401 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 402 403 if (!Subtarget->hasBCNT(32)) 404 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 405 406 if (!Subtarget->hasBCNT(64)) 407 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 408 409 if (Subtarget->hasFFBH()) 410 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 411 412 if (Subtarget->hasFFBL()) 413 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 414 415 // We only really have 32-bit BFE instructions (and 16-bit on VI). 416 // 417 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 418 // effort to match them now. We want this to be false for i64 cases when the 419 // extraction isn't restricted to the upper or lower half. Ideally we would 420 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 421 // span the midpoint are probably relatively rare, so don't worry about them 422 // for now. 423 if (Subtarget->hasBFE()) 424 setHasExtractBitsInsn(true); 425 426 // Clamp modifier on add/sub 427 if (Subtarget->hasIntClamp()) 428 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); 429 430 if (Subtarget->hasAddNoCarry()) 431 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, 432 Legal); 433 434 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, 435 Custom); 436 437 // These are really only legal for ieee_mode functions. We should be avoiding 438 // them for functions that don't have ieee_mode enabled, so just say they are 439 // legal. 440 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 441 {MVT::f32, MVT::f64}, Legal); 442 443 if (Subtarget->haveRoundOpsF64()) 444 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); 445 else 446 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, 447 MVT::f64, Custom); 448 449 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 450 451 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); 452 setOperationAction(ISD::FDIV, MVT::f64, Custom); 453 454 if (Subtarget->has16BitInsts()) { 455 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, 456 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, 457 MVT::i16, Legal); 458 459 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 460 461 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, 462 MVT::i16, Expand); 463 464 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, 465 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, 466 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 467 ISD::CTPOP}, 468 MVT::i16, Promote); 469 470 setOperationAction(ISD::LOAD, MVT::i16, Custom); 471 472 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 473 474 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 475 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 476 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 477 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 478 479 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); 480 481 // F16 - Constant Actions. 482 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 483 484 // F16 - Load/Store Actions. 485 setOperationAction(ISD::LOAD, MVT::f16, Promote); 486 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 487 setOperationAction(ISD::STORE, MVT::f16, Promote); 488 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 489 490 // F16 - VOP1 Actions. 491 setOperationAction( 492 {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, 493 MVT::f16, Custom); 494 495 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 496 497 setOperationAction( 498 {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, 499 MVT::f16, Promote); 500 501 // F16 - VOP2 Actions. 502 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); 503 504 setOperationAction(ISD::FDIV, MVT::f16, Custom); 505 506 // F16 - VOP3 Actions. 507 setOperationAction(ISD::FMA, MVT::f16, Legal); 508 if (STI.hasMadF16()) 509 setOperationAction(ISD::FMAD, MVT::f16, Legal); 510 511 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, 512 MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 513 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 514 switch (Op) { 515 case ISD::LOAD: 516 case ISD::STORE: 517 case ISD::BUILD_VECTOR: 518 case ISD::BITCAST: 519 case ISD::EXTRACT_VECTOR_ELT: 520 case ISD::INSERT_VECTOR_ELT: 521 case ISD::INSERT_SUBVECTOR: 522 case ISD::EXTRACT_SUBVECTOR: 523 case ISD::SCALAR_TO_VECTOR: 524 break; 525 case ISD::CONCAT_VECTORS: 526 setOperationAction(Op, VT, Custom); 527 break; 528 default: 529 setOperationAction(Op, VT, Expand); 530 break; 531 } 532 } 533 } 534 535 // v_perm_b32 can handle either of these. 536 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); 537 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 538 539 // XXX - Do these do anything? Vector constants turn into build_vector. 540 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); 541 542 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); 543 544 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 545 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 546 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 547 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 548 549 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 550 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 551 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 552 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 553 554 setOperationAction(ISD::AND, MVT::v2i16, Promote); 555 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 556 setOperationAction(ISD::OR, MVT::v2i16, Promote); 557 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 558 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 559 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 560 561 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 562 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 563 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 564 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 565 566 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 567 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 568 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 569 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 570 571 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 572 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 573 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 574 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 575 576 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 577 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 578 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 579 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 580 581 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 582 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 583 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 584 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 585 586 setOperationAction(ISD::LOAD, MVT::v16i16, Promote); 587 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); 588 setOperationAction(ISD::LOAD, MVT::v16f16, Promote); 589 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); 590 591 setOperationAction(ISD::STORE, MVT::v16i16, Promote); 592 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); 593 setOperationAction(ISD::STORE, MVT::v16f16, Promote); 594 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); 595 596 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 597 MVT::v2i32, Expand); 598 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 599 600 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 601 MVT::v4i32, Expand); 602 603 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 604 MVT::v8i32, Expand); 605 606 if (!Subtarget->hasVOP3PInsts()) 607 setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); 608 609 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 610 // This isn't really legal, but this avoids the legalizer unrolling it (and 611 // allows matching fneg (fabs x) patterns) 612 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 613 614 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); 615 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); 616 617 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 618 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); 619 620 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, 621 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); 622 623 for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 624 setOperationAction( 625 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, 626 Vec16, Custom); 627 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 628 } 629 } 630 631 if (Subtarget->hasVOP3PInsts()) { 632 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, 633 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 634 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, 635 MVT::v2i16, Legal); 636 637 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, 638 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, 639 MVT::v2f16, Legal); 640 641 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, 642 Custom); 643 644 setOperationAction(ISD::VECTOR_SHUFFLE, 645 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, 646 MVT::v16f16, MVT::v16i16}, 647 Custom); 648 649 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) 650 // Split vector operations. 651 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, 652 ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, 653 ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, 654 ISD::SSUBSAT}, 655 VT, Custom); 656 657 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) 658 // Split vector operations. 659 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, 660 VT, Custom); 661 662 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, 663 Custom); 664 665 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 666 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); 667 668 if (Subtarget->hasPackedFP32Ops()) { 669 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, 670 MVT::v2f32, Legal); 671 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, 672 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, 673 Custom); 674 } 675 } 676 677 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); 678 679 if (Subtarget->has16BitInsts()) { 680 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 681 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 682 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 683 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 684 } else { 685 // Legalization hack. 686 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); 687 688 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); 689 } 690 691 setOperationAction(ISD::SELECT, 692 {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 693 MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, 694 Custom); 695 696 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); 697 698 if (Subtarget->hasMad64_32()) 699 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); 700 701 setOperationAction(ISD::INTRINSIC_WO_CHAIN, 702 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, 703 MVT::v2i16, MVT::v2f16}, 704 Custom); 705 706 setOperationAction(ISD::INTRINSIC_W_CHAIN, 707 {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, 708 MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, 709 MVT::i16, MVT::i8}, 710 Custom); 711 712 setOperationAction(ISD::INTRINSIC_VOID, 713 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, 714 MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, 715 MVT::i8}, 716 Custom); 717 718 setTargetDAGCombine({ISD::ADD, 719 ISD::ADDCARRY, 720 ISD::SUB, 721 ISD::SUBCARRY, 722 ISD::FADD, 723 ISD::FSUB, 724 ISD::FMINNUM, 725 ISD::FMAXNUM, 726 ISD::FMINNUM_IEEE, 727 ISD::FMAXNUM_IEEE, 728 ISD::FMA, 729 ISD::SMIN, 730 ISD::SMAX, 731 ISD::UMIN, 732 ISD::UMAX, 733 ISD::SETCC, 734 ISD::AND, 735 ISD::OR, 736 ISD::XOR, 737 ISD::SINT_TO_FP, 738 ISD::UINT_TO_FP, 739 ISD::FCANONICALIZE, 740 ISD::SCALAR_TO_VECTOR, 741 ISD::ZERO_EXTEND, 742 ISD::SIGN_EXTEND_INREG, 743 ISD::EXTRACT_VECTOR_ELT, 744 ISD::INSERT_VECTOR_ELT}); 745 746 // All memory operations. Some folding on the pointer operand is done to help 747 // matching the constant offsets in the addressing modes. 748 setTargetDAGCombine({ISD::LOAD, 749 ISD::STORE, 750 ISD::ATOMIC_LOAD, 751 ISD::ATOMIC_STORE, 752 ISD::ATOMIC_CMP_SWAP, 753 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 754 ISD::ATOMIC_SWAP, 755 ISD::ATOMIC_LOAD_ADD, 756 ISD::ATOMIC_LOAD_SUB, 757 ISD::ATOMIC_LOAD_AND, 758 ISD::ATOMIC_LOAD_OR, 759 ISD::ATOMIC_LOAD_XOR, 760 ISD::ATOMIC_LOAD_NAND, 761 ISD::ATOMIC_LOAD_MIN, 762 ISD::ATOMIC_LOAD_MAX, 763 ISD::ATOMIC_LOAD_UMIN, 764 ISD::ATOMIC_LOAD_UMAX, 765 ISD::ATOMIC_LOAD_FADD, 766 ISD::INTRINSIC_VOID, 767 ISD::INTRINSIC_W_CHAIN}); 768 769 // FIXME: In other contexts we pretend this is a per-function property. 770 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 771 772 setSchedulingPreference(Sched::RegPressure); 773 } 774 775 const GCNSubtarget *SITargetLowering::getSubtarget() const { 776 return Subtarget; 777 } 778 779 //===----------------------------------------------------------------------===// 780 // TargetLowering queries 781 //===----------------------------------------------------------------------===// 782 783 // v_mad_mix* support a conversion from f16 to f32. 784 // 785 // There is only one special case when denormals are enabled we don't currently, 786 // where this is OK to use. 787 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 788 EVT DestVT, EVT SrcVT) const { 789 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 790 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 791 DestVT.getScalarType() == MVT::f32 && 792 SrcVT.getScalarType() == MVT::f16 && 793 // TODO: This probably only requires no input flushing? 794 !hasFP32Denormals(DAG.getMachineFunction()); 795 } 796 797 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 798 LLT DestTy, LLT SrcTy) const { 799 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 800 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 801 DestTy.getScalarSizeInBits() == 32 && 802 SrcTy.getScalarSizeInBits() == 16 && 803 // TODO: This probably only requires no input flushing? 804 !hasFP32Denormals(*MI.getMF()); 805 } 806 807 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 808 // SI has some legal vector types, but no legal vector operations. Say no 809 // shuffles are legal in order to prefer scalarizing some vector operations. 810 return false; 811 } 812 813 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 814 CallingConv::ID CC, 815 EVT VT) const { 816 if (CC == CallingConv::AMDGPU_KERNEL) 817 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 818 819 if (VT.isVector()) { 820 EVT ScalarVT = VT.getScalarType(); 821 unsigned Size = ScalarVT.getSizeInBits(); 822 if (Size == 16) { 823 if (Subtarget->has16BitInsts()) 824 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 825 return VT.isInteger() ? MVT::i32 : MVT::f32; 826 } 827 828 if (Size < 16) 829 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 830 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 831 } 832 833 if (VT.getSizeInBits() > 32) 834 return MVT::i32; 835 836 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 837 } 838 839 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 840 CallingConv::ID CC, 841 EVT VT) const { 842 if (CC == CallingConv::AMDGPU_KERNEL) 843 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 844 845 if (VT.isVector()) { 846 unsigned NumElts = VT.getVectorNumElements(); 847 EVT ScalarVT = VT.getScalarType(); 848 unsigned Size = ScalarVT.getSizeInBits(); 849 850 // FIXME: Should probably promote 8-bit vectors to i16. 851 if (Size == 16 && Subtarget->has16BitInsts()) 852 return (NumElts + 1) / 2; 853 854 if (Size <= 32) 855 return NumElts; 856 857 if (Size > 32) 858 return NumElts * ((Size + 31) / 32); 859 } else if (VT.getSizeInBits() > 32) 860 return (VT.getSizeInBits() + 31) / 32; 861 862 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 863 } 864 865 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 866 LLVMContext &Context, CallingConv::ID CC, 867 EVT VT, EVT &IntermediateVT, 868 unsigned &NumIntermediates, MVT &RegisterVT) const { 869 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 870 unsigned NumElts = VT.getVectorNumElements(); 871 EVT ScalarVT = VT.getScalarType(); 872 unsigned Size = ScalarVT.getSizeInBits(); 873 // FIXME: We should fix the ABI to be the same on targets without 16-bit 874 // support, but unless we can properly handle 3-vectors, it will be still be 875 // inconsistent. 876 if (Size == 16 && Subtarget->has16BitInsts()) { 877 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 878 IntermediateVT = RegisterVT; 879 NumIntermediates = (NumElts + 1) / 2; 880 return NumIntermediates; 881 } 882 883 if (Size == 32) { 884 RegisterVT = ScalarVT.getSimpleVT(); 885 IntermediateVT = RegisterVT; 886 NumIntermediates = NumElts; 887 return NumIntermediates; 888 } 889 890 if (Size < 16 && Subtarget->has16BitInsts()) { 891 // FIXME: Should probably form v2i16 pieces 892 RegisterVT = MVT::i16; 893 IntermediateVT = ScalarVT; 894 NumIntermediates = NumElts; 895 return NumIntermediates; 896 } 897 898 899 if (Size != 16 && Size <= 32) { 900 RegisterVT = MVT::i32; 901 IntermediateVT = ScalarVT; 902 NumIntermediates = NumElts; 903 return NumIntermediates; 904 } 905 906 if (Size > 32) { 907 RegisterVT = MVT::i32; 908 IntermediateVT = RegisterVT; 909 NumIntermediates = NumElts * ((Size + 31) / 32); 910 return NumIntermediates; 911 } 912 } 913 914 return TargetLowering::getVectorTypeBreakdownForCallingConv( 915 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 916 } 917 918 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 919 assert(DMaskLanes != 0); 920 921 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 922 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 923 return EVT::getVectorVT(Ty->getContext(), 924 EVT::getEVT(VT->getElementType()), 925 NumElts); 926 } 927 928 return EVT::getEVT(Ty); 929 } 930 931 // Peek through TFE struct returns to only use the data size. 932 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 933 auto *ST = dyn_cast<StructType>(Ty); 934 if (!ST) 935 return memVTFromImageData(Ty, DMaskLanes); 936 937 // Some intrinsics return an aggregate type - special case to work out the 938 // correct memVT. 939 // 940 // Only limited forms of aggregate type currently expected. 941 if (ST->getNumContainedTypes() != 2 || 942 !ST->getContainedType(1)->isIntegerTy(32)) 943 return EVT(); 944 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 945 } 946 947 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 948 const CallInst &CI, 949 MachineFunction &MF, 950 unsigned IntrID) const { 951 Info.flags = MachineMemOperand::MONone; 952 if (CI.hasMetadata(LLVMContext::MD_invariant_load)) 953 Info.flags |= MachineMemOperand::MOInvariant; 954 955 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 956 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 957 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 958 (Intrinsic::ID)IntrID); 959 if (Attr.hasFnAttr(Attribute::ReadNone)) 960 return false; 961 962 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 963 964 const GCNTargetMachine &TM = 965 static_cast<const GCNTargetMachine &>(getTargetMachine()); 966 967 if (RsrcIntr->IsImage) { 968 Info.ptrVal = MFI->getImagePSV(TM); 969 Info.align.reset(); 970 } else { 971 Info.ptrVal = MFI->getBufferPSV(TM); 972 } 973 974 Info.flags |= MachineMemOperand::MODereferenceable; 975 if (Attr.hasFnAttr(Attribute::ReadOnly)) { 976 unsigned DMaskLanes = 4; 977 978 if (RsrcIntr->IsImage) { 979 const AMDGPU::ImageDimIntrinsicInfo *Intr 980 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 981 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 982 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 983 984 if (!BaseOpcode->Gather4) { 985 // If this isn't a gather, we may have excess loaded elements in the 986 // IR type. Check the dmask for the real number of elements loaded. 987 unsigned DMask 988 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 989 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 990 } 991 992 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 993 } else 994 Info.memVT = EVT::getEVT(CI.getType()); 995 996 // FIXME: What does alignment mean for an image? 997 Info.opc = ISD::INTRINSIC_W_CHAIN; 998 Info.flags |= MachineMemOperand::MOLoad; 999 } else if (Attr.hasFnAttr(Attribute::WriteOnly)) { 1000 Info.opc = ISD::INTRINSIC_VOID; 1001 1002 Type *DataTy = CI.getArgOperand(0)->getType(); 1003 if (RsrcIntr->IsImage) { 1004 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1005 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1006 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1007 } else 1008 Info.memVT = EVT::getEVT(DataTy); 1009 1010 Info.flags |= MachineMemOperand::MOStore; 1011 } else { 1012 // Atomic 1013 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1014 ISD::INTRINSIC_W_CHAIN; 1015 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1016 Info.flags |= MachineMemOperand::MOLoad | 1017 MachineMemOperand::MOStore | 1018 MachineMemOperand::MODereferenceable; 1019 1020 // XXX - Should this be volatile without known ordering? 1021 Info.flags |= MachineMemOperand::MOVolatile; 1022 1023 switch (IntrID) { 1024 default: 1025 break; 1026 case Intrinsic::amdgcn_raw_buffer_load_lds: 1027 case Intrinsic::amdgcn_struct_buffer_load_lds: { 1028 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1029 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1030 return true; 1031 } 1032 } 1033 } 1034 return true; 1035 } 1036 1037 switch (IntrID) { 1038 case Intrinsic::amdgcn_atomic_inc: 1039 case Intrinsic::amdgcn_atomic_dec: 1040 case Intrinsic::amdgcn_ds_ordered_add: 1041 case Intrinsic::amdgcn_ds_ordered_swap: 1042 case Intrinsic::amdgcn_ds_fadd: 1043 case Intrinsic::amdgcn_ds_fmin: 1044 case Intrinsic::amdgcn_ds_fmax: { 1045 Info.opc = ISD::INTRINSIC_W_CHAIN; 1046 Info.memVT = MVT::getVT(CI.getType()); 1047 Info.ptrVal = CI.getOperand(0); 1048 Info.align.reset(); 1049 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1050 1051 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1052 if (!Vol->isZero()) 1053 Info.flags |= MachineMemOperand::MOVolatile; 1054 1055 return true; 1056 } 1057 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1058 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1059 1060 const GCNTargetMachine &TM = 1061 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1062 1063 Info.opc = ISD::INTRINSIC_W_CHAIN; 1064 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1065 Info.ptrVal = MFI->getBufferPSV(TM); 1066 Info.align.reset(); 1067 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1068 1069 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1070 if (!Vol || !Vol->isZero()) 1071 Info.flags |= MachineMemOperand::MOVolatile; 1072 1073 return true; 1074 } 1075 case Intrinsic::amdgcn_ds_append: 1076 case Intrinsic::amdgcn_ds_consume: { 1077 Info.opc = ISD::INTRINSIC_W_CHAIN; 1078 Info.memVT = MVT::getVT(CI.getType()); 1079 Info.ptrVal = CI.getOperand(0); 1080 Info.align.reset(); 1081 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1082 1083 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1084 if (!Vol->isZero()) 1085 Info.flags |= MachineMemOperand::MOVolatile; 1086 1087 return true; 1088 } 1089 case Intrinsic::amdgcn_global_atomic_csub: { 1090 Info.opc = ISD::INTRINSIC_W_CHAIN; 1091 Info.memVT = MVT::getVT(CI.getType()); 1092 Info.ptrVal = CI.getOperand(0); 1093 Info.align.reset(); 1094 Info.flags |= MachineMemOperand::MOLoad | 1095 MachineMemOperand::MOStore | 1096 MachineMemOperand::MOVolatile; 1097 return true; 1098 } 1099 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1100 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1101 Info.opc = ISD::INTRINSIC_W_CHAIN; 1102 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1103 1104 const GCNTargetMachine &TM = 1105 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1106 1107 Info.ptrVal = MFI->getImagePSV(TM); 1108 Info.align.reset(); 1109 Info.flags |= MachineMemOperand::MOLoad | 1110 MachineMemOperand::MODereferenceable; 1111 return true; 1112 } 1113 case Intrinsic::amdgcn_global_atomic_fadd: 1114 case Intrinsic::amdgcn_global_atomic_fmin: 1115 case Intrinsic::amdgcn_global_atomic_fmax: 1116 case Intrinsic::amdgcn_flat_atomic_fadd: 1117 case Intrinsic::amdgcn_flat_atomic_fmin: 1118 case Intrinsic::amdgcn_flat_atomic_fmax: 1119 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1120 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { 1121 Info.opc = ISD::INTRINSIC_W_CHAIN; 1122 Info.memVT = MVT::getVT(CI.getType()); 1123 Info.ptrVal = CI.getOperand(0); 1124 Info.align.reset(); 1125 Info.flags |= MachineMemOperand::MOLoad | 1126 MachineMemOperand::MOStore | 1127 MachineMemOperand::MODereferenceable | 1128 MachineMemOperand::MOVolatile; 1129 return true; 1130 } 1131 case Intrinsic::amdgcn_ds_gws_init: 1132 case Intrinsic::amdgcn_ds_gws_barrier: 1133 case Intrinsic::amdgcn_ds_gws_sema_v: 1134 case Intrinsic::amdgcn_ds_gws_sema_br: 1135 case Intrinsic::amdgcn_ds_gws_sema_p: 1136 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1137 Info.opc = ISD::INTRINSIC_VOID; 1138 1139 const GCNTargetMachine &TM = 1140 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1141 1142 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1143 Info.ptrVal = MFI->getGWSPSV(TM); 1144 1145 // This is an abstract access, but we need to specify a type and size. 1146 Info.memVT = MVT::i32; 1147 Info.size = 4; 1148 Info.align = Align(4); 1149 1150 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1151 Info.flags |= MachineMemOperand::MOLoad; 1152 else 1153 Info.flags |= MachineMemOperand::MOStore; 1154 return true; 1155 } 1156 case Intrinsic::amdgcn_global_load_lds: { 1157 Info.opc = ISD::INTRINSIC_VOID; 1158 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1159 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1160 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1161 MachineMemOperand::MOVolatile; 1162 return true; 1163 } 1164 default: 1165 return false; 1166 } 1167 } 1168 1169 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1170 SmallVectorImpl<Value*> &Ops, 1171 Type *&AccessTy) const { 1172 switch (II->getIntrinsicID()) { 1173 case Intrinsic::amdgcn_atomic_inc: 1174 case Intrinsic::amdgcn_atomic_dec: 1175 case Intrinsic::amdgcn_ds_ordered_add: 1176 case Intrinsic::amdgcn_ds_ordered_swap: 1177 case Intrinsic::amdgcn_ds_append: 1178 case Intrinsic::amdgcn_ds_consume: 1179 case Intrinsic::amdgcn_ds_fadd: 1180 case Intrinsic::amdgcn_ds_fmin: 1181 case Intrinsic::amdgcn_ds_fmax: 1182 case Intrinsic::amdgcn_global_atomic_fadd: 1183 case Intrinsic::amdgcn_flat_atomic_fadd: 1184 case Intrinsic::amdgcn_flat_atomic_fmin: 1185 case Intrinsic::amdgcn_flat_atomic_fmax: 1186 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1187 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: 1188 case Intrinsic::amdgcn_global_atomic_csub: { 1189 Value *Ptr = II->getArgOperand(0); 1190 AccessTy = II->getType(); 1191 Ops.push_back(Ptr); 1192 return true; 1193 } 1194 default: 1195 return false; 1196 } 1197 } 1198 1199 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1200 if (!Subtarget->hasFlatInstOffsets()) { 1201 // Flat instructions do not have offsets, and only have the register 1202 // address. 1203 return AM.BaseOffs == 0 && AM.Scale == 0; 1204 } 1205 1206 return AM.Scale == 0 && 1207 (AM.BaseOffs == 0 || 1208 Subtarget->getInstrInfo()->isLegalFLATOffset( 1209 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); 1210 } 1211 1212 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1213 if (Subtarget->hasFlatGlobalInsts()) 1214 return AM.Scale == 0 && 1215 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1216 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1217 SIInstrFlags::FlatGlobal)); 1218 1219 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1220 // Assume the we will use FLAT for all global memory accesses 1221 // on VI. 1222 // FIXME: This assumption is currently wrong. On VI we still use 1223 // MUBUF instructions for the r + i addressing mode. As currently 1224 // implemented, the MUBUF instructions only work on buffer < 4GB. 1225 // It may be possible to support > 4GB buffers with MUBUF instructions, 1226 // by setting the stride value in the resource descriptor which would 1227 // increase the size limit to (stride * 4GB). However, this is risky, 1228 // because it has never been validated. 1229 return isLegalFlatAddressingMode(AM); 1230 } 1231 1232 return isLegalMUBUFAddressingMode(AM); 1233 } 1234 1235 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1236 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1237 // additionally can do r + r + i with addr64. 32-bit has more addressing 1238 // mode options. Depending on the resource constant, it can also do 1239 // (i64 r0) + (i32 r1) * (i14 i). 1240 // 1241 // Private arrays end up using a scratch buffer most of the time, so also 1242 // assume those use MUBUF instructions. Scratch loads / stores are currently 1243 // implemented as mubuf instructions with offen bit set, so slightly 1244 // different than the normal addr64. 1245 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1246 return false; 1247 1248 // FIXME: Since we can split immediate into soffset and immediate offset, 1249 // would it make sense to allow any immediate? 1250 1251 switch (AM.Scale) { 1252 case 0: // r + i or just i, depending on HasBaseReg. 1253 return true; 1254 case 1: 1255 return true; // We have r + r or r + i. 1256 case 2: 1257 if (AM.HasBaseReg) { 1258 // Reject 2 * r + r. 1259 return false; 1260 } 1261 1262 // Allow 2 * r as r + r 1263 // Or 2 * r + i is allowed as r + r + i. 1264 return true; 1265 default: // Don't allow n * r 1266 return false; 1267 } 1268 } 1269 1270 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1271 const AddrMode &AM, Type *Ty, 1272 unsigned AS, Instruction *I) const { 1273 // No global is ever allowed as a base. 1274 if (AM.BaseGV) 1275 return false; 1276 1277 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1278 return isLegalGlobalAddressingMode(AM); 1279 1280 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1281 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1282 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1283 // If the offset isn't a multiple of 4, it probably isn't going to be 1284 // correctly aligned. 1285 // FIXME: Can we get the real alignment here? 1286 if (AM.BaseOffs % 4 != 0) 1287 return isLegalMUBUFAddressingMode(AM); 1288 1289 // There are no SMRD extloads, so if we have to do a small type access we 1290 // will use a MUBUF load. 1291 // FIXME?: We also need to do this if unaligned, but we don't know the 1292 // alignment here. 1293 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1294 return isLegalGlobalAddressingMode(AM); 1295 1296 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1297 // SMRD instructions have an 8-bit, dword offset on SI. 1298 if (!isUInt<8>(AM.BaseOffs / 4)) 1299 return false; 1300 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1301 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1302 // in 8-bits, it can use a smaller encoding. 1303 if (!isUInt<32>(AM.BaseOffs / 4)) 1304 return false; 1305 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1306 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1307 if (!isUInt<20>(AM.BaseOffs)) 1308 return false; 1309 } else 1310 llvm_unreachable("unhandled generation"); 1311 1312 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1313 return true; 1314 1315 if (AM.Scale == 1 && AM.HasBaseReg) 1316 return true; 1317 1318 return false; 1319 1320 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1321 return isLegalMUBUFAddressingMode(AM); 1322 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1323 AS == AMDGPUAS::REGION_ADDRESS) { 1324 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1325 // field. 1326 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1327 // an 8-bit dword offset but we don't know the alignment here. 1328 if (!isUInt<16>(AM.BaseOffs)) 1329 return false; 1330 1331 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1332 return true; 1333 1334 if (AM.Scale == 1 && AM.HasBaseReg) 1335 return true; 1336 1337 return false; 1338 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1339 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1340 // For an unknown address space, this usually means that this is for some 1341 // reason being used for pure arithmetic, and not based on some addressing 1342 // computation. We don't have instructions that compute pointers with any 1343 // addressing modes, so treat them as having no offset like flat 1344 // instructions. 1345 return isLegalFlatAddressingMode(AM); 1346 } 1347 1348 // Assume a user alias of global for unknown address spaces. 1349 return isLegalGlobalAddressingMode(AM); 1350 } 1351 1352 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1353 const MachineFunction &MF) const { 1354 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1355 return (MemVT.getSizeInBits() <= 4 * 32); 1356 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1357 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1358 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1359 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1360 return (MemVT.getSizeInBits() <= 2 * 32); 1361 } 1362 return true; 1363 } 1364 1365 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1366 unsigned Size, unsigned AddrSpace, Align Alignment, 1367 MachineMemOperand::Flags Flags, bool *IsFast) const { 1368 if (IsFast) 1369 *IsFast = false; 1370 1371 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1372 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1373 // Check if alignment requirements for ds_read/write instructions are 1374 // disabled. 1375 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) 1376 return false; 1377 1378 Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. 1379 if (Subtarget->hasLDSMisalignedBug() && Size > 32 && 1380 Alignment < RequiredAlignment) 1381 return false; 1382 1383 // Either, the alignment requirements are "enabled", or there is an 1384 // unaligned LDS access related hardware bug though alignment requirements 1385 // are "disabled". In either case, we need to check for proper alignment 1386 // requirements. 1387 // 1388 switch (Size) { 1389 case 64: 1390 // SI has a hardware bug in the LDS / GDS bounds checking: if the base 1391 // address is negative, then the instruction is incorrectly treated as 1392 // out-of-bounds even if base + offsets is in bounds. Split vectorized 1393 // loads here to avoid emitting ds_read2_b32. We may re-combine the 1394 // load later in the SILoadStoreOptimizer. 1395 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) 1396 return false; 1397 1398 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1399 // can do a 4 byte aligned, 8 byte access in a single operation using 1400 // ds_read2/write2_b32 with adjacent offsets. 1401 RequiredAlignment = Align(4); 1402 1403 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1404 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ 1405 // ds_write2_b32 depending on the alignment. In either case with either 1406 // alignment there is no faster way of doing this. 1407 if (IsFast) 1408 *IsFast = true; 1409 return true; 1410 } 1411 1412 break; 1413 case 96: 1414 if (!Subtarget->hasDS96AndDS128()) 1415 return false; 1416 1417 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1418 // gfx8 and older. 1419 1420 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1421 // Naturally aligned access is fastest. However, also report it is Fast 1422 // if memory is aligned less than DWORD. A narrow load or store will be 1423 // be equally slow as a single ds_read_b96/ds_write_b96, but there will 1424 // be more of them, so overall we will pay less penalty issuing a single 1425 // instruction. 1426 if (IsFast) 1427 *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4); 1428 return true; 1429 } 1430 1431 break; 1432 case 128: 1433 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) 1434 return false; 1435 1436 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1437 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1438 // single operation using ds_read2/write2_b64. 1439 RequiredAlignment = Align(8); 1440 1441 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1442 // Naturally aligned access is fastest. However, also report it is Fast 1443 // if memory is aligned less than DWORD. A narrow load or store will be 1444 // be equally slow as a single ds_read_b128/ds_write_b128, but there 1445 // will be more of them, so overall we will pay less penalty issuing a 1446 // single instruction. 1447 if (IsFast) 1448 *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4); 1449 return true; 1450 } 1451 1452 break; 1453 default: 1454 if (Size > 32) 1455 return false; 1456 1457 break; 1458 } 1459 1460 if (IsFast) 1461 *IsFast = Alignment >= RequiredAlignment; 1462 1463 return Alignment >= RequiredAlignment || 1464 Subtarget->hasUnalignedDSAccessEnabled(); 1465 } 1466 1467 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1468 bool AlignedBy4 = Alignment >= Align(4); 1469 if (IsFast) 1470 *IsFast = AlignedBy4; 1471 1472 return AlignedBy4 || 1473 Subtarget->enableFlatScratch() || 1474 Subtarget->hasUnalignedScratchAccess(); 1475 } 1476 1477 // FIXME: We have to be conservative here and assume that flat operations 1478 // will access scratch. If we had access to the IR function, then we 1479 // could determine if any private memory was used in the function. 1480 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1481 !Subtarget->hasUnalignedScratchAccess()) { 1482 bool AlignedBy4 = Alignment >= Align(4); 1483 if (IsFast) 1484 *IsFast = AlignedBy4; 1485 1486 return AlignedBy4; 1487 } 1488 1489 if (Subtarget->hasUnalignedBufferAccessEnabled()) { 1490 // If we have a uniform constant load, it still requires using a slow 1491 // buffer instruction if unaligned. 1492 if (IsFast) { 1493 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1494 // 2-byte alignment is worse than 1 unless doing a 2-byte access. 1495 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1496 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1497 Alignment >= Align(4) : Alignment != Align(2); 1498 } 1499 1500 return true; 1501 } 1502 1503 // Smaller than dword value must be aligned. 1504 if (Size < 32) 1505 return false; 1506 1507 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1508 // byte-address are ignored, thus forcing Dword alignment. 1509 // This applies to private, global, and constant memory. 1510 if (IsFast) 1511 *IsFast = true; 1512 1513 return Size >= 32 && Alignment >= Align(4); 1514 } 1515 1516 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1517 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1518 bool *IsFast) const { 1519 bool Allow = allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1520 Alignment, Flags, IsFast); 1521 1522 if (Allow && IsFast && Subtarget->hasUnalignedDSAccessEnabled() && 1523 (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1524 AddrSpace == AMDGPUAS::REGION_ADDRESS)) { 1525 // Lie it is fast if +unaligned-access-mode is passed so that DS accesses 1526 // get vectorized. We could use ds_read2_b*/ds_write2_b* instructions on a 1527 // misaligned data which is faster than a pair of ds_read_b*/ds_write_b* 1528 // which would be equally misaligned. 1529 // This is only used by the common passes, selection always calls the 1530 // allowsMisalignedMemoryAccessesImpl version. 1531 *IsFast = true; 1532 } 1533 1534 return Allow; 1535 } 1536 1537 EVT SITargetLowering::getOptimalMemOpType( 1538 const MemOp &Op, const AttributeList &FuncAttributes) const { 1539 // FIXME: Should account for address space here. 1540 1541 // The default fallback uses the private pointer size as a guess for a type to 1542 // use. Make sure we switch these to 64-bit accesses. 1543 1544 if (Op.size() >= 16 && 1545 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1546 return MVT::v4i32; 1547 1548 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1549 return MVT::v2i32; 1550 1551 // Use the default. 1552 return MVT::Other; 1553 } 1554 1555 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1556 const MemSDNode *MemNode = cast<MemSDNode>(N); 1557 return MemNode->getMemOperand()->getFlags() & MONoClobber; 1558 } 1559 1560 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1561 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1562 AS == AMDGPUAS::PRIVATE_ADDRESS; 1563 } 1564 1565 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1566 unsigned DestAS) const { 1567 // Flat -> private/local is a simple truncate. 1568 // Flat -> global is no-op 1569 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1570 return true; 1571 1572 const GCNTargetMachine &TM = 1573 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1574 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1575 } 1576 1577 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1578 const MemSDNode *MemNode = cast<MemSDNode>(N); 1579 1580 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1581 } 1582 1583 TargetLoweringBase::LegalizeTypeAction 1584 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1585 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1586 VT.getScalarType().bitsLE(MVT::i16)) 1587 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1588 return TargetLoweringBase::getPreferredVectorAction(VT); 1589 } 1590 1591 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1592 Type *Ty) const { 1593 // FIXME: Could be smarter if called for vector constants. 1594 return true; 1595 } 1596 1597 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 1598 unsigned Index) const { 1599 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 1600 return false; 1601 1602 // TODO: Add more cases that are cheap. 1603 return Index == 0; 1604 } 1605 1606 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1607 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1608 switch (Op) { 1609 case ISD::LOAD: 1610 case ISD::STORE: 1611 1612 // These operations are done with 32-bit instructions anyway. 1613 case ISD::AND: 1614 case ISD::OR: 1615 case ISD::XOR: 1616 case ISD::SELECT: 1617 // TODO: Extensions? 1618 return true; 1619 default: 1620 return false; 1621 } 1622 } 1623 1624 // SimplifySetCC uses this function to determine whether or not it should 1625 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1626 if (VT == MVT::i1 && Op == ISD::SETCC) 1627 return false; 1628 1629 return TargetLowering::isTypeDesirableForOp(Op, VT); 1630 } 1631 1632 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1633 const SDLoc &SL, 1634 SDValue Chain, 1635 uint64_t Offset) const { 1636 const DataLayout &DL = DAG.getDataLayout(); 1637 MachineFunction &MF = DAG.getMachineFunction(); 1638 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1639 1640 const ArgDescriptor *InputPtrReg; 1641 const TargetRegisterClass *RC; 1642 LLT ArgTy; 1643 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1644 1645 std::tie(InputPtrReg, RC, ArgTy) = 1646 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1647 1648 // We may not have the kernarg segment argument if we have no kernel 1649 // arguments. 1650 if (!InputPtrReg) 1651 return DAG.getConstant(0, SL, PtrVT); 1652 1653 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1654 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1655 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1656 1657 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1658 } 1659 1660 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1661 const SDLoc &SL) const { 1662 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1663 FIRST_IMPLICIT); 1664 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1665 } 1666 1667 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, 1668 const SDLoc &SL) const { 1669 1670 Function &F = DAG.getMachineFunction().getFunction(); 1671 Optional<uint32_t> KnownSize = 1672 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 1673 if (KnownSize.has_value()) 1674 return DAG.getConstant(KnownSize.value(), SL, MVT::i32); 1675 return SDValue(); 1676 } 1677 1678 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1679 const SDLoc &SL, SDValue Val, 1680 bool Signed, 1681 const ISD::InputArg *Arg) const { 1682 // First, if it is a widened vector, narrow it. 1683 if (VT.isVector() && 1684 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1685 EVT NarrowedVT = 1686 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1687 VT.getVectorNumElements()); 1688 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1689 DAG.getConstant(0, SL, MVT::i32)); 1690 } 1691 1692 // Then convert the vector elements or scalar value. 1693 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1694 VT.bitsLT(MemVT)) { 1695 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1696 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1697 } 1698 1699 if (MemVT.isFloatingPoint()) 1700 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1701 else if (Signed) 1702 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1703 else 1704 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1705 1706 return Val; 1707 } 1708 1709 SDValue SITargetLowering::lowerKernargMemParameter( 1710 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1711 uint64_t Offset, Align Alignment, bool Signed, 1712 const ISD::InputArg *Arg) const { 1713 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1714 1715 // Try to avoid using an extload by loading earlier than the argument address, 1716 // and extracting the relevant bits. The load should hopefully be merged with 1717 // the previous argument. 1718 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1719 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1720 int64_t AlignDownOffset = alignDown(Offset, 4); 1721 int64_t OffsetDiff = Offset - AlignDownOffset; 1722 1723 EVT IntVT = MemVT.changeTypeToInteger(); 1724 1725 // TODO: If we passed in the base kernel offset we could have a better 1726 // alignment than 4, but we don't really need it. 1727 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1728 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1729 MachineMemOperand::MODereferenceable | 1730 MachineMemOperand::MOInvariant); 1731 1732 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1733 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1734 1735 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1736 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1737 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1738 1739 1740 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1741 } 1742 1743 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1744 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1745 MachineMemOperand::MODereferenceable | 1746 MachineMemOperand::MOInvariant); 1747 1748 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1749 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1750 } 1751 1752 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1753 const SDLoc &SL, SDValue Chain, 1754 const ISD::InputArg &Arg) const { 1755 MachineFunction &MF = DAG.getMachineFunction(); 1756 MachineFrameInfo &MFI = MF.getFrameInfo(); 1757 1758 if (Arg.Flags.isByVal()) { 1759 unsigned Size = Arg.Flags.getByValSize(); 1760 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1761 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1762 } 1763 1764 unsigned ArgOffset = VA.getLocMemOffset(); 1765 unsigned ArgSize = VA.getValVT().getStoreSize(); 1766 1767 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1768 1769 // Create load nodes to retrieve arguments from the stack. 1770 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1771 SDValue ArgValue; 1772 1773 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1774 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1775 MVT MemVT = VA.getValVT(); 1776 1777 switch (VA.getLocInfo()) { 1778 default: 1779 break; 1780 case CCValAssign::BCvt: 1781 MemVT = VA.getLocVT(); 1782 break; 1783 case CCValAssign::SExt: 1784 ExtType = ISD::SEXTLOAD; 1785 break; 1786 case CCValAssign::ZExt: 1787 ExtType = ISD::ZEXTLOAD; 1788 break; 1789 case CCValAssign::AExt: 1790 ExtType = ISD::EXTLOAD; 1791 break; 1792 } 1793 1794 ArgValue = DAG.getExtLoad( 1795 ExtType, SL, VA.getLocVT(), Chain, FIN, 1796 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1797 MemVT); 1798 return ArgValue; 1799 } 1800 1801 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1802 const SIMachineFunctionInfo &MFI, 1803 EVT VT, 1804 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1805 const ArgDescriptor *Reg; 1806 const TargetRegisterClass *RC; 1807 LLT Ty; 1808 1809 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1810 if (!Reg) { 1811 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 1812 // It's possible for a kernarg intrinsic call to appear in a kernel with 1813 // no allocated segment, in which case we do not add the user sgpr 1814 // argument, so just return null. 1815 return DAG.getConstant(0, SDLoc(), VT); 1816 } 1817 1818 // It's undefined behavior if a function marked with the amdgpu-no-* 1819 // attributes uses the corresponding intrinsic. 1820 return DAG.getUNDEF(VT); 1821 } 1822 1823 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1824 } 1825 1826 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1827 CallingConv::ID CallConv, 1828 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1829 FunctionType *FType, 1830 SIMachineFunctionInfo *Info) { 1831 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1832 const ISD::InputArg *Arg = &Ins[I]; 1833 1834 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1835 "vector type argument should have been split"); 1836 1837 // First check if it's a PS input addr. 1838 if (CallConv == CallingConv::AMDGPU_PS && 1839 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1840 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1841 1842 // Inconveniently only the first part of the split is marked as isSplit, 1843 // so skip to the end. We only want to increment PSInputNum once for the 1844 // entire split argument. 1845 if (Arg->Flags.isSplit()) { 1846 while (!Arg->Flags.isSplitEnd()) { 1847 assert((!Arg->VT.isVector() || 1848 Arg->VT.getScalarSizeInBits() == 16) && 1849 "unexpected vector split in ps argument type"); 1850 if (!SkipArg) 1851 Splits.push_back(*Arg); 1852 Arg = &Ins[++I]; 1853 } 1854 } 1855 1856 if (SkipArg) { 1857 // We can safely skip PS inputs. 1858 Skipped.set(Arg->getOrigArgIndex()); 1859 ++PSInputNum; 1860 continue; 1861 } 1862 1863 Info->markPSInputAllocated(PSInputNum); 1864 if (Arg->Used) 1865 Info->markPSInputEnabled(PSInputNum); 1866 1867 ++PSInputNum; 1868 } 1869 1870 Splits.push_back(*Arg); 1871 } 1872 } 1873 1874 // Allocate special inputs passed in VGPRs. 1875 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1876 MachineFunction &MF, 1877 const SIRegisterInfo &TRI, 1878 SIMachineFunctionInfo &Info) const { 1879 const LLT S32 = LLT::scalar(32); 1880 MachineRegisterInfo &MRI = MF.getRegInfo(); 1881 1882 if (Info.hasWorkItemIDX()) { 1883 Register Reg = AMDGPU::VGPR0; 1884 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1885 1886 CCInfo.AllocateReg(Reg); 1887 unsigned Mask = (Subtarget->hasPackedTID() && 1888 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 1889 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1890 } 1891 1892 if (Info.hasWorkItemIDY()) { 1893 assert(Info.hasWorkItemIDX()); 1894 if (Subtarget->hasPackedTID()) { 1895 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1896 0x3ff << 10)); 1897 } else { 1898 unsigned Reg = AMDGPU::VGPR1; 1899 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1900 1901 CCInfo.AllocateReg(Reg); 1902 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1903 } 1904 } 1905 1906 if (Info.hasWorkItemIDZ()) { 1907 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 1908 if (Subtarget->hasPackedTID()) { 1909 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1910 0x3ff << 20)); 1911 } else { 1912 unsigned Reg = AMDGPU::VGPR2; 1913 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1914 1915 CCInfo.AllocateReg(Reg); 1916 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1917 } 1918 } 1919 } 1920 1921 // Try to allocate a VGPR at the end of the argument list, or if no argument 1922 // VGPRs are left allocating a stack slot. 1923 // If \p Mask is is given it indicates bitfield position in the register. 1924 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1925 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1926 ArgDescriptor Arg = ArgDescriptor()) { 1927 if (Arg.isSet()) 1928 return ArgDescriptor::createArg(Arg, Mask); 1929 1930 ArrayRef<MCPhysReg> ArgVGPRs 1931 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1932 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1933 if (RegIdx == ArgVGPRs.size()) { 1934 // Spill to stack required. 1935 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 1936 1937 return ArgDescriptor::createStack(Offset, Mask); 1938 } 1939 1940 unsigned Reg = ArgVGPRs[RegIdx]; 1941 Reg = CCInfo.AllocateReg(Reg); 1942 assert(Reg != AMDGPU::NoRegister); 1943 1944 MachineFunction &MF = CCInfo.getMachineFunction(); 1945 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1946 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1947 return ArgDescriptor::createRegister(Reg, Mask); 1948 } 1949 1950 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1951 const TargetRegisterClass *RC, 1952 unsigned NumArgRegs) { 1953 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1954 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1955 if (RegIdx == ArgSGPRs.size()) 1956 report_fatal_error("ran out of SGPRs for arguments"); 1957 1958 unsigned Reg = ArgSGPRs[RegIdx]; 1959 Reg = CCInfo.AllocateReg(Reg); 1960 assert(Reg != AMDGPU::NoRegister); 1961 1962 MachineFunction &MF = CCInfo.getMachineFunction(); 1963 MF.addLiveIn(Reg, RC); 1964 return ArgDescriptor::createRegister(Reg); 1965 } 1966 1967 // If this has a fixed position, we still should allocate the register in the 1968 // CCInfo state. Technically we could get away with this for values passed 1969 // outside of the normal argument range. 1970 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 1971 const TargetRegisterClass *RC, 1972 MCRegister Reg) { 1973 Reg = CCInfo.AllocateReg(Reg); 1974 assert(Reg != AMDGPU::NoRegister); 1975 MachineFunction &MF = CCInfo.getMachineFunction(); 1976 MF.addLiveIn(Reg, RC); 1977 } 1978 1979 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 1980 if (Arg) { 1981 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 1982 Arg.getRegister()); 1983 } else 1984 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1985 } 1986 1987 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 1988 if (Arg) { 1989 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 1990 Arg.getRegister()); 1991 } else 1992 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1993 } 1994 1995 /// Allocate implicit function VGPR arguments at the end of allocated user 1996 /// arguments. 