xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp (revision 725a9f47324d42037db93c27ceb40d4956872f3e)
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "GCNSubtarget.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "SIRegisterInfo.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/FloatingPointMode.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/UniformityAnalysis.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/ByteProvider.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
32 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
33 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/IntrinsicsAMDGPU.h"
41 #include "llvm/IR/IntrinsicsR600.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/KnownBits.h"
44 #include "llvm/Support/ModRef.h"
45 #include <optional>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "si-lower"
50 
51 STATISTIC(NumTailCalls, "Number of tail calls");
52 
53 static cl::opt<bool> DisableLoopAlignment(
54   "amdgpu-disable-loop-alignment",
55   cl::desc("Do not align and prefetch loops"),
56   cl::init(false));
57 
58 static cl::opt<bool> UseDivergentRegisterIndexing(
59   "amdgpu-use-divergent-register-indexing",
60   cl::Hidden,
61   cl::desc("Use indirect register addressing for divergent indexes"),
62   cl::init(false));
63 
64 static bool denormalModeIsFlushAllF32(const MachineFunction &MF) {
65   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
66   return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign();
67 }
68 
69 static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) {
70   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
71   return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign();
72 }
73 
74 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
75   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
76   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
77     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
78       return AMDGPU::SGPR0 + Reg;
79     }
80   }
81   llvm_unreachable("Cannot allocate sgpr");
82 }
83 
84 SITargetLowering::SITargetLowering(const TargetMachine &TM,
85                                    const GCNSubtarget &STI)
86     : AMDGPUTargetLowering(TM, STI),
87       Subtarget(&STI) {
88   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
89   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
90 
91   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
92   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
93 
94   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
95 
96   const SIRegisterInfo *TRI = STI.getRegisterInfo();
97   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
98 
99   addRegisterClass(MVT::f64, V64RegClass);
100   addRegisterClass(MVT::v2f32, V64RegClass);
101 
102   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
103   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
104 
105   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
106   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
107 
108   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
109   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
110 
111   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
112   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
113 
114   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
115   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
116 
117   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
118   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
119 
120   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
121   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
122 
123   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
124   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
125 
126   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
127   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
128 
129   addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass);
130   addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288));
131 
132   addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass);
133   addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320));
134 
135   addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass);
136   addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352));
137 
138   addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass);
139   addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384));
140 
141   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
142   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
143 
144   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
145   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
146 
147   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
148   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
149 
150   if (Subtarget->has16BitInsts()) {
151     if (Subtarget->useRealTrue16Insts()) {
152       addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass);
153       addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass);
154       addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass);
155     } else {
156       addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
157       addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
158       addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass);
159     }
160 
161     // Unless there are also VOP3P operations, not operations are really legal.
162     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
163     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
164     addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass);
165     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
166     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
167     addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass);
168     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
169     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
170     addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass);
171     addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
172     addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
173     addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass);
174     addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass);
175     addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass);
176     addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass);
177   }
178 
179   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
180   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
181 
182   computeRegisterProperties(Subtarget->getRegisterInfo());
183 
184   // The boolean content concept here is too inflexible. Compares only ever
185   // really produce a 1-bit result. Any copy/extend from these will turn into a
186   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
187   // it's what most targets use.
188   setBooleanContents(ZeroOrOneBooleanContent);
189   setBooleanVectorContents(ZeroOrOneBooleanContent);
190 
191   // We need to custom lower vector stores from local memory
192   setOperationAction(ISD::LOAD,
193                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
194                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
195                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
196                       MVT::i1,     MVT::v32i32},
197                      Custom);
198 
199   setOperationAction(ISD::STORE,
200                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
201                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
202                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
203                       MVT::i1,     MVT::v32i32},
204                      Custom);
205 
206   if (isTypeLegal(MVT::bf16)) {
207     for (unsigned Opc :
208          {ISD::FADD,     ISD::FSUB,       ISD::FMUL,    ISD::FDIV,
209           ISD::FREM,     ISD::FMA,        ISD::FMINNUM, ISD::FMAXNUM,
210           ISD::FMINIMUM, ISD::FMAXIMUM,   ISD::FSQRT,   ISD::FCBRT,
211           ISD::FSIN,     ISD::FCOS,       ISD::FPOW,    ISD::FPOWI,
212           ISD::FLDEXP,   ISD::FFREXP,     ISD::FLOG,    ISD::FLOG2,
213           ISD::FLOG10,   ISD::FEXP,       ISD::FEXP2,   ISD::FEXP10,
214           ISD::FCEIL,    ISD::FTRUNC,     ISD::FRINT,   ISD::FNEARBYINT,
215           ISD::FROUND,   ISD::FROUNDEVEN, ISD::FFLOOR,  ISD::FCANONICALIZE,
216           ISD::SETCC}) {
217       // FIXME: The promoted to type shouldn't need to be explicit
218       setOperationAction(Opc, MVT::bf16, Promote);
219       AddPromotedToType(Opc, MVT::bf16, MVT::f32);
220     }
221 
222     setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand);
223 
224     setOperationAction(ISD::SELECT, MVT::bf16, Promote);
225     AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16);
226 
227     // TODO: Could make these legal
228     setOperationAction(ISD::FABS, MVT::bf16, Expand);
229     setOperationAction(ISD::FNEG, MVT::bf16, Expand);
230     setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand);
231 
232     // We only need to custom lower because we can't specify an action for bf16
233     // sources.
234     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
235     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
236 
237     setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Promote);
238     AddPromotedToType(ISD::BUILD_VECTOR, MVT::v2bf16, MVT::v2i16);
239   }
240 
241   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
242   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
243   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
244   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
245   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
246   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
247   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
248   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
249   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
250   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
251   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
252   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
253   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
254   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
255   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
256   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
257 
258   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
259   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
260   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
261   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
262   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
263   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
264   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
265 
266   setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
267 
268   setOperationAction(ISD::SELECT, MVT::i1, Promote);
269   setOperationAction(ISD::SELECT, MVT::i64, Custom);
270   setOperationAction(ISD::SELECT, MVT::f64, Promote);
271   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
272 
273   setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom);
274 
275   setOperationAction(ISD::SELECT_CC,
276                      {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
277 
278   setOperationAction(ISD::SETCC, MVT::i1, Promote);
279   setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
280   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
281 
282   setOperationAction(ISD::TRUNCATE,
283                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
284                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
285                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
286                      Expand);
287   setOperationAction(ISD::FP_ROUND,
288                      {MVT::v2f32,  MVT::v3f32,  MVT::v4f32,  MVT::v5f32,
289                       MVT::v6f32,  MVT::v7f32,  MVT::v8f32,  MVT::v9f32,
290                       MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
291                      Expand);
292 
293   setOperationAction(ISD::SIGN_EXTEND_INREG,
294                      {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
295                       MVT::v3i16, MVT::v4i16, MVT::Other},
296                      Custom);
297 
298   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
299   setOperationAction(ISD::BR_CC,
300                      {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
301 
302   setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
303 
304   setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal);
305 
306   setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
307                      Expand);
308 
309 #if 0
310   setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal);
311 #endif
312 
313   // We only support LOAD/STORE and vector manipulation ops for vectors
314   // with > 4 elements.
315   for (MVT VT :
316        {MVT::v8i32,   MVT::v8f32,  MVT::v9i32,  MVT::v9f32,  MVT::v10i32,
317         MVT::v10f32,  MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
318         MVT::v16i32,  MVT::v16f32, MVT::v2i64,  MVT::v2f64,  MVT::v4i16,
319         MVT::v4f16,   MVT::v4bf16, MVT::v3i64,  MVT::v3f64,  MVT::v6i32,
320         MVT::v6f32,   MVT::v4i64,  MVT::v4f64,  MVT::v8i64,  MVT::v8f64,
321         MVT::v8i16,   MVT::v8f16,  MVT::v8bf16, MVT::v16i16, MVT::v16f16,
322         MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
323         MVT::v32i16,  MVT::v32f16, MVT::v32bf16}) {
324     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
325       switch (Op) {
326       case ISD::LOAD:
327       case ISD::STORE:
328       case ISD::BUILD_VECTOR:
329       case ISD::BITCAST:
330       case ISD::UNDEF:
331       case ISD::EXTRACT_VECTOR_ELT:
332       case ISD::INSERT_VECTOR_ELT:
333       case ISD::SCALAR_TO_VECTOR:
334       case ISD::IS_FPCLASS:
335         break;
336       case ISD::EXTRACT_SUBVECTOR:
337       case ISD::INSERT_SUBVECTOR:
338       case ISD::CONCAT_VECTORS:
339         setOperationAction(Op, VT, Custom);
340         break;
341       default:
342         setOperationAction(Op, VT, Expand);
343         break;
344       }
345     }
346   }
347 
348   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
349 
350   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
351   // is expanded to avoid having two separate loops in case the index is a VGPR.
352 
353   // Most operations are naturally 32-bit vector operations. We only support
354   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
355   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
356     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
357     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
358 
359     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
360     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
361 
362     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
363     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
364 
365     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
366     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
367   }
368 
369   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
370     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
371     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
372 
373     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
374     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
375 
376     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
377     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
378 
379     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
380     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
381   }
382 
383   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
384     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
385     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
386 
387     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
388     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
389 
390     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
391     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
392 
393     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
394     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
395   }
396 
397   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
398     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
399     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
400 
401     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
402     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
403 
404     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
405     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
406 
407     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
408     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
409   }
410 
411   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
412     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
413     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
414 
415     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
416     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
417 
418     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
419     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
420 
421     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
422     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
423   }
424 
425   setOperationAction(ISD::VECTOR_SHUFFLE,
426                      {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
427                      Expand);
428 
429   setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16},
430                      Custom);
431 
432   // Avoid stack access for these.
433   // TODO: Generalize to more vector types.
434   setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
435                      {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
436                       MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
437                      Custom);
438 
439   // Deal with vec3 vector operations when widened to vec4.
440   setOperationAction(ISD::INSERT_SUBVECTOR,
441                      {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
442 
443   // Deal with vec5/6/7 vector operations when widened to vec8.
444   setOperationAction(ISD::INSERT_SUBVECTOR,
445                      {MVT::v5i32,  MVT::v5f32,  MVT::v6i32,  MVT::v6f32,
446                       MVT::v7i32,  MVT::v7f32,  MVT::v8i32,  MVT::v8f32,
447                       MVT::v9i32,  MVT::v9f32,  MVT::v10i32, MVT::v10f32,
448                       MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
449                      Custom);
450 
451   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
452   // and output demarshalling
453   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
454 
455   // We can't return success/failure, only the old value,
456   // let LLVM add the comparison
457   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
458                      Expand);
459 
460   setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
461 
462   setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
463 
464   // FIXME: This should be narrowed to i32, but that only happens if i64 is
465   // illegal.
466   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
467   setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
468 
469   // On SI this is s_memtime and s_memrealtime on VI.
470   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
471   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
472 
473   if (Subtarget->has16BitInsts()) {
474     setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
475     setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
476   } else {
477     setOperationAction(ISD::FSQRT, MVT::f16, Custom);
478   }
479 
480   if (Subtarget->hasMadMacF32Insts())
481     setOperationAction(ISD::FMAD, MVT::f32, Legal);
482 
483   if (!Subtarget->hasBFI())
484     // fcopysign can be done in a single instruction with BFI.
485     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
486 
487   if (!Subtarget->hasBCNT(32))
488     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
489 
490   if (!Subtarget->hasBCNT(64))
491     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
492 
493   if (Subtarget->hasFFBH())
494     setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
495 
496   if (Subtarget->hasFFBL())
497     setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
498 
499   // We only really have 32-bit BFE instructions (and 16-bit on VI).
500   //
501   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
502   // effort to match them now. We want this to be false for i64 cases when the
503   // extraction isn't restricted to the upper or lower half. Ideally we would
504   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
505   // span the midpoint are probably relatively rare, so don't worry about them
506   // for now.
507   if (Subtarget->hasBFE())
508     setHasExtractBitsInsn(true);
509 
510   // Clamp modifier on add/sub
511   if (Subtarget->hasIntClamp())
512     setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
513 
514   if (Subtarget->hasAddNoCarry())
515     setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
516                        Legal);
517 
518   setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
519                      Custom);
520 
521   // These are really only legal for ieee_mode functions. We should be avoiding
522   // them for functions that don't have ieee_mode enabled, so just say they are
523   // legal.
524   setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
525                      {MVT::f32, MVT::f64}, Legal);
526 
527   if (Subtarget->haveRoundOpsF64())
528     setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64,
529                        Legal);
530   else
531     setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
532                        MVT::f64, Custom);
533 
534   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
535   setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64},
536                      Legal);
537   setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom);
538 
539   setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
540   setOperationAction(ISD::FDIV, MVT::f64, Custom);
541 
542   setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand);
543   setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand);
544 
545   // Custom lower these because we can't specify a rule based on an illegal
546   // source bf16.
547   setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom);
548   setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom);
549 
550   if (Subtarget->has16BitInsts()) {
551     setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
552                         ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
553                        MVT::i16, Legal);
554 
555     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
556 
557     setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
558                        MVT::i16, Expand);
559 
560     setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
561                         ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
562                         ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
563                         ISD::CTPOP},
564                        MVT::i16, Promote);
565 
566     setOperationAction(ISD::LOAD, MVT::i16, Custom);
567 
568     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
569 
570     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
571     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
572     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
573     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
574 
575     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
576     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
577     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
578 
579     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom);
580 
581     // F16 - Constant Actions.
582     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
583     setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
584 
585     // F16 - Load/Store Actions.
586     setOperationAction(ISD::LOAD, MVT::f16, Promote);
587     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
588     setOperationAction(ISD::STORE, MVT::f16, Promote);
589     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
590 
591     // BF16 - Load/Store Actions.
592     setOperationAction(ISD::LOAD, MVT::bf16, Promote);
593     AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16);
594     setOperationAction(ISD::STORE, MVT::bf16, Promote);
595     AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16);
596 
597     // F16 - VOP1 Actions.
598     setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS,
599                         ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
600                        MVT::f16, Custom);
601 
602     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote);
603     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote);
604 
605     // F16 - VOP2 Actions.
606     setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16},
607                        Expand);
608     setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom);
609     setOperationAction(ISD::FFREXP, MVT::f16, Custom);
610     setOperationAction(ISD::FDIV, MVT::f16, Custom);
611 
612     // F16 - VOP3 Actions.
613     setOperationAction(ISD::FMA, MVT::f16, Legal);
614     if (STI.hasMadF16())
615       setOperationAction(ISD::FMAD, MVT::f16, Legal);
616 
617     for (MVT VT :
618          {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
619           MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
620           MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
621       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
622         switch (Op) {
623         case ISD::LOAD:
624         case ISD::STORE:
625         case ISD::BUILD_VECTOR:
626         case ISD::BITCAST:
627         case ISD::UNDEF:
628         case ISD::EXTRACT_VECTOR_ELT:
629         case ISD::INSERT_VECTOR_ELT:
630         case ISD::INSERT_SUBVECTOR:
631         case ISD::EXTRACT_SUBVECTOR:
632         case ISD::SCALAR_TO_VECTOR:
633         case ISD::IS_FPCLASS:
634           break;
635         case ISD::CONCAT_VECTORS:
636           setOperationAction(Op, VT, Custom);
637           break;
638         default:
639           setOperationAction(Op, VT, Expand);
640           break;
641         }
642       }
643     }
644 
645     // v_perm_b32 can handle either of these.
646     setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
647     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
648 
649     // XXX - Do these do anything? Vector constants turn into build_vector.
650     setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
651 
652     setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
653                        Legal);
654 
655     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
656     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
657     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
658     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
659 
660     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
661     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
662     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
663     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
664 
665     setOperationAction(ISD::AND, MVT::v2i16, Promote);
666     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
667     setOperationAction(ISD::OR, MVT::v2i16, Promote);
668     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
669     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
670     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
671 
672     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
673     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
674     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
675     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
676     setOperationAction(ISD::LOAD, MVT::v4bf16, Promote);
677     AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32);
678 
679     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
680     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
681     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
682     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
683     setOperationAction(ISD::STORE, MVT::v4bf16, Promote);
684     AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32);
685 
686     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
687     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
688     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
689     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
690     setOperationAction(ISD::LOAD, MVT::v8bf16, Promote);
691     AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32);
692 
693     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
694     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
695     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
696     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
697 
698     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
699     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
700     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
701     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
702     setOperationAction(ISD::STORE, MVT::v8bf16, Promote);
703     AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32);
704 
705     setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
706     AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
707     setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
708     AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
709     setOperationAction(ISD::LOAD, MVT::v16bf16, Promote);
710     AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32);
711 
712     setOperationAction(ISD::STORE, MVT::v16i16, Promote);
713     AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
714     setOperationAction(ISD::STORE, MVT::v16f16, Promote);
715     AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
716     setOperationAction(ISD::STORE, MVT::v16bf16, Promote);
717     AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32);
718 
719     setOperationAction(ISD::LOAD, MVT::v32i16, Promote);
720     AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32);
721     setOperationAction(ISD::LOAD, MVT::v32f16, Promote);
722     AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32);
723     setOperationAction(ISD::LOAD, MVT::v32bf16, Promote);
724     AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32);
725 
726     setOperationAction(ISD::STORE, MVT::v32i16, Promote);
727     AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32);
728     setOperationAction(ISD::STORE, MVT::v32f16, Promote);
729     AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32);
730     setOperationAction(ISD::STORE, MVT::v32bf16, Promote);
731     AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32);
732 
733     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
734                        MVT::v2i32, Expand);
735     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
736 
737     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
738                        MVT::v4i32, Expand);
739 
740     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
741                        MVT::v8i32, Expand);
742 
743     if (!Subtarget->hasVOP3PInsts())
744       setOperationAction(ISD::BUILD_VECTOR,
745                          {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom);
746 
747     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
748     // This isn't really legal, but this avoids the legalizer unrolling it (and
749     // allows matching fneg (fabs x) patterns)
750     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
751 
752     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
753     setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
754 
755     setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
756                        {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
757                        Custom);
758 
759     setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
760                        {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
761                        Expand);
762 
763     for (MVT Vec16 :
764          {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
765           MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
766       setOperationAction(
767           {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
768           Vec16, Custom);
769       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
770     }
771   }
772 
773   if (Subtarget->hasVOP3PInsts()) {
774     setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
775                         ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
776                         ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
777                        MVT::v2i16, Legal);
778 
779     setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
780                         ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
781                        MVT::v2f16, Legal);
782 
783     setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
784                        Custom);
785 
786     setOperationAction(ISD::VECTOR_SHUFFLE,
787                        {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
788                         MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16},
789                        Custom);
790 
791     for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
792       // Split vector operations.
793       setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
794                           ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
795                           ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
796                           ISD::SSUBSAT},
797                          VT, Custom);
798 
799     for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
800       // Split vector operations.
801       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
802                          VT, Custom);
803 
804     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
805                        Custom);
806 
807     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
808     setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16},
809                        Custom);
810 
811     if (Subtarget->hasPackedFP32Ops()) {
812       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
813                          MVT::v2f32, Legal);
814       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
815                          {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
816                          Custom);
817     }
818   }
819 
820   setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
821 
822   if (Subtarget->has16BitInsts()) {
823     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
824     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
825     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
826     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
827   } else {
828     // Legalization hack.
829     setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
830 
831     setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
832   }
833 
834   setOperationAction(ISD::SELECT,
835                      {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
836                       MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
837                       MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
838                       MVT::v32f16, MVT::v32bf16},
839                      Custom);
840 
841   setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
842 
843   if (Subtarget->hasScalarSMulU64())
844     setOperationAction(ISD::MUL, MVT::i64, Custom);
845 
846   if (Subtarget->hasMad64_32())
847     setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
848 
849   if (Subtarget->hasPrefetch())
850     setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
851 
852   if (Subtarget->hasIEEEMinMax())
853     setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM},
854                        {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal);
855 
856   setOperationAction(ISD::INTRINSIC_WO_CHAIN,
857                      {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
858                       MVT::v2i16, MVT::v2f16, MVT::i128, MVT::i8},
859                      Custom);
860 
861   setOperationAction(ISD::INTRINSIC_W_CHAIN,
862                      {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
863                       MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
864                       MVT::i16, MVT::i8, MVT::i128},
865                      Custom);
866 
867   setOperationAction(ISD::INTRINSIC_VOID,
868                      {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
869                       MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
870                       MVT::i8, MVT::i128},
871                      Custom);
872 
873   setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
874   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
875 
876   // TODO: Could move this to custom lowering, could benefit from combines on
877   // extract of relevant bits.
878   setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
879 
880   setOperationAction(ISD::MUL, MVT::i1, Promote);
881 
882   setTargetDAGCombine({ISD::ADD,
883                        ISD::UADDO_CARRY,
884                        ISD::SUB,
885                        ISD::USUBO_CARRY,
886                        ISD::FADD,
887                        ISD::FSUB,
888                        ISD::FDIV,
889                        ISD::FMINNUM,
890                        ISD::FMAXNUM,
891                        ISD::FMINNUM_IEEE,
892                        ISD::FMAXNUM_IEEE,
893                        ISD::FMINIMUM,
894                        ISD::FMAXIMUM,
895                        ISD::FMA,
896                        ISD::SMIN,
897                        ISD::SMAX,
898                        ISD::UMIN,
899                        ISD::UMAX,
900                        ISD::SETCC,
901                        ISD::AND,
902                        ISD::OR,
903                        ISD::XOR,
904                        ISD::FSHR,
905                        ISD::SINT_TO_FP,
906                        ISD::UINT_TO_FP,
907                        ISD::FCANONICALIZE,
908                        ISD::SCALAR_TO_VECTOR,
909                        ISD::ZERO_EXTEND,
910                        ISD::SIGN_EXTEND_INREG,
911                        ISD::EXTRACT_VECTOR_ELT,
912                        ISD::INSERT_VECTOR_ELT,
913                        ISD::FCOPYSIGN});
914 
915   if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
916     setTargetDAGCombine(ISD::FP_ROUND);
917 
918   // All memory operations. Some folding on the pointer operand is done to help
919   // matching the constant offsets in the addressing modes.
920   setTargetDAGCombine({ISD::LOAD,
921                        ISD::STORE,
922                        ISD::ATOMIC_LOAD,
923                        ISD::ATOMIC_STORE,
924                        ISD::ATOMIC_CMP_SWAP,
925                        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
926                        ISD::ATOMIC_SWAP,
927                        ISD::ATOMIC_LOAD_ADD,
928                        ISD::ATOMIC_LOAD_SUB,
929                        ISD::ATOMIC_LOAD_AND,
930                        ISD::ATOMIC_LOAD_OR,
931                        ISD::ATOMIC_LOAD_XOR,
932                        ISD::ATOMIC_LOAD_NAND,
933                        ISD::ATOMIC_LOAD_MIN,
934                        ISD::ATOMIC_LOAD_MAX,
935                        ISD::ATOMIC_LOAD_UMIN,
936                        ISD::ATOMIC_LOAD_UMAX,
937                        ISD::ATOMIC_LOAD_FADD,
938                        ISD::ATOMIC_LOAD_UINC_WRAP,
939                        ISD::ATOMIC_LOAD_UDEC_WRAP,
940                        ISD::INTRINSIC_VOID,
941                        ISD::INTRINSIC_W_CHAIN});
942 
943   // FIXME: In other contexts we pretend this is a per-function property.
944   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
945 
946   setSchedulingPreference(Sched::RegPressure);
947 }
948 
949 const GCNSubtarget *SITargetLowering::getSubtarget() const {
950   return Subtarget;
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // TargetLowering queries
955 //===----------------------------------------------------------------------===//
956 
957 // v_mad_mix* support a conversion from f16 to f32.
958 //
959 // There is only one special case when denormals are enabled we don't currently,
960 // where this is OK to use.
961 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
962                                        EVT DestVT, EVT SrcVT) const {
963   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
964           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
965          DestVT.getScalarType() == MVT::f32 &&
966          SrcVT.getScalarType() == MVT::f16 &&
967          // TODO: This probably only requires no input flushing?
968          denormalModeIsFlushAllF32(DAG.getMachineFunction());
969 }
970 
971 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
972                                        LLT DestTy, LLT SrcTy) const {
973   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
974           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
975          DestTy.getScalarSizeInBits() == 32 &&
976          SrcTy.getScalarSizeInBits() == 16 &&
977          // TODO: This probably only requires no input flushing?
978          denormalModeIsFlushAllF32(*MI.getMF());
979 }
980 
981 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
982   // SI has some legal vector types, but no legal vector operations. Say no
983   // shuffles are legal in order to prefer scalarizing some vector operations.
984   return false;
985 }
986 
987 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
988                                                     CallingConv::ID CC,
989                                                     EVT VT) const {
990   if (CC == CallingConv::AMDGPU_KERNEL)
991     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
992 
993   if (VT.isVector()) {
994     EVT ScalarVT = VT.getScalarType();
995     unsigned Size = ScalarVT.getSizeInBits();
996     if (Size == 16) {
997       if (Subtarget->has16BitInsts()) {
998         if (VT.isInteger())
999           return MVT::v2i16;
1000         return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
1001       }
1002       return VT.isInteger() ? MVT::i32 : MVT::f32;
1003     }
1004 
1005     if (Size < 16)
1006       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1007     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
1008   }
1009 
1010   if (VT.getSizeInBits() > 32)
1011     return MVT::i32;
1012 
1013   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1014 }
1015 
1016 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1017                                                          CallingConv::ID CC,
1018                                                          EVT VT) const {
1019   if (CC == CallingConv::AMDGPU_KERNEL)
1020     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1021 
1022   if (VT.isVector()) {
1023     unsigned NumElts = VT.getVectorNumElements();
1024     EVT ScalarVT = VT.getScalarType();
1025     unsigned Size = ScalarVT.getSizeInBits();
1026 
1027     // FIXME: Should probably promote 8-bit vectors to i16.
1028     if (Size == 16 && Subtarget->has16BitInsts())
1029       return (NumElts + 1) / 2;
1030 
1031     if (Size <= 32)
1032       return NumElts;
1033 
1034     if (Size > 32)
1035       return NumElts * ((Size + 31) / 32);
1036   } else if (VT.getSizeInBits() > 32)
1037     return (VT.getSizeInBits() + 31) / 32;
1038 
1039   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1040 }
1041 
1042 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
1043   LLVMContext &Context, CallingConv::ID CC,
1044   EVT VT, EVT &IntermediateVT,
1045   unsigned &NumIntermediates, MVT &RegisterVT) const {
1046   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
1047     unsigned NumElts = VT.getVectorNumElements();
1048     EVT ScalarVT = VT.getScalarType();
1049     unsigned Size = ScalarVT.getSizeInBits();
1050     // FIXME: We should fix the ABI to be the same on targets without 16-bit
1051     // support, but unless we can properly handle 3-vectors, it will be still be
1052     // inconsistent.
1053     if (Size == 16 && Subtarget->has16BitInsts()) {
1054       if (ScalarVT == MVT::bf16) {
1055         RegisterVT = MVT::i32;
1056         IntermediateVT = MVT::v2bf16;
1057       } else {
1058         RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1059         IntermediateVT = RegisterVT;
1060       }
1061       NumIntermediates = (NumElts + 1) / 2;
1062       return NumIntermediates;
1063     }
1064 
1065     if (Size == 32) {
1066       RegisterVT = ScalarVT.getSimpleVT();
1067       IntermediateVT = RegisterVT;
1068       NumIntermediates = NumElts;
1069       return NumIntermediates;
1070     }
1071 
1072     if (Size < 16 && Subtarget->has16BitInsts()) {
1073       // FIXME: Should probably form v2i16 pieces
1074       RegisterVT = MVT::i16;
1075       IntermediateVT = ScalarVT;
1076       NumIntermediates = NumElts;
1077       return NumIntermediates;
1078     }
1079 
1080 
1081     if (Size != 16 && Size <= 32) {
1082       RegisterVT = MVT::i32;
1083       IntermediateVT = ScalarVT;
1084       NumIntermediates = NumElts;
1085       return NumIntermediates;
1086     }
1087 
1088     if (Size > 32) {
1089       RegisterVT = MVT::i32;
1090       IntermediateVT = RegisterVT;
1091       NumIntermediates = NumElts * ((Size + 31) / 32);
1092       return NumIntermediates;
1093     }
1094   }
1095 
1096   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1097     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1098 }
1099 
1100 static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) {
1101   assert(MaxNumLanes != 0);
1102 
1103   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1104     unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
1105     return EVT::getVectorVT(Ty->getContext(),
1106                             EVT::getEVT(VT->getElementType()),
1107                             NumElts);
1108   }
1109 
1110   return EVT::getEVT(Ty);
1111 }
1112 
1113 // Peek through TFE struct returns to only use the data size.
1114 static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) {
1115   auto *ST = dyn_cast<StructType>(Ty);
1116   if (!ST)
1117     return memVTFromLoadIntrData(Ty, MaxNumLanes);
1118 
1119   // TFE intrinsics return an aggregate type.
1120   assert(ST->getNumContainedTypes() == 2 &&
1121          ST->getContainedType(1)->isIntegerTy(32));
1122   return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes);
1123 }
1124 
1125 /// Map address space 7 to MVT::v5i32 because that's its in-memory
1126 /// representation. This return value is vector-typed because there is no
1127 /// MVT::i160 and it is not clear if one can be added. While this could
1128 /// cause issues during codegen, these address space 7 pointers will be
1129 /// rewritten away by then. Therefore, we can return MVT::v5i32 in order
1130 /// to allow pre-codegen passes that query TargetTransformInfo, often for cost
1131 /// modeling, to work.
1132 MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const {
1133   if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160)
1134     return MVT::v5i32;
1135   if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS &&
1136       DL.getPointerSizeInBits(AS) == 192)
1137     return MVT::v6i32;
1138   return AMDGPUTargetLowering::getPointerTy(DL, AS);
1139 }
1140 /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka
1141 /// v8i32 when padding is added.
1142 /// The in-memory representation of a p9 is {p8, i32, i32}, which is
1143 /// also v8i32 with padding.
1144 MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const {
1145   if ((AMDGPUAS::BUFFER_FAT_POINTER == AS &&
1146        DL.getPointerSizeInBits(AS) == 160) ||
1147       (AMDGPUAS::BUFFER_STRIDED_POINTER == AS &&
1148        DL.getPointerSizeInBits(AS) == 192))
1149     return MVT::v8i32;
1150   return AMDGPUTargetLowering::getPointerMemTy(DL, AS);
1151 }
1152 
1153 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1154                                           const CallInst &CI,
1155                                           MachineFunction &MF,
1156                                           unsigned IntrID) const {
1157   Info.flags = MachineMemOperand::MONone;
1158   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
1159     Info.flags |= MachineMemOperand::MOInvariant;
1160 
1161   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1162           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1163     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1164                                                   (Intrinsic::ID)IntrID);
1165     MemoryEffects ME = Attr.getMemoryEffects();
1166     if (ME.doesNotAccessMemory())
1167       return false;
1168 
1169     // TODO: Should images get their own address space?
1170     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1171 
1172     if (RsrcIntr->IsImage)
1173       Info.align.reset();
1174 
1175     Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg);
1176     if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) {
1177       if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE)
1178         // We conservatively set the memory operand of a buffer intrinsic to the
1179         // base resource pointer, so that we can access alias information about
1180         // those pointers. Cases like "this points at the same value
1181         // but with a different offset" are handled in
1182         // areMemAccessesTriviallyDisjoint.
1183         Info.ptrVal = RsrcArg;
1184     }
1185 
1186     auto *Aux = cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1));
1187     if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE)
1188       Info.flags |= MachineMemOperand::MOVolatile;
1189     Info.flags |= MachineMemOperand::MODereferenceable;
1190     if (ME.onlyReadsMemory()) {
1191       unsigned MaxNumLanes = 4;
1192 
1193       if (RsrcIntr->IsImage) {
1194         const AMDGPU::ImageDimIntrinsicInfo *Intr
1195           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1196         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1197           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1198 
1199         if (!BaseOpcode->Gather4) {
1200           // If this isn't a gather, we may have excess loaded elements in the
1201           // IR type. Check the dmask for the real number of elements loaded.
1202           unsigned DMask
1203             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1204           MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1205         }
1206       }
1207 
1208       Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes);
1209 
1210       // FIXME: What does alignment mean for an image?
1211       Info.opc = ISD::INTRINSIC_W_CHAIN;
1212       Info.flags |= MachineMemOperand::MOLoad;
1213     } else if (ME.onlyWritesMemory()) {
1214       Info.opc = ISD::INTRINSIC_VOID;
1215 
1216       Type *DataTy = CI.getArgOperand(0)->getType();
1217       if (RsrcIntr->IsImage) {
1218         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1219         unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1220         Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes);
1221       } else
1222         Info.memVT = EVT::getEVT(DataTy);
1223 
1224       Info.flags |= MachineMemOperand::MOStore;
1225     } else {
1226       // Atomic
1227       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1228                                             ISD::INTRINSIC_W_CHAIN;
1229       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1230       Info.flags |= MachineMemOperand::MOLoad |
1231                     MachineMemOperand::MOStore |
1232                     MachineMemOperand::MODereferenceable;
1233 
1234       switch (IntrID) {
1235       default:
1236         // XXX - Should this be volatile without known ordering?
1237         Info.flags |= MachineMemOperand::MOVolatile;
1238         break;
1239       case Intrinsic::amdgcn_raw_buffer_load_lds:
1240       case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1241       case Intrinsic::amdgcn_struct_buffer_load_lds:
1242       case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1243         unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1244         Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1245         Info.ptrVal = CI.getArgOperand(1);
1246         return true;
1247       }
1248       }
1249     }
1250     return true;
1251   }
1252 
1253   switch (IntrID) {
1254   case Intrinsic::amdgcn_ds_ordered_add:
1255   case Intrinsic::amdgcn_ds_ordered_swap:
1256   case Intrinsic::amdgcn_ds_fadd:
1257   case Intrinsic::amdgcn_ds_fmin:
1258   case Intrinsic::amdgcn_ds_fmax: {
1259     Info.opc = ISD::INTRINSIC_W_CHAIN;
1260     Info.memVT = MVT::getVT(CI.getType());
1261     Info.ptrVal = CI.getOperand(0);
1262     Info.align.reset();
1263     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1264 
1265     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1266     if (!Vol->isZero())
1267       Info.flags |= MachineMemOperand::MOVolatile;
1268 
1269     return true;
1270   }
1271   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1272     Info.opc = ISD::INTRINSIC_W_CHAIN;
1273     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1274     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1275     Info.align.reset();
1276     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1277 
1278     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1279     if (!Vol || !Vol->isZero())
1280       Info.flags |= MachineMemOperand::MOVolatile;
1281 
1282     return true;
1283   }
1284   case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1285   case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1286     Info.opc = ISD::INTRINSIC_W_CHAIN;
1287     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1288     Info.ptrVal = nullptr;
1289     Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER;
1290     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1291     return true;
1292   }
1293   case Intrinsic::amdgcn_ds_append:
1294   case Intrinsic::amdgcn_ds_consume: {
1295     Info.opc = ISD::INTRINSIC_W_CHAIN;
1296     Info.memVT = MVT::getVT(CI.getType());
1297     Info.ptrVal = CI.getOperand(0);
1298     Info.align.reset();
1299     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1300 
1301     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1302     if (!Vol->isZero())
1303       Info.flags |= MachineMemOperand::MOVolatile;
1304 
1305     return true;
1306   }
1307   case Intrinsic::amdgcn_global_atomic_csub: {
1308     Info.opc = ISD::INTRINSIC_W_CHAIN;
1309     Info.memVT = MVT::getVT(CI.getType());
1310     Info.ptrVal = CI.getOperand(0);
1311     Info.align.reset();
1312     Info.flags |= MachineMemOperand::MOLoad |
1313                   MachineMemOperand::MOStore |
1314                   MachineMemOperand::MOVolatile;
1315     return true;
1316   }
1317   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1318     Info.opc = ISD::INTRINSIC_W_CHAIN;
1319     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1320 
1321     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1322     Info.align.reset();
1323     Info.flags |= MachineMemOperand::MOLoad |
1324                   MachineMemOperand::MODereferenceable;
1325     return true;
1326   }
1327   case Intrinsic::amdgcn_global_atomic_fadd:
1328   case Intrinsic::amdgcn_global_atomic_fmin:
1329   case Intrinsic::amdgcn_global_atomic_fmax:
1330   case Intrinsic::amdgcn_global_atomic_fmin_num:
1331   case Intrinsic::amdgcn_global_atomic_fmax_num:
1332   case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1333   case Intrinsic::amdgcn_flat_atomic_fadd:
1334   case Intrinsic::amdgcn_flat_atomic_fmin:
1335   case Intrinsic::amdgcn_flat_atomic_fmax:
1336   case Intrinsic::amdgcn_flat_atomic_fmin_num:
1337   case Intrinsic::amdgcn_flat_atomic_fmax_num:
1338   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1339   case Intrinsic::amdgcn_atomic_cond_sub_u32:
1340   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1341     Info.opc = ISD::INTRINSIC_W_CHAIN;
1342     Info.memVT = MVT::getVT(CI.getType());
1343     Info.ptrVal = CI.getOperand(0);
1344     Info.align.reset();
1345     Info.flags |= MachineMemOperand::MOLoad |
1346                   MachineMemOperand::MOStore |
1347                   MachineMemOperand::MODereferenceable |
1348                   MachineMemOperand::MOVolatile;
1349     return true;
1350   }
1351   case Intrinsic::amdgcn_global_load_tr: {
1352     Info.opc = ISD::INTRINSIC_W_CHAIN;
1353     Info.memVT = MVT::getVT(CI.getType());
1354     Info.ptrVal = CI.getOperand(0);
1355     Info.align.reset();
1356     Info.flags |= MachineMemOperand::MOLoad;
1357     return true;
1358   }
1359   case Intrinsic::amdgcn_ds_gws_init:
1360   case Intrinsic::amdgcn_ds_gws_barrier:
1361   case Intrinsic::amdgcn_ds_gws_sema_v:
1362   case Intrinsic::amdgcn_ds_gws_sema_br:
1363   case Intrinsic::amdgcn_ds_gws_sema_p:
1364   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1365     Info.opc = ISD::INTRINSIC_VOID;
1366 
1367     const GCNTargetMachine &TM =
1368         static_cast<const GCNTargetMachine &>(getTargetMachine());
1369 
1370     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1371     Info.ptrVal = MFI->getGWSPSV(TM);
1372 
1373     // This is an abstract access, but we need to specify a type and size.
1374     Info.memVT = MVT::i32;
1375     Info.size = 4;
1376     Info.align = Align(4);
1377 
1378     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1379       Info.flags |= MachineMemOperand::MOLoad;
1380     else
1381       Info.flags |= MachineMemOperand::MOStore;
1382     return true;
1383   }
1384   case Intrinsic::amdgcn_global_load_lds: {
1385     Info.opc = ISD::INTRINSIC_VOID;
1386     unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1387     Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1388     Info.ptrVal = CI.getArgOperand(1);
1389     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1390     return true;
1391   }
1392   case Intrinsic::amdgcn_ds_bvh_stack_rtn: {
1393     Info.opc = ISD::INTRINSIC_W_CHAIN;
1394 
1395     const GCNTargetMachine &TM =
1396         static_cast<const GCNTargetMachine &>(getTargetMachine());
1397 
1398     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1399     Info.ptrVal = MFI->getGWSPSV(TM);
1400 
1401     // This is an abstract access, but we need to specify a type and size.
1402     Info.memVT = MVT::i32;
1403     Info.size = 4;
1404     Info.align = Align(4);
1405 
1406     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1407     return true;
1408   }
1409   default:
1410     return false;
1411   }
1412 }
1413 
1414 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1415                                             SmallVectorImpl<Value*> &Ops,
1416                                             Type *&AccessTy) const {
1417   switch (II->getIntrinsicID()) {
1418   case Intrinsic::amdgcn_global_load_tr:
1419   case Intrinsic::amdgcn_ds_ordered_add:
1420   case Intrinsic::amdgcn_ds_ordered_swap:
1421   case Intrinsic::amdgcn_ds_append:
1422   case Intrinsic::amdgcn_ds_consume:
1423   case Intrinsic::amdgcn_ds_fadd:
1424   case Intrinsic::amdgcn_ds_fmin:
1425   case Intrinsic::amdgcn_ds_fmax:
1426   case Intrinsic::amdgcn_global_atomic_fadd:
1427   case Intrinsic::amdgcn_flat_atomic_fadd:
1428   case Intrinsic::amdgcn_flat_atomic_fmin:
1429   case Intrinsic::amdgcn_flat_atomic_fmax:
1430   case Intrinsic::amdgcn_flat_atomic_fmin_num:
1431   case Intrinsic::amdgcn_flat_atomic_fmax_num:
1432   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1433   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1434   case Intrinsic::amdgcn_global_atomic_csub: {
1435     Value *Ptr = II->getArgOperand(0);
1436     AccessTy = II->getType();
1437     Ops.push_back(Ptr);
1438     return true;
1439   }
1440   default:
1441     return false;
1442   }
1443 }
1444 
1445 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM,
1446                                                  unsigned AddrSpace,
1447                                                  uint64_t FlatVariant) const {
1448   if (!Subtarget->hasFlatInstOffsets()) {
1449     // Flat instructions do not have offsets, and only have the register
1450     // address.
1451     return AM.BaseOffs == 0 && AM.Scale == 0;
1452   }
1453 
1454   return AM.Scale == 0 &&
1455          (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1456                                   AM.BaseOffs, AddrSpace, FlatVariant));
1457 }
1458 
1459 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1460   if (Subtarget->hasFlatGlobalInsts())
1461     return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS,
1462                                      SIInstrFlags::FlatGlobal);
1463 
1464   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1465     // Assume the we will use FLAT for all global memory accesses
1466     // on VI.
1467     // FIXME: This assumption is currently wrong.  On VI we still use
1468     // MUBUF instructions for the r + i addressing mode.  As currently
1469     // implemented, the MUBUF instructions only work on buffer < 4GB.
1470     // It may be possible to support > 4GB buffers with MUBUF instructions,
1471     // by setting the stride value in the resource descriptor which would
1472     // increase the size limit to (stride * 4GB).  However, this is risky,
1473     // because it has never been validated.
1474     return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS,
1475                                      SIInstrFlags::FLAT);
1476   }
1477 
1478   return isLegalMUBUFAddressingMode(AM);
1479 }
1480 
1481 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1482   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1483   // additionally can do r + r + i with addr64. 32-bit has more addressing
1484   // mode options. Depending on the resource constant, it can also do
1485   // (i64 r0) + (i32 r1) * (i14 i).
1486   //
1487   // Private arrays end up using a scratch buffer most of the time, so also
1488   // assume those use MUBUF instructions. Scratch loads / stores are currently
1489   // implemented as mubuf instructions with offen bit set, so slightly
1490   // different than the normal addr64.
1491   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1492   if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs))
1493     return false;
1494 
1495   // FIXME: Since we can split immediate into soffset and immediate offset,
1496   // would it make sense to allow any immediate?
1497 
1498   switch (AM.Scale) {
1499   case 0: // r + i or just i, depending on HasBaseReg.
1500     return true;
1501   case 1:
1502     return true; // We have r + r or r + i.
1503   case 2:
1504     if (AM.HasBaseReg) {
1505       // Reject 2 * r + r.
1506       return false;
1507     }
1508 
1509     // Allow 2 * r as r + r
1510     // Or  2 * r + i is allowed as r + r + i.
1511     return true;
1512   default: // Don't allow n * r
1513     return false;
1514   }
1515 }
1516 
1517 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1518                                              const AddrMode &AM, Type *Ty,
1519                                              unsigned AS, Instruction *I) const {
1520   // No global is ever allowed as a base.
1521   if (AM.BaseGV)
1522     return false;
1523 
1524   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1525     return isLegalGlobalAddressingMode(AM);
1526 
1527   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1528       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1529       AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE ||
1530       AS == AMDGPUAS::BUFFER_STRIDED_POINTER) {
1531     // If the offset isn't a multiple of 4, it probably isn't going to be
1532     // correctly aligned.
1533     // FIXME: Can we get the real alignment here?
1534     if (AM.BaseOffs % 4 != 0)
1535       return isLegalMUBUFAddressingMode(AM);
1536 
1537     // There are no SMRD extloads, so if we have to do a small type access we
1538     // will use a MUBUF load.
1539     // FIXME?: We also need to do this if unaligned, but we don't know the
1540     // alignment here.
1541     // TODO: Update this for GFX12 which does have scalar sub-dword loads.
1542     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1543       return isLegalGlobalAddressingMode(AM);
1544 
1545     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1546       // SMRD instructions have an 8-bit, dword offset on SI.
1547       if (!isUInt<8>(AM.BaseOffs / 4))
1548         return false;
1549     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1550       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1551       // in 8-bits, it can use a smaller encoding.
1552       if (!isUInt<32>(AM.BaseOffs / 4))
1553         return false;
1554     } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) {
1555       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1556       if (!isUInt<20>(AM.BaseOffs))
1557         return false;
1558     } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) {
1559       // On GFX9 the offset is signed 21-bit in bytes (but must not be negative
1560       // for S_BUFFER_* instructions).
1561       if (!isInt<21>(AM.BaseOffs))
1562         return false;
1563     } else {
1564       // On GFX12, all offsets are signed 24-bit in bytes.
1565       if (!isInt<24>(AM.BaseOffs))
1566         return false;
1567     }
1568 
1569     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1570       return true;
1571 
1572     if (AM.Scale == 1 && AM.HasBaseReg)
1573       return true;
1574 
1575     return false;
1576   }
1577 
1578   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
1579     return Subtarget->enableFlatScratch()
1580                ? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS,
1581                                            SIInstrFlags::FlatScratch)
1582                : isLegalMUBUFAddressingMode(AM);
1583 
1584   if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1585       (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) {
1586     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1587     // field.
1588     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1589     // an 8-bit dword offset but we don't know the alignment here.
1590     if (!isUInt<16>(AM.BaseOffs))
1591       return false;
1592 
1593     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1594       return true;
1595 
1596     if (AM.Scale == 1 && AM.HasBaseReg)
1597       return true;
1598 
1599     return false;
1600   }
1601 
1602   if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1603     // For an unknown address space, this usually means that this is for some
1604     // reason being used for pure arithmetic, and not based on some addressing
1605     // computation. We don't have instructions that compute pointers with any
1606     // addressing modes, so treat them as having no offset like flat
1607     // instructions.
1608     return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS,
1609                                      SIInstrFlags::FLAT);
1610   }
1611 
1612   // Assume a user alias of global for unknown address spaces.
1613   return isLegalGlobalAddressingMode(AM);
1614 }
1615 
1616 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1617                                         const MachineFunction &MF) const {
1618   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1619     return (MemVT.getSizeInBits() <= 4 * 32);
1620   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1621     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1622     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1623   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1624     return (MemVT.getSizeInBits() <= 2 * 32);
1625   }
1626   return true;
1627 }
1628 
1629 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1630     unsigned Size, unsigned AddrSpace, Align Alignment,
1631     MachineMemOperand::Flags Flags, unsigned *IsFast) const {
1632   if (IsFast)
1633     *IsFast = 0;
1634 
1635   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1636       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1637     // Check if alignment requirements for ds_read/write instructions are
1638     // disabled.
1639     if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1640       return false;
1641 
1642     Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
1643     if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1644         Alignment < RequiredAlignment)
1645       return false;
1646 
1647     // Either, the alignment requirements are "enabled", or there is an
1648     // unaligned LDS access related hardware bug though alignment requirements
1649     // are "disabled". In either case, we need to check for proper alignment
1650     // requirements.
1651     //
1652     switch (Size) {
1653     case 64:
1654       // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1655       // address is negative, then the instruction is incorrectly treated as
1656       // out-of-bounds even if base + offsets is in bounds. Split vectorized
1657       // loads here to avoid emitting ds_read2_b32. We may re-combine the
1658       // load later in the SILoadStoreOptimizer.
1659       if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1660         return false;
1661 
1662       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1663       // can do a 4 byte aligned, 8 byte access in a single operation using
1664       // ds_read2/write2_b32 with adjacent offsets.
1665       RequiredAlignment = Align(4);
1666 
1667       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1668         // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1669         // ds_write2_b32 depending on the alignment. In either case with either
1670         // alignment there is no faster way of doing this.
1671 
1672         // The numbers returned here and below are not additive, it is a 'speed
1673         // rank'. They are just meant to be compared to decide if a certain way
1674         // of lowering an operation is faster than another. For that purpose
1675         // naturally aligned operation gets it bitsize to indicate that "it
1676         // operates with a speed comparable to N-bit wide load". With the full
1677         // alignment ds128 is slower than ds96 for example. If underaligned it
1678         // is comparable to a speed of a single dword access, which would then
1679         // mean 32 < 128 and it is faster to issue a wide load regardless.
1680         // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a
1681         // wider load which will not be aligned anymore the latter is slower.
1682         if (IsFast)
1683           *IsFast = (Alignment >= RequiredAlignment) ? 64
1684                     : (Alignment < Align(4))         ? 32
1685                                                      : 1;
1686         return true;
1687       }
1688 
1689       break;
1690     case 96:
1691       if (!Subtarget->hasDS96AndDS128())
1692         return false;
1693 
1694       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1695       // gfx8 and older.
1696 
1697       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1698         // Naturally aligned access is fastest. However, also report it is Fast
1699         // if memory is aligned less than DWORD. A narrow load or store will be
1700         // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1701         // be more of them, so overall we will pay less penalty issuing a single
1702         // instruction.
1703 
1704         // See comment on the values above.
1705         if (IsFast)
1706           *IsFast = (Alignment >= RequiredAlignment) ? 96
1707                     : (Alignment < Align(4))         ? 32
1708                                                      : 1;
1709         return true;
1710       }
1711 
1712       break;
1713     case 128:
1714       if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1715         return false;
1716 
1717       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1718       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1719       // single operation using ds_read2/write2_b64.
1720       RequiredAlignment = Align(8);
1721 
1722       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1723         // Naturally aligned access is fastest. However, also report it is Fast
1724         // if memory is aligned less than DWORD. A narrow load or store will be
1725         // be equally slow as a single ds_read_b128/ds_write_b128, but there
1726         // will be more of them, so overall we will pay less penalty issuing a
1727         // single instruction.
1728 
1729         // See comment on the values above.