1997 void SITargetLowering::allocateSpecialInputVGPRs( 1998 CCState &CCInfo, MachineFunction &MF, 1999 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2000 const unsigned Mask = 0x3ff; 2001 ArgDescriptor Arg; 2002 2003 if (Info.hasWorkItemIDX()) { 2004 Arg = allocateVGPR32Input(CCInfo, Mask); 2005 Info.setWorkItemIDX(Arg); 2006 } 2007 2008 if (Info.hasWorkItemIDY()) { 2009 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2010 Info.setWorkItemIDY(Arg); 2011 } 2012 2013 if (Info.hasWorkItemIDZ()) 2014 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2015 } 2016 2017 /// Allocate implicit function VGPR arguments in fixed registers. 2018 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2019 CCState &CCInfo, MachineFunction &MF, 2020 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2021 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2022 if (!Reg) 2023 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2024 2025 const unsigned Mask = 0x3ff; 2026 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2027 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2028 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2029 } 2030 2031 void SITargetLowering::allocateSpecialInputSGPRs( 2032 CCState &CCInfo, 2033 MachineFunction &MF, 2034 const SIRegisterInfo &TRI, 2035 SIMachineFunctionInfo &Info) const { 2036 auto &ArgInfo = Info.getArgInfo(); 2037 2038 // TODO: Unify handling with private memory pointers. 2039 if (Info.hasDispatchPtr()) 2040 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2041 2042 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) 2043 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2044 2045 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2046 // constant offset from the kernarg segment. 2047 if (Info.hasImplicitArgPtr()) 2048 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2049 2050 if (Info.hasDispatchID()) 2051 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2052 2053 // flat_scratch_init is not applicable for non-kernel functions. 2054 2055 if (Info.hasWorkGroupIDX()) 2056 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2057 2058 if (Info.hasWorkGroupIDY()) 2059 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2060 2061 if (Info.hasWorkGroupIDZ()) 2062 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2063 2064 if (Info.hasLDSKernelId()) 2065 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); 2066 } 2067 2068 // Allocate special inputs passed in user SGPRs. 2069 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2070 MachineFunction &MF, 2071 const SIRegisterInfo &TRI, 2072 SIMachineFunctionInfo &Info) const { 2073 if (Info.hasImplicitBufferPtr()) { 2074 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2075 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2076 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2077 } 2078 2079 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2080 if (Info.hasPrivateSegmentBuffer()) { 2081 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2082 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2083 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2084 } 2085 2086 if (Info.hasDispatchPtr()) { 2087 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2088 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2089 CCInfo.AllocateReg(DispatchPtrReg); 2090 } 2091 2092 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) { 2093 Register QueuePtrReg = Info.addQueuePtr(TRI); 2094 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2095 CCInfo.AllocateReg(QueuePtrReg); 2096 } 2097 2098 if (Info.hasKernargSegmentPtr()) { 2099 MachineRegisterInfo &MRI = MF.getRegInfo(); 2100 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2101 CCInfo.AllocateReg(InputPtrReg); 2102 2103 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2104 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2105 } 2106 2107 if (Info.hasDispatchID()) { 2108 Register DispatchIDReg = Info.addDispatchID(TRI); 2109 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2110 CCInfo.AllocateReg(DispatchIDReg); 2111 } 2112 2113 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2114 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2115 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2116 CCInfo.AllocateReg(FlatScratchInitReg); 2117 } 2118 2119 if (Info.hasLDSKernelId()) { 2120 Register Reg = Info.addLDSKernelId(); 2121 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2122 CCInfo.AllocateReg(Reg); 2123 } 2124 2125 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2126 // these from the dispatch pointer. 2127 } 2128 2129 // Allocate special input registers that are initialized per-wave. 2130 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2131 MachineFunction &MF, 2132 SIMachineFunctionInfo &Info, 2133 CallingConv::ID CallConv, 2134 bool IsShader) const { 2135 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { 2136 // Note: user SGPRs are handled by the front-end for graphics shaders 2137 // Pad up the used user SGPRs with dead inputs. 2138 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); 2139 2140 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to 2141 // rely on it to reach 16 since if we end up having no stack usage, it will 2142 // not really be added. 2143 unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + 2144 Info.hasWorkGroupIDY() + 2145 Info.hasWorkGroupIDZ() + 2146 Info.hasWorkGroupInfo(); 2147 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { 2148 Register Reg = Info.addReservedUserSGPR(); 2149 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2150 CCInfo.AllocateReg(Reg); 2151 } 2152 } 2153 2154 if (Info.hasWorkGroupIDX()) { 2155 Register Reg = Info.addWorkGroupIDX(); 2156 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2157 CCInfo.AllocateReg(Reg); 2158 } 2159 2160 if (Info.hasWorkGroupIDY()) { 2161 Register Reg = Info.addWorkGroupIDY(); 2162 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2163 CCInfo.AllocateReg(Reg); 2164 } 2165 2166 if (Info.hasWorkGroupIDZ()) { 2167 Register Reg = Info.addWorkGroupIDZ(); 2168 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2169 CCInfo.AllocateReg(Reg); 2170 } 2171 2172 if (Info.hasWorkGroupInfo()) { 2173 Register Reg = Info.addWorkGroupInfo(); 2174 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2175 CCInfo.AllocateReg(Reg); 2176 } 2177 2178 if (Info.hasPrivateSegmentWaveByteOffset()) { 2179 // Scratch wave offset passed in system SGPR. 2180 unsigned PrivateSegmentWaveByteOffsetReg; 2181 2182 if (IsShader) { 2183 PrivateSegmentWaveByteOffsetReg = 2184 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2185 2186 // This is true if the scratch wave byte offset doesn't have a fixed 2187 // location. 2188 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2189 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2190 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2191 } 2192 } else 2193 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2194 2195 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2196 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2197 } 2198 2199 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || 2200 Info.getNumPreloadedSGPRs() >= 16); 2201 } 2202 2203 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2204 MachineFunction &MF, 2205 const SIRegisterInfo &TRI, 2206 SIMachineFunctionInfo &Info) { 2207 // Now that we've figured out where the scratch register inputs are, see if 2208 // should reserve the arguments and use them directly. 2209 MachineFrameInfo &MFI = MF.getFrameInfo(); 2210 bool HasStackObjects = MFI.hasStackObjects(); 2211 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2212 2213 // Record that we know we have non-spill stack objects so we don't need to 2214 // check all stack objects later. 2215 if (HasStackObjects) 2216 Info.setHasNonSpillStackObjects(true); 2217 2218 // Everything live out of a block is spilled with fast regalloc, so it's 2219 // almost certain that spilling will be required. 2220 if (TM.getOptLevel() == CodeGenOpt::None) 2221 HasStackObjects = true; 2222 2223 // For now assume stack access is needed in any callee functions, so we need 2224 // the scratch registers to pass in. 2225 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2226 2227 if (!ST.enableFlatScratch()) { 2228 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2229 // If we have stack objects, we unquestionably need the private buffer 2230 // resource. For the Code Object V2 ABI, this will be the first 4 user 2231 // SGPR inputs. We can reserve those and use them directly. 2232 2233 Register PrivateSegmentBufferReg = 2234 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2235 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2236 } else { 2237 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2238 // We tentatively reserve the last registers (skipping the last registers 2239 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2240 // we'll replace these with the ones immediately after those which were 2241 // really allocated. In the prologue copies will be inserted from the 2242 // argument to these reserved registers. 2243 2244 // Without HSA, relocations are used for the scratch pointer and the 2245 // buffer resource setup is always inserted in the prologue. Scratch wave 2246 // offset is still in an input SGPR. 2247 Info.setScratchRSrcReg(ReservedBufferReg); 2248 } 2249 } 2250 2251 MachineRegisterInfo &MRI = MF.getRegInfo(); 2252 2253 // For entry functions we have to set up the stack pointer if we use it, 2254 // whereas non-entry functions get this "for free". This means there is no 2255 // intrinsic advantage to using S32 over S34 in cases where we do not have 2256 // calls but do need a frame pointer (i.e. if we are requested to have one 2257 // because frame pointer elimination is disabled). To keep things simple we 2258 // only ever use S32 as the call ABI stack pointer, and so using it does not 2259 // imply we need a separate frame pointer. 2260 // 2261 // Try to use s32 as the SP, but move it if it would interfere with input 2262 // arguments. This won't work with calls though. 2263 // 2264 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2265 // registers. 2266 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2267 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2268 } else { 2269 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2270 2271 if (MFI.hasCalls()) 2272 report_fatal_error("call in graphics shader with too many input SGPRs"); 2273 2274 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2275 if (!MRI.isLiveIn(Reg)) { 2276 Info.setStackPtrOffsetReg(Reg); 2277 break; 2278 } 2279 } 2280 2281 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2282 report_fatal_error("failed to find register for SP"); 2283 } 2284 2285 // hasFP should be accurate for entry functions even before the frame is 2286 // finalized, because it does not rely on the known stack size, only 2287 // properties like whether variable sized objects are present. 2288 if (ST.getFrameLowering()->hasFP(MF)) { 2289 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2290 } 2291 } 2292 2293 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2294 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2295 return !Info->isEntryFunction(); 2296 } 2297 2298 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2299 2300 } 2301 2302 void SITargetLowering::insertCopiesSplitCSR( 2303 MachineBasicBlock *Entry, 2304 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2305 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2306 2307 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2308 if (!IStart) 2309 return; 2310 2311 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2312 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2313 MachineBasicBlock::iterator MBBI = Entry->begin(); 2314 for (const MCPhysReg *I = IStart; *I; ++I) { 2315 const TargetRegisterClass *RC = nullptr; 2316 if (AMDGPU::SReg_64RegClass.contains(*I)) 2317 RC = &AMDGPU::SGPR_64RegClass; 2318 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2319 RC = &AMDGPU::SGPR_32RegClass; 2320 else 2321 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2322 2323 Register NewVR = MRI->createVirtualRegister(RC); 2324 // Create copy from CSR to a virtual register. 2325 Entry->addLiveIn(*I); 2326 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2327 .addReg(*I); 2328 2329 // Insert the copy-back instructions right before the terminator. 2330 for (auto *Exit : Exits) 2331 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2332 TII->get(TargetOpcode::COPY), *I) 2333 .addReg(NewVR); 2334 } 2335 } 2336 2337 SDValue SITargetLowering::LowerFormalArguments( 2338 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2339 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2340 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2341 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2342 2343 MachineFunction &MF = DAG.getMachineFunction(); 2344 const Function &Fn = MF.getFunction(); 2345 FunctionType *FType = MF.getFunction().getFunctionType(); 2346 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2347 2348 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2349 DiagnosticInfoUnsupported NoGraphicsHSA( 2350 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2351 DAG.getContext()->diagnose(NoGraphicsHSA); 2352 return DAG.getEntryNode(); 2353 } 2354 2355 Info->allocateModuleLDSGlobal(Fn); 2356 2357 SmallVector<ISD::InputArg, 16> Splits; 2358 SmallVector<CCValAssign, 16> ArgLocs; 2359 BitVector Skipped(Ins.size()); 2360 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2361 *DAG.getContext()); 2362 2363 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2364 bool IsKernel = AMDGPU::isKernel(CallConv); 2365 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2366 2367 if (IsGraphics) { 2368 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2369 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && 2370 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2371 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2372 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && 2373 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); 2374 } 2375 2376 if (CallConv == CallingConv::AMDGPU_PS) { 2377 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2378 2379 // At least one interpolation mode must be enabled or else the GPU will 2380 // hang. 2381 // 2382 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2383 // set PSInputAddr, the user wants to enable some bits after the compilation 2384 // based on run-time states. Since we can't know what the final PSInputEna 2385 // will look like, so we shouldn't do anything here and the user should take 2386 // responsibility for the correct programming. 2387 // 2388 // Otherwise, the following restrictions apply: 2389 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2390 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2391 // enabled too. 2392 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2393 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2394 CCInfo.AllocateReg(AMDGPU::VGPR0); 2395 CCInfo.AllocateReg(AMDGPU::VGPR1); 2396 Info->markPSInputAllocated(0); 2397 Info->markPSInputEnabled(0); 2398 } 2399 if (Subtarget->isAmdPalOS()) { 2400 // For isAmdPalOS, the user does not enable some bits after compilation 2401 // based on run-time states; the register values being generated here are 2402 // the final ones set in hardware. Therefore we need to apply the 2403 // workaround to PSInputAddr and PSInputEnable together. (The case where 2404 // a bit is set in PSInputAddr but not PSInputEnable is where the 2405 // frontend set up an input arg for a particular interpolation mode, but 2406 // nothing uses that input arg. Really we should have an earlier pass 2407 // that removes such an arg.) 2408 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2409 if ((PsInputBits & 0x7F) == 0 || 2410 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2411 Info->markPSInputEnabled( 2412 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2413 } 2414 } else if (IsKernel) { 2415 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2416 } else { 2417 Splits.append(Ins.begin(), Ins.end()); 2418 } 2419 2420 if (IsEntryFunc) { 2421 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2422 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2423 } else if (!IsGraphics) { 2424 // For the fixed ABI, pass workitem IDs in the last argument register. 2425 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2426 } 2427 2428 if (IsKernel) { 2429 analyzeFormalArgumentsCompute(CCInfo, Ins); 2430 } else { 2431 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2432 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2433 } 2434 2435 SmallVector<SDValue, 16> Chains; 2436 2437 // FIXME: This is the minimum kernel argument alignment. We should improve 2438 // this to the maximum alignment of the arguments. 2439 // 2440 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2441 // kern arg offset. 2442 const Align KernelArgBaseAlign = Align(16); 2443 2444 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2445 const ISD::InputArg &Arg = Ins[i]; 2446 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2447 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2448 continue; 2449 } 2450 2451 CCValAssign &VA = ArgLocs[ArgIdx++]; 2452 MVT VT = VA.getLocVT(); 2453 2454 if (IsEntryFunc && VA.isMemLoc()) { 2455 VT = Ins[i].VT; 2456 EVT MemVT = VA.getLocVT(); 2457 2458 const uint64_t Offset = VA.getLocMemOffset(); 2459 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2460 2461 if (Arg.Flags.isByRef()) { 2462 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2463 2464 const GCNTargetMachine &TM = 2465 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2466 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2467 Arg.Flags.getPointerAddrSpace())) { 2468 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2469 Arg.Flags.getPointerAddrSpace()); 2470 } 2471 2472 InVals.push_back(Ptr); 2473 continue; 2474 } 2475 2476 SDValue Arg = lowerKernargMemParameter( 2477 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2478 Chains.push_back(Arg.getValue(1)); 2479 2480 auto *ParamTy = 2481 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2482 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2483 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2484 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2485 // On SI local pointers are just offsets into LDS, so they are always 2486 // less than 16-bits. On CI and newer they could potentially be 2487 // real pointers, so we can't guarantee their size. 2488 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2489 DAG.getValueType(MVT::i16)); 2490 } 2491 2492 InVals.push_back(Arg); 2493 continue; 2494 } else if (!IsEntryFunc && VA.isMemLoc()) { 2495 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2496 InVals.push_back(Val); 2497 if (!Arg.Flags.isByVal()) 2498 Chains.push_back(Val.getValue(1)); 2499 continue; 2500 } 2501 2502 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2503 2504 Register Reg = VA.getLocReg(); 2505 const TargetRegisterClass *RC = nullptr; 2506 if (AMDGPU::VGPR_32RegClass.contains(Reg)) 2507 RC = &AMDGPU::VGPR_32RegClass; 2508 else if (AMDGPU::SGPR_32RegClass.contains(Reg)) 2509 RC = &AMDGPU::SGPR_32RegClass; 2510 else 2511 llvm_unreachable("Unexpected register class in LowerFormalArguments!"); 2512 EVT ValVT = VA.getValVT(); 2513 2514 Reg = MF.addLiveIn(Reg, RC); 2515 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2516 2517 if (Arg.Flags.isSRet()) { 2518 // The return object should be reasonably addressable. 2519 2520 // FIXME: This helps when the return is a real sret. If it is a 2521 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2522 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2523 unsigned NumBits 2524 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2525 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2526 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2527 } 2528 2529 // If this is an 8 or 16-bit value, it is really passed promoted 2530 // to 32 bits. Insert an assert[sz]ext to capture this, then 2531 // truncate to the right size. 2532 switch (VA.getLocInfo()) { 2533 case CCValAssign::Full: 2534 break; 2535 case CCValAssign::BCvt: 2536 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2537 break; 2538 case CCValAssign::SExt: 2539 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2540 DAG.getValueType(ValVT)); 2541 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2542 break; 2543 case CCValAssign::ZExt: 2544 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2545 DAG.getValueType(ValVT)); 2546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2547 break; 2548 case CCValAssign::AExt: 2549 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2550 break; 2551 default: 2552 llvm_unreachable("Unknown loc info!"); 2553 } 2554 2555 InVals.push_back(Val); 2556 } 2557 2558 // Start adding system SGPRs. 2559 if (IsEntryFunc) { 2560 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2561 } else { 2562 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2563 if (!IsGraphics) 2564 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2565 } 2566 2567 auto &ArgUsageInfo = 2568 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2569 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2570 2571 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2572 Info->setBytesInStackArgArea(StackArgSize); 2573 2574 return Chains.empty() ? Chain : 2575 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2576 } 2577 2578 // TODO: If return values can't fit in registers, we should return as many as 2579 // possible in registers before passing on stack. 2580 bool SITargetLowering::CanLowerReturn( 2581 CallingConv::ID CallConv, 2582 MachineFunction &MF, bool IsVarArg, 2583 const SmallVectorImpl<ISD::OutputArg> &Outs, 2584 LLVMContext &Context) const { 2585 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2586 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2587 // for shaders. Vector types should be explicitly handled by CC. 2588 if (AMDGPU::isEntryFunctionCC(CallConv)) 2589 return true; 2590 2591 SmallVector<CCValAssign, 16> RVLocs; 2592 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2593 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2594 } 2595 2596 SDValue 2597 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2598 bool isVarArg, 2599 const SmallVectorImpl<ISD::OutputArg> &Outs, 2600 const SmallVectorImpl<SDValue> &OutVals, 2601 const SDLoc &DL, SelectionDAG &DAG) const { 2602 MachineFunction &MF = DAG.getMachineFunction(); 2603 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2604 2605 if (AMDGPU::isKernel(CallConv)) { 2606 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2607 OutVals, DL, DAG); 2608 } 2609 2610 bool IsShader = AMDGPU::isShader(CallConv); 2611 2612 Info->setIfReturnsVoid(Outs.empty()); 2613 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2614 2615 // CCValAssign - represent the assignment of the return value to a location. 2616 SmallVector<CCValAssign, 48> RVLocs; 2617 SmallVector<ISD::OutputArg, 48> Splits; 2618 2619 // CCState - Info about the registers and stack slots. 2620 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2621 *DAG.getContext()); 2622 2623 // Analyze outgoing return values. 2624 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2625 2626 SDValue Flag; 2627 SmallVector<SDValue, 48> RetOps; 2628 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2629 2630 // Copy the result values into the output registers. 2631 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2632 ++I, ++RealRVLocIdx) { 2633 CCValAssign &VA = RVLocs[I]; 2634 assert(VA.isRegLoc() && "Can only return in registers!"); 2635 // TODO: Partially return in registers if return values don't fit. 2636 SDValue Arg = OutVals[RealRVLocIdx]; 2637 2638 // Copied from other backends. 2639 switch (VA.getLocInfo()) { 2640 case CCValAssign::Full: 2641 break; 2642 case CCValAssign::BCvt: 2643 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2644 break; 2645 case CCValAssign::SExt: 2646 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2647 break; 2648 case CCValAssign::ZExt: 2649 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2650 break; 2651 case CCValAssign::AExt: 2652 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2653 break; 2654 default: 2655 llvm_unreachable("Unknown loc info!"); 2656 } 2657 2658 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2659 Flag = Chain.getValue(1); 2660 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2661 } 2662 2663 // FIXME: Does sret work properly? 2664 if (!Info->isEntryFunction()) { 2665 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2666 const MCPhysReg *I = 2667 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2668 if (I) { 2669 for (; *I; ++I) { 2670 if (AMDGPU::SReg_64RegClass.contains(*I)) 2671 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2672 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2673 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2674 else 2675 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2676 } 2677 } 2678 } 2679 2680 // Update chain and glue. 2681 RetOps[0] = Chain; 2682 if (Flag.getNode()) 2683 RetOps.push_back(Flag); 2684 2685 unsigned Opc = AMDGPUISD::ENDPGM; 2686 if (!IsWaveEnd) 2687 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2688 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2689 } 2690 2691 SDValue SITargetLowering::LowerCallResult( 2692 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2695 SDValue ThisVal) const { 2696 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2697 2698 // Assign locations to each value returned by this call. 2699 SmallVector<CCValAssign, 16> RVLocs; 2700 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2701 *DAG.getContext()); 2702 CCInfo.AnalyzeCallResult(Ins, RetCC); 2703 2704 // Copy all of the result registers out of their specified physreg. 2705 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2706 CCValAssign VA = RVLocs[i]; 2707 SDValue Val; 2708 2709 if (VA.isRegLoc()) { 2710 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2711 Chain = Val.getValue(1); 2712 InFlag = Val.getValue(2); 2713 } else if (VA.isMemLoc()) { 2714 report_fatal_error("TODO: return values in memory"); 2715 } else 2716 llvm_unreachable("unknown argument location type"); 2717 2718 switch (VA.getLocInfo()) { 2719 case CCValAssign::Full: 2720 break; 2721 case CCValAssign::BCvt: 2722 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2723 break; 2724 case CCValAssign::ZExt: 2725 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2726 DAG.getValueType(VA.getValVT())); 2727 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2728 break; 2729 case CCValAssign::SExt: 2730 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2731 DAG.getValueType(VA.getValVT())); 2732 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2733 break; 2734 case CCValAssign::AExt: 2735 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2736 break; 2737 default: 2738 llvm_unreachable("Unknown loc info!"); 2739 } 2740 2741 InVals.push_back(Val); 2742 } 2743 2744 return Chain; 2745 } 2746 2747 // Add code to pass special inputs required depending on used features separate 2748 // from the explicit user arguments present in the IR. 2749 void SITargetLowering::passSpecialInputs( 2750 CallLoweringInfo &CLI, 2751 CCState &CCInfo, 2752 const SIMachineFunctionInfo &Info, 2753 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2754 SmallVectorImpl<SDValue> &MemOpChains, 2755 SDValue Chain) const { 2756 // If we don't have a call site, this was a call inserted by 2757 // legalization. These can never use special inputs. 2758 if (!CLI.CB) 2759 return; 2760 2761 SelectionDAG &DAG = CLI.DAG; 2762 const SDLoc &DL = CLI.DL; 2763 const Function &F = DAG.getMachineFunction().getFunction(); 2764 2765 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2766 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2767 2768 const AMDGPUFunctionArgInfo *CalleeArgInfo 2769 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2770 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2771 auto &ArgUsageInfo = 2772 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2773 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2774 } 2775 2776 // TODO: Unify with private memory register handling. This is complicated by 2777 // the fact that at least in kernels, the input argument is not necessarily 2778 // in the same location as the input. 2779 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 2780 StringLiteral> ImplicitAttrs[] = { 2781 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 2782 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 2783 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 2784 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 2785 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 2786 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 2787 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, 2788 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, 2789 }; 2790 2791 for (auto Attr : ImplicitAttrs) { 2792 const ArgDescriptor *OutgoingArg; 2793 const TargetRegisterClass *ArgRC; 2794 LLT ArgTy; 2795 2796 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 2797 2798 // If the callee does not use the attribute value, skip copying the value. 2799 if (CLI.CB->hasFnAttr(Attr.second)) 2800 continue; 2801 2802 std::tie(OutgoingArg, ArgRC, ArgTy) = 2803 CalleeArgInfo->getPreloadedValue(InputID); 2804 if (!OutgoingArg) 2805 continue; 2806 2807 const ArgDescriptor *IncomingArg; 2808 const TargetRegisterClass *IncomingArgRC; 2809 LLT Ty; 2810 std::tie(IncomingArg, IncomingArgRC, Ty) = 2811 CallerArgInfo.getPreloadedValue(InputID); 2812 assert(IncomingArgRC == ArgRC); 2813 2814 // All special arguments are ints for now. 2815 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2816 SDValue InputReg; 2817 2818 if (IncomingArg) { 2819 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2820 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 2821 // The implicit arg ptr is special because it doesn't have a corresponding 2822 // input for kernels, and is computed from the kernarg segment pointer. 2823 InputReg = getImplicitArgPtr(DAG, DL); 2824 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 2825 Optional<uint32_t> Id = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 2826 if (Id.has_value()) { 2827 InputReg = DAG.getConstant(Id.value(), DL, ArgVT); 2828 } else { 2829 InputReg = DAG.getUNDEF(ArgVT); 2830 } 2831 } else { 2832 // We may have proven the input wasn't needed, although the ABI is 2833 // requiring it. We just need to allocate the register appropriately. 2834 InputReg = DAG.getUNDEF(ArgVT); 2835 } 2836 2837 if (OutgoingArg->isRegister()) { 2838 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2839 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2840 report_fatal_error("failed to allocate implicit input argument"); 2841 } else { 2842 unsigned SpecialArgOffset = 2843 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2844 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2845 SpecialArgOffset); 2846 MemOpChains.push_back(ArgStore); 2847 } 2848 } 2849 2850 // Pack workitem IDs into a single register or pass it as is if already 2851 // packed. 2852 const ArgDescriptor *OutgoingArg; 2853 const TargetRegisterClass *ArgRC; 2854 LLT Ty; 2855 2856 std::tie(OutgoingArg, ArgRC, Ty) = 2857 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2858 if (!OutgoingArg) 2859 std::tie(OutgoingArg, ArgRC, Ty) = 2860 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2861 if (!OutgoingArg) 2862 std::tie(OutgoingArg, ArgRC, Ty) = 2863 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2864 if (!OutgoingArg) 2865 return; 2866 2867 const ArgDescriptor *IncomingArgX = std::get<0>( 2868 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2869 const ArgDescriptor *IncomingArgY = std::get<0>( 2870 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2871 const ArgDescriptor *IncomingArgZ = std::get<0>( 2872 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2873 2874 SDValue InputReg; 2875 SDLoc SL; 2876 2877 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 2878 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 2879 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 2880 2881 // If incoming ids are not packed we need to pack them. 2882 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 2883 NeedWorkItemIDX) { 2884 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 2885 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2886 } else { 2887 InputReg = DAG.getConstant(0, DL, MVT::i32); 2888 } 2889 } 2890 2891 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 2892 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 2893 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2894 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2895 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2896 InputReg = InputReg.getNode() ? 2897 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2898 } 2899 2900 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 2901 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 2902 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2903 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2904 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2905 InputReg = InputReg.getNode() ? 2906 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2907 } 2908 2909 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 2910 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 2911 // We're in a situation where the outgoing function requires the workitem 2912 // ID, but the calling function does not have it (e.g a graphics function 2913 // calling a C calling convention function). This is illegal, but we need 2914 // to produce something. 2915 InputReg = DAG.getUNDEF(MVT::i32); 2916 } else { 2917 // Workitem ids are already packed, any of present incoming arguments 2918 // will carry all required fields. 2919 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2920 IncomingArgX ? *IncomingArgX : 2921 IncomingArgY ? *IncomingArgY : 2922 *IncomingArgZ, ~0u); 2923 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2924 } 2925 } 2926 2927 if (OutgoingArg->isRegister()) { 2928 if (InputReg) 2929 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2930 2931 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2932 } else { 2933 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2934 if (InputReg) { 2935 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2936 SpecialArgOffset); 2937 MemOpChains.push_back(ArgStore); 2938 } 2939 } 2940 } 2941 2942 static bool canGuaranteeTCO(CallingConv::ID CC) { 2943 return CC == CallingConv::Fast; 2944 } 2945 2946 /// Return true if we might ever do TCO for calls with this calling convention. 2947 static bool mayTailCallThisCC(CallingConv::ID CC) { 2948 switch (CC) { 2949 case CallingConv::C: 2950 case CallingConv::AMDGPU_Gfx: 2951 return true; 2952 default: 2953 return canGuaranteeTCO(CC); 2954 } 2955 } 2956 2957 bool SITargetLowering::isEligibleForTailCallOptimization( 2958 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2959 const SmallVectorImpl<ISD::OutputArg> &Outs, 2960 const SmallVectorImpl<SDValue> &OutVals, 2961 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2962 if (!mayTailCallThisCC(CalleeCC)) 2963 return false; 2964 2965 // For a divergent call target, we need to do a waterfall loop over the 2966 // possible callees which precludes us from using a simple jump. 2967 if (Callee->isDivergent()) 2968 return false; 2969 2970 MachineFunction &MF = DAG.getMachineFunction(); 2971 const Function &CallerF = MF.getFunction(); 2972 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2973 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2974 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2975 2976 // Kernels aren't callable, and don't have a live in return address so it 2977 // doesn't make sense to do a tail call with entry functions. 2978 if (!CallerPreserved) 2979 return false; 2980 2981 bool CCMatch = CallerCC == CalleeCC; 2982 2983 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2984 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2985 return true; 2986 return false; 2987 } 2988 2989 // TODO: Can we handle var args? 2990 if (IsVarArg) 2991 return false; 2992 2993 for (const Argument &Arg : CallerF.args()) { 2994 if (Arg.hasByValAttr()) 2995 return false; 2996 } 2997 2998 LLVMContext &Ctx = *DAG.getContext(); 2999 3000 // Check that the call results are passed in the same way. 3001 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3002 CCAssignFnForCall(CalleeCC, IsVarArg), 3003 CCAssignFnForCall(CallerCC, IsVarArg))) 3004 return false; 3005 3006 // The callee has to preserve all registers the caller needs to preserve. 3007 if (!CCMatch) { 3008 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3009 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3010 return false; 3011 } 3012 3013 // Nothing more to check if the callee is taking no arguments. 3014 if (Outs.empty()) 3015 return true; 3016 3017 SmallVector<CCValAssign, 16> ArgLocs; 3018 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3019 3020 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3021 3022 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3023 // If the stack arguments for this call do not fit into our own save area then 3024 // the call cannot be made tail. 3025 // TODO: Is this really necessary? 3026 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 3027 return false; 3028 3029 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3030 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3031 } 3032 3033 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3034 if (!CI->isTailCall()) 3035 return false; 3036 3037 const Function *ParentFn = CI->getParent()->getParent(); 3038 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3039 return false; 3040 return true; 3041 } 3042 3043 // The wave scratch offset register is used as the global base pointer. 3044 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3045 SmallVectorImpl<SDValue> &InVals) const { 3046 SelectionDAG &DAG = CLI.DAG; 3047 const SDLoc &DL = CLI.DL; 3048 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3049 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3050 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3051 SDValue Chain = CLI.Chain; 3052 SDValue Callee = CLI.Callee; 3053 bool &IsTailCall = CLI.IsTailCall; 3054 CallingConv::ID CallConv = CLI.CallConv; 3055 bool IsVarArg = CLI.IsVarArg; 3056 bool IsSibCall = false; 3057 bool IsThisReturn = false; 3058 MachineFunction &MF = DAG.getMachineFunction(); 3059 3060 if (Callee.isUndef() || isNullConstant(Callee)) { 3061 if (!CLI.IsTailCall) { 3062 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3063 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3064 } 3065 3066 return Chain; 3067 } 3068 3069 if (IsVarArg) { 3070 return lowerUnhandledCall(CLI, InVals, 3071 "unsupported call to variadic function "); 3072 } 3073 3074 if (!CLI.CB) 3075 report_fatal_error("unsupported libcall legalization"); 3076 3077 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3078 return lowerUnhandledCall(CLI, InVals, 3079 "unsupported required tail call to function "); 3080 } 3081 3082 if (AMDGPU::isShader(CallConv)) { 3083 // Note the issue is with the CC of the called function, not of the call 3084 // itself. 3085 return lowerUnhandledCall(CLI, InVals, 3086 "unsupported call to a shader function "); 3087 } 3088 3089 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && 3090 CallConv != CallingConv::AMDGPU_Gfx) { 3091 // Only allow calls with specific calling conventions. 3092 return lowerUnhandledCall(CLI, InVals, 3093 "unsupported calling convention for call from " 3094 "graphics shader of function "); 3095 } 3096 3097 if (IsTailCall) { 3098 IsTailCall = isEligibleForTailCallOptimization( 3099 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3100 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 3101 report_fatal_error("failed to perform tail call elimination on a call " 3102 "site marked musttail"); 3103 } 3104 3105 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3106 3107 // A sibling call is one where we're under the usual C ABI and not planning 3108 // to change that but can still do a tail call: 3109 if (!TailCallOpt && IsTailCall) 3110 IsSibCall = true; 3111 3112 if (IsTailCall) 3113 ++NumTailCalls; 3114 } 3115 3116 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3117 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3118 SmallVector<SDValue, 8> MemOpChains; 3119 3120 // Analyze operands of the call, assigning locations to each operand. 3121 SmallVector<CCValAssign, 16> ArgLocs; 3122 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3123 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3124 3125 if (CallConv != CallingConv::AMDGPU_Gfx) { 3126 // With a fixed ABI, allocate fixed registers before user arguments. 3127 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3128 } 3129 3130 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3131 3132 // Get a count of how many bytes are to be pushed on the stack. 3133 unsigned NumBytes = CCInfo.getNextStackOffset(); 3134 3135 if (IsSibCall) { 3136 // Since we're not changing the ABI to make this a tail call, the memory 3137 // operands are already available in the caller's incoming argument space. 3138 NumBytes = 0; 3139 } 3140 3141 // FPDiff is the byte offset of the call's argument area from the callee's. 3142 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3143 // by this amount for a tail call. In a sibling call it must be 0 because the 3144 // caller will deallocate the entire stack and the callee still expects its 3145 // arguments to begin at SP+0. Completely unused for non-tail calls. 3146 int32_t FPDiff = 0; 3147 MachineFrameInfo &MFI = MF.getFrameInfo(); 3148 3149 // Adjust the stack pointer for the new arguments... 3150 // These operations are automatically eliminated by the prolog/epilog pass 3151 if (!IsSibCall) { 3152 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3153 3154 if (!Subtarget->enableFlatScratch()) { 3155 SmallVector<SDValue, 4> CopyFromChains; 3156 3157 // In the HSA case, this should be an identity copy. 3158 SDValue ScratchRSrcReg 3159 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3160 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 3161 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3162 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3163 } 3164 } 3165 3166 MVT PtrVT = MVT::i32; 3167 3168 // Walk the register/memloc assignments, inserting copies/loads. 3169 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3170 CCValAssign &VA = ArgLocs[i]; 3171 SDValue Arg = OutVals[i]; 3172 3173 // Promote the value if needed. 3174 switch (VA.getLocInfo()) { 3175 case CCValAssign::Full: 3176 break; 3177 case CCValAssign::BCvt: 3178 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3179 break; 3180 case CCValAssign::ZExt: 3181 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3182 break; 3183 case CCValAssign::SExt: 3184 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3185 break; 3186 case CCValAssign::AExt: 3187 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3188 break; 3189 case CCValAssign::FPExt: 3190 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3191 break; 3192 default: 3193 llvm_unreachable("Unknown loc info!"); 3194 } 3195 3196 if (VA.isRegLoc()) { 3197 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3198 } else { 3199 assert(VA.isMemLoc()); 3200 3201 SDValue DstAddr; 3202 MachinePointerInfo DstInfo; 3203 3204 unsigned LocMemOffset = VA.getLocMemOffset(); 3205 int32_t Offset = LocMemOffset; 3206 3207 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3208 MaybeAlign Alignment; 3209 3210 if (IsTailCall) { 3211 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3212 unsigned OpSize = Flags.isByVal() ? 3213 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3214 3215 // FIXME: We can have better than the minimum byval required alignment. 3216 Alignment = 3217 Flags.isByVal() 3218 ? Flags.getNonZeroByValAlign() 3219 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3220 3221 Offset = Offset + FPDiff; 3222 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3223 3224 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3225 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3226 3227 // Make sure any stack arguments overlapping with where we're storing 3228 // are loaded before this eventual operation. Otherwise they'll be 3229 // clobbered. 3230 3231 // FIXME: Why is this really necessary? This seems to just result in a 3232 // lot of code to copy the stack and write them back to the same 3233 // locations, which are supposed to be immutable? 3234 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3235 } else { 3236 // Stores to the argument stack area are relative to the stack pointer. 3237 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3238 MVT::i32); 3239 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3240 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3241 Alignment = 3242 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3243 } 3244 3245 if (Outs[i].Flags.isByVal()) { 3246 SDValue SizeNode = 3247 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3248 SDValue Cpy = 3249 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3250 Outs[i].Flags.getNonZeroByValAlign(), 3251 /*isVol = */ false, /*AlwaysInline = */ true, 3252 /*isTailCall = */ false, DstInfo, 3253 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3254 3255 MemOpChains.push_back(Cpy); 3256 } else { 3257 SDValue Store = 3258 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3259 MemOpChains.push_back(Store); 3260 } 3261 } 3262 } 3263 3264 if (!MemOpChains.empty()) 3265 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3266 3267 // Build a sequence of copy-to-reg nodes chained together with token chain 3268 // and flag operands which copy the outgoing args into the appropriate regs. 3269 SDValue InFlag; 3270 for (auto &RegToPass : RegsToPass) { 3271 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3272 RegToPass.second, InFlag); 3273 InFlag = Chain.getValue(1); 3274 } 3275 3276 3277 // We don't usually want to end the call-sequence here because we would tidy 3278 // the frame up *after* the call, however in the ABI-changing tail-call case 3279 // we've carefully laid out the parameters so that when sp is reset they'll be 3280 // in the correct location. 3281 if (IsTailCall && !IsSibCall) { 3282 Chain = DAG.getCALLSEQ_END(Chain, 3283 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3284 DAG.getTargetConstant(0, DL, MVT::i32), 3285 InFlag, DL); 3286 InFlag = Chain.getValue(1); 3287 } 3288 3289 std::vector<SDValue> Ops; 3290 Ops.push_back(Chain); 3291 Ops.push_back(Callee); 3292 // Add a redundant copy of the callee global which will not be legalized, as 3293 // we need direct access to the callee later. 3294 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3295 const GlobalValue *GV = GSD->getGlobal(); 3296 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3297 } else { 3298 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3299 } 3300 3301 if (IsTailCall) { 3302 // Each tail call may have to adjust the stack by a different amount, so 3303 // this information must travel along with the operation for eventual 3304 // consumption by emitEpilogue. 3305 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3306 } 3307 3308 // Add argument registers to the end of the list so that they are known live 3309 // into the call. 3310 for (auto &RegToPass : RegsToPass) { 3311 Ops.push_back(DAG.getRegister(RegToPass.first, 3312 RegToPass.second.getValueType())); 3313 } 3314 3315 // Add a register mask operand representing the call-preserved registers. 3316 3317 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3318 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3319 assert(Mask && "Missing call preserved mask for calling convention"); 3320 Ops.push_back(DAG.getRegisterMask(Mask)); 3321 3322 if (InFlag.getNode()) 3323 Ops.push_back(InFlag); 3324 3325 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3326 3327 // If we're doing a tall call, use a TC_RETURN here rather than an 3328 // actual call instruction. 3329 if (IsTailCall) { 3330 MFI.setHasTailCall(); 3331 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3332 } 3333 3334 // Returns a chain and a flag for retval copy to use. 3335 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3336 Chain = Call.getValue(0); 3337 InFlag = Call.getValue(1); 3338 3339 uint64_t CalleePopBytes = NumBytes; 3340 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3341 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3342 InFlag, DL); 3343 if (!Ins.empty()) 3344 InFlag = Chain.getValue(1); 3345 3346 // Handle result values, copying them out of physregs into vregs that we 3347 // return. 3348 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3349 InVals, IsThisReturn, 3350 IsThisReturn ? OutVals[0] : SDValue()); 3351 } 3352 3353 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3354 // except for applying the wave size scale to the increment amount. 3355 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3356 SDValue Op, SelectionDAG &DAG) const { 3357 const MachineFunction &MF = DAG.getMachineFunction(); 3358 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3359 3360 SDLoc dl(Op); 3361 EVT VT = Op.getValueType(); 3362 SDValue Tmp1 = Op; 3363 SDValue Tmp2 = Op.getValue(1); 3364 SDValue Tmp3 = Op.getOperand(2); 3365 SDValue Chain = Tmp1.getOperand(0); 3366 3367 Register SPReg = Info->getStackPtrOffsetReg(); 3368 3369 // Chain the dynamic stack allocation so that it doesn't modify the stack 3370 // pointer when other instructions are using the stack. 3371 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3372 3373 SDValue Size = Tmp2.getOperand(1); 3374 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3375 Chain = SP.getValue(1); 3376 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3377 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3378 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3379 unsigned Opc = 3380 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3381 ISD::ADD : ISD::SUB; 3382 3383 SDValue ScaledSize = DAG.getNode( 3384 ISD::SHL, dl, VT, Size, 3385 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3386 3387 Align StackAlign = TFL->getStackAlign(); 3388 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3389 if (Alignment && *Alignment > StackAlign) { 3390 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3391 DAG.getConstant(-(uint64_t)Alignment->value() 3392 << ST.getWavefrontSizeLog2(), 3393 dl, VT)); 3394 } 3395 3396 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3397 Tmp2 = DAG.getCALLSEQ_END( 3398 Chain, DAG.getIntPtrConstant(0, dl, true), 3399 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3400 3401 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3402 } 3403 3404 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3405 SelectionDAG &DAG) const { 3406 // We only handle constant sizes here to allow non-entry block, static sized 3407 // allocas. A truly dynamic value is more difficult to support because we 3408 // don't know if the size value is uniform or not. If the size isn't uniform, 3409 // we would need to do a wave reduction to get the maximum size to know how 3410 // much to increment the uniform stack pointer. 3411 SDValue Size = Op.getOperand(1); 3412 if (isa<ConstantSDNode>(Size)) 3413 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3414 3415 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3416 } 3417 3418 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3419 const MachineFunction &MF) const { 3420 Register Reg = StringSwitch<Register>(RegName) 3421 .Case("m0", AMDGPU::M0) 3422 .Case("exec", AMDGPU::EXEC) 3423 .Case("exec_lo", AMDGPU::EXEC_LO) 3424 .Case("exec_hi", AMDGPU::EXEC_HI) 3425 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3426 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3427 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3428 .Default(Register()); 3429 3430 if (Reg == AMDGPU::NoRegister) { 3431 report_fatal_error(Twine("invalid register name \"" 3432 + StringRef(RegName) + "\".")); 3433 3434 } 3435 3436 if (!Subtarget->hasFlatScrRegister() && 3437 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3438 report_fatal_error(Twine("invalid register \"" 3439 + StringRef(RegName) + "\" for subtarget.")); 3440 } 3441 3442 switch (Reg) { 3443 case AMDGPU::M0: 3444 case AMDGPU::EXEC_LO: 3445 case AMDGPU::EXEC_HI: 3446 case AMDGPU::FLAT_SCR_LO: 3447 case AMDGPU::FLAT_SCR_HI: 3448 if (VT.getSizeInBits() == 32) 3449 return Reg; 3450 break; 3451 case AMDGPU::EXEC: 3452 case AMDGPU::FLAT_SCR: 3453 if (VT.getSizeInBits() == 64) 3454 return Reg; 3455 break; 3456 default: 3457 llvm_unreachable("missing register type checking"); 3458 } 3459 3460 report_fatal_error(Twine("invalid type for register \"" 3461 + StringRef(RegName) + "\".")); 3462 } 3463 3464 // If kill is not the last instruction, split the block so kill is always a 3465 // proper terminator. 3466 MachineBasicBlock * 3467 SITargetLowering::splitKillBlock(MachineInstr &MI, 3468 MachineBasicBlock *BB) const { 3469 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3470 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3471 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3472 return SplitBB; 3473 } 3474 3475 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3476 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3477 // be the first instruction in the remainder block. 3478 // 3479 /// \returns { LoopBody, Remainder } 3480 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3481 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3482 MachineFunction *MF = MBB.getParent(); 3483 MachineBasicBlock::iterator I(&MI); 3484 3485 // To insert the loop we need to split the block. Move everything after this 3486 // point to a new block, and insert a new empty block between the two. 3487 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3488 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3489 MachineFunction::iterator MBBI(MBB); 3490 ++MBBI; 3491 3492 MF->insert(MBBI, LoopBB); 3493 MF->insert(MBBI, RemainderBB); 3494 3495 LoopBB->addSuccessor(LoopBB); 3496 LoopBB->addSuccessor(RemainderBB); 3497 3498 // Move the rest of the block into a new block. 3499 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3500 3501 if (InstInLoop) { 3502 auto Next = std::next(I); 3503 3504 // Move instruction to loop body. 3505 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3506 3507 // Move the rest of the block. 