1730         if (IsFast)
1731           *IsFast = (Alignment >= RequiredAlignment) ? 128
1732                     : (Alignment < Align(4))         ? 32
1733                                                      : 1;
1734         return true;
1735       }
1736 
1737       break;
1738     default:
1739       if (Size > 32)
1740         return false;
1741 
1742       break;
1743     }
1744 
1745     // See comment on the values above.
1746     // Note that we have a single-dword or sub-dword here, so if underaligned
1747     // it is a slowest possible access, hence returned value is 0.
1748     if (IsFast)
1749       *IsFast = (Alignment >= RequiredAlignment) ? Size : 0;
1750 
1751     return Alignment >= RequiredAlignment ||
1752            Subtarget->hasUnalignedDSAccessEnabled();
1753   }
1754 
1755   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1756     bool AlignedBy4 = Alignment >= Align(4);
1757     if (IsFast)
1758       *IsFast = AlignedBy4;
1759 
1760     return AlignedBy4 ||
1761            Subtarget->enableFlatScratch() ||
1762            Subtarget->hasUnalignedScratchAccess();
1763   }
1764 
1765   // FIXME: We have to be conservative here and assume that flat operations
1766   // will access scratch.  If we had access to the IR function, then we
1767   // could determine if any private memory was used in the function.
1768   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1769       !Subtarget->hasUnalignedScratchAccess()) {
1770     bool AlignedBy4 = Alignment >= Align(4);
1771     if (IsFast)
1772       *IsFast = AlignedBy4;
1773 
1774     return AlignedBy4;
1775   }
1776 
1777   // So long as they are correct, wide global memory operations perform better
1778   // than multiple smaller memory ops -- even when misaligned
1779   if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) {
1780     if (IsFast)
1781       *IsFast = Size;
1782 
1783     return Alignment >= Align(4) ||
1784            Subtarget->hasUnalignedBufferAccessEnabled();
1785   }
1786 
1787   // Smaller than dword value must be aligned.
1788   if (Size < 32)
1789     return false;
1790 
1791   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1792   // byte-address are ignored, thus forcing Dword alignment.
1793   // This applies to private, global, and constant memory.
1794   if (IsFast)
1795     *IsFast = 1;
1796 
1797   return Size >= 32 && Alignment >= Align(4);
1798 }
1799 
1800 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1801     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1802     unsigned *IsFast) const {
1803   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1804                                             Alignment, Flags, IsFast);
1805 }
1806 
1807 EVT SITargetLowering::getOptimalMemOpType(
1808     const MemOp &Op, const AttributeList &FuncAttributes) const {
1809   // FIXME: Should account for address space here.
1810 
1811   // The default fallback uses the private pointer size as a guess for a type to
1812   // use. Make sure we switch these to 64-bit accesses.
1813 
1814   if (Op.size() >= 16 &&
1815       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1816     return MVT::v4i32;
1817 
1818   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1819     return MVT::v2i32;
1820 
1821   // Use the default.
1822   return MVT::Other;
1823 }
1824 
1825 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1826   const MemSDNode *MemNode = cast<MemSDNode>(N);
1827   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1828 }
1829 
1830 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1831   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1832          AS == AMDGPUAS::PRIVATE_ADDRESS;
1833 }
1834 
1835 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1836                                            unsigned DestAS) const {
1837   // Flat -> private/local is a simple truncate.
1838   // Flat -> global is no-op
1839   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1840     return true;
1841 
1842   const GCNTargetMachine &TM =
1843       static_cast<const GCNTargetMachine &>(getTargetMachine());
1844   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1845 }
1846 
1847 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1848   const MemSDNode *MemNode = cast<MemSDNode>(N);
1849 
1850   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1851 }
1852 
1853 TargetLoweringBase::LegalizeTypeAction
1854 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1855   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1856       VT.getScalarType().bitsLE(MVT::i16))
1857     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1858   return TargetLoweringBase::getPreferredVectorAction(VT);
1859 }
1860 
1861 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1862                                                          Type *Ty) const {
1863   // FIXME: Could be smarter if called for vector constants.
1864   return true;
1865 }
1866 
1867 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1868                                                unsigned Index) const {
1869   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1870     return false;
1871 
1872   // TODO: Add more cases that are cheap.
1873   return Index == 0;
1874 }
1875 
1876 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1877   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1878     switch (Op) {
1879     case ISD::LOAD:
1880     case ISD::STORE:
1881 
1882     // These operations are done with 32-bit instructions anyway.
1883     case ISD::AND:
1884     case ISD::OR:
1885     case ISD::XOR:
1886     case ISD::SELECT:
1887       // TODO: Extensions?
1888       return true;
1889     default:
1890       return false;
1891     }
1892   }
1893 
1894   // SimplifySetCC uses this function to determine whether or not it should
1895   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1896   if (VT == MVT::i1 && Op == ISD::SETCC)
1897     return false;
1898 
1899   return TargetLowering::isTypeDesirableForOp(Op, VT);
1900 }
1901 
1902 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1903                                                    const SDLoc &SL,
1904                                                    SDValue Chain,
1905                                                    uint64_t Offset) const {
1906   const DataLayout &DL = DAG.getDataLayout();
1907   MachineFunction &MF = DAG.getMachineFunction();
1908   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1909 
1910   const ArgDescriptor *InputPtrReg;
1911   const TargetRegisterClass *RC;
1912   LLT ArgTy;
1913   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1914 
1915   std::tie(InputPtrReg, RC, ArgTy) =
1916       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1917 
1918   // We may not have the kernarg segment argument if we have no kernel
1919   // arguments.
1920   if (!InputPtrReg)
1921     return DAG.getConstant(Offset, SL, PtrVT);
1922 
1923   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1924   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1925     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1926 
1927   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset));
1928 }
1929 
1930 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1931                                             const SDLoc &SL) const {
1932   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1933                                                FIRST_IMPLICIT);
1934   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1935 }
1936 
1937 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
1938                                          const SDLoc &SL) const {
1939 
1940   Function &F = DAG.getMachineFunction().getFunction();
1941   std::optional<uint32_t> KnownSize =
1942       AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
1943   if (KnownSize.has_value())
1944     return DAG.getConstant(*KnownSize, SL, MVT::i32);
1945   return SDValue();
1946 }
1947 
1948 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1949                                          const SDLoc &SL, SDValue Val,
1950                                          bool Signed,
1951                                          const ISD::InputArg *Arg) const {
1952   // First, if it is a widened vector, narrow it.
1953   if (VT.isVector() &&
1954       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1955     EVT NarrowedVT =
1956         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1957                          VT.getVectorNumElements());
1958     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1959                       DAG.getConstant(0, SL, MVT::i32));
1960   }
1961 
1962   // Then convert the vector elements or scalar value.
1963   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1964       VT.bitsLT(MemVT)) {
1965     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1966     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1967   }
1968 
1969   if (MemVT.isFloatingPoint())
1970     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1971   else if (Signed)
1972     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1973   else
1974     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1975 
1976   return Val;
1977 }
1978 
1979 SDValue SITargetLowering::lowerKernargMemParameter(
1980     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1981     uint64_t Offset, Align Alignment, bool Signed,
1982     const ISD::InputArg *Arg) const {
1983   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1984 
1985   // Try to avoid using an extload by loading earlier than the argument address,
1986   // and extracting the relevant bits. The load should hopefully be merged with
1987   // the previous argument.
1988   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1989     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1990     int64_t AlignDownOffset = alignDown(Offset, 4);
1991     int64_t OffsetDiff = Offset - AlignDownOffset;
1992 
1993     EVT IntVT = MemVT.changeTypeToInteger();
1994 
1995     // TODO: If we passed in the base kernel offset we could have a better
1996     // alignment than 4, but we don't really need it.
1997     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1998     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1999                                MachineMemOperand::MODereferenceable |
2000                                    MachineMemOperand::MOInvariant);
2001 
2002     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
2003     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
2004 
2005     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
2006     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
2007     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
2008 
2009 
2010     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
2011   }
2012 
2013   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
2014   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
2015                              MachineMemOperand::MODereferenceable |
2016                                  MachineMemOperand::MOInvariant);
2017 
2018   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
2019   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
2020 }
2021 
2022 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
2023                                               const SDLoc &SL, SDValue Chain,
2024                                               const ISD::InputArg &Arg) const {
2025   MachineFunction &MF = DAG.getMachineFunction();
2026   MachineFrameInfo &MFI = MF.getFrameInfo();
2027 
2028   if (Arg.Flags.isByVal()) {
2029     unsigned Size = Arg.Flags.getByValSize();
2030     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
2031     return DAG.getFrameIndex(FrameIdx, MVT::i32);
2032   }
2033 
2034   unsigned ArgOffset = VA.getLocMemOffset();
2035   unsigned ArgSize = VA.getValVT().getStoreSize();
2036 
2037   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
2038 
2039   // Create load nodes to retrieve arguments from the stack.
2040   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
2041   SDValue ArgValue;
2042 
2043   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2044   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2045   MVT MemVT = VA.getValVT();
2046 
2047   switch (VA.getLocInfo()) {
2048   default:
2049     break;
2050   case CCValAssign::BCvt:
2051     MemVT = VA.getLocVT();
2052     break;
2053   case CCValAssign::SExt:
2054     ExtType = ISD::SEXTLOAD;
2055     break;
2056   case CCValAssign::ZExt:
2057     ExtType = ISD::ZEXTLOAD;
2058     break;
2059   case CCValAssign::AExt:
2060     ExtType = ISD::EXTLOAD;
2061     break;
2062   }
2063 
2064   ArgValue = DAG.getExtLoad(
2065     ExtType, SL, VA.getLocVT(), Chain, FIN,
2066     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2067     MemVT);
2068   return ArgValue;
2069 }
2070 
2071 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
2072   const SIMachineFunctionInfo &MFI,
2073   EVT VT,
2074   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
2075   const ArgDescriptor *Reg = nullptr;
2076   const TargetRegisterClass *RC;
2077   LLT Ty;
2078 
2079   CallingConv::ID CC = DAG.getMachineFunction().getFunction().getCallingConv();
2080   const ArgDescriptor WorkGroupIDX =
2081       ArgDescriptor::createRegister(AMDGPU::TTMP9);
2082   // If GridZ is not programmed in an entry function then the hardware will set
2083   // it to all zeros, so there is no need to mask the GridY value in the low
2084   // order bits.
2085   const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister(
2086       AMDGPU::TTMP7,
2087       AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu);
2088   const ArgDescriptor WorkGroupIDZ =
2089       ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u);
2090   if (Subtarget->hasArchitectedSGPRs() && AMDGPU::isCompute(CC)) {
2091     switch (PVID) {
2092     case AMDGPUFunctionArgInfo::WORKGROUP_ID_X:
2093       Reg = &WorkGroupIDX;
2094       RC = &AMDGPU::SReg_32RegClass;
2095       Ty = LLT::scalar(32);
2096       break;
2097     case AMDGPUFunctionArgInfo::WORKGROUP_ID_Y:
2098       Reg = &WorkGroupIDY;
2099       RC = &AMDGPU::SReg_32RegClass;
2100       Ty = LLT::scalar(32);
2101       break;
2102     case AMDGPUFunctionArgInfo::WORKGROUP_ID_Z:
2103       Reg = &WorkGroupIDZ;
2104       RC = &AMDGPU::SReg_32RegClass;
2105       Ty = LLT::scalar(32);
2106       break;
2107     default:
2108       break;
2109     }
2110   }
2111 
2112   if (!Reg)
2113     std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
2114   if (!Reg) {
2115     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
2116       // It's possible for a kernarg intrinsic call to appear in a kernel with
2117       // no allocated segment, in which case we do not add the user sgpr
2118       // argument, so just return null.
2119       return DAG.getConstant(0, SDLoc(), VT);
2120     }
2121 
2122     // It's undefined behavior if a function marked with the amdgpu-no-*
2123     // attributes uses the corresponding intrinsic.
2124     return DAG.getUNDEF(VT);
2125   }
2126 
2127   return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg);
2128 }
2129 
2130 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
2131                                CallingConv::ID CallConv,
2132                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
2133                                FunctionType *FType,
2134                                SIMachineFunctionInfo *Info) {
2135   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
2136     const ISD::InputArg *Arg = &Ins[I];
2137 
2138     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
2139            "vector type argument should have been split");
2140 
2141     // First check if it's a PS input addr.
2142     if (CallConv == CallingConv::AMDGPU_PS &&
2143         !Arg->Flags.isInReg() && PSInputNum <= 15) {
2144       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
2145 
2146       // Inconveniently only the first part of the split is marked as isSplit,
2147       // so skip to the end. We only want to increment PSInputNum once for the
2148       // entire split argument.
2149       if (Arg->Flags.isSplit()) {
2150         while (!Arg->Flags.isSplitEnd()) {
2151           assert((!Arg->VT.isVector() ||
2152                   Arg->VT.getScalarSizeInBits() == 16) &&
2153                  "unexpected vector split in ps argument type");
2154           if (!SkipArg)
2155             Splits.push_back(*Arg);
2156           Arg = &Ins[++I];
2157         }
2158       }
2159 
2160       if (SkipArg) {
2161         // We can safely skip PS inputs.
2162         Skipped.set(Arg->getOrigArgIndex());
2163         ++PSInputNum;
2164         continue;
2165       }
2166 
2167       Info->markPSInputAllocated(PSInputNum);
2168       if (Arg->Used)
2169         Info->markPSInputEnabled(PSInputNum);
2170 
2171       ++PSInputNum;
2172     }
2173 
2174     Splits.push_back(*Arg);
2175   }
2176 }
2177 
2178 // Allocate special inputs passed in VGPRs.
2179 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
2180                                                       MachineFunction &MF,
2181                                                       const SIRegisterInfo &TRI,
2182                                                       SIMachineFunctionInfo &Info) const {
2183   const LLT S32 = LLT::scalar(32);
2184   MachineRegisterInfo &MRI = MF.getRegInfo();
2185 
2186   if (Info.hasWorkItemIDX()) {
2187     Register Reg = AMDGPU::VGPR0;
2188     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2189 
2190     CCInfo.AllocateReg(Reg);
2191     unsigned Mask = (Subtarget->hasPackedTID() &&
2192                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
2193     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2194   }
2195 
2196   if (Info.hasWorkItemIDY()) {
2197     assert(Info.hasWorkItemIDX());
2198     if (Subtarget->hasPackedTID()) {
2199       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
2200                                                         0x3ff << 10));
2201     } else {
2202       unsigned Reg = AMDGPU::VGPR1;
2203       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2204 
2205       CCInfo.AllocateReg(Reg);
2206       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
2207     }
2208   }
2209 
2210   if (Info.hasWorkItemIDZ()) {
2211     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
2212     if (Subtarget->hasPackedTID()) {
2213       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
2214                                                         0x3ff << 20));
2215     } else {
2216       unsigned Reg = AMDGPU::VGPR2;
2217       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2218 
2219       CCInfo.AllocateReg(Reg);
2220       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
2221     }
2222   }
2223 }
2224 
2225 // Try to allocate a VGPR at the end of the argument list, or if no argument
2226 // VGPRs are left allocating a stack slot.
2227 // If \p Mask is is given it indicates bitfield position in the register.
2228 // If \p Arg is given use it with new ]p Mask instead of allocating new.
2229 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
2230                                          ArgDescriptor Arg = ArgDescriptor()) {
2231   if (Arg.isSet())
2232     return ArgDescriptor::createArg(Arg, Mask);
2233 
2234   ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
2235   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
2236   if (RegIdx == ArgVGPRs.size()) {
2237     // Spill to stack required.
2238     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
2239 
2240     return ArgDescriptor::createStack(Offset, Mask);
2241   }
2242 
2243   unsigned Reg = ArgVGPRs[RegIdx];
2244   Reg = CCInfo.AllocateReg(Reg);
2245   assert(Reg != AMDGPU::NoRegister);
2246 
2247   MachineFunction &MF = CCInfo.getMachineFunction();
2248   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
2249   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
2250   return ArgDescriptor::createRegister(Reg, Mask);
2251 }
2252 
2253 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
2254                                              const TargetRegisterClass *RC,
2255                                              unsigned NumArgRegs) {
2256   ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32);
2257   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
2258   if (RegIdx == ArgSGPRs.size())
2259     report_fatal_error("ran out of SGPRs for arguments");
2260 
2261   unsigned Reg = ArgSGPRs[RegIdx];
2262   Reg = CCInfo.AllocateReg(Reg);
2263   assert(Reg != AMDGPU::NoRegister);
2264 
2265   MachineFunction &MF = CCInfo.getMachineFunction();
2266   MF.addLiveIn(Reg, RC);
2267   return ArgDescriptor::createRegister(Reg);
2268 }
2269 
2270 // If this has a fixed position, we still should allocate the register in the
2271 // CCInfo state. Technically we could get away with this for values passed
2272 // outside of the normal argument range.
2273 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
2274                                        const TargetRegisterClass *RC,
2275                                        MCRegister Reg) {
2276   Reg = CCInfo.AllocateReg(Reg);
2277   assert(Reg != AMDGPU::NoRegister);
2278   MachineFunction &MF = CCInfo.getMachineFunction();
2279   MF.addLiveIn(Reg, RC);
2280 }
2281 
2282 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2283   if (Arg) {
2284     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2285                                Arg.getRegister());
2286   } else
2287     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2288 }
2289 
2290 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2291   if (Arg) {
2292     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2293                                Arg.getRegister());
2294   } else
2295     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2296 }
2297 
2298 /// Allocate implicit function VGPR arguments at the end of allocated user
2299 /// arguments.
2300 void SITargetLowering::allocateSpecialInputVGPRs(
2301   CCState &CCInfo, MachineFunction &MF,
2302   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2303   const unsigned Mask = 0x3ff;
2304   ArgDescriptor Arg;
2305 
2306   if (Info.hasWorkItemIDX()) {
2307     Arg = allocateVGPR32Input(CCInfo, Mask);
2308     Info.setWorkItemIDX(Arg);
2309   }
2310 
2311   if (Info.hasWorkItemIDY()) {
2312     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2313     Info.setWorkItemIDY(Arg);
2314   }
2315 
2316   if (Info.hasWorkItemIDZ())
2317     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2318 }
2319 
2320 /// Allocate implicit function VGPR arguments in fixed registers.
2321 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2322   CCState &CCInfo, MachineFunction &MF,
2323   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2324   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2325   if (!Reg)
2326     report_fatal_error("failed to allocated VGPR for implicit arguments");
2327 
2328   const unsigned Mask = 0x3ff;
2329   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2330   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2331   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2332 }
2333 
2334 void SITargetLowering::allocateSpecialInputSGPRs(
2335   CCState &CCInfo,
2336   MachineFunction &MF,
2337   const SIRegisterInfo &TRI,
2338   SIMachineFunctionInfo &Info) const {
2339   auto &ArgInfo = Info.getArgInfo();
2340   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
2341 
2342   // TODO: Unify handling with private memory pointers.
2343   if (UserSGPRInfo.hasDispatchPtr())
2344     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2345 
2346   const Module *M = MF.getFunction().getParent();
2347   if (UserSGPRInfo.hasQueuePtr() &&
2348       AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5)
2349     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2350 
2351   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2352   // constant offset from the kernarg segment.
2353   if (Info.hasImplicitArgPtr())
2354     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2355 
2356   if (UserSGPRInfo.hasDispatchID())
2357     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2358 
2359   // flat_scratch_init is not applicable for non-kernel functions.
2360 
2361   if (Info.hasWorkGroupIDX())
2362     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2363 
2364   if (Info.hasWorkGroupIDY())
2365     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2366 
2367   if (Info.hasWorkGroupIDZ())
2368     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2369 
2370   if (Info.hasLDSKernelId())
2371     allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
2372 }
2373 
2374 // Allocate special inputs passed in user SGPRs.
2375 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2376                                             MachineFunction &MF,
2377                                             const SIRegisterInfo &TRI,
2378                                             SIMachineFunctionInfo &Info) const {
2379   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
2380   if (UserSGPRInfo.hasImplicitBufferPtr()) {
2381     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2382     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2383     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2384   }
2385 
2386   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2387   if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
2388     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2389     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2390     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2391   }
2392 
2393   if (UserSGPRInfo.hasDispatchPtr()) {
2394     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2395     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2396     CCInfo.AllocateReg(DispatchPtrReg);
2397   }
2398 
2399   const Module *M = MF.getFunction().getParent();
2400   if (UserSGPRInfo.hasQueuePtr() &&
2401       AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
2402     Register QueuePtrReg = Info.addQueuePtr(TRI);
2403     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2404     CCInfo.AllocateReg(QueuePtrReg);
2405   }
2406 
2407   if (UserSGPRInfo.hasKernargSegmentPtr()) {
2408     MachineRegisterInfo &MRI = MF.getRegInfo();
2409     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2410     CCInfo.AllocateReg(InputPtrReg);
2411 
2412     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2413     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2414   }
2415 
2416   if (UserSGPRInfo.hasDispatchID()) {
2417     Register DispatchIDReg = Info.addDispatchID(TRI);
2418     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2419     CCInfo.AllocateReg(DispatchIDReg);
2420   }
2421 
2422   if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2423     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2424     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2425     CCInfo.AllocateReg(FlatScratchInitReg);
2426   }
2427 
2428   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2429   // these from the dispatch pointer.
2430 }
2431 
2432 // Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be
2433 // sequential starting from the first argument.
2434 void SITargetLowering::allocatePreloadKernArgSGPRs(
2435     CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs,
2436     const SmallVectorImpl<ISD::InputArg> &Ins, MachineFunction &MF,
2437     const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2438   Function &F = MF.getFunction();
2439   unsigned LastExplicitArgOffset =
2440       MF.getSubtarget<GCNSubtarget>().getExplicitKernelArgOffset();
2441   GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo();
2442   bool InPreloadSequence = true;
2443   unsigned InIdx = 0;
2444   for (auto &Arg : F.args()) {
2445     if (!InPreloadSequence || !Arg.hasInRegAttr())
2446       break;
2447 
2448     int ArgIdx = Arg.getArgNo();
2449     // Don't preload non-original args or parts not in the current preload
2450     // sequence.
2451     if (InIdx < Ins.size() && (!Ins[InIdx].isOrigArg() ||
2452                                (int)Ins[InIdx].getOrigArgIndex() != ArgIdx))
2453       break;
2454 
2455     for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
2456            (int)Ins[InIdx].getOrigArgIndex() == ArgIdx;
2457          InIdx++) {
2458       assert(ArgLocs[ArgIdx].isMemLoc());
2459       auto &ArgLoc = ArgLocs[InIdx];
2460       const Align KernelArgBaseAlign = Align(16);
2461       unsigned ArgOffset = ArgLoc.getLocMemOffset();
2462       Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset);
2463       unsigned NumAllocSGPRs =
2464           alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
2465 
2466       // Arg is preloaded into the previous SGPR.
2467       if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
2468         Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
2469             Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
2470         continue;
2471       }
2472 
2473       unsigned Padding = ArgOffset - LastExplicitArgOffset;
2474       unsigned PaddingSGPRs = alignTo(Padding, 4) / 4;
2475       // Check for free user SGPRs for preloading.
2476       if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ >
2477           SGPRInfo.getNumFreeUserSGPRs()) {
2478         InPreloadSequence = false;
2479         break;
2480       }
2481 
2482       // Preload this argument.
2483       const TargetRegisterClass *RC =
2484           TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
2485       SmallVectorImpl<MCRegister> *PreloadRegs =
2486           Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
2487 
2488       if (PreloadRegs->size() > 1)
2489         RC = &AMDGPU::SGPR_32RegClass;
2490       for (auto &Reg : *PreloadRegs) {
2491         assert(Reg);
2492         MF.addLiveIn(Reg, RC);
2493         CCInfo.AllocateReg(Reg);
2494       }
2495 
2496       LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
2497     }
2498   }
2499 }
2500 
2501 void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF,
2502                                            const SIRegisterInfo &TRI,
2503                                            SIMachineFunctionInfo &Info) const {
2504   // Always allocate this last since it is a synthetic preload.
2505   if (Info.hasLDSKernelId()) {
2506     Register Reg = Info.addLDSKernelId();
2507     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2508     CCInfo.AllocateReg(Reg);
2509   }
2510 }
2511 
2512 // Allocate special input registers that are initialized per-wave.
2513 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2514                                            MachineFunction &MF,
2515                                            SIMachineFunctionInfo &Info,
2516                                            CallingConv::ID CallConv,
2517                                            bool IsShader) const {
2518   bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
2519   if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
2520     // Note: user SGPRs are handled by the front-end for graphics shaders
2521     // Pad up the used user SGPRs with dead inputs.
2522 
2523     // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately
2524     // before enabling architected SGPRs for workgroup IDs.
2525     assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget");
2526 
2527     unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2528     // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2529     // rely on it to reach 16 since if we end up having no stack usage, it will
2530     // not really be added.
2531     unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
2532                                       Info.hasWorkGroupIDY() +
2533                                       Info.hasWorkGroupIDZ() +
2534                                       Info.hasWorkGroupInfo();
2535     for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2536       Register Reg = Info.addReservedUserSGPR();
2537       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2538       CCInfo.AllocateReg(Reg);
2539     }
2540   }
2541 
2542   if (!HasArchitectedSGPRs) {
2543     if (Info.hasWorkGroupIDX()) {
2544       Register Reg = Info.addWorkGroupIDX();
2545       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2546       CCInfo.AllocateReg(Reg);
2547     }
2548 
2549     if (Info.hasWorkGroupIDY()) {
2550       Register Reg = Info.addWorkGroupIDY();
2551       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2552       CCInfo.AllocateReg(Reg);
2553     }
2554 
2555     if (Info.hasWorkGroupIDZ()) {
2556       Register Reg = Info.addWorkGroupIDZ();
2557       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2558       CCInfo.AllocateReg(Reg);
2559     }
2560   }
2561 
2562   if (Info.hasWorkGroupInfo()) {
2563     Register Reg = Info.addWorkGroupInfo();
2564     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2565     CCInfo.AllocateReg(Reg);
2566   }
2567 
2568   if (Info.hasPrivateSegmentWaveByteOffset()) {
2569     // Scratch wave offset passed in system SGPR.
2570     unsigned PrivateSegmentWaveByteOffsetReg;
2571 
2572     if (IsShader) {
2573       PrivateSegmentWaveByteOffsetReg =
2574         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2575 
2576       // This is true if the scratch wave byte offset doesn't have a fixed
2577       // location.
2578       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2579         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2580         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2581       }
2582     } else
2583       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2584 
2585     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2586     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2587   }
2588 
2589   assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
2590          Info.getNumPreloadedSGPRs() >= 16);
2591 }
2592 
2593 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2594                                      MachineFunction &MF,
2595                                      const SIRegisterInfo &TRI,
2596                                      SIMachineFunctionInfo &Info) {
2597   // Now that we've figured out where the scratch register inputs are, see if
2598   // should reserve the arguments and use them directly.
2599   MachineFrameInfo &MFI = MF.getFrameInfo();
2600   bool HasStackObjects = MFI.hasStackObjects();
2601   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2602 
2603   // Record that we know we have non-spill stack objects so we don't need to
2604   // check all stack objects later.
2605   if (HasStackObjects)
2606     Info.setHasNonSpillStackObjects(true);
2607 
2608   // Everything live out of a block is spilled with fast regalloc, so it's
2609   // almost certain that spilling will be required.
2610   if (TM.getOptLevel() == CodeGenOptLevel::None)
2611     HasStackObjects = true;
2612 
2613   // For now assume stack access is needed in any callee functions, so we need
2614   // the scratch registers to pass in.
2615   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2616 
2617   if (!ST.enableFlatScratch()) {
2618     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2619       // If we have stack objects, we unquestionably need the private buffer
2620       // resource. For the Code Object V2 ABI, this will be the first 4 user
2621       // SGPR inputs. We can reserve those and use them directly.
2622 
2623       Register PrivateSegmentBufferReg =
2624           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2625       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2626     } else {
2627       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2628       // We tentatively reserve the last registers (skipping the last registers
2629       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2630       // we'll replace these with the ones immediately after those which were
2631       // really allocated. In the prologue copies will be inserted from the
2632       // argument to these reserved registers.
2633 
2634       // Without HSA, relocations are used for the scratch pointer and the
2635       // buffer resource setup is always inserted in the prologue. Scratch wave
2636       // offset is still in an input SGPR.
2637       Info.setScratchRSrcReg(ReservedBufferReg);
2638     }
2639   }
2640 
2641   MachineRegisterInfo &MRI = MF.getRegInfo();
2642 
2643   // For entry functions we have to set up the stack pointer if we use it,
2644   // whereas non-entry functions get this "for free". This means there is no
2645   // intrinsic advantage to using S32 over S34 in cases where we do not have
2646   // calls but do need a frame pointer (i.e. if we are requested to have one
2647   // because frame pointer elimination is disabled). To keep things simple we
2648   // only ever use S32 as the call ABI stack pointer, and so using it does not
2649   // imply we need a separate frame pointer.
2650   //
2651   // Try to use s32 as the SP, but move it if it would interfere with input
2652   // arguments. This won't work with calls though.
2653   //
2654   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2655   // registers.
2656   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2657     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2658   } else {
2659     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2660 
2661     if (MFI.hasCalls())
2662       report_fatal_error("call in graphics shader with too many input SGPRs");
2663 
2664     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2665       if (!MRI.isLiveIn(Reg)) {
2666         Info.setStackPtrOffsetReg(Reg);
2667         break;
2668       }
2669     }
2670 
2671     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2672       report_fatal_error("failed to find register for SP");
2673   }
2674 
2675   // hasFP should be accurate for entry functions even before the frame is
2676   // finalized, because it does not rely on the known stack size, only
2677   // properties like whether variable sized objects are present.
2678   if (ST.getFrameLowering()->hasFP(MF)) {
2679     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2680   }
2681 }
2682 
2683 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2684   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2685   return !Info->isEntryFunction();
2686 }
2687 
2688 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2689 
2690 }
2691 
2692 void SITargetLowering::insertCopiesSplitCSR(
2693   MachineBasicBlock *Entry,
2694   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2695   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2696 
2697   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2698   if (!IStart)
2699     return;
2700 
2701   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2702   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2703   MachineBasicBlock::iterator MBBI = Entry->begin();
2704   for (const MCPhysReg *I = IStart; *I; ++I) {
2705     const TargetRegisterClass *RC = nullptr;
2706     if (AMDGPU::SReg_64RegClass.contains(*I))
2707       RC = &AMDGPU::SGPR_64RegClass;
2708     else if (AMDGPU::SReg_32RegClass.contains(*I))
2709       RC = &AMDGPU::SGPR_32RegClass;
2710     else
2711       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2712 
2713     Register NewVR = MRI->createVirtualRegister(RC);
2714     // Create copy from CSR to a virtual register.
2715     Entry->addLiveIn(*I);
2716     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2717       .addReg(*I);
2718 
2719     // Insert the copy-back instructions right before the terminator.
2720     for (auto *Exit : Exits)
2721       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2722               TII->get(TargetOpcode::COPY), *I)
2723         .addReg(NewVR);
2724   }
2725 }
2726 
2727 SDValue SITargetLowering::LowerFormalArguments(
2728     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2729     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2730     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2731   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2732 
2733   MachineFunction &MF = DAG.getMachineFunction();
2734   const Function &Fn = MF.getFunction();
2735   FunctionType *FType = MF.getFunction().getFunctionType();
2736   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2737 
2738   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2739     DiagnosticInfoUnsupported NoGraphicsHSA(
2740         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2741     DAG.getContext()->diagnose(NoGraphicsHSA);
2742     return DAG.getEntryNode();
2743   }
2744 
2745   SmallVector<ISD::InputArg, 16> Splits;
2746   SmallVector<CCValAssign, 16> ArgLocs;
2747   BitVector Skipped(Ins.size());
2748   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2749                  *DAG.getContext());
2750 
2751   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2752   bool IsKernel = AMDGPU::isKernel(CallConv);
2753   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2754 
2755   if (IsGraphics) {
2756     const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
2757     assert(!UserSGPRInfo.hasDispatchPtr() &&
2758            !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() &&
2759            !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
2760            !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
2761     (void)UserSGPRInfo;
2762     if (!Subtarget->enableFlatScratch())
2763       assert(!UserSGPRInfo.hasFlatScratchInit());
2764     if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs())
2765       assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2766              !Info->hasWorkGroupIDZ());
2767   }
2768 
2769   if (CallConv == CallingConv::AMDGPU_PS) {
2770     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2771 
2772     // At least one interpolation mode must be enabled or else the GPU will
2773     // hang.
2774     //
2775     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2776     // set PSInputAddr, the user wants to enable some bits after the compilation
2777     // based on run-time states. Since we can't know what the final PSInputEna
2778     // will look like, so we shouldn't do anything here and the user should take
2779     // responsibility for the correct programming.
2780     //
2781     // Otherwise, the following restrictions apply:
2782     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2783     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2784     //   enabled too.
2785     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2786         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2787       CCInfo.AllocateReg(AMDGPU::VGPR0);
2788       CCInfo.AllocateReg(AMDGPU::VGPR1);
2789       Info->markPSInputAllocated(0);
2790       Info->markPSInputEnabled(0);
2791     }
2792     if (Subtarget->isAmdPalOS()) {
2793       // For isAmdPalOS, the user does not enable some bits after compilation
2794       // based on run-time states; the register values being generated here are
2795       // the final ones set in hardware. Therefore we need to apply the
2796       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2797       // a bit is set in PSInputAddr but not PSInputEnable is where the
2798       // frontend set up an input arg for a particular interpolation mode, but
2799       // nothing uses that input arg. Really we should have an earlier pass
2800       // that removes such an arg.)
2801       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2802       if ((PsInputBits & 0x7F) == 0 ||
2803           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2804         Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
2805     }
2806   } else if (IsKernel) {
2807     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2808   } else {
2809     Splits.append(Ins.begin(), Ins.end());
2810   }
2811 
2812   if (IsKernel)
2813     analyzeFormalArgumentsCompute(CCInfo, Ins);
2814 
2815   if (IsEntryFunc) {
2816     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2817     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2818     if (IsKernel && Subtarget->hasKernargPreload() &&
2819         !Subtarget->needsKernargPreloadBackwardsCompatibility())
2820       allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info);
2821 
2822     allocateLDSKernelId(CCInfo, MF, *TRI, *Info);
2823   } else if (!IsGraphics) {
2824     // For the fixed ABI, pass workitem IDs in the last argument register.
2825     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2826 
2827     // FIXME: Sink this into allocateSpecialInputSGPRs
2828     if (!Subtarget->enableFlatScratch())
2829       CCInfo.AllocateReg(Info->getScratchRSrcReg());
2830 
2831     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2832   }
2833 
2834   if (!IsKernel) {
2835     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2836     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2837   }
2838 
2839   SmallVector<SDValue, 16> Chains;
2840 
2841   // FIXME: This is the minimum kernel argument alignment. We should improve
2842   // this to the maximum alignment of the arguments.
2843   //
2844   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2845   // kern arg offset.
2846   const Align KernelArgBaseAlign = Align(16);
2847 
2848   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2849     const ISD::InputArg &Arg = Ins[i];
2850     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2851       InVals.push_back(DAG.getUNDEF(Arg.VT));
2852       continue;
2853     }
2854 
2855     CCValAssign &VA = ArgLocs[ArgIdx++];
2856     MVT VT = VA.getLocVT();
2857 
2858     if (IsEntryFunc && VA.isMemLoc()) {
2859       VT = Ins[i].VT;
2860       EVT MemVT = VA.getLocVT();
2861 
2862       const uint64_t Offset = VA.getLocMemOffset();
2863       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2864 
2865       if (Arg.Flags.isByRef()) {
2866         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2867 
2868         const GCNTargetMachine &TM =
2869             static_cast<const GCNTargetMachine &>(getTargetMachine());
2870         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2871                                     Arg.Flags.getPointerAddrSpace())) {
2872           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2873                                      Arg.Flags.getPointerAddrSpace());
2874         }
2875 
2876         InVals.push_back(Ptr);
2877         continue;
2878       }
2879 
2880       SDValue NewArg;
2881       if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) {
2882         if (MemVT.getStoreSize() < 4 && Alignment < 4) {
2883           // In this case the argument is packed into the previous preload SGPR.
2884           int64_t AlignDownOffset = alignDown(Offset, 4);
2885           int64_t OffsetDiff = Offset - AlignDownOffset;
2886           EVT IntVT = MemVT.changeTypeToInteger();
2887 
2888           const SIMachineFunctionInfo *Info =
2889               MF.getInfo<SIMachineFunctionInfo>();
2890           MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
2891           Register Reg =
2892               Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
2893 
2894           assert(Reg);
2895           Register VReg = MRI.getLiveInVirtReg(Reg);
2896           SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
2897 
2898           SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32);
2899           SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt);
2900 
2901           SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract);
2902           ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal);
2903           NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal,
2904                                   Ins[i].Flags.isSExt(), &Ins[i]);
2905 
2906           NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL);
2907         } else {
2908           const SIMachineFunctionInfo *Info =
2909               MF.getInfo<SIMachineFunctionInfo>();
2910           MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
2911           const SmallVectorImpl<MCRegister> &PreloadRegs =
2912               Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
2913 
2914           SDValue Copy;
2915           if (PreloadRegs.size() == 1) {
2916             Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]);
2917             const TargetRegisterClass *RC = MRI.getRegClass(VReg);
2918             NewArg = DAG.getCopyFromReg(
2919                 Chain, DL, VReg,
2920                 EVT::getIntegerVT(*DAG.getContext(),
2921                                   TRI->getRegSizeInBits(*RC)));
2922 
2923           } else {
2924             // If the kernarg alignment does not match the alignment of the SGPR
2925             // tuple RC that can accommodate this argument, it will be built up
2926             // via copies from from the individual SGPRs that the argument was
2927             // preloaded to.
2928             SmallVector<SDValue, 4> Elts;
2929             for (auto Reg : PreloadRegs) {
2930               Register VReg = MRI.getLiveInVirtReg(Reg);
2931               Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
2932               Elts.push_back(Copy);
2933             }
2934             NewArg =
2935                 DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32,
2936                                                     PreloadRegs.size()),
2937                                    DL, Elts);
2938           }
2939 
2940           SDValue CMemVT;
2941           if (VT.isScalarInteger() && VT.bitsLT(NewArg.getSimpleValueType()))
2942             CMemVT = DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewArg);
2943           else
2944             CMemVT = DAG.getBitcast(MemVT, NewArg);
2945           NewArg = convertArgType(DAG, VT, MemVT, DL, CMemVT,
2946                                   Ins[i].Flags.isSExt(), &Ins[i]);
2947           NewArg = DAG.getMergeValues({NewArg, Chain}, DL);
2948         }
2949       } else {
2950         NewArg =
2951             lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset,
2952                                      Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2953       }
2954       Chains.push_back(NewArg.getValue(1));
2955 
2956       auto *ParamTy =
2957         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2958       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2959           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2960                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2961         // On SI local pointers are just offsets into LDS, so they are always
2962         // less than 16-bits.  On CI and newer they could potentially be
2963         // real pointers, so we can't guarantee their size.
2964         NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg,
2965                              DAG.getValueType(MVT::i16));
2966       }
2967 
2968       InVals.push_back(NewArg);
2969       continue;
2970     } else if (!IsEntryFunc && VA.isMemLoc()) {
2971       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2972       InVals.push_back(Val);
2973       if (!Arg.Flags.isByVal())
2974         Chains.push_back(Val.getValue(1));
2975       continue;
2976     }
2977 
2978     assert(VA.isRegLoc() && "Parameter must be in a register!");
2979 
2980     Register Reg = VA.getLocReg();
2981     const TargetRegisterClass *RC = nullptr;
2982     if (AMDGPU::VGPR_32RegClass.contains(Reg))
2983       RC = &AMDGPU::VGPR_32RegClass;
2984     else if (AMDGPU::SGPR_32RegClass.contains(Reg))
2985       RC = &AMDGPU::SGPR_32RegClass;
2986     else
2987       llvm_unreachable("Unexpected register class in LowerFormalArguments!");
2988     EVT ValVT = VA.getValVT();
2989 
2990     Reg = MF.addLiveIn(Reg, RC);
2991     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2992 
2993     if (Arg.Flags.isSRet()) {
2994       // The return object should be reasonably addressable.
2995 
2996       // FIXME: This helps when the return is a real sret. If it is a
2997       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2998       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2999       unsigned NumBits
3000         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
3001       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
3002         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
3003     }
3004 
3005     // If this is an 8 or 16-bit value, it is really passed promoted
3006     // to 32 bits. Insert an assert[sz]ext to capture this, then
3007     // truncate to the right size.
3008     switch (VA.getLocInfo()) {
3009     case CCValAssign::Full:
3010       break;
3011     case CCValAssign::BCvt:
3012       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3013       break;
3014     case CCValAssign::SExt:
3015       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
3016                         DAG.getValueType(ValVT));
3017       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3018       break;
3019     case CCValAssign::ZExt:
3020       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
3021                         DAG.getValueType(ValVT));
3022       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3023       break;
3024     case CCValAssign::AExt:
3025       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3026       break;
3027     default:
3028       llvm_unreachable("Unknown loc info!");
3029     }
3030 
3031     InVals.push_back(Val);
3032   }
3033 
3034   // Start adding system SGPRs.
3035   if (IsEntryFunc)
3036     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
3037 
3038   auto &ArgUsageInfo =
3039     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
3040   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
3041 
3042   unsigned StackArgSize = CCInfo.getStackSize();
3043   Info->setBytesInStackArgArea(StackArgSize);
3044 
3045   return Chains.empty() ? Chain :
3046     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3047 }
3048 
3049 // TODO: If return values can't fit in registers, we should return as many as
3050 // possible in registers before passing on stack.
3051 bool SITargetLowering::CanLowerReturn(
3052   CallingConv::ID CallConv,
3053   MachineFunction &MF, bool IsVarArg,
3054   const SmallVectorImpl<ISD::OutputArg> &Outs,
3055   LLVMContext &Context) const {
3056   // Replacing returns with sret/stack usage doesn't make sense for shaders.
3057   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
3058   // for shaders. Vector types should be explicitly handled by CC.
3059   if (AMDGPU::isEntryFunctionCC(CallConv))
3060     return true;
3061 
3062   SmallVector<CCValAssign, 16> RVLocs;
3063   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3064   if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)))
3065     return false;
3066 
3067   // We must use the stack if return would require unavailable registers.
3068   unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
3069   unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
3070   for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
3071     if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
3072       return false;
3073 
3074   return true;
3075 }
3076 
3077 SDValue
3078 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3079                               bool isVarArg,
3080                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3081                               const SmallVectorImpl<SDValue> &OutVals,
3082                               const SDLoc &DL, SelectionDAG &DAG) const {
3083   MachineFunction &MF = DAG.getMachineFunction();
3084   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3085 
3086   if (AMDGPU::isKernel(CallConv)) {
3087     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
3088                                              OutVals, DL, DAG);
3089   }
3090 
3091   bool IsShader = AMDGPU::isShader(CallConv);
3092 
3093   Info->setIfReturnsVoid(Outs.empty());
3094   bool IsWaveEnd = Info->returnsVoid() && IsShader;
3095 
3096   // CCValAssign - represent the assignment of the return value to a location.
3097   SmallVector<CCValAssign, 48> RVLocs;
3098   SmallVector<ISD::OutputArg, 48> Splits;
3099 
3100   // CCState - Info about the registers and stack slots.
3101   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3102                  *DAG.getContext());
3103 
3104   // Analyze outgoing return values.
3105   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3106 
3107   SDValue Glue;
3108   SmallVector<SDValue, 48> RetOps;
3109   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3110 
3111   // Copy the result values into the output registers.
3112   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
3113        ++I, ++RealRVLocIdx) {
3114     CCValAssign &VA = RVLocs[I];
3115     assert(VA.isRegLoc() && "Can only return in registers!");
3116     // TODO: Partially return in registers if return values don't fit.
3117     SDValue Arg = OutVals[RealRVLocIdx];
3118 
3119     // Copied from other backends.
3120     switch (VA.getLocInfo()) {
3121     case CCValAssign::Full:
3122       break;
3123     case CCValAssign::BCvt:
3124       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3125       break;
3126     case CCValAssign::SExt:
3127       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3128       break;
3129     case CCValAssign::ZExt:
3130       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3131       break;
3132     case CCValAssign::AExt:
3133       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3134       break;
3135     default:
3136       llvm_unreachable("Unknown loc info!");
3137     }
3138 
3139     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
3140     Glue = Chain.getValue(1);
3141     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3142   }
3143 
3144   // FIXME: Does sret work properly?
3145   if (!Info->isEntryFunction()) {
3146     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
3147     const MCPhysReg *I =
3148       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3149     if (I) {
3150       for (; *I; ++I) {
3151         if (AMDGPU::SReg_64RegClass.contains(*I))
3152           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3153         else if (AMDGPU::SReg_32RegClass.contains(*I))
3154           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3155         else
3156           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3157       }
3158     }
3159   }
3160 
3161   // Update chain and glue.
3162   RetOps[0] = Chain;
3163   if (Glue.getNode())
3164     RetOps.push_back(Glue);
3165 
3166   unsigned Opc = AMDGPUISD::ENDPGM;
3167   if (!IsWaveEnd)
3168     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE;
3169   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
3170 }
3171 
3172 SDValue SITargetLowering::LowerCallResult(
3173     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
3174     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3175     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
3176     SDValue ThisVal) const {
3177   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
3178 
3179   // Assign locations to each value returned by this call.
3180   SmallVector<CCValAssign, 16> RVLocs;
3181   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3182                  *DAG.getContext());
3183   CCInfo.AnalyzeCallResult(Ins, RetCC);
3184 
3185   // Copy all of the result registers out of their specified physreg.
3186   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3187     CCValAssign VA = RVLocs[i];
3188     SDValue Val;
3189 
3190     if (VA.isRegLoc()) {
3191       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue);
3192       Chain = Val.getValue(1);
3193       InGlue = Val.getValue(2);
3194     } else if (VA.isMemLoc()) {
3195       report_fatal_error("TODO: return values in memory");
3196     } else
3197       llvm_unreachable("unknown argument location type");
3198 
3199     switch (VA.getLocInfo()) {
3200     case CCValAssign::Full:
3201       break;
3202     case CCValAssign::BCvt:
3203       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3204       break;
3205     case CCValAssign::ZExt:
3206       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3207                         DAG.getValueType(VA.getValVT()));
3208       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3209       break;
3210     case CCValAssign::SExt:
3211       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3212                         DAG.getValueType(VA.getValVT()));
3213       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3214       break;
3215     case CCValAssign::AExt:
3216       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3217       break;
3218     default:
3219       llvm_unreachable("Unknown loc info!");
3220     }
3221 
3222     InVals.push_back(Val);
3223   }
3224 
3225   return Chain;
3226 }
3227 
3228 // Add code to pass special inputs required depending on used features separate
3229 // from the explicit user arguments present in the IR.
3230 void SITargetLowering::passSpecialInputs(
3231     CallLoweringInfo &CLI,
3232     CCState &CCInfo,
3233     const SIMachineFunctionInfo &Info,
3234     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
3235     SmallVectorImpl<SDValue> &MemOpChains,
3236     SDValue Chain) const {
3237   // If we don't have a call site, this was a call inserted by
3238   // legalization. These can never use special inputs.
3239   if (!CLI.CB)
3240     return;
3241 
3242   SelectionDAG &DAG = CLI.DAG;
3243   const SDLoc &DL = CLI.DL;
3244   const Function &F = DAG.getMachineFunction().getFunction();
3245 
3246   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
3247   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
3248 
3249   const AMDGPUFunctionArgInfo *CalleeArgInfo
3250     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
3251   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
3252     auto &ArgUsageInfo =
3253       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
3254     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
3255   }
3256 
3257   // TODO: Unify with private memory register handling. This is complicated by
3258   // the fact that at least in kernels, the input argument is not necessarily
3259   // in the same location as the input.
3260   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
3261                              StringLiteral> ImplicitAttrs[] = {
3262     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
3263     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
3264     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
3265     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
3266     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
3267     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
3268     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"},
3269     {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"},
3270   };
3271 
3272   for (auto Attr : ImplicitAttrs) {
3273     const ArgDescriptor *OutgoingArg;
3274     const TargetRegisterClass *ArgRC;
3275     LLT ArgTy;
3276 
3277     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
3278 
3279     // If the callee does not use the attribute value, skip copying the value.
3280     if (CLI.CB->hasFnAttr(Attr.second))
3281       continue;
3282 
3283     std::tie(OutgoingArg, ArgRC, ArgTy) =
3284         CalleeArgInfo->getPreloadedValue(InputID);
3285     if (!OutgoingArg)
3286       continue;
3287 
3288     const ArgDescriptor *IncomingArg;
3289     const TargetRegisterClass *IncomingArgRC;
3290     LLT Ty;
3291     std::tie(IncomingArg, IncomingArgRC, Ty) =
3292         CallerArgInfo.getPreloadedValue(InputID);
3293     assert(IncomingArgRC == ArgRC);
3294 
3295     // All special arguments are ints for now.
3296     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
3297     SDValue InputReg;
3298 
3299     if (IncomingArg) {
3300       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
3301     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
3302       // The implicit arg ptr is special because it doesn't have a corresponding
3303       // input for kernels, and is computed from the kernarg segment pointer.
3304       InputReg = getImplicitArgPtr(DAG, DL);
3305     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
3306       std::optional<uint32_t> Id =
3307           AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
3308       if (Id.has_value()) {
3309         InputReg = DAG.getConstant(*Id, DL, ArgVT);
3310       } else {
3311         InputReg = DAG.getUNDEF(ArgVT);
3312       }
3313     } else {
3314       // We may have proven the input wasn't needed, although the ABI is
3315       // requiring it. We just need to allocate the register appropriately.
3316       InputReg = DAG.getUNDEF(ArgVT);
3317     }
3318 
3319     if (OutgoingArg->isRegister()) {
3320       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3321       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
3322         report_fatal_error("failed to allocate implicit input argument");
3323     } else {
3324       unsigned SpecialArgOffset =
3325           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
3326       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
3327                                               SpecialArgOffset);
3328       MemOpChains.push_back(ArgStore);
3329     }
3330   }
3331 
3332   // Pack workitem IDs into a single register or pass it as is if already
3333   // packed.
3334   const ArgDescriptor *OutgoingArg;
3335   const TargetRegisterClass *ArgRC;
3336   LLT Ty;
3337 
3338   std::tie(OutgoingArg, ArgRC, Ty) =
3339       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
3340   if (!OutgoingArg)
3341     std::tie(OutgoingArg, ArgRC, Ty) =
3342         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
3343   if (!OutgoingArg)
3344     std::tie(OutgoingArg, ArgRC, Ty) =
3345         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
3346   if (!OutgoingArg)
3347     return;
3348 
3349   const ArgDescriptor *IncomingArgX = std::get<0>(
3350       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
3351   const ArgDescriptor *IncomingArgY = std::get<0>(
3352       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
3353   const ArgDescriptor *IncomingArgZ = std::get<0>(
3354       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
3355 
3356   SDValue InputReg;
3357   SDLoc SL;
3358 
3359   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
3360   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
3361   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
3362 
3363   // If incoming ids are not packed we need to pack them.
3364   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
3365       NeedWorkItemIDX) {
3366     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
3367       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
3368     } else {
3369       InputReg = DAG.getConstant(0, DL, MVT::i32);
3370     }
3371   }
3372 
3373   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
3374       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
3375     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
3376     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
3377                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
3378     InputReg = InputReg.getNode() ?
3379                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
3380   }
3381 
3382   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
3383       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
3384     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
3385     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
3386                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
3387     InputReg = InputReg.getNode() ?
3388                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
3389   }
3390 
3391   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3392     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3393       // We're in a situation where the outgoing function requires the workitem
3394       // ID, but the calling function does not have it (e.g a graphics function
3395       // calling a C calling convention function). This is illegal, but we need
3396       // to produce something.
3397       InputReg = DAG.getUNDEF(MVT::i32);
3398     } else {
3399       // Workitem ids are already packed, any of present incoming arguments
3400       // will carry all required fields.
3401       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
3402         IncomingArgX ? *IncomingArgX :
3403         IncomingArgY ? *IncomingArgY :
3404         *IncomingArgZ, ~0u);
3405       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
3406     }
3407   }
3408 
3409   if (OutgoingArg->isRegister()) {
3410     if (InputReg)
3411       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3412 
3413     CCInfo.AllocateReg(OutgoingArg->getRegister());
3414   } else {
3415     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
3416     if (InputReg) {
3417       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
3418                                               SpecialArgOffset);
3419       MemOpChains.push_back(ArgStore);
3420     }
3421   }
3422 }
3423 
3424 static bool canGuaranteeTCO(CallingConv::ID CC) {
3425   return CC == CallingConv::Fast;
3426 }
3427 
3428 /// Return true if we might ever do TCO for calls with this calling convention.
3429 static bool mayTailCallThisCC(CallingConv::ID CC) {
3430   switch (CC) {
3431   case CallingConv::C:
3432   case CallingConv::AMDGPU_Gfx:
3433     return true;
3434   default:
3435     return canGuaranteeTCO(CC);
3436   }
3437 }
3438 
3439 bool SITargetLowering::isEligibleForTailCallOptimization(
3440     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
3441     const SmallVectorImpl<ISD::OutputArg> &Outs,
3442     const SmallVectorImpl<SDValue> &OutVals,
3443     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3444   if (AMDGPU::isChainCC(CalleeCC))
3445     return true;
3446 
3447   if (!mayTailCallThisCC(CalleeCC))
3448     return false;
3449 
3450   // For a divergent call target, we need to do a waterfall loop over the
3451   // possible callees which precludes us from using a simple jump.
3452   if (Callee->isDivergent())
3453     return false;
3454 
3455   MachineFunction &MF = DAG.getMachineFunction();
3456   const Function &CallerF = MF.getFunction();
3457   CallingConv::ID CallerCC = CallerF.getCallingConv();
3458   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3459   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3460 
3461   // Kernels aren't callable, and don't have a live in return address so it
3462   // doesn't make sense to do a tail call with entry functions.
3463   if (!CallerPreserved)
3464     return false;
3465 
3466   bool CCMatch = CallerCC == CalleeCC;
3467 
3468   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3469     if (canGuaranteeTCO(CalleeCC) && CCMatch)
3470       return true;
3471     return false;
3472   }
3473 
3474   // TODO: Can we handle var args?
3475   if (IsVarArg)
3476     return false;
3477 
3478   for (const Argument &Arg : CallerF.args()) {
3479     if (Arg.hasByValAttr())
3480       return false;
3481   }
3482 
3483   LLVMContext &Ctx = *DAG.getContext();
3484 
3485   // Check that the call results are passed in the same way.
3486   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3487                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3488                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3489     return false;
3490 
3491   // The callee has to preserve all registers the caller needs to preserve.
3492   if (!CCMatch) {
3493     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3494     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3495       return false;
3496   }
3497 
3498   // Nothing more to check if the callee is taking no arguments.
3499   if (Outs.empty())
3500     return true;
3501 
3502   SmallVector<CCValAssign, 16> ArgLocs;
3503   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3504 
3505   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3506 
3507   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3508   // If the stack arguments for this call do not fit into our own save area then
3509   // the call cannot be made tail.
3510   // TODO: Is this really necessary?
3511   if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea())
3512     return false;
3513 
3514   const MachineRegisterInfo &MRI = MF.getRegInfo();
3515   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3516 }
3517 
3518 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3519   if (!CI->isTailCall())
3520     return false;
3521 
3522   const Function *ParentFn = CI->getParent()->getParent();
3523   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3524     return false;
3525   return true;
3526 }
3527 
3528 // The wave scratch offset register is used as the global base pointer.
3529 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3530                                     SmallVectorImpl<SDValue> &InVals) const {
3531   CallingConv::ID CallConv = CLI.CallConv;
3532   bool IsChainCallConv = AMDGPU::isChainCC(CallConv);
3533 
3534   SelectionDAG &DAG = CLI.DAG;
3535 
3536   TargetLowering::ArgListEntry RequestedExec;
3537   if (IsChainCallConv) {
3538     // The last argument should be the value that we need to put in EXEC.
3539     // Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we
3540     // don't treat it like the rest of the arguments.
3541     RequestedExec = CLI.Args.back();
3542     assert(RequestedExec.Node && "No node for EXEC");
3543 
3544     if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize()))
3545       return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC");
3546 
3547     assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg");
3548     CLI.Outs.pop_back();
3549     CLI.OutVals.pop_back();
3550 
3551     if (RequestedExec.Ty->isIntegerTy(64)) {
3552       assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up");
3553       CLI.Outs.pop_back();
3554       CLI.OutVals.pop_back();
3555     }
3556 
3557     assert(CLI.Outs.back().OrigArgIndex != 2 &&
3558            "Haven't popped all the pieces of the EXEC mask");
3559   }
3560 
3561   const SDLoc &DL = CLI.DL;
3562   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3563   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3564   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3565   SDValue Chain = CLI.Chain;
3566   SDValue Callee = CLI.Callee;
3567   bool &IsTailCall = CLI.IsTailCall;
3568   bool IsVarArg = CLI.IsVarArg;
3569   bool IsSibCall = false;
3570   bool IsThisReturn = false;
3571   MachineFunction &MF = DAG.getMachineFunction();
3572 
3573   if (Callee.isUndef() || isNullConstant(Callee)) {
3574     if (!CLI.IsTailCall) {
3575       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3576         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3577     }
3578 
3579     return Chain;
3580   }
3581 
3582   if (IsVarArg) {
3583     return lowerUnhandledCall(CLI, InVals,
3584                               "unsupported call to variadic function ");
3585   }
3586 
3587   if (!CLI.CB)
3588     report_fatal_error("unsupported libcall legalization");
3589 
3590   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3591     return lowerUnhandledCall(CLI, InVals,
3592                               "unsupported required tail call to function ");
3593   }
3594 
3595   if (IsTailCall) {
3596     IsTailCall = isEligibleForTailCallOptimization(
3597       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3598     if (!IsTailCall &&
3599         ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) {
3600       report_fatal_error("failed to perform tail call elimination on a call "
3601                          "site marked musttail or on llvm.amdgcn.cs.chain");
3602     }
3603 
3604     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3605 
3606     // A sibling call is one where we're under the usual C ABI and not planning
3607     // to change that but can still do a tail call:
3608     if (!TailCallOpt && IsTailCall)
3609       IsSibCall = true;
3610 
3611     if (IsTailCall)
3612       ++NumTailCalls;
3613   }
3614 
3615   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3616   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3617   SmallVector<SDValue, 8> MemOpChains;
3618 
3619   // Analyze operands of the call, assigning locations to each operand.
3620   SmallVector<CCValAssign, 16> ArgLocs;
3621   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3622   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3623 
3624   if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) {
3625     // With a fixed ABI, allocate fixed registers before user arguments.
3626     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3627   }
3628 
3629   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3630 
3631   // Get a count of how many bytes are to be pushed on the stack.
3632   unsigned NumBytes = CCInfo.getStackSize();
3633 
3634   if (IsSibCall) {
3635     // Since we're not changing the ABI to make this a tail call, the memory
3636     // operands are already available in the caller's incoming argument space.
3637     NumBytes = 0;
3638   }
3639 
3640   // FPDiff is the byte offset of the call's argument area from the callee's.
3641   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3642   // by this amount for a tail call. In a sibling call it must be 0 because the
3643   // caller will deallocate the entire stack and the callee still expects its
3644   // arguments to begin at SP+0. Completely unused for non-tail calls.
3645   int32_t FPDiff = 0;
3646   MachineFrameInfo &MFI = MF.getFrameInfo();
3647 
3648   // Adjust the stack pointer for the new arguments...
3649   // These operations are automatically eliminated by the prolog/epilog pass
3650   if (!IsSibCall)
3651     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3652 
3653   if (!IsSibCall || IsChainCallConv) {
3654     if (!Subtarget->enableFlatScratch()) {
3655       SmallVector<SDValue, 4> CopyFromChains;
3656 
3657       // In the HSA case, this should be an identity copy.
3658       SDValue ScratchRSrcReg
3659         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3660       RegsToPass.emplace_back(IsChainCallConv
3661                                   ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
3662                                   : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
3663                               ScratchRSrcReg);
3664       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3665       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3666     }
3667   }
3668 
3669   MVT PtrVT = MVT::i32;
3670 
3671   // Walk the register/memloc assignments, inserting copies/loads.
3672   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3673     CCValAssign &VA = ArgLocs[i];
3674     SDValue Arg = OutVals[i];
3675 
3676     // Promote the value if needed.
3677     switch (VA.getLocInfo()) {
3678     case CCValAssign::Full:
3679       break;
3680     case CCValAssign::BCvt:
3681       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3682       break;
3683     case CCValAssign::ZExt:
3684       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3685       break;
3686     case CCValAssign::SExt:
3687       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3688       break;
3689     case CCValAssign::AExt:
3690       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3691       break;
3692     case CCValAssign::FPExt:
3693       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3694       break;
3695     default:
3696       llvm_unreachable("Unknown loc info!");
3697     }
3698 
3699     if (VA.isRegLoc()) {
3700       RegsToPass.push_back(std::pair(VA.getLocReg(), Arg));
3701     } else {
3702       assert(VA.isMemLoc());
3703 
3704       SDValue DstAddr;
3705       MachinePointerInfo DstInfo;
3706 
3707       unsigned LocMemOffset = VA.getLocMemOffset();
3708       int32_t Offset = LocMemOffset;
3709 
3710       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3711       MaybeAlign Alignment;
3712 
3713       if (IsTailCall) {
3714         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3715         unsigned OpSize = Flags.isByVal() ?
3716           Flags.getByValSize() : VA.getValVT().getStoreSize();
3717 
3718         // FIXME: We can have better than the minimum byval required alignment.
3719         Alignment =
3720             Flags.isByVal()
3721                 ? Flags.getNonZeroByValAlign()
3722                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3723 
3724         Offset = Offset + FPDiff;
3725         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3726 
3727         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3728         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3729 
3730         // Make sure any stack arguments overlapping with where we're storing
3731         // are loaded before this eventual operation. Otherwise they'll be
3732         // clobbered.
3733 
3734         // FIXME: Why is this really necessary? This seems to just result in a
3735         // lot of code to copy the stack and write them back to the same
3736         // locations, which are supposed to be immutable?
3737         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3738       } else {
3739         // Stores to the argument stack area are relative to the stack pointer.
3740         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3741                                         MVT::i32);
3742         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3743         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3744         Alignment =
3745             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3746       }
3747 
3748       if (Outs[i].Flags.isByVal()) {
3749         SDValue SizeNode =
3750             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3751         SDValue Cpy =
3752             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3753                           Outs[i].Flags.getNonZeroByValAlign(),
3754                           /*isVol = */ false, /*AlwaysInline = */ true,
3755                           /*isTailCall = */ false, DstInfo,
3756                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3757 
3758         MemOpChains.push_back(Cpy);
3759       } else {
3760         SDValue Store =
3761             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3762         MemOpChains.push_back(Store);
3763       }
3764     }
3765   }
3766 
3767   if (!MemOpChains.empty())
3768     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3769 
3770   // Build a sequence of copy-to-reg nodes chained together with token chain
3771   // and flag operands which copy the outgoing args into the appropriate regs.
3772   SDValue InGlue;
3773   for (auto &RegToPass : RegsToPass) {
3774     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3775                              RegToPass.second, InGlue);
3776     InGlue = Chain.getValue(1);
3777   }
3778 
3779 
3780   // We don't usually want to end the call-sequence here because we would tidy
3781   // the frame up *after* the call, however in the ABI-changing tail-call case
3782   // we've carefully laid out the parameters so that when sp is reset they'll be
3783   // in the correct location.
3784   if (IsTailCall && !IsSibCall) {
3785     Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
3786     InGlue = Chain.getValue(1);
3787   }
3788 
3789   std::vector<SDValue> Ops;
3790   Ops.push_back(Chain);
3791   Ops.push_back(Callee);
3792   // Add a redundant copy of the callee global which will not be legalized, as
3793   // we need direct access to the callee later.
3794   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3795     const GlobalValue *GV = GSD->getGlobal();
3796     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3797   } else {
3798     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3799   }
3800 
3801   if (IsTailCall) {
3802     // Each tail call may have to adjust the stack by a different amount, so
3803     // this information must travel along with the operation for eventual
3804     // consumption by emitEpilogue.
3805     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3806   }
3807 
3808   if (IsChainCallConv)
3809     Ops.push_back(RequestedExec.Node);
3810 
3811   // Add argument registers to the end of the list so that they are known live
3812   // into the call.
3813   for (auto &RegToPass : RegsToPass) {
3814     Ops.push_back(DAG.getRegister(RegToPass.first,
3815                                   RegToPass.second.getValueType()));
3816   }
3817 
3818   // Add a register mask operand representing the call-preserved registers.
3819   auto *TRI = static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
3820   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3821   assert(Mask && "Missing call preserved mask for calling convention");
3822   Ops.push_back(DAG.getRegisterMask(Mask));
3823 
3824   if (InGlue.getNode())
3825     Ops.push_back(InGlue);
3826 
3827   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3828 
3829   // If we're doing a tall call, use a TC_RETURN here rather than an
3830   // actual call instruction.
3831   if (IsTailCall) {
3832     MFI.setHasTailCall();
3833     unsigned OPC = AMDGPUISD::TC_RETURN;
3834     switch (CallConv) {
3835     case CallingConv::AMDGPU_Gfx:
3836       OPC = AMDGPUISD::TC_RETURN_GFX;
3837       break;
3838     case CallingConv::AMDGPU_CS_Chain:
3839     case CallingConv::AMDGPU_CS_ChainPreserve:
3840       OPC = AMDGPUISD::TC_RETURN_CHAIN;
3841       break;
3842     }
3843 
3844     return DAG.getNode(OPC, DL, NodeTys, Ops);
3845   }
3846 
3847   // Returns a chain and a flag for retval copy to use.
3848   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3849   Chain = Call.getValue(0);
3850   InGlue = Call.getValue(1);
3851 
3852   uint64_t CalleePopBytes = NumBytes;
3853   Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL);
3854   if (!Ins.empty())
3855     InGlue = Chain.getValue(1);
3856 
3857   // Handle result values, copying them out of physregs into vregs that we
3858   // return.
3859   return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
3860                          InVals, IsThisReturn,
3861                          IsThisReturn ? OutVals[0] : SDValue());
3862 }
3863 
3864 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3865 // except for applying the wave size scale to the increment amount.
3866 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3867     SDValue Op, SelectionDAG &DAG) const {
3868   const MachineFunction &MF = DAG.getMachineFunction();
3869   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3870 
3871   SDLoc dl(Op);
3872   EVT VT = Op.getValueType();
3873   SDValue Tmp1 = Op;
3874   SDValue Tmp2 = Op.getValue(1);
3875   SDValue Tmp3 = Op.getOperand(2);
3876   SDValue Chain = Tmp1.getOperand(0);
3877 
3878   Register SPReg = Info->getStackPtrOffsetReg();
3879 
3880   // Chain the dynamic stack allocation so that it doesn't modify the stack
3881   // pointer when other instructions are using the stack.
3882   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3883 
3884   SDValue Size  = Tmp2.getOperand(1);
3885   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3886   Chain = SP.getValue(1);
3887   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3888   const TargetFrameLowering *TFL = Subtarget->getFrameLowering();
3889   unsigned Opc =
3890     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3891     ISD::ADD : ISD::SUB;
3892 
3893   SDValue ScaledSize = DAG.getNode(
3894       ISD::SHL, dl, VT, Size,
3895       DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
3896 
3897   Align StackAlign = TFL->getStackAlign();
3898   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3899   if (Alignment && *Alignment > StackAlign) {
3900     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3901                        DAG.getConstant(-(uint64_t)Alignment->value()
3902                                            << Subtarget->getWavefrontSizeLog2(),
3903                                        dl, VT));
3904   }
3905 
3906   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3907   Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
3908 
3909   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3910 }
3911 
3912 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3913                                                   SelectionDAG &DAG) const {
3914   // We only handle constant sizes here to allow non-entry block, static sized
3915   // allocas. A truly dynamic value is more difficult to support because we
3916   // don't know if the size value is uniform or not. If the size isn't uniform,
3917   // we would need to do a wave reduction to get the maximum size to know how
3918   // much to increment the uniform stack pointer.
3919   SDValue Size = Op.getOperand(1);
3920   if (isa<ConstantSDNode>(Size))
3921       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3922 
3923   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3924 }
3925 
3926 SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const {
3927   if (Op.getValueType() != MVT::i32)
3928     return Op; // Defer to cannot select error.
3929 
3930   Register SP = getStackPointerRegisterToSaveRestore();
3931   SDLoc SL(Op);
3932 
3933   SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32);
3934 
3935   // Convert from wave uniform to swizzled vector address. This should protect
3936   // from any edge cases where the stacksave result isn't directly used with
3937   // stackrestore.
3938   SDValue VectorAddress =
3939       DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP);
3940   return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL);
3941 }
3942 
3943 SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op,
3944                                             SelectionDAG &DAG) const {
3945   SDLoc SL(Op);
3946   assert(Op.getValueType() == MVT::i32);
3947 
3948   uint32_t BothRoundHwReg =
3949       AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_MODE, 0, 4);
3950   SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32);
3951 
3952   SDValue IntrinID =
3953       DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
3954   SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(),
3955                                Op.getOperand(0), IntrinID, GetRoundBothImm);
3956 
3957   // There are two rounding modes, one for f32 and one for f64/f16. We only
3958   // report in the standard value range if both are the same.
3959   //
3960   // The raw values also differ from the expected FLT_ROUNDS values. Nearest
3961   // ties away from zero is not supported, and the other values are rotated by
3962   // 1.
3963   //
3964   // If the two rounding modes are not the same, report a target defined value.
3965 
3966   // Mode register rounding mode fields:
3967   //
3968   // [1:0] Single-precision round mode.
3969   // [3:2] Double/Half-precision round mode.
3970   //
3971   // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero.
3972   //
3973   //             Hardware   Spec
3974   // Toward-0        3        0
3975   // Nearest Even    0        1
3976   // +Inf            1        2
3977   // -Inf            2        3
3978   //  NearestAway0  N/A       4
3979   //
3980   // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit
3981   // table we can index by the raw hardware mode.
3982   //
3983   // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf
3984 
3985   SDValue BitTable =
3986       DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64);
3987 
3988   SDValue Two = DAG.getConstant(2, SL, MVT::i32);
3989   SDValue RoundModeTimesNumBits =
3990       DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two);
3991 
3992   // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we
3993   // knew only one mode was demanded.
3994   SDValue TableValue =
3995       DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits);
3996   SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue);
3997 
3998   SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32);
3999   SDValue TableEntry =
4000       DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask);
4001 
4002   // There's a gap in the 4-bit encoded table and actual enum values, so offset
4003   // if it's an extended value.
4004   SDValue Four = DAG.getConstant(4, SL, MVT::i32);
4005   SDValue IsStandardValue =
4006       DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT);
4007   SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four);
4008   SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue,
4009                                TableEntry, EnumOffset);
4010 
4011   return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL);
4012 }
4013 
4014 SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const {
4015   if (Op->isDivergent())
4016     return SDValue();
4017 
4018   switch (cast<MemSDNode>(Op)->getAddressSpace()) {
4019   case AMDGPUAS::FLAT_ADDRESS:
4020   case AMDGPUAS::GLOBAL_ADDRESS:
4021   case AMDGPUAS::CONSTANT_ADDRESS:
4022   case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
4023     break;
4024   default:
4025     return SDValue();
4026   }
4027 
4028   return Op;
4029 }
4030 
4031 // Work around DAG legality rules only based on the result type.
4032 SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
4033   bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND;
4034   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
4035   EVT SrcVT = Src.getValueType();
4036 
4037   if (SrcVT.getScalarType() != MVT::bf16)
4038     return Op;
4039 
4040   SDLoc SL(Op);
4041   SDValue BitCast =
4042       DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src);
4043 
4044   EVT DstVT = Op.getValueType();
4045   if (IsStrict)
4046     llvm_unreachable("Need STRICT_BF16_TO_FP");
4047 
4048   return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast);
4049 }
4050 
4051 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
4052                                              const MachineFunction &MF) const {
4053   Register Reg = StringSwitch<Register>(RegName)
4054     .Case("m0", AMDGPU::M0)
4055     .Case("exec", AMDGPU::EXEC)
4056     .Case("exec_lo", AMDGPU::EXEC_LO)
4057     .Case("exec_hi", AMDGPU::EXEC_HI)
4058     .Case("flat_scratch", AMDGPU::FLAT_SCR)
4059     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
4060     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
4061     .Default(Register());
4062 
4063   if (Reg == AMDGPU::NoRegister) {
4064     report_fatal_error(Twine("invalid register name \""
4065                              + StringRef(RegName)  + "\"."));
4066 
4067   }
4068 
4069   if (!Subtarget->hasFlatScrRegister() &&
4070        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
4071     report_fatal_error(Twine("invalid register \""
4072                              + StringRef(RegName)  + "\" for subtarget."));
4073   }
4074 
4075   switch (Reg) {
4076   case AMDGPU::M0:
4077   case AMDGPU::EXEC_LO:
4078   case AMDGPU::EXEC_HI:
4079   case AMDGPU::FLAT_SCR_LO:
4080   case AMDGPU::FLAT_SCR_HI:
4081     if (VT.getSizeInBits() == 32)
4082       return Reg;
4083     break;
4084   case AMDGPU::EXEC:
4085   case AMDGPU::FLAT_SCR:
4086     if (VT.getSizeInBits() == 64)
4087       return Reg;
4088     break;
4089   default:
4090     llvm_unreachable("missing register type checking");
4091   }
4092 
4093   report_fatal_error(Twine("invalid type for register \""
4094                            + StringRef(RegName) + "\"."));
4095 }
4096 
4097 // If kill is not the last instruction, split the block so kill is always a
4098 // proper terminator.
4099 MachineBasicBlock *
4100 SITargetLowering::splitKillBlock(MachineInstr &MI,
4101                                  MachineBasicBlock *BB) const {
4102   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
4103   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4104   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
4105   return SplitBB;
4106 }
4107 
4108 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
4109 // \p MI will be the only instruction in the loop body block. Otherwise, it will
4110 // be the first instruction in the remainder block.
4111 //
4112 /// \returns { LoopBody, Remainder }
4113 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
4114 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
4115   MachineFunction *MF = MBB.getParent();
4116   MachineBasicBlock::iterator I(&MI);
4117 
4118   // To insert the loop we need to split the block. Move everything after this
4119   // point to a new block, and insert a new empty block between the two.
4120   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
4121   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
4122   MachineFunction::iterator MBBI(MBB);
4123   ++MBBI;
4124 
4125   MF->insert(MBBI, LoopBB);
4126   MF->insert(MBBI, RemainderBB);
4127 
4128   LoopBB->addSuccessor(LoopBB);
4129   LoopBB->addSuccessor(RemainderBB);
4130 
4131   // Move the rest of the block into a new block.
4132   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
4133 
4134   if (InstInLoop) {
4135     auto Next = std::next(I);
4136 
4137     // Move instruction to loop body.
4138     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
4139 
4140     // Move the rest of the block.
4141     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
4142   } else {
4143     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
4144   }
4145 
4146   MBB.addSuccessor(LoopBB);
4147 
4148   return std::pair(LoopBB, RemainderBB);
4149 }
4150 
4151 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
4152 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
4153   MachineBasicBlock *MBB = MI.getParent();
4154   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4155   auto I = MI.getIterator();
4156   auto E = std::next(I);
4157 
4158   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
4159     .addImm(0);
4160 
4161   MIBundleBuilder Bundler(*MBB, I, E);
4162   finalizeBundle(*MBB, Bundler.begin());
4163 }
4164 
4165 MachineBasicBlock *
4166 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
4167                                          MachineBasicBlock *BB) const {
4168   const DebugLoc &DL = MI.getDebugLoc();
4169 
4170   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4171 
4172   MachineBasicBlock *LoopBB;
4173   MachineBasicBlock *RemainderBB;
4174   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4175 
4176   // Apparently kill flags are only valid if the def is in the same block?
4177   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
4178     Src->setIsKill(false);
4179 
4180   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
4181 
4182   MachineBasicBlock::iterator I = LoopBB->end();
4183 
4184   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
4185     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
4186 
4187   // Clear TRAP_STS.MEM_VIOL
4188   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
4189     .addImm(0)
4190     .addImm(EncodedReg);
4191 
4192   bundleInstWithWaitcnt(MI);
4193 
4194   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
4195 
4196   // Load and check TRAP_STS.MEM_VIOL
4197   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
4198     .addImm(EncodedReg);
4199 
4200   // FIXME: Do we need to use an isel pseudo that may clobber scc?
4201   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4202     .addReg(Reg, RegState::Kill)
4203     .addImm(0);
4204   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4205     .addMBB(LoopBB);
4206 
4207   return RemainderBB;
4208 }
4209 
4210 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
4211 // wavefront. If the value is uniform and just happens to be in a VGPR, this
4212 // will only do one iteration. In the worst case, this will loop 64 times.
4213 //
4214 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
4215 static MachineBasicBlock::iterator
4216 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
4217                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
4218                        const DebugLoc &DL, const MachineOperand &Idx,
4219                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
4220                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
4221                        Register &SGPRIdxReg) {
4222 
4223   MachineFunction *MF = OrigBB.getParent();
4224   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4225   const SIRegisterInfo *TRI = ST.getRegisterInfo();
4226   MachineBasicBlock::iterator I = LoopBB.begin();
4227 
4228   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4229   Register PhiExec = MRI.createVirtualRegister(BoolRC);
4230   Register NewExec = MRI.createVirtualRegister(BoolRC);
4231   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4232   Register CondReg = MRI.createVirtualRegister(BoolRC);
4233 
4234   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
4235     .addReg(InitReg)
4236     .addMBB(&OrigBB)
4237     .addReg(ResultReg)
4238     .addMBB(&LoopBB);
4239 
4240   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
4241     .addReg(InitSaveExecReg)
4242     .addMBB(&OrigBB)
4243     .addReg(NewExec)
4244     .addMBB(&LoopBB);
4245 
4246   // Read the next variant <- also loop target.
4247   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
4248       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
4249 
4250   // Compare the just read M0 value to all possible Idx values.
4251   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
4252       .addReg(CurrentIdxReg)
4253       .addReg(Idx.getReg(), 0, Idx.getSubReg());
4254 
4255   // Update EXEC, save the original EXEC value to VCC.
4256   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
4257                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
4258           NewExec)
4259     .addReg(CondReg, RegState::Kill);
4260 
4261   MRI.setSimpleHint(NewExec, CondReg);
4262 
4263   if (UseGPRIdxMode) {
4264     if (Offset == 0) {
4265       SGPRIdxReg = CurrentIdxReg;
4266     } else {
4267       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4268       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
4269           .addReg(CurrentIdxReg, RegState::Kill)
4270           .addImm(Offset);
4271     }
4272   } else {
4273     // Move index from VCC into M0
4274     if (Offset == 0) {
4275       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4276         .addReg(CurrentIdxReg, RegState::Kill);
4277     } else {
4278       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
4279         .addReg(CurrentIdxReg, RegState::Kill)
4280         .addImm(Offset);
4281     }
4282   }
4283 
4284   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
4285   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4286   MachineInstr *InsertPt =
4287     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
4288                                                   : AMDGPU::S_XOR_B64_term), Exec)
4289       .addReg(Exec)
4290       .addReg(NewExec);
4291 
4292   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
4293   // s_cbranch_scc0?
4294 
4295   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
4296   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
4297     .addMBB(&LoopBB);
4298 
4299   return InsertPt->getIterator();
4300 }
4301 
4302 // This has slightly sub-optimal regalloc when the source vector is killed by
4303 // the read. The register allocator does not understand that the kill is
4304 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
4305 // subregister from it, using 1 more VGPR than necessary. This was saved when
4306 // this was expanded after register allocation.
4307 static MachineBasicBlock::iterator
4308 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
4309                unsigned InitResultReg, unsigned PhiReg, int Offset,
4310                bool UseGPRIdxMode, Register &SGPRIdxReg) {
4311   MachineFunction *MF = MBB.getParent();
4312   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4313   const SIRegisterInfo *TRI = ST.getRegisterInfo();
4314   MachineRegisterInfo &MRI = MF->getRegInfo();
4315   const DebugLoc &DL = MI.getDebugLoc();
4316   MachineBasicBlock::iterator I(&MI);
4317 
4318   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4319   Register DstReg = MI.getOperand(0).getReg();
4320   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
4321   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
4322   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4323   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4324 
4325   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
4326 
4327   // Save the EXEC mask
4328   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
4329     .addReg(Exec);
4330 
4331   MachineBasicBlock *LoopBB;
4332   MachineBasicBlock *RemainderBB;
4333   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
4334 
4335   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4336 
4337   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
4338                                       InitResultReg, DstReg, PhiReg, TmpExec,
4339                                       Offset, UseGPRIdxMode, SGPRIdxReg);
4340 
4341   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
4342   MachineFunction::iterator MBBI(LoopBB);
4343   ++MBBI;
4344   MF->insert(MBBI, LandingPad);
4345   LoopBB->removeSuccessor(RemainderBB);
4346   LandingPad->addSuccessor(RemainderBB);
4347   LoopBB->addSuccessor(LandingPad);
4348   MachineBasicBlock::iterator First = LandingPad->begin();
4349   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
4350     .addReg(SaveExec);
4351 
4352   return InsPt;
4353 }
4354 
4355 // Returns subreg index, offset
4356 static std::pair<unsigned, int>
4357 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
4358                             const TargetRegisterClass *SuperRC,
4359                             unsigned VecReg,
4360                             int Offset) {
4361   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
4362 
4363   // Skip out of bounds offsets, or else we would end up using an undefined
4364   // register.
4365   if (Offset >= NumElts || Offset < 0)
4366     return std::pair(AMDGPU::sub0, Offset);
4367 
4368   return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
4369 }
4370 
4371 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
4372                                  MachineRegisterInfo &MRI, MachineInstr &MI,
4373                                  int Offset) {
4374   MachineBasicBlock *MBB = MI.getParent();
4375   const DebugLoc &DL = MI.getDebugLoc();
4376   MachineBasicBlock::iterator I(&MI);
4377 
4378   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4379 
4380   assert(Idx->getReg() != AMDGPU::NoRegister);
4381 
4382   if (Offset == 0) {
4383     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
4384   } else {
4385     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
4386         .add(*Idx)
4387         .addImm(Offset);
4388   }
4389 }
4390 
4391 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
4392                                    MachineRegisterInfo &MRI, MachineInstr &MI,
4393                                    int Offset) {
4394   MachineBasicBlock *MBB = MI.getParent();
4395   const DebugLoc &DL = MI.getDebugLoc();
4396   MachineBasicBlock::iterator I(&MI);
4397 
4398   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4399 
4400   if (Offset == 0)
4401     return Idx->getReg();
4402 
4403   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
4404   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
4405       .add(*Idx)
4406       .addImm(Offset);
4407   return Tmp;
4408 }
4409 
4410 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
4411                                           MachineBasicBlock &MBB,
4412                                           const GCNSubtarget &ST) {
4413   const SIInstrInfo *TII = ST.getInstrInfo();
4414   const SIRegisterInfo &TRI = TII->getRegisterInfo();
4415   MachineFunction *MF = MBB.getParent();
4416   MachineRegisterInfo &MRI = MF->getRegInfo();
4417 
4418   Register Dst = MI.getOperand(0).getReg();
4419   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4420   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
4421   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
4422 
4423   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
4424   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
4425 
4426   unsigned SubReg;
4427   std::tie(SubReg, Offset)
4428     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
4429 
4430   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
4431 
4432   // Check for a SGPR index.
4433   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4434     MachineBasicBlock::iterator I(&MI);
4435     const DebugLoc &DL = MI.getDebugLoc();
4436 
4437     if (UseGPRIdxMode) {
4438       // TODO: Look at the uses to avoid the copy. This may require rescheduling
4439       // to avoid interfering with other uses, so probably requires a new
4440       // optimization pass.
4441       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
4442 
4443       const MCInstrDesc &GPRIDXDesc =
4444           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
4445       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
4446           .addReg(SrcReg)
4447           .addReg(Idx)
4448           .addImm(SubReg);
4449     } else {
4450       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
4451 
4452       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
4453         .addReg(SrcReg, 0, SubReg)
4454         .addReg(SrcReg, RegState::Implicit);
4455     }
4456 
4457     MI.eraseFromParent();
4458 
4459     return &MBB;
4460   }
4461 
4462   // Control flow needs to be inserted if indexing with a VGPR.
4463   const DebugLoc &DL = MI.getDebugLoc();
4464   MachineBasicBlock::iterator I(&MI);
4465 
4466   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4467   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4468 
4469   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
4470 
4471   Register SGPRIdxReg;
4472   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
4473                               UseGPRIdxMode, SGPRIdxReg);
4474 
4475   MachineBasicBlock *LoopBB = InsPt->getParent();
4476 
4477   if (UseGPRIdxMode) {
4478     const MCInstrDesc &GPRIDXDesc =
4479         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
4480 
4481     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
4482         .addReg(SrcReg)
4483         .addReg(SGPRIdxReg)
4484         .addImm(SubReg);
4485   } else {
4486     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
4487       .addReg(SrcReg, 0, SubReg)
4488       .addReg(SrcReg, RegState::Implicit);
4489   }
4490 
4491   MI.eraseFromParent();
4492 
4493   return LoopBB;
4494 }
4495 
4496 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
4497                                           MachineBasicBlock &MBB,
4498                                           const GCNSubtarget &ST) {
4499   const SIInstrInfo *TII = ST.getInstrInfo();
4500   const SIRegisterInfo &TRI = TII->getRegisterInfo();
4501   MachineFunction *MF = MBB.getParent();
4502   MachineRegisterInfo &MRI = MF->getRegInfo();
4503 
4504   Register Dst = MI.getOperand(0).getReg();
4505   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
4506   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4507   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
4508   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
4509   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
4510   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
4511 
4512   // This can be an immediate, but will be folded later.
4513   assert(Val->getReg());
4514 
4515   unsigned SubReg;
4516   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
4517                                                          SrcVec->getReg(),
4518                                                          Offset);
4519   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
4520 
4521   if (Idx->getReg() == AMDGPU::NoRegister) {
4522     MachineBasicBlock::iterator I(&MI);
4523     const DebugLoc &DL = MI.getDebugLoc();
4524 
4525     assert(Offset == 0);
4526 
4527     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
4528         .add(*SrcVec)
4529         .add(*Val)
4530         .addImm(SubReg);
4531 
4532     MI.eraseFromParent();
4533     return &MBB;
4534   }
4535 
4536   // Check for a SGPR index.
4537   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4538     MachineBasicBlock::iterator I(&MI);
4539     const DebugLoc &DL = MI.getDebugLoc();
4540 
4541     if (UseGPRIdxMode) {
4542       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
4543 
4544       const MCInstrDesc &GPRIDXDesc =
4545           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4546       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
4547           .addReg(SrcVec->getReg())
4548           .add(*Val)
4549           .addReg(Idx)
4550           .addImm(SubReg);
4551     } else {
4552       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
4553 
4554       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4555           TRI.getRegSizeInBits(*VecRC), 32, false);
4556       BuildMI(MBB, I, DL, MovRelDesc, Dst)
4557           .addReg(SrcVec->getReg())
4558           .add(*Val)
4559           .addImm(SubReg);
4560     }
4561     MI.eraseFromParent();
4562     return &MBB;
4563   }
4564 
4565   // Control flow needs to be inserted if indexing with a VGPR.
4566   if (Val->isReg())
4567     MRI.clearKillFlags(Val->getReg());
4568 
4569   const DebugLoc &DL = MI.getDebugLoc();
4570 
4571   Register PhiReg = MRI.createVirtualRegister(VecRC);
4572 
4573   Register SGPRIdxReg;
4574   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
4575                               UseGPRIdxMode, SGPRIdxReg);
4576   MachineBasicBlock *LoopBB = InsPt->getParent();
4577 
4578   if (UseGPRIdxMode) {
4579     const MCInstrDesc &GPRIDXDesc =
4580         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4581 
4582     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
4583         .addReg(PhiReg)
4584         .add(*Val)
4585         .addReg(SGPRIdxReg)
4586         .addImm(AMDGPU::sub0);
4587   } else {
4588     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4589         TRI.getRegSizeInBits(*VecRC), 32, false);
4590     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
4591         .addReg(PhiReg)
4592         .add(*Val)
4593         .addImm(AMDGPU::sub0);
4594   }
4595 
4596   MI.eraseFromParent();
4597   return LoopBB;
4598 }
4599 
4600 static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI,
4601                                           MachineBasicBlock &BB,
4602                                           const GCNSubtarget &ST,
4603                                           unsigned Opc) {
4604   MachineRegisterInfo &MRI = BB.getParent()->getRegInfo();
4605   const SIRegisterInfo *TRI = ST.getRegisterInfo();
4606   const DebugLoc &DL = MI.getDebugLoc();
4607   const SIInstrInfo *TII = ST.getInstrInfo();
4608 
4609   // Reduction operations depend on whether the input operand is SGPR or VGPR.
4610   Register SrcReg = MI.getOperand(1).getReg();
4611   bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg));
4612   Register DstReg = MI.getOperand(0).getReg();
4613   MachineBasicBlock *RetBB = nullptr;
4614   if (isSGPR) {
4615     // These operations with a uniform value i.e. SGPR are idempotent.
4616     // Reduced value will be same as given sgpr.
4617     BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg);
4618     RetBB = &BB;
4619   } else {
4620     // TODO: Implement DPP Strategy and switch based on immediate strategy
4621     // operand. For now, for all the cases (default, Iterative and DPP we use
4622     // iterative approach by default.)
4623 
4624     // To reduce the VGPR using iterative approach, we need to iterate
4625     // over all the active lanes. Lowering consists of ComputeLoop,
4626     // which iterate over only active lanes. We use copy of EXEC register
4627     // as induction variable and every active lane modifies it using bitset0
4628     // so that we will get the next active lane for next iteration.
4629     MachineBasicBlock::iterator I = BB.end();
4630     Register SrcReg = MI.getOperand(1).getReg();
4631 
4632     // Create Control flow for loop
4633     // Split MI's Machine Basic block into For loop
4634     auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true);
4635 
4636     // Create virtual registers required for lowering.
4637     const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass();
4638     const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg);
4639     Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass);
4640     Register InitalValReg = MRI.createVirtualRegister(DstRegClass);
4641 
4642     Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass);
4643     Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
4644     Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
4645 
4646     Register FF1Reg = MRI.createVirtualRegister(DstRegClass);
4647     Register LaneValueReg = MRI.createVirtualRegister(DstRegClass);
4648 
4649     bool IsWave32 = ST.isWave32();
4650     unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4651     unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4652 
4653     // Create initail values of induction variable from Exec, Accumulator and
4654     // insert branch instr to newly created ComputeBlockk
4655     uint32_t InitalValue =
4656         (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0;
4657     auto TmpSReg =
4658         BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg);
4659     BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg)
4660         .addImm(InitalValue);
4661     BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop);
4662 
4663     // Start constructing ComputeLoop
4664     I = ComputeLoop->end();
4665     auto Accumulator =
4666         BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg)
4667             .addReg(InitalValReg)
4668             .addMBB(&BB);
4669     auto ActiveBits =
4670         BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg)
4671             .addReg(TmpSReg->getOperand(0).getReg())
4672             .addMBB(&BB);
4673 
4674     // Perform the computations
4675     unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
4676     auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg)
4677                    .addReg(ActiveBits->getOperand(0).getReg());
4678     auto LaneValue = BuildMI(*ComputeLoop, I, DL,
4679                              TII->get(AMDGPU::V_READLANE_B32), LaneValueReg)
4680                          .addReg(SrcReg)
4681                          .addReg(FF1->getOperand(0).getReg());
4682     auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
4683                               .addReg(Accumulator->getOperand(0).getReg())
4684                               .addReg(LaneValue->getOperand(0).getReg());
4685 
4686     // Manipulate the iterator to get the next active lane
4687     unsigned BITSETOpc =
4688         IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
4689     auto NewActiveBits =
4690         BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg)
4691             .addReg(FF1->getOperand(0).getReg())
4692             .addReg(ActiveBits->getOperand(0).getReg());
4693 
4694     // Add phi nodes
4695     Accumulator.addReg(NewAccumulator->getOperand(0).getReg())
4696         .addMBB(ComputeLoop);
4697     ActiveBits.addReg(NewActiveBits->getOperand(0).getReg())
4698         .addMBB(ComputeLoop);
4699 
4700     // Creating branching
4701     unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
4702     BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc))
4703         .addReg(NewActiveBits->getOperand(0).getReg())
4704         .addImm(0);
4705     BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4706         .addMBB(ComputeLoop);
4707 
4708     RetBB = ComputeEnd;
4709   }
4710   MI.eraseFromParent();
4711   return RetBB;
4712 }
4713 
4714 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
4715   MachineInstr &MI, MachineBasicBlock *BB) const {
4716 
4717   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4718   MachineFunction *MF = BB->getParent();
4719   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
4720 
4721   switch (MI.getOpcode()) {
4722   case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
4723     return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32);
4724   case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
4725     return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32);
4726   case AMDGPU::S_UADDO_PSEUDO:
4727   case AMDGPU::S_USUBO_PSEUDO: {
4728     const DebugLoc &DL = MI.getDebugLoc();
4729     MachineOperand &Dest0 = MI.getOperand(0);
4730     MachineOperand &Dest1 = MI.getOperand(1);
4731     MachineOperand &Src0 = MI.getOperand(2);
4732     MachineOperand &Src1 = MI.getOperand(3);
4733 
4734     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4735                        ? AMDGPU::S_ADD_I32
4736                        : AMDGPU::S_SUB_I32;
4737     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4738 
4739     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4740         .addImm(1)
4741         .addImm(0);
4742 
4743     MI.eraseFromParent();
4744     return BB;
4745   }
4746   case AMDGPU::S_ADD_U64_PSEUDO:
4747   case AMDGPU::S_SUB_U64_PSEUDO: {
4748     // For targets older than GFX12, we emit a sequence of 32-bit operations.
4749     // For GFX12, we emit s_add_u64 and s_sub_u64.
4750     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4751     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4752     const DebugLoc &DL = MI.getDebugLoc();
4753     MachineOperand &Dest = MI.getOperand(0);
4754     MachineOperand &Src0 = MI.getOperand(1);
4755     MachineOperand &Src1 = MI.getOperand(2);
4756     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4757     if (Subtarget->hasScalarAddSub64()) {
4758       unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
4759       BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg())
4760           .addReg(Src0.getReg())
4761           .addReg(Src1.getReg());
4762     } else {
4763       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4764       const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4765 
4766       Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4767       Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4768 
4769       MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4770           MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4771       MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4772           MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4773 
4774       MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4775           MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4776       MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4777           MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4778 
4779       unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4780       unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4781       BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4782           .add(Src0Sub0)
4783           .add(Src1Sub0);
4784       BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4785           .add(Src0Sub1)
4786           .add(Src1Sub1);
4787       BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4788           .addReg(DestSub0)
4789           .addImm(AMDGPU::sub0)
4790           .addReg(DestSub1)
4791           .addImm(AMDGPU::sub1);
4792     }
4793     MI.eraseFromParent();
4794     return BB;
4795   }
4796   case AMDGPU::V_ADD_U64_PSEUDO:
4797   case AMDGPU::V_SUB_U64_PSEUDO: {
4798     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4799     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4800     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4801     const DebugLoc &DL = MI.getDebugLoc();
4802 
4803     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4804 
4805     MachineOperand &Dest = MI.getOperand(0);
4806     MachineOperand &Src0 = MI.getOperand(1);
4807     MachineOperand &Src1 = MI.getOperand(2);
4808 
4809     if (IsAdd && ST.hasLshlAddB64()) {
4810       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4811                          Dest.getReg())
4812                      .add(Src0)
4813                      .addImm(0)
4814                      .add(Src1);
4815       TII->legalizeOperands(*Add);
4816       MI.eraseFromParent();
4817       return BB;
4818     }
4819 
4820     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4821 
4822     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4823     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4824 
4825     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4826     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4827 
4828     const TargetRegisterClass *Src0RC = Src0.isReg()
4829                                             ? MRI.getRegClass(Src0.getReg())
4830                                             : &AMDGPU::VReg_64RegClass;
4831     const TargetRegisterClass *Src1RC = Src1.isReg()
4832                                             ? MRI.getRegClass(Src1.getReg())
4833                                             : &AMDGPU::VReg_64RegClass;
4834 
4835     const TargetRegisterClass *Src0SubRC =
4836         TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
4837     const TargetRegisterClass *Src1SubRC =
4838         TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
4839 
4840     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4841         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4842     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4843         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4844 
4845     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4846         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4847     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4848         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4849 
4850     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4851     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4852                                .addReg(CarryReg, RegState::Define)
4853                                .add(SrcReg0Sub0)
4854                                .add(SrcReg1Sub0)
4855                                .addImm(0); // clamp bit
4856 
4857     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4858     MachineInstr *HiHalf =
4859         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4860             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4861             .add(SrcReg0Sub1)
4862             .add(SrcReg1Sub1)
4863             .addReg(CarryReg, RegState::Kill)
4864             .addImm(0); // clamp bit
4865 
4866     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4867         .addReg(DestSub0)
4868         .addImm(AMDGPU::sub0)
4869         .addReg(DestSub1)
4870         .addImm(AMDGPU::sub1);
4871     TII->legalizeOperands(*LoHalf);
4872     TII->legalizeOperands(*HiHalf);
4873     MI.eraseFromParent();
4874     return BB;
4875   }
4876   case AMDGPU::S_ADD_CO_PSEUDO:
4877   case AMDGPU::S_SUB_CO_PSEUDO: {
4878     // This pseudo has a chance to be selected
4879     // only from uniform add/subcarry node. All the VGPR operands
4880     // therefore assumed to be splat vectors.
4881     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4882     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4883     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4884     MachineBasicBlock::iterator MII = MI;
4885     const DebugLoc &DL = MI.getDebugLoc();
4886     MachineOperand &Dest = MI.getOperand(0);
4887     MachineOperand &CarryDest = MI.getOperand(1);
4888     MachineOperand &Src0 = MI.getOperand(2);
4889     MachineOperand &Src1 = MI.getOperand(3);
4890     MachineOperand &Src2 = MI.getOperand(4);
4891     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4892                        ? AMDGPU::S_ADDC_U32
4893                        : AMDGPU::S_SUBB_U32;
4894     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4895       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4896       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4897           .addReg(Src0.getReg());
4898       Src0.setReg(RegOp0);
4899     }
4900     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4901       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4902       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4903           .addReg(Src1.getReg());
4904       Src1.setReg(RegOp1);
4905     }
4906     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4907     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4908       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4909           .addReg(Src2.getReg());
4910       Src2.setReg(RegOp2);
4911     }
4912 
4913     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4914     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4915     assert(WaveSize == 64 || WaveSize == 32);
4916 
4917     if (WaveSize == 64) {
4918       if (ST.hasScalarCompareEq64()) {
4919         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4920             .addReg(Src2.getReg())
4921             .addImm(0);
4922       } else {
4923         const TargetRegisterClass *SubRC =
4924             TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
4925         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4926             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4927         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4928             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4929         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4930 
4931         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4932             .add(Src2Sub0)
4933             .add(Src2Sub1);
4934 
4935         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4936             .addReg(Src2_32, RegState::Kill)
4937             .addImm(0);
4938       }
4939     } else {
4940       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4941           .addReg(Src2.getReg())
4942           .addImm(0);
4943     }
4944 
4945     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4946 
4947     unsigned SelOpc =
4948         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4949 
4950     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4951         .addImm(-1)
4952         .addImm(0);
4953 
4954     MI.eraseFromParent();
4955     return BB;
4956   }
4957   case AMDGPU::SI_INIT_M0: {
4958     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4959             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4960         .add(MI.getOperand(0));
4961     MI.eraseFromParent();
4962     return BB;
4963   }
4964   case AMDGPU::GET_GROUPSTATICSIZE: {
4965     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4966            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4967     DebugLoc DL = MI.getDebugLoc();
4968     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4969         .add(MI.getOperand(0))
4970         .addImm(MFI->getLDSSize());
4971     MI.eraseFromParent();
4972     return BB;
4973   }
4974   case AMDGPU::GET_SHADERCYCLESHILO: {
4975     assert(MF->getSubtarget<GCNSubtarget>().hasShaderCyclesHiLoRegisters());
4976     MachineRegisterInfo &MRI = MF->getRegInfo();
4977     const DebugLoc &DL = MI.getDebugLoc();
4978     // The algorithm is:
4979     //
4980     // hi1 = getreg(SHADER_CYCLES_HI)
4981     // lo1 = getreg(SHADER_CYCLES_LO)
4982     // hi2 = getreg(SHADER_CYCLES_HI)
4983     //
4984     // If hi1 == hi2 then there was no overflow and the result is hi2:lo1.