3508 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3509 } else { 3510 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3511 } 3512 3513 MBB.addSuccessor(LoopBB); 3514 3515 return std::make_pair(LoopBB, RemainderBB); 3516 } 3517 3518 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3519 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3520 MachineBasicBlock *MBB = MI.getParent(); 3521 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3522 auto I = MI.getIterator(); 3523 auto E = std::next(I); 3524 3525 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3526 .addImm(0); 3527 3528 MIBundleBuilder Bundler(*MBB, I, E); 3529 finalizeBundle(*MBB, Bundler.begin()); 3530 } 3531 3532 MachineBasicBlock * 3533 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3534 MachineBasicBlock *BB) const { 3535 const DebugLoc &DL = MI.getDebugLoc(); 3536 3537 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3538 3539 MachineBasicBlock *LoopBB; 3540 MachineBasicBlock *RemainderBB; 3541 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3542 3543 // Apparently kill flags are only valid if the def is in the same block? 3544 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3545 Src->setIsKill(false); 3546 3547 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3548 3549 MachineBasicBlock::iterator I = LoopBB->end(); 3550 3551 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3552 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3553 3554 // Clear TRAP_STS.MEM_VIOL 3555 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3556 .addImm(0) 3557 .addImm(EncodedReg); 3558 3559 bundleInstWithWaitcnt(MI); 3560 3561 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3562 3563 // Load and check TRAP_STS.MEM_VIOL 3564 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3565 .addImm(EncodedReg); 3566 3567 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3568 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3569 .addReg(Reg, RegState::Kill) 3570 .addImm(0); 3571 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3572 .addMBB(LoopBB); 3573 3574 return RemainderBB; 3575 } 3576 3577 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3578 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3579 // will only do one iteration. In the worst case, this will loop 64 times. 3580 // 3581 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3582 static MachineBasicBlock::iterator 3583 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3584 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3585 const DebugLoc &DL, const MachineOperand &Idx, 3586 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3587 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3588 Register &SGPRIdxReg) { 3589 3590 MachineFunction *MF = OrigBB.getParent(); 3591 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3592 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3593 MachineBasicBlock::iterator I = LoopBB.begin(); 3594 3595 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3596 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3597 Register NewExec = MRI.createVirtualRegister(BoolRC); 3598 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3599 Register CondReg = MRI.createVirtualRegister(BoolRC); 3600 3601 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3602 .addReg(InitReg) 3603 .addMBB(&OrigBB) 3604 .addReg(ResultReg) 3605 .addMBB(&LoopBB); 3606 3607 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3608 .addReg(InitSaveExecReg) 3609 .addMBB(&OrigBB) 3610 .addReg(NewExec) 3611 .addMBB(&LoopBB); 3612 3613 // Read the next variant <- also loop target. 3614 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3615 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3616 3617 // Compare the just read M0 value to all possible Idx values. 3618 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3619 .addReg(CurrentIdxReg) 3620 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3621 3622 // Update EXEC, save the original EXEC value to VCC. 3623 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3624 : AMDGPU::S_AND_SAVEEXEC_B64), 3625 NewExec) 3626 .addReg(CondReg, RegState::Kill); 3627 3628 MRI.setSimpleHint(NewExec, CondReg); 3629 3630 if (UseGPRIdxMode) { 3631 if (Offset == 0) { 3632 SGPRIdxReg = CurrentIdxReg; 3633 } else { 3634 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3635 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3636 .addReg(CurrentIdxReg, RegState::Kill) 3637 .addImm(Offset); 3638 } 3639 } else { 3640 // Move index from VCC into M0 3641 if (Offset == 0) { 3642 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3643 .addReg(CurrentIdxReg, RegState::Kill); 3644 } else { 3645 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3646 .addReg(CurrentIdxReg, RegState::Kill) 3647 .addImm(Offset); 3648 } 3649 } 3650 3651 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3652 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3653 MachineInstr *InsertPt = 3654 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3655 : AMDGPU::S_XOR_B64_term), Exec) 3656 .addReg(Exec) 3657 .addReg(NewExec); 3658 3659 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3660 // s_cbranch_scc0? 3661 3662 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3663 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3664 .addMBB(&LoopBB); 3665 3666 return InsertPt->getIterator(); 3667 } 3668 3669 // This has slightly sub-optimal regalloc when the source vector is killed by 3670 // the read. The register allocator does not understand that the kill is 3671 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3672 // subregister from it, using 1 more VGPR than necessary. This was saved when 3673 // this was expanded after register allocation. 3674 static MachineBasicBlock::iterator 3675 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3676 unsigned InitResultReg, unsigned PhiReg, int Offset, 3677 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3678 MachineFunction *MF = MBB.getParent(); 3679 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3680 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3681 MachineRegisterInfo &MRI = MF->getRegInfo(); 3682 const DebugLoc &DL = MI.getDebugLoc(); 3683 MachineBasicBlock::iterator I(&MI); 3684 3685 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3686 Register DstReg = MI.getOperand(0).getReg(); 3687 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3688 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3689 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3690 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3691 3692 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3693 3694 // Save the EXEC mask 3695 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3696 .addReg(Exec); 3697 3698 MachineBasicBlock *LoopBB; 3699 MachineBasicBlock *RemainderBB; 3700 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3701 3702 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3703 3704 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3705 InitResultReg, DstReg, PhiReg, TmpExec, 3706 Offset, UseGPRIdxMode, SGPRIdxReg); 3707 3708 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3709 MachineFunction::iterator MBBI(LoopBB); 3710 ++MBBI; 3711 MF->insert(MBBI, LandingPad); 3712 LoopBB->removeSuccessor(RemainderBB); 3713 LandingPad->addSuccessor(RemainderBB); 3714 LoopBB->addSuccessor(LandingPad); 3715 MachineBasicBlock::iterator First = LandingPad->begin(); 3716 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3717 .addReg(SaveExec); 3718 3719 return InsPt; 3720 } 3721 3722 // Returns subreg index, offset 3723 static std::pair<unsigned, int> 3724 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3725 const TargetRegisterClass *SuperRC, 3726 unsigned VecReg, 3727 int Offset) { 3728 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3729 3730 // Skip out of bounds offsets, or else we would end up using an undefined 3731 // register. 3732 if (Offset >= NumElts || Offset < 0) 3733 return std::make_pair(AMDGPU::sub0, Offset); 3734 3735 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3736 } 3737 3738 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3739 MachineRegisterInfo &MRI, MachineInstr &MI, 3740 int Offset) { 3741 MachineBasicBlock *MBB = MI.getParent(); 3742 const DebugLoc &DL = MI.getDebugLoc(); 3743 MachineBasicBlock::iterator I(&MI); 3744 3745 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3746 3747 assert(Idx->getReg() != AMDGPU::NoRegister); 3748 3749 if (Offset == 0) { 3750 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3751 } else { 3752 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3753 .add(*Idx) 3754 .addImm(Offset); 3755 } 3756 } 3757 3758 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3759 MachineRegisterInfo &MRI, MachineInstr &MI, 3760 int Offset) { 3761 MachineBasicBlock *MBB = MI.getParent(); 3762 const DebugLoc &DL = MI.getDebugLoc(); 3763 MachineBasicBlock::iterator I(&MI); 3764 3765 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3766 3767 if (Offset == 0) 3768 return Idx->getReg(); 3769 3770 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3771 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3772 .add(*Idx) 3773 .addImm(Offset); 3774 return Tmp; 3775 } 3776 3777 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3778 MachineBasicBlock &MBB, 3779 const GCNSubtarget &ST) { 3780 const SIInstrInfo *TII = ST.getInstrInfo(); 3781 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3782 MachineFunction *MF = MBB.getParent(); 3783 MachineRegisterInfo &MRI = MF->getRegInfo(); 3784 3785 Register Dst = MI.getOperand(0).getReg(); 3786 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3787 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3788 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3789 3790 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3791 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3792 3793 unsigned SubReg; 3794 std::tie(SubReg, Offset) 3795 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3796 3797 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3798 3799 // Check for a SGPR index. 3800 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3801 MachineBasicBlock::iterator I(&MI); 3802 const DebugLoc &DL = MI.getDebugLoc(); 3803 3804 if (UseGPRIdxMode) { 3805 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3806 // to avoid interfering with other uses, so probably requires a new 3807 // optimization pass. 3808 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3809 3810 const MCInstrDesc &GPRIDXDesc = 3811 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3812 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3813 .addReg(SrcReg) 3814 .addReg(Idx) 3815 .addImm(SubReg); 3816 } else { 3817 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3818 3819 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3820 .addReg(SrcReg, 0, SubReg) 3821 .addReg(SrcReg, RegState::Implicit); 3822 } 3823 3824 MI.eraseFromParent(); 3825 3826 return &MBB; 3827 } 3828 3829 // Control flow needs to be inserted if indexing with a VGPR. 3830 const DebugLoc &DL = MI.getDebugLoc(); 3831 MachineBasicBlock::iterator I(&MI); 3832 3833 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3834 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3835 3836 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3837 3838 Register SGPRIdxReg; 3839 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3840 UseGPRIdxMode, SGPRIdxReg); 3841 3842 MachineBasicBlock *LoopBB = InsPt->getParent(); 3843 3844 if (UseGPRIdxMode) { 3845 const MCInstrDesc &GPRIDXDesc = 3846 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3847 3848 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3849 .addReg(SrcReg) 3850 .addReg(SGPRIdxReg) 3851 .addImm(SubReg); 3852 } else { 3853 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3854 .addReg(SrcReg, 0, SubReg) 3855 .addReg(SrcReg, RegState::Implicit); 3856 } 3857 3858 MI.eraseFromParent(); 3859 3860 return LoopBB; 3861 } 3862 3863 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3864 MachineBasicBlock &MBB, 3865 const GCNSubtarget &ST) { 3866 const SIInstrInfo *TII = ST.getInstrInfo(); 3867 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3868 MachineFunction *MF = MBB.getParent(); 3869 MachineRegisterInfo &MRI = MF->getRegInfo(); 3870 3871 Register Dst = MI.getOperand(0).getReg(); 3872 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3873 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3874 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3875 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3876 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3877 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3878 3879 // This can be an immediate, but will be folded later. 3880 assert(Val->getReg()); 3881 3882 unsigned SubReg; 3883 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3884 SrcVec->getReg(), 3885 Offset); 3886 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3887 3888 if (Idx->getReg() == AMDGPU::NoRegister) { 3889 MachineBasicBlock::iterator I(&MI); 3890 const DebugLoc &DL = MI.getDebugLoc(); 3891 3892 assert(Offset == 0); 3893 3894 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3895 .add(*SrcVec) 3896 .add(*Val) 3897 .addImm(SubReg); 3898 3899 MI.eraseFromParent(); 3900 return &MBB; 3901 } 3902 3903 // Check for a SGPR index. 3904 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3905 MachineBasicBlock::iterator I(&MI); 3906 const DebugLoc &DL = MI.getDebugLoc(); 3907 3908 if (UseGPRIdxMode) { 3909 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3910 3911 const MCInstrDesc &GPRIDXDesc = 3912 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3913 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3914 .addReg(SrcVec->getReg()) 3915 .add(*Val) 3916 .addReg(Idx) 3917 .addImm(SubReg); 3918 } else { 3919 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3920 3921 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3922 TRI.getRegSizeInBits(*VecRC), 32, false); 3923 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3924 .addReg(SrcVec->getReg()) 3925 .add(*Val) 3926 .addImm(SubReg); 3927 } 3928 MI.eraseFromParent(); 3929 return &MBB; 3930 } 3931 3932 // Control flow needs to be inserted if indexing with a VGPR. 3933 if (Val->isReg()) 3934 MRI.clearKillFlags(Val->getReg()); 3935 3936 const DebugLoc &DL = MI.getDebugLoc(); 3937 3938 Register PhiReg = MRI.createVirtualRegister(VecRC); 3939 3940 Register SGPRIdxReg; 3941 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 3942 UseGPRIdxMode, SGPRIdxReg); 3943 MachineBasicBlock *LoopBB = InsPt->getParent(); 3944 3945 if (UseGPRIdxMode) { 3946 const MCInstrDesc &GPRIDXDesc = 3947 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3948 3949 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3950 .addReg(PhiReg) 3951 .add(*Val) 3952 .addReg(SGPRIdxReg) 3953 .addImm(AMDGPU::sub0); 3954 } else { 3955 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3956 TRI.getRegSizeInBits(*VecRC), 32, false); 3957 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3958 .addReg(PhiReg) 3959 .add(*Val) 3960 .addImm(AMDGPU::sub0); 3961 } 3962 3963 MI.eraseFromParent(); 3964 return LoopBB; 3965 } 3966 3967 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3968 MachineInstr &MI, MachineBasicBlock *BB) const { 3969 3970 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3971 MachineFunction *MF = BB->getParent(); 3972 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3973 3974 switch (MI.getOpcode()) { 3975 case AMDGPU::S_UADDO_PSEUDO: 3976 case AMDGPU::S_USUBO_PSEUDO: { 3977 const DebugLoc &DL = MI.getDebugLoc(); 3978 MachineOperand &Dest0 = MI.getOperand(0); 3979 MachineOperand &Dest1 = MI.getOperand(1); 3980 MachineOperand &Src0 = MI.getOperand(2); 3981 MachineOperand &Src1 = MI.getOperand(3); 3982 3983 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3984 ? AMDGPU::S_ADD_I32 3985 : AMDGPU::S_SUB_I32; 3986 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3987 3988 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3989 .addImm(1) 3990 .addImm(0); 3991 3992 MI.eraseFromParent(); 3993 return BB; 3994 } 3995 case AMDGPU::S_ADD_U64_PSEUDO: 3996 case AMDGPU::S_SUB_U64_PSEUDO: { 3997 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3998 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3999 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4000 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4001 const DebugLoc &DL = MI.getDebugLoc(); 4002 4003 MachineOperand &Dest = MI.getOperand(0); 4004 MachineOperand &Src0 = MI.getOperand(1); 4005 MachineOperand &Src1 = MI.getOperand(2); 4006 4007 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4008 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4009 4010 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4011 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4012 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4013 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4014 4015 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4016 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4017 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4018 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4019 4020 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4021 4022 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4023 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4024 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 4025 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 4026 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4027 .addReg(DestSub0) 4028 .addImm(AMDGPU::sub0) 4029 .addReg(DestSub1) 4030 .addImm(AMDGPU::sub1); 4031 MI.eraseFromParent(); 4032 return BB; 4033 } 4034 case AMDGPU::V_ADD_U64_PSEUDO: 4035 case AMDGPU::V_SUB_U64_PSEUDO: { 4036 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4037 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4038 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4039 const DebugLoc &DL = MI.getDebugLoc(); 4040 4041 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4042 4043 MachineOperand &Dest = MI.getOperand(0); 4044 MachineOperand &Src0 = MI.getOperand(1); 4045 MachineOperand &Src1 = MI.getOperand(2); 4046 4047 if (IsAdd && ST.hasLshlAddB64()) { 4048 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), 4049 Dest.getReg()) 4050 .add(Src0) 4051 .addImm(0) 4052 .add(Src1); 4053 TII->legalizeOperands(*Add); 4054 MI.eraseFromParent(); 4055 return BB; 4056 } 4057 4058 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4059 4060 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4061 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4062 4063 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4064 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4065 4066 const TargetRegisterClass *Src0RC = Src0.isReg() 4067 ? MRI.getRegClass(Src0.getReg()) 4068 : &AMDGPU::VReg_64RegClass; 4069 const TargetRegisterClass *Src1RC = Src1.isReg() 4070 ? MRI.getRegClass(Src1.getReg()) 4071 : &AMDGPU::VReg_64RegClass; 4072 4073 const TargetRegisterClass *Src0SubRC = 4074 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 4075 const TargetRegisterClass *Src1SubRC = 4076 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 4077 4078 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4079 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4080 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4081 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4082 4083 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4084 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4085 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4086 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4087 4088 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4089 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4090 .addReg(CarryReg, RegState::Define) 4091 .add(SrcReg0Sub0) 4092 .add(SrcReg1Sub0) 4093 .addImm(0); // clamp bit 4094 4095 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4096 MachineInstr *HiHalf = 4097 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4098 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4099 .add(SrcReg0Sub1) 4100 .add(SrcReg1Sub1) 4101 .addReg(CarryReg, RegState::Kill) 4102 .addImm(0); // clamp bit 4103 4104 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4105 .addReg(DestSub0) 4106 .addImm(AMDGPU::sub0) 4107 .addReg(DestSub1) 4108 .addImm(AMDGPU::sub1); 4109 TII->legalizeOperands(*LoHalf); 4110 TII->legalizeOperands(*HiHalf); 4111 MI.eraseFromParent(); 4112 return BB; 4113 } 4114 case AMDGPU::S_ADD_CO_PSEUDO: 4115 case AMDGPU::S_SUB_CO_PSEUDO: { 4116 // This pseudo has a chance to be selected 4117 // only from uniform add/subcarry node. All the VGPR operands 4118 // therefore assumed to be splat vectors. 4119 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4120 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4121 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4122 MachineBasicBlock::iterator MII = MI; 4123 const DebugLoc &DL = MI.getDebugLoc(); 4124 MachineOperand &Dest = MI.getOperand(0); 4125 MachineOperand &CarryDest = MI.getOperand(1); 4126 MachineOperand &Src0 = MI.getOperand(2); 4127 MachineOperand &Src1 = MI.getOperand(3); 4128 MachineOperand &Src2 = MI.getOperand(4); 4129 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4130 ? AMDGPU::S_ADDC_U32 4131 : AMDGPU::S_SUBB_U32; 4132 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4133 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4134 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4135 .addReg(Src0.getReg()); 4136 Src0.setReg(RegOp0); 4137 } 4138 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4139 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4140 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4141 .addReg(Src1.getReg()); 4142 Src1.setReg(RegOp1); 4143 } 4144 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4145 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4146 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4147 .addReg(Src2.getReg()); 4148 Src2.setReg(RegOp2); 4149 } 4150 4151 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4152 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4153 assert(WaveSize == 64 || WaveSize == 32); 4154 4155 if (WaveSize == 64) { 4156 if (ST.hasScalarCompareEq64()) { 4157 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4158 .addReg(Src2.getReg()) 4159 .addImm(0); 4160 } else { 4161 const TargetRegisterClass *SubRC = 4162 TRI->getSubRegClass(Src2RC, AMDGPU::sub0); 4163 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4164 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4165 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4166 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4167 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4168 4169 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4170 .add(Src2Sub0) 4171 .add(Src2Sub1); 4172 4173 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4174 .addReg(Src2_32, RegState::Kill) 4175 .addImm(0); 4176 } 4177 } else { 4178 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 4179 .addReg(Src2.getReg()) 4180 .addImm(0); 4181 } 4182 4183 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4184 4185 unsigned SelOpc = 4186 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4187 4188 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4189 .addImm(-1) 4190 .addImm(0); 4191 4192 MI.eraseFromParent(); 4193 return BB; 4194 } 4195 case AMDGPU::SI_INIT_M0: { 4196 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4197 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4198 .add(MI.getOperand(0)); 4199 MI.eraseFromParent(); 4200 return BB; 4201 } 4202 case AMDGPU::GET_GROUPSTATICSIZE: { 4203 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4204 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4205 DebugLoc DL = MI.getDebugLoc(); 4206 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4207 .add(MI.getOperand(0)) 4208 .addImm(MFI->getLDSSize()); 4209 MI.eraseFromParent(); 4210 return BB; 4211 } 4212 case AMDGPU::SI_INDIRECT_SRC_V1: 4213 case AMDGPU::SI_INDIRECT_SRC_V2: 4214 case AMDGPU::SI_INDIRECT_SRC_V4: 4215 case AMDGPU::SI_INDIRECT_SRC_V8: 4216 case AMDGPU::SI_INDIRECT_SRC_V16: 4217 case AMDGPU::SI_INDIRECT_SRC_V32: 4218 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4219 case AMDGPU::SI_INDIRECT_DST_V1: 4220 case AMDGPU::SI_INDIRECT_DST_V2: 4221 case AMDGPU::SI_INDIRECT_DST_V4: 4222 case AMDGPU::SI_INDIRECT_DST_V8: 4223 case AMDGPU::SI_INDIRECT_DST_V16: 4224 case AMDGPU::SI_INDIRECT_DST_V32: 4225 return emitIndirectDst(MI, *BB, *getSubtarget()); 4226 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4227 case AMDGPU::SI_KILL_I1_PSEUDO: 4228 return splitKillBlock(MI, BB); 4229 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4230 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4231 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4232 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4233 4234 Register Dst = MI.getOperand(0).getReg(); 4235 Register Src0 = MI.getOperand(1).getReg(); 4236 Register Src1 = MI.getOperand(2).getReg(); 4237 const DebugLoc &DL = MI.getDebugLoc(); 4238 Register SrcCond = MI.getOperand(3).getReg(); 4239 4240 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4241 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4242 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4243 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4244 4245 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4246 .addReg(SrcCond); 4247 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4248 .addImm(0) 4249 .addReg(Src0, 0, AMDGPU::sub0) 4250 .addImm(0) 4251 .addReg(Src1, 0, AMDGPU::sub0) 4252 .addReg(SrcCondCopy); 4253 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4254 .addImm(0) 4255 .addReg(Src0, 0, AMDGPU::sub1) 4256 .addImm(0) 4257 .addReg(Src1, 0, AMDGPU::sub1) 4258 .addReg(SrcCondCopy); 4259 4260 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4261 .addReg(DstLo) 4262 .addImm(AMDGPU::sub0) 4263 .addReg(DstHi) 4264 .addImm(AMDGPU::sub1); 4265 MI.eraseFromParent(); 4266 return BB; 4267 } 4268 case AMDGPU::SI_BR_UNDEF: { 4269 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4270 const DebugLoc &DL = MI.getDebugLoc(); 4271 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4272 .add(MI.getOperand(0)); 4273 Br->getOperand(1).setIsUndef(true); // read undef SCC 4274 MI.eraseFromParent(); 4275 return BB; 4276 } 4277 case AMDGPU::ADJCALLSTACKUP: 4278 case AMDGPU::ADJCALLSTACKDOWN: { 4279 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4280 MachineInstrBuilder MIB(*MF, &MI); 4281 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4282 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4283 return BB; 4284 } 4285 case AMDGPU::SI_CALL_ISEL: { 4286 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4287 const DebugLoc &DL = MI.getDebugLoc(); 4288 4289 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4290 4291 MachineInstrBuilder MIB; 4292 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4293 4294 for (const MachineOperand &MO : MI.operands()) 4295 MIB.add(MO); 4296 4297 MIB.cloneMemRefs(MI); 4298 MI.eraseFromParent(); 4299 return BB; 4300 } 4301 case AMDGPU::V_ADD_CO_U32_e32: 4302 case AMDGPU::V_SUB_CO_U32_e32: 4303 case AMDGPU::V_SUBREV_CO_U32_e32: { 4304 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4305 const DebugLoc &DL = MI.getDebugLoc(); 4306 unsigned Opc = MI.getOpcode(); 4307 4308 bool NeedClampOperand = false; 4309 if (TII->pseudoToMCOpcode(Opc) == -1) { 4310 Opc = AMDGPU::getVOPe64(Opc); 4311 NeedClampOperand = true; 4312 } 4313 4314 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4315 if (TII->isVOP3(*I)) { 4316 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4317 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4318 I.addReg(TRI->getVCC(), RegState::Define); 4319 } 4320 I.add(MI.getOperand(1)) 4321 .add(MI.getOperand(2)); 4322 if (NeedClampOperand) 4323 I.addImm(0); // clamp bit for e64 encoding 4324 4325 TII->legalizeOperands(*I); 4326 4327 MI.eraseFromParent(); 4328 return BB; 4329 } 4330 case AMDGPU::V_ADDC_U32_e32: 4331 case AMDGPU::V_SUBB_U32_e32: 4332 case AMDGPU::V_SUBBREV_U32_e32: 4333 // These instructions have an implicit use of vcc which counts towards the 4334 // constant bus limit. 4335 TII->legalizeOperands(MI); 4336 return BB; 4337 case AMDGPU::DS_GWS_INIT: 4338 case AMDGPU::DS_GWS_SEMA_BR: 4339 case AMDGPU::DS_GWS_BARRIER: 4340 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); 4341 LLVM_FALLTHROUGH; 4342 case AMDGPU::DS_GWS_SEMA_V: 4343 case AMDGPU::DS_GWS_SEMA_P: 4344 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4345 // A s_waitcnt 0 is required to be the instruction immediately following. 4346 if (getSubtarget()->hasGWSAutoReplay()) { 4347 bundleInstWithWaitcnt(MI); 4348 return BB; 4349 } 4350 4351 return emitGWSMemViolTestLoop(MI, BB); 4352 case AMDGPU::S_SETREG_B32: { 4353 // Try to optimize cases that only set the denormal mode or rounding mode. 4354 // 4355 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4356 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4357 // instead. 4358 // 4359 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4360 // allow you to have a no side effect instruction in the output of a 4361 // sideeffecting pattern. 4362 unsigned ID, Offset, Width; 4363 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4364 if (ID != AMDGPU::Hwreg::ID_MODE) 4365 return BB; 4366 4367 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4368 const unsigned SetMask = WidthMask << Offset; 4369 4370 if (getSubtarget()->hasDenormModeInst()) { 4371 unsigned SetDenormOp = 0; 4372 unsigned SetRoundOp = 0; 4373 4374 // The dedicated instructions can only set the whole denorm or round mode 4375 // at once, not a subset of bits in either. 4376 if (SetMask == 4377 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4378 // If this fully sets both the round and denorm mode, emit the two 4379 // dedicated instructions for these. 4380 SetRoundOp = AMDGPU::S_ROUND_MODE; 4381 SetDenormOp = AMDGPU::S_DENORM_MODE; 4382 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4383 SetRoundOp = AMDGPU::S_ROUND_MODE; 4384 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4385 SetDenormOp = AMDGPU::S_DENORM_MODE; 4386 } 4387 4388 if (SetRoundOp || SetDenormOp) { 4389 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4390 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4391 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4392 unsigned ImmVal = Def->getOperand(1).getImm(); 4393 if (SetRoundOp) { 4394 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4395 .addImm(ImmVal & 0xf); 4396 4397 // If we also have the denorm mode, get just the denorm mode bits. 4398 ImmVal >>= 4; 4399 } 4400 4401 if (SetDenormOp) { 4402 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4403 .addImm(ImmVal & 0xf); 4404 } 4405 4406 MI.eraseFromParent(); 4407 return BB; 4408 } 4409 } 4410 } 4411 4412 // If only FP bits are touched, used the no side effects pseudo. 4413 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4414 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4415 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4416 4417 return BB; 4418 } 4419 default: 4420 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4421 } 4422 } 4423 4424 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4425 return isTypeLegal(VT.getScalarType()); 4426 } 4427 4428 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { 4429 switch (Op.getValue(0).getSimpleValueType().SimpleTy) { 4430 case MVT::f32: 4431 return Subtarget->hasAtomicFaddRtnInsts(); 4432 case MVT::v2f16: 4433 case MVT::f64: 4434 return Subtarget->hasGFX90AInsts(); 4435 default: 4436 return false; 4437 } 4438 } 4439 4440 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4441 // This currently forces unfolding various combinations of fsub into fma with 4442 // free fneg'd operands. As long as we have fast FMA (controlled by 4443 // isFMAFasterThanFMulAndFAdd), we should perform these. 4444 4445 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4446 // most of these combines appear to be cycle neutral but save on instruction 4447 // count / code size. 4448 return true; 4449 } 4450 4451 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 4452 4453 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4454 EVT VT) const { 4455 if (!VT.isVector()) { 4456 return MVT::i1; 4457 } 4458 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4459 } 4460 4461 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4462 // TODO: Should i16 be used always if legal? For now it would force VALU 4463 // shifts. 4464 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4465 } 4466 4467 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4468 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4469 ? Ty.changeElementSize(16) 4470 : Ty.changeElementSize(32); 4471 } 4472 4473 // Answering this is somewhat tricky and depends on the specific device which 4474 // have different rates for fma or all f64 operations. 4475 // 4476 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4477 // regardless of which device (although the number of cycles differs between 4478 // devices), so it is always profitable for f64. 4479 // 4480 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4481 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4482 // which we can always do even without fused FP ops since it returns the same 4483 // result as the separate operations and since it is always full 4484 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4485 // however does not support denormals, so we do report fma as faster if we have 4486 // a fast fma device and require denormals. 4487 // 4488 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4489 EVT VT) const { 4490 VT = VT.getScalarType(); 4491 4492 switch (VT.getSimpleVT().SimpleTy) { 4493 case MVT::f32: { 4494 // If mad is not available this depends only on if f32 fma is full rate. 4495 if (!Subtarget->hasMadMacF32Insts()) 4496 return Subtarget->hasFastFMAF32(); 4497 4498 // Otherwise f32 mad is always full rate and returns the same result as 4499 // the separate operations so should be preferred over fma. 4500 // However does not support denormals. 4501 if (hasFP32Denormals(MF)) 4502 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4503 4504 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4505 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4506 } 4507 case MVT::f64: 4508 return true; 4509 case MVT::f16: 4510 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4511 default: 4512 break; 4513 } 4514 4515 return false; 4516 } 4517 4518 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4519 LLT Ty) const { 4520 switch (Ty.getScalarSizeInBits()) { 4521 case 16: 4522 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 4523 case 32: 4524 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 4525 case 64: 4526 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 4527 default: 4528 break; 4529 } 4530 4531 return false; 4532 } 4533 4534 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 4535 if (!Ty.isScalar()) 4536 return false; 4537 4538 if (Ty.getScalarSizeInBits() == 16) 4539 return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); 4540 if (Ty.getScalarSizeInBits() == 32) 4541 return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); 4542 4543 return false; 4544 } 4545 4546 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4547 const SDNode *N) const { 4548 // TODO: Check future ftz flag 4549 // v_mad_f32/v_mac_f32 do not support denormals. 4550 EVT VT = N->getValueType(0); 4551 if (VT == MVT::f32) 4552 return Subtarget->hasMadMacF32Insts() && 4553 !hasFP32Denormals(DAG.getMachineFunction()); 4554 if (VT == MVT::f16) { 4555 return Subtarget->hasMadF16() && 4556 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4557 } 4558 4559 return false; 4560 } 4561 4562 //===----------------------------------------------------------------------===// 4563 // Custom DAG Lowering Operations 4564 //===----------------------------------------------------------------------===// 4565 4566 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4567 // wider vector type is legal. 4568 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4569 SelectionDAG &DAG) const { 4570 unsigned Opc = Op.getOpcode(); 4571 EVT VT = Op.getValueType(); 4572 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4573 4574 SDValue Lo, Hi; 4575 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4576 4577 SDLoc SL(Op); 4578 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4579 Op->getFlags()); 4580 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4581 Op->getFlags()); 4582 4583 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4584 } 4585 4586 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4587 // wider vector type is legal. 4588 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4589 SelectionDAG &DAG) const { 4590 unsigned Opc = Op.getOpcode(); 4591 EVT VT = Op.getValueType(); 4592 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4593 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 4594 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4595 VT == MVT::v32f32); 4596 4597 SDValue Lo0, Hi0; 4598 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4599 SDValue Lo1, Hi1; 4600 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4601 4602 SDLoc SL(Op); 4603 4604 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4605 Op->getFlags()); 4606 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4607 Op->getFlags()); 4608 4609 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4610 } 4611 4612 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4613 SelectionDAG &DAG) const { 4614 unsigned Opc = Op.getOpcode(); 4615 EVT VT = Op.getValueType(); 4616 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 4617 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || 4618 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4619 VT == MVT::v32f32); 4620 4621 SDValue Lo0, Hi0; 4622 SDValue Op0 = Op.getOperand(0); 4623 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 4624 ? DAG.SplitVectorOperand(Op.getNode(), 0) 4625 : std::make_pair(Op0, Op0); 4626 SDValue Lo1, Hi1; 4627 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4628 SDValue Lo2, Hi2; 4629 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4630 4631 SDLoc SL(Op); 4632 auto ResVT = DAG.GetSplitDestVTs(VT); 4633 4634 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 4635 Op->getFlags()); 4636 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 4637 Op->getFlags()); 4638 4639 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4640 } 4641 4642 4643 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4644 switch (Op.getOpcode()) { 4645 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4646 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4647 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4648 case ISD::LOAD: { 4649 SDValue Result = LowerLOAD(Op, DAG); 4650 assert((!Result.getNode() || 4651 Result.getNode()->getNumValues() == 2) && 4652 "Load should return a value and a chain"); 4653 return Result; 4654 } 4655 4656 case ISD::FSIN: 4657 case ISD::FCOS: 4658 return LowerTrig(Op, DAG); 4659 case ISD::SELECT: return LowerSELECT(Op, DAG); 4660 case ISD::FDIV: return LowerFDIV(Op, DAG); 4661 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4662 case ISD::STORE: return LowerSTORE(Op, DAG); 4663 case ISD::GlobalAddress: { 4664 MachineFunction &MF = DAG.getMachineFunction(); 4665 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4666 return LowerGlobalAddress(MFI, Op, DAG); 4667 } 4668 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4669 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4670 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4671 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4672 case ISD::INSERT_SUBVECTOR: 4673 return lowerINSERT_SUBVECTOR(Op, DAG); 4674 case ISD::INSERT_VECTOR_ELT: 4675 return lowerINSERT_VECTOR_ELT(Op, DAG); 4676 case ISD::EXTRACT_VECTOR_ELT: 4677 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4678 case ISD::VECTOR_SHUFFLE: 4679 return lowerVECTOR_SHUFFLE(Op, DAG); 4680 case ISD::SCALAR_TO_VECTOR: 4681 return lowerSCALAR_TO_VECTOR(Op, DAG); 4682 case ISD::BUILD_VECTOR: 4683 return lowerBUILD_VECTOR(Op, DAG); 4684 case ISD::FP_ROUND: 4685 return lowerFP_ROUND(Op, DAG); 4686 case ISD::FPTRUNC_ROUND: { 4687 unsigned Opc; 4688 SDLoc DL(Op); 4689 4690 if (Op.getOperand(0)->getValueType(0) != MVT::f32) 4691 return SDValue(); 4692 4693 // Get the rounding mode from the last operand 4694 int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4695 if (RoundMode == (int)RoundingMode::TowardPositive) 4696 Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; 4697 else if (RoundMode == (int)RoundingMode::TowardNegative) 4698 Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; 4699 else 4700 return SDValue(); 4701 4702 return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); 4703 } 4704 case ISD::TRAP: 4705 return lowerTRAP(Op, DAG); 4706 case ISD::DEBUGTRAP: 4707 return lowerDEBUGTRAP(Op, DAG); 4708 case ISD::FABS: 4709 case ISD::FNEG: 4710 case ISD::FCANONICALIZE: 4711 case ISD::BSWAP: 4712 return splitUnaryVectorOp(Op, DAG); 4713 case ISD::FMINNUM: 4714 case ISD::FMAXNUM: 4715 return lowerFMINNUM_FMAXNUM(Op, DAG); 4716 case ISD::FMA: 4717 return splitTernaryVectorOp(Op, DAG); 4718 case ISD::FP_TO_SINT: 4719 case ISD::FP_TO_UINT: 4720 return LowerFP_TO_INT(Op, DAG); 4721 case ISD::SHL: 4722 case ISD::SRA: 4723 case ISD::SRL: 4724 case ISD::ADD: 4725 case ISD::SUB: 4726 case ISD::MUL: 4727 case ISD::SMIN: 4728 case ISD::SMAX: 4729 case ISD::UMIN: 4730 case ISD::UMAX: 4731 case ISD::FADD: 4732 case ISD::FMUL: 4733 case ISD::FMINNUM_IEEE: 4734 case ISD::FMAXNUM_IEEE: 4735 case ISD::UADDSAT: 4736 case ISD::USUBSAT: 4737 case ISD::SADDSAT: 4738 case ISD::SSUBSAT: 4739 return splitBinaryVectorOp(Op, DAG); 4740 case ISD::SMULO: 4741 case ISD::UMULO: 4742 return lowerXMULO(Op, DAG); 4743 case ISD::SMUL_LOHI: 4744 case ISD::UMUL_LOHI: 4745 return lowerXMUL_LOHI(Op, DAG); 4746 case ISD::DYNAMIC_STACKALLOC: 4747 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4748 } 4749 return SDValue(); 4750 } 4751 4752 // Used for D16: Casts the result of an instruction into the right vector, 4753 // packs values if loads return unpacked values. 4754 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4755 const SDLoc &DL, 4756 SelectionDAG &DAG, bool Unpacked) { 4757 if (!LoadVT.isVector()) 4758 return Result; 4759 4760 // Cast back to the original packed type or to a larger type that is a 4761 // multiple of 32 bit for D16. Widening the return type is a required for 4762 // legalization. 4763 EVT FittingLoadVT = LoadVT; 4764 if ((LoadVT.getVectorNumElements() % 2) == 1) { 4765 FittingLoadVT = 4766 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4767 LoadVT.getVectorNumElements() + 1); 4768 } 4769 4770 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4771 // Truncate to v2i16/v4i16. 4772 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 4773 4774 // Workaround legalizer not scalarizing truncate after vector op 4775 // legalization but not creating intermediate vector trunc. 4776 SmallVector<SDValue, 4> Elts; 4777 DAG.ExtractVectorElements(Result, Elts); 4778 for (SDValue &Elt : Elts) 4779 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4780 4781 // Pad illegal v1i16/v3fi6 to v4i16 4782 if ((LoadVT.getVectorNumElements() % 2) == 1) 4783 Elts.push_back(DAG.getUNDEF(MVT::i16)); 4784 4785 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4786 4787 // Bitcast to original type (v2f16/v4f16). 4788 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4789 } 4790 4791 // Cast back to the original packed type. 4792 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4793 } 4794 4795 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4796 MemSDNode *M, 4797 SelectionDAG &DAG, 4798 ArrayRef<SDValue> Ops, 4799 bool IsIntrinsic) const { 4800 SDLoc DL(M); 4801 4802 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4803 EVT LoadVT = M->getValueType(0); 4804 4805 EVT EquivLoadVT = LoadVT; 4806 if (LoadVT.isVector()) { 4807 if (Unpacked) { 4808 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4809 LoadVT.getVectorNumElements()); 4810 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 4811 // Widen v3f16 to legal type 4812 EquivLoadVT = 4813 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4814 LoadVT.getVectorNumElements() + 1); 4815 } 4816 } 4817 4818 // Change from v4f16/v2f16 to EquivLoadVT. 4819 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4820 4821 SDValue Load 4822 = DAG.getMemIntrinsicNode( 4823 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4824 VTList, Ops, M->getMemoryVT(), 4825 M->getMemOperand()); 4826 4827 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4828 4829 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4830 } 4831 4832 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4833 SelectionDAG &DAG, 4834 ArrayRef<SDValue> Ops) const { 4835 SDLoc DL(M); 4836 EVT LoadVT = M->getValueType(0); 4837 EVT EltType = LoadVT.getScalarType(); 4838 EVT IntVT = LoadVT.changeTypeToInteger(); 4839 4840 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4841 4842 unsigned Opc = 4843 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4844 4845 if (IsD16) { 4846 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4847 } 4848 4849 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4850 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4851 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4852 4853 if (isTypeLegal(LoadVT)) { 4854 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4855 M->getMemOperand(), DAG); 4856 } 4857 4858 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4859 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4860 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4861 M->getMemOperand(), DAG); 4862 return DAG.getMergeValues( 4863 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4864 DL); 4865 } 4866 4867 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4868 SDNode *N, SelectionDAG &DAG) { 4869 EVT VT = N->getValueType(0); 4870 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4871 unsigned CondCode = CD->getZExtValue(); 4872 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4873 return DAG.getUNDEF(VT); 4874 4875 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4876 4877 SDValue LHS = N->getOperand(1); 4878 SDValue RHS = N->getOperand(2); 4879 4880 SDLoc DL(N); 4881 4882 EVT CmpVT = LHS.getValueType(); 4883 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4884 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4885 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4886 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4887 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4888 } 4889 4890 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4891 4892 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4893 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4894 4895 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4896 DAG.getCondCode(CCOpcode)); 4897 if (VT.bitsEq(CCVT)) 4898 return SetCC; 4899 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4900 } 4901 4902 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4903 SDNode *N, SelectionDAG &DAG) { 4904 EVT VT = N->getValueType(0); 4905 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4906 4907 unsigned CondCode = CD->getZExtValue(); 4908 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4909 return DAG.getUNDEF(VT); 4910 4911 SDValue Src0 = N->getOperand(1); 4912 SDValue Src1 = N->getOperand(2); 4913 EVT CmpVT = Src0.getValueType(); 4914 SDLoc SL(N); 4915 4916 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4917 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4918 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4919 } 4920 4921 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4922 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4923 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4924 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4925 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4926 Src1, DAG.getCondCode(CCOpcode)); 4927 if (VT.bitsEq(CCVT)) 4928 return SetCC; 4929 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4930 } 4931 4932 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4933 SelectionDAG &DAG) { 4934 EVT VT = N->getValueType(0); 4935 SDValue Src = N->getOperand(1); 4936 SDLoc SL(N); 4937 4938 if (Src.getOpcode() == ISD::SETCC) { 4939 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4940 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4941 Src.getOperand(1), Src.getOperand(2)); 4942 } 4943 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4944 // (ballot 0) -> 0 4945 if (Arg->isZero()) 4946 return DAG.getConstant(0, SL, VT); 4947 4948 // (ballot 1) -> EXEC/EXEC_LO 4949 if (Arg->isOne()) { 4950 Register Exec; 4951 if (VT.getScalarSizeInBits() == 32) 4952 Exec = AMDGPU::EXEC_LO; 4953 else if (VT.getScalarSizeInBits() == 64) 4954 Exec = AMDGPU::EXEC; 4955 else 4956 return SDValue(); 4957 4958 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4959 } 4960 } 4961 4962 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4963 // ISD::SETNE) 4964 return DAG.getNode( 4965 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4966 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4967 } 4968 4969 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4970 SmallVectorImpl<SDValue> &Results, 4971 SelectionDAG &DAG) const { 4972 switch (N->getOpcode()) { 4973 case ISD::INSERT_VECTOR_ELT: { 4974 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4975 Results.push_back(Res); 4976 return; 4977 } 4978 case ISD::EXTRACT_VECTOR_ELT: { 4979 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4980 Results.push_back(Res); 4981 return; 4982 } 4983 case ISD::INTRINSIC_WO_CHAIN: { 4984 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4985 switch (IID) { 4986 case Intrinsic::amdgcn_cvt_pkrtz: { 4987 SDValue Src0 = N->getOperand(1); 4988 SDValue Src1 = N->getOperand(2); 4989 SDLoc SL(N); 4990 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4991 Src0, Src1); 4992 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4993 return; 4994 } 4995 case Intrinsic::amdgcn_cvt_pknorm_i16: 4996 case Intrinsic::amdgcn_cvt_pknorm_u16: 4997 case Intrinsic::amdgcn_cvt_pk_i16: 4998 case Intrinsic::amdgcn_cvt_pk_u16: { 4999 SDValue Src0 = N->getOperand(1); 5000 SDValue Src1 = N->getOperand(2); 5001 SDLoc SL(N); 5002 unsigned Opcode; 5003 5004 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5005 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5006 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5007 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5008 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5009 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5010 else 5011 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5012 5013 EVT VT = N->getValueType(0); 5014 if (isTypeLegal(VT)) 5015 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5016 else { 5017 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5018 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5019 } 5020 return; 5021 } 5022 } 5023 break; 5024 } 5025 case ISD::INTRINSIC_W_CHAIN: { 5026 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5027 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5028 // FIXME: Hacky 5029 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5030 Results.push_back(Res.getOperand(I)); 5031 } 5032 } else { 5033 Results.push_back(Res); 5034 Results.push_back(Res.getValue(1)); 5035 } 5036 return; 5037 } 5038 5039 break; 5040 } 5041 case ISD::SELECT: { 5042 SDLoc SL(N); 5043 EVT VT = N->getValueType(0); 5044 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 5045 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 5046 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 5047 5048 EVT SelectVT = NewVT; 5049 if (NewVT.bitsLT(MVT::i32)) { 5050 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 5051 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 5052 SelectVT = MVT::i32; 5053 } 5054 5055 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 5056 N->getOperand(0), LHS, RHS); 5057 5058 if (NewVT != SelectVT) 5059 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 5060 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 5061 return; 5062 } 5063 case ISD::FNEG: { 5064 if (N->getValueType(0) != MVT::v2f16) 5065 break; 5066 5067 SDLoc SL(N); 5068 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5069 5070 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 5071 BC, 5072 DAG.getConstant(0x80008000, SL, MVT::i32)); 5073 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5074 return; 5075 } 5076 case ISD::FABS: { 5077 if (N->getValueType(0) != MVT::v2f16) 5078 break; 5079 5080 SDLoc SL(N); 5081 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5082 5083 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 5084 BC, 5085 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 5086 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5087 return; 5088 } 5089 default: 5090 break; 5091 } 5092 } 5093 5094 /// Helper function for LowerBRCOND 5095 static SDNode *findUser(SDValue Value, unsigned Opcode) { 5096 5097 SDNode *Parent = Value.getNode(); 5098 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 5099 I != E; ++I) { 5100 5101 if (I.getUse().get() != Value) 5102 continue; 5103 5104 if (I->getOpcode() == Opcode) 5105 return *I; 5106 } 5107 return nullptr; 5108 } 5109 5110 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 5111 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 5112 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 5113 case Intrinsic::amdgcn_if: 5114 return AMDGPUISD::IF; 5115 case Intrinsic::amdgcn_else: 5116 return AMDGPUISD::ELSE; 5117 case Intrinsic::amdgcn_loop: 5118 return AMDGPUISD::LOOP; 5119 case Intrinsic::amdgcn_end_cf: 5120 llvm_unreachable("should not occur"); 5121 default: 5122 return 0; 5123 } 5124 } 5125 5126 // break, if_break, else_break are all only used as inputs to loop, not 5127 // directly as branch conditions. 5128 return 0; 5129 } 5130 5131 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 5132 const Triple &TT = getTargetMachine().getTargetTriple(); 5133 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5134 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5135 AMDGPU::shouldEmitConstantsToTextSection(TT); 5136 } 5137 5138 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 5139 // FIXME: Either avoid relying on address space here or change the default 5140 // address space for functions to avoid the explicit check. 5141 return (GV->getValueType()->isFunctionTy() || 5142 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 5143 !shouldEmitFixup(GV) && 5144 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 5145 } 5146 5147 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 5148 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 5149 } 5150 5151 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 5152 if (!GV->hasExternalLinkage()) 5153 return true; 5154 5155 const auto OS = getTargetMachine().getTargetTriple().getOS(); 5156 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 5157 } 5158 5159 /// This transforms the control flow intrinsics to get the branch destination as 5160 /// last parameter, also switches branch target with BR if the need arise 5161 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 5162 SelectionDAG &DAG) const { 5163 SDLoc DL(BRCOND); 5164 5165 SDNode *Intr = BRCOND.getOperand(1).getNode(); 5166 SDValue Target = BRCOND.getOperand(2); 5167 SDNode *BR = nullptr; 5168 SDNode *SetCC = nullptr; 5169 5170 if (Intr->getOpcode() == ISD::SETCC) { 5171 // As long as we negate the condition everything is fine 5172 SetCC = Intr; 5173 Intr = SetCC->getOperand(0).getNode(); 5174 5175 } else { 5176 // Get the target from BR if we don't negate the condition 5177 BR = findUser(BRCOND, ISD::BR); 5178 assert(BR && "brcond missing unconditional branch user"); 5179 Target = BR->getOperand(1); 5180 } 5181 5182 unsigned CFNode = isCFIntrinsic(Intr); 5183 if (CFNode == 0) { 5184 // This is a uniform branch so we don't need to legalize. 