4985     // Otherwise there was overflow and the result is hi2:0. In both cases the
4986     // result should represent the actual time at some point during the sequence
4987     // of three getregs.
4988     Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4989     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1)
4990         .addImm(AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES_HI,
4991                                            0, 32));
4992     Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4993     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1)
4994         .addImm(
4995             AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES, 0, 32));
4996     Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4997     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2)
4998         .addImm(AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES_HI,
4999                                            0, 32));
5000     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32))
5001         .addReg(RegHi1)
5002         .addReg(RegHi2);
5003     Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5004     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo)
5005         .addReg(RegLo1)
5006         .addImm(0);
5007     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE))
5008         .add(MI.getOperand(0))
5009         .addReg(RegLo)
5010         .addImm(AMDGPU::sub0)
5011         .addReg(RegHi2)
5012         .addImm(AMDGPU::sub1);
5013     MI.eraseFromParent();
5014     return BB;
5015   }
5016   case AMDGPU::SI_INDIRECT_SRC_V1:
5017   case AMDGPU::SI_INDIRECT_SRC_V2:
5018   case AMDGPU::SI_INDIRECT_SRC_V4:
5019   case AMDGPU::SI_INDIRECT_SRC_V8:
5020   case AMDGPU::SI_INDIRECT_SRC_V9:
5021   case AMDGPU::SI_INDIRECT_SRC_V10:
5022   case AMDGPU::SI_INDIRECT_SRC_V11:
5023   case AMDGPU::SI_INDIRECT_SRC_V12:
5024   case AMDGPU::SI_INDIRECT_SRC_V16:
5025   case AMDGPU::SI_INDIRECT_SRC_V32:
5026     return emitIndirectSrc(MI, *BB, *getSubtarget());
5027   case AMDGPU::SI_INDIRECT_DST_V1:
5028   case AMDGPU::SI_INDIRECT_DST_V2:
5029   case AMDGPU::SI_INDIRECT_DST_V4:
5030   case AMDGPU::SI_INDIRECT_DST_V8:
5031   case AMDGPU::SI_INDIRECT_DST_V9:
5032   case AMDGPU::SI_INDIRECT_DST_V10:
5033   case AMDGPU::SI_INDIRECT_DST_V11:
5034   case AMDGPU::SI_INDIRECT_DST_V12:
5035   case AMDGPU::SI_INDIRECT_DST_V16:
5036   case AMDGPU::SI_INDIRECT_DST_V32:
5037     return emitIndirectDst(MI, *BB, *getSubtarget());
5038   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
5039   case AMDGPU::SI_KILL_I1_PSEUDO:
5040     return splitKillBlock(MI, BB);
5041   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
5042     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5043     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5044     const SIRegisterInfo *TRI = ST.getRegisterInfo();
5045 
5046     Register Dst = MI.getOperand(0).getReg();
5047     const MachineOperand &Src0 = MI.getOperand(1);
5048     const MachineOperand &Src1 = MI.getOperand(2);
5049     const DebugLoc &DL = MI.getDebugLoc();
5050     Register SrcCond = MI.getOperand(3).getReg();
5051 
5052     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5053     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5054     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
5055     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
5056 
5057     const TargetRegisterClass *Src0RC = Src0.isReg()
5058                                             ? MRI.getRegClass(Src0.getReg())
5059                                             : &AMDGPU::VReg_64RegClass;
5060     const TargetRegisterClass *Src1RC = Src1.isReg()
5061                                             ? MRI.getRegClass(Src1.getReg())
5062                                             : &AMDGPU::VReg_64RegClass;
5063 
5064     const TargetRegisterClass *Src0SubRC =
5065         TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
5066     const TargetRegisterClass *Src1SubRC =
5067         TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
5068 
5069     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
5070         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
5071     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
5072         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
5073 
5074     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
5075         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
5076     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
5077         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
5078 
5079     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
5080       .addReg(SrcCond);
5081     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
5082         .addImm(0)
5083         .add(Src0Sub0)
5084         .addImm(0)
5085         .add(Src1Sub0)
5086         .addReg(SrcCondCopy);
5087     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
5088         .addImm(0)
5089         .add(Src0Sub1)
5090         .addImm(0)
5091         .add(Src1Sub1)
5092         .addReg(SrcCondCopy);
5093 
5094     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
5095       .addReg(DstLo)
5096       .addImm(AMDGPU::sub0)
5097       .addReg(DstHi)
5098       .addImm(AMDGPU::sub1);
5099     MI.eraseFromParent();
5100     return BB;
5101   }
5102   case AMDGPU::SI_BR_UNDEF: {
5103     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5104     const DebugLoc &DL = MI.getDebugLoc();
5105     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
5106                            .add(MI.getOperand(0));
5107     Br->getOperand(1).setIsUndef(); // read undef SCC
5108     MI.eraseFromParent();
5109     return BB;
5110   }
5111   case AMDGPU::ADJCALLSTACKUP:
5112   case AMDGPU::ADJCALLSTACKDOWN: {
5113     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
5114     MachineInstrBuilder MIB(*MF, &MI);
5115     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
5116        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
5117     return BB;
5118   }
5119   case AMDGPU::SI_CALL_ISEL: {
5120     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5121     const DebugLoc &DL = MI.getDebugLoc();
5122 
5123     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
5124 
5125     MachineInstrBuilder MIB;
5126     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
5127 
5128     for (const MachineOperand &MO : MI.operands())
5129       MIB.add(MO);
5130 
5131     MIB.cloneMemRefs(MI);
5132     MI.eraseFromParent();
5133     return BB;
5134   }
5135   case AMDGPU::V_ADD_CO_U32_e32:
5136   case AMDGPU::V_SUB_CO_U32_e32:
5137   case AMDGPU::V_SUBREV_CO_U32_e32: {
5138     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
5139     const DebugLoc &DL = MI.getDebugLoc();
5140     unsigned Opc = MI.getOpcode();
5141 
5142     bool NeedClampOperand = false;
5143     if (TII->pseudoToMCOpcode(Opc) == -1) {
5144       Opc = AMDGPU::getVOPe64(Opc);
5145       NeedClampOperand = true;
5146     }
5147 
5148     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
5149     if (TII->isVOP3(*I)) {
5150       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5151       const SIRegisterInfo *TRI = ST.getRegisterInfo();
5152       I.addReg(TRI->getVCC(), RegState::Define);
5153     }
5154     I.add(MI.getOperand(1))
5155      .add(MI.getOperand(2));
5156     if (NeedClampOperand)
5157       I.addImm(0); // clamp bit for e64 encoding
5158 
5159     TII->legalizeOperands(*I);
5160 
5161     MI.eraseFromParent();
5162     return BB;
5163   }
5164   case AMDGPU::V_ADDC_U32_e32:
5165   case AMDGPU::V_SUBB_U32_e32:
5166   case AMDGPU::V_SUBBREV_U32_e32:
5167     // These instructions have an implicit use of vcc which counts towards the
5168     // constant bus limit.
5169     TII->legalizeOperands(MI);
5170     return BB;
5171   case AMDGPU::DS_GWS_INIT:
5172   case AMDGPU::DS_GWS_SEMA_BR:
5173   case AMDGPU::DS_GWS_BARRIER:
5174     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
5175     [[fallthrough]];
5176   case AMDGPU::DS_GWS_SEMA_V:
5177   case AMDGPU::DS_GWS_SEMA_P:
5178   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
5179     // A s_waitcnt 0 is required to be the instruction immediately following.
5180     if (getSubtarget()->hasGWSAutoReplay()) {
5181       bundleInstWithWaitcnt(MI);
5182       return BB;
5183     }
5184 
5185     return emitGWSMemViolTestLoop(MI, BB);
5186   case AMDGPU::S_SETREG_B32: {
5187     // Try to optimize cases that only set the denormal mode or rounding mode.
5188     //
5189     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
5190     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
5191     // instead.
5192     //
5193     // FIXME: This could be predicates on the immediate, but tablegen doesn't
5194     // allow you to have a no side effect instruction in the output of a
5195     // sideeffecting pattern.
5196     unsigned ID, Offset, Width;
5197     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
5198     if (ID != AMDGPU::Hwreg::ID_MODE)
5199       return BB;
5200 
5201     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
5202     const unsigned SetMask = WidthMask << Offset;
5203 
5204     if (getSubtarget()->hasDenormModeInst()) {
5205       unsigned SetDenormOp = 0;
5206       unsigned SetRoundOp = 0;
5207 
5208       // The dedicated instructions can only set the whole denorm or round mode
5209       // at once, not a subset of bits in either.
5210       if (SetMask ==
5211           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
5212         // If this fully sets both the round and denorm mode, emit the two
5213         // dedicated instructions for these.
5214         SetRoundOp = AMDGPU::S_ROUND_MODE;
5215         SetDenormOp = AMDGPU::S_DENORM_MODE;
5216       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
5217         SetRoundOp = AMDGPU::S_ROUND_MODE;
5218       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
5219         SetDenormOp = AMDGPU::S_DENORM_MODE;
5220       }
5221 
5222       if (SetRoundOp || SetDenormOp) {
5223         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5224         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
5225         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
5226           unsigned ImmVal = Def->getOperand(1).getImm();
5227           if (SetRoundOp) {
5228             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
5229                 .addImm(ImmVal & 0xf);
5230 
5231             // If we also have the denorm mode, get just the denorm mode bits.
5232             ImmVal >>= 4;
5233           }
5234 
5235           if (SetDenormOp) {
5236             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
5237                 .addImm(ImmVal & 0xf);
5238           }
5239 
5240           MI.eraseFromParent();
5241           return BB;
5242         }
5243       }
5244     }
5245 
5246     // If only FP bits are touched, used the no side effects pseudo.
5247     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
5248                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
5249       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
5250 
5251     return BB;
5252   }
5253   case AMDGPU::S_INVERSE_BALLOT_U32:
5254   case AMDGPU::S_INVERSE_BALLOT_U64: {
5255     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5256     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5257     const SIRegisterInfo *TRI = ST.getRegisterInfo();
5258     const DebugLoc &DL = MI.getDebugLoc();
5259     const Register DstReg = MI.getOperand(0).getReg();
5260     Register MaskReg = MI.getOperand(1).getReg();
5261 
5262     const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg);
5263 
5264     if (IsVALU) {
5265       MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI);
5266     }
5267 
5268     BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg);
5269     MI.eraseFromParent();
5270     return BB;
5271   }
5272   case AMDGPU::ENDPGM_TRAP: {
5273     const DebugLoc &DL = MI.getDebugLoc();
5274     if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) {
5275       MI.setDesc(TII->get(AMDGPU::S_ENDPGM));
5276       MI.addOperand(MachineOperand::CreateImm(0));
5277       return BB;
5278     }
5279 
5280     // We need a block split to make the real endpgm a terminator. We also don't
5281     // want to break phis in successor blocks, so we can't just delete to the
5282     // end of the block.
5283 
5284     MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
5285     MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5286     MF->push_back(TrapBB);
5287     BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM))
5288       .addImm(0);
5289     BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
5290       .addMBB(TrapBB);
5291 
5292     BB->addSuccessor(TrapBB);
5293     MI.eraseFromParent();
5294     return SplitBB;
5295   }
5296   default:
5297     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
5298   }
5299 }
5300 
5301 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const {
5302   switch (Op.getValue(0).getSimpleValueType().SimpleTy) {
5303   case MVT::f32:
5304     return Subtarget->hasAtomicFaddRtnInsts();
5305   case MVT::v2f16:
5306   case MVT::f64:
5307     return Subtarget->hasGFX90AInsts();
5308   default:
5309     return false;
5310   }
5311 }
5312 
5313 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
5314   // This currently forces unfolding various combinations of fsub into fma with
5315   // free fneg'd operands. As long as we have fast FMA (controlled by
5316   // isFMAFasterThanFMulAndFAdd), we should perform these.
5317 
5318   // When fma is quarter rate, for f64 where add / sub are at best half rate,
5319   // most of these combines appear to be cycle neutral but save on instruction
5320   // count / code size.
5321   return true;
5322 }
5323 
5324 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
5325 
5326 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
5327                                          EVT VT) const {
5328   if (!VT.isVector()) {
5329     return MVT::i1;
5330   }
5331   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
5332 }
5333 
5334 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
5335   // TODO: Should i16 be used always if legal? For now it would force VALU
5336   // shifts.
5337   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
5338 }
5339 
5340 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
5341   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
5342              ? Ty.changeElementSize(16)
5343              : Ty.changeElementSize(32);
5344 }
5345 
5346 // Answering this is somewhat tricky and depends on the specific device which
5347 // have different rates for fma or all f64 operations.
5348 //
5349 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
5350 // regardless of which device (although the number of cycles differs between
5351 // devices), so it is always profitable for f64.
5352 //
5353 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
5354 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
5355 // which we can always do even without fused FP ops since it returns the same
5356 // result as the separate operations and since it is always full
5357 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
5358 // however does not support denormals, so we do report fma as faster if we have
5359 // a fast fma device and require denormals.
5360 //
5361 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
5362                                                   EVT VT) const {
5363   VT = VT.getScalarType();
5364 
5365   switch (VT.getSimpleVT().SimpleTy) {
5366   case MVT::f32: {
5367     // If mad is not available this depends only on if f32 fma is full rate.
5368     if (!Subtarget->hasMadMacF32Insts())
5369       return Subtarget->hasFastFMAF32();
5370 
5371     // Otherwise f32 mad is always full rate and returns the same result as
5372     // the separate operations so should be preferred over fma.
5373     // However does not support denormals.
5374     if (!denormalModeIsFlushAllF32(MF))
5375       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
5376 
5377     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
5378     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
5379   }
5380   case MVT::f64:
5381     return true;
5382   case MVT::f16:
5383     return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF);
5384   default:
5385     break;
5386   }
5387 
5388   return false;
5389 }
5390 
5391 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
5392                                                   LLT Ty) const {
5393   switch (Ty.getScalarSizeInBits()) {
5394   case 16:
5395     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
5396   case 32:
5397     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
5398   case 64:
5399     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
5400   default:
5401     break;
5402   }
5403 
5404   return false;
5405 }
5406 
5407 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
5408   if (!Ty.isScalar())
5409     return false;
5410 
5411   if (Ty.getScalarSizeInBits() == 16)
5412     return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF());
5413   if (Ty.getScalarSizeInBits() == 32)
5414     return Subtarget->hasMadMacF32Insts() &&
5415            denormalModeIsFlushAllF32(*MI.getMF());
5416 
5417   return false;
5418 }
5419 
5420 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
5421                                    const SDNode *N) const {
5422   // TODO: Check future ftz flag
5423   // v_mad_f32/v_mac_f32 do not support denormals.
5424   EVT VT = N->getValueType(0);
5425   if (VT == MVT::f32)
5426     return Subtarget->hasMadMacF32Insts() &&
5427            denormalModeIsFlushAllF32(DAG.getMachineFunction());
5428   if (VT == MVT::f16) {
5429     return Subtarget->hasMadF16() &&
5430            denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
5431   }
5432 
5433   return false;
5434 }
5435 
5436 //===----------------------------------------------------------------------===//
5437 // Custom DAG Lowering Operations
5438 //===----------------------------------------------------------------------===//
5439 
5440 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
5441 // wider vector type is legal.
5442 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
5443                                              SelectionDAG &DAG) const {
5444   unsigned Opc = Op.getOpcode();
5445   EVT VT = Op.getValueType();
5446   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
5447          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
5448          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5449          VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
5450 
5451   SDValue Lo, Hi;
5452   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5453 
5454   SDLoc SL(Op);
5455   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
5456                              Op->getFlags());
5457   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
5458                              Op->getFlags());
5459 
5460   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
5461 }
5462 
5463 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
5464 // wider vector type is legal.
5465 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
5466                                               SelectionDAG &DAG) const {
5467   unsigned Opc = Op.getOpcode();
5468   EVT VT = Op.getValueType();
5469   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
5470          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
5471          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5472          VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
5473 
5474   SDValue Lo0, Hi0;
5475   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
5476   SDValue Lo1, Hi1;
5477   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
5478 
5479   SDLoc SL(Op);
5480 
5481   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
5482                              Op->getFlags());
5483   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
5484                              Op->getFlags());
5485 
5486   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
5487 }
5488 
5489 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
5490                                               SelectionDAG &DAG) const {
5491   unsigned Opc = Op.getOpcode();
5492   EVT VT = Op.getValueType();
5493   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
5494          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
5495          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5496          VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
5497          VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
5498          VT == MVT::v32bf16);
5499 
5500   SDValue Lo0, Hi0;
5501   SDValue Op0 = Op.getOperand(0);
5502   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
5503                            ? DAG.SplitVectorOperand(Op.getNode(), 0)
5504                            : std::pair(Op0, Op0);
5505   SDValue Lo1, Hi1;
5506   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
5507   SDValue Lo2, Hi2;
5508   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
5509 
5510   SDLoc SL(Op);
5511   auto ResVT = DAG.GetSplitDestVTs(VT);
5512 
5513   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
5514                              Op->getFlags());
5515   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
5516                              Op->getFlags());
5517 
5518   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
5519 }
5520 
5521 
5522 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5523   switch (Op.getOpcode()) {
5524   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
5525   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
5526   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5527   case ISD::LOAD: {
5528     SDValue Result = LowerLOAD(Op, DAG);
5529     assert((!Result.getNode() ||
5530             Result.getNode()->getNumValues() == 2) &&
5531            "Load should return a value and a chain");
5532     return Result;
5533   }
5534   case ISD::FSQRT: {
5535     EVT VT = Op.getValueType();
5536     if (VT == MVT::f32)
5537       return lowerFSQRTF32(Op, DAG);
5538     if (VT == MVT::f64)
5539       return lowerFSQRTF64(Op, DAG);
5540     return SDValue();
5541   }
5542   case ISD::FSIN:
5543   case ISD::FCOS:
5544     return LowerTrig(Op, DAG);
5545   case ISD::SELECT: return LowerSELECT(Op, DAG);
5546   case ISD::FDIV: return LowerFDIV(Op, DAG);
5547   case ISD::FFREXP: return LowerFFREXP(Op, DAG);
5548   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
5549   case ISD::STORE: return LowerSTORE(Op, DAG);
5550   case ISD::GlobalAddress: {
5551     MachineFunction &MF = DAG.getMachineFunction();
5552     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5553     return LowerGlobalAddress(MFI, Op, DAG);
5554   }
5555   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5556   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
5557   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
5558   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
5559   case ISD::INSERT_SUBVECTOR:
5560     return lowerINSERT_SUBVECTOR(Op, DAG);
5561   case ISD::INSERT_VECTOR_ELT:
5562     return lowerINSERT_VECTOR_ELT(Op, DAG);
5563   case ISD::EXTRACT_VECTOR_ELT:
5564     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5565   case ISD::VECTOR_SHUFFLE:
5566     return lowerVECTOR_SHUFFLE(Op, DAG);
5567   case ISD::SCALAR_TO_VECTOR:
5568     return lowerSCALAR_TO_VECTOR(Op, DAG);
5569   case ISD::BUILD_VECTOR:
5570     return lowerBUILD_VECTOR(Op, DAG);
5571   case ISD::FP_ROUND:
5572   case ISD::STRICT_FP_ROUND:
5573     return lowerFP_ROUND(Op, DAG);
5574   case ISD::FPTRUNC_ROUND: {
5575     unsigned Opc;
5576     SDLoc DL(Op);
5577 
5578     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
5579       return SDValue();
5580 
5581     // Get the rounding mode from the last operand
5582     int RoundMode = Op.getConstantOperandVal(1);
5583     if (RoundMode == (int)RoundingMode::TowardPositive)
5584       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
5585     else if (RoundMode == (int)RoundingMode::TowardNegative)
5586       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
5587     else
5588       return SDValue();
5589 
5590     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
5591   }
5592   case ISD::TRAP:
5593     return lowerTRAP(Op, DAG);
5594   case ISD::DEBUGTRAP:
5595     return lowerDEBUGTRAP(Op, DAG);
5596   case ISD::FABS:
5597   case ISD::FNEG:
5598   case ISD::FCANONICALIZE:
5599   case ISD::BSWAP:
5600     return splitUnaryVectorOp(Op, DAG);
5601   case ISD::FMINNUM:
5602   case ISD::FMAXNUM:
5603     return lowerFMINNUM_FMAXNUM(Op, DAG);
5604   case ISD::FLDEXP:
5605   case ISD::STRICT_FLDEXP:
5606     return lowerFLDEXP(Op, DAG);
5607   case ISD::FMA:
5608     return splitTernaryVectorOp(Op, DAG);
5609   case ISD::FP_TO_SINT:
5610   case ISD::FP_TO_UINT:
5611     return LowerFP_TO_INT(Op, DAG);
5612   case ISD::SHL:
5613   case ISD::SRA:
5614   case ISD::SRL:
5615   case ISD::ADD:
5616   case ISD::SUB:
5617   case ISD::SMIN:
5618   case ISD::SMAX:
5619   case ISD::UMIN:
5620   case ISD::UMAX:
5621   case ISD::FADD:
5622   case ISD::FMUL:
5623   case ISD::FMINNUM_IEEE:
5624   case ISD::FMAXNUM_IEEE:
5625   case ISD::UADDSAT:
5626   case ISD::USUBSAT:
5627   case ISD::SADDSAT:
5628   case ISD::SSUBSAT:
5629     return splitBinaryVectorOp(Op, DAG);
5630   case ISD::MUL:
5631     return lowerMUL(Op, DAG);
5632   case ISD::SMULO:
5633   case ISD::UMULO:
5634     return lowerXMULO(Op, DAG);
5635   case ISD::SMUL_LOHI:
5636   case ISD::UMUL_LOHI:
5637     return lowerXMUL_LOHI(Op, DAG);
5638   case ISD::DYNAMIC_STACKALLOC:
5639     return LowerDYNAMIC_STACKALLOC(Op, DAG);
5640   case ISD::STACKSAVE:
5641     return LowerSTACKSAVE(Op, DAG);
5642   case ISD::GET_ROUNDING:
5643     return lowerGET_ROUNDING(Op, DAG);
5644   case ISD::PREFETCH:
5645     return lowerPREFETCH(Op, DAG);
5646   case ISD::FP_EXTEND:
5647   case ISD::STRICT_FP_EXTEND:
5648     return lowerFP_EXTEND(Op, DAG);
5649   }
5650   return SDValue();
5651 }
5652 
5653 // Used for D16: Casts the result of an instruction into the right vector,
5654 // packs values if loads return unpacked values.
5655 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
5656                                        const SDLoc &DL,
5657                                        SelectionDAG &DAG, bool Unpacked) {
5658   if (!LoadVT.isVector())
5659     return Result;
5660 
5661   // Cast back to the original packed type or to a larger type that is a
5662   // multiple of 32 bit for D16. Widening the return type is a required for
5663   // legalization.
5664   EVT FittingLoadVT = LoadVT;
5665   if ((LoadVT.getVectorNumElements() % 2) == 1) {
5666     FittingLoadVT =
5667         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
5668                          LoadVT.getVectorNumElements() + 1);
5669   }
5670 
5671   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
5672     // Truncate to v2i16/v4i16.
5673     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
5674 
5675     // Workaround legalizer not scalarizing truncate after vector op
5676     // legalization but not creating intermediate vector trunc.
5677     SmallVector<SDValue, 4> Elts;
5678     DAG.ExtractVectorElements(Result, Elts);
5679     for (SDValue &Elt : Elts)
5680       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
5681 
5682     // Pad illegal v1i16/v3fi6 to v4i16
5683     if ((LoadVT.getVectorNumElements() % 2) == 1)
5684       Elts.push_back(DAG.getUNDEF(MVT::i16));
5685 
5686     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
5687 
5688     // Bitcast to original type (v2f16/v4f16).
5689     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
5690   }
5691 
5692   // Cast back to the original packed type.
5693   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
5694 }
5695 
5696 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
5697                                               MemSDNode *M,
5698                                               SelectionDAG &DAG,
5699                                               ArrayRef<SDValue> Ops,
5700                                               bool IsIntrinsic) const {
5701   SDLoc DL(M);
5702 
5703   bool Unpacked = Subtarget->hasUnpackedD16VMem();
5704   EVT LoadVT = M->getValueType(0);
5705 
5706   EVT EquivLoadVT = LoadVT;
5707   if (LoadVT.isVector()) {
5708     if (Unpacked) {
5709       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
5710                                      LoadVT.getVectorNumElements());
5711     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
5712       // Widen v3f16 to legal type
5713       EquivLoadVT =
5714           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
5715                            LoadVT.getVectorNumElements() + 1);
5716     }
5717   }
5718 
5719   // Change from v4f16/v2f16 to EquivLoadVT.
5720   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
5721 
5722   SDValue Load
5723     = DAG.getMemIntrinsicNode(
5724       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
5725       VTList, Ops, M->getMemoryVT(),
5726       M->getMemOperand());
5727 
5728   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
5729 
5730   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
5731 }
5732 
5733 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
5734                                              SelectionDAG &DAG,
5735                                              ArrayRef<SDValue> Ops) const {
5736   SDLoc DL(M);
5737   EVT LoadVT = M->getValueType(0);
5738   EVT EltType = LoadVT.getScalarType();
5739   EVT IntVT = LoadVT.changeTypeToInteger();
5740 
5741   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
5742 
5743   assert(M->getNumValues() == 2 || M->getNumValues() == 3);
5744   bool IsTFE = M->getNumValues() == 3;
5745 
5746   unsigned Opc;
5747   if (IsFormat) {
5748     Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE
5749                 : AMDGPUISD::BUFFER_LOAD_FORMAT;
5750   } else {
5751     // TODO: Support non-format TFE loads.
5752     if (IsTFE)
5753       return SDValue();
5754     Opc = AMDGPUISD::BUFFER_LOAD;
5755   }
5756 
5757   if (IsD16) {
5758     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
5759   }
5760 
5761   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
5762   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
5763     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand());
5764 
5765   if (isTypeLegal(LoadVT)) {
5766     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
5767                                M->getMemOperand(), DAG);
5768   }
5769 
5770   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
5771   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
5772   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
5773                                         M->getMemOperand(), DAG);
5774   return DAG.getMergeValues(
5775       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
5776       DL);
5777 }
5778 
5779 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
5780                                   SDNode *N, SelectionDAG &DAG) {
5781   EVT VT = N->getValueType(0);
5782   unsigned CondCode = N->getConstantOperandVal(3);
5783   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
5784     return DAG.getUNDEF(VT);
5785 
5786   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
5787 
5788   SDValue LHS = N->getOperand(1);
5789   SDValue RHS = N->getOperand(2);
5790 
5791   SDLoc DL(N);
5792 
5793   EVT CmpVT = LHS.getValueType();
5794   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
5795     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
5796       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5797     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
5798     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
5799   }
5800 
5801   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
5802 
5803   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
5804   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
5805 
5806   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
5807                               DAG.getCondCode(CCOpcode));
5808   if (VT.bitsEq(CCVT))
5809     return SetCC;
5810   return DAG.getZExtOrTrunc(SetCC, DL, VT);
5811 }
5812 
5813 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
5814                                   SDNode *N, SelectionDAG &DAG) {
5815   EVT VT = N->getValueType(0);
5816 
5817   unsigned CondCode = N->getConstantOperandVal(3);
5818   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
5819     return DAG.getUNDEF(VT);
5820 
5821   SDValue Src0 = N->getOperand(1);
5822   SDValue Src1 = N->getOperand(2);
5823   EVT CmpVT = Src0.getValueType();
5824   SDLoc SL(N);
5825 
5826   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
5827     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
5828     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
5829   }
5830 
5831   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
5832   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
5833   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
5834   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
5835   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
5836                               Src1, DAG.getCondCode(CCOpcode));
5837   if (VT.bitsEq(CCVT))
5838     return SetCC;
5839   return DAG.getZExtOrTrunc(SetCC, SL, VT);
5840 }
5841 
5842 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
5843                                     SelectionDAG &DAG) {
5844   EVT VT = N->getValueType(0);
5845   SDValue Src = N->getOperand(1);
5846   SDLoc SL(N);
5847 
5848   if (Src.getOpcode() == ISD::SETCC) {
5849     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
5850     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
5851                        Src.getOperand(1), Src.getOperand(2));
5852   }
5853   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
5854     // (ballot 0) -> 0
5855     if (Arg->isZero())
5856       return DAG.getConstant(0, SL, VT);
5857 
5858     // (ballot 1) -> EXEC/EXEC_LO
5859     if (Arg->isOne()) {
5860       Register Exec;
5861       if (VT.getScalarSizeInBits() == 32)
5862         Exec = AMDGPU::EXEC_LO;
5863       else if (VT.getScalarSizeInBits() == 64)
5864         Exec = AMDGPU::EXEC;
5865       else
5866         return SDValue();
5867 
5868       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
5869     }
5870   }
5871 
5872   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
5873   // ISD::SETNE)
5874   return DAG.getNode(
5875       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
5876       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
5877 }
5878 
5879 void SITargetLowering::ReplaceNodeResults(SDNode *N,
5880                                           SmallVectorImpl<SDValue> &Results,
5881                                           SelectionDAG &DAG) const {
5882   switch (N->getOpcode()) {
5883   case ISD::INSERT_VECTOR_ELT: {
5884     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
5885       Results.push_back(Res);
5886     return;
5887   }
5888   case ISD::EXTRACT_VECTOR_ELT: {
5889     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
5890       Results.push_back(Res);
5891     return;
5892   }
5893   case ISD::INTRINSIC_WO_CHAIN: {
5894     unsigned IID = N->getConstantOperandVal(0);
5895     switch (IID) {
5896     case Intrinsic::amdgcn_make_buffer_rsrc:
5897       Results.push_back(lowerPointerAsRsrcIntrin(N, DAG));
5898       return;
5899     case Intrinsic::amdgcn_cvt_pkrtz: {
5900       SDValue Src0 = N->getOperand(1);
5901       SDValue Src1 = N->getOperand(2);
5902       SDLoc SL(N);
5903       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
5904                                 Src0, Src1);
5905       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
5906       return;
5907     }
5908     case Intrinsic::amdgcn_cvt_pknorm_i16:
5909     case Intrinsic::amdgcn_cvt_pknorm_u16:
5910     case Intrinsic::amdgcn_cvt_pk_i16:
5911     case Intrinsic::amdgcn_cvt_pk_u16: {
5912       SDValue Src0 = N->getOperand(1);
5913       SDValue Src1 = N->getOperand(2);
5914       SDLoc SL(N);
5915       unsigned Opcode;
5916 
5917       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5918         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5919       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5920         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5921       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5922         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5923       else
5924         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5925 
5926       EVT VT = N->getValueType(0);
5927       if (isTypeLegal(VT))
5928         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5929       else {
5930         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5931         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5932       }
5933       return;
5934     }
5935     case Intrinsic::amdgcn_s_buffer_load: {
5936       // Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate
5937       // s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG
5938       // combiner tries to merge the s_buffer_load_u8 with a sext instruction
5939       // (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with
5940       // s_buffer_load_i8.
5941       if (!Subtarget->hasScalarSubwordLoads())
5942         return;
5943       SDValue Op = SDValue(N, 0);
5944       SDValue Rsrc = Op.getOperand(1);
5945       SDValue Offset = Op.getOperand(2);
5946       SDValue CachePolicy = Op.getOperand(3);
5947       EVT VT = Op.getValueType();
5948       assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n");
5949       SDLoc DL(Op);
5950       MachineFunction &MF = DAG.getMachineFunction();
5951       const DataLayout &DataLayout = DAG.getDataLayout();
5952       Align Alignment =
5953           DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
5954       MachineMemOperand *MMO = MF.getMachineMemOperand(
5955           MachinePointerInfo(),
5956           MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5957               MachineMemOperand::MOInvariant,
5958           VT.getStoreSize(), Alignment);
5959       SDValue LoadVal;
5960       if (!Offset->isDivergent()) {
5961         SDValue Ops[] = {Rsrc, // source register
5962                          Offset, CachePolicy};
5963         SDValue BufferLoad =
5964             DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_UBYTE, DL,
5965                                     DAG.getVTList(MVT::i32), Ops, VT, MMO);
5966         LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
5967       } else {
5968         SDValue Ops[] = {
5969             DAG.getEntryNode(),                    // Chain
5970             Rsrc,                                  // rsrc
5971             DAG.getConstant(0, DL, MVT::i32),      // vindex
5972             {},                                    // voffset
5973             {},                                    // soffset
5974             {},                                    // offset
5975             CachePolicy,                           // cachepolicy
5976             DAG.getTargetConstant(0, DL, MVT::i1), // idxen
5977         };
5978         setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
5979         LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
5980       }
5981       Results.push_back(LoadVal);
5982       return;
5983     }
5984     }
5985     break;
5986   }
5987   case ISD::INTRINSIC_W_CHAIN: {
5988     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5989       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5990         // FIXME: Hacky
5991         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5992           Results.push_back(Res.getOperand(I));
5993         }
5994       } else {
5995         Results.push_back(Res);
5996         Results.push_back(Res.getValue(1));
5997       }
5998       return;
5999     }
6000 
6001     break;
6002   }
6003   case ISD::SELECT: {
6004     SDLoc SL(N);
6005     EVT VT = N->getValueType(0);
6006     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
6007     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
6008     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
6009 
6010     EVT SelectVT = NewVT;
6011     if (NewVT.bitsLT(MVT::i32)) {
6012       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
6013       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
6014       SelectVT = MVT::i32;
6015     }
6016 
6017     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
6018                                     N->getOperand(0), LHS, RHS);
6019 
6020     if (NewVT != SelectVT)
6021       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
6022     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
6023     return;
6024   }
6025   case ISD::FNEG: {
6026     if (N->getValueType(0) != MVT::v2f16)
6027       break;
6028 
6029     SDLoc SL(N);
6030     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
6031 
6032     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
6033                              BC,
6034                              DAG.getConstant(0x80008000, SL, MVT::i32));
6035     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
6036     return;
6037   }
6038   case ISD::FABS: {
6039     if (N->getValueType(0) != MVT::v2f16)
6040       break;
6041 
6042     SDLoc SL(N);
6043     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
6044 
6045     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
6046                              BC,
6047                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
6048     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
6049     return;
6050   }
6051   case ISD::FSQRT: {
6052     if (N->getValueType(0) != MVT::f16)
6053       break;
6054     Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG));
6055     break;
6056   }
6057   default:
6058     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
6059     break;
6060   }
6061 }
6062 
6063 /// Helper function for LowerBRCOND
6064 static SDNode *findUser(SDValue Value, unsigned Opcode) {
6065 
6066   SDNode *Parent = Value.getNode();
6067   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
6068        I != E; ++I) {
6069 
6070     if (I.getUse().get() != Value)
6071       continue;
6072 
6073     if (I->getOpcode() == Opcode)
6074       return *I;
6075   }
6076   return nullptr;
6077 }
6078 
6079 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
6080   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
6081     switch (Intr->getConstantOperandVal(1)) {
6082     case Intrinsic::amdgcn_if:
6083       return AMDGPUISD::IF;
6084     case Intrinsic::amdgcn_else:
6085       return AMDGPUISD::ELSE;
6086     case Intrinsic::amdgcn_loop:
6087       return AMDGPUISD::LOOP;
6088     case Intrinsic::amdgcn_end_cf:
6089       llvm_unreachable("should not occur");
6090     default:
6091       return 0;
6092     }
6093   }
6094 
6095   // break, if_break, else_break are all only used as inputs to loop, not
6096   // directly as branch conditions.
6097   return 0;
6098 }
6099 
6100 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
6101   const Triple &TT = getTargetMachine().getTargetTriple();
6102   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
6103           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
6104          AMDGPU::shouldEmitConstantsToTextSection(TT);
6105 }
6106 
6107 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
6108   if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS())
6109     return false;
6110 
6111   // FIXME: Either avoid relying on address space here or change the default
6112   // address space for functions to avoid the explicit check.
6113   return (GV->getValueType()->isFunctionTy() ||
6114           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
6115          !shouldEmitFixup(GV) &&
6116          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
6117 }
6118 
6119 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
6120   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
6121 }
6122 
6123 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
6124   if (!GV->hasExternalLinkage())
6125     return true;
6126 
6127   const auto OS = getTargetMachine().getTargetTriple().getOS();
6128   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
6129 }
6130 
6131 /// This transforms the control flow intrinsics to get the branch destination as
6132 /// last parameter, also switches branch target with BR if the need arise
6133 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
6134                                       SelectionDAG &DAG) const {
6135   SDLoc DL(BRCOND);
6136 
6137   SDNode *Intr = BRCOND.getOperand(1).getNode();
6138   SDValue Target = BRCOND.getOperand(2);
6139   SDNode *BR = nullptr;
6140   SDNode *SetCC = nullptr;
6141 
6142   if (Intr->getOpcode() == ISD::SETCC) {
6143     // As long as we negate the condition everything is fine
6144     SetCC = Intr;
6145     Intr = SetCC->getOperand(0).getNode();
6146 
6147   } else {
6148     // Get the target from BR if we don't negate the condition
6149     BR = findUser(BRCOND, ISD::BR);
6150     assert(BR && "brcond missing unconditional branch user");
6151     Target = BR->getOperand(1);
6152   }
6153 
6154   unsigned CFNode = isCFIntrinsic(Intr);
6155   if (CFNode == 0) {
6156     // This is a uniform branch so we don't need to legalize.
6157     return BRCOND;
6158   }
6159 
6160   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
6161                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
6162 
6163   assert(!SetCC ||
6164         (SetCC->getConstantOperandVal(1) == 1 &&
6165          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
6166                                                              ISD::SETNE));
6167 
6168   // operands of the new intrinsic call
6169   SmallVector<SDValue, 4> Ops;
6170   if (HaveChain)
6171     Ops.push_back(BRCOND.getOperand(0));
6172 
6173   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
6174   Ops.push_back(Target);
6175 
6176   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
6177 
6178   // build the new intrinsic call
6179   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
6180 
6181   if (!HaveChain) {
6182     SDValue Ops[] =  {
6183       SDValue(Result, 0),
6184       BRCOND.getOperand(0)
6185     };
6186 
6187     Result = DAG.getMergeValues(Ops, DL).getNode();
6188   }
6189 
6190   if (BR) {
6191     // Give the branch instruction our target
6192     SDValue Ops[] = {
6193       BR->getOperand(0),
6194       BRCOND.getOperand(2)
6195     };
6196     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
6197     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
6198   }
6199 
6200   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
6201 
6202   // Copy the intrinsic results to registers
6203   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
6204     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
6205     if (!CopyToReg)
6206       continue;
6207 
6208     Chain = DAG.getCopyToReg(
6209       Chain, DL,
6210       CopyToReg->getOperand(1),
6211       SDValue(Result, i - 1),
6212       SDValue());
6213 
6214     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
6215   }
6216 
6217   // Remove the old intrinsic from the chain
6218   DAG.ReplaceAllUsesOfValueWith(
6219     SDValue(Intr, Intr->getNumValues() - 1),
6220     Intr->getOperand(0));
6221 
6222   return Chain;
6223 }
6224 
6225 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
6226                                           SelectionDAG &DAG) const {
6227   MVT VT = Op.getSimpleValueType();
6228   SDLoc DL(Op);
6229   // Checking the depth
6230   if (Op.getConstantOperandVal(0) != 0)
6231     return DAG.getConstant(0, DL, VT);
6232 
6233   MachineFunction &MF = DAG.getMachineFunction();
6234   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
6235   // Check for kernel and shader functions
6236   if (Info->isEntryFunction())
6237     return DAG.getConstant(0, DL, VT);
6238 
6239   MachineFrameInfo &MFI = MF.getFrameInfo();
6240   // There is a call to @llvm.returnaddress in this function
6241   MFI.setReturnAddressIsTaken(true);
6242 
6243   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
6244   // Get the return address reg and mark it as an implicit live-in
6245   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
6246 
6247   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
6248 }
6249 
6250 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
6251                                             SDValue Op,
6252                                             const SDLoc &DL,
6253                                             EVT VT) const {
6254   return Op.getValueType().bitsLE(VT) ?
6255       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
6256     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
6257                 DAG.getTargetConstant(0, DL, MVT::i32));
6258 }
6259 
6260 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
6261   assert(Op.getValueType() == MVT::f16 &&
6262          "Do not know how to custom lower FP_ROUND for non-f16 type");
6263 
6264   SDValue Src = Op.getOperand(0);
6265   EVT SrcVT = Src.getValueType();
6266   if (SrcVT != MVT::f64)
6267     return Op;
6268 
6269   // TODO: Handle strictfp
6270   if (Op.getOpcode() != ISD::FP_ROUND)
6271     return Op;
6272 
6273   SDLoc DL(Op);
6274 
6275   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
6276   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
6277   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
6278 }
6279 
6280 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
6281                                                SelectionDAG &DAG) const {
6282   EVT VT = Op.getValueType();
6283   const MachineFunction &MF = DAG.getMachineFunction();
6284   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
6285   bool IsIEEEMode = Info->getMode().IEEE;
6286 
6287   // FIXME: Assert during selection that this is only selected for
6288   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
6289   // mode functions, but this happens to be OK since it's only done in cases
6290   // where there is known no sNaN.
6291   if (IsIEEEMode)
6292     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
6293 
6294   if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
6295       VT == MVT::v16f16)
6296     return splitBinaryVectorOp(Op, DAG);
6297   return Op;
6298 }
6299 
6300 SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const {
6301   bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP;
6302   EVT VT = Op.getValueType();
6303   assert(VT == MVT::f16);
6304 
6305   SDValue Exp = Op.getOperand(IsStrict ? 2 : 1);
6306   EVT ExpVT = Exp.getValueType();
6307   if (ExpVT == MVT::i16)
6308     return Op;
6309 
6310   SDLoc DL(Op);
6311 
6312   // Correct the exponent type for f16 to i16.
6313   // Clamp the range of the exponent to the instruction's range.
6314 
6315   // TODO: This should be a generic narrowing legalization, and can easily be
6316   // for GlobalISel.
6317 
6318   SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT);
6319   SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp);
6320 
6321   SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT);
6322   SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp);
6323 
6324   SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp);
6325 
6326   if (IsStrict) {
6327     return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other},
6328                        {Op.getOperand(0), Op.getOperand(1), TruncExp});
6329   }
6330 
6331   return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp);
6332 }
6333 
6334 // Custom lowering for vector multiplications and s_mul_u64.
6335 SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const {
6336   EVT VT = Op.getValueType();
6337 
6338   // Split vector operands.
6339   if (VT.isVector())
6340     return splitBinaryVectorOp(Op, DAG);
6341 
6342   assert(VT == MVT::i64 && "The following code is a special for s_mul_u64");
6343 
6344   // There are four ways to lower s_mul_u64:
6345   //
6346   // 1. If all the operands are uniform, then we lower it as it is.
6347   //
6348   // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit
6349   //    multiplications because there is not a vector equivalent of s_mul_u64.
6350   //
6351   // 3. If the cost model decides that it is more efficient to use vector
6352   //    registers, then we have to split s_mul_u64 in 32-bit multiplications.
6353   //    This happens in splitScalarSMULU64() in SIInstrInfo.cpp .
6354   //
6355   // 4. If the cost model decides to use vector registers and both of the
6356   //    operands are zero-extended/sign-extended from 32-bits, then we split the
6357   //    s_mul_u64 in two 32-bit multiplications. The problem is that it is not
6358   //    possible to check if the operands are zero-extended or sign-extended in
6359   //    SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with
6360   //    s_mul_u64_u32_pseudo if both operands are zero-extended and we replace
6361   //    s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended.
6362   //    If the cost model decides that we have to use vector registers, then
6363   //    splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/
6364   //    s_mul_i64_i32_pseudo in two vector multiplications. If the cost model
6365   //    decides that we should use scalar registers, then s_mul_u64_u32_pseudo/
6366   //    s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in
6367   //    SIInstrInfo.cpp .
6368 
6369   if (Op->isDivergent())
6370     return SDValue();
6371 
6372   SDValue Op0 = Op.getOperand(0);
6373   SDValue Op1 = Op.getOperand(1);
6374   // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64
6375   // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to
6376   // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo.
6377   KnownBits Op0KnownBits = DAG.computeKnownBits(Op0);
6378   unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros();
6379   KnownBits Op1KnownBits = DAG.computeKnownBits(Op1);
6380   unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros();
6381   SDLoc SL(Op);
6382   if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
6383     return SDValue(
6384         DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
6385   unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0);
6386   unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1);
6387   if (Op0SignBits >= 33 && Op1SignBits >= 33)
6388     return SDValue(
6389         DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
6390   // If all the operands are uniform, then we lower s_mul_u64 as it is.
6391   return Op;
6392 }
6393 
6394 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
6395   EVT VT = Op.getValueType();
6396   SDLoc SL(Op);
6397   SDValue LHS = Op.getOperand(0);
6398   SDValue RHS = Op.getOperand(1);
6399   bool isSigned = Op.getOpcode() == ISD::SMULO;
6400 
6401   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6402     const APInt &C = RHSC->getAPIntValue();
6403     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6404     if (C.isPowerOf2()) {
6405       // smulo(x, signed_min) is same as umulo(x, signed_min).
6406       bool UseArithShift = isSigned && !C.isMinSignedValue();
6407       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
6408       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
6409       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
6410           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6411                       SL, VT, Result, ShiftAmt),
6412           LHS, ISD::SETNE);
6413       return DAG.getMergeValues({ Result, Overflow }, SL);
6414     }
6415   }
6416 
6417   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
6418   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
6419                             SL, VT, LHS, RHS);
6420 
6421   SDValue Sign = isSigned
6422     ? DAG.getNode(ISD::SRA, SL, VT, Result,
6423                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
6424     : DAG.getConstant(0, SL, VT);
6425   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
6426 
6427   return DAG.getMergeValues({ Result, Overflow }, SL);
6428 }
6429 
6430 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
6431   if (Op->isDivergent()) {
6432     // Select to V_MAD_[IU]64_[IU]32.
6433     return Op;
6434   }
6435   if (Subtarget->hasSMulHi()) {
6436     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
6437     return SDValue();
6438   }
6439   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
6440   // calculate the high part, so we might as well do the whole thing with
6441   // V_MAD_[IU]64_[IU]32.
6442   return Op;
6443 }
6444 
6445 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
6446   if (!Subtarget->isTrapHandlerEnabled() ||
6447       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
6448     return lowerTrapEndpgm(Op, DAG);
6449 
6450   return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) :
6451          lowerTrapHsaQueuePtr(Op, DAG);
6452 }
6453 
6454 SDValue SITargetLowering::lowerTrapEndpgm(
6455     SDValue Op, SelectionDAG &DAG) const {
6456   SDLoc SL(Op);
6457   SDValue Chain = Op.getOperand(0);
6458   return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain);
6459 }
6460 
6461 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
6462     const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
6463   MachineFunction &MF = DAG.getMachineFunction();
6464   uint64_t Offset = getImplicitParameterOffset(MF, Param);
6465   SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
6466   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
6467   return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
6468                      MachineMemOperand::MODereferenceable |
6469                          MachineMemOperand::MOInvariant);
6470 }
6471 
6472 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
6473     SDValue Op, SelectionDAG &DAG) const {
6474   SDLoc SL(Op);
6475   SDValue Chain = Op.getOperand(0);
6476 
6477   SDValue QueuePtr;
6478   // For code object version 5, QueuePtr is passed through implicit kernarg.
6479   const Module *M = DAG.getMachineFunction().getFunction().getParent();
6480   if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
6481     QueuePtr =
6482         loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
6483   } else {
6484     MachineFunction &MF = DAG.getMachineFunction();
6485     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
6486     Register UserSGPR = Info->getQueuePtrUserSGPR();
6487 
6488     if (UserSGPR == AMDGPU::NoRegister) {
6489       // We probably are in a function incorrectly marked with
6490       // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
6491       // trap, so just use a null pointer.
6492       QueuePtr = DAG.getConstant(0, SL, MVT::i64);
6493     } else {
6494       QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
6495                                       MVT::i64);
6496     }
6497   }
6498 
6499   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
6500   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
6501                                    QueuePtr, SDValue());
6502 
6503   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
6504   SDValue Ops[] = {
6505     ToReg,
6506     DAG.getTargetConstant(TrapID, SL, MVT::i16),
6507     SGPR01,
6508     ToReg.getValue(1)
6509   };
6510   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
6511 }
6512 
6513 SDValue SITargetLowering::lowerTrapHsa(
6514     SDValue Op, SelectionDAG &DAG) const {
6515   SDLoc SL(Op);
6516   SDValue Chain = Op.getOperand(0);
6517 
6518   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
6519   SDValue Ops[] = {
6520     Chain,
6521     DAG.getTargetConstant(TrapID, SL, MVT::i16)
6522   };
6523   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
6524 }
6525 
6526 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
6527   SDLoc SL(Op);
6528   SDValue Chain = Op.getOperand(0);
6529   MachineFunction &MF = DAG.getMachineFunction();
6530 
6531   if (!Subtarget->isTrapHandlerEnabled() ||
6532       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
6533     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
6534                                      "debugtrap handler not supported",
6535                                      Op.getDebugLoc(),
6536                                      DS_Warning);
6537     LLVMContext &Ctx = MF.getFunction().getContext();
6538     Ctx.diagnose(NoTrap);
6539     return Chain;
6540   }
6541 
6542   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
6543   SDValue Ops[] = {
6544     Chain,
6545     DAG.getTargetConstant(TrapID, SL, MVT::i16)
6546   };
6547   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
6548 }
6549 
6550 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
6551                                              SelectionDAG &DAG) const {
6552   if (Subtarget->hasApertureRegs()) {
6553     const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS)
6554                                        ? AMDGPU::SRC_SHARED_BASE
6555                                        : AMDGPU::SRC_PRIVATE_BASE;
6556     // Note: this feature (register) is broken. When used as a 32-bit operand,
6557     // it returns a wrong value (all zeroes?). The real value is in the upper 32
6558     // bits.