5185 return BRCOND; 5186 } 5187 5188 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 5189 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 5190 5191 assert(!SetCC || 5192 (SetCC->getConstantOperandVal(1) == 1 && 5193 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 5194 ISD::SETNE)); 5195 5196 // operands of the new intrinsic call 5197 SmallVector<SDValue, 4> Ops; 5198 if (HaveChain) 5199 Ops.push_back(BRCOND.getOperand(0)); 5200 5201 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 5202 Ops.push_back(Target); 5203 5204 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 5205 5206 // build the new intrinsic call 5207 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 5208 5209 if (!HaveChain) { 5210 SDValue Ops[] = { 5211 SDValue(Result, 0), 5212 BRCOND.getOperand(0) 5213 }; 5214 5215 Result = DAG.getMergeValues(Ops, DL).getNode(); 5216 } 5217 5218 if (BR) { 5219 // Give the branch instruction our target 5220 SDValue Ops[] = { 5221 BR->getOperand(0), 5222 BRCOND.getOperand(2) 5223 }; 5224 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 5225 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 5226 } 5227 5228 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 5229 5230 // Copy the intrinsic results to registers 5231 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 5232 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 5233 if (!CopyToReg) 5234 continue; 5235 5236 Chain = DAG.getCopyToReg( 5237 Chain, DL, 5238 CopyToReg->getOperand(1), 5239 SDValue(Result, i - 1), 5240 SDValue()); 5241 5242 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 5243 } 5244 5245 // Remove the old intrinsic from the chain 5246 DAG.ReplaceAllUsesOfValueWith( 5247 SDValue(Intr, Intr->getNumValues() - 1), 5248 Intr->getOperand(0)); 5249 5250 return Chain; 5251 } 5252 5253 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 5254 SelectionDAG &DAG) const { 5255 MVT VT = Op.getSimpleValueType(); 5256 SDLoc DL(Op); 5257 // Checking the depth 5258 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 5259 return DAG.getConstant(0, DL, VT); 5260 5261 MachineFunction &MF = DAG.getMachineFunction(); 5262 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5263 // Check for kernel and shader functions 5264 if (Info->isEntryFunction()) 5265 return DAG.getConstant(0, DL, VT); 5266 5267 MachineFrameInfo &MFI = MF.getFrameInfo(); 5268 // There is a call to @llvm.returnaddress in this function 5269 MFI.setReturnAddressIsTaken(true); 5270 5271 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5272 // Get the return address reg and mark it as an implicit live-in 5273 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5274 5275 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5276 } 5277 5278 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5279 SDValue Op, 5280 const SDLoc &DL, 5281 EVT VT) const { 5282 return Op.getValueType().bitsLE(VT) ? 5283 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5284 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5285 DAG.getTargetConstant(0, DL, MVT::i32)); 5286 } 5287 5288 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5289 assert(Op.getValueType() == MVT::f16 && 5290 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5291 5292 SDValue Src = Op.getOperand(0); 5293 EVT SrcVT = Src.getValueType(); 5294 if (SrcVT != MVT::f64) 5295 return Op; 5296 5297 SDLoc DL(Op); 5298 5299 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5300 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5301 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5302 } 5303 5304 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5305 SelectionDAG &DAG) const { 5306 EVT VT = Op.getValueType(); 5307 const MachineFunction &MF = DAG.getMachineFunction(); 5308 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5309 bool IsIEEEMode = Info->getMode().IEEE; 5310 5311 // FIXME: Assert during selection that this is only selected for 5312 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5313 // mode functions, but this happens to be OK since it's only done in cases 5314 // where there is known no sNaN. 5315 if (IsIEEEMode) 5316 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5317 5318 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) 5319 return splitBinaryVectorOp(Op, DAG); 5320 return Op; 5321 } 5322 5323 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5324 EVT VT = Op.getValueType(); 5325 SDLoc SL(Op); 5326 SDValue LHS = Op.getOperand(0); 5327 SDValue RHS = Op.getOperand(1); 5328 bool isSigned = Op.getOpcode() == ISD::SMULO; 5329 5330 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5331 const APInt &C = RHSC->getAPIntValue(); 5332 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5333 if (C.isPowerOf2()) { 5334 // smulo(x, signed_min) is same as umulo(x, signed_min). 5335 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5336 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5337 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5338 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5339 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5340 SL, VT, Result, ShiftAmt), 5341 LHS, ISD::SETNE); 5342 return DAG.getMergeValues({ Result, Overflow }, SL); 5343 } 5344 } 5345 5346 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5347 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5348 SL, VT, LHS, RHS); 5349 5350 SDValue Sign = isSigned 5351 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5352 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5353 : DAG.getConstant(0, SL, VT); 5354 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5355 5356 return DAG.getMergeValues({ Result, Overflow }, SL); 5357 } 5358 5359 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 5360 if (Op->isDivergent()) { 5361 // Select to V_MAD_[IU]64_[IU]32. 5362 return Op; 5363 } 5364 if (Subtarget->hasSMulHi()) { 5365 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 5366 return SDValue(); 5367 } 5368 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 5369 // calculate the high part, so we might as well do the whole thing with 5370 // V_MAD_[IU]64_[IU]32. 5371 return Op; 5372 } 5373 5374 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5375 if (!Subtarget->isTrapHandlerEnabled() || 5376 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 5377 return lowerTrapEndpgm(Op, DAG); 5378 5379 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { 5380 switch (*HsaAbiVer) { 5381 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 5382 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 5383 return lowerTrapHsaQueuePtr(Op, DAG); 5384 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 5385 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 5386 return Subtarget->supportsGetDoorbellID() ? 5387 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); 5388 } 5389 } 5390 5391 llvm_unreachable("Unknown trap handler"); 5392 } 5393 5394 SDValue SITargetLowering::lowerTrapEndpgm( 5395 SDValue Op, SelectionDAG &DAG) const { 5396 SDLoc SL(Op); 5397 SDValue Chain = Op.getOperand(0); 5398 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5399 } 5400 5401 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, 5402 const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { 5403 MachineFunction &MF = DAG.getMachineFunction(); 5404 uint64_t Offset = getImplicitParameterOffset(MF, Param); 5405 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); 5406 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5407 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, 5408 MachineMemOperand::MODereferenceable | 5409 MachineMemOperand::MOInvariant); 5410 } 5411 5412 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 5413 SDValue Op, SelectionDAG &DAG) const { 5414 SDLoc SL(Op); 5415 SDValue Chain = Op.getOperand(0); 5416 5417 SDValue QueuePtr; 5418 // For code object version 5, QueuePtr is passed through implicit kernarg. 5419 if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { 5420 QueuePtr = 5421 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); 5422 } else { 5423 MachineFunction &MF = DAG.getMachineFunction(); 5424 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5425 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5426 5427 if (UserSGPR == AMDGPU::NoRegister) { 5428 // We probably are in a function incorrectly marked with 5429 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the 5430 // trap, so just use a null pointer. 5431 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 5432 } else { 5433 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, 5434 MVT::i64); 5435 } 5436 } 5437 5438 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5439 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5440 QueuePtr, SDValue()); 5441 5442 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5443 SDValue Ops[] = { 5444 ToReg, 5445 DAG.getTargetConstant(TrapID, SL, MVT::i16), 5446 SGPR01, 5447 ToReg.getValue(1) 5448 }; 5449 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5450 } 5451 5452 SDValue SITargetLowering::lowerTrapHsa( 5453 SDValue Op, SelectionDAG &DAG) const { 5454 SDLoc SL(Op); 5455 SDValue Chain = Op.getOperand(0); 5456 5457 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5458 SDValue Ops[] = { 5459 Chain, 5460 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5461 }; 5462 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5463 } 5464 5465 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5466 SDLoc SL(Op); 5467 SDValue Chain = Op.getOperand(0); 5468 MachineFunction &MF = DAG.getMachineFunction(); 5469 5470 if (!Subtarget->isTrapHandlerEnabled() || 5471 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 5472 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5473 "debugtrap handler not supported", 5474 Op.getDebugLoc(), 5475 DS_Warning); 5476 LLVMContext &Ctx = MF.getFunction().getContext(); 5477 Ctx.diagnose(NoTrap); 5478 return Chain; 5479 } 5480 5481 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 5482 SDValue Ops[] = { 5483 Chain, 5484 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5485 }; 5486 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5487 } 5488 5489 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5490 SelectionDAG &DAG) const { 5491 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5492 if (Subtarget->hasApertureRegs()) { 5493 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5494 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5495 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5496 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5497 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5498 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5499 unsigned Encoding = 5500 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5501 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5502 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5503 5504 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5505 SDValue ApertureReg = SDValue( 5506 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5507 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5508 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5509 } 5510 5511 // For code object version 5, private_base and shared_base are passed through 5512 // implicit kernargs. 5513 if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { 5514 ImplicitParameter Param = 5515 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; 5516 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); 5517 } 5518 5519 MachineFunction &MF = DAG.getMachineFunction(); 5520 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5521 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5522 if (UserSGPR == AMDGPU::NoRegister) { 5523 // We probably are in a function incorrectly marked with 5524 // amdgpu-no-queue-ptr. This is undefined. 5525 return DAG.getUNDEF(MVT::i32); 5526 } 5527 5528 SDValue QueuePtr = CreateLiveInRegister( 5529 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5530 5531 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5532 // private_segment_aperture_base_hi. 5533 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5534 5535 SDValue Ptr = 5536 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5537 5538 // TODO: Use custom target PseudoSourceValue. 5539 // TODO: We should use the value from the IR intrinsic call, but it might not 5540 // be available and how do we get it? 5541 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5542 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5543 commonAlignment(Align(64), StructOffset), 5544 MachineMemOperand::MODereferenceable | 5545 MachineMemOperand::MOInvariant); 5546 } 5547 5548 /// Return true if the value is a known valid address, such that a null check is 5549 /// not necessary. 5550 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 5551 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 5552 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 5553 isa<BasicBlockSDNode>(Val)) 5554 return true; 5555 5556 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 5557 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 5558 5559 // TODO: Search through arithmetic, handle arguments and loads 5560 // marked nonnull. 5561 return false; 5562 } 5563 5564 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5565 SelectionDAG &DAG) const { 5566 SDLoc SL(Op); 5567 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5568 5569 SDValue Src = ASC->getOperand(0); 5570 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5571 unsigned SrcAS = ASC->getSrcAddressSpace(); 5572 5573 const AMDGPUTargetMachine &TM = 5574 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5575 5576 // flat -> local/private 5577 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 5578 unsigned DestAS = ASC->getDestAddressSpace(); 5579 5580 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5581 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5582 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5583 5584 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5585 return Ptr; 5586 5587 unsigned NullVal = TM.getNullPointerValue(DestAS); 5588 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5589 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5590 5591 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 5592 SegmentNullPtr); 5593 } 5594 } 5595 5596 // local/private -> flat 5597 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5598 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5599 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5600 5601 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5602 SDValue CvtPtr = 5603 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5604 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 5605 5606 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5607 return CvtPtr; 5608 5609 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5610 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5611 5612 SDValue NonNull 5613 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5614 5615 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 5616 FlatNullPtr); 5617 } 5618 } 5619 5620 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5621 Op.getValueType() == MVT::i64) { 5622 const SIMachineFunctionInfo *Info = 5623 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); 5624 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); 5625 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); 5626 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 5627 } 5628 5629 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5630 Src.getValueType() == MVT::i64) 5631 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5632 5633 // global <-> flat are no-ops and never emitted. 5634 5635 const MachineFunction &MF = DAG.getMachineFunction(); 5636 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5637 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5638 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5639 5640 return DAG.getUNDEF(ASC->getValueType(0)); 5641 } 5642 5643 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5644 // the small vector and inserting them into the big vector. That is better than 5645 // the default expansion of doing it via a stack slot. Even though the use of 5646 // the stack slot would be optimized away afterwards, the stack slot itself 5647 // remains. 5648 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5649 SelectionDAG &DAG) const { 5650 SDValue Vec = Op.getOperand(0); 5651 SDValue Ins = Op.getOperand(1); 5652 SDValue Idx = Op.getOperand(2); 5653 EVT VecVT = Vec.getValueType(); 5654 EVT InsVT = Ins.getValueType(); 5655 EVT EltVT = VecVT.getVectorElementType(); 5656 unsigned InsNumElts = InsVT.getVectorNumElements(); 5657 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5658 SDLoc SL(Op); 5659 5660 for (unsigned I = 0; I != InsNumElts; ++I) { 5661 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5662 DAG.getConstant(I, SL, MVT::i32)); 5663 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5664 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5665 } 5666 return Vec; 5667 } 5668 5669 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5670 SelectionDAG &DAG) const { 5671 SDValue Vec = Op.getOperand(0); 5672 SDValue InsVal = Op.getOperand(1); 5673 SDValue Idx = Op.getOperand(2); 5674 EVT VecVT = Vec.getValueType(); 5675 EVT EltVT = VecVT.getVectorElementType(); 5676 unsigned VecSize = VecVT.getSizeInBits(); 5677 unsigned EltSize = EltVT.getSizeInBits(); 5678 SDLoc SL(Op); 5679 5680 // Specially handle the case of v4i16 with static indexing. 5681 unsigned NumElts = VecVT.getVectorNumElements(); 5682 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5683 if (NumElts == 4 && EltSize == 16 && KIdx) { 5684 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5685 5686 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5687 DAG.getConstant(0, SL, MVT::i32)); 5688 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5689 DAG.getConstant(1, SL, MVT::i32)); 5690 5691 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5692 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5693 5694 unsigned Idx = KIdx->getZExtValue(); 5695 bool InsertLo = Idx < 2; 5696 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5697 InsertLo ? LoVec : HiVec, 5698 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5699 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5700 5701 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5702 5703 SDValue Concat = InsertLo ? 5704 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5705 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5706 5707 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5708 } 5709 5710 // Static indexing does not lower to stack access, and hence there is no need 5711 // for special custom lowering to avoid stack access. 5712 if (isa<ConstantSDNode>(Idx)) 5713 return SDValue(); 5714 5715 // Avoid stack access for dynamic indexing by custom lowering to 5716 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5717 5718 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); 5719 5720 MVT IntVT = MVT::getIntegerVT(VecSize); 5721 5722 // Convert vector index to bit-index and get the required bit mask. 5723 assert(isPowerOf2_32(EltSize)); 5724 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5725 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5726 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5727 DAG.getConstant(0xffff, SL, IntVT), 5728 ScaledIdx); 5729 5730 // 1. Create a congruent vector with the target value in each element. 5731 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5732 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5733 5734 // 2. Mask off all other indicies except the required index within (1). 5735 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5736 5737 // 3. Mask off the required index within the target vector. 5738 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5739 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5740 DAG.getNOT(SL, BFM, IntVT), BCVec); 5741 5742 // 4. Get (2) and (3) ORed into the target vector. 5743 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5744 5745 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5746 } 5747 5748 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5749 SelectionDAG &DAG) const { 5750 SDLoc SL(Op); 5751 5752 EVT ResultVT = Op.getValueType(); 5753 SDValue Vec = Op.getOperand(0); 5754 SDValue Idx = Op.getOperand(1); 5755 EVT VecVT = Vec.getValueType(); 5756 unsigned VecSize = VecVT.getSizeInBits(); 5757 EVT EltVT = VecVT.getVectorElementType(); 5758 5759 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5760 5761 // Make sure we do any optimizations that will make it easier to fold 5762 // source modifiers before obscuring it with bit operations. 5763 5764 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5765 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5766 return Combined; 5767 5768 if (VecSize == 128 || VecSize == 256) { 5769 SDValue Lo, Hi; 5770 EVT LoVT, HiVT; 5771 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5772 5773 if (VecSize == 128) { 5774 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 5775 Lo = DAG.getBitcast(LoVT, 5776 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5777 DAG.getConstant(0, SL, MVT::i32))); 5778 Hi = DAG.getBitcast(HiVT, 5779 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5780 DAG.getConstant(1, SL, MVT::i32))); 5781 } else { 5782 assert(VecSize == 256); 5783 5784 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); 5785 SDValue Parts[4]; 5786 for (unsigned P = 0; P < 4; ++P) { 5787 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5788 DAG.getConstant(P, SL, MVT::i32)); 5789 } 5790 5791 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 5792 Parts[0], Parts[1])); 5793 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 5794 Parts[2], Parts[3])); 5795 } 5796 5797 EVT IdxVT = Idx.getValueType(); 5798 unsigned NElem = VecVT.getVectorNumElements(); 5799 assert(isPowerOf2_32(NElem)); 5800 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 5801 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 5802 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 5803 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 5804 } 5805 5806 assert(VecSize <= 64); 5807 5808 MVT IntVT = MVT::getIntegerVT(VecSize); 5809 5810 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. 5811 SDValue VecBC = peekThroughBitcasts(Vec); 5812 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5813 SDValue Src = VecBC.getOperand(0); 5814 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); 5815 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); 5816 } 5817 5818 unsigned EltSize = EltVT.getSizeInBits(); 5819 assert(isPowerOf2_32(EltSize)); 5820 5821 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5822 5823 // Convert vector index to bit-index (* EltSize) 5824 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5825 5826 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5827 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5828 5829 if (ResultVT == MVT::f16) { 5830 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5831 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5832 } 5833 5834 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5835 } 5836 5837 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5838 assert(Elt % 2 == 0); 5839 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5840 } 5841 5842 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5843 SelectionDAG &DAG) const { 5844 SDLoc SL(Op); 5845 EVT ResultVT = Op.getValueType(); 5846 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5847 5848 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5849 EVT EltVT = PackVT.getVectorElementType(); 5850 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5851 5852 // vector_shuffle <0,1,6,7> lhs, rhs 5853 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5854 // 5855 // vector_shuffle <6,7,2,3> lhs, rhs 5856 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5857 // 5858 // vector_shuffle <6,7,0,1> lhs, rhs 5859 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5860 5861 // Avoid scalarizing when both halves are reading from consecutive elements. 5862 SmallVector<SDValue, 4> Pieces; 5863 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5864 if (elementPairIsContiguous(SVN->getMask(), I)) { 5865 const int Idx = SVN->getMaskElt(I); 5866 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5867 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5868 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5869 PackVT, SVN->getOperand(VecIdx), 5870 DAG.getConstant(EltIdx, SL, MVT::i32)); 5871 Pieces.push_back(SubVec); 5872 } else { 5873 const int Idx0 = SVN->getMaskElt(I); 5874 const int Idx1 = SVN->getMaskElt(I + 1); 5875 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5876 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5877 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5878 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5879 5880 SDValue Vec0 = SVN->getOperand(VecIdx0); 5881 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5882 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5883 5884 SDValue Vec1 = SVN->getOperand(VecIdx1); 5885 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5886 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5887 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5888 } 5889 } 5890 5891 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5892 } 5893 5894 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5895 SelectionDAG &DAG) const { 5896 SDValue SVal = Op.getOperand(0); 5897 EVT ResultVT = Op.getValueType(); 5898 EVT SValVT = SVal.getValueType(); 5899 SDValue UndefVal = DAG.getUNDEF(SValVT); 5900 SDLoc SL(Op); 5901 5902 SmallVector<SDValue, 8> VElts; 5903 VElts.push_back(SVal); 5904 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) 5905 VElts.push_back(UndefVal); 5906 5907 return DAG.getBuildVector(ResultVT, SL, VElts); 5908 } 5909 5910 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5911 SelectionDAG &DAG) const { 5912 SDLoc SL(Op); 5913 EVT VT = Op.getValueType(); 5914 5915 if (VT == MVT::v4i16 || VT == MVT::v4f16 || 5916 VT == MVT::v8i16 || VT == MVT::v8f16) { 5917 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5918 VT.getVectorNumElements() / 2); 5919 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 5920 5921 // Turn into pair of packed build_vectors. 5922 // TODO: Special case for constants that can be materialized with s_mov_b64. 5923 SmallVector<SDValue, 4> LoOps, HiOps; 5924 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 5925 LoOps.push_back(Op.getOperand(I)); 5926 HiOps.push_back(Op.getOperand(I + E)); 5927 } 5928 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 5929 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 5930 5931 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 5932 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 5933 5934 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 5935 { CastLo, CastHi }); 5936 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5937 } 5938 5939 if (VT == MVT::v16i16 || VT == MVT::v16f16) { 5940 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5941 VT.getVectorNumElements() / 4); 5942 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 5943 5944 SmallVector<SDValue, 4> Parts[4]; 5945 for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { 5946 for (unsigned P = 0; P < 4; ++P) 5947 Parts[P].push_back(Op.getOperand(I + P * E)); 5948 } 5949 SDValue Casts[4]; 5950 for (unsigned P = 0; P < 4; ++P) { 5951 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 5952 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 5953 } 5954 5955 SDValue Blend = 5956 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); 5957 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5958 } 5959 5960 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5961 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5962 5963 SDValue Lo = Op.getOperand(0); 5964 SDValue Hi = Op.getOperand(1); 5965 5966 // Avoid adding defined bits with the zero_extend. 5967 if (Hi.isUndef()) { 5968 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5969 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5970 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5971 } 5972 5973 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5974 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5975 5976 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5977 DAG.getConstant(16, SL, MVT::i32)); 5978 if (Lo.isUndef()) 5979 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5980 5981 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5982 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5983 5984 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5985 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5986 } 5987 5988 bool 5989 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5990 // We can fold offsets for anything that doesn't require a GOT relocation. 5991 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5992 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5993 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5994 !shouldEmitGOTReloc(GA->getGlobal()); 5995 } 5996 5997 static SDValue 5998 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5999 const SDLoc &DL, int64_t Offset, EVT PtrVT, 6000 unsigned GAFlags = SIInstrInfo::MO_NONE) { 6001 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 6002 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 6003 // lowered to the following code sequence: 6004 // 6005 // For constant address space: 6006 // s_getpc_b64 s[0:1] 6007 // s_add_u32 s0, s0, $symbol 6008 // s_addc_u32 s1, s1, 0 6009 // 6010 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6011 // a fixup or relocation is emitted to replace $symbol with a literal 6012 // constant, which is a pc-relative offset from the encoding of the $symbol 6013 // operand to the global variable. 6014 // 6015 // For global address space: 6016 // s_getpc_b64 s[0:1] 6017 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 6018 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 6019 // 6020 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6021 // fixups or relocations are emitted to replace $symbol@*@lo and 6022 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 6023 // which is a 64-bit pc-relative offset from the encoding of the $symbol 6024 // operand to the global variable. 6025 // 6026 // What we want here is an offset from the value returned by s_getpc 6027 // (which is the address of the s_add_u32 instruction) to the global 6028 // variable, but since the encoding of $symbol starts 4 bytes after the start 6029 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 6030 // small. This requires us to add 4 to the global variable offset in order to 6031 // compute the correct address. Similarly for the s_addc_u32 instruction, the 6032 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 6033 // instruction. 6034 SDValue PtrLo = 6035 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 6036 SDValue PtrHi; 6037 if (GAFlags == SIInstrInfo::MO_NONE) { 6038 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 6039 } else { 6040 PtrHi = 6041 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 6042 } 6043 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 6044 } 6045 6046 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 6047 SDValue Op, 6048 SelectionDAG &DAG) const { 6049 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 6050 SDLoc DL(GSD); 6051 EVT PtrVT = Op.getValueType(); 6052 6053 const GlobalValue *GV = GSD->getGlobal(); 6054 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6055 shouldUseLDSConstAddress(GV)) || 6056 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 6057 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 6058 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6059 GV->hasExternalLinkage()) { 6060 Type *Ty = GV->getValueType(); 6061 // HIP uses an unsized array `extern __shared__ T s[]` or similar 6062 // zero-sized type in other languages to declare the dynamic shared 6063 // memory which size is not known at the compile time. They will be 6064 // allocated by the runtime and placed directly after the static 6065 // allocated ones. They all share the same offset. 6066 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 6067 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 6068 // Adjust alignment for that dynamic shared memory array. 6069 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); 6070 return SDValue( 6071 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 6072 } 6073 } 6074 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 6075 } 6076 6077 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 6078 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 6079 SIInstrInfo::MO_ABS32_LO); 6080 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 6081 } 6082 6083 if (shouldEmitFixup(GV)) 6084 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 6085 else if (shouldEmitPCReloc(GV)) 6086 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 6087 SIInstrInfo::MO_REL32); 6088 6089 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 6090 SIInstrInfo::MO_GOTPCREL32); 6091 6092 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 6093 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 6094 const DataLayout &DataLayout = DAG.getDataLayout(); 6095 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 6096 MachinePointerInfo PtrInfo 6097 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 6098 6099 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 6100 MachineMemOperand::MODereferenceable | 6101 MachineMemOperand::MOInvariant); 6102 } 6103 6104 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 6105 const SDLoc &DL, SDValue V) const { 6106 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 6107 // the destination register. 6108 // 6109 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 6110 // so we will end up with redundant moves to m0. 6111 // 6112 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 6113 6114 // A Null SDValue creates a glue result. 6115 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 6116 V, Chain); 6117 return SDValue(M0, 0); 6118 } 6119 6120 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 6121 SDValue Op, 6122 MVT VT, 6123 unsigned Offset) const { 6124 SDLoc SL(Op); 6125 SDValue Param = lowerKernargMemParameter( 6126 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 6127 // The local size values will have the hi 16-bits as zero. 6128 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 6129 DAG.getValueType(VT)); 6130 } 6131 6132 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6133 EVT VT) { 6134 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6135 "non-hsa intrinsic with hsa target", 6136 DL.getDebugLoc()); 6137 DAG.getContext()->diagnose(BadIntrin); 6138 return DAG.getUNDEF(VT); 6139 } 6140 6141 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6142 EVT VT) { 6143 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6144 "intrinsic not supported on subtarget", 6145 DL.getDebugLoc()); 6146 DAG.getContext()->diagnose(BadIntrin); 6147 return DAG.getUNDEF(VT); 6148 } 6149 6150 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 6151 ArrayRef<SDValue> Elts) { 6152 assert(!Elts.empty()); 6153 MVT Type; 6154 unsigned NumElts = Elts.size(); 6155 6156 if (NumElts <= 8) { 6157 Type = MVT::getVectorVT(MVT::f32, NumElts); 6158 } else { 6159 assert(Elts.size() <= 16); 6160 Type = MVT::v16f32; 6161 NumElts = 16; 6162 } 6163 6164 SmallVector<SDValue, 16> VecElts(NumElts); 6165 for (unsigned i = 0; i < Elts.size(); ++i) { 6166 SDValue Elt = Elts[i]; 6167 if (Elt.getValueType() != MVT::f32) 6168 Elt = DAG.getBitcast(MVT::f32, Elt); 6169 VecElts[i] = Elt; 6170 } 6171 for (unsigned i = Elts.size(); i < NumElts; ++i) 6172 VecElts[i] = DAG.getUNDEF(MVT::f32); 6173 6174 if (NumElts == 1) 6175 return VecElts[0]; 6176 return DAG.getBuildVector(Type, DL, VecElts); 6177 } 6178 6179 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 6180 SDValue Src, int ExtraElts) { 6181 EVT SrcVT = Src.getValueType(); 6182 6183 SmallVector<SDValue, 8> Elts; 6184 6185 if (SrcVT.isVector()) 6186 DAG.ExtractVectorElements(Src, Elts); 6187 else 6188 Elts.push_back(Src); 6189 6190 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 6191 while (ExtraElts--) 6192 Elts.push_back(Undef); 6193 6194 return DAG.getBuildVector(CastVT, DL, Elts); 6195 } 6196 6197 // Re-construct the required return value for a image load intrinsic. 6198 // This is more complicated due to the optional use TexFailCtrl which means the required 6199 // return type is an aggregate 6200 static SDValue constructRetValue(SelectionDAG &DAG, 6201 MachineSDNode *Result, 6202 ArrayRef<EVT> ResultTypes, 6203 bool IsTexFail, bool Unpacked, bool IsD16, 6204 int DMaskPop, int NumVDataDwords, 6205 const SDLoc &DL) { 6206 // Determine the required return type. This is the same regardless of IsTexFail flag 6207 EVT ReqRetVT = ResultTypes[0]; 6208 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 6209 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6210 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 6211 6212 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6213 DMaskPop : (DMaskPop + 1) / 2; 6214 6215 MVT DataDwordVT = NumDataDwords == 1 ? 6216 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 6217 6218 MVT MaskPopVT = MaskPopDwords == 1 ? 6219 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 6220 6221 SDValue Data(Result, 0); 6222 SDValue TexFail; 6223 6224 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 6225 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 6226 if (MaskPopVT.isVector()) { 6227 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 6228 SDValue(Result, 0), ZeroIdx); 6229 } else { 6230 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 6231 SDValue(Result, 0), ZeroIdx); 6232 } 6233 } 6234 6235 if (DataDwordVT.isVector()) 6236 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 6237 NumDataDwords - MaskPopDwords); 6238 6239 if (IsD16) 6240 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 6241 6242 EVT LegalReqRetVT = ReqRetVT; 6243 if (!ReqRetVT.isVector()) { 6244 if (!Data.getValueType().isInteger()) 6245 Data = DAG.getNode(ISD::BITCAST, DL, 6246 Data.getValueType().changeTypeToInteger(), Data); 6247 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 6248 } else { 6249 // We need to widen the return vector to a legal type 6250 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 6251 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 6252 LegalReqRetVT = 6253 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 6254 ReqRetVT.getVectorNumElements() + 1); 6255 } 6256 } 6257 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 6258 6259 if (IsTexFail) { 6260 TexFail = 6261 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 6262 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 6263 6264 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 6265 } 6266 6267 if (Result->getNumValues() == 1) 6268 return Data; 6269 6270 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 6271 } 6272 6273 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 6274 SDValue *LWE, bool &IsTexFail) { 6275 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 6276 6277 uint64_t Value = TexFailCtrlConst->getZExtValue(); 6278 if (Value) { 6279 IsTexFail = true; 6280 } 6281 6282 SDLoc DL(TexFailCtrlConst); 6283 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 6284 Value &= ~(uint64_t)0x1; 6285 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 6286 Value &= ~(uint64_t)0x2; 6287 6288 return Value == 0; 6289 } 6290 6291 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 6292 MVT PackVectorVT, 6293 SmallVectorImpl<SDValue> &PackedAddrs, 6294 unsigned DimIdx, unsigned EndIdx, 6295 unsigned NumGradients) { 6296 SDLoc DL(Op); 6297 for (unsigned I = DimIdx; I < EndIdx; I++) { 6298 SDValue Addr = Op.getOperand(I); 6299 6300 // Gradients are packed with undef for each coordinate. 6301 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 6302 // 1D: undef,dx/dh; undef,dx/dv 6303 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 6304 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 6305 if (((I + 1) >= EndIdx) || 6306 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 6307 I == DimIdx + NumGradients - 1))) { 6308 if (Addr.getValueType() != MVT::i16) 6309 Addr = DAG.getBitcast(MVT::i16, Addr); 6310 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 6311 } else { 6312 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 6313 I++; 6314 } 6315 Addr = DAG.getBitcast(MVT::f32, Addr); 6316 PackedAddrs.push_back(Addr); 6317 } 6318 } 6319 6320 SDValue SITargetLowering::lowerImage(SDValue Op, 6321 const AMDGPU::ImageDimIntrinsicInfo *Intr, 6322 SelectionDAG &DAG, bool WithChain) const { 6323 SDLoc DL(Op); 6324 MachineFunction &MF = DAG.getMachineFunction(); 6325 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 6326 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 6327 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 6328 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 6329 unsigned IntrOpcode = Intr->BaseOpcode; 6330 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 6331 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 6332 6333 SmallVector<EVT, 3> ResultTypes(Op->values()); 6334 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 6335 bool IsD16 = false; 6336 bool IsG16 = false; 6337 bool IsA16 = false; 6338 SDValue VData; 6339 int NumVDataDwords; 6340 bool AdjustRetType = false; 6341 6342 // Offset of intrinsic arguments 6343 const unsigned ArgOffset = WithChain ? 2 : 1; 6344 6345 unsigned DMask; 6346 unsigned DMaskLanes = 0; 6347 6348 if (BaseOpcode->Atomic) { 6349 VData = Op.getOperand(2); 6350 6351 bool Is64Bit = VData.getValueType() == MVT::i64; 6352 if (BaseOpcode->AtomicX2) { 6353 SDValue VData2 = Op.getOperand(3); 6354 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 6355 {VData, VData2}); 6356 if (Is64Bit) 6357 VData = DAG.getBitcast(MVT::v4i32, VData); 6358 6359 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 6360 DMask = Is64Bit ? 0xf : 0x3; 6361 NumVDataDwords = Is64Bit ? 4 : 2; 6362 } else { 6363 DMask = Is64Bit ? 0x3 : 0x1; 6364 NumVDataDwords = Is64Bit ? 2 : 1; 6365 } 6366 } else { 6367 auto *DMaskConst = 6368 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 6369 DMask = DMaskConst->getZExtValue(); 6370 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 6371 6372 if (BaseOpcode->Store) { 6373 VData = Op.getOperand(2); 6374 6375 MVT StoreVT = VData.getSimpleValueType(); 6376 if (StoreVT.getScalarType() == MVT::f16) { 6377 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6378 return Op; // D16 is unsupported for this instruction 6379 6380 IsD16 = true; 6381 VData = handleD16VData(VData, DAG, true); 6382 } 6383 6384 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 6385 } else { 6386 // Work out the num dwords based on the dmask popcount and underlying type 6387 // and whether packing is supported. 6388 MVT LoadVT = ResultTypes[0].getSimpleVT(); 6389 if (LoadVT.getScalarType() == MVT::f16) { 6390 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6391 return Op; // D16 is unsupported for this instruction 6392 6393 IsD16 = true; 6394 } 6395 6396 // Confirm that the return type is large enough for the dmask specified 6397 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 6398 (!LoadVT.isVector() && DMaskLanes > 1)) 6399 return Op; 6400 6401 // The sq block of gfx8 and gfx9 do not estimate register use correctly 6402 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 6403 // instructions. 6404 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 6405 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 6406 NumVDataDwords = (DMaskLanes + 1) / 2; 6407 else 6408 NumVDataDwords = DMaskLanes; 6409 6410 AdjustRetType = true; 6411 } 6412 } 6413 6414 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 6415 SmallVector<SDValue, 4> VAddrs; 6416 6417 // Check for 16 bit addresses or derivatives and pack if true. 6418 MVT VAddrVT = 6419 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 6420 MVT VAddrScalarVT = VAddrVT.getScalarType(); 6421 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6422 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6423 6424 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6425 VAddrScalarVT = VAddrVT.getScalarType(); 6426 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6427 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6428 6429 // Push back extra arguments. 6430 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 6431 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 6432 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 6433 // Special handling of bias when A16 is on. Bias is of type half but 6434 // occupies full 32-bit. 6435 SDValue Bias = DAG.getBuildVector( 6436 MVT::v2f16, DL, 6437 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 6438 VAddrs.push_back(Bias); 6439 } else { 6440 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 6441 "Bias needs to be converted to 16 bit in A16 mode"); 6442 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 6443 } 6444 } 6445 6446 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 6447 // 16 bit gradients are supported, but are tied to the A16 control 6448 // so both gradients and addresses must be 16 bit 6449 LLVM_DEBUG( 6450 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6451 "require 16 bit args for both gradients and addresses"); 6452 return Op; 6453 } 6454 6455 if (IsA16) { 6456 if (!ST->hasA16()) { 6457 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6458 "support 16 bit addresses\n"); 6459 return Op; 6460 } 6461 } 6462 6463 // We've dealt with incorrect input so we know that if IsA16, IsG16 6464 // are set then we have to compress/pack operands (either address, 6465 // gradient or both) 6466 // In the case where a16 and gradients are tied (no G16 support) then we 6467 // have already verified that both IsA16 and IsG16 are true 6468 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 6469 // Activate g16 6470 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6471 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6472 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6473 } 6474 6475 // Add gradients (packed or unpacked) 6476 if (IsG16) { 6477 // Pack the gradients 6478 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6479 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 6480 ArgOffset + Intr->GradientStart, 6481 ArgOffset + Intr->CoordStart, Intr->NumGradients); 6482 } else { 6483 for (unsigned I = ArgOffset + Intr->GradientStart; 6484 I < ArgOffset + Intr->CoordStart; I++) 6485 VAddrs.push_back(Op.getOperand(I)); 6486 } 6487 6488 // Add addresses (packed or unpacked) 6489 if (IsA16) { 6490 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 6491 ArgOffset + Intr->CoordStart, VAddrEnd, 6492 0 /* No gradients */); 6493 } else { 6494 // Add uncompressed address 6495 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6496 VAddrs.push_back(Op.getOperand(I)); 6497 } 6498 6499 // If the register allocator cannot place the address registers contiguously 6500 // without introducing moves, then using the non-sequential address encoding 6501 // is always preferable, since it saves VALU instructions and is usually a 6502 // wash in terms of code size or even better. 6503 // 6504 // However, we currently have no way of hinting to the register allocator that 6505 // MIMG addresses should be placed contiguously when it is possible to do so, 6506 // so force non-NSA for the common 2-address case as a heuristic. 6507 // 6508 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6509 // allocation when possible. 6510 // 6511 // TODO: we can actually allow partial NSA where the final register is a 6512 // contiguous set of the remaining addresses. 6513 // This could help where there are more addresses than supported. 6514 bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) && 6515 VAddrs.size() >= 3 && 6516 VAddrs.size() <= (unsigned)ST->getNSAMaxSize(); 6517 SDValue VAddr; 6518 if (!UseNSA) 6519 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6520 6521 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6522 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6523 SDValue Unorm; 6524 if (!BaseOpcode->Sampler) { 6525 Unorm = True; 6526 } else { 6527 auto UnormConst = 6528 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6529 6530 Unorm = UnormConst->getZExtValue() ? True : False; 6531 } 6532 6533 SDValue TFE; 6534 SDValue LWE; 6535 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6536 bool IsTexFail = false; 6537 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6538 return Op; 6539 6540 if (IsTexFail) { 6541 if (!DMaskLanes) { 6542 // Expecting to get an error flag since TFC is on - and dmask is 0 6543 // Force dmask to be at least 1 otherwise the instruction will fail 6544 DMask = 0x1; 6545 DMaskLanes = 1; 6546 NumVDataDwords = 1; 6547 } 6548 NumVDataDwords += 1; 6549 AdjustRetType = true; 6550 } 6551 6552 // Has something earlier tagged that the return type needs adjusting 6553 // This happens if the instruction is a load or has set TexFailCtrl flags 6554 if (AdjustRetType) { 6555 // NumVDataDwords reflects the true number of dwords required in the return type 6556 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6557 // This is a no-op load. This can be eliminated 6558 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6559 if (isa<MemSDNode>(Op)) 6560 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6561 return Undef; 6562 } 6563 6564 EVT NewVT = NumVDataDwords > 1 ? 6565 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6566 : MVT::i32; 6567 6568 ResultTypes[0] = NewVT; 6569 if (ResultTypes.size() == 3) { 6570 // Original result was aggregate type used for TexFailCtrl results 6571 // The actual instruction returns as a vector type which has now been 6572 // created. Remove the aggregate result. 6573 ResultTypes.erase(&ResultTypes[1]); 6574 } 6575 } 6576 6577 unsigned CPol = cast<ConstantSDNode>( 6578 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 6579 if (BaseOpcode->Atomic) 6580 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 6581 if (CPol & ~AMDGPU::CPol::ALL) 6582 return Op; 6583 6584 SmallVector<SDValue, 26> Ops; 6585 if (BaseOpcode->Store || BaseOpcode->Atomic) 6586 Ops.push_back(VData); // vdata 6587 if (UseNSA) 6588 append_range(Ops, VAddrs); 6589 else 6590 Ops.push_back(VAddr); 6591 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6592 if (BaseOpcode->Sampler) 6593 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6594 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6595 if (IsGFX10Plus) 6596 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6597 Ops.push_back(Unorm); 6598 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 6599 Ops.push_back(IsA16 && // r128, a16 for gfx9 6600 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6601 if (IsGFX10Plus) 6602 Ops.push_back(IsA16 ? True : False); 6603 if (!Subtarget->hasGFX90AInsts()) { 6604 Ops.push_back(TFE); //tfe 6605 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { 6606 report_fatal_error("TFE is not supported on this GPU"); 6607 } 6608 Ops.push_back(LWE); // lwe 6609 if (!IsGFX10Plus) 6610 Ops.push_back(DimInfo->DA ? True : False); 6611 if (BaseOpcode->HasD16) 6612 Ops.push_back(IsD16 ? True : False); 6613 if (isa<MemSDNode>(Op)) 6614 Ops.push_back(Op.getOperand(0)); // chain 6615 6616 int NumVAddrDwords = 6617 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6618 int Opcode = -1; 6619 6620 if (IsGFX11Plus) { 6621 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6622 UseNSA ? AMDGPU::MIMGEncGfx11NSA 6623 : AMDGPU::MIMGEncGfx11Default, 6624 NumVDataDwords, NumVAddrDwords); 6625 } else if (IsGFX10Plus) { 6626 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6627 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6628 : AMDGPU::MIMGEncGfx10Default, 6629 NumVDataDwords, NumVAddrDwords); 6630 } else { 6631 if (Subtarget->hasGFX90AInsts()) { 6632 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 6633 NumVDataDwords, NumVAddrDwords); 6634 if (Opcode == -1) 6635 report_fatal_error( 6636 "requested image instruction is not supported on this GPU"); 6637 } 6638 if (Opcode == -1 && 6639 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6640 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6641 NumVDataDwords, NumVAddrDwords); 6642 if (Opcode == -1) 6643 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6644 NumVDataDwords, NumVAddrDwords); 6645 } 6646 assert(Opcode != -1); 6647 6648 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6649 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6650 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6651 DAG.setNodeMemRefs(NewNode, {MemRef}); 6652 } 6653 6654 if (BaseOpcode->AtomicX2) { 6655 SmallVector<SDValue, 1> Elt; 6656 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6657 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6658 } 6659 if (BaseOpcode->Store) 6660 return SDValue(NewNode, 0); 6661 return constructRetValue(DAG, NewNode, 6662 OrigResultTypes, IsTexFail, 6663 Subtarget->hasUnpackedD16VMem(), IsD16, 6664 DMaskLanes, NumVDataDwords, DL); 6665 } 6666 6667 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6668 SDValue Offset, SDValue CachePolicy, 6669 SelectionDAG &DAG) const { 6670 MachineFunction &MF = DAG.getMachineFunction(); 6671 6672 const DataLayout &DataLayout = DAG.getDataLayout(); 6673 Align Alignment = 6674 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6675 6676 MachineMemOperand *MMO = MF.getMachineMemOperand( 6677 MachinePointerInfo(), 6678 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6679 MachineMemOperand::MOInvariant, 6680 VT.getStoreSize(), Alignment); 6681 6682 if (!Offset->isDivergent()) { 6683 SDValue Ops[] = { 6684 Rsrc, 6685 Offset, // Offset 6686 CachePolicy 6687 }; 6688 6689 // Widen vec3 load to vec4. 6690 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6691 EVT WidenedVT = 6692 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6693 auto WidenedOp = DAG.getMemIntrinsicNode( 6694 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6695 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6696 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6697 DAG.getVectorIdxConstant(0, DL)); 6698 return Subvector; 6699 } 6700 6701 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6702 DAG.getVTList(VT), Ops, VT, MMO); 6703 } 6704 6705 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6706 // assume that the buffer is unswizzled. 6707 SmallVector<SDValue, 4> Loads; 6708 unsigned NumLoads = 1; 6709 MVT LoadVT = VT.getSimpleVT(); 6710 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6711 assert((LoadVT.getScalarType() == MVT::i32 || 6712 LoadVT.getScalarType() == MVT::f32)); 6713 6714 if (NumElts == 8 || NumElts == 16) { 6715 NumLoads = NumElts / 4; 6716 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6717 } 6718 6719 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6720 SDValue Ops[] = { 6721 DAG.getEntryNode(), // Chain 6722 Rsrc, // rsrc 6723 DAG.getConstant(0, DL, MVT::i32), // vindex 6724 {}, // voffset 6725 {}, // soffset 6726 {}, // offset 6727 CachePolicy, // cachepolicy 6728 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6729 }; 6730 6731 // Use the alignment to ensure that the required offsets will fit into the 6732 // immediate offsets. 6733 setBufferOffsets(Offset, DAG, &Ops[3], 6734 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6735 6736 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6737 for (unsigned i = 0; i < NumLoads; ++i) { 6738 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6739 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6740 LoadVT, MMO, DAG)); 6741 } 6742 6743 if (NumElts == 8 || NumElts == 16) 6744 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6745 6746 return Loads[0]; 6747 } 6748 6749 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, 6750 unsigned Dim, 6751 const ArgDescriptor &Arg) const { 6752 SDLoc SL(Op); 6753 MachineFunction &MF = DAG.getMachineFunction(); 6754 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); 6755 if (MaxID == 0) 6756 return DAG.getConstant(0, SL, MVT::i32); 6757 6758 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6759 SDLoc(DAG.getEntryNode()), Arg); 6760 6761 // Don't bother inserting AssertZext for packed IDs since we're emitting the 6762 // masking operations anyway. 6763 // 6764 // TODO: We could assert the top bit is 0 for the source copy. 6765 if (Arg.isMasked()) 6766 return Val; 6767 6768 // Preserve the known bits after expansion to a copy. 6769 EVT SmallVT = 6770 EVT::getIntegerVT(*DAG.getContext(), 32 - countLeadingZeros(MaxID)); 6771 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, 6772 DAG.getValueType(SmallVT)); 6773 } 6774 6775 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6776 SelectionDAG &DAG) const { 6777 MachineFunction &MF = DAG.getMachineFunction(); 6778 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6779 6780 EVT VT = Op.getValueType(); 6781 SDLoc DL(Op); 6782 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6783 6784 // TODO: Should this propagate fast-math-flags? 6785 6786 switch (IntrinsicID) { 6787 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6788 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6789 return emitNonHSAIntrinsicError(DAG, DL, VT); 6790 return getPreloadedValue(DAG, *MFI, VT, 6791 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6792 } 6793 case Intrinsic::amdgcn_dispatch_ptr: 6794 case Intrinsic::amdgcn_queue_ptr: { 6795 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6796 DiagnosticInfoUnsupported BadIntrin( 6797 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6798 DL.getDebugLoc()); 6799 DAG.getContext()->diagnose(BadIntrin); 6800 return DAG.getUNDEF(VT); 6801 } 6802 6803 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6804 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6805 return getPreloadedValue(DAG, *MFI, VT, RegID); 6806 } 6807 case Intrinsic::amdgcn_implicitarg_ptr: { 6808 if (MFI->isEntryFunction()) 6809 return getImplicitArgPtr(DAG, DL); 6810 return getPreloadedValue(DAG, *MFI, VT, 6811 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6812 } 6813 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6814 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6815 // This only makes sense to call in a kernel, so just lower to null. 6816 return DAG.getConstant(0, DL, VT); 6817 } 6818 6819 return getPreloadedValue(DAG, *MFI, VT, 6820 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6821 } 6822 case Intrinsic::amdgcn_dispatch_id: { 6823 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6824 } 6825 case Intrinsic::amdgcn_rcp: 6826 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6827 case Intrinsic::amdgcn_rsq: 6828 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6829 case Intrinsic::amdgcn_rsq_legacy: 6830 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6831 return emitRemovedIntrinsicError(DAG, DL, VT); 6832 return SDValue(); 6833 case Intrinsic::amdgcn_rcp_legacy: 6834 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6835 return emitRemovedIntrinsicError(DAG, DL, VT); 6836 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6837 case Intrinsic::amdgcn_rsq_clamp: { 6838 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6839 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6840 6841 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6842 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6843 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6844 6845 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6846 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6847 DAG.getConstantFP(Max, DL, VT)); 6848 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6849 DAG.getConstantFP(Min, DL, VT)); 6850 } 6851 case Intrinsic::r600_read_ngroups_x: 6852 if (Subtarget->isAmdHsaOS()) 6853 return emitNonHSAIntrinsicError(DAG, DL, VT); 6854 6855 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6856 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6857 false); 6858 case Intrinsic::r600_read_ngroups_y: 6859 if (Subtarget->isAmdHsaOS()) 6860 return emitNonHSAIntrinsicError(DAG, DL, VT); 6861 6862 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6863 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6864 false); 6865 case Intrinsic::r600_read_ngroups_z: 6866 if (Subtarget->isAmdHsaOS()) 6867 return emitNonHSAIntrinsicError(DAG, DL, VT); 6868 6869 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6870 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6871 false); 6872 case Intrinsic::r600_read_global_size_x: 6873 if (Subtarget->isAmdHsaOS()) 6874 return emitNonHSAIntrinsicError(DAG, DL, VT); 6875 6876 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6877 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6878 Align(4), false); 6879 case Intrinsic::r600_read_global_size_y: 6880 if (Subtarget->isAmdHsaOS()) 6881 return emitNonHSAIntrinsicError(DAG, DL, VT); 6882 6883 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6884 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6885 Align(4), false); 6886 case Intrinsic::r600_read_global_size_z: 6887 if (Subtarget->isAmdHsaOS()) 6888 return emitNonHSAIntrinsicError(DAG, DL, VT); 6889 6890 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6891 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6892 Align(4), false); 6893 case Intrinsic::r600_read_local_size_x: 6894 if (Subtarget->isAmdHsaOS()) 6895 return emitNonHSAIntrinsicError(DAG, DL, VT); 6896 6897 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6898 SI::KernelInputOffsets::LOCAL_SIZE_X); 6899 case Intrinsic::r600_read_local_size_y: 6900 if (Subtarget->isAmdHsaOS()) 6901 return emitNonHSAIntrinsicError(DAG, DL, VT); 6902 6903 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6904 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6905 case Intrinsic::r600_read_local_size_z: 6906 if (Subtarget->isAmdHsaOS()) 6907 return emitNonHSAIntrinsicError(DAG, DL, VT); 6908 6909 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6910 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6911 case Intrinsic::amdgcn_workgroup_id_x: 6912 return getPreloadedValue(DAG, *MFI, VT, 6913 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6914 case Intrinsic::amdgcn_workgroup_id_y: 6915 return getPreloadedValue(DAG, *MFI, VT, 6916 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6917 case Intrinsic::amdgcn_workgroup_id_z: 6918 return getPreloadedValue(DAG, *MFI, VT, 6919 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6920 case Intrinsic::amdgcn_lds_kernel_id: { 6921 if (MFI->isEntryFunction()) 6922 return getLDSKernelId(DAG, DL); 6923 return getPreloadedValue(DAG, *MFI, VT, 6924 AMDGPUFunctionArgInfo::LDS_KERNEL_ID); 6925 } 6926 case Intrinsic::amdgcn_workitem_id_x: 6927 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); 6928 case Intrinsic::amdgcn_workitem_id_y: 6929 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); 6930 case Intrinsic::amdgcn_workitem_id_z: 6931 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); 6932 case Intrinsic::amdgcn_wavefrontsize: 6933 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6934 SDLoc(Op), MVT::i32); 6935 case Intrinsic::amdgcn_s_buffer_load: { 6936 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6937 if (CPol & ~AMDGPU::CPol::ALL) 6938 return Op; 6939 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6940 DAG); 6941 } 6942 case Intrinsic::amdgcn_fdiv_fast: 6943 return lowerFDIV_FAST(Op, DAG); 6944 case Intrinsic::amdgcn_sin: 6945 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6946 6947 case Intrinsic::amdgcn_cos: 6948 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6949 6950 case Intrinsic::amdgcn_mul_u24: 6951 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6952 case Intrinsic::amdgcn_mul_i24: 6953 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6954 6955 case Intrinsic::amdgcn_log_clamp: { 6956 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6957 return SDValue(); 6958 6959 return emitRemovedIntrinsicError(DAG, DL, VT); 6960 } 6961 case Intrinsic::amdgcn_ldexp: 6962 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6963 Op.getOperand(1), Op.getOperand(2)); 6964 6965 case Intrinsic::amdgcn_fract: 6966 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6967 6968 case Intrinsic::amdgcn_class: 6969 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6970 Op.getOperand(1), Op.getOperand(2)); 6971 case Intrinsic::amdgcn_div_fmas: 6972 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6973 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6974 Op.getOperand(4)); 6975 6976 case Intrinsic::amdgcn_div_fixup: 6977 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6978 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6979 6980 case Intrinsic::amdgcn_div_scale: { 6981 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6982 6983 // Translate to the operands expected by the machine instruction. The 6984 // first parameter must be the same as the first instruction. 6985 SDValue Numerator = Op.getOperand(1); 6986 SDValue Denominator = Op.getOperand(2); 6987 6988 // Note this order is opposite of the machine instruction's operations, 6989 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6990 // intrinsic has the numerator as the first operand to match a normal 6991 // division operation. 6992 6993 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 6994 6995 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6996 Denominator, Numerator); 6997 } 6998 case Intrinsic::amdgcn_icmp: { 6999 // There is a Pat that handles this variant, so return it as-is. 7000 if (Op.getOperand(1).getValueType() == MVT::i1 && 7001 Op.getConstantOperandVal(2) == 0 && 7002 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 7003 return Op; 7004 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 7005 } 7006 case Intrinsic::amdgcn_fcmp: { 7007 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 7008 } 7009 case Intrinsic::amdgcn_ballot: 7010 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 7011 case Intrinsic::amdgcn_fmed3: 7012 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 7013 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7014 case Intrinsic::amdgcn_fdot2: 7015 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 7016 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 7017 Op.getOperand(4)); 7018 case Intrinsic::amdgcn_fmul_legacy: 7019 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 7020 Op.getOperand(1), Op.getOperand(2)); 7021 case Intrinsic::amdgcn_sffbh: 7022 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 7023 case Intrinsic::amdgcn_sbfe: 7024 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 7025 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7026 case Intrinsic::amdgcn_ubfe: 7027 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 7028 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7029 case Intrinsic::amdgcn_cvt_pkrtz: 7030 case Intrinsic::amdgcn_cvt_pknorm_i16: 7031 case Intrinsic::amdgcn_cvt_pknorm_u16: 7032 case Intrinsic::amdgcn_cvt_pk_i16: 7033 case Intrinsic::amdgcn_cvt_pk_u16: { 7034 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 7035 EVT VT = Op.getValueType(); 7036 unsigned Opcode; 7037 7038 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 7039 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 7040 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 7041 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 7042 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 7043 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 7044 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 7045 Opcode = AMDGPUISD::CVT_PK_I16_I32; 7046 else 7047 Opcode = AMDGPUISD::CVT_PK_U16_U32; 7048 7049 if (isTypeLegal(VT)) 7050 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7051 7052 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 7053 Op.getOperand(1), Op.getOperand(2)); 7054 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 7055 } 7056 case Intrinsic::amdgcn_fmad_ftz: 7057 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 7058 Op.getOperand(2), Op.getOperand(3)); 7059 7060 case Intrinsic::amdgcn_if_break: 7061 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 7062 Op->getOperand(1), Op->getOperand(2)), 0); 7063 7064 case Intrinsic::amdgcn_groupstaticsize: { 7065 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 7066 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 7067 return Op; 7068 7069 const Module *M = MF.getFunction().getParent(); 7070 const GlobalValue *GV = 7071 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 7072 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 7073 SIInstrInfo::MO_ABS32_LO); 7074 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7075 } 7076 case Intrinsic::amdgcn_is_shared: 7077 case Intrinsic::amdgcn_is_private: { 7078 SDLoc SL(Op); 7079 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 7080 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 7081 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 7082 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 7083 Op.getOperand(1)); 7084 7085 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 7086 DAG.getConstant(1, SL, MVT::i32)); 7087 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 7088 } 7089 case Intrinsic::amdgcn_perm: 7090 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 7091 Op.getOperand(2), Op.getOperand(3)); 7092 case Intrinsic::amdgcn_reloc_constant: { 7093 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 7094 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 7095 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 7096 auto RelocSymbol = cast<GlobalVariable>( 7097 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 7098 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 7099 SIInstrInfo::MO_ABS32_LO); 7100 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7101 } 7102 default: 7103 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7104 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7105 return lowerImage(Op, ImageDimIntr, DAG, false); 7106 7107 return Op; 7108 } 7109 } 7110 7111 /// Update \p MMO based on the offset inputs to an intrinsic. 7112 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, 7113 SDValue SOffset, SDValue Offset, 7114 SDValue VIndex = SDValue()) { 7115 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 7116 !isa<ConstantSDNode>(Offset)) { 7117 // The combined offset is not known to be constant, so we cannot represent 7118 // it in the MMO. Give up. 7119 MMO->setValue((Value *)nullptr); 7120 return; 7121 } 7122 7123 if (VIndex && (!isa<ConstantSDNode>(VIndex) || 7124 !cast<ConstantSDNode>(VIndex)->isZero())) { 7125 // The strided index component of the address is not known to be zero, so we 7126 // cannot represent it in the MMO. Give up. 7127 MMO->setValue((Value *)nullptr); 7128 return; 7129 } 7130 7131 MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() + 7132 cast<ConstantSDNode>(SOffset)->getSExtValue() + 7133 cast<ConstantSDNode>(Offset)->getSExtValue()); 7134 } 7135 7136 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 7137 SelectionDAG &DAG, 7138 unsigned NewOpcode) const { 7139 SDLoc DL(Op); 7140 7141 SDValue VData = Op.getOperand(2); 7142 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7143 SDValue Ops[] = { 7144 Op.getOperand(0), // Chain 7145 VData, // vdata 7146 Op.getOperand(3), // rsrc 7147 DAG.getConstant(0, DL, MVT::i32), // vindex 7148 Offsets.first, // voffset 7149 Op.getOperand(5), // soffset 7150 Offsets.second, // offset 7151 Op.getOperand(6), // cachepolicy 7152 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7153 }; 7154 7155 auto *M = cast<MemSDNode>(Op); 7156 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 7157 7158 EVT MemVT = VData.getValueType(); 7159 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7160 M->getMemOperand()); 7161 } 7162 7163 // Return a value to use for the idxen operand by examining the vindex operand. 7164 static unsigned getIdxEn(SDValue VIndex) { 7165 if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex)) 7166 // No need to set idxen if vindex is known to be zero. 7167 return VIndexC->getZExtValue() != 0; 7168 return 1; 7169 } 7170 7171 SDValue 7172 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 7173 unsigned NewOpcode) const { 7174 SDLoc DL(Op); 7175 7176 SDValue VData = Op.getOperand(2); 7177 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7178 SDValue Ops[] = { 7179 Op.getOperand(0), // Chain 7180 VData, // vdata 7181 Op.getOperand(3), // rsrc 7182 Op.getOperand(4), // vindex 7183 Offsets.first, // voffset 7184 Op.getOperand(6), // soffset 7185 Offsets.second, // offset 7186 Op.getOperand(7), // cachepolicy 7187 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7188 }; 7189 7190 auto *M = cast<MemSDNode>(Op); 7191 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7192 7193 EVT MemVT = VData.getValueType(); 7194 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7195 M->getMemOperand()); 7196 } 7197 7198 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 7199 SelectionDAG &DAG) const { 7200 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7201 SDLoc DL(Op); 7202 7203 switch (IntrID) { 7204 case Intrinsic::amdgcn_ds_ordered_add: 7205 case Intrinsic::amdgcn_ds_ordered_swap: { 7206 MemSDNode *M = cast<MemSDNode>(Op); 7207 SDValue Chain = M->getOperand(0); 7208 SDValue M0 = M->getOperand(2); 7209 SDValue Value = M->getOperand(3); 7210 unsigned IndexOperand = M->getConstantOperandVal(7); 7211 unsigned WaveRelease = M->getConstantOperandVal(8); 7212 unsigned WaveDone = M->getConstantOperandVal(9); 7213 7214 unsigned OrderedCountIndex = IndexOperand & 0x3f; 7215 IndexOperand &= ~0x3f; 7216 unsigned CountDw = 0; 7217 7218 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 7219 CountDw = (IndexOperand >> 24) & 0xf; 7220 IndexOperand &= ~(0xf << 24); 7221 7222 if (CountDw < 1 || CountDw > 4) { 7223 report_fatal_error( 7224 "ds_ordered_count: dword count must be between 1 and 4"); 7225 } 7226 } 7227 7228 if (IndexOperand) 7229 report_fatal_error("ds_ordered_count: bad index operand"); 7230 7231 if (WaveDone && !WaveRelease) 7232 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 7233 7234 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 7235 unsigned ShaderType = 7236 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 7237 unsigned Offset0 = OrderedCountIndex << 2; 7238 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); 7239 7240 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 7241 Offset1 |= (CountDw - 1) << 6; 7242 7243 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) 7244 Offset1 |= ShaderType << 2; 7245 7246 unsigned Offset = Offset0 | (Offset1 << 8); 7247 7248 SDValue Ops[] = { 7249 Chain, 7250 Value, 7251 DAG.getTargetConstant(Offset, DL, MVT::i16), 7252 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 7253 }; 7254 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 7255 M->getVTList(), Ops, M->getMemoryVT(), 7256 M->getMemOperand()); 7257 } 7258 case Intrinsic::amdgcn_ds_fadd: { 7259 MemSDNode *M = cast<MemSDNode>(Op); 7260 unsigned Opc; 7261 switch (IntrID) { 7262 case Intrinsic::amdgcn_ds_fadd: 7263 Opc = ISD::ATOMIC_LOAD_FADD; 7264 break; 7265 } 7266 7267 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 7268 M->getOperand(0), M->getOperand(2), M->getOperand(3), 7269 M->getMemOperand()); 7270 } 7271 case Intrinsic::amdgcn_atomic_inc: 7272 case Intrinsic::amdgcn_atomic_dec: 7273 case Intrinsic::amdgcn_ds_fmin: 7274 case Intrinsic::amdgcn_ds_fmax: { 7275 MemSDNode *M = cast<MemSDNode>(Op); 7276 unsigned Opc; 7277 switch (IntrID) { 7278 case Intrinsic::amdgcn_atomic_inc: 7279 Opc = AMDGPUISD::ATOMIC_INC; 7280 break; 7281 case Intrinsic::amdgcn_atomic_dec: 7282 Opc = AMDGPUISD::ATOMIC_DEC; 7283 break; 7284 case Intrinsic::amdgcn_ds_fmin: 7285 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 7286 break; 7287 case Intrinsic::amdgcn_ds_fmax: 7288 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 7289 break; 7290 default: 7291 llvm_unreachable("Unknown intrinsic!"); 7292 } 7293 SDValue Ops[] = { 7294 M->getOperand(0), // Chain 7295 M->getOperand(2), // Ptr 7296 M->getOperand(3) // Value 7297 }; 7298 7299 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 7300 M->getMemoryVT(), M->getMemOperand()); 7301 } 7302 case Intrinsic::amdgcn_buffer_load: 7303 case Intrinsic::amdgcn_buffer_load_format: { 7304 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 7305 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7306 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7307 SDValue Ops[] = { 7308 Op.getOperand(0), // Chain 7309 Op.getOperand(2), // rsrc 7310 Op.getOperand(3), // vindex 7311 SDValue(), // voffset -- will be set by setBufferOffsets 7312 SDValue(), // soffset -- will be set by setBufferOffsets 7313 SDValue(), // offset -- will be set by setBufferOffsets 7314 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7315 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7316 }; 7317 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 7318 7319 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 7320 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 7321 7322 EVT VT = Op.getValueType(); 7323 EVT IntVT = VT.changeTypeToInteger(); 7324 auto *M = cast<MemSDNode>(Op); 7325 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7326 EVT LoadVT = Op.getValueType(); 7327 7328 if (LoadVT.getScalarType() == MVT::f16) 7329 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 7330 M, DAG, Ops); 7331 7332 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 7333 if (LoadVT.getScalarType() == MVT::i8 || 7334 LoadVT.getScalarType() == MVT::i16) 7335 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 7336 7337 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 7338 M->getMemOperand(), DAG); 7339 } 7340 case Intrinsic::amdgcn_raw_buffer_load: 7341 case Intrinsic::amdgcn_raw_buffer_load_format: { 7342 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 7343 7344 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7345 SDValue Ops[] = { 7346 Op.getOperand(0), // Chain 7347 Op.getOperand(2), // rsrc 7348 DAG.getConstant(0, DL, MVT::i32), // vindex 7349 Offsets.first, // voffset 7350 Op.getOperand(4), // soffset 7351 Offsets.second, // offset 7352 Op.getOperand(5), // cachepolicy, swizzled buffer 7353 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7354 }; 7355 7356 auto *M = cast<MemSDNode>(Op); 7357 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); 7358 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 7359 } 7360 case Intrinsic::amdgcn_struct_buffer_load: 7361 case Intrinsic::amdgcn_struct_buffer_load_format: { 7362 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 7363 7364 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7365 SDValue Ops[] = { 7366 Op.getOperand(0), // Chain 7367 Op.getOperand(2), // rsrc 7368 Op.getOperand(3), // vindex 7369 Offsets.first, // voffset 7370 Op.getOperand(5), // soffset 7371 Offsets.second, // offset 7372 Op.getOperand(6), // cachepolicy, swizzled buffer 7373 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7374 }; 7375 7376 auto *M = cast<MemSDNode>(Op); 7377 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7378 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 7379 } 7380 case Intrinsic::amdgcn_tbuffer_load: { 7381 MemSDNode *M = cast<MemSDNode>(Op); 7382 EVT LoadVT = Op.getValueType(); 7383 7384 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7385 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7386 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7387 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7388 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7389 SDValue Ops[] = { 7390 Op.getOperand(0), // Chain 7391 Op.getOperand(2), // rsrc 7392 Op.getOperand(3), // vindex 7393 Op.getOperand(4), // voffset 7394 Op.getOperand(5), // soffset 7395 Op.getOperand(6), // offset 7396 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7397 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7398 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 7399 }; 7400 7401 if (LoadVT.getScalarType() == MVT::f16) 7402 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7403 M, DAG, Ops); 7404 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7405 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7406 DAG); 7407 } 7408 case Intrinsic::amdgcn_raw_tbuffer_load: { 7409 MemSDNode *M = cast<MemSDNode>(Op); 7410 EVT LoadVT = Op.getValueType(); 7411 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7412 7413 SDValue Ops[] = { 7414 Op.getOperand(0), // Chain 7415 Op.getOperand(2), // rsrc 7416 DAG.getConstant(0, DL, MVT::i32), // vindex 7417 Offsets.first, // voffset 7418 Op.getOperand(4), // soffset 7419 Offsets.second, // offset 7420 Op.getOperand(5), // format 7421 Op.getOperand(6), // cachepolicy, swizzled buffer 7422 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7423 }; 7424 7425 if (LoadVT.getScalarType() == MVT::f16) 7426 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7427 M, DAG, Ops); 7428 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7429 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7430 DAG); 7431 } 7432 case Intrinsic::amdgcn_struct_tbuffer_load: { 7433 MemSDNode *M = cast<MemSDNode>(Op); 7434 EVT LoadVT = Op.getValueType(); 7435 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7436 7437 SDValue Ops[] = { 7438 Op.getOperand(0), // Chain 7439 Op.getOperand(2), // rsrc 7440 Op.getOperand(3), // vindex 7441 Offsets.first, // voffset 7442 Op.getOperand(5), // soffset 7443 Offsets.second, // offset 7444 Op.getOperand(6), // format 7445 Op.getOperand(7), // cachepolicy, swizzled buffer 7446 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7447 }; 7448 7449 if (LoadVT.getScalarType() == MVT::f16) 7450 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7451 M, DAG, Ops); 7452 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7453 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7454 DAG); 7455 } 7456 case Intrinsic::amdgcn_buffer_atomic_swap: 7457 case Intrinsic::amdgcn_buffer_atomic_add: 7458 case Intrinsic::amdgcn_buffer_atomic_sub: 7459 case Intrinsic::amdgcn_buffer_atomic_csub: 7460 case Intrinsic::amdgcn_buffer_atomic_smin: 7461 case Intrinsic::amdgcn_buffer_atomic_umin: 7462 case Intrinsic::amdgcn_buffer_atomic_smax: 7463 case Intrinsic::amdgcn_buffer_atomic_umax: 7464 case Intrinsic::amdgcn_buffer_atomic_and: 7465 case Intrinsic::amdgcn_buffer_atomic_or: 7466 case Intrinsic::amdgcn_buffer_atomic_xor: 7467 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7468 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7469 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7470 SDValue Ops[] = { 7471 Op.getOperand(0), // Chain 7472 Op.getOperand(2), // vdata 7473 Op.getOperand(3), // rsrc 7474 Op.getOperand(4), // vindex 7475 SDValue(), // voffset -- will be set by setBufferOffsets 7476 SDValue(), // soffset -- will be set by setBufferOffsets 7477 SDValue(), // offset -- will be set by setBufferOffsets 7478 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7479 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7480 }; 7481 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7482 7483 EVT VT = Op.getValueType(); 7484 7485 auto *M = cast<MemSDNode>(Op); 7486 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7487 unsigned Opcode = 0; 7488 7489 switch (IntrID) { 7490 case Intrinsic::amdgcn_buffer_atomic_swap: 7491 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7492 break; 7493 case Intrinsic::amdgcn_buffer_atomic_add: 7494 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7495 break; 7496 case Intrinsic::amdgcn_buffer_atomic_sub: 7497 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7498 break; 7499 case Intrinsic::amdgcn_buffer_atomic_csub: 7500 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7501 break; 7502 case Intrinsic::amdgcn_buffer_atomic_smin: 7503 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7504 break; 7505 case Intrinsic::amdgcn_buffer_atomic_umin: 7506 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7507 break; 7508 case Intrinsic::amdgcn_buffer_atomic_smax: 7509 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7510 break; 7511 case Intrinsic::amdgcn_buffer_atomic_umax: 7512 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7513 break; 7514 case Intrinsic::amdgcn_buffer_atomic_and: 7515 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7516 break; 7517 case Intrinsic::amdgcn_buffer_atomic_or: 7518 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7519 break; 7520 case Intrinsic::amdgcn_buffer_atomic_xor: 7521 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7522 break; 7523 case Intrinsic::amdgcn_buffer_atomic_fadd: 7524 if (!Op.getValue(0).use_empty() && !hasAtomicFaddRtnForTy(Op)) { 7525 DiagnosticInfoUnsupported 7526 NoFpRet(DAG.getMachineFunction().getFunction(), 7527 "return versions of fp atomics not supported", 7528 DL.getDebugLoc(), DS_Error); 7529 DAG.getContext()->diagnose(NoFpRet); 7530 return SDValue(); 7531 } 7532 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7533 break; 7534 default: 7535 llvm_unreachable("unhandled atomic opcode"); 7536 } 7537 7538 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7539 M->getMemOperand()); 7540 } 7541 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7542 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7543 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7544 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7545 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 7546 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7547 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 7548 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7549 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 7550 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7551 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 7552 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7553 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7554 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7555 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7556 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7557 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7558 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7559 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7560 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7561 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7562 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7563 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7564 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7565 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7566 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7567 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7568 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7569 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7570 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7571 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7572 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7573 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7574 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7575 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7576 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7577 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7578 return lowerStructBufferAtomicIntrin(Op, DAG, 7579 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7580 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7581 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7582 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7583 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7584 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7585 return lowerStructBufferAtomicIntrin(Op, DAG, 7586 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7587 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7588 return lowerStructBufferAtomicIntrin(Op, DAG, 7589 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7590 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7591 return lowerStructBufferAtomicIntrin(Op, DAG, 7592 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7593 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7594 return lowerStructBufferAtomicIntrin(Op, DAG, 7595 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7596 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7597 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7598 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7599 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7600 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7601 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7602 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7603 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7604 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7605 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7606 7607 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7608 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7609 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 7610 SDValue Ops[] = { 7611 Op.getOperand(0), // Chain 7612 Op.getOperand(2), // src 7613 Op.getOperand(3), // cmp 7614 Op.getOperand(4), // rsrc 7615 Op.getOperand(5), // vindex 7616 SDValue(), // voffset -- will be set by setBufferOffsets 7617 SDValue(), // soffset -- will be set by setBufferOffsets 7618 SDValue(), // offset -- will be set by setBufferOffsets 7619 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7620 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7621 }; 7622 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7623 7624 EVT VT = Op.getValueType(); 7625 auto *M = cast<MemSDNode>(Op); 7626 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7627 7628 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7629 Op->getVTList(), Ops, VT, M->getMemOperand()); 7630 } 7631 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7632 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7633 SDValue Ops[] = { 7634 Op.getOperand(0), // Chain 7635 Op.getOperand(2), // src 7636 Op.getOperand(3), // cmp 7637 Op.getOperand(4), // rsrc 7638 DAG.getConstant(0, DL, MVT::i32), // vindex 7639 Offsets.first, // voffset 7640 Op.getOperand(6), // soffset 7641 Offsets.second, // offset 7642 Op.getOperand(7), // cachepolicy 7643 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7644 }; 7645 EVT VT = Op.getValueType(); 7646 auto *M = cast<MemSDNode>(Op); 7647 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); 7648 7649 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7650 Op->getVTList(), Ops, VT, M->getMemOperand()); 7651 } 7652 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7653 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7654 SDValue Ops[] = { 7655 Op.getOperand(0), // Chain 7656 Op.getOperand(2), // src 7657 Op.getOperand(3), // cmp 7658 Op.getOperand(4), // rsrc 7659 Op.getOperand(5), // vindex 7660 Offsets.first, // voffset 7661 Op.getOperand(7), // soffset 7662 Offsets.second, // offset 7663 Op.getOperand(8), // cachepolicy 7664 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7665 }; 7666 EVT VT = Op.getValueType(); 7667 auto *M = cast<MemSDNode>(Op); 7668 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7669 7670 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7671 Op->getVTList(), Ops, VT, M->getMemOperand()); 7672 } 7673 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 7674 MemSDNode *M = cast<MemSDNode>(Op); 7675 SDValue NodePtr = M->getOperand(2); 7676 SDValue RayExtent = M->getOperand(3); 7677 SDValue RayOrigin = M->getOperand(4); 7678 SDValue RayDir = M->getOperand(5); 7679 SDValue RayInvDir = M->getOperand(6); 7680 SDValue TDescr = M->getOperand(7); 7681 7682 assert(NodePtr.getValueType() == MVT::i32 || 7683 NodePtr.getValueType() == MVT::i64); 7684 assert(RayDir.getValueType() == MVT::v3f16 || 7685 RayDir.getValueType() == MVT::v3f32); 7686 7687 if (!Subtarget->hasGFX10_AEncoding()) { 7688 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 7689 return SDValue(); 7690 } 7691 7692 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 7693 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 7694 const bool Is64 = NodePtr.getValueType() == MVT::i64; 7695 const unsigned NumVDataDwords = 4; 7696 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 7697 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; 7698 const bool UseNSA = 7699 Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize(); 7700 const unsigned BaseOpcodes[2][2] = { 7701 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 7702 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 7703 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 7704 int Opcode; 7705 if (UseNSA) { 7706 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7707 IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA 7708 : AMDGPU::MIMGEncGfx10NSA, 7709 NumVDataDwords, NumVAddrDwords); 7710 } else { 7711 Opcode = 7712 AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7713 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default 7714 : AMDGPU::MIMGEncGfx10Default, 7715 NumVDataDwords, PowerOf2Ceil(NumVAddrDwords)); 7716 } 7717 assert(Opcode != -1); 7718 7719 SmallVector<SDValue, 16> Ops; 7720 7721 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 7722 SmallVector<SDValue, 3> Lanes; 7723 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 7724 if (Lanes[0].getValueSizeInBits() == 32) { 7725 for (unsigned I = 0; I < 3; ++I) 7726 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 7727 } else { 7728 if (IsAligned) { 7729 Ops.push_back( 7730 DAG.getBitcast(MVT::i32, 7731 DAG.getBuildVector(MVT::v2f16, DL, 7732 { Lanes[0], Lanes[1] }))); 7733 Ops.push_back(Lanes[2]); 7734 } else { 7735 SDValue Elt0 = Ops.pop_back_val(); 7736 Ops.push_back( 7737 DAG.getBitcast(MVT::i32, 7738 DAG.getBuildVector(MVT::v2f16, DL, 7739 { Elt0, Lanes[0] }))); 7740 Ops.push_back( 7741 DAG.getBitcast(MVT::i32, 7742 DAG.getBuildVector(MVT::v2f16, DL, 7743 { Lanes[1], Lanes[2] }))); 7744 } 7745 } 7746 }; 7747 7748 if (UseNSA && IsGFX11Plus) { 7749 Ops.push_back(NodePtr); 7750 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7751 Ops.push_back(RayOrigin); 7752 if (IsA16) { 7753 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; 7754 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); 7755 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); 7756 for (unsigned I = 0; I < 3; ++I) { 7757 MergedLanes.push_back(DAG.getBitcast( 7758 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, 7759 {DirLanes[I], InvDirLanes[I]}))); 7760 } 7761 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); 7762 } else { 7763 Ops.push_back(RayDir); 7764 Ops.push_back(RayInvDir); 7765 } 7766 } else { 7767 if (Is64) 7768 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 7769 2); 7770 else 7771 Ops.push_back(NodePtr); 7772 7773 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7774 packLanes(RayOrigin, true); 7775 packLanes(RayDir, true); 7776 packLanes(RayInvDir, false); 7777 } 7778 7779 if (!UseNSA) { 7780 // Build a single vector containing all the operands so far prepared. 7781 if (NumVAddrDwords > 8) { 7782 SDValue Undef = DAG.getUNDEF(MVT::i32); 7783 Ops.append(16 - Ops.size(), Undef); 7784 } 7785 assert(Ops.size() == 8 || Ops.size() == 16); 7786 SDValue MergedOps = DAG.getBuildVector( 7787 Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops); 7788 Ops.clear(); 7789 Ops.push_back(MergedOps); 7790 } 7791 7792 Ops.push_back(TDescr); 7793 if (IsA16) 7794 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); 7795 Ops.push_back(M->getChain()); 7796 7797 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 7798 MachineMemOperand *MemRef = M->getMemOperand(); 7799 DAG.setNodeMemRefs(NewNode, {MemRef}); 7800 return SDValue(NewNode, 0); 7801 } 7802 case Intrinsic::amdgcn_global_atomic_fadd: 7803 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7804 DiagnosticInfoUnsupported 7805 NoFpRet(DAG.getMachineFunction().getFunction(), 7806 "return versions of fp atomics not supported", 7807 DL.getDebugLoc(), DS_Error); 7808 DAG.getContext()->diagnose(NoFpRet); 7809 return SDValue(); 7810 } 7811 LLVM_FALLTHROUGH; 7812 case Intrinsic::amdgcn_global_atomic_fmin: 7813 case Intrinsic::amdgcn_global_atomic_fmax: 7814 case Intrinsic::amdgcn_flat_atomic_fadd: 7815 case Intrinsic::amdgcn_flat_atomic_fmin: 7816 case Intrinsic::amdgcn_flat_atomic_fmax: { 7817 MemSDNode *M = cast<MemSDNode>(Op); 7818 SDValue Ops[] = { 7819 M->getOperand(0), // Chain 7820 M->getOperand(2), // Ptr 7821 M->getOperand(3) // Value 7822 }; 7823 unsigned Opcode = 0; 7824 switch (IntrID) { 7825 case Intrinsic::amdgcn_global_atomic_fadd: 7826 case Intrinsic::amdgcn_flat_atomic_fadd: { 7827 EVT VT = Op.getOperand(3).getValueType(); 7828 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7829 DAG.getVTList(VT, MVT::Other), Ops, 7830 M->getMemOperand()); 7831 } 7832 case Intrinsic::amdgcn_global_atomic_fmin: 7833 case Intrinsic::amdgcn_flat_atomic_fmin: { 7834 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 7835 break; 7836 } 7837 case Intrinsic::amdgcn_global_atomic_fmax: 7838 case Intrinsic::amdgcn_flat_atomic_fmax: { 7839 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 7840 break; 7841 } 7842 default: 7843 llvm_unreachable("unhandled atomic opcode"); 7844 } 7845 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 7846 M->getVTList(), Ops, M->getMemoryVT(), 7847 M->getMemOperand()); 7848 } 7849 default: 7850 7851 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7852 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7853 return lowerImage(Op, ImageDimIntr, DAG, true); 7854 7855 return SDValue(); 7856 } 7857 } 7858 7859 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7860 // dwordx4 if on SI. 7861 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7862 SDVTList VTList, 7863 ArrayRef<SDValue> Ops, EVT MemVT, 7864 MachineMemOperand *MMO, 7865 SelectionDAG &DAG) const { 7866 EVT VT = VTList.VTs[0]; 7867 EVT WidenedVT = VT; 7868 EVT WidenedMemVT = MemVT; 7869 if (!Subtarget->hasDwordx3LoadStores() && 7870 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7871 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7872 WidenedVT.getVectorElementType(), 4); 7873 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7874 WidenedMemVT.getVectorElementType(), 4); 7875 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7876 } 7877 7878 assert(VTList.NumVTs == 2); 7879 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7880 7881 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7882 WidenedMemVT, MMO); 7883 if (WidenedVT != VT) { 7884 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7885 DAG.getVectorIdxConstant(0, DL)); 7886 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7887 } 7888 return NewOp; 7889 } 7890 7891 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 7892 bool ImageStore) const { 7893 EVT StoreVT = VData.getValueType(); 7894 7895 // No change for f16 and legal vector D16 types. 7896 if (!StoreVT.isVector()) 7897 return VData; 7898 7899 SDLoc DL(VData); 7900 unsigned NumElements = StoreVT.getVectorNumElements(); 7901 7902 if (Subtarget->hasUnpackedD16VMem()) { 7903 // We need to unpack the packed data to store. 7904 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7905 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7906 7907 EVT EquivStoreVT = 7908 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 7909 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7910 return DAG.UnrollVectorOp(ZExt.getNode()); 7911 } 7912 7913 // The sq block of gfx8.1 does not estimate register use correctly for d16 7914 // image store instructions. The data operand is computed as if it were not a 7915 // d16 image instruction. 7916 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 7917 // Bitcast to i16 7918 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7919 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7920 7921 // Decompose into scalars 7922 SmallVector<SDValue, 4> Elts; 7923 DAG.ExtractVectorElements(IntVData, Elts); 7924 7925 // Group pairs of i16 into v2i16 and bitcast to i32 7926 SmallVector<SDValue, 4> PackedElts; 7927 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 7928 SDValue Pair = 7929 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 7930 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7931 PackedElts.push_back(IntPair); 7932 } 7933 if ((NumElements % 2) == 1) { 7934 // Handle v3i16 7935 unsigned I = Elts.size() / 2; 7936 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 7937 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 7938 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7939 PackedElts.push_back(IntPair); 7940 } 7941 7942 // Pad using UNDEF 7943 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 7944 7945 // Build final vector 7946 EVT VecVT = 7947 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 7948 return DAG.getBuildVector(VecVT, DL, PackedElts); 7949 } 7950 7951 if (NumElements == 3) { 7952 EVT IntStoreVT = 7953 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 7954 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7955 7956 EVT WidenedStoreVT = EVT::getVectorVT( 7957 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 7958 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 7959 WidenedStoreVT.getStoreSizeInBits()); 7960 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 7961 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 7962 } 7963 7964 assert(isTypeLegal(StoreVT)); 7965 return VData; 7966 } 7967 7968 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7969 SelectionDAG &DAG) const { 7970 SDLoc DL(Op); 7971 SDValue Chain = Op.getOperand(0); 7972 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7973 MachineFunction &MF = DAG.getMachineFunction(); 7974 7975 switch (IntrinsicID) { 7976 case Intrinsic::amdgcn_exp_compr: { 7977 if (!Subtarget->hasCompressedExport()) { 7978 DiagnosticInfoUnsupported BadIntrin( 7979 DAG.getMachineFunction().getFunction(), 7980 "intrinsic not supported on subtarget", DL.getDebugLoc()); 7981 DAG.getContext()->diagnose(BadIntrin); 7982 } 7983 SDValue Src0 = Op.getOperand(4); 7984 SDValue Src1 = Op.getOperand(5); 7985 // Hack around illegal type on SI by directly selecting it. 7986 if (isTypeLegal(Src0.getValueType())) 7987 return SDValue(); 7988 7989 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7990 SDValue Undef = DAG.getUNDEF(MVT::f32); 7991 const SDValue Ops[] = { 7992 Op.getOperand(2), // tgt 7993 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7994 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7995 Undef, // src2 7996 Undef, // src3 7997 Op.getOperand(7), // vm 7998 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7999 Op.getOperand(3), // en 8000 Op.getOperand(0) // Chain 8001 }; 8002 8003 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 8004 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 8005 } 8006 case Intrinsic::amdgcn_s_barrier: { 8007 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 8008 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 8009 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 8010 if (WGSize <= ST.getWavefrontSize()) 8011 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 8012 Op.getOperand(0)), 0); 8013 } 8014 return SDValue(); 8015 }; 8016 case Intrinsic::amdgcn_tbuffer_store: { 8017 SDValue VData = Op.getOperand(2); 8018 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8019 if (IsD16) 8020 VData = handleD16VData(VData, DAG); 8021 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 8022 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 8023 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 8024 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 8025 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8026 SDValue Ops[] = { 8027 Chain, 8028 VData, // vdata 8029 Op.getOperand(3), // rsrc 8030 Op.getOperand(4), // vindex 8031 Op.getOperand(5), // voffset 8032 Op.getOperand(6), // soffset 8033 Op.getOperand(7), // offset 8034 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 8035 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8036 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8037 }; 8038 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8039 AMDGPUISD::TBUFFER_STORE_FORMAT; 8040 MemSDNode *M = cast<MemSDNode>(Op); 8041 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8042 M->getMemoryVT(), M->getMemOperand()); 8043 } 8044 8045 case Intrinsic::amdgcn_struct_tbuffer_store: { 8046 SDValue VData = Op.getOperand(2); 8047 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8048 if (IsD16) 8049 VData = handleD16VData(VData, DAG); 8050 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8051 SDValue Ops[] = { 8052 Chain, 8053 VData, // vdata 8054 Op.getOperand(3), // rsrc 8055 Op.getOperand(4), // vindex 8056 Offsets.first, // voffset 8057 Op.getOperand(6), // soffset 8058 Offsets.second, // offset 8059 Op.getOperand(7), // format 8060 Op.getOperand(8), // cachepolicy, swizzled buffer 8061 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8062 }; 8063 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8064 AMDGPUISD::TBUFFER_STORE_FORMAT; 8065 MemSDNode *M = cast<MemSDNode>(Op); 8066 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8067 M->getMemoryVT(), M->getMemOperand()); 8068 } 8069 8070 case Intrinsic::amdgcn_raw_tbuffer_store: { 8071 SDValue VData = Op.getOperand(2); 8072 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8073 if (IsD16) 8074 VData = handleD16VData(VData, DAG); 8075 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8076 SDValue Ops[] = { 8077 Chain, 8078 VData, // vdata 8079 Op.getOperand(3), // rsrc 8080 DAG.getConstant(0, DL, MVT::i32), // vindex 8081 Offsets.first, // voffset 8082 Op.getOperand(5), // soffset 8083 Offsets.second, // offset 8084 Op.getOperand(6), // format 8085 Op.getOperand(7), // cachepolicy, swizzled buffer 8086 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8087 }; 8088 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8089 AMDGPUISD::TBUFFER_STORE_FORMAT; 8090 MemSDNode *M = cast<MemSDNode>(Op); 8091 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8092 M->getMemoryVT(), M->getMemOperand()); 8093 } 8094 8095 case Intrinsic::amdgcn_buffer_store: 8096 case Intrinsic::amdgcn_buffer_store_format: { 8097 SDValue VData = Op.getOperand(2); 8098 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8099 if (IsD16) 8100 VData = handleD16VData(VData, DAG); 8101 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 8102 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 8103 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8104 SDValue Ops[] = { 8105 Chain, 8106 VData, 8107 Op.getOperand(3), // rsrc 8108 Op.getOperand(4), // vindex 8109 SDValue(), // voffset -- will be set by setBufferOffsets 8110 SDValue(), // soffset -- will be set by setBufferOffsets 8111 SDValue(), // offset -- will be set by setBufferOffsets 8112 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8113 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8114 }; 8115 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 8116 8117 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 8118 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8119 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8120 MemSDNode *M = cast<MemSDNode>(Op); 8121 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8122 8123 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8124 EVT VDataType = VData.getValueType().getScalarType(); 8125 if (VDataType == MVT::i8 || VDataType == MVT::i16) 8126 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8127 8128 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8129 M->getMemoryVT(), M->getMemOperand()); 8130 } 8131 8132 case Intrinsic::amdgcn_raw_buffer_store: 8133 case Intrinsic::amdgcn_raw_buffer_store_format: { 8134 const bool IsFormat = 8135 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 8136 8137 SDValue VData = Op.getOperand(2); 8138 EVT VDataVT = VData.getValueType(); 8139 EVT EltType = VDataVT.getScalarType(); 8140 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8141 if (IsD16) { 8142 VData = handleD16VData(VData, DAG); 8143 VDataVT = VData.getValueType(); 8144 } 8145 8146 if (!isTypeLegal(VDataVT)) { 8147 VData = 8148 DAG.getNode(ISD::BITCAST, DL, 8149 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8150 } 8151 8152 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8153 SDValue Ops[] = { 8154 Chain, 8155 VData, 8156 Op.getOperand(3), // rsrc 8157 DAG.getConstant(0, DL, MVT::i32), // vindex 8158 Offsets.first, // voffset 8159 Op.getOperand(5), // soffset 8160 Offsets.second, // offset 8161 Op.getOperand(6), // cachepolicy, swizzled buffer 8162 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8163 }; 8164 unsigned Opc = 8165 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 8166 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8167 MemSDNode *M = cast<MemSDNode>(Op); 8168 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 8169 8170 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8171 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8172 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 8173 8174 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8175 M->getMemoryVT(), M->getMemOperand()); 8176 } 8177 8178 case Intrinsic::amdgcn_struct_buffer_store: 8179 case Intrinsic::amdgcn_struct_buffer_store_format: { 8180 const bool IsFormat = 8181 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 8182 8183 SDValue VData = Op.getOperand(2); 8184 EVT VDataVT = VData.getValueType(); 8185 EVT EltType = VDataVT.getScalarType(); 8186 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8187 8188 if (IsD16) { 8189 VData = handleD16VData(VData, DAG); 8190 VDataVT = VData.getValueType(); 8191 } 8192 8193 if (!isTypeLegal(VDataVT)) { 8194 VData = 8195 DAG.getNode(ISD::BITCAST, DL, 8196 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8197 } 8198 8199 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8200 SDValue Ops[] = { 8201 Chain, 8202 VData, 8203 Op.getOperand(3), // rsrc 8204 Op.getOperand(4), // vindex 8205 Offsets.first, // voffset 8206 Op.getOperand(6), // soffset 8207 Offsets.second, // offset 8208 Op.getOperand(7), // cachepolicy, swizzled buffer 8209 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8210 }; 8211 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 8212 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8213 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8214 MemSDNode *M = cast<MemSDNode>(Op); 8215 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8216 8217 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8218 EVT VDataType = VData.getValueType().getScalarType(); 8219 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8220 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8221 8222 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8223 M->getMemoryVT(), M->getMemOperand()); 8224 } 8225 case Intrinsic::amdgcn_raw_buffer_load_lds: 8226 case Intrinsic::amdgcn_struct_buffer_load_lds: { 8227 unsigned Opc; 8228 bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds; 8229 unsigned OpOffset = HasVIndex ? 