6559     //
6560     // To work around the issue, directly emit a 64 bit mov from this register
6561     // then extract the high bits. Note that this shouldn't even result in a
6562     // shift being emitted and simply become a pair of registers (e.g.):
6563     //    s_mov_b64 s[6:7], src_shared_base
6564     //    v_mov_b32_e32 v1, s7
6565     //
6566     // FIXME: It would be more natural to emit a CopyFromReg here, but then copy
6567     // coalescing would kick in and it would think it's okay to use the "HI"
6568     // subregister directly (instead of extracting the HI 32 bits) which is an
6569     // artificial (unusable) register.
6570     //  Register TableGen definitions would need an overhaul to get rid of the
6571     //  artificial "HI" aperture registers and prevent this kind of issue from
6572     //  happening.
6573     SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64,
6574                                      DAG.getRegister(ApertureRegNo, MVT::i64));
6575     return DAG.getNode(
6576         ISD::TRUNCATE, DL, MVT::i32,
6577         DAG.getNode(ISD::SRL, DL, MVT::i64,
6578                     {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)}));
6579   }
6580 
6581   // For code object version 5, private_base and shared_base are passed through
6582   // implicit kernargs.
6583   const Module *M = DAG.getMachineFunction().getFunction().getParent();
6584   if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
6585     ImplicitParameter Param =
6586         (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
6587     return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
6588   }
6589 
6590   MachineFunction &MF = DAG.getMachineFunction();
6591   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
6592   Register UserSGPR = Info->getQueuePtrUserSGPR();
6593   if (UserSGPR == AMDGPU::NoRegister) {
6594     // We probably are in a function incorrectly marked with
6595     // amdgpu-no-queue-ptr. This is undefined.
6596     return DAG.getUNDEF(MVT::i32);
6597   }
6598 
6599   SDValue QueuePtr = CreateLiveInRegister(
6600     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
6601 
6602   // Offset into amd_queue_t for group_segment_aperture_base_hi /
6603   // private_segment_aperture_base_hi.
6604   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
6605 
6606   SDValue Ptr =
6607       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset));
6608 
6609   // TODO: Use custom target PseudoSourceValue.
6610   // TODO: We should use the value from the IR intrinsic call, but it might not
6611   // be available and how do we get it?
6612   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
6613   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
6614                      commonAlignment(Align(64), StructOffset),
6615                      MachineMemOperand::MODereferenceable |
6616                          MachineMemOperand::MOInvariant);
6617 }
6618 
6619 /// Return true if the value is a known valid address, such that a null check is
6620 /// not necessary.
6621 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
6622                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
6623   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
6624       isa<BasicBlockSDNode>(Val))
6625     return true;
6626 
6627   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
6628     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
6629 
6630   // TODO: Search through arithmetic, handle arguments and loads
6631   // marked nonnull.
6632   return false;
6633 }
6634 
6635 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
6636                                              SelectionDAG &DAG) const {
6637   SDLoc SL(Op);
6638   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
6639 
6640   SDValue Src = ASC->getOperand(0);
6641   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
6642   unsigned SrcAS = ASC->getSrcAddressSpace();
6643 
6644   const AMDGPUTargetMachine &TM =
6645     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
6646 
6647   // flat -> local/private
6648   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
6649     unsigned DestAS = ASC->getDestAddressSpace();
6650 
6651     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
6652         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
6653       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
6654 
6655       if (isKnownNonNull(Src, DAG, TM, SrcAS))
6656         return Ptr;
6657 
6658       unsigned NullVal = TM.getNullPointerValue(DestAS);
6659       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
6660       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
6661 
6662       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
6663                          SegmentNullPtr);
6664     }
6665   }
6666 
6667   // local/private -> flat
6668   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
6669     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
6670         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
6671 
6672       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
6673       SDValue CvtPtr =
6674           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
6675       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
6676 
6677       if (isKnownNonNull(Src, DAG, TM, SrcAS))
6678         return CvtPtr;
6679 
6680       unsigned NullVal = TM.getNullPointerValue(SrcAS);
6681       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
6682 
6683       SDValue NonNull
6684         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
6685 
6686       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
6687                          FlatNullPtr);
6688     }
6689   }
6690 
6691   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
6692       Op.getValueType() == MVT::i64) {
6693     const SIMachineFunctionInfo *Info =
6694         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
6695     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
6696     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
6697     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
6698   }
6699 
6700   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
6701       Src.getValueType() == MVT::i64)
6702     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
6703 
6704   // global <-> flat are no-ops and never emitted.
6705 
6706   const MachineFunction &MF = DAG.getMachineFunction();
6707   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
6708     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
6709   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
6710 
6711   return DAG.getUNDEF(ASC->getValueType(0));
6712 }
6713 
6714 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
6715 // the small vector and inserting them into the big vector. That is better than
6716 // the default expansion of doing it via a stack slot. Even though the use of
6717 // the stack slot would be optimized away afterwards, the stack slot itself
6718 // remains.
6719 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
6720                                                 SelectionDAG &DAG) const {
6721   SDValue Vec = Op.getOperand(0);
6722   SDValue Ins = Op.getOperand(1);
6723   SDValue Idx = Op.getOperand(2);
6724   EVT VecVT = Vec.getValueType();
6725   EVT InsVT = Ins.getValueType();
6726   EVT EltVT = VecVT.getVectorElementType();
6727   unsigned InsNumElts = InsVT.getVectorNumElements();
6728   unsigned IdxVal = Idx->getAsZExtVal();
6729   SDLoc SL(Op);
6730 
6731   if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) {
6732     // Insert 32-bit registers at a time.
6733     assert(InsNumElts % 2 == 0 && "expect legal vector types");
6734 
6735     unsigned VecNumElts = VecVT.getVectorNumElements();
6736     EVT NewVecVT =
6737         EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2);
6738     EVT NewInsVT = InsNumElts == 2 ? MVT::i32
6739                                    : EVT::getVectorVT(*DAG.getContext(),
6740                                                       MVT::i32, InsNumElts / 2);
6741 
6742     Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec);
6743     Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins);
6744 
6745     for (unsigned I = 0; I != InsNumElts / 2; ++I) {
6746       SDValue Elt;
6747       if (InsNumElts == 2) {
6748         Elt = Ins;
6749       } else {
6750         Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins,
6751                           DAG.getConstant(I, SL, MVT::i32));
6752       }
6753       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt,
6754                         DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32));
6755     }
6756 
6757     return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec);
6758   }
6759 
6760   for (unsigned I = 0; I != InsNumElts; ++I) {
6761     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
6762                               DAG.getConstant(I, SL, MVT::i32));
6763     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
6764                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
6765   }
6766   return Vec;
6767 }
6768 
6769 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
6770                                                  SelectionDAG &DAG) const {
6771   SDValue Vec = Op.getOperand(0);
6772   SDValue InsVal = Op.getOperand(1);
6773   SDValue Idx = Op.getOperand(2);
6774   EVT VecVT = Vec.getValueType();
6775   EVT EltVT = VecVT.getVectorElementType();
6776   unsigned VecSize = VecVT.getSizeInBits();
6777   unsigned EltSize = EltVT.getSizeInBits();
6778   SDLoc SL(Op);
6779 
6780   // Specially handle the case of v4i16 with static indexing.
6781   unsigned NumElts = VecVT.getVectorNumElements();
6782   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
6783   if (NumElts == 4 && EltSize == 16 && KIdx) {
6784     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
6785 
6786     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
6787                                  DAG.getConstant(0, SL, MVT::i32));
6788     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
6789                                  DAG.getConstant(1, SL, MVT::i32));
6790 
6791     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
6792     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
6793 
6794     unsigned Idx = KIdx->getZExtValue();
6795     bool InsertLo = Idx < 2;
6796     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
6797       InsertLo ? LoVec : HiVec,
6798       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
6799       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
6800 
6801     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
6802 
6803     SDValue Concat = InsertLo ?
6804       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
6805       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
6806 
6807     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
6808   }
6809 
6810   // Static indexing does not lower to stack access, and hence there is no need
6811   // for special custom lowering to avoid stack access.
6812   if (isa<ConstantSDNode>(Idx))
6813     return SDValue();
6814 
6815   // Avoid stack access for dynamic indexing by custom lowering to
6816   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
6817 
6818   assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
6819 
6820   MVT IntVT = MVT::getIntegerVT(VecSize);
6821 
6822   // Convert vector index to bit-index and get the required bit mask.
6823   assert(isPowerOf2_32(EltSize));
6824   const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
6825   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
6826   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
6827   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
6828                             DAG.getConstant(EltMask, SL, IntVT), ScaledIdx);
6829 
6830   // 1. Create a congruent vector with the target value in each element.
6831   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
6832                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
6833 
6834   // 2. Mask off all other indicies except the required index within (1).
6835   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
6836 
6837   // 3. Mask off the required index within the target vector.
6838   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
6839   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
6840                             DAG.getNOT(SL, BFM, IntVT), BCVec);
6841 
6842   // 4. Get (2) and (3) ORed into the target vector.
6843   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
6844 
6845   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
6846 }
6847 
6848 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
6849                                                   SelectionDAG &DAG) const {
6850   SDLoc SL(Op);
6851 
6852   EVT ResultVT = Op.getValueType();
6853   SDValue Vec = Op.getOperand(0);
6854   SDValue Idx = Op.getOperand(1);
6855   EVT VecVT = Vec.getValueType();
6856   unsigned VecSize = VecVT.getSizeInBits();
6857   EVT EltVT = VecVT.getVectorElementType();
6858 
6859   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
6860 
6861   // Make sure we do any optimizations that will make it easier to fold
6862   // source modifiers before obscuring it with bit operations.
6863 
6864   // XXX - Why doesn't this get called when vector_shuffle is expanded?
6865   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
6866     return Combined;
6867 
6868   if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
6869     SDValue Lo, Hi;
6870     EVT LoVT, HiVT;
6871     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
6872 
6873     if (VecSize == 128) {
6874       SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
6875       Lo = DAG.getBitcast(LoVT,
6876                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6877                                       DAG.getConstant(0, SL, MVT::i32)));
6878       Hi = DAG.getBitcast(HiVT,
6879                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6880                                       DAG.getConstant(1, SL, MVT::i32)));
6881     } else if (VecSize == 256) {
6882       SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
6883       SDValue Parts[4];
6884       for (unsigned P = 0; P < 4; ++P) {
6885         Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6886                                DAG.getConstant(P, SL, MVT::i32));
6887       }
6888 
6889       Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
6890                                             Parts[0], Parts[1]));
6891       Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
6892                                             Parts[2], Parts[3]));
6893     } else {
6894       assert(VecSize == 512);
6895 
6896       SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec);
6897       SDValue Parts[8];
6898       for (unsigned P = 0; P < 8; ++P) {
6899         Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
6900                                DAG.getConstant(P, SL, MVT::i32));
6901       }
6902 
6903       Lo = DAG.getBitcast(LoVT,
6904                           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
6905                                       Parts[0], Parts[1], Parts[2], Parts[3]));
6906       Hi = DAG.getBitcast(HiVT,
6907                           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
6908                                       Parts[4], Parts[5],Parts[6], Parts[7]));
6909     }
6910 
6911     EVT IdxVT = Idx.getValueType();
6912     unsigned NElem = VecVT.getVectorNumElements();
6913     assert(isPowerOf2_32(NElem));
6914     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
6915     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
6916     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
6917     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
6918   }
6919 
6920   assert(VecSize <= 64);
6921 
6922   MVT IntVT = MVT::getIntegerVT(VecSize);
6923 
6924   // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
6925   SDValue VecBC = peekThroughBitcasts(Vec);
6926   if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6927     SDValue Src = VecBC.getOperand(0);
6928     Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
6929     Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
6930   }
6931 
6932   unsigned EltSize = EltVT.getSizeInBits();
6933   assert(isPowerOf2_32(EltSize));
6934 
6935   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
6936 
6937   // Convert vector index to bit-index (* EltSize)
6938   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
6939 
6940   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
6941   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
6942 
6943   if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
6944     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
6945     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
6946   }
6947 
6948   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
6949 }
6950 
6951 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
6952   assert(Elt % 2 == 0);
6953   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
6954 }
6955 
6956 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
6957                                               SelectionDAG &DAG) const {
6958   SDLoc SL(Op);
6959   EVT ResultVT = Op.getValueType();
6960   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
6961 
6962   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
6963   EVT EltVT = PackVT.getVectorElementType();
6964   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
6965 
6966   // vector_shuffle <0,1,6,7> lhs, rhs
6967   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
6968   //
6969   // vector_shuffle <6,7,2,3> lhs, rhs
6970   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
6971   //
6972   // vector_shuffle <6,7,0,1> lhs, rhs
6973   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
6974 
6975   // Avoid scalarizing when both halves are reading from consecutive elements.
6976   SmallVector<SDValue, 4> Pieces;
6977   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
6978     if (elementPairIsContiguous(SVN->getMask(), I)) {
6979       const int Idx = SVN->getMaskElt(I);
6980       int VecIdx = Idx < SrcNumElts ? 0 : 1;
6981       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
6982       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
6983                                     PackVT, SVN->getOperand(VecIdx),
6984                                     DAG.getConstant(EltIdx, SL, MVT::i32));
6985       Pieces.push_back(SubVec);
6986     } else {
6987       const int Idx0 = SVN->getMaskElt(I);
6988       const int Idx1 = SVN->getMaskElt(I + 1);
6989       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
6990       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
6991       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
6992       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
6993 
6994       SDValue Vec0 = SVN->getOperand(VecIdx0);
6995       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6996                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
6997 
6998       SDValue Vec1 = SVN->getOperand(VecIdx1);
6999       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7000                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
7001       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
7002     }
7003   }
7004 
7005   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
7006 }
7007 
7008 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
7009                                                 SelectionDAG &DAG) const {
7010   SDValue SVal = Op.getOperand(0);
7011   EVT ResultVT = Op.getValueType();
7012   EVT SValVT = SVal.getValueType();
7013   SDValue UndefVal = DAG.getUNDEF(SValVT);
7014   SDLoc SL(Op);
7015 
7016   SmallVector<SDValue, 8> VElts;
7017   VElts.push_back(SVal);
7018   for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
7019     VElts.push_back(UndefVal);
7020 
7021   return DAG.getBuildVector(ResultVT, SL, VElts);
7022 }
7023 
7024 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
7025                                             SelectionDAG &DAG) const {
7026   SDLoc SL(Op);
7027   EVT VT = Op.getValueType();
7028 
7029   if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
7030       VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
7031     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
7032                                   VT.getVectorNumElements() / 2);
7033     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
7034 
7035     // Turn into pair of packed build_vectors.
7036     // TODO: Special case for constants that can be materialized with s_mov_b64.
7037     SmallVector<SDValue, 4> LoOps, HiOps;
7038     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
7039       LoOps.push_back(Op.getOperand(I));
7040       HiOps.push_back(Op.getOperand(I + E));
7041     }
7042     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
7043     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
7044 
7045     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
7046     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
7047 
7048     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
7049                                        { CastLo, CastHi });
7050     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
7051   }
7052 
7053   if (VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v16bf16) {
7054     EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
7055                                      VT.getVectorNumElements() / 4);
7056     MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
7057 
7058     SmallVector<SDValue, 4> Parts[4];
7059     for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) {
7060       for (unsigned P = 0; P < 4; ++P)
7061         Parts[P].push_back(Op.getOperand(I + P * E));
7062     }
7063     SDValue Casts[4];
7064     for (unsigned P = 0; P < 4; ++P) {
7065       SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
7066       Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
7067     }
7068 
7069     SDValue Blend =
7070         DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts);
7071     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
7072   }
7073 
7074   if (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v32bf16) {
7075     EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
7076                                      VT.getVectorNumElements() / 8);
7077     MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
7078 
7079     SmallVector<SDValue, 8> Parts[8];
7080     for (unsigned I = 0, E = VT.getVectorNumElements() / 8; I != E; ++I) {
7081       for (unsigned P = 0; P < 8; ++P)
7082         Parts[P].push_back(Op.getOperand(I + P * E));
7083     }
7084     SDValue Casts[8];
7085     for (unsigned P = 0; P < 8; ++P) {
7086       SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
7087       Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
7088     }
7089 
7090     SDValue Blend =
7091         DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 8), SL, Casts);
7092     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
7093   }
7094 
7095   assert(VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16);
7096   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
7097 
7098   SDValue Lo = Op.getOperand(0);
7099   SDValue Hi = Op.getOperand(1);
7100 
7101   // Avoid adding defined bits with the zero_extend.
7102   if (Hi.isUndef()) {
7103     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
7104     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
7105     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
7106   }
7107 
7108   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
7109   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
7110 
7111   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
7112                               DAG.getConstant(16, SL, MVT::i32));
7113   if (Lo.isUndef())
7114     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
7115 
7116   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
7117   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
7118 
7119   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
7120   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
7121 }
7122 
7123 bool
7124 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7125   // We can fold offsets for anything that doesn't require a GOT relocation.
7126   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
7127           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
7128           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
7129          !shouldEmitGOTReloc(GA->getGlobal());
7130 }
7131 
7132 static SDValue
7133 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
7134                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
7135                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
7136   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
7137   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
7138   // lowered to the following code sequence:
7139   //
7140   // For constant address space:
7141   //   s_getpc_b64 s[0:1]
7142   //   s_add_u32 s0, s0, $symbol
7143   //   s_addc_u32 s1, s1, 0
7144   //
7145   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
7146   //   a fixup or relocation is emitted to replace $symbol with a literal
7147   //   constant, which is a pc-relative offset from the encoding of the $symbol
7148   //   operand to the global variable.
7149   //
7150   // For global address space:
7151   //   s_getpc_b64 s[0:1]
7152   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
7153   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
7154   //
7155   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
7156   //   fixups or relocations are emitted to replace $symbol@*@lo and
7157   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
7158   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
7159   //   operand to the global variable.
7160   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags);
7161   SDValue PtrHi;
7162   if (GAFlags == SIInstrInfo::MO_NONE)
7163     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
7164   else
7165     PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1);
7166   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
7167 }
7168 
7169 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
7170                                              SDValue Op,
7171                                              SelectionDAG &DAG) const {
7172   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
7173   SDLoc DL(GSD);
7174   EVT PtrVT = Op.getValueType();
7175 
7176   const GlobalValue *GV = GSD->getGlobal();
7177   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
7178        shouldUseLDSConstAddress(GV)) ||
7179       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
7180       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
7181     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
7182         GV->hasExternalLinkage()) {
7183       Type *Ty = GV->getValueType();
7184       // HIP uses an unsized array `extern __shared__ T s[]` or similar
7185       // zero-sized type in other languages to declare the dynamic shared
7186       // memory which size is not known at the compile time. They will be
7187       // allocated by the runtime and placed directly after the static
7188       // allocated ones. They all share the same offset.
7189       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
7190         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
7191         // Adjust alignment for that dynamic shared memory array.
7192         Function &F = DAG.getMachineFunction().getFunction();
7193         MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV));
7194         MFI->setUsesDynamicLDS(true);
7195         return SDValue(
7196             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
7197       }
7198     }
7199     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
7200   }
7201 
7202   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
7203     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
7204                                             SIInstrInfo::MO_ABS32_LO);
7205     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
7206   }
7207 
7208   if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) {
7209     SDValue AddrLo = DAG.getTargetGlobalAddress(
7210         GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO);
7211     AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0};
7212 
7213     SDValue AddrHi = DAG.getTargetGlobalAddress(
7214         GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI);
7215     AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0};
7216 
7217     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi);
7218   }
7219 
7220   if (shouldEmitFixup(GV))
7221     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
7222 
7223   if (shouldEmitPCReloc(GV))
7224     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
7225                                    SIInstrInfo::MO_REL32);
7226 
7227   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
7228                                             SIInstrInfo::MO_GOTPCREL32);
7229 
7230   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
7231   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
7232   const DataLayout &DataLayout = DAG.getDataLayout();
7233   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
7234   MachinePointerInfo PtrInfo
7235     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
7236 
7237   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
7238                      MachineMemOperand::MODereferenceable |
7239                          MachineMemOperand::MOInvariant);
7240 }
7241 
7242 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
7243                                    const SDLoc &DL, SDValue V) const {
7244   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
7245   // the destination register.
7246   //
7247   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
7248   // so we will end up with redundant moves to m0.
7249   //
7250   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
7251 
7252   // A Null SDValue creates a glue result.
7253   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
7254                                   V, Chain);
7255   return SDValue(M0, 0);
7256 }
7257 
7258 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
7259                                                  SDValue Op,
7260                                                  MVT VT,
7261                                                  unsigned Offset) const {
7262   SDLoc SL(Op);
7263   SDValue Param = lowerKernargMemParameter(
7264       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
7265   // The local size values will have the hi 16-bits as zero.
7266   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
7267                      DAG.getValueType(VT));
7268 }
7269 
7270 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
7271                                         EVT VT) {
7272   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
7273                                       "non-hsa intrinsic with hsa target",
7274                                       DL.getDebugLoc());
7275   DAG.getContext()->diagnose(BadIntrin);
7276   return DAG.getUNDEF(VT);
7277 }
7278 
7279 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
7280                                          EVT VT) {
7281   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
7282                                       "intrinsic not supported on subtarget",
7283                                       DL.getDebugLoc());
7284   DAG.getContext()->diagnose(BadIntrin);
7285   return DAG.getUNDEF(VT);
7286 }
7287 
7288 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
7289                                     ArrayRef<SDValue> Elts) {
7290   assert(!Elts.empty());
7291   MVT Type;
7292   unsigned NumElts = Elts.size();
7293 
7294   if (NumElts <= 12) {
7295     Type = MVT::getVectorVT(MVT::f32, NumElts);
7296   } else {
7297     assert(Elts.size() <= 16);
7298     Type = MVT::v16f32;
7299     NumElts = 16;
7300   }
7301 
7302   SmallVector<SDValue, 16> VecElts(NumElts);
7303   for (unsigned i = 0; i < Elts.size(); ++i) {
7304     SDValue Elt = Elts[i];
7305     if (Elt.getValueType() != MVT::f32)
7306       Elt = DAG.getBitcast(MVT::f32, Elt);
7307     VecElts[i] = Elt;
7308   }
7309   for (unsigned i = Elts.size(); i < NumElts; ++i)
7310     VecElts[i] = DAG.getUNDEF(MVT::f32);
7311 
7312   if (NumElts == 1)
7313     return VecElts[0];
7314   return DAG.getBuildVector(Type, DL, VecElts);
7315 }
7316 
7317 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
7318                               SDValue Src, int ExtraElts) {
7319   EVT SrcVT = Src.getValueType();
7320 
7321   SmallVector<SDValue, 8> Elts;
7322 
7323   if (SrcVT.isVector())
7324     DAG.ExtractVectorElements(Src, Elts);
7325   else
7326     Elts.push_back(Src);
7327 
7328   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
7329   while (ExtraElts--)
7330     Elts.push_back(Undef);
7331 
7332   return DAG.getBuildVector(CastVT, DL, Elts);
7333 }
7334 
7335 // Re-construct the required return value for a image load intrinsic.
7336 // This is more complicated due to the optional use TexFailCtrl which means the required
7337 // return type is an aggregate
7338 static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result,
7339                                  ArrayRef<EVT> ResultTypes, bool IsTexFail,
7340                                  bool Unpacked, bool IsD16, int DMaskPop,
7341                                  int NumVDataDwords, bool IsAtomicPacked16Bit,
7342                                  const SDLoc &DL) {
7343   // Determine the required return type. This is the same regardless of IsTexFail flag
7344   EVT ReqRetVT = ResultTypes[0];
7345   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
7346   int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
7347                           ? (ReqRetNumElts + 1) / 2
7348                           : ReqRetNumElts;
7349 
7350   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
7351     DMaskPop : (DMaskPop + 1) / 2;
7352 
7353   MVT DataDwordVT = NumDataDwords == 1 ?
7354     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
7355 
7356   MVT MaskPopVT = MaskPopDwords == 1 ?
7357     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
7358 
7359   SDValue Data(Result, 0);
7360   SDValue TexFail;
7361 
7362   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
7363     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
7364     if (MaskPopVT.isVector()) {
7365       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
7366                          SDValue(Result, 0), ZeroIdx);
7367     } else {
7368       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
7369                          SDValue(Result, 0), ZeroIdx);
7370     }
7371   }
7372 
7373   if (DataDwordVT.isVector() && !IsAtomicPacked16Bit)
7374     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
7375                           NumDataDwords - MaskPopDwords);
7376 
7377   if (IsD16)
7378     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
7379 
7380   EVT LegalReqRetVT = ReqRetVT;
7381   if (!ReqRetVT.isVector()) {
7382     if (!Data.getValueType().isInteger())
7383       Data = DAG.getNode(ISD::BITCAST, DL,
7384                          Data.getValueType().changeTypeToInteger(), Data);
7385     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
7386   } else {
7387     // We need to widen the return vector to a legal type
7388     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
7389         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
7390       LegalReqRetVT =
7391           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
7392                            ReqRetVT.getVectorNumElements() + 1);
7393     }
7394   }
7395   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
7396 
7397   if (IsTexFail) {
7398     TexFail =
7399         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
7400                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
7401 
7402     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
7403   }
7404 
7405   if (Result->getNumValues() == 1)
7406     return Data;
7407 
7408   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
7409 }
7410 
7411 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
7412                          SDValue *LWE, bool &IsTexFail) {
7413   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
7414 
7415   uint64_t Value = TexFailCtrlConst->getZExtValue();
7416   if (Value) {
7417     IsTexFail = true;
7418   }
7419 
7420   SDLoc DL(TexFailCtrlConst);
7421   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
7422   Value &= ~(uint64_t)0x1;
7423   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
7424   Value &= ~(uint64_t)0x2;
7425 
7426   return Value == 0;
7427 }
7428 
7429 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
7430                                       MVT PackVectorVT,
7431                                       SmallVectorImpl<SDValue> &PackedAddrs,
7432                                       unsigned DimIdx, unsigned EndIdx,
7433                                       unsigned NumGradients) {
7434   SDLoc DL(Op);
7435   for (unsigned I = DimIdx; I < EndIdx; I++) {
7436     SDValue Addr = Op.getOperand(I);
7437 
7438     // Gradients are packed with undef for each coordinate.
7439     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
7440     // 1D: undef,dx/dh; undef,dx/dv
7441     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
7442     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
7443     if (((I + 1) >= EndIdx) ||
7444         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
7445                                          I == DimIdx + NumGradients - 1))) {
7446       if (Addr.getValueType() != MVT::i16)
7447         Addr = DAG.getBitcast(MVT::i16, Addr);
7448       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
7449     } else {
7450       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
7451       I++;
7452     }
7453     Addr = DAG.getBitcast(MVT::f32, Addr);
7454     PackedAddrs.push_back(Addr);
7455   }
7456 }
7457 
7458 SDValue SITargetLowering::lowerImage(SDValue Op,
7459                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
7460                                      SelectionDAG &DAG, bool WithChain) const {
7461   SDLoc DL(Op);
7462   MachineFunction &MF = DAG.getMachineFunction();
7463   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
7464   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
7465       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
7466   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
7467   unsigned IntrOpcode = Intr->BaseOpcode;
7468   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
7469   bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
7470   bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
7471 
7472   SmallVector<EVT, 3> ResultTypes(Op->values());
7473   SmallVector<EVT, 3> OrigResultTypes(Op->values());
7474   bool IsD16 = false;
7475   bool IsG16 = false;
7476   bool IsA16 = false;
7477   SDValue VData;
7478   int NumVDataDwords;
7479   bool AdjustRetType = false;
7480   bool IsAtomicPacked16Bit = false;
7481 
7482   // Offset of intrinsic arguments
7483   const unsigned ArgOffset = WithChain ? 2 : 1;
7484 
7485   unsigned DMask;
7486   unsigned DMaskLanes = 0;
7487 
7488   if (BaseOpcode->Atomic) {
7489     VData = Op.getOperand(2);
7490 
7491     IsAtomicPacked16Bit =
7492         (Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
7493          Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
7494 
7495     bool Is64Bit = VData.getValueSizeInBits() == 64;
7496     if (BaseOpcode->AtomicX2) {
7497       SDValue VData2 = Op.getOperand(3);
7498       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
7499                                  {VData, VData2});
7500       if (Is64Bit)
7501         VData = DAG.getBitcast(MVT::v4i32, VData);
7502 
7503       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
7504       DMask = Is64Bit ? 0xf : 0x3;
7505       NumVDataDwords = Is64Bit ? 4 : 2;
7506     } else {
7507       DMask = Is64Bit ? 0x3 : 0x1;
7508       NumVDataDwords = Is64Bit ? 2 : 1;
7509     }
7510   } else {
7511     DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex);
7512     DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask);
7513 
7514     if (BaseOpcode->Store) {
7515       VData = Op.getOperand(2);
7516 
7517       MVT StoreVT = VData.getSimpleValueType();
7518       if (StoreVT.getScalarType() == MVT::f16) {
7519         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
7520           return Op; // D16 is unsupported for this instruction
7521 
7522         IsD16 = true;
7523         VData = handleD16VData(VData, DAG, true);
7524       }
7525 
7526       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
7527     } else {
7528       // Work out the num dwords based on the dmask popcount and underlying type
7529       // and whether packing is supported.
7530       MVT LoadVT = ResultTypes[0].getSimpleVT();
7531       if (LoadVT.getScalarType() == MVT::f16) {
7532         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
7533           return Op; // D16 is unsupported for this instruction
7534 
7535         IsD16 = true;
7536       }
7537 
7538       // Confirm that the return type is large enough for the dmask specified
7539       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
7540           (!LoadVT.isVector() && DMaskLanes > 1))
7541           return Op;
7542 
7543       // The sq block of gfx8 and gfx9 do not estimate register use correctly
7544       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
7545       // instructions.
7546       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
7547           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
7548         NumVDataDwords = (DMaskLanes + 1) / 2;
7549       else
7550         NumVDataDwords = DMaskLanes;
7551 
7552       AdjustRetType = true;
7553     }
7554   }
7555 
7556   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
7557   SmallVector<SDValue, 4> VAddrs;
7558 
7559   // Check for 16 bit addresses or derivatives and pack if true.
7560   MVT VAddrVT =
7561       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
7562   MVT VAddrScalarVT = VAddrVT.getScalarType();
7563   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
7564   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
7565 
7566   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
7567   VAddrScalarVT = VAddrVT.getScalarType();
7568   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
7569   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
7570 
7571   // Push back extra arguments.
7572   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
7573     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
7574       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
7575       // Special handling of bias when A16 is on. Bias is of type half but
7576       // occupies full 32-bit.
7577       SDValue Bias = DAG.getBuildVector(
7578           MVT::v2f16, DL,
7579           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
7580       VAddrs.push_back(Bias);
7581     } else {
7582       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
7583              "Bias needs to be converted to 16 bit in A16 mode");
7584       VAddrs.push_back(Op.getOperand(ArgOffset + I));
7585     }
7586   }
7587 
7588   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
7589     // 16 bit gradients are supported, but are tied to the A16 control
7590     // so both gradients and addresses must be 16 bit
7591     LLVM_DEBUG(
7592         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
7593                   "require 16 bit args for both gradients and addresses");
7594     return Op;
7595   }
7596 
7597   if (IsA16) {
7598     if (!ST->hasA16()) {
7599       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
7600                            "support 16 bit addresses\n");
7601       return Op;
7602     }
7603   }
7604 
7605   // We've dealt with incorrect input so we know that if IsA16, IsG16
7606   // are set then we have to compress/pack operands (either address,
7607   // gradient or both)
7608   // In the case where a16 and gradients are tied (no G16 support) then we
7609   // have already verified that both IsA16 and IsG16 are true
7610   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
7611     // Activate g16
7612     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
7613         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
7614     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
7615   }
7616 
7617   // Add gradients (packed or unpacked)
7618   if (IsG16) {
7619     // Pack the gradients
7620     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
7621     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
7622                               ArgOffset + Intr->GradientStart,
7623                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
7624   } else {
7625     for (unsigned I = ArgOffset + Intr->GradientStart;
7626          I < ArgOffset + Intr->CoordStart; I++)
7627       VAddrs.push_back(Op.getOperand(I));
7628   }
7629 
7630   // Add addresses (packed or unpacked)
7631   if (IsA16) {
7632     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
7633                               ArgOffset + Intr->CoordStart, VAddrEnd,
7634                               0 /* No gradients */);
7635   } else {
7636     // Add uncompressed address
7637     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
7638       VAddrs.push_back(Op.getOperand(I));
7639   }
7640 
7641   // If the register allocator cannot place the address registers contiguously
7642   // without introducing moves, then using the non-sequential address encoding
7643   // is always preferable, since it saves VALU instructions and is usually a
7644   // wash in terms of code size or even better.
7645   //
7646   // However, we currently have no way of hinting to the register allocator that
7647   // MIMG addresses should be placed contiguously when it is possible to do so,
7648   // so force non-NSA for the common 2-address case as a heuristic.
7649   //
7650   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
7651   // allocation when possible.
7652   //
7653   // Partial NSA is allowed on GFX11+ where the final register is a contiguous
7654   // set of the remaining addresses.
7655   const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler);
7656   const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding();
7657   const bool UseNSA = ST->hasNSAEncoding() &&
7658                       VAddrs.size() >= ST->getNSAThreshold(MF) &&
7659                       (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding);
7660   const bool UsePartialNSA =
7661       UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize;
7662 
7663   SDValue VAddr;
7664   if (UsePartialNSA) {
7665     VAddr = getBuildDwordsVector(DAG, DL,
7666                                  ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
7667   }
7668   else if (!UseNSA) {
7669     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
7670   }
7671 
7672   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
7673   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
7674   SDValue Unorm;
7675   if (!BaseOpcode->Sampler) {
7676     Unorm = True;
7677   } else {
7678     auto UnormConst =
7679         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
7680 
7681     Unorm = UnormConst->getZExtValue() ? True : False;
7682   }
7683 
7684   SDValue TFE;
7685   SDValue LWE;
7686   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
7687   bool IsTexFail = false;
7688   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
7689     return Op;
7690 
7691   if (IsTexFail) {
7692     if (!DMaskLanes) {
7693       // Expecting to get an error flag since TFC is on - and dmask is 0
7694       // Force dmask to be at least 1 otherwise the instruction will fail
7695       DMask = 0x1;
7696       DMaskLanes = 1;
7697       NumVDataDwords = 1;
7698     }
7699     NumVDataDwords += 1;
7700     AdjustRetType = true;
7701   }
7702 
7703   // Has something earlier tagged that the return type needs adjusting
7704   // This happens if the instruction is a load or has set TexFailCtrl flags
7705   if (AdjustRetType) {
7706     // NumVDataDwords reflects the true number of dwords required in the return type
7707     if (DMaskLanes == 0 && !BaseOpcode->Store) {
7708       // This is a no-op load. This can be eliminated
7709       SDValue Undef = DAG.getUNDEF(Op.getValueType());
7710       if (isa<MemSDNode>(Op))
7711         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
7712       return Undef;
7713     }
7714 
7715     EVT NewVT = NumVDataDwords > 1 ?
7716                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
7717                 : MVT::i32;
7718 
7719     ResultTypes[0] = NewVT;
7720     if (ResultTypes.size() == 3) {
7721       // Original result was aggregate type used for TexFailCtrl results
7722       // The actual instruction returns as a vector type which has now been
7723       // created. Remove the aggregate result.
7724       ResultTypes.erase(&ResultTypes[1]);
7725     }
7726   }
7727 
7728   unsigned CPol = cast<ConstantSDNode>(
7729       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
7730   if (BaseOpcode->Atomic)
7731     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
7732   if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) |
7733                AMDGPU::CPol::VOLATILE))
7734     return Op;
7735 
7736   SmallVector<SDValue, 26> Ops;
7737   if (BaseOpcode->Store || BaseOpcode->Atomic)
7738     Ops.push_back(VData); // vdata
7739   if (UsePartialNSA) {
7740     append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1));
7741     Ops.push_back(VAddr);
7742   }
7743   else if (UseNSA)
7744     append_range(Ops, VAddrs);
7745   else
7746     Ops.push_back(VAddr);
7747   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
7748   if (BaseOpcode->Sampler)
7749     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
7750   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
7751   if (IsGFX10Plus)
7752     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
7753   if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
7754     Ops.push_back(Unorm);
7755   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
7756   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
7757                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
7758   if (IsGFX10Plus)
7759     Ops.push_back(IsA16 ? True : False);
7760   if (!Subtarget->hasGFX90AInsts()) {
7761     Ops.push_back(TFE); //tfe
7762   } else if (TFE->getAsZExtVal()) {
7763     report_fatal_error("TFE is not supported on this GPU");
7764   }
7765   if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
7766     Ops.push_back(LWE); // lwe
7767   if (!IsGFX10Plus)
7768     Ops.push_back(DimInfo->DA ? True : False);
7769   if (BaseOpcode->HasD16)
7770     Ops.push_back(IsD16 ? True : False);
7771   if (isa<MemSDNode>(Op))
7772     Ops.push_back(Op.getOperand(0)); // chain
7773 
7774   int NumVAddrDwords =
7775       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
7776   int Opcode = -1;
7777 
7778   if (IsGFX12Plus) {
7779     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12,
7780                                    NumVDataDwords, NumVAddrDwords);
7781   } else if (IsGFX11Plus) {
7782     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
7783                                    UseNSA ? AMDGPU::MIMGEncGfx11NSA
7784                                           : AMDGPU::MIMGEncGfx11Default,
7785                                    NumVDataDwords, NumVAddrDwords);
7786   } else if (IsGFX10Plus) {
7787     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
7788                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
7789                                           : AMDGPU::MIMGEncGfx10Default,
7790                                    NumVDataDwords, NumVAddrDwords);
7791   } else {
7792     if (Subtarget->hasGFX90AInsts()) {
7793       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
7794                                      NumVDataDwords, NumVAddrDwords);
7795       if (Opcode == -1)
7796         report_fatal_error(
7797             "requested image instruction is not supported on this GPU");
7798     }
7799     if (Opcode == -1 &&
7800         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
7801       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
7802                                      NumVDataDwords, NumVAddrDwords);
7803     if (Opcode == -1)
7804       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
7805                                      NumVDataDwords, NumVAddrDwords);
7806   }
7807   if (Opcode == -1)
7808     return Op;
7809 
7810   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
7811   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
7812     MachineMemOperand *MemRef = MemOp->getMemOperand();
7813     DAG.setNodeMemRefs(NewNode, {MemRef});
7814   }
7815 
7816   if (BaseOpcode->AtomicX2) {
7817     SmallVector<SDValue, 1> Elt;
7818     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
7819     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
7820   }
7821   if (BaseOpcode->Store)
7822     return SDValue(NewNode, 0);
7823   return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail,
7824                            Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes,
7825                            NumVDataDwords, IsAtomicPacked16Bit, DL);
7826 }
7827 
7828 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
7829                                        SDValue Offset, SDValue CachePolicy,
7830                                        SelectionDAG &DAG) const {
7831   MachineFunction &MF = DAG.getMachineFunction();
7832 
7833   const DataLayout &DataLayout = DAG.getDataLayout();
7834   Align Alignment =
7835       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
7836 
7837   MachineMemOperand *MMO = MF.getMachineMemOperand(
7838       MachinePointerInfo(),
7839       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
7840           MachineMemOperand::MOInvariant,
7841       VT.getStoreSize(), Alignment);
7842 
7843   if (!Offset->isDivergent()) {
7844     SDValue Ops[] = {Rsrc, Offset, CachePolicy};
7845 
7846     // Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the
7847     // s_buffer_load_u16 instruction is emitted for both signed and unsigned
7848     // loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext
7849     // and generates s_buffer_load_i16 (performSignExtendInRegCombine).
7850     if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
7851       SDValue BufferLoad =
7852           DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_USHORT, DL,
7853                                   DAG.getVTList(MVT::i32), Ops, VT, MMO);
7854       return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
7855     }
7856 
7857     // Widen vec3 load to vec4.
7858     if (VT.isVector() && VT.getVectorNumElements() == 3 &&
7859         !Subtarget->hasScalarDwordx3Loads()) {
7860       EVT WidenedVT =
7861           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
7862       auto WidenedOp = DAG.getMemIntrinsicNode(
7863           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
7864           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
7865       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
7866                                    DAG.getVectorIdxConstant(0, DL));
7867       return Subvector;
7868     }
7869 
7870     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
7871                                    DAG.getVTList(VT), Ops, VT, MMO);
7872   }
7873 
7874   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
7875   // assume that the buffer is unswizzled.
7876   SDValue Ops[] = {
7877       DAG.getEntryNode(),                    // Chain
7878       Rsrc,                                  // rsrc
7879       DAG.getConstant(0, DL, MVT::i32),      // vindex
7880       {},                                    // voffset
7881       {},                                    // soffset
7882       {},                                    // offset
7883       CachePolicy,                           // cachepolicy
7884       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7885   };
7886   if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
7887     setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
7888     return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
7889   }
7890 
7891   SmallVector<SDValue, 4> Loads;
7892   unsigned NumLoads = 1;
7893   MVT LoadVT = VT.getSimpleVT();
7894   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
7895   assert((LoadVT.getScalarType() == MVT::i32 ||
7896           LoadVT.getScalarType() == MVT::f32));
7897 
7898   if (NumElts == 8 || NumElts == 16) {
7899     NumLoads = NumElts / 4;
7900     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
7901   }
7902 
7903   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
7904 
7905   // Use the alignment to ensure that the required offsets will fit into the
7906   // immediate offsets.
7907   setBufferOffsets(Offset, DAG, &Ops[3],
7908                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
7909 
7910   uint64_t InstOffset = Ops[5]->getAsZExtVal();
7911   for (unsigned i = 0; i < NumLoads; ++i) {
7912     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
7913     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
7914                                         LoadVT, MMO, DAG));
7915   }
7916 
7917   if (NumElts == 8 || NumElts == 16)
7918     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
7919 
7920   return Loads[0];
7921 }
7922 
7923 SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const {
7924   // With architected SGPRs, waveIDinGroup is in TTMP8[29:25].
7925   if (!Subtarget->hasArchitectedSGPRs())
7926     return {};
7927   SDLoc SL(Op);
7928   MVT VT = MVT::i32;
7929   SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT);
7930   return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8,
7931                      DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT));
7932 }
7933 
7934 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
7935                                           unsigned Dim,
7936                                           const ArgDescriptor &Arg) const {
7937   SDLoc SL(Op);
7938   MachineFunction &MF = DAG.getMachineFunction();
7939   unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
7940   if (MaxID == 0)
7941     return DAG.getConstant(0, SL, MVT::i32);
7942 
7943   SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
7944                                SDLoc(DAG.getEntryNode()), Arg);
7945 
7946   // Don't bother inserting AssertZext for packed IDs since we're emitting the
7947   // masking operations anyway.
7948   //
7949   // TODO: We could assert the top bit is 0 for the source copy.
7950   if (Arg.isMasked())
7951     return Val;
7952 
7953   // Preserve the known bits after expansion to a copy.
7954   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID));
7955   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
7956                      DAG.getValueType(SmallVT));
7957 }
7958 
7959 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7960                                                   SelectionDAG &DAG) const {
7961   MachineFunction &MF = DAG.getMachineFunction();
7962   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
7963 
7964   EVT VT = Op.getValueType();
7965   SDLoc DL(Op);
7966   unsigned IntrinsicID = Op.getConstantOperandVal(0);
7967 
7968   // TODO: Should this propagate fast-math-flags?
7969 
7970   switch (IntrinsicID) {
7971   case Intrinsic::amdgcn_implicit_buffer_ptr: {
7972     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
7973       return emitNonHSAIntrinsicError(DAG, DL, VT);
7974     return getPreloadedValue(DAG, *MFI, VT,
7975                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
7976   }
7977   case Intrinsic::amdgcn_dispatch_ptr:
7978   case Intrinsic::amdgcn_queue_ptr: {
7979     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
7980       DiagnosticInfoUnsupported BadIntrin(
7981           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
7982           DL.getDebugLoc());
7983       DAG.getContext()->diagnose(BadIntrin);
7984       return DAG.getUNDEF(VT);
7985     }
7986 
7987     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
7988       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
7989     return getPreloadedValue(DAG, *MFI, VT, RegID);
7990   }
7991   case Intrinsic::amdgcn_implicitarg_ptr: {
7992     if (MFI->isEntryFunction())
7993       return getImplicitArgPtr(DAG, DL);
7994     return getPreloadedValue(DAG, *MFI, VT,
7995                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
7996   }
7997   case Intrinsic::amdgcn_kernarg_segment_ptr: {
7998     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
7999       // This only makes sense to call in a kernel, so just lower to null.
8000       return DAG.getConstant(0, DL, VT);
8001     }
8002 
8003     return getPreloadedValue(DAG, *MFI, VT,
8004                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
8005   }
8006   case Intrinsic::amdgcn_dispatch_id: {
8007     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
8008   }
8009   case Intrinsic::amdgcn_rcp:
8010     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
8011   case Intrinsic::amdgcn_rsq:
8012     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
8013   case Intrinsic::amdgcn_rsq_legacy:
8014     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8015       return emitRemovedIntrinsicError(DAG, DL, VT);
8016     return SDValue();
8017   case Intrinsic::amdgcn_rcp_legacy:
8018     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8019       return emitRemovedIntrinsicError(DAG, DL, VT);
8020     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
8021   case Intrinsic::amdgcn_rsq_clamp: {
8022     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
8023       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
8024 
8025     Type *Type = VT.getTypeForEVT(*DAG.getContext());
8026     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
8027     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
8028 
8029     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
8030     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
8031                               DAG.getConstantFP(Max, DL, VT));
8032     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
8033                        DAG.getConstantFP(Min, DL, VT));
8034   }
8035   case Intrinsic::r600_read_ngroups_x:
8036     if (Subtarget->isAmdHsaOS())
8037       return emitNonHSAIntrinsicError(DAG, DL, VT);
8038 
8039     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8040                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
8041                                     false);
8042   case Intrinsic::r600_read_ngroups_y:
8043     if (Subtarget->isAmdHsaOS())
8044       return emitNonHSAIntrinsicError(DAG, DL, VT);
8045 
8046     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8047                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
8048                                     false);
8049   case Intrinsic::r600_read_ngroups_z:
8050     if (Subtarget->isAmdHsaOS())
8051       return emitNonHSAIntrinsicError(DAG, DL, VT);
8052 
8053     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8054                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
8055                                     false);
8056   case Intrinsic::r600_read_global_size_x:
8057     if (Subtarget->isAmdHsaOS())
8058       return emitNonHSAIntrinsicError(DAG, DL, VT);
8059 
8060     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8061                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
8062                                     Align(4), false);
8063   case Intrinsic::r600_read_global_size_y:
8064     if (Subtarget->isAmdHsaOS())
8065       return emitNonHSAIntrinsicError(DAG, DL, VT);
8066 
8067     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8068                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
8069                                     Align(4), false);
8070   case Intrinsic::r600_read_global_size_z:
8071     if (Subtarget->isAmdHsaOS())
8072       return emitNonHSAIntrinsicError(DAG, DL, VT);
8073 
8074     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8075                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
8076                                     Align(4), false);
8077   case Intrinsic::r600_read_local_size_x:
8078     if (Subtarget->isAmdHsaOS())
8079       return emitNonHSAIntrinsicError(DAG, DL, VT);
8080 
8081     return lowerImplicitZextParam(DAG, Op, MVT::i16,
8082                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
8083   case Intrinsic::r600_read_local_size_y:
8084     if (Subtarget->isAmdHsaOS())
8085       return emitNonHSAIntrinsicError(DAG, DL, VT);
8086 
8087     return lowerImplicitZextParam(DAG, Op, MVT::i16,
8088                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
8089   case Intrinsic::r600_read_local_size_z:
8090     if (Subtarget->isAmdHsaOS())
8091       return emitNonHSAIntrinsicError(DAG, DL, VT);
8092 
8093     return lowerImplicitZextParam(DAG, Op, MVT::i16,
8094                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
8095   case Intrinsic::amdgcn_workgroup_id_x:
8096     return getPreloadedValue(DAG, *MFI, VT,
8097                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
8098   case Intrinsic::amdgcn_workgroup_id_y:
8099     return getPreloadedValue(DAG, *MFI, VT,
8100                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
8101   case Intrinsic::amdgcn_workgroup_id_z:
8102     return getPreloadedValue(DAG, *MFI, VT,
8103                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
8104   case Intrinsic::amdgcn_wave_id:
8105     return lowerWaveID(DAG, Op);
8106   case Intrinsic::amdgcn_lds_kernel_id: {
8107     if (MFI->isEntryFunction())
8108       return getLDSKernelId(DAG, DL);
8109     return getPreloadedValue(DAG, *MFI, VT,
8110                              AMDGPUFunctionArgInfo::LDS_KERNEL_ID);
8111   }
8112   case Intrinsic::amdgcn_workitem_id_x:
8113     return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
8114   case Intrinsic::amdgcn_workitem_id_y:
8115     return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
8116   case Intrinsic::amdgcn_workitem_id_z:
8117     return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
8118   case Intrinsic::amdgcn_wavefrontsize:
8119     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
8120                            SDLoc(Op), MVT::i32);
8121   case Intrinsic::amdgcn_s_buffer_load: {
8122     unsigned CPol = Op.getConstantOperandVal(3);
8123     // s_buffer_load, because of how it's optimized, can't be volatile
8124     // so reject ones with the volatile bit set.
8125     if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12)
8126                      ? AMDGPU::CPol::ALL
8127                      : AMDGPU::CPol::ALL_pregfx12))
8128       return Op;
8129     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
8130                         DAG);
8131   }
8132   case Intrinsic::amdgcn_fdiv_fast:
8133     return lowerFDIV_FAST(Op, DAG);
8134   case Intrinsic::amdgcn_sin:
8135     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
8136 
8137   case Intrinsic::amdgcn_cos:
8138     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
8139 
8140   case Intrinsic::amdgcn_mul_u24:
8141     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
8142   case Intrinsic::amdgcn_mul_i24:
8143     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
8144 
8145   case Intrinsic::amdgcn_log_clamp: {
8146     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
8147       return SDValue();
8148 
8149     return emitRemovedIntrinsicError(DAG, DL, VT);
8150   }
8151   case Intrinsic::amdgcn_fract:
8152     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
8153 
8154   case Intrinsic::amdgcn_class:
8155     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
8156                        Op.getOperand(1), Op.getOperand(2));
8157   case Intrinsic::amdgcn_div_fmas:
8158     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
8159                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
8160                        Op.getOperand(4));
8161 
8162   case Intrinsic::amdgcn_div_fixup:
8163     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
8164                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
8165 
8166   case Intrinsic::amdgcn_div_scale: {
8167     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
8168 
8169     // Translate to the operands expected by the machine instruction. The
8170     // first parameter must be the same as the first instruction.