1 : 0; 8230 SDValue VOffset = Op.getOperand(5 + OpOffset); 8231 auto CVOffset = dyn_cast<ConstantSDNode>(VOffset); 8232 bool HasVOffset = !CVOffset || !CVOffset->isZero(); 8233 unsigned Size = Op->getConstantOperandVal(4); 8234 8235 switch (Size) { 8236 default: 8237 return SDValue(); 8238 case 1: 8239 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN 8240 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN 8241 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN 8242 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; 8243 break; 8244 case 2: 8245 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN 8246 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN 8247 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN 8248 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; 8249 break; 8250 case 4: 8251 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN 8252 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN 8253 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN 8254 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; 8255 break; 8256 } 8257 8258 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8259 8260 SmallVector<SDValue, 8> Ops; 8261 8262 if (HasVIndex && HasVOffset) 8263 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, 8264 { Op.getOperand(5), // VIndex 8265 VOffset })); 8266 else if (HasVIndex) 8267 Ops.push_back(Op.getOperand(5)); 8268 else if (HasVOffset) 8269 Ops.push_back(VOffset); 8270 8271 Ops.push_back(Op.getOperand(2)); // rsrc 8272 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset 8273 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset 8274 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); 8275 Ops.push_back( 8276 DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol 8277 Ops.push_back( 8278 DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz 8279 Ops.push_back(M0Val.getValue(0)); // Chain 8280 Ops.push_back(M0Val.getValue(1)); // Glue 8281 8282 auto *M = cast<MemSDNode>(Op); 8283 MachineMemOperand *LoadMMO = M->getMemOperand(); 8284 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8285 LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset); 8286 MachinePointerInfo StorePtrI = LoadPtrI; 8287 StorePtrI.V = nullptr; 8288 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8289 8290 auto F = LoadMMO->getFlags() & 8291 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8292 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8293 Size, LoadMMO->getBaseAlign()); 8294 8295 MachineMemOperand *StoreMMO = 8296 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8297 sizeof(int32_t), LoadMMO->getBaseAlign()); 8298 8299 auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); 8300 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8301 8302 return SDValue(Load, 0); 8303 } 8304 case Intrinsic::amdgcn_global_load_lds: { 8305 unsigned Opc; 8306 unsigned Size = Op->getConstantOperandVal(4); 8307 switch (Size) { 8308 default: 8309 return SDValue(); 8310 case 1: 8311 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; 8312 break; 8313 case 2: 8314 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; 8315 break; 8316 case 4: 8317 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; 8318 break; 8319 } 8320 8321 auto *M = cast<MemSDNode>(Op); 8322 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8323 8324 SmallVector<SDValue, 6> Ops; 8325 8326 SDValue Addr = Op.getOperand(2); // Global ptr 8327 SDValue VOffset; 8328 // Try to split SAddr and VOffset. Global and LDS pointers share the same 8329 // immediate offset, so we cannot use a regular SelectGlobalSAddr(). 8330 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { 8331 SDValue LHS = Addr.getOperand(0); 8332 SDValue RHS = Addr.getOperand(1); 8333 8334 if (LHS->isDivergent()) 8335 std::swap(LHS, RHS); 8336 8337 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && 8338 RHS.getOperand(0).getValueType() == MVT::i32) { 8339 // add (i64 sgpr), (zero_extend (i32 vgpr)) 8340 Addr = LHS; 8341 VOffset = RHS.getOperand(0); 8342 } 8343 } 8344 8345 Ops.push_back(Addr); 8346 if (!Addr->isDivergent()) { 8347 Opc = AMDGPU::getGlobalSaddrOp(Opc); 8348 if (!VOffset) 8349 VOffset = SDValue( 8350 DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, 8351 DAG.getTargetConstant(0, DL, MVT::i32)), 0); 8352 Ops.push_back(VOffset); 8353 } 8354 8355 Ops.push_back(Op.getOperand(5)); // Offset 8356 Ops.push_back(Op.getOperand(6)); // CPol 8357 Ops.push_back(M0Val.getValue(0)); // Chain 8358 Ops.push_back(M0Val.getValue(1)); // Glue 8359 8360 MachineMemOperand *LoadMMO = M->getMemOperand(); 8361 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8362 LoadPtrI.Offset = Op->getConstantOperandVal(5); 8363 MachinePointerInfo StorePtrI = LoadPtrI; 8364 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 8365 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8366 auto F = LoadMMO->getFlags() & 8367 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8368 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8369 Size, LoadMMO->getBaseAlign()); 8370 MachineMemOperand *StoreMMO = 8371 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8372 sizeof(int32_t), Align(4)); 8373 8374 auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 8375 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8376 8377 return SDValue(Load, 0); 8378 } 8379 case Intrinsic::amdgcn_end_cf: 8380 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 8381 Op->getOperand(2), Chain), 0); 8382 8383 default: { 8384 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8385 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8386 return lowerImage(Op, ImageDimIntr, DAG, true); 8387 8388 return Op; 8389 } 8390 } 8391 } 8392 8393 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 8394 // offset (the offset that is included in bounds checking and swizzling, to be 8395 // split between the instruction's voffset and immoffset fields) and soffset 8396 // (the offset that is excluded from bounds checking and swizzling, to go in 8397 // the instruction's soffset field). This function takes the first kind of 8398 // offset and figures out how to split it between voffset and immoffset. 8399 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 8400 SDValue Offset, SelectionDAG &DAG) const { 8401 SDLoc DL(Offset); 8402 const unsigned MaxImm = 4095; 8403 SDValue N0 = Offset; 8404 ConstantSDNode *C1 = nullptr; 8405 8406 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 8407 N0 = SDValue(); 8408 else if (DAG.isBaseWithConstantOffset(N0)) { 8409 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 8410 N0 = N0.getOperand(0); 8411 } 8412 8413 if (C1) { 8414 unsigned ImmOffset = C1->getZExtValue(); 8415 // If the immediate value is too big for the immoffset field, put the value 8416 // and -4096 into the immoffset field so that the value that is copied/added 8417 // for the voffset field is a multiple of 4096, and it stands more chance 8418 // of being CSEd with the copy/add for another similar load/store. 8419 // However, do not do that rounding down to a multiple of 4096 if that is a 8420 // negative number, as it appears to be illegal to have a negative offset 8421 // in the vgpr, even if adding the immediate offset makes it positive. 8422 unsigned Overflow = ImmOffset & ~MaxImm; 8423 ImmOffset -= Overflow; 8424 if ((int32_t)Overflow < 0) { 8425 Overflow += ImmOffset; 8426 ImmOffset = 0; 8427 } 8428 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 8429 if (Overflow) { 8430 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 8431 if (!N0) 8432 N0 = OverflowVal; 8433 else { 8434 SDValue Ops[] = { N0, OverflowVal }; 8435 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 8436 } 8437 } 8438 } 8439 if (!N0) 8440 N0 = DAG.getConstant(0, DL, MVT::i32); 8441 if (!C1) 8442 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 8443 return {N0, SDValue(C1, 0)}; 8444 } 8445 8446 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 8447 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 8448 // pointed to by Offsets. 8449 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 8450 SelectionDAG &DAG, SDValue *Offsets, 8451 Align Alignment) const { 8452 SDLoc DL(CombinedOffset); 8453 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 8454 uint32_t Imm = C->getZExtValue(); 8455 uint32_t SOffset, ImmOffset; 8456 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 8457 Alignment)) { 8458 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 8459 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8460 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8461 return; 8462 } 8463 } 8464 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 8465 SDValue N0 = CombinedOffset.getOperand(0); 8466 SDValue N1 = CombinedOffset.getOperand(1); 8467 uint32_t SOffset, ImmOffset; 8468 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 8469 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 8470 Subtarget, Alignment)) { 8471 Offsets[0] = N0; 8472 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8473 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8474 return; 8475 } 8476 } 8477 Offsets[0] = CombinedOffset; 8478 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 8479 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 8480 } 8481 8482 // Handle 8 bit and 16 bit buffer loads 8483 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 8484 EVT LoadVT, SDLoc DL, 8485 ArrayRef<SDValue> Ops, 8486 MemSDNode *M) const { 8487 EVT IntVT = LoadVT.changeTypeToInteger(); 8488 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 8489 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 8490 8491 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 8492 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 8493 Ops, IntVT, 8494 M->getMemOperand()); 8495 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 8496 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 8497 8498 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 8499 } 8500 8501 // Handle 8 bit and 16 bit buffer stores 8502 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 8503 EVT VDataType, SDLoc DL, 8504 SDValue Ops[], 8505 MemSDNode *M) const { 8506 if (VDataType == MVT::f16) 8507 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 8508 8509 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 8510 Ops[1] = BufferStoreExt; 8511 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 8512 AMDGPUISD::BUFFER_STORE_SHORT; 8513 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 8514 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 8515 M->getMemOperand()); 8516 } 8517 8518 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 8519 ISD::LoadExtType ExtType, SDValue Op, 8520 const SDLoc &SL, EVT VT) { 8521 if (VT.bitsLT(Op.getValueType())) 8522 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 8523 8524 switch (ExtType) { 8525 case ISD::SEXTLOAD: 8526 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 8527 case ISD::ZEXTLOAD: 8528 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 8529 case ISD::EXTLOAD: 8530 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 8531 case ISD::NON_EXTLOAD: 8532 return Op; 8533 } 8534 8535 llvm_unreachable("invalid ext type"); 8536 } 8537 8538 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 8539 SelectionDAG &DAG = DCI.DAG; 8540 if (Ld->getAlign() < Align(4) || Ld->isDivergent()) 8541 return SDValue(); 8542 8543 // FIXME: Constant loads should all be marked invariant. 8544 unsigned AS = Ld->getAddressSpace(); 8545 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 8546 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 8547 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 8548 return SDValue(); 8549 8550 // Don't do this early, since it may interfere with adjacent load merging for 8551 // illegal types. We can avoid losing alignment information for exotic types 8552 // pre-legalize. 8553 EVT MemVT = Ld->getMemoryVT(); 8554 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 8555 MemVT.getSizeInBits() >= 32) 8556 return SDValue(); 8557 8558 SDLoc SL(Ld); 8559 8560 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 8561 "unexpected vector extload"); 8562 8563 // TODO: Drop only high part of range. 8564 SDValue Ptr = Ld->getBasePtr(); 8565 SDValue NewLoad = DAG.getLoad( 8566 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, 8567 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), 8568 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), 8569 nullptr); // Drop ranges 8570 8571 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 8572 if (MemVT.isFloatingPoint()) { 8573 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 8574 "unexpected fp extload"); 8575 TruncVT = MemVT.changeTypeToInteger(); 8576 } 8577 8578 SDValue Cvt = NewLoad; 8579 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 8580 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 8581 DAG.getValueType(TruncVT)); 8582 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 8583 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 8584 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 8585 } else { 8586 assert(Ld->getExtensionType() == ISD::EXTLOAD); 8587 } 8588 8589 EVT VT = Ld->getValueType(0); 8590 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8591 8592 DCI.AddToWorklist(Cvt.getNode()); 8593 8594 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 8595 // the appropriate extension from the 32-bit load. 8596 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 8597 DCI.AddToWorklist(Cvt.getNode()); 8598 8599 // Handle conversion back to floating point if necessary. 8600 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 8601 8602 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 8603 } 8604 8605 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 8606 SDLoc DL(Op); 8607 LoadSDNode *Load = cast<LoadSDNode>(Op); 8608 ISD::LoadExtType ExtType = Load->getExtensionType(); 8609 EVT MemVT = Load->getMemoryVT(); 8610 8611 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 8612 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 8613 return SDValue(); 8614 8615 // FIXME: Copied from PPC 8616 // First, load into 32 bits, then truncate to 1 bit. 8617 8618 SDValue Chain = Load->getChain(); 8619 SDValue BasePtr = Load->getBasePtr(); 8620 MachineMemOperand *MMO = Load->getMemOperand(); 8621 8622 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 8623 8624 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 8625 BasePtr, RealMemVT, MMO); 8626 8627 if (!MemVT.isVector()) { 8628 SDValue Ops[] = { 8629 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 8630 NewLD.getValue(1) 8631 }; 8632 8633 return DAG.getMergeValues(Ops, DL); 8634 } 8635 8636 SmallVector<SDValue, 3> Elts; 8637 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 8638 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 8639 DAG.getConstant(I, DL, MVT::i32)); 8640 8641 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 8642 } 8643 8644 SDValue Ops[] = { 8645 DAG.getBuildVector(MemVT, DL, Elts), 8646 NewLD.getValue(1) 8647 }; 8648 8649 return DAG.getMergeValues(Ops, DL); 8650 } 8651 8652 if (!MemVT.isVector()) 8653 return SDValue(); 8654 8655 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 8656 "Custom lowering for non-i32 vectors hasn't been implemented."); 8657 8658 Align Alignment = Load->getAlign(); 8659 unsigned AS = Load->getAddressSpace(); 8660 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && 8661 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 8662 return SplitVectorLoad(Op, DAG); 8663 } 8664 8665 MachineFunction &MF = DAG.getMachineFunction(); 8666 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8667 // If there is a possibility that flat instruction access scratch memory 8668 // then we need to use the same legalization rules we use for private. 8669 if (AS == AMDGPUAS::FLAT_ADDRESS && 8670 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8671 AS = MFI->hasFlatScratchInit() ? 8672 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8673 8674 unsigned NumElements = MemVT.getVectorNumElements(); 8675 8676 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8677 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 8678 if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { 8679 if (MemVT.isPow2VectorType()) 8680 return SDValue(); 8681 return WidenOrSplitVectorLoad(Op, DAG); 8682 } 8683 // Non-uniform loads will be selected to MUBUF instructions, so they 8684 // have the same legalization requirements as global and private 8685 // loads. 8686 // 8687 } 8688 8689 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8690 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8691 AS == AMDGPUAS::GLOBAL_ADDRESS) { 8692 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 8693 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 8694 Alignment >= Align(4) && NumElements < 32) { 8695 if (MemVT.isPow2VectorType()) 8696 return SDValue(); 8697 return WidenOrSplitVectorLoad(Op, DAG); 8698 } 8699 // Non-uniform loads will be selected to MUBUF instructions, so they 8700 // have the same legalization requirements as global and private 8701 // loads. 8702 // 8703 } 8704 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8705 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8706 AS == AMDGPUAS::GLOBAL_ADDRESS || 8707 AS == AMDGPUAS::FLAT_ADDRESS) { 8708 if (NumElements > 4) 8709 return SplitVectorLoad(Op, DAG); 8710 // v3 loads not supported on SI. 8711 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8712 return WidenOrSplitVectorLoad(Op, DAG); 8713 8714 // v3 and v4 loads are supported for private and global memory. 8715 return SDValue(); 8716 } 8717 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8718 // Depending on the setting of the private_element_size field in the 8719 // resource descriptor, we can only make private accesses up to a certain 8720 // size. 8721 switch (Subtarget->getMaxPrivateElementSize()) { 8722 case 4: { 8723 SDValue Ops[2]; 8724 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 8725 return DAG.getMergeValues(Ops, DL); 8726 } 8727 case 8: 8728 if (NumElements > 2) 8729 return SplitVectorLoad(Op, DAG); 8730 return SDValue(); 8731 case 16: 8732 // Same as global/flat 8733 if (NumElements > 4) 8734 return SplitVectorLoad(Op, DAG); 8735 // v3 loads not supported on SI. 8736 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8737 return WidenOrSplitVectorLoad(Op, DAG); 8738 8739 return SDValue(); 8740 default: 8741 llvm_unreachable("unsupported private_element_size"); 8742 } 8743 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8744 bool Fast = false; 8745 auto Flags = Load->getMemOperand()->getFlags(); 8746 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 8747 Load->getAlign(), Flags, &Fast) && 8748 Fast) 8749 return SDValue(); 8750 8751 if (MemVT.isVector()) 8752 return SplitVectorLoad(Op, DAG); 8753 } 8754 8755 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8756 MemVT, *Load->getMemOperand())) { 8757 SDValue Ops[2]; 8758 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 8759 return DAG.getMergeValues(Ops, DL); 8760 } 8761 8762 return SDValue(); 8763 } 8764 8765 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 8766 EVT VT = Op.getValueType(); 8767 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256) 8768 return splitTernaryVectorOp(Op, DAG); 8769 8770 assert(VT.getSizeInBits() == 64); 8771 8772 SDLoc DL(Op); 8773 SDValue Cond = Op.getOperand(0); 8774 8775 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 8776 SDValue One = DAG.getConstant(1, DL, MVT::i32); 8777 8778 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 8779 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 8780 8781 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 8782 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 8783 8784 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 8785 8786 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 8787 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 8788 8789 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 8790 8791 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 8792 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 8793 } 8794 8795 // Catch division cases where we can use shortcuts with rcp and rsq 8796 // instructions. 8797 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 8798 SelectionDAG &DAG) const { 8799 SDLoc SL(Op); 8800 SDValue LHS = Op.getOperand(0); 8801 SDValue RHS = Op.getOperand(1); 8802 EVT VT = Op.getValueType(); 8803 const SDNodeFlags Flags = Op->getFlags(); 8804 8805 bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); 8806 8807 // Without !fpmath accuracy information, we can't do more because we don't 8808 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8809 if (!AllowInaccurateRcp) 8810 return SDValue(); 8811 8812 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8813 if (CLHS->isExactlyValue(1.0)) { 8814 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8815 // the CI documentation has a worst case error of 1 ulp. 8816 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8817 // use it as long as we aren't trying to use denormals. 8818 // 8819 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8820 8821 // 1.0 / sqrt(x) -> rsq(x) 8822 8823 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8824 // error seems really high at 2^29 ULP. 8825 if (RHS.getOpcode() == ISD::FSQRT) 8826 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8827 8828 // 1.0 / x -> rcp(x) 8829 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8830 } 8831 8832 // Same as for 1.0, but expand the sign out of the constant. 8833 if (CLHS->isExactlyValue(-1.0)) { 8834 // -1.0 / x -> rcp (fneg x) 8835 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8836 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8837 } 8838 } 8839 8840 // Turn into multiply by the reciprocal. 8841 // x / y -> x * (1.0 / y) 8842 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8843 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8844 } 8845 8846 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 8847 SelectionDAG &DAG) const { 8848 SDLoc SL(Op); 8849 SDValue X = Op.getOperand(0); 8850 SDValue Y = Op.getOperand(1); 8851 EVT VT = Op.getValueType(); 8852 const SDNodeFlags Flags = Op->getFlags(); 8853 8854 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 8855 DAG.getTarget().Options.UnsafeFPMath; 8856 if (!AllowInaccurateDiv) 8857 return SDValue(); 8858 8859 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 8860 SDValue One = DAG.getConstantFP(1.0, SL, VT); 8861 8862 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 8863 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8864 8865 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 8866 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8867 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 8868 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 8869 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 8870 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 8871 } 8872 8873 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8874 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8875 SDNodeFlags Flags) { 8876 if (GlueChain->getNumValues() <= 1) { 8877 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8878 } 8879 8880 assert(GlueChain->getNumValues() == 3); 8881 8882 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8883 switch (Opcode) { 8884 default: llvm_unreachable("no chain equivalent for opcode"); 8885 case ISD::FMUL: 8886 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8887 break; 8888 } 8889 8890 return DAG.getNode(Opcode, SL, VTList, 8891 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8892 Flags); 8893 } 8894 8895 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8896 EVT VT, SDValue A, SDValue B, SDValue C, 8897 SDValue GlueChain, SDNodeFlags Flags) { 8898 if (GlueChain->getNumValues() <= 1) { 8899 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8900 } 8901 8902 assert(GlueChain->getNumValues() == 3); 8903 8904 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8905 switch (Opcode) { 8906 default: llvm_unreachable("no chain equivalent for opcode"); 8907 case ISD::FMA: 8908 Opcode = AMDGPUISD::FMA_W_CHAIN; 8909 break; 8910 } 8911 8912 return DAG.getNode(Opcode, SL, VTList, 8913 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8914 Flags); 8915 } 8916 8917 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8918 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8919 return FastLowered; 8920 8921 SDLoc SL(Op); 8922 SDValue Src0 = Op.getOperand(0); 8923 SDValue Src1 = Op.getOperand(1); 8924 8925 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8926 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8927 8928 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8929 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8930 8931 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8932 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8933 8934 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8935 } 8936 8937 // Faster 2.5 ULP division that does not support denormals. 8938 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8939 SDLoc SL(Op); 8940 SDValue LHS = Op.getOperand(1); 8941 SDValue RHS = Op.getOperand(2); 8942 8943 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8944 8945 const APFloat K0Val(BitsToFloat(0x6f800000)); 8946 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8947 8948 const APFloat K1Val(BitsToFloat(0x2f800000)); 8949 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8950 8951 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8952 8953 EVT SetCCVT = 8954 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8955 8956 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8957 8958 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8959 8960 // TODO: Should this propagate fast-math-flags? 8961 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8962 8963 // rcp does not support denormals. 8964 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8965 8966 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8967 8968 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8969 } 8970 8971 // Returns immediate value for setting the F32 denorm mode when using the 8972 // S_DENORM_MODE instruction. 8973 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8974 const SDLoc &SL, const GCNSubtarget *ST) { 8975 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8976 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8977 ? FP_DENORM_FLUSH_NONE 8978 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8979 8980 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8981 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8982 } 8983 8984 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8985 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8986 return FastLowered; 8987 8988 // The selection matcher assumes anything with a chain selecting to a 8989 // mayRaiseFPException machine instruction. Since we're introducing a chain 8990 // here, we need to explicitly report nofpexcept for the regular fdiv 8991 // lowering. 8992 SDNodeFlags Flags = Op->getFlags(); 8993 Flags.setNoFPExcept(true); 8994 8995 SDLoc SL(Op); 8996 SDValue LHS = Op.getOperand(0); 8997 SDValue RHS = Op.getOperand(1); 8998 8999 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 9000 9001 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 9002 9003 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9004 {RHS, RHS, LHS}, Flags); 9005 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9006 {LHS, RHS, LHS}, Flags); 9007 9008 // Denominator is scaled to not be denormal, so using rcp is ok. 9009 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 9010 DenominatorScaled, Flags); 9011 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 9012 DenominatorScaled, Flags); 9013 9014 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 9015 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 9016 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 9017 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 9018 9019 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 9020 9021 if (!HasFP32Denormals) { 9022 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 9023 // lowering. The chain dependence is insufficient, and we need glue. We do 9024 // not need the glue variants in a strictfp function. 9025 9026 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 9027 9028 SDNode *EnableDenorm; 9029 if (Subtarget->hasDenormModeInst()) { 9030 const SDValue EnableDenormValue = 9031 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 9032 9033 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 9034 DAG.getEntryNode(), EnableDenormValue).getNode(); 9035 } else { 9036 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 9037 SL, MVT::i32); 9038 EnableDenorm = 9039 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 9040 {EnableDenormValue, BitField, DAG.getEntryNode()}); 9041 } 9042 9043 SDValue Ops[3] = { 9044 NegDivScale0, 9045 SDValue(EnableDenorm, 0), 9046 SDValue(EnableDenorm, 1) 9047 }; 9048 9049 NegDivScale0 = DAG.getMergeValues(Ops, SL); 9050 } 9051 9052 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 9053 ApproxRcp, One, NegDivScale0, Flags); 9054 9055 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 9056 ApproxRcp, Fma0, Flags); 9057 9058 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 9059 Fma1, Fma1, Flags); 9060 9061 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 9062 NumeratorScaled, Mul, Flags); 9063 9064 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 9065 Fma2, Fma1, Mul, Fma2, Flags); 9066 9067 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 9068 NumeratorScaled, Fma3, Flags); 9069 9070 if (!HasFP32Denormals) { 9071 SDNode *DisableDenorm; 9072 if (Subtarget->hasDenormModeInst()) { 9073 const SDValue DisableDenormValue = 9074 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 9075 9076 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 9077 Fma4.getValue(1), DisableDenormValue, 9078 Fma4.getValue(2)).getNode(); 9079 } else { 9080 const SDValue DisableDenormValue = 9081 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 9082 9083 DisableDenorm = DAG.getMachineNode( 9084 AMDGPU::S_SETREG_B32, SL, MVT::Other, 9085 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 9086 } 9087 9088 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 9089 SDValue(DisableDenorm, 0), DAG.getRoot()); 9090 DAG.setRoot(OutputChain); 9091 } 9092 9093 SDValue Scale = NumeratorScaled.getValue(1); 9094 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 9095 {Fma4, Fma1, Fma3, Scale}, Flags); 9096 9097 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 9098 } 9099 9100 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 9101 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 9102 return FastLowered; 9103 9104 SDLoc SL(Op); 9105 SDValue X = Op.getOperand(0); 9106 SDValue Y = Op.getOperand(1); 9107 9108 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 9109 9110 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 9111 9112 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 9113 9114 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 9115 9116 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 9117 9118 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 9119 9120 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 9121 9122 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 9123 9124 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 9125 9126 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 9127 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 9128 9129 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 9130 NegDivScale0, Mul, DivScale1); 9131 9132 SDValue Scale; 9133 9134 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 9135 // Workaround a hardware bug on SI where the condition output from div_scale 9136 // is not usable. 9137 9138 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 9139 9140 // Figure out if the scale to use for div_fmas. 9141 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 9142 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 9143 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 9144 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 9145 9146 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 9147 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 9148 9149 SDValue Scale0Hi 9150 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 9151 SDValue Scale1Hi 9152 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 9153 9154 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 9155 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 9156 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 9157 } else { 9158 Scale = DivScale1.getValue(1); 9159 } 9160 9161 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 9162 Fma4, Fma3, Mul, Scale); 9163 9164 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 9165 } 9166 9167 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 9168 EVT VT = Op.getValueType(); 9169 9170 if (VT == MVT::f32) 9171 return LowerFDIV32(Op, DAG); 9172 9173 if (VT == MVT::f64) 9174 return LowerFDIV64(Op, DAG); 9175 9176 if (VT == MVT::f16) 9177 return LowerFDIV16(Op, DAG); 9178 9179 llvm_unreachable("Unexpected type for fdiv"); 9180 } 9181 9182 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 9183 SDLoc DL(Op); 9184 StoreSDNode *Store = cast<StoreSDNode>(Op); 9185 EVT VT = Store->getMemoryVT(); 9186 9187 if (VT == MVT::i1) { 9188 return DAG.getTruncStore(Store->getChain(), DL, 9189 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 9190 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 9191 } 9192 9193 assert(VT.isVector() && 9194 Store->getValue().getValueType().getScalarType() == MVT::i32); 9195 9196 unsigned AS = Store->getAddressSpace(); 9197 if (Subtarget->hasLDSMisalignedBug() && 9198 AS == AMDGPUAS::FLAT_ADDRESS && 9199 Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 9200 return SplitVectorStore(Op, DAG); 9201 } 9202 9203 MachineFunction &MF = DAG.getMachineFunction(); 9204 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9205 // If there is a possibility that flat instruction access scratch memory 9206 // then we need to use the same legalization rules we use for private. 9207 if (AS == AMDGPUAS::FLAT_ADDRESS && 9208 !Subtarget->hasMultiDwordFlatScratchAddressing()) 9209 AS = MFI->hasFlatScratchInit() ? 9210 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 9211 9212 unsigned NumElements = VT.getVectorNumElements(); 9213 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 9214 AS == AMDGPUAS::FLAT_ADDRESS) { 9215 if (NumElements > 4) 9216 return SplitVectorStore(Op, DAG); 9217 // v3 stores not supported on SI. 9218 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 9219 return SplitVectorStore(Op, DAG); 9220 9221 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 9222 VT, *Store->getMemOperand())) 9223 return expandUnalignedStore(Store, DAG); 9224 9225 return SDValue(); 9226 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 9227 switch (Subtarget->getMaxPrivateElementSize()) { 9228 case 4: 9229 return scalarizeVectorStore(Store, DAG); 9230 case 8: 9231 if (NumElements > 2) 9232 return SplitVectorStore(Op, DAG); 9233 return SDValue(); 9234 case 16: 9235 if (NumElements > 4 || 9236 (NumElements == 3 && !Subtarget->enableFlatScratch())) 9237 return SplitVectorStore(Op, DAG); 9238 return SDValue(); 9239 default: 9240 llvm_unreachable("unsupported private_element_size"); 9241 } 9242 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 9243 bool Fast = false; 9244 auto Flags = Store->getMemOperand()->getFlags(); 9245 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 9246 Store->getAlign(), Flags, &Fast) && 9247 Fast) 9248 return SDValue(); 9249 9250 if (VT.isVector()) 9251 return SplitVectorStore(Op, DAG); 9252 9253 return expandUnalignedStore(Store, DAG); 9254 } 9255 9256 // Probably an invalid store. If so we'll end up emitting a selection error. 9257 return SDValue(); 9258 } 9259 9260 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 9261 SDLoc DL(Op); 9262 EVT VT = Op.getValueType(); 9263 SDValue Arg = Op.getOperand(0); 9264 SDValue TrigVal; 9265 9266 // Propagate fast-math flags so that the multiply we introduce can be folded 9267 // if Arg is already the result of a multiply by constant. 9268 auto Flags = Op->getFlags(); 9269 9270 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 9271 9272 if (Subtarget->hasTrigReducedRange()) { 9273 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9274 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 9275 } else { 9276 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9277 } 9278 9279 switch (Op.getOpcode()) { 9280 case ISD::FCOS: 9281 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 9282 case ISD::FSIN: 9283 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 9284 default: 9285 llvm_unreachable("Wrong trig opcode"); 9286 } 9287 } 9288 9289 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 9290 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 9291 assert(AtomicNode->isCompareAndSwap()); 9292 unsigned AS = AtomicNode->getAddressSpace(); 9293 9294 // No custom lowering required for local address space 9295 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 9296 return Op; 9297 9298 // Non-local address space requires custom lowering for atomic compare 9299 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 9300 SDLoc DL(Op); 9301 SDValue ChainIn = Op.getOperand(0); 9302 SDValue Addr = Op.getOperand(1); 9303 SDValue Old = Op.getOperand(2); 9304 SDValue New = Op.getOperand(3); 9305 EVT VT = Op.getValueType(); 9306 MVT SimpleVT = VT.getSimpleVT(); 9307 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 9308 9309 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 9310 SDValue Ops[] = { ChainIn, Addr, NewOld }; 9311 9312 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 9313 Ops, VT, AtomicNode->getMemOperand()); 9314 } 9315 9316 //===----------------------------------------------------------------------===// 9317 // Custom DAG optimizations 9318 //===----------------------------------------------------------------------===// 9319 9320 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 9321 DAGCombinerInfo &DCI) const { 9322 EVT VT = N->getValueType(0); 9323 EVT ScalarVT = VT.getScalarType(); 9324 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 9325 return SDValue(); 9326 9327 SelectionDAG &DAG = DCI.DAG; 9328 SDLoc DL(N); 9329 9330 SDValue Src = N->getOperand(0); 9331 EVT SrcVT = Src.getValueType(); 9332 9333 // TODO: We could try to match extracting the higher bytes, which would be 9334 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 9335 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 9336 // about in practice. 9337 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 9338 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 9339 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 9340 DCI.AddToWorklist(Cvt.getNode()); 9341 9342 // For the f16 case, fold to a cast to f32 and then cast back to f16. 9343 if (ScalarVT != MVT::f32) { 9344 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 9345 DAG.getTargetConstant(0, DL, MVT::i32)); 9346 } 9347 return Cvt; 9348 } 9349 } 9350 9351 return SDValue(); 9352 } 9353 9354 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 9355 9356 // This is a variant of 9357 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 9358 // 9359 // The normal DAG combiner will do this, but only if the add has one use since 9360 // that would increase the number of instructions. 9361 // 9362 // This prevents us from seeing a constant offset that can be folded into a 9363 // memory instruction's addressing mode. If we know the resulting add offset of 9364 // a pointer can be folded into an addressing offset, we can replace the pointer 9365 // operand with the add of new constant offset. This eliminates one of the uses, 9366 // and may allow the remaining use to also be simplified. 9367 // 9368 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 9369 unsigned AddrSpace, 9370 EVT MemVT, 9371 DAGCombinerInfo &DCI) const { 9372 SDValue N0 = N->getOperand(0); 9373 SDValue N1 = N->getOperand(1); 9374 9375 // We only do this to handle cases where it's profitable when there are 9376 // multiple uses of the add, so defer to the standard combine. 9377 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 9378 N0->hasOneUse()) 9379 return SDValue(); 9380 9381 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 9382 if (!CN1) 9383 return SDValue(); 9384 9385 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 9386 if (!CAdd) 9387 return SDValue(); 9388 9389 // If the resulting offset is too large, we can't fold it into the addressing 9390 // mode offset. 9391 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 9392 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 9393 9394 AddrMode AM; 9395 AM.HasBaseReg = true; 9396 AM.BaseOffs = Offset.getSExtValue(); 9397 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 9398 return SDValue(); 9399 9400 SelectionDAG &DAG = DCI.DAG; 9401 SDLoc SL(N); 9402 EVT VT = N->getValueType(0); 9403 9404 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 9405 SDValue COffset = DAG.getConstant(Offset, SL, VT); 9406 9407 SDNodeFlags Flags; 9408 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 9409 (N0.getOpcode() == ISD::OR || 9410 N0->getFlags().hasNoUnsignedWrap())); 9411 9412 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 9413 } 9414 9415 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 9416 /// by the chain and intrinsic ID. Theoretically we would also need to check the 9417 /// specific intrinsic, but they all place the pointer operand first. 9418 static unsigned getBasePtrIndex(const MemSDNode *N) { 9419 switch (N->getOpcode()) { 9420 case ISD::STORE: 9421 case ISD::INTRINSIC_W_CHAIN: 9422 case ISD::INTRINSIC_VOID: 9423 return 2; 9424 default: 9425 return 1; 9426 } 9427 } 9428 9429 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 9430 DAGCombinerInfo &DCI) const { 9431 SelectionDAG &DAG = DCI.DAG; 9432 SDLoc SL(N); 9433 9434 unsigned PtrIdx = getBasePtrIndex(N); 9435 SDValue Ptr = N->getOperand(PtrIdx); 9436 9437 // TODO: We could also do this for multiplies. 9438 if (Ptr.getOpcode() == ISD::SHL) { 9439 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 9440 N->getMemoryVT(), DCI); 9441 if (NewPtr) { 9442 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 9443 9444 NewOps[PtrIdx] = NewPtr; 9445 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 9446 } 9447 } 9448 9449 return SDValue(); 9450 } 9451 9452 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 9453 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 9454 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 9455 (Opc == ISD::XOR && Val == 0); 9456 } 9457 9458 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 9459 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 9460 // integer combine opportunities since most 64-bit operations are decomposed 9461 // this way. TODO: We won't want this for SALU especially if it is an inline 9462 // immediate. 9463 SDValue SITargetLowering::splitBinaryBitConstantOp( 9464 DAGCombinerInfo &DCI, 9465 const SDLoc &SL, 9466 unsigned Opc, SDValue LHS, 9467 const ConstantSDNode *CRHS) const { 9468 uint64_t Val = CRHS->getZExtValue(); 9469 uint32_t ValLo = Lo_32(Val); 9470 uint32_t ValHi = Hi_32(Val); 9471 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9472 9473 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 9474 bitOpWithConstantIsReducible(Opc, ValHi)) || 9475 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 9476 // If we need to materialize a 64-bit immediate, it will be split up later 9477 // anyway. Avoid creating the harder to understand 64-bit immediate 9478 // materialization. 9479 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 9480 } 9481 9482 return SDValue(); 9483 } 9484 9485 // Returns true if argument is a boolean value which is not serialized into 9486 // memory or argument and does not require v_cndmask_b32 to be deserialized. 9487 static bool isBoolSGPR(SDValue V) { 9488 if (V.getValueType() != MVT::i1) 9489 return false; 9490 switch (V.getOpcode()) { 9491 default: 9492 break; 9493 case ISD::SETCC: 9494 case AMDGPUISD::FP_CLASS: 9495 return true; 9496 case ISD::AND: 9497 case ISD::OR: 9498 case ISD::XOR: 9499 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 9500 } 9501 return false; 9502 } 9503 9504 // If a constant has all zeroes or all ones within each byte return it. 9505 // Otherwise return 0. 9506 static uint32_t getConstantPermuteMask(uint32_t C) { 9507 // 0xff for any zero byte in the mask 9508 uint32_t ZeroByteMask = 0; 9509 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 9510 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 9511 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 9512 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 9513 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 9514 if ((NonZeroByteMask & C) != NonZeroByteMask) 9515 return 0; // Partial bytes selected. 9516 return C; 9517 } 9518 9519 // Check if a node selects whole bytes from its operand 0 starting at a byte 9520 // boundary while masking the rest. Returns select mask as in the v_perm_b32 9521 // or -1 if not succeeded. 9522 // Note byte select encoding: 9523 // value 0-3 selects corresponding source byte; 9524 // value 0xc selects zero; 9525 // value 0xff selects 0xff. 9526 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 9527 assert(V.getValueSizeInBits() == 32); 9528 9529 if (V.getNumOperands() != 2) 9530 return ~0; 9531 9532 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 9533 if (!N1) 9534 return ~0; 9535 9536 uint32_t C = N1->getZExtValue(); 9537 9538 switch (V.getOpcode()) { 9539 default: 9540 break; 9541 case ISD::AND: 9542 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9543 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 9544 } 9545 break; 9546 9547 case ISD::OR: 9548 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9549 return (0x03020100 & ~ConstMask) | ConstMask; 9550 } 9551 break; 9552 9553 case ISD::SHL: 9554 if (C % 8) 9555 return ~0; 9556 9557 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 9558 9559 case ISD::SRL: 9560 if (C % 8) 9561 return ~0; 9562 9563 return uint32_t(0x0c0c0c0c03020100ull >> C); 9564 } 9565 9566 return ~0; 9567 } 9568 9569 SDValue SITargetLowering::performAndCombine(SDNode *N, 9570 DAGCombinerInfo &DCI) const { 9571 if (DCI.isBeforeLegalize()) 9572 return SDValue(); 9573 9574 SelectionDAG &DAG = DCI.DAG; 9575 EVT VT = N->getValueType(0); 9576 SDValue LHS = N->getOperand(0); 9577 SDValue RHS = N->getOperand(1); 9578 9579 9580 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9581 if (VT == MVT::i64 && CRHS) { 9582 if (SDValue Split 9583 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 9584 return Split; 9585 } 9586 9587 if (CRHS && VT == MVT::i32) { 9588 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 9589 // nb = number of trailing zeroes in mask 9590 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 9591 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 9592 uint64_t Mask = CRHS->getZExtValue(); 9593 unsigned Bits = countPopulation(Mask); 9594 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 9595 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 9596 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 9597 unsigned Shift = CShift->getZExtValue(); 9598 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 9599 unsigned Offset = NB + Shift; 9600 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 9601 SDLoc SL(N); 9602 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 9603 LHS->getOperand(0), 9604 DAG.getConstant(Offset, SL, MVT::i32), 9605 DAG.getConstant(Bits, SL, MVT::i32)); 9606 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9607 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 9608 DAG.getValueType(NarrowVT)); 9609 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 9610 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 9611 return Shl; 9612 } 9613 } 9614 } 9615 9616 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9617 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 9618 isa<ConstantSDNode>(LHS.getOperand(2))) { 9619 uint32_t Sel = getConstantPermuteMask(Mask); 9620 if (!Sel) 9621 return SDValue(); 9622 9623 // Select 0xc for all zero bytes 9624 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 9625 SDLoc DL(N); 9626 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9627 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9628 } 9629 } 9630 9631 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 9632 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 9633 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 9634 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9635 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 9636 9637 SDValue X = LHS.getOperand(0); 9638 SDValue Y = RHS.getOperand(0); 9639 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 9640 return SDValue(); 9641 9642 if (LCC == ISD::SETO) { 9643 if (X != LHS.getOperand(1)) 9644 return SDValue(); 9645 9646 if (RCC == ISD::SETUNE) { 9647 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 9648 if (!C1 || !C1->isInfinity() || C1->isNegative()) 9649 return SDValue(); 9650 9651 const uint32_t Mask = SIInstrFlags::N_NORMAL | 9652 SIInstrFlags::N_SUBNORMAL | 9653 SIInstrFlags::N_ZERO | 9654 SIInstrFlags::P_ZERO | 9655 SIInstrFlags::P_SUBNORMAL | 9656 SIInstrFlags::P_NORMAL; 9657 9658 static_assert(((~(SIInstrFlags::S_NAN | 9659 SIInstrFlags::Q_NAN | 9660 SIInstrFlags::N_INFINITY | 9661 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 9662 "mask not equal"); 9663 9664 SDLoc DL(N); 9665 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9666 X, DAG.getConstant(Mask, DL, MVT::i32)); 9667 } 9668 } 9669 } 9670 9671 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 9672 std::swap(LHS, RHS); 9673 9674 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 9675 RHS.hasOneUse()) { 9676 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9677 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 9678 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 9679 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9680 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 9681 (RHS.getOperand(0) == LHS.getOperand(0) && 9682 LHS.getOperand(0) == LHS.getOperand(1))) { 9683 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 9684 unsigned NewMask = LCC == ISD::SETO ? 9685 Mask->getZExtValue() & ~OrdMask : 9686 Mask->getZExtValue() & OrdMask; 9687 9688 SDLoc DL(N); 9689 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 9690 DAG.getConstant(NewMask, DL, MVT::i32)); 9691 } 9692 } 9693 9694 if (VT == MVT::i32 && 9695 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 9696 // and x, (sext cc from i1) => select cc, x, 0 9697 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 9698 std::swap(LHS, RHS); 9699 if (isBoolSGPR(RHS.getOperand(0))) 9700 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 9701 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 9702 } 9703 9704 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9705 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9706 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9707 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9708 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9709 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9710 if (LHSMask != ~0u && RHSMask != ~0u) { 9711 // Canonicalize the expression in an attempt to have fewer unique masks 9712 // and therefore fewer registers used to hold the masks. 9713 if (LHSMask > RHSMask) { 9714 std::swap(LHSMask, RHSMask); 9715 std::swap(LHS, RHS); 9716 } 9717 9718 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9719 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9720 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9721 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9722 9723 // Check of we need to combine values from two sources within a byte. 9724 if (!