8171     SDValue Numerator = Op.getOperand(1);
8172     SDValue Denominator = Op.getOperand(2);
8173 
8174     // Note this order is opposite of the machine instruction's operations,
8175     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
8176     // intrinsic has the numerator as the first operand to match a normal
8177     // division operation.
8178 
8179     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
8180 
8181     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
8182                        Denominator, Numerator);
8183   }
8184   case Intrinsic::amdgcn_icmp: {
8185     // There is a Pat that handles this variant, so return it as-is.
8186     if (Op.getOperand(1).getValueType() == MVT::i1 &&
8187         Op.getConstantOperandVal(2) == 0 &&
8188         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
8189       return Op;
8190     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
8191   }
8192   case Intrinsic::amdgcn_fcmp: {
8193     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
8194   }
8195   case Intrinsic::amdgcn_ballot:
8196     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
8197   case Intrinsic::amdgcn_fmed3:
8198     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
8199                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
8200   case Intrinsic::amdgcn_fdot2:
8201     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
8202                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
8203                        Op.getOperand(4));
8204   case Intrinsic::amdgcn_fmul_legacy:
8205     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
8206                        Op.getOperand(1), Op.getOperand(2));
8207   case Intrinsic::amdgcn_sffbh:
8208     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
8209   case Intrinsic::amdgcn_sbfe:
8210     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
8211                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
8212   case Intrinsic::amdgcn_ubfe:
8213     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
8214                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
8215   case Intrinsic::amdgcn_cvt_pkrtz:
8216   case Intrinsic::amdgcn_cvt_pknorm_i16:
8217   case Intrinsic::amdgcn_cvt_pknorm_u16:
8218   case Intrinsic::amdgcn_cvt_pk_i16:
8219   case Intrinsic::amdgcn_cvt_pk_u16: {
8220     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
8221     EVT VT = Op.getValueType();
8222     unsigned Opcode;
8223 
8224     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
8225       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
8226     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
8227       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
8228     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
8229       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
8230     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
8231       Opcode = AMDGPUISD::CVT_PK_I16_I32;
8232     else
8233       Opcode = AMDGPUISD::CVT_PK_U16_U32;
8234 
8235     if (isTypeLegal(VT))
8236       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
8237 
8238     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
8239                                Op.getOperand(1), Op.getOperand(2));
8240     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
8241   }
8242   case Intrinsic::amdgcn_fmad_ftz:
8243     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
8244                        Op.getOperand(2), Op.getOperand(3));
8245 
8246   case Intrinsic::amdgcn_if_break:
8247     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
8248                                       Op->getOperand(1), Op->getOperand(2)), 0);
8249 
8250   case Intrinsic::amdgcn_groupstaticsize: {
8251     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
8252     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
8253       return Op;
8254 
8255     const Module *M = MF.getFunction().getParent();
8256     const GlobalValue *GV =
8257         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
8258     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
8259                                             SIInstrInfo::MO_ABS32_LO);
8260     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
8261   }
8262   case Intrinsic::amdgcn_is_shared:
8263   case Intrinsic::amdgcn_is_private: {
8264     SDLoc SL(Op);
8265     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
8266       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
8267     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
8268     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
8269                                  Op.getOperand(1));
8270 
8271     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
8272                                 DAG.getConstant(1, SL, MVT::i32));
8273     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
8274   }
8275   case Intrinsic::amdgcn_perm:
8276     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
8277                        Op.getOperand(2), Op.getOperand(3));
8278   case Intrinsic::amdgcn_reloc_constant: {
8279     Module *M = const_cast<Module *>(MF.getFunction().getParent());
8280     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
8281     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
8282     auto RelocSymbol = cast<GlobalVariable>(
8283         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
8284     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
8285                                             SIInstrInfo::MO_ABS32_LO);
8286     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
8287   }
8288   case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
8289   case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
8290   case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
8291   case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
8292   case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
8293   case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
8294   case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
8295   case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
8296     if (Op.getOperand(4).getValueType() == MVT::i32)
8297       return SDValue();
8298 
8299     SDLoc SL(Op);
8300     auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32);
8301     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
8302                        Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
8303                        Op.getOperand(3), IndexKeyi32);
8304   }
8305   case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
8306   case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
8307   case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
8308     if (Op.getOperand(6).getValueType() == MVT::i32)
8309       return SDValue();
8310 
8311     SDLoc SL(Op);
8312     auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32);
8313     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
8314                        {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
8315                         Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
8316                         IndexKeyi32, Op.getOperand(7)});
8317   }
8318   default:
8319     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8320             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8321       return lowerImage(Op, ImageDimIntr, DAG, false);
8322 
8323     return Op;
8324   }
8325 }
8326 
8327 // On targets not supporting constant in soffset field, turn zero to
8328 // SGPR_NULL to avoid generating an extra s_mov with zero.
8329 static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG,
8330                              const GCNSubtarget *Subtarget) {
8331   if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset))
8332     return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32);
8333   return SOffset;
8334 }
8335 
8336 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
8337                                                      SelectionDAG &DAG,
8338                                                      unsigned NewOpcode) const {
8339   SDLoc DL(Op);
8340 
8341   SDValue VData = Op.getOperand(2);
8342   SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8343   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8344   auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
8345   SDValue Ops[] = {
8346       Op.getOperand(0),                      // Chain
8347       VData,                                 // vdata
8348       Rsrc,                                  // rsrc
8349       DAG.getConstant(0, DL, MVT::i32),      // vindex
8350       Offsets.first,                         // voffset
8351       SOffset,                               // soffset
8352       Offsets.second,                        // offset
8353       Op.getOperand(6),                      // cachepolicy
8354       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8355   };
8356 
8357   auto *M = cast<MemSDNode>(Op);
8358 
8359   EVT MemVT = VData.getValueType();
8360   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
8361                                  M->getMemOperand());
8362 }
8363 
8364 // Return a value to use for the idxen operand by examining the vindex operand.
8365 static unsigned getIdxEn(SDValue VIndex) {
8366   // No need to set idxen if vindex is known to be zero.
8367   return isNullConstant(VIndex) ? 0 : 1;
8368 }
8369 
8370 SDValue
8371 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
8372                                                 unsigned NewOpcode) const {
8373   SDLoc DL(Op);
8374 
8375   SDValue VData = Op.getOperand(2);
8376   SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8377   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8378   auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
8379   SDValue Ops[] = {
8380       Op.getOperand(0),                      // Chain
8381       VData,                                 // vdata
8382       Rsrc,                                  // rsrc
8383       Op.getOperand(4),                      // vindex
8384       Offsets.first,                         // voffset
8385       SOffset,                               // soffset
8386       Offsets.second,                        // offset
8387       Op.getOperand(7),                      // cachepolicy
8388       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8389   };
8390 
8391   auto *M = cast<MemSDNode>(Op);
8392 
8393   EVT MemVT = VData.getValueType();
8394   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
8395                                  M->getMemOperand());
8396 }
8397 
8398 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
8399                                                  SelectionDAG &DAG) const {
8400   unsigned IntrID = Op.getConstantOperandVal(1);
8401   SDLoc DL(Op);
8402 
8403   switch (IntrID) {
8404   case Intrinsic::amdgcn_ds_ordered_add:
8405   case Intrinsic::amdgcn_ds_ordered_swap: {
8406     MemSDNode *M = cast<MemSDNode>(Op);
8407     SDValue Chain = M->getOperand(0);
8408     SDValue M0 = M->getOperand(2);
8409     SDValue Value = M->getOperand(3);
8410     unsigned IndexOperand = M->getConstantOperandVal(7);
8411     unsigned WaveRelease = M->getConstantOperandVal(8);
8412     unsigned WaveDone = M->getConstantOperandVal(9);
8413 
8414     unsigned OrderedCountIndex = IndexOperand & 0x3f;
8415     IndexOperand &= ~0x3f;
8416     unsigned CountDw = 0;
8417 
8418     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
8419       CountDw = (IndexOperand >> 24) & 0xf;
8420       IndexOperand &= ~(0xf << 24);
8421 
8422       if (CountDw < 1 || CountDw > 4) {
8423         report_fatal_error(
8424             "ds_ordered_count: dword count must be between 1 and 4");
8425       }
8426     }
8427 
8428     if (IndexOperand)
8429       report_fatal_error("ds_ordered_count: bad index operand");
8430 
8431     if (WaveDone && !WaveRelease)
8432       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
8433 
8434     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
8435     unsigned ShaderType =
8436         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
8437     unsigned Offset0 = OrderedCountIndex << 2;
8438     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
8439 
8440     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
8441       Offset1 |= (CountDw - 1) << 6;
8442 
8443     if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
8444       Offset1 |= ShaderType << 2;
8445 
8446     unsigned Offset = Offset0 | (Offset1 << 8);
8447 
8448     SDValue Ops[] = {
8449       Chain,
8450       Value,
8451       DAG.getTargetConstant(Offset, DL, MVT::i16),
8452       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
8453     };
8454     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
8455                                    M->getVTList(), Ops, M->getMemoryVT(),
8456                                    M->getMemOperand());
8457   }
8458   case Intrinsic::amdgcn_ds_fadd: {
8459     MemSDNode *M = cast<MemSDNode>(Op);
8460     unsigned Opc;
8461     switch (IntrID) {
8462     case Intrinsic::amdgcn_ds_fadd:
8463       Opc = ISD::ATOMIC_LOAD_FADD;
8464       break;
8465     }
8466 
8467     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
8468                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
8469                          M->getMemOperand());
8470   }
8471   case Intrinsic::amdgcn_ds_fmin:
8472   case Intrinsic::amdgcn_ds_fmax: {
8473     MemSDNode *M = cast<MemSDNode>(Op);
8474     unsigned Opc;
8475     switch (IntrID) {
8476     case Intrinsic::amdgcn_ds_fmin:
8477       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
8478       break;
8479     case Intrinsic::amdgcn_ds_fmax:
8480       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
8481       break;
8482     default:
8483       llvm_unreachable("Unknown intrinsic!");
8484     }
8485     SDValue Ops[] = {
8486       M->getOperand(0), // Chain
8487       M->getOperand(2), // Ptr
8488       M->getOperand(3)  // Value
8489     };
8490 
8491     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
8492                                    M->getMemoryVT(), M->getMemOperand());
8493   }
8494   case Intrinsic::amdgcn_buffer_load:
8495   case Intrinsic::amdgcn_buffer_load_format: {
8496     unsigned Glc = Op.getConstantOperandVal(5);
8497     unsigned Slc = Op.getConstantOperandVal(6);
8498     unsigned IdxEn = getIdxEn(Op.getOperand(3));
8499     SDValue Ops[] = {
8500       Op.getOperand(0), // Chain
8501       Op.getOperand(2), // rsrc
8502       Op.getOperand(3), // vindex
8503       SDValue(),        // voffset -- will be set by setBufferOffsets
8504       SDValue(),        // soffset -- will be set by setBufferOffsets
8505       SDValue(),        // offset -- will be set by setBufferOffsets
8506       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8507       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8508     };
8509     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
8510 
8511     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
8512         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
8513 
8514     EVT VT = Op.getValueType();
8515     EVT IntVT = VT.changeTypeToInteger();
8516     auto *M = cast<MemSDNode>(Op);
8517     EVT LoadVT = Op.getValueType();
8518 
8519     if (LoadVT.getScalarType() == MVT::f16)
8520       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
8521                                  M, DAG, Ops);
8522 
8523     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
8524     if (LoadVT.getScalarType() == MVT::i8 || LoadVT.getScalarType() == MVT::i16)
8525       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops,
8526                                         M->getMemOperand());
8527 
8528     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
8529                                M->getMemOperand(), DAG);
8530   }
8531   case Intrinsic::amdgcn_raw_buffer_load:
8532   case Intrinsic::amdgcn_raw_ptr_buffer_load:
8533   case Intrinsic::amdgcn_raw_buffer_load_format:
8534   case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
8535     const bool IsFormat =
8536         IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
8537         IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
8538 
8539     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
8540     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
8541     auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
8542     SDValue Ops[] = {
8543         Op.getOperand(0),                      // Chain
8544         Rsrc,                                  // rsrc
8545         DAG.getConstant(0, DL, MVT::i32),      // vindex
8546         Offsets.first,                         // voffset
8547         SOffset,                               // soffset
8548         Offsets.second,                        // offset
8549         Op.getOperand(5),                      // cachepolicy, swizzled buffer
8550         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8551     };
8552 
8553     auto *M = cast<MemSDNode>(Op);
8554     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
8555   }
8556   case Intrinsic::amdgcn_struct_buffer_load:
8557   case Intrinsic::amdgcn_struct_ptr_buffer_load:
8558   case Intrinsic::amdgcn_struct_buffer_load_format:
8559   case Intrinsic::amdgcn_struct_ptr_buffer_load_format: {
8560     const bool IsFormat =
8561         IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
8562         IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
8563 
8564     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
8565     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8566     auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
8567     SDValue Ops[] = {
8568         Op.getOperand(0),                      // Chain
8569         Rsrc,                                  // rsrc
8570         Op.getOperand(3),                      // vindex
8571         Offsets.first,                         // voffset
8572         SOffset,                               // soffset
8573         Offsets.second,                        // offset
8574         Op.getOperand(6),                      // cachepolicy, swizzled buffer
8575         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8576     };
8577 
8578     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
8579   }
8580   case Intrinsic::amdgcn_tbuffer_load: {
8581     MemSDNode *M = cast<MemSDNode>(Op);
8582     EVT LoadVT = Op.getValueType();
8583 
8584     auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
8585     unsigned Dfmt = Op.getConstantOperandVal(7);
8586     unsigned Nfmt = Op.getConstantOperandVal(8);
8587     unsigned Glc = Op.getConstantOperandVal(9);
8588     unsigned Slc = Op.getConstantOperandVal(10);
8589     unsigned IdxEn = getIdxEn(Op.getOperand(3));
8590     SDValue Ops[] = {
8591         Op.getOperand(0),                                        // Chain
8592         Op.getOperand(2),                                        // rsrc
8593         Op.getOperand(3),                                        // vindex
8594         Op.getOperand(4),                                        // voffset
8595         SOffset,                                                 // soffset
8596         Op.getOperand(6),                                        // offset
8597         DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
8598         DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32),   // cachepolicy
8599         DAG.getTargetConstant(IdxEn, DL, MVT::i1)                // idxen
8600     };
8601 
8602     if (LoadVT.getScalarType() == MVT::f16)
8603       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
8604                                  M, DAG, Ops);
8605     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
8606                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
8607                                DAG);
8608   }
8609   case Intrinsic::amdgcn_raw_tbuffer_load:
8610   case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
8611     MemSDNode *M = cast<MemSDNode>(Op);
8612     EVT LoadVT = Op.getValueType();
8613     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
8614     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
8615     auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
8616 
8617     SDValue Ops[] = {
8618         Op.getOperand(0),                      // Chain
8619         Rsrc,                                  // rsrc
8620         DAG.getConstant(0, DL, MVT::i32),      // vindex
8621         Offsets.first,                         // voffset
8622         SOffset,                               // soffset
8623         Offsets.second,                        // offset
8624         Op.getOperand(5),                      // format
8625         Op.getOperand(6),                      // cachepolicy, swizzled buffer
8626         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8627     };
8628 
8629     if (LoadVT.getScalarType() == MVT::f16)
8630       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
8631                                  M, DAG, Ops);
8632     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
8633                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
8634                                DAG);
8635   }
8636   case Intrinsic::amdgcn_struct_tbuffer_load:
8637   case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
8638     MemSDNode *M = cast<MemSDNode>(Op);
8639     EVT LoadVT = Op.getValueType();
8640     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
8641     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8642     auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
8643 
8644     SDValue Ops[] = {
8645         Op.getOperand(0),                      // Chain
8646         Rsrc,                                  // rsrc
8647         Op.getOperand(3),                      // vindex
8648         Offsets.first,                         // voffset
8649         SOffset,                               // soffset
8650         Offsets.second,                        // offset
8651         Op.getOperand(6),                      // format
8652         Op.getOperand(7),                      // cachepolicy, swizzled buffer
8653         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8654     };
8655 
8656     if (LoadVT.getScalarType() == MVT::f16)
8657       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
8658                                  M, DAG, Ops);
8659     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
8660                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
8661                                DAG);
8662   }
8663   case Intrinsic::amdgcn_buffer_atomic_swap:
8664   case Intrinsic::amdgcn_buffer_atomic_add:
8665   case Intrinsic::amdgcn_buffer_atomic_sub:
8666   case Intrinsic::amdgcn_buffer_atomic_csub:
8667   case Intrinsic::amdgcn_buffer_atomic_smin:
8668   case Intrinsic::amdgcn_buffer_atomic_umin:
8669   case Intrinsic::amdgcn_buffer_atomic_smax:
8670   case Intrinsic::amdgcn_buffer_atomic_umax:
8671   case Intrinsic::amdgcn_buffer_atomic_and:
8672   case Intrinsic::amdgcn_buffer_atomic_or:
8673   case Intrinsic::amdgcn_buffer_atomic_xor:
8674   case Intrinsic::amdgcn_buffer_atomic_fadd: {
8675     unsigned Slc = Op.getConstantOperandVal(6);
8676     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8677     SDValue Ops[] = {
8678       Op.getOperand(0), // Chain
8679       Op.getOperand(2), // vdata
8680       Op.getOperand(3), // rsrc
8681       Op.getOperand(4), // vindex
8682       SDValue(),        // voffset -- will be set by setBufferOffsets
8683       SDValue(),        // soffset -- will be set by setBufferOffsets
8684       SDValue(),        // offset -- will be set by setBufferOffsets
8685       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
8686       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8687     };
8688     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8689 
8690     EVT VT = Op.getValueType();
8691 
8692     auto *M = cast<MemSDNode>(Op);
8693     unsigned Opcode = 0;
8694 
8695     switch (IntrID) {
8696     case Intrinsic::amdgcn_buffer_atomic_swap:
8697       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
8698       break;
8699     case Intrinsic::amdgcn_buffer_atomic_add:
8700       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
8701       break;
8702     case Intrinsic::amdgcn_buffer_atomic_sub:
8703       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
8704       break;
8705     case Intrinsic::amdgcn_buffer_atomic_csub:
8706       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
8707       break;
8708     case Intrinsic::amdgcn_buffer_atomic_smin:
8709       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
8710       break;
8711     case Intrinsic::amdgcn_buffer_atomic_umin:
8712       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
8713       break;
8714     case Intrinsic::amdgcn_buffer_atomic_smax:
8715       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
8716       break;
8717     case Intrinsic::amdgcn_buffer_atomic_umax:
8718       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
8719       break;
8720     case Intrinsic::amdgcn_buffer_atomic_and:
8721       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
8722       break;
8723     case Intrinsic::amdgcn_buffer_atomic_or:
8724       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
8725       break;
8726     case Intrinsic::amdgcn_buffer_atomic_xor:
8727       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
8728       break;
8729     case Intrinsic::amdgcn_buffer_atomic_fadd:
8730       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
8731       break;
8732     default:
8733       llvm_unreachable("unhandled atomic opcode");
8734     }
8735 
8736     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
8737                                    M->getMemOperand());
8738   }
8739   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
8740   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
8741     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
8742   case Intrinsic::amdgcn_raw_buffer_atomic_fadd_v2bf16:
8743     return lowerRawBufferAtomicIntrin(Op, DAG,
8744                                       AMDGPUISD::BUFFER_ATOMIC_FADD_BF16);
8745   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
8746   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
8747     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
8748   case Intrinsic::amdgcn_struct_buffer_atomic_fadd_v2bf16:
8749     return lowerStructBufferAtomicIntrin(Op, DAG,
8750                                          AMDGPUISD::BUFFER_ATOMIC_FADD_BF16);
8751   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
8752   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
8753     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
8754   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
8755   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
8756     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
8757   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
8758   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
8759     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
8760   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
8761   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
8762     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
8763   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
8764   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
8765     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
8766   case Intrinsic::amdgcn_raw_buffer_atomic_add:
8767   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
8768     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
8769   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
8770   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
8771     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
8772   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
8773   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
8774     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
8775   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
8776   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
8777     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
8778   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
8779   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
8780     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
8781   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
8782   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
8783     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
8784   case Intrinsic::amdgcn_raw_buffer_atomic_and:
8785   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
8786     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
8787   case Intrinsic::amdgcn_raw_buffer_atomic_or:
8788   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
8789     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
8790   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
8791   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
8792     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
8793   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
8794   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
8795     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
8796   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
8797   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
8798     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
8799   case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
8800     return lowerRawBufferAtomicIntrin(Op, DAG,
8801                                       AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32);
8802   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
8803   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
8804     return lowerStructBufferAtomicIntrin(Op, DAG,
8805                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
8806   case Intrinsic::amdgcn_struct_buffer_atomic_add:
8807   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
8808     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
8809   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
8810   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
8811     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
8812   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
8813   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
8814     return lowerStructBufferAtomicIntrin(Op, DAG,
8815                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
8816   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
8817   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
8818     return lowerStructBufferAtomicIntrin(Op, DAG,
8819                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
8820   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
8821   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
8822     return lowerStructBufferAtomicIntrin(Op, DAG,
8823                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
8824   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
8825   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
8826     return lowerStructBufferAtomicIntrin(Op, DAG,
8827                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
8828   case Intrinsic::amdgcn_struct_buffer_atomic_and:
8829   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
8830     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
8831   case Intrinsic::amdgcn_struct_buffer_atomic_or:
8832   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
8833     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
8834   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
8835   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
8836     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
8837   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
8838   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
8839     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
8840   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
8841   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
8842     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
8843   case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
8844     return lowerStructBufferAtomicIntrin(Op, DAG,
8845                                          AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32);
8846 
8847   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
8848     unsigned Slc = Op.getConstantOperandVal(7);
8849     unsigned IdxEn = getIdxEn(Op.getOperand(5));
8850     SDValue Ops[] = {
8851       Op.getOperand(0), // Chain
8852       Op.getOperand(2), // src
8853       Op.getOperand(3), // cmp
8854       Op.getOperand(4), // rsrc
8855       Op.getOperand(5), // vindex
8856       SDValue(),        // voffset -- will be set by setBufferOffsets
8857       SDValue(),        // soffset -- will be set by setBufferOffsets
8858       SDValue(),        // offset -- will be set by setBufferOffsets
8859       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
8860       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8861     };
8862     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
8863 
8864     EVT VT = Op.getValueType();
8865     auto *M = cast<MemSDNode>(Op);
8866 
8867     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
8868                                    Op->getVTList(), Ops, VT, M->getMemOperand());
8869   }
8870   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
8871   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
8872     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG);
8873     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8874     auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
8875     SDValue Ops[] = {
8876         Op.getOperand(0),                      // Chain
8877         Op.getOperand(2),                      // src
8878         Op.getOperand(3),                      // cmp
8879         Rsrc,                                  // rsrc
8880         DAG.getConstant(0, DL, MVT::i32),      // vindex
8881         Offsets.first,                         // voffset
8882         SOffset,                               // soffset
8883         Offsets.second,                        // offset
8884         Op.getOperand(7),                      // cachepolicy
8885         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8886     };
8887     EVT VT = Op.getValueType();
8888     auto *M = cast<MemSDNode>(Op);
8889 
8890     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
8891                                    Op->getVTList(), Ops, VT, M->getMemOperand());
8892   }
8893   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
8894   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
8895     SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG);
8896     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
8897     auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget);
8898     SDValue Ops[] = {
8899         Op.getOperand(0),                      // Chain
8900         Op.getOperand(2),                      // src
8901         Op.getOperand(3),                      // cmp
8902         Rsrc,                                  // rsrc
8903         Op.getOperand(5),                      // vindex
8904         Offsets.first,                         // voffset
8905         SOffset,                               // soffset
8906         Offsets.second,                        // offset
8907         Op.getOperand(8),                      // cachepolicy
8908         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8909     };
8910     EVT VT = Op.getValueType();
8911     auto *M = cast<MemSDNode>(Op);
8912 
8913     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
8914                                    Op->getVTList(), Ops, VT, M->getMemOperand());
8915   }
8916   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
8917     MemSDNode *M = cast<MemSDNode>(Op);
8918     SDValue NodePtr = M->getOperand(2);
8919     SDValue RayExtent = M->getOperand(3);
8920     SDValue RayOrigin = M->getOperand(4);
8921     SDValue RayDir = M->getOperand(5);
8922     SDValue RayInvDir = M->getOperand(6);
8923     SDValue TDescr = M->getOperand(7);
8924 
8925     assert(NodePtr.getValueType() == MVT::i32 ||
8926            NodePtr.getValueType() == MVT::i64);
8927     assert(RayDir.getValueType() == MVT::v3f16 ||
8928            RayDir.getValueType() == MVT::v3f32);
8929 
8930     if (!Subtarget->hasGFX10_AEncoding()) {
8931       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
8932       return SDValue();
8933     }
8934 
8935     const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget);
8936     const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
8937     const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
8938     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
8939     const bool Is64 = NodePtr.getValueType() == MVT::i64;
8940     const unsigned NumVDataDwords = 4;
8941     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
8942     const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
8943     const bool UseNSA = (Subtarget->hasNSAEncoding() &&
8944                          NumVAddrs <= Subtarget->getNSAMaxSize()) ||
8945                         IsGFX12Plus;
8946     const unsigned BaseOpcodes[2][2] = {
8947         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
8948         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
8949          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
8950     int Opcode;
8951     if (UseNSA) {
8952       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
8953                                      IsGFX12Plus ? AMDGPU::MIMGEncGfx12
8954                                      : IsGFX11   ? AMDGPU::MIMGEncGfx11NSA
8955                                                  : AMDGPU::MIMGEncGfx10NSA,
8956                                      NumVDataDwords, NumVAddrDwords);
8957     } else {
8958       assert(!IsGFX12Plus);
8959       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
8960                                      IsGFX11 ? AMDGPU::MIMGEncGfx11Default
8961                                              : AMDGPU::MIMGEncGfx10Default,
8962                                      NumVDataDwords, NumVAddrDwords);
8963     }
8964     assert(Opcode != -1);
8965 
8966     SmallVector<SDValue, 16> Ops;
8967 
8968     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
8969       SmallVector<SDValue, 3> Lanes;
8970       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
8971       if (Lanes[0].getValueSizeInBits() == 32) {
8972         for (unsigned I = 0; I < 3; ++I)
8973           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
8974       } else {
8975         if (IsAligned) {
8976           Ops.push_back(
8977             DAG.getBitcast(MVT::i32,
8978                            DAG.getBuildVector(MVT::v2f16, DL,
8979                                               { Lanes[0], Lanes[1] })));
8980           Ops.push_back(Lanes[2]);
8981         } else {
8982           SDValue Elt0 = Ops.pop_back_val();
8983           Ops.push_back(
8984             DAG.getBitcast(MVT::i32,
8985                            DAG.getBuildVector(MVT::v2f16, DL,
8986                                               { Elt0, Lanes[0] })));
8987           Ops.push_back(
8988             DAG.getBitcast(MVT::i32,
8989                            DAG.getBuildVector(MVT::v2f16, DL,
8990                                               { Lanes[1], Lanes[2] })));
8991         }
8992       }
8993     };
8994 
8995     if (UseNSA && IsGFX11Plus) {
8996       Ops.push_back(NodePtr);
8997       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
8998       Ops.push_back(RayOrigin);
8999       if (IsA16) {
9000         SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
9001         DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
9002         DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
9003         for (unsigned I = 0; I < 3; ++I) {
9004           MergedLanes.push_back(DAG.getBitcast(
9005               MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
9006                                            {DirLanes[I], InvDirLanes[I]})));
9007         }
9008         Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
9009       } else {
9010         Ops.push_back(RayDir);
9011         Ops.push_back(RayInvDir);
9012       }
9013     } else {
9014       if (Is64)
9015         DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
9016                                   2);
9017       else
9018         Ops.push_back(NodePtr);
9019 
9020       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
9021       packLanes(RayOrigin, true);
9022       packLanes(RayDir, true);
9023       packLanes(RayInvDir, false);
9024     }
9025 
9026     if (!UseNSA) {
9027       // Build a single vector containing all the operands so far prepared.
9028       if (NumVAddrDwords > 12) {
9029         SDValue Undef = DAG.getUNDEF(MVT::i32);
9030         Ops.append(16 - Ops.size(), Undef);
9031       }
9032       assert(Ops.size() >= 8 && Ops.size() <= 12);
9033       SDValue MergedOps = DAG.getBuildVector(
9034           MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops);
9035       Ops.clear();
9036       Ops.push_back(MergedOps);
9037     }
9038 
9039     Ops.push_back(TDescr);
9040     Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1));
9041     Ops.push_back(M->getChain());
9042 
9043     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
9044     MachineMemOperand *MemRef = M->getMemOperand();
9045     DAG.setNodeMemRefs(NewNode, {MemRef});
9046     return SDValue(NewNode, 0);
9047   }
9048   case Intrinsic::amdgcn_global_atomic_fmin:
9049   case Intrinsic::amdgcn_global_atomic_fmax:
9050   case Intrinsic::amdgcn_global_atomic_fmin_num:
9051   case Intrinsic::amdgcn_global_atomic_fmax_num:
9052   case Intrinsic::amdgcn_flat_atomic_fmin:
9053   case Intrinsic::amdgcn_flat_atomic_fmax:
9054   case Intrinsic::amdgcn_flat_atomic_fmin_num:
9055   case Intrinsic::amdgcn_flat_atomic_fmax_num: {
9056     MemSDNode *M = cast<MemSDNode>(Op);
9057     SDValue Ops[] = {
9058       M->getOperand(0), // Chain
9059       M->getOperand(2), // Ptr
9060       M->getOperand(3)  // Value
9061     };
9062     unsigned Opcode = 0;
9063     switch (IntrID) {
9064     case Intrinsic::amdgcn_global_atomic_fmin:
9065     case Intrinsic::amdgcn_global_atomic_fmin_num:
9066     case Intrinsic::amdgcn_flat_atomic_fmin:
9067     case Intrinsic::amdgcn_flat_atomic_fmin_num: {
9068       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
9069       break;
9070     }
9071     case Intrinsic::amdgcn_global_atomic_fmax:
9072     case Intrinsic::amdgcn_global_atomic_fmax_num:
9073     case Intrinsic::amdgcn_flat_atomic_fmax:
9074     case Intrinsic::amdgcn_flat_atomic_fmax_num: {
9075       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
9076       break;
9077     }
9078     default:
9079       llvm_unreachable("unhandled atomic opcode");
9080     }
9081     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
9082                                    M->getVTList(), Ops, M->getMemoryVT(),
9083                                    M->getMemOperand());
9084   }
9085   case Intrinsic::amdgcn_s_get_barrier_state: {
9086     SDValue Chain = Op->getOperand(0);
9087     SmallVector<SDValue, 2> Ops;
9088     unsigned Opc;
9089     bool IsInlinableBarID = false;
9090     int64_t BarID;
9091 
9092     if (isa<ConstantSDNode>(Op->getOperand(2))) {
9093       BarID = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
9094       IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarID);
9095     }
9096 
9097     if (IsInlinableBarID) {
9098       Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
9099       SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32);
9100       Ops.push_back(K);
9101     } else {
9102       Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
9103       SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(2));
9104       Ops.push_back(M0Val.getValue(0));
9105     }
9106 
9107     auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
9108     return SDValue(NewMI, 0);
9109   }
9110   default:
9111 
9112     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
9113             AMDGPU::getImageDimIntrinsicInfo(IntrID))
9114       return lowerImage(Op, ImageDimIntr, DAG, true);
9115 
9116     return SDValue();
9117   }
9118 }
9119 
9120 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
9121 // dwordx4 if on SI and handle TFE loads.
9122 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
9123                                               SDVTList VTList,
9124                                               ArrayRef<SDValue> Ops, EVT MemVT,
9125                                               MachineMemOperand *MMO,
9126                                               SelectionDAG &DAG) const {
9127   LLVMContext &C = *DAG.getContext();
9128   MachineFunction &MF = DAG.getMachineFunction();
9129   EVT VT = VTList.VTs[0];
9130 
9131   assert(VTList.NumVTs == 2 || VTList.NumVTs == 3);
9132   bool IsTFE = VTList.NumVTs == 3;
9133   if (IsTFE) {
9134     unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32);
9135     unsigned NumOpDWords = NumValueDWords + 1;
9136     EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords);
9137     SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]);
9138     MachineMemOperand *OpDWordsMMO =
9139         MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4);
9140     SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops,
9141                                      OpDWordsVT, OpDWordsMMO, DAG);
9142     SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
9143                                  DAG.getVectorIdxConstant(NumValueDWords, DL));
9144     SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
9145     SDValue ValueDWords =
9146         NumValueDWords == 1
9147             ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx)
9148             : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
9149                           EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op,
9150                           ZeroIdx);
9151     SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords);
9152     return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
9153   }
9154 
9155   if (!Subtarget->hasDwordx3LoadStores() &&
9156       (VT == MVT::v3i32 || VT == MVT::v3f32)) {
9157     EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4);
9158     EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4);
9159     MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16);
9160     SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
9161     SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
9162                                          WidenedMemVT, WidenedMMO);
9163     SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op,
9164                                 DAG.getVectorIdxConstant(0, DL));
9165     return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL);
9166   }
9167 
9168   return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO);
9169 }
9170 
9171 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
9172                                          bool ImageStore) const {
9173   EVT StoreVT = VData.getValueType();
9174 
9175   // No change for f16 and legal vector D16 types.
9176   if (!StoreVT.isVector())
9177     return VData;
9178 
9179   SDLoc DL(VData);
9180   unsigned NumElements = StoreVT.getVectorNumElements();
9181 
9182   if (Subtarget->hasUnpackedD16VMem()) {
9183     // We need to unpack the packed data to store.
9184     EVT IntStoreVT = StoreVT.changeTypeToInteger();
9185     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
9186 
9187     EVT EquivStoreVT =
9188         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
9189     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
9190     return DAG.UnrollVectorOp(ZExt.getNode());
9191   }
9192 
9193   // The sq block of gfx8.1 does not estimate register use correctly for d16
9194   // image store instructions. The data operand is computed as if it were not a
9195   // d16 image instruction.
9196   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
9197     // Bitcast to i16
9198     EVT IntStoreVT = StoreVT.changeTypeToInteger();
9199     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
9200 
9201     // Decompose into scalars
9202     SmallVector<SDValue, 4> Elts;
9203     DAG.ExtractVectorElements(IntVData, Elts);
9204 
9205     // Group pairs of i16 into v2i16 and bitcast to i32
9206     SmallVector<SDValue, 4> PackedElts;
9207     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
9208       SDValue Pair =
9209           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
9210       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
9211       PackedElts.push_back(IntPair);
9212     }
9213     if ((NumElements % 2) == 1) {
9214       // Handle v3i16
9215       unsigned I = Elts.size() / 2;
9216       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
9217                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
9218       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
9219       PackedElts.push_back(IntPair);
9220     }
9221 
9222     // Pad using UNDEF
9223     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
9224 
9225     // Build final vector
9226     EVT VecVT =
9227         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
9228     return DAG.getBuildVector(VecVT, DL, PackedElts);
9229   }
9230 
9231   if (NumElements == 3) {
9232     EVT IntStoreVT =
9233         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
9234     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
9235 
9236     EVT WidenedStoreVT = EVT::getVectorVT(
9237         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
9238     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
9239                                          WidenedStoreVT.getStoreSizeInBits());
9240     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
9241     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
9242   }
9243 
9244   assert(isTypeLegal(StoreVT));
9245   return VData;
9246 }
9247 
9248 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9249                                               SelectionDAG &DAG) const {
9250   SDLoc DL(Op);
9251   SDValue Chain = Op.getOperand(0);
9252   unsigned IntrinsicID = Op.getConstantOperandVal(1);
9253   MachineFunction &MF = DAG.getMachineFunction();
9254 
9255   switch (IntrinsicID) {
9256   case Intrinsic::amdgcn_exp_compr: {
9257     if (!Subtarget->hasCompressedExport()) {
9258       DiagnosticInfoUnsupported BadIntrin(
9259           DAG.getMachineFunction().getFunction(),
9260           "intrinsic not supported on subtarget", DL.getDebugLoc());
9261       DAG.getContext()->diagnose(BadIntrin);
9262     }
9263     SDValue Src0 = Op.getOperand(4);
9264     SDValue Src1 = Op.getOperand(5);
9265     // Hack around illegal type on SI by directly selecting it.
9266     if (isTypeLegal(Src0.getValueType()))
9267       return SDValue();
9268 
9269     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
9270     SDValue Undef = DAG.getUNDEF(MVT::f32);
9271     const SDValue Ops[] = {
9272       Op.getOperand(2), // tgt
9273       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
9274       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
9275       Undef, // src2
9276       Undef, // src3
9277       Op.getOperand(7), // vm
9278       DAG.getTargetConstant(1, DL, MVT::i1), // compr
9279       Op.getOperand(3), // en
9280       Op.getOperand(0) // Chain
9281     };
9282 
9283     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
9284     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
9285   }
9286   case Intrinsic::amdgcn_s_barrier: {
9287     const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
9288     if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) {
9289       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
9290       if (WGSize <= ST.getWavefrontSize())
9291         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
9292                                           Op.getOperand(0)), 0);
9293     }
9294 
9295     // On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait
9296     if (ST.hasSplitBarriers()) {
9297       SDValue K =
9298           DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32);
9299       SDValue BarSignal =
9300           SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL,
9301                                      MVT::Other, K, Op.getOperand(0)),
9302                   0);
9303       SDValue BarWait =
9304           SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K,
9305                                      BarSignal.getValue(0)),
9306                   0);
9307       return BarWait;
9308     }
9309 
9310     return SDValue();
9311   };
9312   case Intrinsic::amdgcn_tbuffer_store: {
9313     SDValue VData = Op.getOperand(2);
9314     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
9315     if (IsD16)
9316       VData = handleD16VData(VData, DAG);
9317     unsigned Dfmt = Op.getConstantOperandVal(8);
9318     unsigned Nfmt = Op.getConstantOperandVal(9);
9319     unsigned Glc = Op.getConstantOperandVal(10);
9320     unsigned Slc = Op.getConstantOperandVal(11);
9321     unsigned IdxEn = getIdxEn(Op.getOperand(4));
9322     SDValue Ops[] = {
9323       Chain,
9324       VData,             // vdata
9325       Op.getOperand(3),  // rsrc
9326       Op.getOperand(4),  // vindex
9327       Op.getOperand(5),  // voffset
9328       Op.getOperand(6),  // soffset
9329       Op.getOperand(7),  // offset
9330       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
9331       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
9332       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
9333     };
9334     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
9335                            AMDGPUISD::TBUFFER_STORE_FORMAT;
9336     MemSDNode *M = cast<MemSDNode>(Op);
9337     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9338                                    M->getMemoryVT(), M->getMemOperand());
9339   }
9340 
9341   case Intrinsic::amdgcn_struct_tbuffer_store:
9342   case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
9343     SDValue VData = Op.getOperand(2);
9344     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
9345     if (IsD16)
9346       VData = handleD16VData(VData, DAG);
9347     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9348     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
9349     auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
9350     SDValue Ops[] = {
9351         Chain,
9352         VData,                                 // vdata
9353         Rsrc,                                  // rsrc
9354         Op.getOperand(4),                      // vindex
9355         Offsets.first,                         // voffset
9356         SOffset,                               // soffset
9357         Offsets.second,                        // offset
9358         Op.getOperand(7),                      // format
9359         Op.getOperand(8),                      // cachepolicy, swizzled buffer
9360         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9361     };
9362     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
9363                            AMDGPUISD::TBUFFER_STORE_FORMAT;
9364     MemSDNode *M = cast<MemSDNode>(Op);
9365     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9366                                    M->getMemoryVT(), M->getMemOperand());
9367   }
9368 
9369   case Intrinsic::amdgcn_raw_tbuffer_store:
9370   case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
9371     SDValue VData = Op.getOperand(2);
9372     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
9373     if (IsD16)
9374       VData = handleD16VData(VData, DAG);
9375     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9376     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
9377     auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
9378     SDValue Ops[] = {
9379         Chain,
9380         VData,                                 // vdata
9381         Rsrc,                                  // rsrc
9382         DAG.getConstant(0, DL, MVT::i32),      // vindex
9383         Offsets.first,                         // voffset
9384         SOffset,                               // soffset
9385         Offsets.second,                        // offset
9386         Op.getOperand(6),                      // format
9387         Op.getOperand(7),                      // cachepolicy, swizzled buffer
9388         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9389     };
9390     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
9391                            AMDGPUISD::TBUFFER_STORE_FORMAT;
9392     MemSDNode *M = cast<MemSDNode>(Op);
9393     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9394                                    M->getMemoryVT(), M->getMemOperand());
9395   }
9396 
9397   case Intrinsic::amdgcn_buffer_store:
9398   case Intrinsic::amdgcn_buffer_store_format: {
9399     SDValue VData = Op.getOperand(2);
9400     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
9401     if (IsD16)
9402       VData = handleD16VData(VData, DAG);
9403     unsigned Glc = Op.getConstantOperandVal(6);
9404     unsigned Slc = Op.getConstantOperandVal(7);
9405     unsigned IdxEn = getIdxEn(Op.getOperand(4));
9406     SDValue Ops[] = {
9407       Chain,
9408       VData,
9409       Op.getOperand(3), // rsrc
9410       Op.getOperand(4), // vindex
9411       SDValue(), // voffset -- will be set by setBufferOffsets
9412       SDValue(), // soffset -- will be set by setBufferOffsets
9413       SDValue(), // offset -- will be set by setBufferOffsets
9414       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
9415       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
9416     };
9417     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
9418 
9419     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
9420                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
9421     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
9422     MemSDNode *M = cast<MemSDNode>(Op);
9423 
9424     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
9425     EVT VDataType = VData.getValueType().getScalarType();
9426     if (VDataType == MVT::i8 || VDataType == MVT::i16)
9427       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
9428 
9429     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9430                                    M->getMemoryVT(), M->getMemOperand());
9431   }
9432 
9433   case Intrinsic::amdgcn_raw_buffer_store:
9434   case Intrinsic::amdgcn_raw_ptr_buffer_store:
9435   case Intrinsic::amdgcn_raw_buffer_store_format:
9436   case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
9437     const bool IsFormat =
9438         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
9439         IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
9440 
9441     SDValue VData = Op.getOperand(2);
9442     EVT VDataVT = VData.getValueType();
9443     EVT EltType = VDataVT.getScalarType();
9444     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
9445     if (IsD16) {
9446       VData = handleD16VData(VData, DAG);
9447       VDataVT = VData.getValueType();
9448     }
9449 
9450     if (!isTypeLegal(VDataVT)) {
9451       VData =
9452           DAG.getNode(ISD::BITCAST, DL,
9453                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
9454     }
9455 
9456     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9457     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
9458     auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
9459     SDValue Ops[] = {
9460         Chain,
9461         VData,
9462         Rsrc,
9463         DAG.getConstant(0, DL, MVT::i32),      // vindex
9464         Offsets.first,                         // voffset
9465         SOffset,                               // soffset
9466         Offsets.second,                        // offset
9467         Op.getOperand(6),                      // cachepolicy, swizzled buffer
9468         DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9469     };
9470     unsigned Opc =
9471         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
9472     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
9473     MemSDNode *M = cast<MemSDNode>(Op);
9474 
9475     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
9476     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
9477       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
9478 
9479     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9480                                    M->getMemoryVT(), M->getMemOperand());
9481   }
9482 
9483   case Intrinsic::amdgcn_struct_buffer_store:
9484   case Intrinsic::amdgcn_struct_ptr_buffer_store:
9485   case Intrinsic::amdgcn_struct_buffer_store_format:
9486   case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
9487     const bool IsFormat =
9488         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
9489         IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
9490 
9491     SDValue VData = Op.getOperand(2);
9492     EVT VDataVT = VData.getValueType();
9493     EVT EltType = VDataVT.getScalarType();
9494     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
9495 
9496     if (IsD16) {
9497       VData = handleD16VData(VData, DAG);
9498       VDataVT = VData.getValueType();
9499     }
9500 
9501     if (!isTypeLegal(VDataVT)) {
9502       VData =
9503           DAG.getNode(ISD::BITCAST, DL,
9504                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
9505     }
9506 
9507     auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9508     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
9509     auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
9510     SDValue Ops[] = {
9511         Chain,
9512         VData,
9513         Rsrc,
9514         Op.getOperand(4),                      // vindex
9515         Offsets.first,                         // voffset
9516         SOffset,                               // soffset
9517         Offsets.second,                        // offset
9518         Op.getOperand(7),                      // cachepolicy, swizzled buffer
9519         DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9520     };
9521     unsigned Opc =
9522         !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
9523     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
9524     MemSDNode *M = cast<MemSDNode>(Op);
9525 
9526     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
9527     EVT VDataType = VData.getValueType().getScalarType();
9528     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
9529       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
9530 
9531     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9532                                    M->getMemoryVT(), M->getMemOperand());
9533   }
9534   case Intrinsic::amdgcn_raw_buffer_load_lds:
9535   case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
9536   case Intrinsic::amdgcn_struct_buffer_load_lds:
9537   case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
9538     assert(!AMDGPU::isGFX12Plus(*Subtarget));
9539     unsigned Opc;
9540     bool HasVIndex =
9541         IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
9542         IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
9543     unsigned OpOffset = HasVIndex ? 1 : 0;
9544     SDValue VOffset = Op.getOperand(5 + OpOffset);
9545     bool HasVOffset = !isNullConstant(VOffset);
9546     unsigned Size = Op->getConstantOperandVal(4);
9547 
9548     switch (Size) {
9549     default:
9550       return SDValue();
9551     case 1:
9552       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
9553                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
9554                       : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
9555                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
9556       break;
9557     case 2:
9558       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
9559                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
9560                       : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
9561                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
9562       break;
9563     case 4:
9564       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
9565                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
9566                       : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
9567                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
9568       break;
9569     }
9570 
9571     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
9572 
9573     SmallVector<SDValue, 8> Ops;
9574 
9575     if (HasVIndex && HasVOffset)
9576       Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
9577                                        { Op.getOperand(5), // VIndex
9578                                          VOffset }));
9579     else if (HasVIndex)
9580       Ops.push_back(Op.getOperand(5));
9581     else if (HasVOffset)
9582       Ops.push_back(VOffset);
9583 
9584     SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
9585     Ops.push_back(Rsrc);
9586     Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
9587     Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
9588     unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
9589     Ops.push_back(
9590       DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
9591     Ops.push_back(DAG.getTargetConstant(
9592         Aux & AMDGPU::CPol::SWZ_pregfx12 ? 1 : 0, DL, MVT::i8)); // swz
9593     Ops.push_back(M0Val.getValue(0)); // Chain
9594     Ops.push_back(M0Val.getValue(1)); // Glue
9595 
9596     auto *M = cast<MemSDNode>(Op);
9597     MachineMemOperand *LoadMMO = M->getMemOperand();
9598     // Don't set the offset value here because the pointer points to the base of
9599     // the buffer.
9600     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
9601 
9602     MachinePointerInfo StorePtrI = LoadPtrI;
9603     LoadPtrI.V = PoisonValue::get(
9604         PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS));
9605     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
9606     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
9607 
9608     auto F = LoadMMO->getFlags() &
9609              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
9610     LoadMMO =
9611         MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size,
9612                                 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
9613 
9614     MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
9615         StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t),
9616         LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
9617 
9618     auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
9619     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
9620 
9621     return SDValue(Load, 0);
9622   }
9623   case Intrinsic::amdgcn_global_load_lds: {
9624     unsigned Opc;
9625     unsigned Size = Op->getConstantOperandVal(4);
9626     switch (Size) {
9627     default:
9628       return SDValue();
9629     case 1:
9630       Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
9631       break;
9632     case 2:
9633       Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
9634       break;
9635     case 4:
9636       Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
9637       break;
9638     }
9639 
9640     auto *M = cast<MemSDNode>(Op);
9641     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
9642 
9643     SmallVector<SDValue, 6> Ops;
9644 
9645     SDValue Addr = Op.getOperand(2); // Global ptr
9646     SDValue VOffset;
9647     // Try to split SAddr and VOffset. Global and LDS pointers share the same
9648     // immediate offset, so we cannot use a regular SelectGlobalSAddr().