(LHSUsedLanes & RHSUsedLanes) && 9725 // If we select high and lower word keep it for SDWA. 9726 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9727 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9728 // Each byte in each mask is either selector mask 0-3, or has higher 9729 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 9730 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 9731 // mask which is not 0xff wins. By anding both masks we have a correct 9732 // result except that 0x0c shall be corrected to give 0x0c only. 9733 uint32_t Mask = LHSMask & RHSMask; 9734 for (unsigned I = 0; I < 32; I += 8) { 9735 uint32_t ByteSel = 0xff << I; 9736 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 9737 Mask &= (0x0c << I) & 0xffffffff; 9738 } 9739 9740 // Add 4 to each active LHS lane. It will not affect any existing 0xff 9741 // or 0x0c. 9742 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 9743 SDLoc DL(N); 9744 9745 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9746 LHS.getOperand(0), RHS.getOperand(0), 9747 DAG.getConstant(Sel, DL, MVT::i32)); 9748 } 9749 } 9750 } 9751 9752 return SDValue(); 9753 } 9754 9755 SDValue SITargetLowering::performOrCombine(SDNode *N, 9756 DAGCombinerInfo &DCI) const { 9757 SelectionDAG &DAG = DCI.DAG; 9758 SDValue LHS = N->getOperand(0); 9759 SDValue RHS = N->getOperand(1); 9760 9761 EVT VT = N->getValueType(0); 9762 if (VT == MVT::i1) { 9763 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 9764 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 9765 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 9766 SDValue Src = LHS.getOperand(0); 9767 if (Src != RHS.getOperand(0)) 9768 return SDValue(); 9769 9770 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9771 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9772 if (!CLHS || !CRHS) 9773 return SDValue(); 9774 9775 // Only 10 bits are used. 9776 static const uint32_t MaxMask = 0x3ff; 9777 9778 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 9779 SDLoc DL(N); 9780 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9781 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 9782 } 9783 9784 return SDValue(); 9785 } 9786 9787 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9788 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 9789 LHS.getOpcode() == AMDGPUISD::PERM && 9790 isa<ConstantSDNode>(LHS.getOperand(2))) { 9791 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 9792 if (!Sel) 9793 return SDValue(); 9794 9795 Sel |= LHS.getConstantOperandVal(2); 9796 SDLoc DL(N); 9797 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9798 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9799 } 9800 9801 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9802 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9803 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9804 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9805 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9806 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9807 if (LHSMask != ~0u && RHSMask != ~0u) { 9808 // Canonicalize the expression in an attempt to have fewer unique masks 9809 // and therefore fewer registers used to hold the masks. 9810 if (LHSMask > RHSMask) { 9811 std::swap(LHSMask, RHSMask); 9812 std::swap(LHS, RHS); 9813 } 9814 9815 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9816 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9817 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9818 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9819 9820 // Check of we need to combine values from two sources within a byte. 9821 if (!(LHSUsedLanes & RHSUsedLanes) && 9822 // If we select high and lower word keep it for SDWA. 9823 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9824 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9825 // Kill zero bytes selected by other mask. Zero value is 0xc. 9826 LHSMask &= ~RHSUsedLanes; 9827 RHSMask &= ~LHSUsedLanes; 9828 // Add 4 to each active LHS lane 9829 LHSMask |= LHSUsedLanes & 0x04040404; 9830 // Combine masks 9831 uint32_t Sel = LHSMask | RHSMask; 9832 SDLoc DL(N); 9833 9834 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9835 LHS.getOperand(0), RHS.getOperand(0), 9836 DAG.getConstant(Sel, DL, MVT::i32)); 9837 } 9838 } 9839 } 9840 9841 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9842 return SDValue(); 9843 9844 // TODO: This could be a generic combine with a predicate for extracting the 9845 // high half of an integer being free. 9846 9847 // (or i64:x, (zero_extend i32:y)) -> 9848 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9849 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9850 RHS.getOpcode() != ISD::ZERO_EXTEND) 9851 std::swap(LHS, RHS); 9852 9853 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9854 SDValue ExtSrc = RHS.getOperand(0); 9855 EVT SrcVT = ExtSrc.getValueType(); 9856 if (SrcVT == MVT::i32) { 9857 SDLoc SL(N); 9858 SDValue LowLHS, HiBits; 9859 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9860 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9861 9862 DCI.AddToWorklist(LowOr.getNode()); 9863 DCI.AddToWorklist(HiBits.getNode()); 9864 9865 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9866 LowOr, HiBits); 9867 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9868 } 9869 } 9870 9871 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9872 if (CRHS) { 9873 if (SDValue Split 9874 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 9875 N->getOperand(0), CRHS)) 9876 return Split; 9877 } 9878 9879 return SDValue(); 9880 } 9881 9882 SDValue SITargetLowering::performXorCombine(SDNode *N, 9883 DAGCombinerInfo &DCI) const { 9884 if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) 9885 return RV; 9886 9887 EVT VT = N->getValueType(0); 9888 if (VT != MVT::i64) 9889 return SDValue(); 9890 9891 SDValue LHS = N->getOperand(0); 9892 SDValue RHS = N->getOperand(1); 9893 9894 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9895 if (CRHS) { 9896 if (SDValue Split 9897 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9898 return Split; 9899 } 9900 9901 return SDValue(); 9902 } 9903 9904 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9905 DAGCombinerInfo &DCI) const { 9906 if (!Subtarget->has16BitInsts() || 9907 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9908 return SDValue(); 9909 9910 EVT VT = N->getValueType(0); 9911 if (VT != MVT::i32) 9912 return SDValue(); 9913 9914 SDValue Src = N->getOperand(0); 9915 if (Src.getValueType() != MVT::i16) 9916 return SDValue(); 9917 9918 return SDValue(); 9919 } 9920 9921 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9922 DAGCombinerInfo &DCI) 9923 const { 9924 SDValue Src = N->getOperand(0); 9925 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9926 9927 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9928 VTSign->getVT() == MVT::i8) || 9929 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9930 VTSign->getVT() == MVT::i16)) && 9931 Src.hasOneUse()) { 9932 auto *M = cast<MemSDNode>(Src); 9933 SDValue Ops[] = { 9934 Src.getOperand(0), // Chain 9935 Src.getOperand(1), // rsrc 9936 Src.getOperand(2), // vindex 9937 Src.getOperand(3), // voffset 9938 Src.getOperand(4), // soffset 9939 Src.getOperand(5), // offset 9940 Src.getOperand(6), 9941 Src.getOperand(7) 9942 }; 9943 // replace with BUFFER_LOAD_BYTE/SHORT 9944 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9945 Src.getOperand(0).getValueType()); 9946 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9947 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9948 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9949 ResList, 9950 Ops, M->getMemoryVT(), 9951 M->getMemOperand()); 9952 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9953 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9954 } 9955 return SDValue(); 9956 } 9957 9958 SDValue SITargetLowering::performClassCombine(SDNode *N, 9959 DAGCombinerInfo &DCI) const { 9960 SelectionDAG &DAG = DCI.DAG; 9961 SDValue Mask = N->getOperand(1); 9962 9963 // fp_class x, 0 -> false 9964 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9965 if (CMask->isZero()) 9966 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9967 } 9968 9969 if (N->getOperand(0).isUndef()) 9970 return DAG.getUNDEF(MVT::i1); 9971 9972 return SDValue(); 9973 } 9974 9975 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9976 DAGCombinerInfo &DCI) const { 9977 EVT VT = N->getValueType(0); 9978 SDValue N0 = N->getOperand(0); 9979 9980 if (N0.isUndef()) 9981 return N0; 9982 9983 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9984 N0.getOpcode() == ISD::SINT_TO_FP)) { 9985 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9986 N->getFlags()); 9987 } 9988 9989 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9990 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9991 N0.getOperand(0), N->getFlags()); 9992 } 9993 9994 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9995 } 9996 9997 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9998 unsigned MaxDepth) const { 9999 unsigned Opcode = Op.getOpcode(); 10000 if (Opcode == ISD::FCANONICALIZE) 10001 return true; 10002 10003 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10004 auto F = CFP->getValueAPF(); 10005 if (F.isNaN() && F.isSignaling()) 10006 return false; 10007 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 10008 } 10009 10010 // If source is a result of another standard FP operation it is already in 10011 // canonical form. 10012 if (MaxDepth == 0) 10013 return false; 10014 10015 switch (Opcode) { 10016 // These will flush denorms if required. 10017 case ISD::FADD: 10018 case ISD::FSUB: 10019 case ISD::FMUL: 10020 case ISD::FCEIL: 10021 case ISD::FFLOOR: 10022 case ISD::FMA: 10023 case ISD::FMAD: 10024 case ISD::FSQRT: 10025 case ISD::FDIV: 10026 case ISD::FREM: 10027 case ISD::FP_ROUND: 10028 case ISD::FP_EXTEND: 10029 case AMDGPUISD::FMUL_LEGACY: 10030 case AMDGPUISD::FMAD_FTZ: 10031 case AMDGPUISD::RCP: 10032 case AMDGPUISD::RSQ: 10033 case AMDGPUISD::RSQ_CLAMP: 10034 case AMDGPUISD::RCP_LEGACY: 10035 case AMDGPUISD::RCP_IFLAG: 10036 case AMDGPUISD::DIV_SCALE: 10037 case AMDGPUISD::DIV_FMAS: 10038 case AMDGPUISD::DIV_FIXUP: 10039 case AMDGPUISD::FRACT: 10040 case AMDGPUISD::LDEXP: 10041 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10042 case AMDGPUISD::CVT_F32_UBYTE0: 10043 case AMDGPUISD::CVT_F32_UBYTE1: 10044 case AMDGPUISD::CVT_F32_UBYTE2: 10045 case AMDGPUISD::CVT_F32_UBYTE3: 10046 return true; 10047 10048 // It can/will be lowered or combined as a bit operation. 10049 // Need to check their input recursively to handle. 10050 case ISD::FNEG: 10051 case ISD::FABS: 10052 case ISD::FCOPYSIGN: 10053 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10054 10055 case ISD::FSIN: 10056 case ISD::FCOS: 10057 case ISD::FSINCOS: 10058 return Op.getValueType().getScalarType() != MVT::f16; 10059 10060 case ISD::FMINNUM: 10061 case ISD::FMAXNUM: 10062 case ISD::FMINNUM_IEEE: 10063 case ISD::FMAXNUM_IEEE: 10064 case AMDGPUISD::CLAMP: 10065 case AMDGPUISD::FMED3: 10066 case AMDGPUISD::FMAX3: 10067 case AMDGPUISD::FMIN3: { 10068 // FIXME: Shouldn't treat the generic operations different based these. 10069 // However, we aren't really required to flush the result from 10070 // minnum/maxnum.. 10071 10072 // snans will be quieted, so we only need to worry about denormals. 10073 if (Subtarget->supportsMinMaxDenormModes() || 10074 denormalsEnabledForType(DAG, Op.getValueType())) 10075 return true; 10076 10077 // Flushing may be required. 10078 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 10079 // targets need to check their input recursively. 10080 10081 // FIXME: Does this apply with clamp? It's implemented with max. 10082 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 10083 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 10084 return false; 10085 } 10086 10087 return true; 10088 } 10089 case ISD::SELECT: { 10090 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 10091 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 10092 } 10093 case ISD::BUILD_VECTOR: { 10094 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 10095 SDValue SrcOp = Op.getOperand(i); 10096 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 10097 return false; 10098 } 10099 10100 return true; 10101 } 10102 case ISD::EXTRACT_VECTOR_ELT: 10103 case ISD::EXTRACT_SUBVECTOR: { 10104 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10105 } 10106 case ISD::INSERT_VECTOR_ELT: { 10107 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 10108 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 10109 } 10110 case ISD::UNDEF: 10111 // Could be anything. 10112 return false; 10113 10114 case ISD::BITCAST: 10115 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10116 case ISD::TRUNCATE: { 10117 // Hack round the mess we make when legalizing extract_vector_elt 10118 if (Op.getValueType() == MVT::i16) { 10119 SDValue TruncSrc = Op.getOperand(0); 10120 if (TruncSrc.getValueType() == MVT::i32 && 10121 TruncSrc.getOpcode() == ISD::BITCAST && 10122 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 10123 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 10124 } 10125 } 10126 return false; 10127 } 10128 case ISD::INTRINSIC_WO_CHAIN: { 10129 unsigned IntrinsicID 10130 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10131 // TODO: Handle more intrinsics 10132 switch (IntrinsicID) { 10133 case Intrinsic::amdgcn_cvt_pkrtz: 10134 case Intrinsic::amdgcn_cubeid: 10135 case Intrinsic::amdgcn_frexp_mant: 10136 case Intrinsic::amdgcn_fdot2: 10137 case Intrinsic::amdgcn_rcp: 10138 case Intrinsic::amdgcn_rsq: 10139 case Intrinsic::amdgcn_rsq_clamp: 10140 case Intrinsic::amdgcn_rcp_legacy: 10141 case Intrinsic::amdgcn_rsq_legacy: 10142 case Intrinsic::amdgcn_trig_preop: 10143 return true; 10144 default: 10145 break; 10146 } 10147 10148 LLVM_FALLTHROUGH; 10149 } 10150 default: 10151 return denormalsEnabledForType(DAG, Op.getValueType()) && 10152 DAG.isKnownNeverSNaN(Op); 10153 } 10154 10155 llvm_unreachable("invalid operation"); 10156 } 10157 10158 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 10159 unsigned MaxDepth) const { 10160 MachineRegisterInfo &MRI = MF.getRegInfo(); 10161 MachineInstr *MI = MRI.getVRegDef(Reg); 10162 unsigned Opcode = MI->getOpcode(); 10163 10164 if (Opcode == AMDGPU::G_FCANONICALIZE) 10165 return true; 10166 10167 Optional<FPValueAndVReg> FCR; 10168 // Constant splat (can be padded with undef) or scalar constant. 10169 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 10170 if (FCR->Value.isSignaling()) 10171 return false; 10172 return !FCR->Value.isDenormal() || 10173 denormalsEnabledForType(MRI.getType(FCR->VReg), MF); 10174 } 10175 10176 if (MaxDepth == 0) 10177 return false; 10178 10179 switch (Opcode) { 10180 case AMDGPU::G_FMINNUM_IEEE: 10181 case AMDGPU::G_FMAXNUM_IEEE: { 10182 if (Subtarget->supportsMinMaxDenormModes() || 10183 denormalsEnabledForType(MRI.getType(Reg), MF)) 10184 return true; 10185 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 10186 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 10187 return false; 10188 return true; 10189 } 10190 default: 10191 return denormalsEnabledForType(MRI.getType(Reg), MF) && 10192 isKnownNeverSNaN(Reg, MRI); 10193 } 10194 10195 llvm_unreachable("invalid operation"); 10196 } 10197 10198 // Constant fold canonicalize. 10199 SDValue SITargetLowering::getCanonicalConstantFP( 10200 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 10201 // Flush denormals to 0 if not enabled. 10202 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 10203 return DAG.getConstantFP(0.0, SL, VT); 10204 10205 if (C.isNaN()) { 10206 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 10207 if (C.isSignaling()) { 10208 // Quiet a signaling NaN. 10209 // FIXME: Is this supposed to preserve payload bits? 10210 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 10211 } 10212 10213 // Make sure it is the canonical NaN bitpattern. 10214 // 10215 // TODO: Can we use -1 as the canonical NaN value since it's an inline 10216 // immediate? 10217 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 10218 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 10219 } 10220 10221 // Already canonical. 10222 return DAG.getConstantFP(C, SL, VT); 10223 } 10224 10225 static bool vectorEltWillFoldAway(SDValue Op) { 10226 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 10227 } 10228 10229 SDValue SITargetLowering::performFCanonicalizeCombine( 10230 SDNode *N, 10231 DAGCombinerInfo &DCI) const { 10232 SelectionDAG &DAG = DCI.DAG; 10233 SDValue N0 = N->getOperand(0); 10234 EVT VT = N->getValueType(0); 10235 10236 // fcanonicalize undef -> qnan 10237 if (N0.isUndef()) { 10238 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 10239 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 10240 } 10241 10242 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 10243 EVT VT = N->getValueType(0); 10244 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 10245 } 10246 10247 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 10248 // (fcanonicalize k) 10249 // 10250 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 10251 10252 // TODO: This could be better with wider vectors that will be split to v2f16, 10253 // and to consider uses since there aren't that many packed operations. 10254 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 10255 isTypeLegal(MVT::v2f16)) { 10256 SDLoc SL(N); 10257 SDValue NewElts[2]; 10258 SDValue Lo = N0.getOperand(0); 10259 SDValue Hi = N0.getOperand(1); 10260 EVT EltVT = Lo.getValueType(); 10261 10262 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 10263 for (unsigned I = 0; I != 2; ++I) { 10264 SDValue Op = N0.getOperand(I); 10265 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10266 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 10267 CFP->getValueAPF()); 10268 } else if (Op.isUndef()) { 10269 // Handled below based on what the other operand is. 10270 NewElts[I] = Op; 10271 } else { 10272 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 10273 } 10274 } 10275 10276 // If one half is undef, and one is constant, prefer a splat vector rather 10277 // than the normal qNaN. If it's a register, prefer 0.0 since that's 10278 // cheaper to use and may be free with a packed operation. 10279 if (NewElts[0].isUndef()) { 10280 if (isa<ConstantFPSDNode>(NewElts[1])) 10281 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 10282 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 10283 } 10284 10285 if (NewElts[1].isUndef()) { 10286 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 10287 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 10288 } 10289 10290 return DAG.getBuildVector(VT, SL, NewElts); 10291 } 10292 } 10293 10294 unsigned SrcOpc = N0.getOpcode(); 10295 10296 // If it's free to do so, push canonicalizes further up the source, which may 10297 // find a canonical source. 10298 // 10299 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 10300 // sNaNs. 10301 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 10302 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 10303 if (CRHS && N0.hasOneUse()) { 10304 SDLoc SL(N); 10305 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 10306 N0.getOperand(0)); 10307 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 10308 DCI.AddToWorklist(Canon0.getNode()); 10309 10310 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 10311 } 10312 } 10313 10314 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 10315 } 10316 10317 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 10318 switch (Opc) { 10319 case ISD::FMAXNUM: 10320 case ISD::FMAXNUM_IEEE: 10321 return AMDGPUISD::FMAX3; 10322 case ISD::SMAX: 10323 return AMDGPUISD::SMAX3; 10324 case ISD::UMAX: 10325 return AMDGPUISD::UMAX3; 10326 case ISD::FMINNUM: 10327 case ISD::FMINNUM_IEEE: 10328 return AMDGPUISD::FMIN3; 10329 case ISD::SMIN: 10330 return AMDGPUISD::SMIN3; 10331 case ISD::UMIN: 10332 return AMDGPUISD::UMIN3; 10333 default: 10334 llvm_unreachable("Not a min/max opcode"); 10335 } 10336 } 10337 10338 SDValue SITargetLowering::performIntMed3ImmCombine( 10339 SelectionDAG &DAG, const SDLoc &SL, 10340 SDValue Op0, SDValue Op1, bool Signed) const { 10341 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 10342 if (!K1) 10343 return SDValue(); 10344 10345 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 10346 if (!K0) 10347 return SDValue(); 10348 10349 if (Signed) { 10350 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 10351 return SDValue(); 10352 } else { 10353 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 10354 return SDValue(); 10355 } 10356 10357 EVT VT = K0->getValueType(0); 10358 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 10359 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 10360 return DAG.getNode(Med3Opc, SL, VT, 10361 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 10362 } 10363 10364 // If there isn't a 16-bit med3 operation, convert to 32-bit. 10365 if (VT == MVT::i16) { 10366 MVT NVT = MVT::i32; 10367 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10368 10369 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 10370 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 10371 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 10372 10373 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 10374 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 10375 } 10376 10377 return SDValue(); 10378 } 10379 10380 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 10381 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 10382 return C; 10383 10384 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 10385 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 10386 return C; 10387 } 10388 10389 return nullptr; 10390 } 10391 10392 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 10393 const SDLoc &SL, 10394 SDValue Op0, 10395 SDValue Op1) const { 10396 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 10397 if (!K1) 10398 return SDValue(); 10399 10400 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 10401 if (!K0) 10402 return SDValue(); 10403 10404 // Ordered >= (although NaN inputs should have folded away by now). 10405 if (K0->getValueAPF() > K1->getValueAPF()) 10406 return SDValue(); 10407 10408 const MachineFunction &MF = DAG.getMachineFunction(); 10409 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10410 10411 // TODO: Check IEEE bit enabled? 10412 EVT VT = Op0.getValueType(); 10413 if (Info->getMode().DX10Clamp) { 10414 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 10415 // hardware fmed3 behavior converting to a min. 10416 // FIXME: Should this be allowing -0.0? 10417 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 10418 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 10419 } 10420 10421 // med3 for f16 is only available on gfx9+, and not available for v2f16. 10422 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 10423 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 10424 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 10425 // then give the other result, which is different from med3 with a NaN 10426 // input. 10427 SDValue Var = Op0.getOperand(0); 10428 if (!DAG.isKnownNeverSNaN(Var)) 10429 return SDValue(); 10430 10431 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10432 10433 if ((!K0->hasOneUse() || 10434 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 10435 (!K1->hasOneUse() || 10436 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 10437 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 10438 Var, SDValue(K0, 0), SDValue(K1, 0)); 10439 } 10440 } 10441 10442 return SDValue(); 10443 } 10444 10445 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 10446 DAGCombinerInfo &DCI) const { 10447 SelectionDAG &DAG = DCI.DAG; 10448 10449 EVT VT = N->getValueType(0); 10450 unsigned Opc = N->getOpcode(); 10451 SDValue Op0 = N->getOperand(0); 10452 SDValue Op1 = N->getOperand(1); 10453 10454 // Only do this if the inner op has one use since this will just increases 10455 // register pressure for no benefit. 10456 10457 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 10458 !VT.isVector() && 10459 (VT == MVT::i32 || VT == MVT::f32 || 10460 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 10461 // max(max(a, b), c) -> max3(a, b, c) 10462 // min(min(a, b), c) -> min3(a, b, c) 10463 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 10464 SDLoc DL(N); 10465 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10466 DL, 10467 N->getValueType(0), 10468 Op0.getOperand(0), 10469 Op0.getOperand(1), 10470 Op1); 10471 } 10472 10473 // Try commuted. 10474 // max(a, max(b, c)) -> max3(a, b, c) 10475 // min(a, min(b, c)) -> min3(a, b, c) 10476 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 10477 SDLoc DL(N); 10478 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10479 DL, 10480 N->getValueType(0), 10481 Op0, 10482 Op1.getOperand(0), 10483 Op1.getOperand(1)); 10484 } 10485 } 10486 10487 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 10488 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 10489 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 10490 return Med3; 10491 } 10492 10493 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 10494 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 10495 return Med3; 10496 } 10497 10498 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 10499 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 10500 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 10501 (Opc == AMDGPUISD::FMIN_LEGACY && 10502 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 10503 (VT == MVT::f32 || VT == MVT::f64 || 10504 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 10505 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 10506 Op0.hasOneUse()) { 10507 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 10508 return Res; 10509 } 10510 10511 return SDValue(); 10512 } 10513 10514 static bool isClampZeroToOne(SDValue A, SDValue B) { 10515 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 10516 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 10517 // FIXME: Should this be allowing -0.0? 10518 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 10519 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 10520 } 10521 } 10522 10523 return false; 10524 } 10525 10526 // FIXME: Should only worry about snans for version with chain. 10527 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 10528 DAGCombinerInfo &DCI) const { 10529 EVT VT = N->getValueType(0); 10530 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 10531 // NaNs. With a NaN input, the order of the operands may change the result. 10532 10533 SelectionDAG &DAG = DCI.DAG; 10534 SDLoc SL(N); 10535 10536 SDValue Src0 = N->getOperand(0); 10537 SDValue Src1 = N->getOperand(1); 10538 SDValue Src2 = N->getOperand(2); 10539 10540 if (isClampZeroToOne(Src0, Src1)) { 10541 // const_a, const_b, x -> clamp is safe in all cases including signaling 10542 // nans. 10543 // FIXME: Should this be allowing -0.0? 10544 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 10545 } 10546 10547 const MachineFunction &MF = DAG.getMachineFunction(); 10548 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10549 10550 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 10551 // handling no dx10-clamp? 10552 if (Info->getMode().DX10Clamp) { 10553 // If NaNs is clamped to 0, we are free to reorder the inputs. 10554 10555 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10556 std::swap(Src0, Src1); 10557 10558 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 10559 std::swap(Src1, Src2); 10560 10561 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10562 std::swap(Src0, Src1); 10563 10564 if (isClampZeroToOne(Src1, Src2)) 10565 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 10566 } 10567 10568 return SDValue(); 10569 } 10570 10571 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 10572 DAGCombinerInfo &DCI) const { 10573 SDValue Src0 = N->getOperand(0); 10574 SDValue Src1 = N->getOperand(1); 10575 if (Src0.isUndef() && Src1.isUndef()) 10576 return DCI.DAG.getUNDEF(N->getValueType(0)); 10577 return SDValue(); 10578 } 10579 10580 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 10581 // expanded into a set of cmp/select instructions. 10582 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 10583 unsigned NumElem, 10584 bool IsDivergentIdx, 10585 const GCNSubtarget *Subtarget) { 10586 if (UseDivergentRegisterIndexing) 10587 return false; 10588 10589 unsigned VecSize = EltSize * NumElem; 10590 10591 // Sub-dword vectors of size 2 dword or less have better implementation. 10592 if (VecSize <= 64 && EltSize < 32) 10593 return false; 10594 10595 // Always expand the rest of sub-dword instructions, otherwise it will be 10596 // lowered via memory. 10597 if (EltSize < 32) 10598 return true; 10599 10600 // Always do this if var-idx is divergent, otherwise it will become a loop. 10601 if (IsDivergentIdx) 10602 return true; 10603 10604 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 10605 unsigned NumInsts = NumElem /* Number of compares */ + 10606 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 10607 10608 // On some architectures (GFX9) movrel is not available and it's better 10609 // to expand. 10610 if (!Subtarget->hasMovrel()) 10611 return NumInsts <= 16; 10612 10613 // If movrel is available, use it instead of expanding for vector of 8 10614 // elements. 10615 return NumInsts <= 15; 10616 } 10617 10618 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { 10619 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 10620 if (isa<ConstantSDNode>(Idx)) 10621 return false; 10622 10623 SDValue Vec = N->getOperand(0); 10624 EVT VecVT = Vec.getValueType(); 10625 EVT EltVT = VecVT.getVectorElementType(); 10626 unsigned EltSize = EltVT.getSizeInBits(); 10627 unsigned NumElem = VecVT.getVectorNumElements(); 10628 10629 return SITargetLowering::shouldExpandVectorDynExt( 10630 EltSize, NumElem, Idx->isDivergent(), getSubtarget()); 10631 } 10632 10633 SDValue SITargetLowering::performExtractVectorEltCombine( 10634 SDNode *N, DAGCombinerInfo &DCI) const { 10635 SDValue Vec = N->getOperand(0); 10636 SelectionDAG &DAG = DCI.DAG; 10637 10638 EVT VecVT = Vec.getValueType(); 10639 EVT EltVT = VecVT.getVectorElementType(); 10640 10641 if ((Vec.getOpcode() == ISD::FNEG || 10642 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 10643 SDLoc SL(N); 10644 EVT EltVT = N->getValueType(0); 10645 SDValue Idx = N->getOperand(1); 10646 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10647 Vec.getOperand(0), Idx); 10648 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 10649 } 10650 10651 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 10652 // => 10653 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 10654 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 10655 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 10656 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 10657 SDLoc SL(N); 10658 EVT EltVT = N->getValueType(0); 10659 SDValue Idx = N->getOperand(1); 10660 unsigned Opc = Vec.getOpcode(); 10661 10662 switch(Opc) { 10663 default: 10664 break; 10665 // TODO: Support other binary operations. 10666 case ISD::FADD: 10667 case ISD::FSUB: 10668 case ISD::FMUL: 10669 case ISD::ADD: 10670 case ISD::UMIN: 10671 case ISD::UMAX: 10672 case ISD::SMIN: 10673 case ISD::SMAX: 10674 case ISD::FMAXNUM: 10675 case ISD::FMINNUM: 10676 case ISD::FMAXNUM_IEEE: 10677 case ISD::FMINNUM_IEEE: { 10678 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10679 Vec.getOperand(0), Idx); 10680 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10681 Vec.getOperand(1), Idx); 10682 10683 DCI.AddToWorklist(Elt0.getNode()); 10684 DCI.AddToWorklist(Elt1.getNode()); 10685 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 10686 } 10687 } 10688 } 10689 10690 unsigned VecSize = VecVT.getSizeInBits(); 10691 unsigned EltSize = EltVT.getSizeInBits(); 10692 10693 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 10694 if (shouldExpandVectorDynExt(N)) { 10695 SDLoc SL(N); 10696 SDValue Idx = N->getOperand(1); 10697 SDValue V; 10698 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10699 SDValue IC = DAG.getVectorIdxConstant(I, SL); 10700 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10701 if (I == 0) 10702 V = Elt; 10703 else 10704 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 10705 } 10706 return V; 10707 } 10708 10709 if (!DCI.isBeforeLegalize()) 10710 return SDValue(); 10711 10712 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 10713 // elements. This exposes more load reduction opportunities by replacing 10714 // multiple small extract_vector_elements with a single 32-bit extract. 10715 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10716 if (isa<MemSDNode>(Vec) && 10717 EltSize <= 16 && 10718 EltVT.isByteSized() && 10719 VecSize > 32 && 10720 VecSize % 32 == 0 && 10721 Idx) { 10722 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 10723 10724 unsigned BitIndex = Idx->getZExtValue() * EltSize; 10725 unsigned EltIdx = BitIndex / 32; 10726 unsigned LeftoverBitIdx = BitIndex % 32; 10727 SDLoc SL(N); 10728 10729 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 10730 DCI.AddToWorklist(Cast.getNode()); 10731 10732 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 10733 DAG.getConstant(EltIdx, SL, MVT::i32)); 10734 DCI.AddToWorklist(Elt.getNode()); 10735 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 10736 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 10737 DCI.AddToWorklist(Srl.getNode()); 10738 10739 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 10740 DCI.AddToWorklist(Trunc.getNode()); 10741 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 10742 } 10743 10744 return SDValue(); 10745 } 10746 10747 SDValue 10748 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 10749 DAGCombinerInfo &DCI) const { 10750 SDValue Vec = N->getOperand(0); 10751 SDValue Idx = N->getOperand(2); 10752 EVT VecVT = Vec.getValueType(); 10753 EVT EltVT = VecVT.getVectorElementType(); 10754 10755 // INSERT_VECTOR_ELT (<n x e>, var-idx) 10756 // => BUILD_VECTOR n x select (e, const-idx) 10757 if (!shouldExpandVectorDynExt(N)) 10758 return SDValue(); 10759 10760 SelectionDAG &DAG = DCI.DAG; 10761 SDLoc SL(N); 10762 SDValue Ins = N->getOperand(1); 10763 EVT IdxVT = Idx.getValueType(); 10764 10765 SmallVector<SDValue, 16> Ops; 10766 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10767 SDValue IC = DAG.getConstant(I, SL, IdxVT); 10768 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10769 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 10770 Ops.push_back(V); 10771 } 10772 10773 return DAG.getBuildVector(VecVT, SL, Ops); 10774 } 10775 10776 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 10777 const SDNode *N0, 10778 const SDNode *N1) const { 10779 EVT VT = N0->getValueType(0); 10780 10781 // Only do this if we are not trying to support denormals. v_mad_f32 does not 10782 // support denormals ever. 10783 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 10784 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 10785 getSubtarget()->hasMadF16())) && 10786 isOperationLegal(ISD::FMAD, VT)) 10787 return ISD::FMAD; 10788 10789 const TargetOptions &Options = DAG.getTarget().Options; 10790 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10791 (N0->getFlags().hasAllowContract() && 10792 N1->getFlags().hasAllowContract())) && 10793 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 10794 return ISD::FMA; 10795 } 10796 10797 return 0; 10798 } 10799 10800 // For a reassociatable opcode perform: 10801 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 10802 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 10803 SelectionDAG &DAG) const { 10804 EVT VT = N->getValueType(0); 10805 if (VT != MVT::i32 && VT != MVT::i64) 10806 return SDValue(); 10807 10808 if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) 10809 return SDValue(); 10810 10811 unsigned Opc = N->getOpcode(); 10812 SDValue Op0 = N->getOperand(0); 10813 SDValue Op1 = N->getOperand(1); 10814 10815 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 10816 return SDValue(); 10817 10818 if (Op0->isDivergent()) 10819 std::swap(Op0, Op1); 10820 10821 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 10822 return SDValue(); 10823 10824 SDValue Op2 = Op1.getOperand(1); 10825 Op1 = Op1.getOperand(0); 10826 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 10827 return SDValue(); 10828 10829 if (Op1->isDivergent()) 10830 std::swap(Op1, Op2); 10831 10832 SDLoc SL(N); 10833 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10834 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10835 } 10836 10837 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10838 EVT VT, 10839 SDValue N0, SDValue N1, SDValue N2, 10840 bool Signed) { 10841 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10842 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10843 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10844 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10845 } 10846 10847 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high 10848 // multiplies, if any. 10849 // 10850 // Full 64-bit multiplies that feed into an addition are lowered here instead 10851 // of using the generic expansion. The generic expansion ends up with 10852 // a tree of ADD nodes that prevents us from using the "add" part of the 10853 // MAD instruction. The expansion produced here results in a chain of ADDs 10854 // instead of a tree. 10855 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, 10856 DAGCombinerInfo &DCI) const { 10857 assert(N->getOpcode() == ISD::ADD); 10858 10859 SelectionDAG &DAG = DCI.DAG; 10860 EVT VT = N->getValueType(0); 10861 SDLoc SL(N); 10862 SDValue LHS = N->getOperand(0); 10863 SDValue RHS = N->getOperand(1); 10864 10865 if (VT.isVector()) 10866 return SDValue(); 10867 10868 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall 10869 // result in scalar registers for uniform values. 10870 if (!N->isDivergent() && Subtarget->hasSMulHi()) 10871 return SDValue(); 10872 10873 unsigned NumBits = VT.getScalarSizeInBits(); 10874 if (NumBits <= 32 || NumBits > 64) 10875 return SDValue(); 10876 10877 if (LHS.getOpcode() != ISD::MUL) { 10878 assert(RHS.getOpcode() == ISD::MUL); 10879 std::swap(LHS, RHS); 10880 } 10881 10882 // Avoid the fold if it would unduly increase the number of multiplies due to 10883 // multiple uses, except on hardware with full-rate multiply-add (which is 10884 // part of full-rate 64-bit ops). 10885 if (!Subtarget->hasFullRate64Ops()) { 10886 unsigned NumUsers = 0; 10887 for (SDNode *Use : LHS->uses()) { 10888 // There is a use that does not feed into addition, so the multiply can't 10889 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. 10890 if (Use->getOpcode() != ISD::ADD) 10891 return SDValue(); 10892 10893 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer 10894 // MUL + 3xADD + 3xADDC over 3xMAD. 10895 ++NumUsers; 10896 if (NumUsers >= 3) 10897 return SDValue(); 10898 } 10899 } 10900 10901 SDValue MulLHS = LHS.getOperand(0); 10902 SDValue MulRHS = LHS.getOperand(1); 10903 SDValue AddRHS = RHS; 10904 10905 // Always check whether operands are small unsigned values, since that 10906 // knowledge is useful in more cases. Check for small signed values only if 10907 // doing so can unlock a shorter code sequence. 10908 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; 10909 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; 10910 10911 bool MulSignedLo = false; 10912 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { 10913 MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && 10914 numBitsSigned(MulRHS, DAG) <= 32; 10915 } 10916 10917 // The operands and final result all have the same number of bits. If 10918 // operands need to be extended, they can be extended with garbage. The 10919 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is 10920 // truncated away in the end. 10921 if (VT != MVT::i64) { 10922 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); 10923 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); 10924 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); 10925 } 10926 10927 // The basic code generated is conceptually straightforward. Pseudo code: 10928 // 10929 // accum = mad_64_32 lhs.lo, rhs.lo, accum 10930 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi 10931 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi 10932 // 10933 // The second and third lines are optional, depending on whether the factors 10934 // are {sign,zero}-extended or not. 10935 // 10936 // The actual DAG is noisier than the pseudo code, but only due to 10937 // instructions that disassemble values into low and high parts, and 10938 // assemble the final result. 10939 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 10940 SDValue One = DAG.getConstant(1, SL, MVT::i32); 10941 10942 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); 10943 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); 10944 SDValue Accum = 10945 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); 10946 10947 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { 10948 auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero); 10949 auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One); 10950 10951 if (!MulLHSUnsigned32) { 10952 auto MulLHSHi = 10953 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); 10954 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); 10955 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 10956 } 10957 10958 if (!MulRHSUnsigned32) { 10959 auto MulRHSHi = 10960 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); 10961 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); 10962 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 10963 } 10964 10965 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); 10966 Accum = DAG.getBitcast(MVT::i64, Accum); 10967 } 10968 10969 if (VT != MVT::i64) 10970 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); 10971 return Accum; 10972 } 10973 10974 SDValue SITargetLowering::performAddCombine(SDNode *N, 10975 DAGCombinerInfo &DCI) const { 10976 SelectionDAG &DAG = DCI.DAG; 10977 EVT VT = N->getValueType(0); 10978 SDLoc SL(N); 10979 SDValue LHS = N->getOperand(0); 10980 SDValue RHS = N->getOperand(1); 10981 10982 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { 10983 if (Subtarget->hasMad64_32()) { 10984 if (SDValue Folded = tryFoldToMad64_32(N, DCI)) 10985 return Folded; 10986 } 10987 10988 return SDValue(); 10989 } 10990 10991 if (SDValue V = reassociateScalarOps(N, DAG)) { 10992 return V; 10993 } 10994 10995 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10996 return SDValue(); 10997 10998 // add x, zext (setcc) => addcarry x, 0, setcc 10999 // add x, sext (setcc) => subcarry x, 0, setcc 11000 unsigned Opc = LHS.getOpcode(); 11001 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 11002 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 11003 std::swap(RHS, LHS); 11004 11005 Opc = RHS.getOpcode(); 11006 switch (Opc) { 11007 default: break; 11008 case ISD::ZERO_EXTEND: 11009 case ISD::SIGN_EXTEND: 11010 case ISD::ANY_EXTEND: { 11011 auto Cond = RHS.getOperand(0); 11012 // If this won't be a real VOPC output, we would still need to insert an 11013 // extra instruction anyway. 11014 if (!isBoolSGPR(Cond)) 11015 break; 11016 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 11017 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 11018 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 11019 return DAG.getNode(Opc, SL, VTList, Args); 11020 } 11021 case ISD::ADDCARRY: { 11022 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 11023 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 11024 if (!C || C->getZExtValue() != 0) break; 11025 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 11026 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 11027 } 11028 } 11029 return SDValue(); 11030 } 11031 11032 SDValue SITargetLowering::performSubCombine(SDNode *N, 11033 DAGCombinerInfo &DCI) const { 11034 SelectionDAG &DAG = DCI.DAG; 11035 EVT VT = N->getValueType(0); 11036 11037 if (VT != MVT::i32) 11038 return SDValue(); 11039 11040 SDLoc SL(N); 11041 SDValue LHS = N->getOperand(0); 11042 SDValue RHS = N->getOperand(1); 11043 11044 // sub x, zext (setcc) => subcarry x, 0, setcc 11045 // sub x, sext (setcc) => addcarry x, 0, setcc 11046 unsigned Opc = RHS.getOpcode(); 11047 switch (Opc) { 11048 default: break; 11049 case ISD::ZERO_EXTEND: 11050 case ISD::SIGN_EXTEND: 11051 case ISD::ANY_EXTEND: { 11052 auto Cond = RHS.getOperand(0); 11053 // If this won't be a real VOPC output, we would still need to insert an 11054 // extra instruction anyway. 11055 if (!isBoolSGPR(Cond)) 11056 break; 11057 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 11058 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 11059 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 11060 return DAG.getNode(Opc, SL, VTList, Args); 11061 } 11062 } 11063 11064 if (LHS.getOpcode() == ISD::SUBCARRY) { 11065 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 11066 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 11067 if (!C || !C->isZero()) 11068 return SDValue(); 11069 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 11070 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 11071 } 11072 return SDValue(); 11073 } 11074 11075 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 11076 DAGCombinerInfo &DCI) const { 11077 11078 if (N->getValueType(0) != MVT::i32) 11079 return SDValue(); 11080 11081 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11082 if (!C || C->getZExtValue() != 0) 11083 return SDValue(); 11084 11085 SelectionDAG &DAG = DCI.DAG; 11086 SDValue LHS = N->getOperand(0); 11087 11088 // addcarry (add x, y), 0, cc => addcarry x, y, cc 11089 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 11090 unsigned LHSOpc = LHS.getOpcode(); 11091 unsigned Opc = N->getOpcode(); 11092 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 11093 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 11094 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 11095 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 11096 } 11097 return SDValue(); 11098 } 11099 11100 SDValue SITargetLowering::performFAddCombine(SDNode *N, 11101 DAGCombinerInfo &DCI) const { 11102 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 11103 return SDValue(); 11104 11105 SelectionDAG &DAG = DCI.DAG; 11106 EVT VT = N->getValueType(0); 11107 11108 SDLoc SL(N); 11109 SDValue LHS = N->getOperand(0); 11110 SDValue RHS = N->getOperand(1); 11111 11112 // These should really be instruction patterns, but writing patterns with 11113 // source modifiers is a pain. 11114 11115 // fadd (fadd (a, a), b) -> mad 2.0, a, b 11116 if (LHS.getOpcode() == ISD::FADD) { 11117 SDValue A = LHS.getOperand(0); 11118 if (A == LHS.getOperand(1)) { 11119 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 11120 if (FusedOp != 0) { 11121 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11122 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 11123 } 11124 } 11125 } 11126 11127 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 11128 if (RHS.getOpcode() == ISD::FADD) { 11129 SDValue A = RHS.getOperand(0); 11130 if (A == RHS.getOperand(1)) { 11131 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 11132 if (FusedOp != 0) { 11133 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11134 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 11135 } 11136 } 11137 } 11138 11139 return SDValue(); 11140 } 11141 11142 SDValue SITargetLowering::performFSubCombine(SDNode *N, 11143 DAGCombinerInfo &DCI) const { 11144 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 11145 return SDValue(); 11146 11147 SelectionDAG &DAG = DCI.DAG; 11148 SDLoc SL(N); 11149 EVT VT = N->getValueType(0); 11150 assert(!VT.isVector()); 11151 11152 // Try to get the fneg to fold into the source modifier. This undoes generic 11153 // DAG combines and folds them into the mad. 11154 // 11155 // Only do this if we are not trying to support denormals. v_mad_f32 does 11156 // not support denormals ever. 11157 SDValue LHS = N->getOperand(0); 11158 SDValue RHS = N->getOperand(1); 11159 if (LHS.getOpcode() == ISD::FADD) { 11160 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 11161 SDValue A = LHS.getOperand(0); 11162 if (A == LHS.getOperand(1)) { 11163 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 11164 if (FusedOp != 0){ 11165 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11166 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 11167 11168 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 11169 } 11170 } 11171 } 11172 11173 if (RHS.getOpcode() == ISD::FADD) { 11174 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 11175 11176 SDValue A = RHS.getOperand(0); 11177 if (A == RHS.getOperand(1)) { 11178 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 11179 if (FusedOp != 0){ 11180 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 11181 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 11182 } 11183 } 11184 } 11185 11186 return SDValue(); 11187 } 11188 11189 SDValue SITargetLowering::performFMACombine(SDNode *N, 11190 DAGCombinerInfo &DCI) const { 11191 SelectionDAG &DAG = DCI.DAG; 11192 EVT VT = N->getValueType(0); 11193 SDLoc SL(N); 11194 11195 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 11196 return SDValue(); 11197 11198 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 11199 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 11200 SDValue Op1 = N->getOperand(0); 11201 SDValue Op2 = N->getOperand(1); 11202 SDValue FMA = N->getOperand(2); 11203 11204 if (FMA.getOpcode() != ISD::FMA || 11205 Op1.getOpcode() != ISD::FP_EXTEND || 11206 Op2.getOpcode() != ISD::FP_EXTEND) 11207 return SDValue(); 11208 11209 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 11210 // regardless of the denorm mode setting. Therefore, 11211 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. 11212 const TargetOptions &Options = DAG.getTarget().Options; 11213 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 11214 (N->getFlags().hasAllowContract() && 11215 FMA->getFlags().hasAllowContract())) { 11216 Op1 = Op1.getOperand(0); 11217 Op2 = Op2.getOperand(0); 11218 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11219 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11220 return SDValue(); 11221 11222 SDValue Vec1 = Op1.getOperand(0); 11223 SDValue Idx1 = Op1.getOperand(1); 11224 SDValue Vec2 = Op2.getOperand(0); 11225 11226 SDValue FMAOp1 = FMA.getOperand(0); 11227 SDValue FMAOp2 = FMA.getOperand(1); 11228 SDValue FMAAcc = FMA.getOperand(2); 11229 11230 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 11231 FMAOp2.getOpcode() != ISD::FP_EXTEND) 11232 return SDValue(); 11233 11234 FMAOp1 = FMAOp1.getOperand(0); 11235 FMAOp2 = FMAOp2.getOperand(0); 11236 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11237 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11238 return SDValue(); 11239 11240 SDValue Vec3 = FMAOp1.getOperand(0); 11241 SDValue Vec4 = FMAOp2.getOperand(0); 11242 SDValue Idx2 = FMAOp1.getOperand(1); 11243 11244 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 11245 // Idx1 and Idx2 cannot be the same. 11246 Idx1 == Idx2) 11247 return SDValue(); 11248 11249 if (Vec1 == Vec2 || Vec3 == Vec4) 11250 return SDValue(); 11251 11252 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 11253 return SDValue(); 11254 11255 if ((Vec1 == Vec3 && Vec2 == Vec4) || 11256 (Vec1 == Vec4 && Vec2 == Vec3)) { 11257 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 11258 DAG.getTargetConstant(0, SL, MVT::i1)); 11259 } 11260 } 11261 return SDValue(); 11262 } 11263 11264 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 11265 DAGCombinerInfo &DCI) const { 11266 SelectionDAG &DAG = DCI.DAG; 11267 SDLoc SL(N); 11268 11269 SDValue LHS = N->getOperand(0); 11270 SDValue RHS = N->getOperand(1); 11271 EVT VT = LHS.getValueType(); 11272 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11273 11274 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 11275 if (!CRHS) { 11276 CRHS = dyn_cast<ConstantSDNode>(LHS); 11277 if (CRHS) { 11278 std::swap(LHS, RHS); 11279 CC = getSetCCSwappedOperands(CC); 11280 } 11281 } 11282 11283 if (CRHS) { 11284 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 11285 isBoolSGPR(LHS.getOperand(0))) { 11286 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 11287 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 11288 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 11289 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 11290 if ((CRHS->isAllOnes() && 11291 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 11292 (CRHS->isZero() && 11293 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 11294 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 11295 DAG.getConstant(-1, SL, MVT::i1)); 11296 if ((CRHS->isAllOnes() && 11297 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 11298 (CRHS->isZero() && 11299 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 11300 return LHS.getOperand(0); 11301 } 11302 11303 const APInt &CRHSVal = CRHS->getAPIntValue(); 11304 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 11305 LHS.getOpcode() == ISD::SELECT && 11306 isa<ConstantSDNode>(LHS.getOperand(1)) && 11307 isa<ConstantSDNode>(LHS.getOperand(2)) && 11308 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 11309 isBoolSGPR(LHS.getOperand(0))) { 11310 // Given CT != FT: 11311 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 11312 // setcc (select cc, CT, CF), CF, ne => cc 11313 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 11314 // setcc (select cc, CT, CF), CT, eq => cc 11315 const APInt &CT = LHS.getConstantOperandAPInt(1); 11316 const APInt &CF = LHS.getConstantOperandAPInt(2); 11317 11318 if ((CF == CRHSVal && CC == ISD::SETEQ) || 11319 (CT == CRHSVal && CC == ISD::SETNE)) 11320 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 11321 DAG.getConstant(-1, SL, MVT::i1)); 11322 if ((CF == CRHSVal && CC == ISD::SETNE) || 11323 (CT == CRHSVal && CC == ISD::SETEQ)) 11324 return LHS.getOperand(0); 11325 } 11326 } 11327 11328 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 11329 VT != MVT::f16)) 11330 return SDValue(); 11331 11332 // Match isinf/isfinite pattern 11333 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 11334 // (fcmp one (fabs x), inf) -> (fp_class x, 11335 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 11336 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 11337 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 11338 if (!CRHS) 11339 return SDValue(); 11340 11341 const APFloat &APF = CRHS->getValueAPF(); 11342 if (APF.isInfinity() && !APF.isNegative()) { 11343 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 11344 SIInstrFlags::N_INFINITY; 11345 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 11346 SIInstrFlags::P_ZERO | 11347 SIInstrFlags::N_NORMAL | 11348 SIInstrFlags::P_NORMAL | 11349 SIInstrFlags::N_SUBNORMAL | 11350 SIInstrFlags::P_SUBNORMAL; 11351 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 11352 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 11353 DAG.getConstant(Mask, SL, MVT::i32)); 11354 } 11355 } 11356 11357 return SDValue(); 11358 } 11359 11360 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 11361 DAGCombinerInfo &DCI) const { 11362 SelectionDAG &DAG = DCI.DAG; 11363 SDLoc SL(N); 11364 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 11365 11366 SDValue Src = N->getOperand(0); 11367 SDValue Shift = N->getOperand(0); 11368 11369 // TODO: Extend type shouldn't matter (assuming legal types). 11370 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 11371 Shift = Shift.getOperand(0); 11372 11373 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 11374 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 11375 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 11376 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 11377 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 11378 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 11379 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 11380 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 11381 SDLoc(Shift.getOperand(0)), MVT::i32); 11382 11383 unsigned ShiftOffset = 8 * Offset; 11384 if (Shift.getOpcode() == ISD::SHL) 11385 ShiftOffset -= C->getZExtValue(); 11386 else 11387 ShiftOffset += C->getZExtValue(); 11388 11389 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 11390 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 11391 MVT::f32, Shifted); 11392 } 11393 } 11394 } 11395 11396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11397 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 11398 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 11399 // We simplified Src. If this node is not dead, visit it again so it is 11400 // folded properly. 