9649     if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
9650       SDValue LHS = Addr.getOperand(0);
9651       SDValue RHS = Addr.getOperand(1);
9652 
9653       if (LHS->isDivergent())
9654         std::swap(LHS, RHS);
9655 
9656       if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
9657           RHS.getOperand(0).getValueType() == MVT::i32) {
9658         // add (i64 sgpr), (zero_extend (i32 vgpr))
9659         Addr = LHS;
9660         VOffset = RHS.getOperand(0);
9661       }
9662     }
9663 
9664     Ops.push_back(Addr);
9665     if (!Addr->isDivergent()) {
9666       Opc = AMDGPU::getGlobalSaddrOp(Opc);
9667       if (!VOffset)
9668         VOffset = SDValue(
9669             DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
9670                                DAG.getTargetConstant(0, DL, MVT::i32)), 0);
9671       Ops.push_back(VOffset);
9672     }
9673 
9674     Ops.push_back(Op.getOperand(5));  // Offset
9675     Ops.push_back(Op.getOperand(6));  // CPol
9676     Ops.push_back(M0Val.getValue(0)); // Chain
9677     Ops.push_back(M0Val.getValue(1)); // Glue
9678 
9679     MachineMemOperand *LoadMMO = M->getMemOperand();
9680     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
9681     LoadPtrI.Offset = Op->getConstantOperandVal(5);
9682     MachinePointerInfo StorePtrI = LoadPtrI;
9683     LoadPtrI.V = PoisonValue::get(
9684         PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS));
9685     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
9686     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
9687     auto F = LoadMMO->getFlags() &
9688              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
9689     LoadMMO =
9690         MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size,
9691                                 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
9692     MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
9693         StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4),
9694         LoadMMO->getAAInfo());
9695 
9696     auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
9697     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
9698 
9699     return SDValue(Load, 0);
9700   }
9701   case Intrinsic::amdgcn_end_cf:
9702     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
9703                                       Op->getOperand(2), Chain), 0);
9704   case Intrinsic::amdgcn_s_barrier_init:
9705   case Intrinsic::amdgcn_s_barrier_join:
9706   case Intrinsic::amdgcn_s_wakeup_barrier: {
9707     SDValue Chain = Op->getOperand(0);
9708     SmallVector<SDValue, 2> Ops;
9709     SDValue BarOp = Op->getOperand(2);
9710     unsigned Opc;
9711     bool IsInlinableBarID = false;
9712     int64_t BarVal;
9713 
9714     if (isa<ConstantSDNode>(BarOp)) {
9715       BarVal = cast<ConstantSDNode>(BarOp)->getSExtValue();
9716       IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarVal);
9717     }
9718 
9719     if (IsInlinableBarID) {
9720       switch (IntrinsicID) {
9721       default:
9722         return SDValue();
9723       case Intrinsic::amdgcn_s_barrier_init:
9724         Opc = AMDGPU::S_BARRIER_INIT_IMM;
9725         break;
9726       case Intrinsic::amdgcn_s_barrier_join:
9727         Opc = AMDGPU::S_BARRIER_JOIN_IMM;
9728         break;
9729       case Intrinsic::amdgcn_s_wakeup_barrier:
9730         Opc = AMDGPU::S_WAKEUP_BARRIER_IMM;
9731         break;
9732       }
9733 
9734       SDValue K = DAG.getTargetConstant(BarVal, DL, MVT::i32);
9735       Ops.push_back(K);
9736     } else {
9737       switch (IntrinsicID) {
9738       default:
9739         return SDValue();
9740       case Intrinsic::amdgcn_s_barrier_init:
9741         Opc = AMDGPU::S_BARRIER_INIT_M0;
9742         break;
9743       case Intrinsic::amdgcn_s_barrier_join:
9744         Opc = AMDGPU::S_BARRIER_JOIN_M0;
9745         break;
9746       case Intrinsic::amdgcn_s_wakeup_barrier:
9747         Opc = AMDGPU::S_WAKEUP_BARRIER_M0;
9748         break;
9749       }
9750     }
9751 
9752     if (IntrinsicID == Intrinsic::amdgcn_s_barrier_init) {
9753       SDValue M0Val;
9754       // Member count will be read from M0[16:22]
9755       M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, Op.getOperand(3),
9756                           DAG.getShiftAmountConstant(16, MVT::i32, DL));
9757 
9758       if (!IsInlinableBarID) {
9759         // If reference to barrier id is not an inline constant then it must be
9760         // referenced with M0[4:0]. Perform an OR with the member count to
9761         // include it in M0.
9762         M0Val = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32,
9763                                            Op.getOperand(2), M0Val),
9764                         0);
9765       }
9766       Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
9767     } else if (!IsInlinableBarID) {
9768       Ops.push_back(copyToM0(DAG, Chain, DL, BarOp).getValue(0));
9769     }
9770 
9771     auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
9772     return SDValue(NewMI, 0);
9773   }
9774   default: {
9775     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
9776             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
9777       return lowerImage(Op, ImageDimIntr, DAG, true);
9778 
9779     return Op;
9780   }
9781   }
9782 }
9783 
9784 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
9785 // offset (the offset that is included in bounds checking and swizzling, to be
9786 // split between the instruction's voffset and immoffset fields) and soffset
9787 // (the offset that is excluded from bounds checking and swizzling, to go in
9788 // the instruction's soffset field).  This function takes the first kind of
9789 // offset and figures out how to split it between voffset and immoffset.
9790 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
9791     SDValue Offset, SelectionDAG &DAG) const {
9792   SDLoc DL(Offset);
9793   const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget);
9794   SDValue N0 = Offset;
9795   ConstantSDNode *C1 = nullptr;
9796 
9797   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
9798     N0 = SDValue();
9799   else if (DAG.isBaseWithConstantOffset(N0)) {
9800     C1 = cast<ConstantSDNode>(N0.getOperand(1));
9801     N0 = N0.getOperand(0);
9802   }
9803 
9804   if (C1) {
9805     unsigned ImmOffset = C1->getZExtValue();
9806     // If the immediate value is too big for the immoffset field, put only bits
9807     // that would normally fit in the immoffset field. The remaining value that
9808     // is copied/added for the voffset field is a large power of 2, and it
9809     // stands more chance of being CSEd with the copy/add for another similar
9810     // load/store.
9811     // However, do not do that rounding down if that is a negative
9812     // number, as it appears to be illegal to have a negative offset in the
9813     // vgpr, even if adding the immediate offset makes it positive.
9814     unsigned Overflow = ImmOffset & ~MaxImm;
9815     ImmOffset -= Overflow;
9816     if ((int32_t)Overflow < 0) {
9817       Overflow += ImmOffset;
9818       ImmOffset = 0;
9819     }
9820     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
9821     if (Overflow) {
9822       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
9823       if (!N0)
9824         N0 = OverflowVal;
9825       else {
9826         SDValue Ops[] = { N0, OverflowVal };
9827         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
9828       }
9829     }
9830   }
9831   if (!N0)
9832     N0 = DAG.getConstant(0, DL, MVT::i32);
9833   if (!C1)
9834     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
9835   return {N0, SDValue(C1, 0)};
9836 }
9837 
9838 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
9839 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
9840 // pointed to by Offsets.
9841 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
9842                                         SelectionDAG &DAG, SDValue *Offsets,
9843                                         Align Alignment) const {
9844   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9845   SDLoc DL(CombinedOffset);
9846   if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
9847     uint32_t Imm = C->getZExtValue();
9848     uint32_t SOffset, ImmOffset;
9849     if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
9850       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
9851       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
9852       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
9853       return;
9854     }
9855   }
9856   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
9857     SDValue N0 = CombinedOffset.getOperand(0);
9858     SDValue N1 = CombinedOffset.getOperand(1);
9859     uint32_t SOffset, ImmOffset;
9860     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
9861     if (Offset >= 0 &&
9862         TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) {
9863       Offsets[0] = N0;
9864       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
9865       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
9866       return;
9867     }
9868   }
9869 
9870   SDValue SOffsetZero = Subtarget->hasRestrictedSOffset()
9871                             ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32)
9872                             : DAG.getConstant(0, DL, MVT::i32);
9873 
9874   Offsets[0] = CombinedOffset;
9875   Offsets[1] = SOffsetZero;
9876   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
9877 }
9878 
9879 SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer,
9880                                                 SelectionDAG &DAG) const {
9881   if (!MaybePointer.getValueType().isScalarInteger())
9882     return MaybePointer;
9883 
9884   SDLoc DL(MaybePointer);
9885 
9886   SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer);
9887   return Rsrc;
9888 }
9889 
9890 // Wrap a global or flat pointer into a buffer intrinsic using the flags
9891 // specified in the intrinsic.
9892 SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op,
9893                                                    SelectionDAG &DAG) const {
9894   SDLoc Loc(Op);
9895 
9896   SDValue Pointer = Op->getOperand(1);
9897   SDValue Stride = Op->getOperand(2);
9898   SDValue NumRecords = Op->getOperand(3);
9899   SDValue Flags = Op->getOperand(4);
9900 
9901   auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
9902   SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32);
9903   SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask);
9904   std::optional<uint32_t> ConstStride = std::nullopt;
9905   if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride))
9906     ConstStride = ConstNode->getZExtValue();
9907 
9908   SDValue NewHighHalf = Masked;
9909   if (!ConstStride || *ConstStride != 0) {
9910     SDValue ShiftedStride;
9911     if (ConstStride) {
9912       ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32);
9913     } else {
9914       SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32);
9915       ShiftedStride =
9916           DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride,
9917                       DAG.getShiftAmountConstant(16, MVT::i32, Loc));
9918     }
9919     NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride);
9920   }
9921 
9922   SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf,
9923                              NewHighHalf, NumRecords, Flags);
9924   SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
9925   return RsrcPtr;
9926 }
9927 
9928 // Handle 8 bit and 16 bit buffer loads
9929 SDValue
9930 SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, EVT LoadVT,
9931                                              SDLoc DL, ArrayRef<SDValue> Ops,
9932                                              MachineMemOperand *MMO) const {
9933   EVT IntVT = LoadVT.changeTypeToInteger();
9934   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
9935          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
9936 
9937   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
9938   SDValue BufferLoad =
9939       DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO);
9940   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
9941   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
9942 
9943   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
9944 }
9945 
9946 // Handle 8 bit and 16 bit buffer stores
9947 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
9948                                                       EVT VDataType, SDLoc DL,
9949                                                       SDValue Ops[],
9950                                                       MemSDNode *M) const {
9951   if (VDataType == MVT::f16)
9952     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
9953 
9954   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
9955   Ops[1] = BufferStoreExt;
9956   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
9957                                  AMDGPUISD::BUFFER_STORE_SHORT;
9958   ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9);
9959   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
9960                                      M->getMemOperand());
9961 }
9962 
9963 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
9964                                  ISD::LoadExtType ExtType, SDValue Op,
9965                                  const SDLoc &SL, EVT VT) {
9966   if (VT.bitsLT(Op.getValueType()))
9967     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
9968 
9969   switch (ExtType) {
9970   case ISD::SEXTLOAD:
9971     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
9972   case ISD::ZEXTLOAD:
9973     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
9974   case ISD::EXTLOAD:
9975     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
9976   case ISD::NON_EXTLOAD:
9977     return Op;
9978   }
9979 
9980   llvm_unreachable("invalid ext type");
9981 }
9982 
9983 // Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads.
9984 // TODO: Skip this on GFX12 which does have scalar sub-dword loads.
9985 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
9986   SelectionDAG &DAG = DCI.DAG;
9987   if (Ld->getAlign() < Align(4) || Ld->isDivergent())
9988     return SDValue();
9989 
9990   // FIXME: Constant loads should all be marked invariant.
9991   unsigned AS = Ld->getAddressSpace();
9992   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
9993       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
9994       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
9995     return SDValue();
9996 
9997   // Don't do this early, since it may interfere with adjacent load merging for
9998   // illegal types. We can avoid losing alignment information for exotic types
9999   // pre-legalize.
10000   EVT MemVT = Ld->getMemoryVT();
10001   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
10002       MemVT.getSizeInBits() >= 32)
10003     return SDValue();
10004 
10005   SDLoc SL(Ld);
10006 
10007   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
10008          "unexpected vector extload");
10009 
10010   // TODO: Drop only high part of range.
10011   SDValue Ptr = Ld->getBasePtr();
10012   SDValue NewLoad = DAG.getLoad(
10013       ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
10014       Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
10015       Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
10016       nullptr); // Drop ranges
10017 
10018   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
10019   if (MemVT.isFloatingPoint()) {
10020     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
10021            "unexpected fp extload");
10022     TruncVT = MemVT.changeTypeToInteger();
10023   }
10024 
10025   SDValue Cvt = NewLoad;
10026   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
10027     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
10028                       DAG.getValueType(TruncVT));
10029   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
10030              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
10031     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
10032   } else {
10033     assert(Ld->getExtensionType() == ISD::EXTLOAD);
10034   }
10035 
10036   EVT VT = Ld->getValueType(0);
10037   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10038 
10039   DCI.AddToWorklist(Cvt.getNode());
10040 
10041   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
10042   // the appropriate extension from the 32-bit load.
10043   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
10044   DCI.AddToWorklist(Cvt.getNode());
10045 
10046   // Handle conversion back to floating point if necessary.
10047   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
10048 
10049   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
10050 }
10051 
10052 static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO,
10053                                           const SIMachineFunctionInfo &Info) {
10054   // TODO: Should check if the address can definitely not access stack.
10055   if (Info.isEntryFunction())
10056     return Info.getUserSGPRInfo().hasFlatScratchInit();
10057   return true;
10058 }
10059 
10060 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
10061   SDLoc DL(Op);
10062   LoadSDNode *Load = cast<LoadSDNode>(Op);
10063   ISD::LoadExtType ExtType = Load->getExtensionType();
10064   EVT MemVT = Load->getMemoryVT();
10065 
10066   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
10067     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
10068       return SDValue();
10069 
10070     // FIXME: Copied from PPC
10071     // First, load into 32 bits, then truncate to 1 bit.
10072 
10073     SDValue Chain = Load->getChain();
10074     SDValue BasePtr = Load->getBasePtr();
10075     MachineMemOperand *MMO = Load->getMemOperand();
10076 
10077     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
10078 
10079     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
10080                                    BasePtr, RealMemVT, MMO);
10081 
10082     if (!MemVT.isVector()) {
10083       SDValue Ops[] = {
10084         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
10085         NewLD.getValue(1)
10086       };
10087 
10088       return DAG.getMergeValues(Ops, DL);
10089     }
10090 
10091     SmallVector<SDValue, 3> Elts;
10092     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
10093       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
10094                                 DAG.getConstant(I, DL, MVT::i32));
10095 
10096       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
10097     }
10098 
10099     SDValue Ops[] = {
10100       DAG.getBuildVector(MemVT, DL, Elts),
10101       NewLD.getValue(1)
10102     };
10103 
10104     return DAG.getMergeValues(Ops, DL);
10105   }
10106 
10107   if (!MemVT.isVector())
10108     return SDValue();
10109 
10110   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
10111          "Custom lowering for non-i32 vectors hasn't been implemented.");
10112 
10113   Align Alignment = Load->getAlign();
10114   unsigned AS = Load->getAddressSpace();
10115   if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
10116       Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
10117     return SplitVectorLoad(Op, DAG);
10118   }
10119 
10120   MachineFunction &MF = DAG.getMachineFunction();
10121   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
10122   // If there is a possibility that flat instruction access scratch memory
10123   // then we need to use the same legalization rules we use for private.
10124   if (AS == AMDGPUAS::FLAT_ADDRESS &&
10125       !Subtarget->hasMultiDwordFlatScratchAddressing())
10126     AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ?
10127          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
10128 
10129   unsigned NumElements = MemVT.getVectorNumElements();
10130 
10131   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
10132       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
10133     if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
10134       if (MemVT.isPow2VectorType() ||
10135           (Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
10136         return SDValue();
10137       return WidenOrSplitVectorLoad(Op, DAG);
10138     }
10139     // Non-uniform loads will be selected to MUBUF instructions, so they
10140     // have the same legalization requirements as global and private
10141     // loads.
10142     //
10143   }
10144 
10145   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
10146       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
10147       AS == AMDGPUAS::GLOBAL_ADDRESS) {
10148     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
10149         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
10150         Alignment >= Align(4) && NumElements < 32) {
10151       if (MemVT.isPow2VectorType() ||
10152           (Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
10153         return SDValue();
10154       return WidenOrSplitVectorLoad(Op, DAG);
10155     }
10156     // Non-uniform loads will be selected to MUBUF instructions, so they
10157     // have the same legalization requirements as global and private
10158     // loads.
10159     //
10160   }
10161   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
10162       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
10163       AS == AMDGPUAS::GLOBAL_ADDRESS ||
10164       AS == AMDGPUAS::FLAT_ADDRESS) {
10165     if (NumElements > 4)
10166       return SplitVectorLoad(Op, DAG);
10167     // v3 loads not supported on SI.
10168     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
10169       return WidenOrSplitVectorLoad(Op, DAG);
10170 
10171     // v3 and v4 loads are supported for private and global memory.
10172     return SDValue();
10173   }
10174   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
10175     // Depending on the setting of the private_element_size field in the
10176     // resource descriptor, we can only make private accesses up to a certain
10177     // size.
10178     switch (Subtarget->getMaxPrivateElementSize()) {
10179     case 4: {
10180       SDValue Ops[2];
10181       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
10182       return DAG.getMergeValues(Ops, DL);
10183     }
10184     case 8:
10185       if (NumElements > 2)
10186         return SplitVectorLoad(Op, DAG);
10187       return SDValue();
10188     case 16:
10189       // Same as global/flat
10190       if (NumElements > 4)
10191         return SplitVectorLoad(Op, DAG);
10192       // v3 loads not supported on SI.
10193       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
10194         return WidenOrSplitVectorLoad(Op, DAG);
10195 
10196       return SDValue();
10197     default:
10198       llvm_unreachable("unsupported private_element_size");
10199     }
10200   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
10201     unsigned Fast = 0;
10202     auto Flags = Load->getMemOperand()->getFlags();
10203     if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
10204                                            Load->getAlign(), Flags, &Fast) &&
10205         Fast > 1)
10206       return SDValue();
10207 
10208     if (MemVT.isVector())
10209       return SplitVectorLoad(Op, DAG);
10210   }
10211 
10212   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
10213                                       MemVT, *Load->getMemOperand())) {
10214     SDValue Ops[2];
10215     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
10216     return DAG.getMergeValues(Ops, DL);
10217   }
10218 
10219   return SDValue();
10220 }
10221 
10222 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10223   EVT VT = Op.getValueType();
10224   if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 ||
10225       VT.getSizeInBits() == 512)
10226     return splitTernaryVectorOp(Op, DAG);
10227 
10228   assert(VT.getSizeInBits() == 64);
10229 
10230   SDLoc DL(Op);
10231   SDValue Cond = Op.getOperand(0);
10232 
10233   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
10234   SDValue One = DAG.getConstant(1, DL, MVT::i32);
10235 
10236   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
10237   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
10238 
10239   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
10240   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
10241 
10242   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
10243 
10244   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
10245   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
10246 
10247   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
10248 
10249   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
10250   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
10251 }
10252 
10253 // Catch division cases where we can use shortcuts with rcp and rsq
10254 // instructions.
10255 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
10256                                               SelectionDAG &DAG) const {
10257   SDLoc SL(Op);
10258   SDValue LHS = Op.getOperand(0);
10259   SDValue RHS = Op.getOperand(1);
10260   EVT VT = Op.getValueType();
10261   const SDNodeFlags Flags = Op->getFlags();
10262 
10263   bool AllowInaccurateRcp = Flags.hasApproximateFuncs() ||
10264                             DAG.getTarget().Options.UnsafeFPMath;
10265 
10266   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
10267     // Without !fpmath accuracy information, we can't do more because we don't
10268     // know exactly whether rcp is accurate enough to meet !fpmath requirement.
10269     // f16 is always accurate enough
10270     if (!AllowInaccurateRcp && VT != MVT::f16)
10271       return SDValue();
10272 
10273     if (CLHS->isExactlyValue(1.0)) {
10274       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
10275       // the CI documentation has a worst case error of 1 ulp.
10276       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
10277       // use it as long as we aren't trying to use denormals.
10278       //
10279       // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp.
10280 
10281       // 1.0 / sqrt(x) -> rsq(x)
10282 
10283       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
10284       // error seems really high at 2^29 ULP.
10285       // 1.0 / x -> rcp(x)
10286       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
10287     }
10288 
10289     // Same as for 1.0, but expand the sign out of the constant.
10290     if (CLHS->isExactlyValue(-1.0)) {
10291       // -1.0 / x -> rcp (fneg x)
10292       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10293       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
10294     }
10295   }
10296 
10297   // For f16 require afn or arcp.
10298   // For f32 require afn.
10299   if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal()))
10300     return SDValue();
10301 
10302   // Turn into multiply by the reciprocal.
10303   // x / y -> x * (1.0 / y)
10304   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
10305   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
10306 }
10307 
10308 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
10309                                                 SelectionDAG &DAG) const {
10310   SDLoc SL(Op);
10311   SDValue X = Op.getOperand(0);
10312   SDValue Y = Op.getOperand(1);
10313   EVT VT = Op.getValueType();
10314   const SDNodeFlags Flags = Op->getFlags();
10315 
10316   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
10317                             DAG.getTarget().Options.UnsafeFPMath;
10318   if (!AllowInaccurateDiv)
10319     return SDValue();
10320 
10321   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
10322   SDValue One = DAG.getConstantFP(1.0, SL, VT);
10323 
10324   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
10325   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
10326 
10327   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
10328   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
10329   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
10330   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
10331   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
10332   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
10333 }
10334 
10335 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
10336                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
10337                           SDNodeFlags Flags) {
10338   if (GlueChain->getNumValues() <= 1) {
10339     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
10340   }
10341 
10342   assert(GlueChain->getNumValues() == 3);
10343 
10344   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
10345   switch (Opcode) {
10346   default: llvm_unreachable("no chain equivalent for opcode");
10347   case ISD::FMUL:
10348     Opcode = AMDGPUISD::FMUL_W_CHAIN;
10349     break;
10350   }
10351 
10352   return DAG.getNode(Opcode, SL, VTList,
10353                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
10354                      Flags);
10355 }
10356 
10357 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
10358                            EVT VT, SDValue A, SDValue B, SDValue C,
10359                            SDValue GlueChain, SDNodeFlags Flags) {
10360   if (GlueChain->getNumValues() <= 1) {
10361     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
10362   }
10363 
10364   assert(GlueChain->getNumValues() == 3);
10365 
10366   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
10367   switch (Opcode) {
10368   default: llvm_unreachable("no chain equivalent for opcode");
10369   case ISD::FMA:
10370     Opcode = AMDGPUISD::FMA_W_CHAIN;
10371     break;
10372   }
10373 
10374   return DAG.getNode(Opcode, SL, VTList,
10375                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
10376                      Flags);
10377 }
10378 
10379 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
10380   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
10381     return FastLowered;
10382 
10383   SDLoc SL(Op);
10384   SDValue Src0 = Op.getOperand(0);
10385   SDValue Src1 = Op.getOperand(1);
10386 
10387   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
10388   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
10389 
10390   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
10391   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
10392 
10393   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
10394   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
10395 
10396   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
10397 }
10398 
10399 // Faster 2.5 ULP division that does not support denormals.
10400 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
10401   SDNodeFlags Flags = Op->getFlags();
10402   SDLoc SL(Op);
10403   SDValue LHS = Op.getOperand(1);
10404   SDValue RHS = Op.getOperand(2);
10405 
10406   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags);
10407 
10408   const APFloat K0Val(0x1p+96f);
10409   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
10410 
10411   const APFloat K1Val(0x1p-32f);
10412   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
10413 
10414   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
10415 
10416   EVT SetCCVT =
10417     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
10418 
10419   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
10420 
10421   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags);
10422 
10423   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags);
10424 
10425   // rcp does not support denormals.
10426   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags);
10427 
10428   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags);
10429 
10430   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags);
10431 }
10432 
10433 // Returns immediate value for setting the F32 denorm mode when using the
10434 // S_DENORM_MODE instruction.
10435 static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG,
10436                                     const SIMachineFunctionInfo *Info,
10437                                     const GCNSubtarget *ST) {
10438   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
10439   uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue();
10440   uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
10441   return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32);
10442 }
10443 
10444 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
10445   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
10446     return FastLowered;
10447 
10448   // The selection matcher assumes anything with a chain selecting to a
10449   // mayRaiseFPException machine instruction. Since we're introducing a chain
10450   // here, we need to explicitly report nofpexcept for the regular fdiv
10451   // lowering.
10452   SDNodeFlags Flags = Op->getFlags();
10453   Flags.setNoFPExcept(true);
10454 
10455   SDLoc SL(Op);
10456   SDValue LHS = Op.getOperand(0);
10457   SDValue RHS = Op.getOperand(1);
10458 
10459   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
10460 
10461   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
10462 
10463   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
10464                                           {RHS, RHS, LHS}, Flags);
10465   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
10466                                         {LHS, RHS, LHS}, Flags);
10467 
10468   // Denominator is scaled to not be denormal, so using rcp is ok.
10469   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
10470                                   DenominatorScaled, Flags);
10471   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
10472                                      DenominatorScaled, Flags);
10473 
10474   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
10475                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
10476                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
10477   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
10478 
10479   const MachineFunction &MF = DAG.getMachineFunction();
10480   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10481   const DenormalMode DenormMode = Info->getMode().FP32Denormals;
10482 
10483   const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE();
10484   const bool HasDynamicDenormals =
10485       (DenormMode.Input == DenormalMode::Dynamic) ||
10486       (DenormMode.Output == DenormalMode::Dynamic);
10487 
10488   SDValue SavedDenormMode;
10489 
10490   if (!PreservesDenormals) {
10491     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
10492     // lowering. The chain dependence is insufficient, and we need glue. We do
10493     // not need the glue variants in a strictfp function.
10494 
10495     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
10496 
10497     SDValue Glue = DAG.getEntryNode();
10498     if (HasDynamicDenormals) {
10499       SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL,
10500                                           DAG.getVTList(MVT::i32, MVT::Glue),
10501                                           {BitField, Glue});
10502       SavedDenormMode = SDValue(GetReg, 0);
10503 
10504       Glue = DAG.getMergeValues(
10505           {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL);
10506     }
10507 
10508     SDNode *EnableDenorm;
10509     if (Subtarget->hasDenormModeInst()) {
10510       const SDValue EnableDenormValue =
10511           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget);
10512 
10513       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue,
10514                                  EnableDenormValue)
10515                          .getNode();
10516     } else {
10517       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
10518                                                         SL, MVT::i32);
10519       EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
10520                                         {EnableDenormValue, BitField, Glue});
10521     }
10522 
10523     SDValue Ops[3] = {
10524       NegDivScale0,
10525       SDValue(EnableDenorm, 0),
10526       SDValue(EnableDenorm, 1)
10527     };
10528 
10529     NegDivScale0 = DAG.getMergeValues(Ops, SL);
10530   }
10531 
10532   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
10533                              ApproxRcp, One, NegDivScale0, Flags);
10534 
10535   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
10536                              ApproxRcp, Fma0, Flags);
10537 
10538   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
10539                            Fma1, Fma1, Flags);
10540 
10541   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
10542                              NumeratorScaled, Mul, Flags);
10543 
10544   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
10545                              Fma2, Fma1, Mul, Fma2, Flags);
10546 
10547   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
10548                              NumeratorScaled, Fma3, Flags);
10549 
10550   if (!PreservesDenormals) {
10551     SDNode *DisableDenorm;
10552     if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) {
10553       const SDValue DisableDenormValue = getSPDenormModeValue(
10554           FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget);
10555 
10556       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
10557                                   Fma4.getValue(1), DisableDenormValue,
10558                                   Fma4.getValue(2)).getNode();
10559     } else {
10560       assert(HasDynamicDenormals == (bool)SavedDenormMode);
10561       const SDValue DisableDenormValue =
10562           HasDynamicDenormals
10563               ? SavedDenormMode
10564               : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
10565 
10566       DisableDenorm = DAG.getMachineNode(
10567           AMDGPU::S_SETREG_B32, SL, MVT::Other,
10568           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
10569     }
10570 
10571     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
10572                                       SDValue(DisableDenorm, 0), DAG.getRoot());
10573     DAG.setRoot(OutputChain);
10574   }
10575 
10576   SDValue Scale = NumeratorScaled.getValue(1);
10577   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
10578                              {Fma4, Fma1, Fma3, Scale}, Flags);
10579 
10580   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
10581 }
10582 
10583 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
10584   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
10585     return FastLowered;
10586 
10587   SDLoc SL(Op);
10588   SDValue X = Op.getOperand(0);
10589   SDValue Y = Op.getOperand(1);
10590 
10591   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
10592 
10593   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
10594 
10595   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
10596 
10597   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
10598 
10599   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
10600 
10601   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
10602 
10603   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
10604 
10605   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
10606 
10607   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
10608 
10609   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
10610   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
10611 
10612   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
10613                              NegDivScale0, Mul, DivScale1);
10614 
10615   SDValue Scale;
10616 
10617   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
10618     // Workaround a hardware bug on SI where the condition output from div_scale
10619     // is not usable.
10620 
10621     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
10622 
10623     // Figure out if the scale to use for div_fmas.
10624     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
10625     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
10626     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
10627     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
10628 
10629     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
10630     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
10631 
10632     SDValue Scale0Hi
10633       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
10634     SDValue Scale1Hi
10635       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
10636 
10637     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
10638     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
10639     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
10640   } else {
10641     Scale = DivScale1.getValue(1);
10642   }
10643 
10644   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
10645                              Fma4, Fma3, Mul, Scale);
10646 
10647   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
10648 }
10649 
10650 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
10651   EVT VT = Op.getValueType();
10652 
10653   if (VT == MVT::f32)
10654     return LowerFDIV32(Op, DAG);
10655 
10656   if (VT == MVT::f64)
10657     return LowerFDIV64(Op, DAG);
10658 
10659   if (VT == MVT::f16)
10660     return LowerFDIV16(Op, DAG);
10661 
10662   llvm_unreachable("Unexpected type for fdiv");
10663 }
10664 
10665 SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const {
10666   SDLoc dl(Op);
10667   SDValue Val = Op.getOperand(0);
10668   EVT VT = Val.getValueType();
10669   EVT ResultExpVT = Op->getValueType(1);
10670   EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
10671 
10672   SDValue Mant = DAG.getNode(
10673       ISD::INTRINSIC_WO_CHAIN, dl, VT,
10674       DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val);
10675 
10676   SDValue Exp = DAG.getNode(
10677       ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT,
10678       DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val);
10679 
10680   if (Subtarget->hasFractBug()) {
10681     SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val);
10682     SDValue Inf = DAG.getConstantFP(
10683         APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT);
10684 
10685     SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT);
10686     SDValue Zero = DAG.getConstant(0, dl, InstrExpVT);
10687     Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero);
10688     Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val);
10689   }
10690 
10691   SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT);
10692   return DAG.getMergeValues({Mant, CastExp}, dl);
10693 }
10694 
10695 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
10696   SDLoc DL(Op);
10697   StoreSDNode *Store = cast<StoreSDNode>(Op);
10698   EVT VT = Store->getMemoryVT();
10699 
10700   if (VT == MVT::i1) {
10701     return DAG.getTruncStore(Store->getChain(), DL,
10702        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
10703        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
10704   }
10705 
10706   assert(VT.isVector() &&
10707          Store->getValue().getValueType().getScalarType() == MVT::i32);
10708 
10709   unsigned AS = Store->getAddressSpace();
10710   if (Subtarget->hasLDSMisalignedBug() &&
10711       AS == AMDGPUAS::FLAT_ADDRESS &&
10712       Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
10713     return SplitVectorStore(Op, DAG);
10714   }
10715 
10716   MachineFunction &MF = DAG.getMachineFunction();
10717   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
10718   // If there is a possibility that flat instruction access scratch memory
10719   // then we need to use the same legalization rules we use for private.
10720   if (AS == AMDGPUAS::FLAT_ADDRESS &&
10721       !Subtarget->hasMultiDwordFlatScratchAddressing())
10722     AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ?
10723          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
10724 
10725   unsigned NumElements = VT.getVectorNumElements();
10726   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
10727       AS == AMDGPUAS::FLAT_ADDRESS) {
10728     if (NumElements > 4)
10729       return SplitVectorStore(Op, DAG);
10730     // v3 stores not supported on SI.
10731     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
10732       return SplitVectorStore(Op, DAG);
10733 
10734     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
10735                                         VT, *Store->getMemOperand()))
10736       return expandUnalignedStore(Store, DAG);
10737 
10738     return SDValue();
10739   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
10740     switch (Subtarget->getMaxPrivateElementSize()) {
10741     case 4:
10742       return scalarizeVectorStore(Store, DAG);
10743     case 8:
10744       if (NumElements > 2)
10745         return SplitVectorStore(Op, DAG);
10746       return SDValue();
10747     case 16:
10748       if (NumElements > 4 ||
10749           (NumElements == 3 && !Subtarget->enableFlatScratch()))
10750         return SplitVectorStore(Op, DAG);
10751       return SDValue();
10752     default:
10753       llvm_unreachable("unsupported private_element_size");
10754     }
10755   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
10756     unsigned Fast = 0;
10757     auto Flags = Store->getMemOperand()->getFlags();
10758     if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
10759                                            Store->getAlign(), Flags, &Fast) &&
10760         Fast > 1)
10761       return SDValue();
10762 
10763     if (VT.isVector())
10764       return SplitVectorStore(Op, DAG);
10765 
10766     return expandUnalignedStore(Store, DAG);
10767   }
10768 
10769   // Probably an invalid store. If so we'll end up emitting a selection error.
10770   return SDValue();
10771 }
10772 
10773 // Avoid the full correct expansion for f32 sqrt when promoting from f16.
10774 SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const {
10775   SDLoc SL(Op);
10776   assert(!Subtarget->has16BitInsts());
10777   SDNodeFlags Flags = Op->getFlags();
10778   SDValue Ext =
10779       DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags);
10780 
10781   SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32);
10782   SDValue Sqrt =
10783       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags);
10784 
10785   return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt,
10786                      DAG.getTargetConstant(0, SL, MVT::i32), Flags);
10787 }
10788 
10789 SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const {
10790   SDLoc DL(Op);
10791   SDNodeFlags Flags = Op->getFlags();
10792   MVT VT = Op.getValueType().getSimpleVT();
10793   const SDValue X = Op.getOperand(0);
10794 
10795   if (allowApproxFunc(DAG, Flags)) {
10796     // Instruction is 1ulp but ignores denormals.
10797     return DAG.getNode(
10798         ISD::INTRINSIC_WO_CHAIN, DL, VT,
10799         DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags);
10800   }
10801 
10802   SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT);
10803   SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT);
10804 
10805   SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT);
10806 
10807   SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags);
10808 
10809   SDValue SqrtX =
10810       DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags);
10811 
10812   SDValue SqrtS;
10813   if (needsDenormHandlingF32(DAG, X, Flags)) {
10814     SDValue SqrtID =
10815         DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32);
10816     SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags);
10817 
10818     SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS);
10819     SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
10820                                            DAG.getConstant(-1, DL, MVT::i32));
10821     SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt);
10822 
10823     SDValue NegSqrtSNextDown =
10824         DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags);
10825 
10826     SDValue SqrtVP =
10827         DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
10828 
10829     SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
10830                                          DAG.getConstant(1, DL, MVT::i32));
10831     SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt);
10832 
10833     SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags);
10834     SDValue SqrtVS =
10835         DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
10836 
10837     SDValue Zero = DAG.getConstantFP(0.0f, DL, VT);
10838     SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE);
10839 
10840     SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS,
10841                         Flags);
10842 
10843     SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT);
10844     SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS,
10845                         Flags);
10846   } else {
10847     SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags);
10848 
10849     SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags);
10850 
10851     SDValue Half = DAG.getConstantFP(0.5f, DL, VT);
10852     SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags);
10853     SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags);
10854 
10855     SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags);
10856     SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags);
10857     SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags);
10858 
10859     SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags);
10860     SDValue SqrtD =
10861         DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags);
10862     SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags);
10863   }
10864 
10865   SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT);
10866 
10867   SDValue ScaledDown =
10868       DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags);
10869 
10870   SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags);
10871   SDValue IsZeroOrInf =
10872       DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
10873                   DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
10874 
10875   return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags);
10876 }
10877 
10878 SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const {
10879   // For double type, the SQRT and RSQ instructions don't have required
10880   // precision, we apply Goldschmidt's algorithm to improve the result:
10881   //
10882   //   y0 = rsq(x)
10883   //   g0 = x * y0
10884   //   h0 = 0.5 * y0
10885   //
10886   //   r0 = 0.5 - h0 * g0
10887   //   g1 = g0 * r0 + g0
10888   //   h1 = h0 * r0 + h0
10889   //
10890   //   r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1
10891   //   g2 = g1 * r1 + g1     g2 = d0 * h1 + g1
10892   //   h2 = h1 * r1 + h1
10893   //
10894   //   r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2
10895   //   g3 = g2 * r2 + g2     g3 = d1 * h1 + g2
10896   //
10897   //   sqrt(x) = g3
10898 
10899   SDNodeFlags Flags = Op->getFlags();
10900 
10901   SDLoc DL(Op);
10902 
10903   SDValue X = Op.getOperand(0);
10904   SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64);
10905 
10906   SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT);
10907 
10908   SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32);
10909 
10910   // Scale up input if it is too small.
10911   SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32);
10912   SDValue ScaleUp =
10913       DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt);
10914   SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags);
10915 
10916   SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX);
10917 
10918   SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY);
10919 
10920   SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64);
10921   SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half);
10922 
10923   SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0);
10924   SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half);
10925 
10926   SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0);
10927 
10928   SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0);
10929 
10930   SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1);
10931   SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX);
10932 
10933   SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1);
10934 
10935   SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2);
10936   SDValue SqrtD1 =
10937       DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX);
10938 
10939   SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2);
10940 
10941   SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32);
10942   SDValue ScaleDown =
10943       DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt);
10944   SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags);
10945 
10946   // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check
10947   // with finite only or nsz because rsq(+/-0) = +/-inf
10948 
10949   // TODO: Check for DAZ and expand to subnormals
10950   SDValue IsZeroOrInf =
10951       DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
10952                   DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
10953 
10954   // If x is +INF, +0, or -0, use its original value
10955   return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet,
10956                      Flags);
10957 }
10958 
10959 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
10960   SDLoc DL(Op);
10961   EVT VT = Op.getValueType();
10962   SDValue Arg = Op.getOperand(0);
10963   SDValue TrigVal;
10964 
10965   // Propagate fast-math flags so that the multiply we introduce can be folded
10966   // if Arg is already the result of a multiply by constant.
10967   auto Flags = Op->getFlags();
10968 
10969   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
10970 
10971   if (Subtarget->hasTrigReducedRange()) {
10972     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
10973     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
10974   } else {
10975     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
10976   }
10977 
10978   switch (Op.getOpcode()) {
10979   case ISD::FCOS:
10980     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
10981   case ISD::FSIN:
10982     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
10983   default:
10984     llvm_unreachable("Wrong trig opcode");
10985   }
10986 }
10987 
10988 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10989   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
10990   assert(AtomicNode->isCompareAndSwap());
10991   unsigned AS = AtomicNode->getAddressSpace();
10992 
10993   // No custom lowering required for local address space
10994   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
10995     return Op;
10996 
10997   // Non-local address space requires custom lowering for atomic compare
10998   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
10999   SDLoc DL(Op);
11000   SDValue ChainIn = Op.getOperand(0);
11001   SDValue Addr = Op.getOperand(1);
11002   SDValue Old = Op.getOperand(2);
11003   SDValue New = Op.getOperand(3);
11004   EVT VT = Op.getValueType();
11005   MVT SimpleVT = VT.getSimpleVT();
11006   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
11007 
11008   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
11009   SDValue Ops[] = { ChainIn, Addr, NewOld };
11010 
11011   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
11012                                  Ops, VT, AtomicNode->getMemOperand());
11013 }
11014 
11015 //===----------------------------------------------------------------------===//
11016 // Custom DAG optimizations
11017 //===----------------------------------------------------------------------===//
11018 
11019 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
11020                                                      DAGCombinerInfo &DCI) const {
11021   EVT VT = N->getValueType(0);
11022   EVT ScalarVT = VT.getScalarType();
11023   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
11024     return SDValue();
11025 
11026   SelectionDAG &DAG = DCI.DAG;
11027   SDLoc DL(N);
11028 
11029   SDValue Src = N->getOperand(0);
11030   EVT SrcVT = Src.getValueType();
11031 
11032   // TODO: We could try to match extracting the higher bytes, which would be
11033   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
11034   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
11035   // about in practice.
11036   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
11037     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
11038       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
11039       DCI.AddToWorklist(Cvt.getNode());
11040 
11041       // For the f16 case, fold to a cast to f32 and then cast back to f16.
11042       if (ScalarVT != MVT::f32) {
11043         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
11044                           DAG.getTargetConstant(0, DL, MVT::i32));
11045       }
11046       return Cvt;
11047     }
11048   }
11049 
11050   return SDValue();
11051 }
11052 
11053 SDValue SITargetLowering::performFCopySignCombine(SDNode *N,
11054                                                   DAGCombinerInfo &DCI) const {
11055   SDValue MagnitudeOp = N->getOperand(0);
11056   SDValue SignOp = N->getOperand(1);
11057   SelectionDAG &DAG = DCI.DAG;
11058   SDLoc DL(N);
11059 
11060   // f64 fcopysign is really an f32 copysign on the high bits, so replace the
11061   // lower half with a copy.
11062   // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y)
11063   if (MagnitudeOp.getValueType() == MVT::f64) {
11064     SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp);
11065     SDValue MagLo =
11066       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
11067                   DAG.getConstant(0, DL, MVT::i32));
11068     SDValue MagHi =
11069       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
11070                   DAG.getConstant(1, DL, MVT::i32));
11071 
11072     SDValue HiOp =
11073       DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp);
11074 
11075     SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp);
11076 
11077     return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector);
11078   }
11079 
11080   if (SignOp.getValueType() != MVT::f64)
11081     return SDValue();
11082 
11083   // Reduce width of sign operand, we only need the highest bit.
11084   //
11085   // fcopysign f64:x, f64:y ->
11086   //   fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1)
11087   // TODO: In some cases it might make sense to go all the way to f16.
11088   SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp);
11089   SDValue SignAsF32 =
11090       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector,
11091                   DAG.getConstant(1, DL, MVT::i32));
11092 
11093   return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0),
11094                      SignAsF32);
11095 }
11096 
11097 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
11098 // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no
11099 // bits
11100 
11101 // This is a variant of
11102 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
11103 //
11104 // The normal DAG combiner will do this, but only if the add has one use since
11105 // that would increase the number of instructions.
11106 //
11107 // This prevents us from seeing a constant offset that can be folded into a
11108 // memory instruction's addressing mode. If we know the resulting add offset of
11109 // a pointer can be folded into an addressing offset, we can replace the pointer
11110 // operand with the add of new constant offset. This eliminates one of the uses,
11111 // and may allow the remaining use to also be simplified.
11112 //
11113 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
11114                                                unsigned AddrSpace,
11115                                                EVT MemVT,
11116                                                DAGCombinerInfo &DCI) const {
11117   SDValue N0 = N->getOperand(0);
11118   SDValue N1 = N->getOperand(1);
11119 
11120   // We only do this to handle cases where it's profitable when there are
11121   // multiple uses of the add, so defer to the standard combine.
11122   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
11123       N0->hasOneUse())
11124     return SDValue();
11125 
11126   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
11127   if (!CN1)
11128     return SDValue();
11129 
11130   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11131   if (!CAdd)
11132     return SDValue();
11133 
11134   SelectionDAG &DAG = DCI.DAG;
11135 
11136   if (N0->getOpcode() == ISD::OR &&
11137       !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1)))
11138     return SDValue();
11139 
11140   // If the resulting offset is too large, we can't fold it into the
11141   // addressing mode offset.
11142   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
11143   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
11144 
11145   AddrMode AM;
11146   AM.HasBaseReg = true;
11147   AM.BaseOffs = Offset.getSExtValue();
11148   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
11149     return SDValue();
11150 
11151   SDLoc SL(N);
11152   EVT VT = N->getValueType(0);
11153 
11154   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
11155   SDValue COffset = DAG.getConstant(Offset, SL, VT);
11156 
11157   SDNodeFlags Flags;
11158   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
11159                           (N0.getOpcode() == ISD::OR ||
11160                            N0->getFlags().hasNoUnsignedWrap()));
11161 
11162   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
11163 }
11164 
11165 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
11166 /// by the chain and intrinsic ID. Theoretically we would also need to check the
11167 /// specific intrinsic, but they all place the pointer operand first.
11168 static unsigned getBasePtrIndex(const MemSDNode *N) {
11169   switch (N->getOpcode()) {
11170   case ISD::STORE:
11171   case ISD::INTRINSIC_W_CHAIN:
11172   case ISD::INTRINSIC_VOID:
11173     return 2;
11174   default:
11175     return 1;
11176   }
11177 }
11178 
11179 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
11180                                                   DAGCombinerInfo &DCI) const {
11181   SelectionDAG &DAG = DCI.DAG;
11182   SDLoc SL(N);
11183 
11184   unsigned PtrIdx = getBasePtrIndex(N);
11185   SDValue Ptr = N->getOperand(PtrIdx);
11186 
11187   // TODO: We could also do this for multiplies.
11188   if (Ptr.getOpcode() == ISD::SHL) {
11189     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
11190                                           N->getMemoryVT(), DCI);
11191     if (NewPtr) {
11192       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
11193 
11194       NewOps[PtrIdx] = NewPtr;
11195       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
11196     }
11197   }
11198 
11199   return SDValue();
11200 }
11201 
11202 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
11203   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
11204          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
11205          (Opc == ISD::XOR && Val == 0);
11206 }
11207 
11208 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
11209 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
11210 // integer combine opportunities since most 64-bit operations are decomposed
11211 // this way.  TODO: We won't want this for SALU especially if it is an inline
11212 // immediate.
11213 SDValue SITargetLowering::splitBinaryBitConstantOp(
11214   DAGCombinerInfo &DCI,
11215   const SDLoc &SL,
11216   unsigned Opc, SDValue LHS,
11217   const ConstantSDNode *CRHS) const {
11218   uint64_t Val = CRHS->getZExtValue();
11219   uint32_t ValLo = Lo_32(Val);
11220   uint32_t ValHi = Hi_32(Val);
11221   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11222 
11223     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
11224          bitOpWithConstantIsReducible(Opc, ValHi)) ||
11225         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
11226     // If we need to materialize a 64-bit immediate, it will be split up later
11227     // anyway. Avoid creating the harder to understand 64-bit immediate
11228     // materialization.
11229     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
11230   }
11231 
11232   return SDValue();
11233 }
11234 
11235 bool llvm::isBoolSGPR(SDValue V) {
11236   if (V.getValueType() != MVT::i1)
11237     return false;
11238   switch (V.getOpcode()) {
11239   default:
11240     break;
11241   case ISD::SETCC:
11242   case AMDGPUISD::FP_CLASS:
11243     return true;
11244   case ISD::AND:
11245   case ISD::OR:
11246   case ISD::XOR:
11247     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
11248   }
11249   return false;
11250 }
11251 
11252 // If a constant has all zeroes or all ones within each byte return it.
11253 // Otherwise return 0.
11254 static uint32_t getConstantPermuteMask(uint32_t C) {
11255   // 0xff for any zero byte in the mask
11256   uint32_t ZeroByteMask = 0;
11257   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
11258   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
11259   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
11260   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
11261   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
11262   if ((NonZeroByteMask & C) != NonZeroByteMask)
11263     return 0; // Partial bytes selected.
11264   return C;
11265 }
11266 
11267 // Check if a node selects whole bytes from its operand 0 starting at a byte
11268 // boundary while masking the rest. Returns select mask as in the v_perm_b32
11269 // or -1 if not succeeded.
11270 // Note byte select encoding:
11271 // value 0-3 selects corresponding source byte;
11272 // value 0xc selects zero;
11273 // value 0xff selects 0xff.
11274 static uint32_t getPermuteMask(SDValue V) {
11275   assert(V.getValueSizeInBits() == 32);
11276 
11277   if (V.getNumOperands() != 2)
11278     return ~0;
11279 
11280   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
11281   if (!N1)
11282     return ~0;
11283 
11284   uint32_t C = N1->getZExtValue();
11285 
11286   switch (V.getOpcode()) {
11287   default:
11288     break;
11289   case ISD::AND:
11290     if (uint32_t ConstMask = getConstantPermuteMask(C))
11291       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
11292     break;
11293 
11294   case ISD::OR:
11295     if (uint32_t ConstMask = getConstantPermuteMask(C))
11296       return (0x03020100 & ~ConstMask) | ConstMask;
11297     break;
11298 
11299   case ISD::SHL:
11300     if (C % 8)
11301       return ~0;
11302 
11303     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
11304 
11305   case ISD::SRL:
11306     if (C % 8)
11307       return ~0;
11308 
11309     return uint32_t(0x0c0c0c0c03020100ull >> C);
11310   }
11311 
11312   return ~0;
11313 }
11314 
11315 SDValue SITargetLowering::performAndCombine(SDNode *N,
11316                                             DAGCombinerInfo &DCI) const {
11317   if (DCI.isBeforeLegalize())
11318     return SDValue();
11319 
11320   SelectionDAG &DAG = DCI.DAG;
11321   EVT VT = N->getValueType(0);
11322   SDValue LHS = N->getOperand(0);
11323   SDValue RHS = N->getOperand(1);
11324 
11325 
11326   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
11327   if (VT == MVT::i64 && CRHS) {
11328     if (SDValue Split
11329         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
11330       return Split;
11331   }
11332 
11333   if (CRHS && VT == MVT::i32) {
11334     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
11335     // nb = number of trailing zeroes in mask
11336     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
11337     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
11338     uint64_t Mask = CRHS->getZExtValue();
11339     unsigned Bits = llvm::popcount(Mask);
11340     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
11341         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
11342       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
11343         unsigned Shift = CShift->getZExtValue();
11344         unsigned NB = CRHS->getAPIntValue().countr_zero();
11345         unsigned Offset = NB + Shift;
11346         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
11347           SDLoc SL(N);
11348           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
11349                                     LHS->getOperand(0),
11350                                     DAG.getConstant(Offset, SL, MVT::i32),
11351                                     DAG.getConstant(Bits, SL, MVT::i32));
11352           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
11353           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
11354                                     DAG.getValueType(NarrowVT));
11355           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
11356                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
11357           return Shl;
11358         }
11359       }
11360     }
11361 
11362     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
11363     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
11364         isa<ConstantSDNode>(LHS.getOperand(2))) {
11365       uint32_t Sel = getConstantPermuteMask(Mask);
11366       if (!Sel)
11367         return SDValue();
11368 
11369       // Select 0xc for all zero bytes
11370       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
11371       SDLoc DL(N);
11372       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
11373                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
11374     }
11375   }
11376 
11377   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
11378   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
11379   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
11380     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
11381     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
11382 
11383     SDValue X = LHS.getOperand(0);
11384     SDValue Y = RHS.getOperand(0);
11385     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X ||
11386         !isTypeLegal(X.getValueType()))
11387       return SDValue();
11388 
11389     if (LCC == ISD::SETO) {
11390       if (X != LHS.getOperand(1))
11391         return SDValue();
11392 
11393       if (RCC == ISD::SETUNE) {
11394         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
11395         if (!C1 || !C1->isInfinity() || C1->isNegative())
11396           return SDValue();
11397 
11398         const uint32_t Mask = SIInstrFlags::N_NORMAL |
11399                               SIInstrFlags::N_SUBNORMAL |
11400                               SIInstrFlags::N_ZERO |
11401                               SIInstrFlags::P_ZERO |
11402                               SIInstrFlags::P_SUBNORMAL |
11403                               SIInstrFlags::P_NORMAL;
11404 
11405         static_assert(((~(SIInstrFlags::S_NAN |
11406                           SIInstrFlags::Q_NAN |
11407                           SIInstrFlags::N_INFINITY |
11408                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
11409                       "mask not equal");
11410 
11411         SDLoc DL(N);
11412         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
11413                            X, DAG.getConstant(Mask, DL, MVT::i32));
11414       }
11415     }
11416   }
11417 
11418   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
11419     std::swap(LHS, RHS);
11420 
11421   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
11422       RHS.hasOneUse()) {
11423     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
11424     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
11425     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
11426     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
11427     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
11428         (RHS.getOperand(0) == LHS.getOperand(0) &&
11429          LHS.getOperand(0) == LHS.getOperand(1))) {
11430       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
11431       unsigned NewMask = LCC == ISD::SETO ?