11401 if (N->getOpcode() != ISD::DELETED_NODE) 11402 DCI.AddToWorklist(N); 11403 return SDValue(N, 0); 11404 } 11405 11406 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 11407 if (SDValue DemandedSrc = 11408 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 11409 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 11410 11411 return SDValue(); 11412 } 11413 11414 SDValue SITargetLowering::performClampCombine(SDNode *N, 11415 DAGCombinerInfo &DCI) const { 11416 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 11417 if (!CSrc) 11418 return SDValue(); 11419 11420 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 11421 const APFloat &F = CSrc->getValueAPF(); 11422 APFloat Zero = APFloat::getZero(F.getSemantics()); 11423 if (F < Zero || 11424 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 11425 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 11426 } 11427 11428 APFloat One(F.getSemantics(), "1.0"); 11429 if (F > One) 11430 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 11431 11432 return SDValue(CSrc, 0); 11433 } 11434 11435 11436 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 11437 DAGCombinerInfo &DCI) const { 11438 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 11439 return SDValue(); 11440 switch (N->getOpcode()) { 11441 case ISD::ADD: 11442 return performAddCombine(N, DCI); 11443 case ISD::SUB: 11444 return performSubCombine(N, DCI); 11445 case ISD::ADDCARRY: 11446 case ISD::SUBCARRY: 11447 return performAddCarrySubCarryCombine(N, DCI); 11448 case ISD::FADD: 11449 return performFAddCombine(N, DCI); 11450 case ISD::FSUB: 11451 return performFSubCombine(N, DCI); 11452 case ISD::SETCC: 11453 return performSetCCCombine(N, DCI); 11454 case ISD::FMAXNUM: 11455 case ISD::FMINNUM: 11456 case ISD::FMAXNUM_IEEE: 11457 case ISD::FMINNUM_IEEE: 11458 case ISD::SMAX: 11459 case ISD::SMIN: 11460 case ISD::UMAX: 11461 case ISD::UMIN: 11462 case AMDGPUISD::FMIN_LEGACY: 11463 case AMDGPUISD::FMAX_LEGACY: 11464 return performMinMaxCombine(N, DCI); 11465 case ISD::FMA: 11466 return performFMACombine(N, DCI); 11467 case ISD::AND: 11468 return performAndCombine(N, DCI); 11469 case ISD::OR: 11470 return performOrCombine(N, DCI); 11471 case ISD::XOR: 11472 return performXorCombine(N, DCI); 11473 case ISD::ZERO_EXTEND: 11474 return performZeroExtendCombine(N, DCI); 11475 case ISD::SIGN_EXTEND_INREG: 11476 return performSignExtendInRegCombine(N , DCI); 11477 case AMDGPUISD::FP_CLASS: 11478 return performClassCombine(N, DCI); 11479 case ISD::FCANONICALIZE: 11480 return performFCanonicalizeCombine(N, DCI); 11481 case AMDGPUISD::RCP: 11482 return performRcpCombine(N, DCI); 11483 case AMDGPUISD::FRACT: 11484 case AMDGPUISD::RSQ: 11485 case AMDGPUISD::RCP_LEGACY: 11486 case AMDGPUISD::RCP_IFLAG: 11487 case AMDGPUISD::RSQ_CLAMP: 11488 case AMDGPUISD::LDEXP: { 11489 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 11490 SDValue Src = N->getOperand(0); 11491 if (Src.isUndef()) 11492 return Src; 11493 break; 11494 } 11495 case ISD::SINT_TO_FP: 11496 case ISD::UINT_TO_FP: 11497 return performUCharToFloatCombine(N, DCI); 11498 case AMDGPUISD::CVT_F32_UBYTE0: 11499 case AMDGPUISD::CVT_F32_UBYTE1: 11500 case AMDGPUISD::CVT_F32_UBYTE2: 11501 case AMDGPUISD::CVT_F32_UBYTE3: 11502 return performCvtF32UByteNCombine(N, DCI); 11503 case AMDGPUISD::FMED3: 11504 return performFMed3Combine(N, DCI); 11505 case AMDGPUISD::CVT_PKRTZ_F16_F32: 11506 return performCvtPkRTZCombine(N, DCI); 11507 case AMDGPUISD::CLAMP: 11508 return performClampCombine(N, DCI); 11509 case ISD::SCALAR_TO_VECTOR: { 11510 SelectionDAG &DAG = DCI.DAG; 11511 EVT VT = N->getValueType(0); 11512 11513 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 11514 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 11515 SDLoc SL(N); 11516 SDValue Src = N->getOperand(0); 11517 EVT EltVT = Src.getValueType(); 11518 if (EltVT == MVT::f16) 11519 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 11520 11521 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 11522 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 11523 } 11524 11525 break; 11526 } 11527 case ISD::EXTRACT_VECTOR_ELT: 11528 return performExtractVectorEltCombine(N, DCI); 11529 case ISD::INSERT_VECTOR_ELT: 11530 return performInsertVectorEltCombine(N, DCI); 11531 case ISD::LOAD: { 11532 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 11533 return Widended; 11534 LLVM_FALLTHROUGH; 11535 } 11536 default: { 11537 if (!DCI.isBeforeLegalize()) { 11538 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 11539 return performMemSDNodeCombine(MemNode, DCI); 11540 } 11541 11542 break; 11543 } 11544 } 11545 11546 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 11547 } 11548 11549 /// Helper function for adjustWritemask 11550 static unsigned SubIdx2Lane(unsigned Idx) { 11551 switch (Idx) { 11552 default: return ~0u; 11553 case AMDGPU::sub0: return 0; 11554 case AMDGPU::sub1: return 1; 11555 case AMDGPU::sub2: return 2; 11556 case AMDGPU::sub3: return 3; 11557 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 11558 } 11559 } 11560 11561 /// Adjust the writemask of MIMG instructions 11562 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 11563 SelectionDAG &DAG) const { 11564 unsigned Opcode = Node->getMachineOpcode(); 11565 11566 // Subtract 1 because the vdata output is not a MachineSDNode operand. 11567 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 11568 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 11569 return Node; // not implemented for D16 11570 11571 SDNode *Users[5] = { nullptr }; 11572 unsigned Lane = 0; 11573 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 11574 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 11575 unsigned NewDmask = 0; 11576 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 11577 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 11578 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 11579 Node->getConstantOperandVal(LWEIdx)) 11580 ? true 11581 : false; 11582 unsigned TFCLane = 0; 11583 bool HasChain = Node->getNumValues() > 1; 11584 11585 if (OldDmask == 0) { 11586 // These are folded out, but on the chance it happens don't assert. 11587 return Node; 11588 } 11589 11590 unsigned OldBitsSet = countPopulation(OldDmask); 11591 // Work out which is the TFE/LWE lane if that is enabled. 11592 if (UsesTFC) { 11593 TFCLane = OldBitsSet; 11594 } 11595 11596 // Try to figure out the used register components 11597 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 11598 I != E; ++I) { 11599 11600 // Don't look at users of the chain. 11601 if (I.getUse().getResNo() != 0) 11602 continue; 11603 11604 // Abort if we can't understand the usage 11605 if (!I->isMachineOpcode() || 11606 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 11607 return Node; 11608 11609 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 11610 // Note that subregs are packed, i.e. Lane==0 is the first bit set 11611 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 11612 // set, etc. 11613 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 11614 if (Lane == ~0u) 11615 return Node; 11616 11617 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 11618 if (UsesTFC && Lane == TFCLane) { 11619 Users[Lane] = *I; 11620 } else { 11621 // Set which texture component corresponds to the lane. 11622 unsigned Comp; 11623 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 11624 Comp = countTrailingZeros(Dmask); 11625 Dmask &= ~(1 << Comp); 11626 } 11627 11628 // Abort if we have more than one user per component. 11629 if (Users[Lane]) 11630 return Node; 11631 11632 Users[Lane] = *I; 11633 NewDmask |= 1 << Comp; 11634 } 11635 } 11636 11637 // Don't allow 0 dmask, as hardware assumes one channel enabled. 11638 bool NoChannels = !NewDmask; 11639 if (NoChannels) { 11640 if (!UsesTFC) { 11641 // No uses of the result and not using TFC. Then do nothing. 11642 return Node; 11643 } 11644 // If the original dmask has one channel - then nothing to do 11645 if (OldBitsSet == 1) 11646 return Node; 11647 // Use an arbitrary dmask - required for the instruction to work 11648 NewDmask = 1; 11649 } 11650 // Abort if there's no change 11651 if (NewDmask == OldDmask) 11652 return Node; 11653 11654 unsigned BitsSet = countPopulation(NewDmask); 11655 11656 // Check for TFE or LWE - increase the number of channels by one to account 11657 // for the extra return value 11658 // This will need adjustment for D16 if this is also included in 11659 // adjustWriteMask (this function) but at present D16 are excluded. 11660 unsigned NewChannels = BitsSet + UsesTFC; 11661 11662 int NewOpcode = 11663 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 11664 assert(NewOpcode != -1 && 11665 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 11666 "failed to find equivalent MIMG op"); 11667 11668 // Adjust the writemask in the node 11669 SmallVector<SDValue, 12> Ops; 11670 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 11671 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 11672 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 11673 11674 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 11675 11676 MVT ResultVT = NewChannels == 1 ? 11677 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 11678 NewChannels == 5 ? 8 : NewChannels); 11679 SDVTList NewVTList = HasChain ? 11680 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 11681 11682 11683 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 11684 NewVTList, Ops); 11685 11686 if (HasChain) { 11687 // Update chain. 11688 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 11689 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 11690 } 11691 11692 if (NewChannels == 1) { 11693 assert(Node->hasNUsesOfValue(1, 0)); 11694 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 11695 SDLoc(Node), Users[Lane]->getValueType(0), 11696 SDValue(NewNode, 0)); 11697 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 11698 return nullptr; 11699 } 11700 11701 // Update the users of the node with the new indices 11702 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 11703 SDNode *User = Users[i]; 11704 if (!User) { 11705 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 11706 // Users[0] is still nullptr because channel 0 doesn't really have a use. 11707 if (i || !NoChannels) 11708 continue; 11709 } else { 11710 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 11711 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 11712 } 11713 11714 switch (Idx) { 11715 default: break; 11716 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 11717 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 11718 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 11719 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 11720 } 11721 } 11722 11723 DAG.RemoveDeadNode(Node); 11724 return nullptr; 11725 } 11726 11727 static bool isFrameIndexOp(SDValue Op) { 11728 if (Op.getOpcode() == ISD::AssertZext) 11729 Op = Op.getOperand(0); 11730 11731 return isa<FrameIndexSDNode>(Op); 11732 } 11733 11734 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 11735 /// with frame index operands. 11736 /// LLVM assumes that inputs are to these instructions are registers. 11737 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 11738 SelectionDAG &DAG) const { 11739 if (Node->getOpcode() == ISD::CopyToReg) { 11740 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 11741 SDValue SrcVal = Node->getOperand(2); 11742 11743 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 11744 // to try understanding copies to physical registers. 11745 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 11746 SDLoc SL(Node); 11747 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11748 SDValue VReg = DAG.getRegister( 11749 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 11750 11751 SDNode *Glued = Node->getGluedNode(); 11752 SDValue ToVReg 11753 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 11754 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 11755 SDValue ToResultReg 11756 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 11757 VReg, ToVReg.getValue(1)); 11758 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 11759 DAG.RemoveDeadNode(Node); 11760 return ToResultReg.getNode(); 11761 } 11762 } 11763 11764 SmallVector<SDValue, 8> Ops; 11765 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 11766 if (!isFrameIndexOp(Node->getOperand(i))) { 11767 Ops.push_back(Node->getOperand(i)); 11768 continue; 11769 } 11770 11771 SDLoc DL(Node); 11772 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 11773 Node->getOperand(i).getValueType(), 11774 Node->getOperand(i)), 0)); 11775 } 11776 11777 return DAG.UpdateNodeOperands(Node, Ops); 11778 } 11779 11780 /// Fold the instructions after selecting them. 11781 /// Returns null if users were already updated. 11782 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 11783 SelectionDAG &DAG) const { 11784 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11785 unsigned Opcode = Node->getMachineOpcode(); 11786 11787 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 11788 !TII->isGather4(Opcode) && 11789 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { 11790 return adjustWritemask(Node, DAG); 11791 } 11792 11793 if (Opcode == AMDGPU::INSERT_SUBREG || 11794 Opcode == AMDGPU::REG_SEQUENCE) { 11795 legalizeTargetIndependentNode(Node, DAG); 11796 return Node; 11797 } 11798 11799 switch (Opcode) { 11800 case AMDGPU::V_DIV_SCALE_F32_e64: 11801 case AMDGPU::V_DIV_SCALE_F64_e64: { 11802 // Satisfy the operand register constraint when one of the inputs is 11803 // undefined. Ordinarily each undef value will have its own implicit_def of 11804 // a vreg, so force these to use a single register. 11805 SDValue Src0 = Node->getOperand(1); 11806 SDValue Src1 = Node->getOperand(3); 11807 SDValue Src2 = Node->getOperand(5); 11808 11809 if ((Src0.isMachineOpcode() && 11810 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 11811 (Src0 == Src1 || Src0 == Src2)) 11812 break; 11813 11814 MVT VT = Src0.getValueType().getSimpleVT(); 11815 const TargetRegisterClass *RC = 11816 getRegClassFor(VT, Src0.getNode()->isDivergent()); 11817 11818 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11819 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 11820 11821 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 11822 UndefReg, Src0, SDValue()); 11823 11824 // src0 must be the same register as src1 or src2, even if the value is 11825 // undefined, so make sure we don't violate this constraint. 11826 if (Src0.isMachineOpcode() && 11827 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 11828 if (Src1.isMachineOpcode() && 11829 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11830 Src0 = Src1; 11831 else if (Src2.isMachineOpcode() && 11832 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11833 Src0 = Src2; 11834 else { 11835 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 11836 Src0 = UndefReg; 11837 Src1 = UndefReg; 11838 } 11839 } else 11840 break; 11841 11842 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 11843 Ops[1] = Src0; 11844 Ops[3] = Src1; 11845 Ops[5] = Src2; 11846 Ops.push_back(ImpDef.getValue(1)); 11847 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 11848 } 11849 default: 11850 break; 11851 } 11852 11853 return Node; 11854 } 11855 11856 // Any MIMG instructions that use tfe or lwe require an initialization of the 11857 // result register that will be written in the case of a memory access failure. 11858 // The required code is also added to tie this init code to the result of the 11859 // img instruction. 11860 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 11861 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11862 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 11863 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 11864 MachineBasicBlock &MBB = *MI.getParent(); 11865 11866 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 11867 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 11868 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 11869 11870 if (!TFE && !LWE) // intersect_ray 11871 return; 11872 11873 unsigned TFEVal = TFE ? TFE->getImm() : 0; 11874 unsigned LWEVal = LWE->getImm(); 11875 unsigned D16Val = D16 ? D16->getImm() : 0; 11876 11877 if (!TFEVal && !LWEVal) 11878 return; 11879 11880 // At least one of TFE or LWE are non-zero 11881 // We have to insert a suitable initialization of the result value and 11882 // tie this to the dest of the image instruction. 11883 11884 const DebugLoc &DL = MI.getDebugLoc(); 11885 11886 int DstIdx = 11887 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 11888 11889 // Calculate which dword we have to initialize to 0. 11890 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 11891 11892 // check that dmask operand is found. 11893 assert(MO_Dmask && "Expected dmask operand in instruction"); 11894 11895 unsigned dmask = MO_Dmask->getImm(); 11896 // Determine the number of active lanes taking into account the 11897 // Gather4 special case 11898 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask); 11899 11900 bool Packed = !Subtarget->hasUnpackedD16VMem(); 11901 11902 unsigned InitIdx = 11903 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 11904 11905 // Abandon attempt if the dst size isn't large enough 11906 // - this is in fact an error but this is picked up elsewhere and 11907 // reported correctly. 11908 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 11909 if (DstSize < InitIdx) 11910 return; 11911 11912 // Create a register for the initialization value. 11913 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11914 unsigned NewDst = 0; // Final initialized value will be in here 11915 11916 // If PRTStrictNull feature is enabled (the default) then initialize 11917 // all the result registers to 0, otherwise just the error indication 11918 // register (VGPRn+1) 11919 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 11920 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 11921 11922 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 11923 for (; SizeLeft; SizeLeft--, CurrIdx++) { 11924 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11925 // Initialize dword 11926 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 11927 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 11928 .addImm(0); 11929 // Insert into the super-reg 11930 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 11931 .addReg(PrevDst) 11932 .addReg(SubReg) 11933 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 11934 11935 PrevDst = NewDst; 11936 } 11937 11938 // Add as an implicit operand 11939 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 11940 11941 // Tie the just added implicit operand to the dst 11942 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 11943 } 11944 11945 /// Assign the register class depending on the number of 11946 /// bits set in the writemask 11947 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 11948 SDNode *Node) const { 11949 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11950 11951 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 11952 11953 if (TII->isVOP3(MI.getOpcode())) { 11954 // Make sure constant bus requirements are respected. 11955 TII->legalizeOperandsVOP3(MRI, MI); 11956 11957 // Prefer VGPRs over AGPRs in mAI instructions where possible. 11958 // This saves a chain-copy of registers and better balance register 11959 // use between vgpr and agpr as agpr tuples tend to be big. 11960 if (MI.getDesc().OpInfo) { 11961 unsigned Opc = MI.getOpcode(); 11962 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11963 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 11964 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 11965 if (I == -1) 11966 break; 11967 MachineOperand &Op = MI.getOperand(I); 11968 if (!Op.isReg() || !Op.getReg().isVirtual()) 11969 continue; 11970 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 11971 if (!TRI->hasAGPRs(RC)) 11972 continue; 11973 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 11974 if (!Src || !Src->isCopy() || 11975 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 11976 continue; 11977 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 11978 // All uses of agpr64 and agpr32 can also accept vgpr except for 11979 // v_accvgpr_read, but we do not produce agpr reads during selection, 11980 // so no use checks are needed. 11981 MRI.setRegClass(Op.getReg(), NewRC); 11982 } 11983 11984 // Resolve the rest of AV operands to AGPRs. 11985 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { 11986 if (Src2->isReg() && Src2->getReg().isVirtual()) { 11987 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); 11988 if (TRI->isVectorSuperClass(RC)) { 11989 auto *NewRC = TRI->getEquivalentAGPRClass(RC); 11990 MRI.setRegClass(Src2->getReg(), NewRC); 11991 if (Src2->isTied()) 11992 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); 11993 } 11994 } 11995 } 11996 } 11997 11998 return; 11999 } 12000 12001 if (TII->isMIMG(MI)) { 12002 if (!MI.mayStore()) 12003 AddIMGInit(MI); 12004 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); 12005 } 12006 } 12007 12008 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 12009 uint64_t Val) { 12010 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 12011 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 12012 } 12013 12014 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 12015 const SDLoc &DL, 12016 SDValue Ptr) const { 12017 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12018 12019 // Build the half of the subregister with the constants before building the 12020 // full 128-bit register. If we are building multiple resource descriptors, 12021 // this will allow CSEing of the 2-component register. 12022 const SDValue Ops0[] = { 12023 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 12024 buildSMovImm32(DAG, DL, 0), 12025 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 12026 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 12027 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 12028 }; 12029 12030 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 12031 MVT::v2i32, Ops0), 0); 12032 12033 // Combine the constants and the pointer. 12034 const SDValue Ops1[] = { 12035 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 12036 Ptr, 12037 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 12038 SubRegHi, 12039 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 12040 }; 12041 12042 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 12043 } 12044 12045 /// Return a resource descriptor with the 'Add TID' bit enabled 12046 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 12047 /// of the resource descriptor) to create an offset, which is added to 12048 /// the resource pointer. 12049 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 12050 SDValue Ptr, uint32_t RsrcDword1, 12051 uint64_t RsrcDword2And3) const { 12052 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 12053 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 12054 if (RsrcDword1) { 12055 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 12056 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 12057 0); 12058 } 12059 12060 SDValue DataLo = buildSMovImm32(DAG, DL, 12061 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 12062 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 12063 12064 const SDValue Ops[] = { 12065 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 12066 PtrLo, 12067 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 12068 PtrHi, 12069 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 12070 DataLo, 12071 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 12072 DataHi, 12073 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 12074 }; 12075 12076 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 12077 } 12078 12079 //===----------------------------------------------------------------------===// 12080 // SI Inline Assembly Support 12081 //===----------------------------------------------------------------------===// 12082 12083 std::pair<unsigned, const TargetRegisterClass *> 12084 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 12085 StringRef Constraint, 12086 MVT VT) const { 12087 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 12088 12089 const TargetRegisterClass *RC = nullptr; 12090 if (Constraint.size() == 1) { 12091 const unsigned BitWidth = VT.getSizeInBits(); 12092 switch (Constraint[0]) { 12093 default: 12094 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12095 case 's': 12096 case 'r': 12097 switch (BitWidth) { 12098 case 16: 12099 RC = &AMDGPU::SReg_32RegClass; 12100 break; 12101 case 64: 12102 RC = &AMDGPU::SGPR_64RegClass; 12103 break; 12104 default: 12105 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 12106 if (!RC) 12107 return std::make_pair(0U, nullptr); 12108 break; 12109 } 12110 break; 12111 case 'v': 12112 switch (BitWidth) { 12113 case 16: 12114 RC = &AMDGPU::VGPR_32RegClass; 12115 break; 12116 default: 12117 RC = TRI->getVGPRClassForBitWidth(BitWidth); 12118 if (!RC) 12119 return std::make_pair(0U, nullptr); 12120 break; 12121 } 12122 break; 12123 case 'a': 12124 if (!Subtarget->hasMAIInsts()) 12125 break; 12126 switch (BitWidth) { 12127 case 16: 12128 RC = &AMDGPU::AGPR_32RegClass; 12129 break; 12130 default: 12131 RC = TRI->getAGPRClassForBitWidth(BitWidth); 12132 if (!RC) 12133 return std::make_pair(0U, nullptr); 12134 break; 12135 } 12136 break; 12137 } 12138 // We actually support i128, i16 and f16 as inline parameters 12139 // even if they are not reported as legal 12140 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 12141 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 12142 return std::make_pair(0U, RC); 12143 } 12144 12145 if (Constraint.startswith("{") && Constraint.endswith("}")) { 12146 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 12147 if (RegName.consume_front("v")) { 12148 RC = &AMDGPU::VGPR_32RegClass; 12149 } else if (RegName.consume_front("s")) { 12150 RC = &AMDGPU::SGPR_32RegClass; 12151 } else if (RegName.consume_front("a")) { 12152 RC = &AMDGPU::AGPR_32RegClass; 12153 } 12154 12155 if (RC) { 12156 uint32_t Idx; 12157 if (RegName.consume_front("[")) { 12158 uint32_t End; 12159 bool Failed = RegName.consumeInteger(10, Idx); 12160 Failed |= !RegName.consume_front(":"); 12161 Failed |= RegName.consumeInteger(10, End); 12162 Failed |= !RegName.consume_back("]"); 12163 if (!Failed) { 12164 uint32_t Width = (End - Idx + 1) * 32; 12165 MCRegister Reg = RC->getRegister(Idx); 12166 if (SIRegisterInfo::isVGPRClass(RC)) 12167 RC = TRI->getVGPRClassForBitWidth(Width); 12168 else if (SIRegisterInfo::isSGPRClass(RC)) 12169 RC = TRI->getSGPRClassForBitWidth(Width); 12170 else if (SIRegisterInfo::isAGPRClass(RC)) 12171 RC = TRI->getAGPRClassForBitWidth(Width); 12172 if (RC) { 12173 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 12174 return std::make_pair(Reg, RC); 12175 } 12176 } 12177 } else { 12178 bool Failed = RegName.getAsInteger(10, Idx); 12179 if (!Failed && Idx < RC->getNumRegs()) 12180 return std::make_pair(RC->getRegister(Idx), RC); 12181 } 12182 } 12183 } 12184 12185 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12186 if (Ret.first) 12187 Ret.second = TRI->getPhysRegClass(Ret.first); 12188 12189 return Ret; 12190 } 12191 12192 static bool isImmConstraint(StringRef Constraint) { 12193 if (Constraint.size() == 1) { 12194 switch (Constraint[0]) { 12195 default: break; 12196 case 'I': 12197 case 'J': 12198 case 'A': 12199 case 'B': 12200 case 'C': 12201 return true; 12202 } 12203 } else if (Constraint == "DA" || 12204 Constraint == "DB") { 12205 return true; 12206 } 12207 return false; 12208 } 12209 12210 SITargetLowering::ConstraintType 12211 SITargetLowering::getConstraintType(StringRef Constraint) const { 12212 if (Constraint.size() == 1) { 12213 switch (Constraint[0]) { 12214 default: break; 12215 case 's': 12216 case 'v': 12217 case 'a': 12218 return C_RegisterClass; 12219 } 12220 } 12221 if (isImmConstraint(Constraint)) { 12222 return C_Other; 12223 } 12224 return TargetLowering::getConstraintType(Constraint); 12225 } 12226 12227 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 12228 if (!AMDGPU::isInlinableIntLiteral(Val)) { 12229 Val = Val & maskTrailingOnes<uint64_t>(Size); 12230 } 12231 return Val; 12232 } 12233 12234 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 12235 std::string &Constraint, 12236 std::vector<SDValue> &Ops, 12237 SelectionDAG &DAG) const { 12238 if (isImmConstraint(Constraint)) { 12239 uint64_t Val; 12240 if (getAsmOperandConstVal(Op, Val) && 12241 checkAsmConstraintVal(Op, Constraint, Val)) { 12242 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 12243 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 12244 } 12245 } else { 12246 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12247 } 12248 } 12249 12250 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 12251 unsigned Size = Op.getScalarValueSizeInBits(); 12252 if (Size > 64) 12253 return false; 12254 12255 if (Size == 16 && !Subtarget->has16BitInsts()) 12256 return false; 12257 12258 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12259 Val = C->getSExtValue(); 12260 return true; 12261 } 12262 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 12263 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 12264 return true; 12265 } 12266 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 12267 if (Size != 16 || Op.getNumOperands() != 2) 12268 return false; 12269 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 12270 return false; 12271 if (ConstantSDNode *C = V->getConstantSplatNode()) { 12272 Val = C->getSExtValue(); 12273 return true; 12274 } 12275 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 12276 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 12277 return true; 12278 } 12279 } 12280 12281 return false; 12282 } 12283 12284 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 12285 const std::string &Constraint, 12286 uint64_t Val) const { 12287 if (Constraint.size() == 1) { 12288 switch (Constraint[0]) { 12289 case 'I': 12290 return AMDGPU::isInlinableIntLiteral(Val); 12291 case 'J': 12292 return isInt<16>(Val); 12293 case 'A': 12294 return checkAsmConstraintValA(Op, Val); 12295 case 'B': 12296 return isInt<32>(Val); 12297 case 'C': 12298 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 12299 AMDGPU::isInlinableIntLiteral(Val); 12300 default: 12301 break; 12302 } 12303 } else if (Constraint.size() == 2) { 12304 if (Constraint == "DA") { 12305 int64_t HiBits = static_cast<int32_t>(Val >> 32); 12306 int64_t LoBits = static_cast<int32_t>(Val); 12307 return checkAsmConstraintValA(Op, HiBits, 32) && 12308 checkAsmConstraintValA(Op, LoBits, 32); 12309 } 12310 if (Constraint == "DB") { 12311 return true; 12312 } 12313 } 12314 llvm_unreachable("Invalid asm constraint"); 12315 } 12316 12317 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 12318 uint64_t Val, 12319 unsigned MaxSize) const { 12320 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 12321 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 12322 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 12323 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 12324 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 12325 return true; 12326 } 12327 return false; 12328 } 12329 12330 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 12331 switch (UnalignedClassID) { 12332 case AMDGPU::VReg_64RegClassID: 12333 return AMDGPU::VReg_64_Align2RegClassID; 12334 case AMDGPU::VReg_96RegClassID: 12335 return AMDGPU::VReg_96_Align2RegClassID; 12336 case AMDGPU::VReg_128RegClassID: 12337 return AMDGPU::VReg_128_Align2RegClassID; 12338 case AMDGPU::VReg_160RegClassID: 12339 return AMDGPU::VReg_160_Align2RegClassID; 12340 case AMDGPU::VReg_192RegClassID: 12341 return AMDGPU::VReg_192_Align2RegClassID; 12342 case AMDGPU::VReg_224RegClassID: 12343 return AMDGPU::VReg_224_Align2RegClassID; 12344 case AMDGPU::VReg_256RegClassID: 12345 return AMDGPU::VReg_256_Align2RegClassID; 12346 case AMDGPU::VReg_512RegClassID: 12347 return AMDGPU::VReg_512_Align2RegClassID; 12348 case AMDGPU::VReg_1024RegClassID: 12349 return AMDGPU::VReg_1024_Align2RegClassID; 12350 case AMDGPU::AReg_64RegClassID: 12351 return AMDGPU::AReg_64_Align2RegClassID; 12352 case AMDGPU::AReg_96RegClassID: 12353 return AMDGPU::AReg_96_Align2RegClassID; 12354 case AMDGPU::AReg_128RegClassID: 12355 return AMDGPU::AReg_128_Align2RegClassID; 12356 case AMDGPU::AReg_160RegClassID: 12357 return AMDGPU::AReg_160_Align2RegClassID; 12358 case AMDGPU::AReg_192RegClassID: 12359 return AMDGPU::AReg_192_Align2RegClassID; 12360 case AMDGPU::AReg_256RegClassID: 12361 return AMDGPU::AReg_256_Align2RegClassID; 12362 case AMDGPU::AReg_512RegClassID: 12363 return AMDGPU::AReg_512_Align2RegClassID; 12364 case AMDGPU::AReg_1024RegClassID: 12365 return AMDGPU::AReg_1024_Align2RegClassID; 12366 default: 12367 return -1; 12368 } 12369 } 12370 12371 // Figure out which registers should be reserved for stack access. Only after 12372 // the function is legalized do we know all of the non-spill stack objects or if 12373 // calls are present. 12374 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 12375 MachineRegisterInfo &MRI = MF.getRegInfo(); 12376 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12377 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 12378 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12379 const SIInstrInfo *TII = ST.getInstrInfo(); 12380 12381 if (Info->isEntryFunction()) { 12382 // Callable functions have fixed registers used for stack access. 12383 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 12384 } 12385 12386 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 12387 Info->getStackPtrOffsetReg())); 12388 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 12389 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 12390 12391 // We need to worry about replacing the default register with itself in case 12392 // of MIR testcases missing the MFI. 12393 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 12394 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 12395 12396 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 12397 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 12398 12399 Info->limitOccupancy(MF); 12400 12401 if (ST.isWave32() && !MF.empty()) { 12402 for (auto &MBB : MF) { 12403 for (auto &MI : MBB) { 12404 TII->fixImplicitOperands(MI); 12405 } 12406 } 12407 } 12408 12409 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 12410 // classes if required. Ideally the register class constraints would differ 12411 // per-subtarget, but there's no easy way to achieve that right now. This is 12412 // not a problem for VGPRs because the correctly aligned VGPR class is implied 12413 // from using them as the register class for legal types. 12414 if (ST.needsAlignedVGPRs()) { 12415 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 12416 const Register Reg = Register::index2VirtReg(I); 12417 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 12418 if (!RC) 12419 continue; 12420 int NewClassID = getAlignedAGPRClassID(RC->getID()); 12421 if (NewClassID != -1) 12422 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 12423 } 12424 } 12425 12426 TargetLoweringBase::finalizeLowering(MF); 12427 } 12428 12429 void SITargetLowering::computeKnownBitsForFrameIndex( 12430 const int FI, KnownBits &Known, const MachineFunction &MF) const { 12431 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 12432 12433 // Set the high bits to zero based on the maximum allowed scratch size per 12434 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 12435 // calculation won't overflow, so assume the sign bit is never set. 12436 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 12437 } 12438 12439 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 12440 KnownBits &Known, unsigned Dim) { 12441 unsigned MaxValue = 12442 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 12443 Known.Zero.setHighBits(countLeadingZeros(MaxValue)); 12444 } 12445 12446 void SITargetLowering::computeKnownBitsForTargetInstr( 12447 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 12448 const MachineRegisterInfo &MRI, unsigned Depth) const { 12449 const MachineInstr *MI = MRI.getVRegDef(R); 12450 switch (MI->getOpcode()) { 12451 case AMDGPU::G_INTRINSIC: { 12452 switch (MI->getIntrinsicID()) { 12453 case Intrinsic::amdgcn_workitem_id_x: 12454 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 12455 break; 12456 case Intrinsic::amdgcn_workitem_id_y: 12457 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 12458 break; 12459 case Intrinsic::amdgcn_workitem_id_z: 12460 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 12461 break; 12462 case Intrinsic::amdgcn_mbcnt_lo: 12463 case Intrinsic::amdgcn_mbcnt_hi: { 12464 // These return at most the wavefront size - 1. 12465 unsigned Size = MRI.getType(R).getSizeInBits(); 12466 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 12467 break; 12468 } 12469 case Intrinsic::amdgcn_groupstaticsize: { 12470 // We can report everything over the maximum size as 0. We can't report 12471 // based on the actual size because we don't know if it's accurate or not 12472 // at any given point. 12473 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); 12474 break; 12475 } 12476 } 12477 break; 12478 } 12479 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 12480 Known.Zero.setHighBits(24); 12481 break; 12482 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 12483 Known.Zero.setHighBits(16); 12484 break; 12485 } 12486 } 12487 12488 Align SITargetLowering::computeKnownAlignForTargetInstr( 12489 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 12490 unsigned Depth) const { 12491 const MachineInstr *MI = MRI.getVRegDef(R); 12492 switch (MI->getOpcode()) { 12493 case AMDGPU::G_INTRINSIC: 12494 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 12495 // FIXME: Can this move to generic code? What about the case where the call 12496 // site specifies a lower alignment? 12497 Intrinsic::ID IID = MI->getIntrinsicID(); 12498 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 12499 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 12500 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 12501 return *RetAlign; 12502 return Align(1); 12503 } 12504 default: 12505 return Align(1); 12506 } 12507 } 12508 12509 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 12510 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 12511 const Align CacheLineAlign = Align(64); 12512 12513 // Pre-GFX10 target did not benefit from loop alignment 12514 if (!ML || DisableLoopAlignment || 12515 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 12516 getSubtarget()->hasInstFwdPrefetchBug()) 12517 return PrefAlign; 12518 12519 // On GFX10 I$ is 4 x 64 bytes cache lines. 12520 // By default prefetcher keeps one cache line behind and reads two ahead. 12521 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 12522 // behind and one ahead. 12523 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 12524 // If loop fits 64 bytes it always spans no more than two cache lines and 12525 // does not need an alignment. 12526 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 12527 // Else if loop is less or equal 192 bytes we need two lines behind. 12528 12529 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12530 const MachineBasicBlock *Header = ML->getHeader(); 12531 if (Header->getAlignment() != PrefAlign) 12532 return Header->getAlignment(); // Already processed. 12533 12534 unsigned LoopSize = 0; 12535 for (const MachineBasicBlock *MBB : ML->blocks()) { 12536 // If inner loop block is aligned assume in average half of the alignment 12537 // size to be added as nops. 12538 if (MBB != Header) 12539 LoopSize += MBB->getAlignment().value() / 2; 12540 12541 for (const MachineInstr &MI : *MBB) { 12542 LoopSize += TII->getInstSizeInBytes(MI); 12543 if (LoopSize > 192) 12544 return PrefAlign; 12545 } 12546 } 12547 12548 if (LoopSize <= 64) 12549 return PrefAlign; 12550 12551 if (LoopSize <= 128) 12552 return CacheLineAlign; 12553 12554 // If any of parent loops is surrounded by prefetch instructions do not 12555 // insert new for inner loop, which would reset parent's settings. 12556 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 12557 if (MachineBasicBlock *Exit = P->getExitBlock()) { 12558 auto I = Exit->getFirstNonDebugInstr(); 12559 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 12560 return CacheLineAlign; 12561 } 12562 } 12563 12564 MachineBasicBlock *Pre = ML->getLoopPreheader(); 12565 MachineBasicBlock *Exit = ML->getExitBlock(); 12566 12567 if (Pre && Exit) { 12568 auto PreTerm = Pre->getFirstTerminator(); 12569 if (PreTerm == Pre->begin() || 12570 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) 12571 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 12572 .addImm(1); // prefetch 2 lines behind PC 12573 12574 auto ExitHead = Exit->getFirstNonDebugInstr(); 12575 if (ExitHead == Exit->end() || 12576 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) 12577 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 12578 .addImm(2); // prefetch 1 line behind PC 12579 } 12580 12581 return CacheLineAlign; 12582 } 12583 12584 LLVM_ATTRIBUTE_UNUSED 12585 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 12586 assert(N->getOpcode() == ISD::CopyFromReg); 12587 do { 12588 // Follow the chain until we find an INLINEASM node. 12589 N = N->getOperand(0).getNode(); 12590 if (N->getOpcode() == ISD::INLINEASM || 12591 N->getOpcode() == ISD::INLINEASM_BR) 12592 return true; 12593 } while (N->getOpcode() == ISD::CopyFromReg); 12594 return false; 12595 } 12596 12597 bool SITargetLowering::isSDNodeSourceOfDivergence( 12598 const SDNode *N, FunctionLoweringInfo *FLI, 12599 LegacyDivergenceAnalysis *KDA) const { 12600 switch (N->getOpcode()) { 12601 case ISD::CopyFromReg: { 12602 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 12603 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 12604 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12605 Register Reg = R->getReg(); 12606 12607 // FIXME: Why does this need to consider isLiveIn? 12608 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 12609 return !TRI->isSGPRReg(MRI, Reg); 12610 12611 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 12612 return KDA->isDivergent(V); 12613 12614 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 12615 return !TRI->isSGPRReg(MRI, Reg); 12616 } 12617 case ISD::LOAD: { 12618 const LoadSDNode *L = cast<LoadSDNode>(N); 12619 unsigned AS = L->getAddressSpace(); 12620 // A flat load may access private memory. 12621 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 12622 } 12623 case ISD::CALLSEQ_END: 12624 return true; 12625 case ISD::INTRINSIC_WO_CHAIN: 12626 return AMDGPU::isIntrinsicSourceOfDivergence( 12627 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 12628 case ISD::INTRINSIC_W_CHAIN: 12629 return AMDGPU::isIntrinsicSourceOfDivergence( 12630 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 12631 case AMDGPUISD::ATOMIC_CMP_SWAP: 12632 case AMDGPUISD::ATOMIC_INC: 12633 case AMDGPUISD::ATOMIC_DEC: 12634 case AMDGPUISD::ATOMIC_LOAD_FMIN: 12635 case AMDGPUISD::ATOMIC_LOAD_FMAX: 12636 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 12637 case AMDGPUISD::BUFFER_ATOMIC_ADD: 12638 case AMDGPUISD::BUFFER_ATOMIC_SUB: 12639 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 12640 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 12641 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 12642 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 12643 case AMDGPUISD::BUFFER_ATOMIC_AND: 12644 case AMDGPUISD::BUFFER_ATOMIC_OR: 12645 case AMDGPUISD::BUFFER_ATOMIC_XOR: 12646 case AMDGPUISD::BUFFER_ATOMIC_INC: 12647 case AMDGPUISD::BUFFER_ATOMIC_DEC: 12648 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 12649 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 12650 case AMDGPUISD::BUFFER_ATOMIC_FADD: 12651 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 12652 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 12653 // Target-specific read-modify-write atomics are sources of divergence. 12654 return true; 12655 default: 12656 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 12657 // Generic read-modify-write atomics are sources of divergence. 12658 return A->readMem() && A->writeMem(); 12659 } 12660 return false; 12661 } 12662 } 12663 12664 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 12665 EVT VT) const { 12666 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 12667 case MVT::f32: 12668 return hasFP32Denormals(DAG.getMachineFunction()); 12669 case MVT::f64: 12670 case MVT::f16: 12671 return hasFP64FP16Denormals(DAG.getMachineFunction()); 12672 default: 12673 return false; 12674 } 12675 } 12676 12677 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 12678 MachineFunction &MF) const { 12679 switch (Ty.getScalarSizeInBits()) { 12680 case 32: 12681 return hasFP32Denormals(MF); 12682 case 64: 12683 case 16: 12684 return hasFP64FP16Denormals(MF); 12685 default: 12686 return false; 12687 } 12688 } 12689 12690 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 12691 const SelectionDAG &DAG, 12692 bool SNaN, 12693 unsigned Depth) const { 12694 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 12695 const MachineFunction &MF = DAG.getMachineFunction(); 12696 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12697 12698 if (Info->getMode().DX10Clamp) 12699 return true; // Clamped to 0. 12700 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 12701 } 12702 12703 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 12704 SNaN, Depth); 12705 } 12706 12707 // Global FP atomic instructions have a hardcoded FP mode and do not support 12708 // FP32 denormals, and only support v2f16 denormals. 12709 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 12710 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 12711 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 12712 if (&Flt == &APFloat::IEEEsingle()) 12713 return DenormMode == DenormalMode::getPreserveSign(); 12714 return DenormMode == DenormalMode::getIEEE(); 12715 } 12716 12717 TargetLowering::AtomicExpansionKind 12718 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 12719 unsigned AS = RMW->getPointerAddressSpace(); 12720 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 12721 return AtomicExpansionKind::NotAtomic; 12722 12723 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 12724 OptimizationRemarkEmitter ORE(RMW->getFunction()); 12725 LLVMContext &Ctx = RMW->getFunction()->getContext(); 12726 SmallVector<StringRef> SSNs; 12727 Ctx.getSyncScopeNames(SSNs); 12728 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 12729 ? "system" 12730 : SSNs[RMW->getSyncScopeID()]; 12731 ORE.emit([&]() { 12732 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 12733 << "Hardware instruction generated for atomic " 12734 << RMW->getOperationName(RMW->getOperation()) 12735 << " operation at memory scope " << MemScope 12736 << " due to an unsafe request."; 12737 }); 12738 return Kind; 12739 }; 12740 12741 switch (RMW->getOperation()) { 12742 case AtomicRMWInst::FAdd: { 12743 Type *Ty = RMW->getType(); 12744 12745 // We don't have a way to support 16-bit atomics now, so just leave them 12746 // as-is. 12747 if (Ty->isHalfTy()) 12748 return AtomicExpansionKind::None; 12749 12750 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 12751 return AtomicExpansionKind::CmpXChg; 12752 12753 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) && 12754 Subtarget->hasAtomicFaddNoRtnInsts()) { 12755 if (Subtarget->hasGFX940Insts()) 12756 return AtomicExpansionKind::None; 12757 12758 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 12759 // floating point atomic instructions. May generate more efficient code, 12760 // but may not respect rounding and denormal modes, and may give incorrect 12761 // results for certain memory destinations. 12762 if (RMW->getFunction() 12763 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12764 .getValueAsString() != "true") 12765 return AtomicExpansionKind::CmpXChg; 12766 12767 if (Subtarget->hasGFX90AInsts()) { 12768 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS) 12769 return AtomicExpansionKind::CmpXChg; 12770 12771 auto SSID = RMW->getSyncScopeID(); 12772 if (SSID == SyncScope::System || 12773 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as")) 12774 return AtomicExpansionKind::CmpXChg; 12775 12776 return ReportUnsafeHWInst(AtomicExpansionKind::None); 12777 } 12778 12779 if (AS == AMDGPUAS::FLAT_ADDRESS) 12780 return AtomicExpansionKind::CmpXChg; 12781 12782 return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12783 : AtomicExpansionKind::CmpXChg; 12784 } 12785 12786 // DS FP atomics do respect the denormal mode, but the rounding mode is 12787 // fixed to round-to-nearest-even. 12788 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 12789 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 12790 if (!Ty->isDoubleTy()) 12791 return AtomicExpansionKind::None; 12792 12793 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 12794 return AtomicExpansionKind::None; 12795 12796 return RMW->getFunction() 12797 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12798 .getValueAsString() == "true" 12799 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12800 : AtomicExpansionKind::CmpXChg; 12801 } 12802 12803 return AtomicExpansionKind::CmpXChg; 12804 } 12805 default: 12806 break; 12807 } 12808 12809 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 12810 } 12811 12812 TargetLowering::AtomicExpansionKind 12813 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 12814 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12815 ? AtomicExpansionKind::NotAtomic 12816 : AtomicExpansionKind::None; 12817 } 12818 12819 TargetLowering::AtomicExpansionKind 12820 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 12821 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12822 ? AtomicExpansionKind::NotAtomic 12823 : AtomicExpansionKind::None; 12824 } 12825 12826 TargetLowering::AtomicExpansionKind 12827 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { 12828 return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12829 ? AtomicExpansionKind::NotAtomic 12830 : AtomicExpansionKind::None; 12831 } 12832 12833 const TargetRegisterClass * 12834 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 12835 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 12836 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12837 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 12838 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 12839 : &AMDGPU::SReg_32RegClass; 12840 if (!TRI->isSGPRClass(RC) && !isDivergent) 12841 return TRI->getEquivalentSGPRClass(RC); 12842 else if (TRI->isSGPRClass(RC) && isDivergent) 12843 return TRI->getEquivalentVGPRClass(RC); 12844 12845 return RC; 12846 } 12847 12848 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 12849 // uniform values (as produced by the mask results of control flow intrinsics) 12850 // used outside of divergent blocks. The phi users need to also be treated as 12851 // always uniform. 12852 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 12853 unsigned WaveSize) { 12854 // FIXME: We assume we never cast the mask results of a control flow 12855 // intrinsic. 12856 // Early exit if the type won't be consistent as a compile time hack. 12857 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 12858 if (!IT || IT->getBitWidth() != WaveSize) 12859 return false; 12860 12861 if (!isa<Instruction>(V)) 12862 return false; 12863 if (!Visited.insert(V).second) 12864 return false; 12865 bool Result = false; 12866 for (auto U : V->users()) { 12867 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 12868 if (V == U->getOperand(1)) { 12869 switch (Intrinsic->getIntrinsicID()) { 12870 default: 12871 Result = false; 12872 break; 12873 case Intrinsic::amdgcn_if_break: 12874 case Intrinsic::amdgcn_if: 12875 case Intrinsic::amdgcn_else: 12876 Result = true; 12877 break; 12878 } 12879 } 12880 if (V == U->getOperand(0)) { 12881 switch (Intrinsic->getIntrinsicID()) { 12882 default: 12883 Result = false; 12884 break; 12885 case Intrinsic::amdgcn_end_cf: 12886 case Intrinsic::amdgcn_loop: 12887 Result = true; 12888 break; 12889 } 12890 } 12891 } else { 12892 Result = hasCFUser(U, Visited, WaveSize); 12893 } 12894 if (Result) 12895 break; 12896 } 12897 return Result; 12898 } 12899 12900 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 12901 const Value *V) const { 12902 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 12903 if (CI->isInlineAsm()) { 12904 // FIXME: This cannot give a correct answer. This should only trigger in 12905 // the case where inline asm returns mixed SGPR and VGPR results, used 12906 // outside the defining block. We don't have a specific result to 12907 // consider, so this assumes if any value is SGPR, the overall register 12908 // also needs to be SGPR. 12909 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 12910 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 12911 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 12912 for (auto &TC : TargetConstraints) { 12913 if (TC.Type == InlineAsm::isOutput) { 12914 ComputeConstraintToUse(TC, SDValue()); 12915 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 12916 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 12917 if (RC && SIRI->isSGPRClass(RC)) 12918 return true; 12919 } 12920 } 12921 } 12922 } 12923 SmallPtrSet<const Value *, 16> Visited; 12924 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 12925 } 12926 12927 std::pair<InstructionCost, MVT> 12928 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 12929 Type *Ty) const { 12930 std::pair<InstructionCost, MVT> Cost = 12931 TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 12932 auto Size = DL.getTypeSizeInBits(Ty); 12933 // Maximum load or store can handle 8 dwords for scalar and 4 for 12934 // vector ALU. Let's assume anything above 8 dwords is expensive 12935 // even if legal. 12936 if (Size <= 256) 12937 return Cost; 12938 12939 Cost.first += (Size + 255) / 256; 12940 return Cost; 12941 } 12942 12943 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { 12944 SDNode::use_iterator I = N->use_begin(), E = N->use_end(); 12945 for (; I != E; ++I) { 12946 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { 12947 if (getBasePtrIndex(M) == I.getOperandNo()) 12948 return true; 12949 } 12950 } 12951 return false; 12952 } 12953 12954 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, 12955 SDValue N1) const { 12956 if (!N0.hasOneUse()) 12957 return false; 12958 // Take care of the opportunity to keep N0 uniform 12959 if (N0->isDivergent() || !N1->isDivergent()) 12960 return true; 12961 // Check if we have a good chance to form the memory access pattern with the 12962 // base and offset 12963 return (DAG.isBaseWithConstantOffset(N0) && 12964 hasMemSDNodeUser(*N0->use_begin())); 12965 } 12966 12967 MachineMemOperand::Flags 12968 SITargetLowering::getTargetMMOFlags(const Instruction &I) const { 12969 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. 12970 if (I.getMetadata("amdgpu.noclobber")) 12971 return MONoClobber; 12972 return MachineMemOperand::MONone; 12973 } 12974