11432         Mask->getZExtValue() & ~OrdMask :
11433         Mask->getZExtValue() & OrdMask;
11434 
11435       SDLoc DL(N);
11436       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
11437                          DAG.getConstant(NewMask, DL, MVT::i32));
11438     }
11439   }
11440 
11441   if (VT == MVT::i32 &&
11442       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
11443     // and x, (sext cc from i1) => select cc, x, 0
11444     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
11445       std::swap(LHS, RHS);
11446     if (isBoolSGPR(RHS.getOperand(0)))
11447       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
11448                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
11449   }
11450 
11451   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
11452   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11453   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
11454       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
11455     uint32_t LHSMask = getPermuteMask(LHS);
11456     uint32_t RHSMask = getPermuteMask(RHS);
11457     if (LHSMask != ~0u && RHSMask != ~0u) {
11458       // Canonicalize the expression in an attempt to have fewer unique masks
11459       // and therefore fewer registers used to hold the masks.
11460       if (LHSMask > RHSMask) {
11461         std::swap(LHSMask, RHSMask);
11462         std::swap(LHS, RHS);
11463       }
11464 
11465       // Select 0xc for each lane used from source operand. Zero has 0xc mask
11466       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
11467       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
11468       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
11469 
11470       // Check of we need to combine values from two sources within a byte.
11471       if (!(LHSUsedLanes & RHSUsedLanes) &&
11472           // If we select high and lower word keep it for SDWA.
11473           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
11474           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
11475         // Each byte in each mask is either selector mask 0-3, or has higher
11476         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
11477         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
11478         // mask which is not 0xff wins. By anding both masks we have a correct
11479         // result except that 0x0c shall be corrected to give 0x0c only.
11480         uint32_t Mask = LHSMask & RHSMask;
11481         for (unsigned I = 0; I < 32; I += 8) {
11482           uint32_t ByteSel = 0xff << I;
11483           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
11484             Mask &= (0x0c << I) & 0xffffffff;
11485         }
11486 
11487         // Add 4 to each active LHS lane. It will not affect any existing 0xff
11488         // or 0x0c.
11489         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
11490         SDLoc DL(N);
11491 
11492         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
11493                            LHS.getOperand(0), RHS.getOperand(0),
11494                            DAG.getConstant(Sel, DL, MVT::i32));
11495       }
11496     }
11497   }
11498 
11499   return SDValue();
11500 }
11501 
11502 // A key component of v_perm is a mapping between byte position of the src
11503 // operands, and the byte position of the dest. To provide such, we need: 1. the
11504 // node that provides x byte of the dest of the OR, and 2. the byte of the node
11505 // used to provide that x byte. calculateByteProvider finds which node provides
11506 // a certain byte of the dest of the OR, and calculateSrcByte takes that node,
11507 // and finds an ultimate src and byte position For example: The supported
11508 // LoadCombine pattern for vector loads is as follows
11509 //                                t1
11510 //                                or
11511 //                      /                  \
11512 //                      t2                 t3
11513 //                     zext                shl
11514 //                      |                   |     \
11515 //                     t4                  t5     16
11516 //                     or                 anyext
11517 //                 /        \               |
11518 //                t6        t7             t8
11519 //               srl        shl             or
11520 //            /    |      /     \         /     \
11521 //           t9   t10    t11   t12      t13    t14
11522 //         trunc*  8    trunc*  8      and     and
11523 //           |            |          /    |     |    \
11524 //          t15          t16        t17  t18   t19   t20
11525 //                                trunc*  255   srl   -256
11526 //                                   |         /   \
11527 //                                  t15       t15  16
11528 //
11529 // *In this example, the truncs are from i32->i16
11530 //
11531 // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3
11532 // respectively. calculateSrcByte would find (given node) -> ultimate src &
11533 // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3.
11534 // After finding the mapping, we can combine the tree into vperm t15, t16,
11535 // 0x05000407
11536 
11537 // Find the source and byte position from a node.
11538 // \p DestByte is the byte position of the dest of the or that the src
11539 // ultimately provides. \p SrcIndex is the byte of the src that maps to this
11540 // dest of the or byte. \p Depth tracks how many recursive iterations we have
11541 // performed.
11542 static const std::optional<ByteProvider<SDValue>>
11543 calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0,
11544                  unsigned Depth = 0) {
11545   // We may need to recursively traverse a series of SRLs
11546   if (Depth >= 6)
11547     return std::nullopt;
11548 
11549   auto ValueSize = Op.getValueSizeInBits();
11550   if (ValueSize != 8 && ValueSize != 16 && ValueSize != 32)
11551     return std::nullopt;
11552 
11553   switch (Op->getOpcode()) {
11554   case ISD::TRUNCATE: {
11555     return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
11556   }
11557 
11558   case ISD::SIGN_EXTEND:
11559   case ISD::ZERO_EXTEND:
11560   case ISD::SIGN_EXTEND_INREG: {
11561     SDValue NarrowOp = Op->getOperand(0);
11562     auto NarrowVT = NarrowOp.getValueType();
11563     if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) {
11564       auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
11565       NarrowVT = VTSign->getVT();
11566     }
11567     if (!NarrowVT.isByteSized())
11568       return std::nullopt;
11569     uint64_t NarrowByteWidth = NarrowVT.getStoreSize();
11570 
11571     if (SrcIndex >= NarrowByteWidth)
11572       return std::nullopt;
11573     return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
11574   }
11575 
11576   case ISD::SRA:
11577   case ISD::SRL: {
11578     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11579     if (!ShiftOp)
11580       return std::nullopt;
11581 
11582     uint64_t BitShift = ShiftOp->getZExtValue();
11583 
11584     if (BitShift % 8 != 0)
11585       return std::nullopt;
11586 
11587     SrcIndex += BitShift / 8;
11588 
11589     return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
11590   }
11591 
11592   default: {
11593     return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
11594   }
11595   }
11596   llvm_unreachable("fully handled switch");
11597 }
11598 
11599 // For a byte position in the result of an Or, traverse the tree and find the
11600 // node (and the byte of the node) which ultimately provides this {Or,
11601 // BytePosition}. \p Op is the operand we are currently examining. \p Index is
11602 // the byte position of the Op that corresponds with the originally requested
11603 // byte of the Or \p Depth tracks how many recursive iterations we have
11604 // performed. \p StartingIndex is the originally requested byte of the Or
11605 static const std::optional<ByteProvider<SDValue>>
11606 calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth,
11607                       unsigned StartingIndex = 0) {
11608   // Finding Src tree of RHS of or typically requires at least 1 additional
11609   // depth
11610   if (Depth > 6)
11611     return std::nullopt;
11612 
11613   unsigned BitWidth = Op.getScalarValueSizeInBits();
11614   if (BitWidth % 8 != 0)
11615     return std::nullopt;
11616   if (Index > BitWidth / 8 - 1)
11617     return std::nullopt;
11618 
11619   switch (Op.getOpcode()) {
11620   case ISD::OR: {
11621     auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1,
11622                                      StartingIndex);
11623     if (!RHS)
11624       return std::nullopt;
11625     auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
11626                                      StartingIndex);
11627     if (!LHS)
11628       return std::nullopt;
11629     // A well formed Or will have two ByteProviders for each byte, one of which
11630     // is constant zero
11631     if (!LHS->isConstantZero() && !RHS->isConstantZero())
11632       return std::nullopt;
11633     if (!LHS || LHS->isConstantZero())
11634       return RHS;
11635     if (!RHS || RHS->isConstantZero())
11636       return LHS;
11637     return std::nullopt;
11638   }
11639 
11640   case ISD::AND: {
11641     auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11642     if (!BitMaskOp)
11643       return std::nullopt;
11644 
11645     uint32_t BitMask = BitMaskOp->getZExtValue();
11646     // Bits we expect for our StartingIndex
11647     uint32_t IndexMask = 0xFF << (Index * 8);
11648 
11649     if ((IndexMask & BitMask) != IndexMask) {
11650       // If the result of the and partially provides the byte, then it
11651       // is not well formatted
11652       if (IndexMask & BitMask)
11653         return std::nullopt;
11654       return ByteProvider<SDValue>::getConstantZero();
11655     }
11656 
11657     return calculateSrcByte(Op->getOperand(0), StartingIndex, Index);
11658   }
11659 
11660   case ISD::FSHR: {
11661     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
11662     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2));
11663     if (!ShiftOp || Op.getValueType().isVector())
11664       return std::nullopt;
11665 
11666     uint64_t BitsProvided = Op.getValueSizeInBits();
11667     if (BitsProvided % 8 != 0)
11668       return std::nullopt;
11669 
11670     uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
11671     if (BitShift % 8)
11672       return std::nullopt;
11673 
11674     uint64_t ConcatSizeInBytes = BitsProvided / 4;
11675     uint64_t ByteShift = BitShift / 8;
11676 
11677     uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
11678     uint64_t BytesProvided = BitsProvided / 8;
11679     SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
11680     NewIndex %= BytesProvided;
11681     return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex);
11682   }
11683 
11684   case ISD::SRA:
11685   case ISD::SRL: {
11686     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11687     if (!ShiftOp)
11688       return std::nullopt;
11689 
11690     uint64_t BitShift = ShiftOp->getZExtValue();
11691     if (BitShift % 8)
11692       return std::nullopt;
11693 
11694     auto BitsProvided = Op.getScalarValueSizeInBits();
11695     if (BitsProvided % 8 != 0)
11696       return std::nullopt;
11697 
11698     uint64_t BytesProvided = BitsProvided / 8;
11699     uint64_t ByteShift = BitShift / 8;
11700     // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes.
11701     // If the byte we are trying to provide (as tracked by index) falls in this
11702     // range, then the SRL provides the byte. The byte of interest of the src of
11703     // the SRL is Index + ByteShift
11704     return BytesProvided - ByteShift > Index
11705                ? calculateSrcByte(Op->getOperand(0), StartingIndex,
11706                                   Index + ByteShift)
11707                : ByteProvider<SDValue>::getConstantZero();
11708   }
11709 
11710   case ISD::SHL: {
11711     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11712     if (!ShiftOp)
11713       return std::nullopt;
11714 
11715     uint64_t BitShift = ShiftOp->getZExtValue();
11716     if (BitShift % 8 != 0)
11717       return std::nullopt;
11718     uint64_t ByteShift = BitShift / 8;
11719 
11720     // If we are shifting by an amount greater than (or equal to)
11721     // the index we are trying to provide, then it provides 0s. If not,
11722     // then this bytes are not definitively 0s, and the corresponding byte
11723     // of interest is Index - ByteShift of the src
11724     return Index < ByteShift
11725                ? ByteProvider<SDValue>::getConstantZero()
11726                : calculateByteProvider(Op.getOperand(0), Index - ByteShift,
11727                                        Depth + 1, StartingIndex);
11728   }
11729   case ISD::ANY_EXTEND:
11730   case ISD::SIGN_EXTEND:
11731   case ISD::ZERO_EXTEND:
11732   case ISD::SIGN_EXTEND_INREG:
11733   case ISD::AssertZext:
11734   case ISD::AssertSext: {
11735     SDValue NarrowOp = Op->getOperand(0);
11736     unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits();
11737     if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG ||
11738         Op->getOpcode() == ISD::AssertZext ||
11739         Op->getOpcode() == ISD::AssertSext) {
11740       auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
11741       NarrowBitWidth = VTSign->getVT().getSizeInBits();
11742     }
11743     if (NarrowBitWidth % 8 != 0)
11744       return std::nullopt;
11745     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
11746 
11747     if (Index >= NarrowByteWidth)
11748       return Op.getOpcode() == ISD::ZERO_EXTEND
11749                  ? std::optional<ByteProvider<SDValue>>(
11750                        ByteProvider<SDValue>::getConstantZero())
11751                  : std::nullopt;
11752     return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex);
11753   }
11754 
11755   case ISD::TRUNCATE: {
11756     uint64_t NarrowByteWidth = BitWidth / 8;
11757 
11758     if (NarrowByteWidth >= Index) {
11759       return calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
11760                                    StartingIndex);
11761     }
11762 
11763     return std::nullopt;
11764   }
11765 
11766   case ISD::CopyFromReg: {
11767     if (BitWidth / 8 > Index)
11768       return calculateSrcByte(Op, StartingIndex, Index);
11769 
11770     return std::nullopt;
11771   }
11772 
11773   case ISD::LOAD: {
11774     auto L = cast<LoadSDNode>(Op.getNode());
11775 
11776     unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
11777     if (NarrowBitWidth % 8 != 0)
11778       return std::nullopt;
11779     uint64_t NarrowByteWidth = NarrowBitWidth / 8;
11780 
11781     // If the width of the load does not reach byte we are trying to provide for
11782     // and it is not a ZEXTLOAD, then the load does not provide for the byte in
11783     // question
11784     if (Index >= NarrowByteWidth) {
11785       return L->getExtensionType() == ISD::ZEXTLOAD
11786                  ? std::optional<ByteProvider<SDValue>>(
11787                        ByteProvider<SDValue>::getConstantZero())
11788                  : std::nullopt;
11789     }
11790 
11791     if (NarrowByteWidth > Index) {
11792       return calculateSrcByte(Op, StartingIndex, Index);
11793     }
11794 
11795     return std::nullopt;
11796   }
11797 
11798   case ISD::BSWAP:
11799     return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1,
11800                                  Depth + 1, StartingIndex);
11801 
11802   case ISD::EXTRACT_VECTOR_ELT: {
11803     auto IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11804     if (!IdxOp)
11805       return std::nullopt;
11806     auto VecIdx = IdxOp->getZExtValue();
11807     auto ScalarSize = Op.getScalarValueSizeInBits();
11808     if (ScalarSize != 32) {
11809       if ((VecIdx + 1) * ScalarSize > 32)
11810         return std::nullopt;
11811       Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
11812     }
11813 
11814     return calculateSrcByte(ScalarSize == 32 ? Op : Op.getOperand(0),
11815                             StartingIndex, Index);
11816   }
11817 
11818   case AMDGPUISD::PERM: {
11819     auto PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2));
11820     if (!PermMask)
11821       return std::nullopt;
11822 
11823     auto IdxMask =
11824         (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
11825     if (IdxMask > 0x07 && IdxMask != 0x0c)
11826       return std::nullopt;
11827 
11828     auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1);
11829     auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
11830 
11831     return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex)
11832                            : ByteProvider<SDValue>(
11833                                  ByteProvider<SDValue>::getConstantZero());
11834   }
11835 
11836   default: {
11837     return std::nullopt;
11838   }
11839   }
11840 
11841   llvm_unreachable("fully handled switch");
11842 }
11843 
11844 // Returns true if the Operand is a scalar and is 16 bits
11845 static bool isExtendedFrom16Bits(SDValue &Operand) {
11846 
11847   switch (Operand.getOpcode()) {
11848   case ISD::ANY_EXTEND:
11849   case ISD::SIGN_EXTEND:
11850   case ISD::ZERO_EXTEND: {
11851     auto OpVT = Operand.getOperand(0).getValueType();
11852     return !OpVT.isVector() && OpVT.getSizeInBits() == 16;
11853   }
11854   case ISD::LOAD: {
11855     LoadSDNode *L = cast<LoadSDNode>(Operand.getNode());
11856     auto ExtType = cast<LoadSDNode>(L)->getExtensionType();
11857     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD ||
11858         ExtType == ISD::EXTLOAD) {
11859       auto MemVT = L->getMemoryVT();
11860       return !MemVT.isVector() && MemVT.getSizeInBits() == 16;
11861     }
11862     return L->getMemoryVT().getSizeInBits() == 16;
11863   }
11864   default:
11865     return false;
11866   }
11867 }
11868 
11869 // Returns true if the mask matches consecutive bytes, and the first byte
11870 // begins at a power of 2 byte offset from 0th byte
11871 static bool addresses16Bits(int Mask) {
11872   int Low8 = Mask & 0xff;
11873   int Hi8 = (Mask & 0xff00) >> 8;
11874 
11875   assert(Low8 < 8 && Hi8 < 8);
11876   // Are the bytes contiguous in the order of increasing addresses.
11877   bool IsConsecutive = (Hi8 - Low8 == 1);
11878   // Is the first byte at location that is aligned for 16 bit instructions.
11879   // A counter example is taking 2 consecutive bytes starting at the 8th bit.
11880   // In this case, we still need code to extract the 16 bit operand, so it
11881   // is better to use i8 v_perm
11882   bool Is16Aligned = !(Low8 % 2);
11883 
11884   return IsConsecutive && Is16Aligned;
11885 }
11886 
11887 // Do not lower into v_perm if the operands are actually 16 bit
11888 // and the selected bits (based on PermMask) correspond with two
11889 // easily addressable 16 bit operands.
11890 static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op,
11891                                 SDValue &OtherOp) {
11892   int Low16 = PermMask & 0xffff;
11893   int Hi16 = (PermMask & 0xffff0000) >> 16;
11894 
11895   assert(Op.getValueType().isByteSized());
11896   assert(OtherOp.getValueType().isByteSized());
11897 
11898   auto TempOp = peekThroughBitcasts(Op);
11899   auto TempOtherOp = peekThroughBitcasts(OtherOp);
11900 
11901   auto OpIs16Bit =
11902       TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp);
11903   if (!OpIs16Bit)
11904     return true;
11905 
11906   auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
11907                         isExtendedFrom16Bits(TempOtherOp);
11908   if (!OtherOpIs16Bit)
11909     return true;
11910 
11911   // Do we cleanly address both
11912   return !addresses16Bits(Low16) || !addresses16Bits(Hi16);
11913 }
11914 
11915 static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11916   SelectionDAG &DAG = DCI.DAG;
11917   EVT VT = N->getValueType(0);
11918 
11919   if (VT != MVT::i32)
11920     return SDValue();
11921 
11922   // VT is known to be MVT::i32, so we need to provide 4 bytes.
11923   SmallVector<ByteProvider<SDValue>, 8> PermNodes;
11924   for (int i = 0; i < 4; i++) {
11925     // Find the ByteProvider that provides the ith byte of the result of OR
11926     std::optional<ByteProvider<SDValue>> P =
11927         calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i);
11928     // TODO support constantZero
11929     if (!P || P->isConstantZero())
11930       return SDValue();
11931 
11932     PermNodes.push_back(*P);
11933   }
11934   if (PermNodes.size() != 4)
11935     return SDValue();
11936 
11937   int FirstSrc = 0;
11938   std::optional<int> SecondSrc;
11939   uint64_t PermMask = 0x00000000;
11940   for (size_t i = 0; i < PermNodes.size(); i++) {
11941     auto PermOp = PermNodes[i];
11942     // Since the mask is applied to Src1:Src2, Src1 bytes must be offset
11943     // by sizeof(Src2) = 4
11944     int SrcByteAdjust = 4;
11945 
11946     if (!PermOp.hasSameSrc(PermNodes[FirstSrc])) {
11947       if (SecondSrc.has_value())
11948         if (!PermOp.hasSameSrc(PermNodes[*SecondSrc]))
11949           return SDValue();
11950 
11951       // Set the index of the second distinct Src node
11952       SecondSrc = i;
11953       assert(!(PermNodes[*SecondSrc].Src->getValueSizeInBits() % 8));
11954       SrcByteAdjust = 0;
11955     }
11956     assert(PermOp.SrcOffset + SrcByteAdjust < 8);
11957     assert(!DAG.getDataLayout().isBigEndian());
11958     PermMask |= (PermOp.SrcOffset + SrcByteAdjust) << (i * 8);
11959   }
11960 
11961   SDValue Op = *PermNodes[FirstSrc].Src;
11962   SDValue OtherOp = SecondSrc.has_value() ? *PermNodes[*SecondSrc].Src
11963                                           : *PermNodes[FirstSrc].Src;
11964 
11965   // Check that we haven't just recreated the same FSHR node.
11966   if (N->getOpcode() == ISD::FSHR &&
11967       (N->getOperand(0) == Op || N->getOperand(0) == OtherOp) &&
11968       (N->getOperand(1) == Op || N->getOperand(1) == OtherOp))
11969     return SDValue();
11970 
11971   // Check that we are not just extracting the bytes in order from an op
11972   if (Op == OtherOp && Op.getValueSizeInBits() == 32) {
11973     int Low16 = PermMask & 0xffff;
11974     int Hi16 = (PermMask & 0xffff0000) >> 16;
11975 
11976     bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
11977     bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
11978 
11979     // The perm op would really just produce Op. So combine into Op
11980     if (WellFormedLow && WellFormedHi)
11981       return DAG.getBitcast(MVT::getIntegerVT(32), Op);
11982   }
11983 
11984   if (hasNon16BitAccesses(PermMask, Op, OtherOp)) {
11985     SDLoc DL(N);
11986     assert(Op.getValueType().isByteSized() &&
11987            OtherOp.getValueType().isByteSized());
11988 
11989     // If the ultimate src is less than 32 bits, then we will only be
11990     // using bytes 0: Op.getValueSizeInBytes() - 1 in the or.
11991     // CalculateByteProvider would not have returned Op as source if we
11992     // used a byte that is outside its ValueType. Thus, we are free to
11993     // ANY_EXTEND as the extended bits are dont-cares.
11994     Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32);
11995     OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32);
11996 
11997     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp,
11998                        DAG.getConstant(PermMask, DL, MVT::i32));
11999   }
12000 
12001   return SDValue();
12002 }
12003 
12004 SDValue SITargetLowering::performOrCombine(SDNode *N,
12005                                            DAGCombinerInfo &DCI) const {
12006   SelectionDAG &DAG = DCI.DAG;
12007   SDValue LHS = N->getOperand(0);
12008   SDValue RHS = N->getOperand(1);
12009 
12010   EVT VT = N->getValueType(0);
12011   if (VT == MVT::i1) {
12012     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
12013     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
12014         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
12015       SDValue Src = LHS.getOperand(0);
12016       if (Src != RHS.getOperand(0))
12017         return SDValue();
12018 
12019       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
12020       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
12021       if (!CLHS || !CRHS)
12022         return SDValue();
12023 
12024       // Only 10 bits are used.
12025       static const uint32_t MaxMask = 0x3ff;
12026 
12027       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
12028       SDLoc DL(N);
12029       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
12030                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
12031     }
12032 
12033     return SDValue();
12034   }
12035 
12036   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
12037   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
12038       LHS.getOpcode() == AMDGPUISD::PERM &&
12039       isa<ConstantSDNode>(LHS.getOperand(2))) {
12040     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
12041     if (!Sel)
12042       return SDValue();
12043 
12044     Sel |= LHS.getConstantOperandVal(2);
12045     SDLoc DL(N);
12046     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
12047                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
12048   }
12049 
12050   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
12051   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12052   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
12053       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
12054 
12055     // If all the uses of an or need to extract the individual elements, do not
12056     // attempt to lower into v_perm
12057     auto usesCombinedOperand = [](SDNode *OrUse) {
12058       // If we have any non-vectorized use, then it is a candidate for v_perm
12059       if (OrUse->getOpcode() != ISD::BITCAST ||
12060           !OrUse->getValueType(0).isVector())
12061         return true;
12062 
12063       // If we have any non-vectorized use, then it is a candidate for v_perm
12064       for (auto VUse : OrUse->uses()) {
12065         if (!VUse->getValueType(0).isVector())
12066           return true;
12067 
12068         // If the use of a vector is a store, then combining via a v_perm
12069         // is beneficial.
12070         // TODO -- whitelist more uses
12071         for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg})
12072           if (VUse->getOpcode() == VectorwiseOp)
12073             return true;
12074       }
12075       return false;
12076     };
12077 
12078     if (!any_of(N->uses(), usesCombinedOperand))
12079       return SDValue();
12080 
12081     uint32_t LHSMask = getPermuteMask(LHS);
12082     uint32_t RHSMask = getPermuteMask(RHS);
12083 
12084     if (LHSMask != ~0u && RHSMask != ~0u) {
12085       // Canonicalize the expression in an attempt to have fewer unique masks
12086       // and therefore fewer registers used to hold the masks.
12087       if (LHSMask > RHSMask) {
12088         std::swap(LHSMask, RHSMask);
12089         std::swap(LHS, RHS);
12090       }
12091 
12092       // Select 0xc for each lane used from source operand. Zero has 0xc mask
12093       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
12094       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
12095       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
12096 
12097       // Check of we need to combine values from two sources within a byte.
12098       if (!(LHSUsedLanes & RHSUsedLanes) &&
12099           // If we select high and lower word keep it for SDWA.
12100           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
12101           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
12102         // Kill zero bytes selected by other mask. Zero value is 0xc.
12103         LHSMask &= ~RHSUsedLanes;
12104         RHSMask &= ~LHSUsedLanes;
12105         // Add 4 to each active LHS lane
12106         LHSMask |= LHSUsedLanes & 0x04040404;
12107         // Combine masks
12108         uint32_t Sel = LHSMask | RHSMask;
12109         SDLoc DL(N);
12110 
12111         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
12112                            LHS.getOperand(0), RHS.getOperand(0),
12113                            DAG.getConstant(Sel, DL, MVT::i32));
12114       }
12115     }
12116     if (LHSMask == ~0u || RHSMask == ~0u) {
12117       if (SDValue Perm = matchPERM(N, DCI))
12118         return Perm;
12119     }
12120   }
12121 
12122   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
12123     return SDValue();
12124 
12125   // TODO: This could be a generic combine with a predicate for extracting the
12126   // high half of an integer being free.
12127 
12128   // (or i64:x, (zero_extend i32:y)) ->
12129   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
12130   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
12131       RHS.getOpcode() != ISD::ZERO_EXTEND)
12132     std::swap(LHS, RHS);
12133 
12134   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
12135     SDValue ExtSrc = RHS.getOperand(0);
12136     EVT SrcVT = ExtSrc.getValueType();
12137     if (SrcVT == MVT::i32) {
12138       SDLoc SL(N);
12139       SDValue LowLHS, HiBits;
12140       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
12141       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
12142 
12143       DCI.AddToWorklist(LowOr.getNode());
12144       DCI.AddToWorklist(HiBits.getNode());
12145 
12146       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
12147                                 LowOr, HiBits);
12148       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
12149     }
12150   }
12151 
12152   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
12153   if (CRHS) {
12154     if (SDValue Split
12155           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
12156                                      N->getOperand(0), CRHS))
12157       return Split;
12158   }
12159 
12160   return SDValue();
12161 }
12162 
12163 SDValue SITargetLowering::performXorCombine(SDNode *N,
12164                                             DAGCombinerInfo &DCI) const {
12165   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
12166     return RV;
12167 
12168   SDValue LHS = N->getOperand(0);
12169   SDValue RHS = N->getOperand(1);
12170 
12171   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
12172   SelectionDAG &DAG = DCI.DAG;
12173 
12174   EVT VT = N->getValueType(0);
12175   if (CRHS && VT == MVT::i64) {
12176     if (SDValue Split
12177           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
12178       return Split;
12179   }
12180 
12181   // Make sure to apply the 64-bit constant splitting fold before trying to fold
12182   // fneg-like xors into 64-bit select.
12183   if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) {
12184     // This looks like an fneg, try to fold as a source modifier.
12185     if (CRHS && CRHS->getAPIntValue().isSignMask() &&
12186         shouldFoldFNegIntoSrc(N, LHS)) {
12187       // xor (select c, a, b), 0x80000000 ->
12188       //   bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b)))
12189       SDLoc DL(N);
12190       SDValue CastLHS =
12191           DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1));
12192       SDValue CastRHS =
12193           DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2));
12194       SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS);
12195       SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS);
12196       SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32,
12197                                       LHS->getOperand(0), FNegLHS, FNegRHS);
12198       return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect);
12199     }
12200   }
12201 
12202   return SDValue();
12203 }
12204 
12205 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
12206                                                    DAGCombinerInfo &DCI) const {
12207   if (!Subtarget->has16BitInsts() ||
12208       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
12209     return SDValue();
12210 
12211   EVT VT = N->getValueType(0);
12212   if (VT != MVT::i32)
12213     return SDValue();
12214 
12215   SDValue Src = N->getOperand(0);
12216   if (Src.getValueType() != MVT::i16)
12217     return SDValue();
12218 
12219   return SDValue();
12220 }
12221 
12222 SDValue
12223 SITargetLowering::performSignExtendInRegCombine(SDNode *N,
12224                                                 DAGCombinerInfo &DCI) const {
12225   SDValue Src = N->getOperand(0);
12226   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
12227 
12228   // Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them
12229   // with s_buffer_load_i8 and s_buffer_load_i16 respectively.
12230   if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE &&
12231         VTSign->getVT() == MVT::i8) ||
12232        (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT &&
12233         VTSign->getVT() == MVT::i16))) {
12234     assert(Subtarget->hasScalarSubwordLoads() &&
12235            "s_buffer_load_{u8, i8} are supported "
12236            "in GFX12 (or newer) architectures.");
12237     EVT VT = Src.getValueType();
12238     unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE)
12239                        ? AMDGPUISD::SBUFFER_LOAD_BYTE
12240                        : AMDGPUISD::SBUFFER_LOAD_SHORT;
12241     SDLoc DL(N);
12242     SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
12243     SDValue Ops[] = {
12244         Src.getOperand(0), // source register
12245         Src.getOperand(1), // offset
12246         Src.getOperand(2)  // cachePolicy
12247     };
12248     auto *M = cast<MemSDNode>(Src);
12249     SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
12250         Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand());
12251     SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
12252     return LoadVal;
12253   } else if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
12254                VTSign->getVT() == MVT::i8) ||
12255               (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
12256                VTSign->getVT() == MVT::i16)) &&
12257              Src.hasOneUse()) {
12258     auto *M = cast<MemSDNode>(Src);
12259     SDValue Ops[] = {
12260       Src.getOperand(0), // Chain
12261       Src.getOperand(1), // rsrc
12262       Src.getOperand(2), // vindex
12263       Src.getOperand(3), // voffset
12264       Src.getOperand(4), // soffset
12265       Src.getOperand(5), // offset
12266       Src.getOperand(6),
12267       Src.getOperand(7)
12268     };
12269     // replace with BUFFER_LOAD_BYTE/SHORT
12270     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
12271                                          Src.getOperand(0).getValueType());
12272     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
12273                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
12274     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
12275                                                           ResList,
12276                                                           Ops, M->getMemoryVT(),
12277                                                           M->getMemOperand());
12278     return DCI.DAG.getMergeValues({BufferLoadSignExt,
12279                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
12280   }
12281   return SDValue();
12282 }
12283 
12284 SDValue SITargetLowering::performClassCombine(SDNode *N,
12285                                               DAGCombinerInfo &DCI) const {
12286   SelectionDAG &DAG = DCI.DAG;
12287   SDValue Mask = N->getOperand(1);
12288 
12289   // fp_class x, 0 -> false
12290   if (isNullConstant(Mask))
12291     return DAG.getConstant(0, SDLoc(N), MVT::i1);
12292 
12293   if (N->getOperand(0).isUndef())
12294     return DAG.getUNDEF(MVT::i1);
12295 
12296   return SDValue();
12297 }
12298 
12299 SDValue SITargetLowering::performRcpCombine(SDNode *N,
12300                                             DAGCombinerInfo &DCI) const {
12301   EVT VT = N->getValueType(0);
12302   SDValue N0 = N->getOperand(0);
12303 
12304   if (N0.isUndef()) {
12305     return DCI.DAG.getConstantFP(
12306         APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N),
12307         VT);
12308   }
12309 
12310   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
12311                          N0.getOpcode() == ISD::SINT_TO_FP)) {
12312     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
12313                            N->getFlags());
12314   }
12315 
12316   // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here.
12317   if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) &&
12318       N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) {
12319     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
12320                            N0.getOperand(0), N->getFlags());
12321   }
12322 
12323   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
12324 }
12325 
12326 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
12327                                        unsigned MaxDepth) const {
12328   unsigned Opcode = Op.getOpcode();
12329   if (Opcode == ISD::FCANONICALIZE)
12330     return true;
12331 
12332   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
12333     const auto &F = CFP->getValueAPF();
12334     if (F.isNaN() && F.isSignaling())
12335       return false;
12336     if (!F.isDenormal())
12337       return true;
12338 
12339     DenormalMode Mode =
12340         DAG.getMachineFunction().getDenormalMode(F.getSemantics());
12341     return Mode == DenormalMode::getIEEE();
12342   }
12343 
12344   // If source is a result of another standard FP operation it is already in
12345   // canonical form.
12346   if (MaxDepth == 0)
12347     return false;
12348 
12349   switch (Opcode) {
12350   // These will flush denorms if required.
12351   case ISD::FADD:
12352   case ISD::FSUB:
12353   case ISD::FMUL:
12354   case ISD::FCEIL:
12355   case ISD::FFLOOR:
12356   case ISD::FMA:
12357   case ISD::FMAD:
12358   case ISD::FSQRT:
12359   case ISD::FDIV:
12360   case ISD::FREM:
12361   case ISD::FP_ROUND:
12362   case ISD::FP_EXTEND:
12363   case ISD::FLDEXP:
12364   case AMDGPUISD::FMUL_LEGACY:
12365   case AMDGPUISD::FMAD_FTZ:
12366   case AMDGPUISD::RCP:
12367   case AMDGPUISD::RSQ:
12368   case AMDGPUISD::RSQ_CLAMP:
12369   case AMDGPUISD::RCP_LEGACY:
12370   case AMDGPUISD::RCP_IFLAG:
12371   case AMDGPUISD::LOG:
12372   case AMDGPUISD::EXP:
12373   case AMDGPUISD::DIV_SCALE:
12374   case AMDGPUISD::DIV_FMAS:
12375   case AMDGPUISD::DIV_FIXUP:
12376   case AMDGPUISD::FRACT:
12377   case AMDGPUISD::CVT_PKRTZ_F16_F32:
12378   case AMDGPUISD::CVT_F32_UBYTE0:
12379   case AMDGPUISD::CVT_F32_UBYTE1:
12380   case AMDGPUISD::CVT_F32_UBYTE2:
12381   case AMDGPUISD::CVT_F32_UBYTE3:
12382     return true;
12383 
12384   // It can/will be lowered or combined as a bit operation.
12385   // Need to check their input recursively to handle.
12386   case ISD::FNEG:
12387   case ISD::FABS:
12388   case ISD::FCOPYSIGN:
12389     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12390 
12391   case ISD::FSIN:
12392   case ISD::FCOS:
12393   case ISD::FSINCOS:
12394     return Op.getValueType().getScalarType() != MVT::f16;
12395 
12396   case ISD::FMINNUM:
12397   case ISD::FMAXNUM:
12398   case ISD::FMINNUM_IEEE:
12399   case ISD::FMAXNUM_IEEE:
12400   case ISD::FMINIMUM:
12401   case ISD::FMAXIMUM:
12402   case AMDGPUISD::CLAMP:
12403   case AMDGPUISD::FMED3:
12404   case AMDGPUISD::FMAX3:
12405   case AMDGPUISD::FMIN3:
12406   case AMDGPUISD::FMAXIMUM3:
12407   case AMDGPUISD::FMINIMUM3: {
12408     // FIXME: Shouldn't treat the generic operations different based these.
12409     // However, we aren't really required to flush the result from
12410     // minnum/maxnum..
12411 
12412     // snans will be quieted, so we only need to worry about denormals.
12413     if (Subtarget->supportsMinMaxDenormModes() ||
12414         // FIXME: denormalsEnabledForType is broken for dynamic
12415         denormalsEnabledForType(DAG, Op.getValueType()))
12416       return true;
12417 
12418     // Flushing may be required.
12419     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
12420     // targets need to check their input recursively.
12421 
12422     // FIXME: Does this apply with clamp? It's implemented with max.
12423     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
12424       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
12425         return false;
12426     }
12427 
12428     return true;
12429   }
12430   case ISD::SELECT: {
12431     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
12432            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
12433   }
12434   case ISD::BUILD_VECTOR: {
12435     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
12436       SDValue SrcOp = Op.getOperand(i);
12437       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
12438         return false;
12439     }
12440 
12441     return true;
12442   }
12443   case ISD::EXTRACT_VECTOR_ELT:
12444   case ISD::EXTRACT_SUBVECTOR: {
12445     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12446   }
12447   case ISD::INSERT_VECTOR_ELT: {
12448     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
12449            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
12450   }
12451   case ISD::UNDEF:
12452     // Could be anything.
12453     return false;
12454 
12455   case ISD::BITCAST:
12456     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12457   case ISD::TRUNCATE: {
12458     // Hack round the mess we make when legalizing extract_vector_elt
12459     if (Op.getValueType() == MVT::i16) {
12460       SDValue TruncSrc = Op.getOperand(0);
12461       if (TruncSrc.getValueType() == MVT::i32 &&
12462           TruncSrc.getOpcode() == ISD::BITCAST &&
12463           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
12464         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
12465       }
12466     }
12467     return false;
12468   }
12469   case ISD::INTRINSIC_WO_CHAIN: {
12470     unsigned IntrinsicID = Op.getConstantOperandVal(0);
12471     // TODO: Handle more intrinsics
12472     switch (IntrinsicID) {
12473     case Intrinsic::amdgcn_cvt_pkrtz:
12474     case Intrinsic::amdgcn_cubeid:
12475     case Intrinsic::amdgcn_frexp_mant:
12476     case Intrinsic::amdgcn_fdot2:
12477     case Intrinsic::amdgcn_rcp:
12478     case Intrinsic::amdgcn_rsq:
12479     case Intrinsic::amdgcn_rsq_clamp:
12480     case Intrinsic::amdgcn_rcp_legacy:
12481     case Intrinsic::amdgcn_rsq_legacy:
12482     case Intrinsic::amdgcn_trig_preop:
12483     case Intrinsic::amdgcn_log:
12484     case Intrinsic::amdgcn_exp2:
12485       return true;
12486     default:
12487       break;
12488     }
12489 
12490     [[fallthrough]];
12491   }
12492   default:
12493     // FIXME: denormalsEnabledForType is broken for dynamic
12494     return denormalsEnabledForType(DAG, Op.getValueType()) &&
12495            DAG.isKnownNeverSNaN(Op);
12496   }
12497 
12498   llvm_unreachable("invalid operation");
12499 }
12500 
12501 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
12502                                        unsigned MaxDepth) const {
12503   MachineRegisterInfo &MRI = MF.getRegInfo();
12504   MachineInstr *MI = MRI.getVRegDef(Reg);
12505   unsigned Opcode = MI->getOpcode();
12506 
12507   if (Opcode == AMDGPU::G_FCANONICALIZE)
12508     return true;
12509 
12510   std::optional<FPValueAndVReg> FCR;
12511   // Constant splat (can be padded with undef) or scalar constant.
12512   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
12513     if (FCR->Value.isSignaling())
12514       return false;
12515     if (!FCR->Value.isDenormal())
12516       return true;
12517 
12518     DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics());
12519     return Mode == DenormalMode::getIEEE();
12520   }
12521 
12522   if (MaxDepth == 0)
12523     return false;
12524 
12525   switch (Opcode) {
12526   case AMDGPU::G_FADD:
12527   case AMDGPU::G_FSUB:
12528   case AMDGPU::G_FMUL:
12529   case AMDGPU::G_FCEIL:
12530   case AMDGPU::G_FFLOOR:
12531   case AMDGPU::G_FRINT:
12532   case AMDGPU::G_FNEARBYINT:
12533   case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
12534   case AMDGPU::G_INTRINSIC_TRUNC:
12535   case AMDGPU::G_INTRINSIC_ROUNDEVEN:
12536   case AMDGPU::G_FMA:
12537   case AMDGPU::G_FMAD:
12538   case AMDGPU::G_FSQRT:
12539   case AMDGPU::G_FDIV:
12540   case AMDGPU::G_FREM:
12541   case AMDGPU::G_FPOW:
12542   case AMDGPU::G_FPEXT:
12543   case AMDGPU::G_FLOG:
12544   case AMDGPU::G_FLOG2:
12545   case AMDGPU::G_FLOG10:
12546   case AMDGPU::G_FPTRUNC:
12547   case AMDGPU::G_AMDGPU_RCP_IFLAG:
12548   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
12549   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
12550   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
12551   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
12552     return true;
12553   case AMDGPU::G_FNEG:
12554   case AMDGPU::G_FABS:
12555   case AMDGPU::G_FCOPYSIGN:
12556     return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1);
12557   case AMDGPU::G_FMINNUM:
12558   case AMDGPU::G_FMAXNUM:
12559   case AMDGPU::G_FMINNUM_IEEE:
12560   case AMDGPU::G_FMAXNUM_IEEE:
12561   case AMDGPU::G_FMINIMUM:
12562   case AMDGPU::G_FMAXIMUM: {
12563     if (Subtarget->supportsMinMaxDenormModes() ||
12564         // FIXME: denormalsEnabledForType is broken for dynamic
12565         denormalsEnabledForType(MRI.getType(Reg), MF))
12566       return true;
12567 
12568     [[fallthrough]];
12569   }
12570   case AMDGPU::G_BUILD_VECTOR:
12571     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
12572       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
12573         return false;
12574     return true;
12575   case AMDGPU::G_INTRINSIC:
12576   case AMDGPU::G_INTRINSIC_CONVERGENT:
12577     switch (cast<GIntrinsic>(MI)->getIntrinsicID()) {
12578     case Intrinsic::amdgcn_fmul_legacy:
12579     case Intrinsic::amdgcn_fmad_ftz:
12580     case Intrinsic::amdgcn_sqrt:
12581     case Intrinsic::amdgcn_fmed3:
12582     case Intrinsic::amdgcn_sin:
12583     case Intrinsic::amdgcn_cos:
12584     case Intrinsic::amdgcn_log:
12585     case Intrinsic::amdgcn_exp2:
12586     case Intrinsic::amdgcn_log_clamp:
12587     case Intrinsic::amdgcn_rcp:
12588     case Intrinsic::amdgcn_rcp_legacy:
12589     case Intrinsic::amdgcn_rsq:
12590     case Intrinsic::amdgcn_rsq_clamp:
12591     case Intrinsic::amdgcn_rsq_legacy:
12592     case Intrinsic::amdgcn_div_scale:
12593     case Intrinsic::amdgcn_div_fmas:
12594     case Intrinsic::amdgcn_div_fixup:
12595     case Intrinsic::amdgcn_fract:
12596     case Intrinsic::amdgcn_cvt_pkrtz:
12597     case Intrinsic::amdgcn_cubeid:
12598     case Intrinsic::amdgcn_cubema:
12599     case Intrinsic::amdgcn_cubesc:
12600     case Intrinsic::amdgcn_cubetc:
12601     case Intrinsic::amdgcn_frexp_mant:
12602     case Intrinsic::amdgcn_fdot2:
12603     case Intrinsic::amdgcn_trig_preop:
12604       return true;
12605     default:
12606       break;
12607     }
12608 
12609     [[fallthrough]];
12610   default:
12611     return false;
12612   }
12613 
12614   llvm_unreachable("invalid operation");
12615 }
12616 
12617 // Constant fold canonicalize.
12618 SDValue SITargetLowering::getCanonicalConstantFP(
12619   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
12620   // Flush denormals to 0 if not enabled.
12621   if (C.isDenormal()) {
12622     DenormalMode Mode =
12623         DAG.getMachineFunction().getDenormalMode(C.getSemantics());
12624     if (Mode == DenormalMode::getPreserveSign()) {
12625       return DAG.getConstantFP(
12626           APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT);
12627     }
12628 
12629     if (Mode != DenormalMode::getIEEE())
12630       return SDValue();
12631   }
12632 
12633   if (C.isNaN()) {
12634     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
12635     if (C.isSignaling()) {
12636       // Quiet a signaling NaN.
12637       // FIXME: Is this supposed to preserve payload bits?
12638       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
12639     }
12640 
12641     // Make sure it is the canonical NaN bitpattern.
12642     //
12643     // TODO: Can we use -1 as the canonical NaN value since it's an inline
12644     // immediate?
12645     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
12646       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
12647   }
12648 
12649   // Already canonical.
12650   return DAG.getConstantFP(C, SL, VT);
12651 }
12652 
12653 static bool vectorEltWillFoldAway(SDValue Op) {
12654   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
12655 }
12656 
12657 SDValue SITargetLowering::performFCanonicalizeCombine(
12658   SDNode *N,
12659   DAGCombinerInfo &DCI) const {
12660   SelectionDAG &DAG = DCI.DAG;
12661   SDValue N0 = N->getOperand(0);
12662   EVT VT = N->getValueType(0);
12663 
12664   // fcanonicalize undef -> qnan
12665   if (N0.isUndef()) {
12666     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
12667     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
12668   }
12669 
12670   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
12671     EVT VT = N->getValueType(0);
12672     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
12673   }
12674 
12675   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
12676   //                                                   (fcanonicalize k)
12677   //
12678   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
12679 
12680   // TODO: This could be better with wider vectors that will be split to v2f16,
12681   // and to consider uses since there aren't that many packed operations.
12682   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
12683       isTypeLegal(MVT::v2f16)) {
12684     SDLoc SL(N);
12685     SDValue NewElts[2];
12686     SDValue Lo = N0.getOperand(0);
12687     SDValue Hi = N0.getOperand(1);
12688     EVT EltVT = Lo.getValueType();
12689 
12690     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
12691       for (unsigned I = 0; I != 2; ++I) {
12692         SDValue Op = N0.getOperand(I);
12693         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
12694           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
12695                                               CFP->getValueAPF());
12696         } else if (Op.isUndef()) {
12697           // Handled below based on what the other operand is.
12698           NewElts[I] = Op;
12699         } else {
12700           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
12701         }
12702       }
12703 
12704       // If one half is undef, and one is constant, prefer a splat vector rather
12705       // than the normal qNaN. If it's a register, prefer 0.0 since that's
12706       // cheaper to use and may be free with a packed operation.
12707       if (NewElts[0].isUndef()) {
12708         if (isa<ConstantFPSDNode>(NewElts[1]))
12709           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
12710             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
12711       }
12712 
12713       if (NewElts[1].isUndef()) {
12714         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
12715           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
12716       }
12717 
12718       return DAG.getBuildVector(VT, SL, NewElts);
12719     }
12720   }
12721 
12722   unsigned SrcOpc = N0.getOpcode();
12723 
12724   // If it's free to do so, push canonicalizes further up the source, which may
12725   // find a canonical source.
12726   //
12727   // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for
12728   // sNaNs.
12729   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
12730     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
12731     if (CRHS && N0.hasOneUse()) {
12732       SDLoc SL(N);
12733       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
12734                                    N0.getOperand(0));
12735       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
12736       DCI.AddToWorklist(Canon0.getNode());
12737 
12738       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
12739     }
12740   }
12741 
12742   return isCanonicalized(DAG, N0) ? N0 : SDValue();
12743 }
12744 
12745 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
12746   switch (Opc) {
12747   case ISD::FMAXNUM:
12748   case ISD::FMAXNUM_IEEE:
12749     return AMDGPUISD::FMAX3;
12750   case ISD::FMAXIMUM:
12751     return AMDGPUISD::FMAXIMUM3;
12752   case ISD::SMAX:
12753     return AMDGPUISD::SMAX3;
12754   case ISD::UMAX:
12755     return AMDGPUISD::UMAX3;
12756   case ISD::FMINNUM:
12757   case ISD::FMINNUM_IEEE:
12758     return AMDGPUISD::FMIN3;
12759   case ISD::FMINIMUM:
12760     return AMDGPUISD::FMINIMUM3;
12761   case ISD::SMIN:
12762     return AMDGPUISD::SMIN3;
12763   case ISD::UMIN:
12764     return AMDGPUISD::UMIN3;
12765   default:
12766     llvm_unreachable("Not a min/max opcode");
12767   }
12768 }
12769 
12770 SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG,
12771                                                    const SDLoc &SL, SDValue Src,
12772                                                    SDValue MinVal,
12773                                                    SDValue MaxVal,
12774                                                    bool Signed) const {
12775 
12776   // med3 comes from
12777   //    min(max(x, K0), K1), K0 < K1
12778   //    max(min(x, K0), K1), K1 < K0
12779   //
12780   // "MinVal" and "MaxVal" respectively refer to the rhs of the
12781   // min/max op.
12782   ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal);
12783   ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal);
12784 
12785   if (!MinK || !MaxK)
12786     return SDValue();
12787 
12788   if (Signed) {
12789     if (MaxK->getAPIntValue().sge(MinK->getAPIntValue()))
12790       return SDValue();
12791   } else {
12792     if (MaxK->getAPIntValue().uge(MinK->getAPIntValue()))
12793       return SDValue();
12794   }
12795 
12796   EVT VT = MinK->getValueType(0);
12797   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
12798   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
12799     return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
12800 
12801   // Note: we could also extend to i32 and use i32 med3 if i16 med3 is
12802   // not available, but this is unlikely to be profitable as constants
12803   // will often need to be materialized & extended, especially on
12804   // pre-GFX10 where VOP3 instructions couldn't take literal operands.
12805   return SDValue();
12806 }
12807 
12808 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
12809   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
12810     return C;
12811 
12812   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
12813     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
12814       return C;
12815   }
12816 
12817   return nullptr;
12818 }
12819 
12820 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
12821                                                   const SDLoc &SL,
12822                                                   SDValue Op0,
12823                                                   SDValue Op1) const {
12824   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
12825   if (!K1)
12826     return SDValue();
12827 
12828   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
12829   if (!K0)
12830     return SDValue();
12831 
12832   // Ordered >= (although NaN inputs should have folded away by now).
12833   if (K0->getValueAPF() > K1->getValueAPF())
12834     return SDValue();
12835 
12836   const MachineFunction &MF = DAG.getMachineFunction();
12837   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12838 
12839   // TODO: Check IEEE bit enabled?
12840   EVT VT = Op0.getValueType();
12841   if (Info->getMode().DX10Clamp) {
12842     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
12843     // hardware fmed3 behavior converting to a min.
12844     // FIXME: Should this be allowing -0.0?
12845     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
12846       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
12847   }
12848 
12849   // med3 for f16 is only available on gfx9+, and not available for v2f16.
12850   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
12851     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
12852     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
12853     // then give the other result, which is different from med3 with a NaN
12854     // input.
12855     SDValue Var = Op0.getOperand(0);
12856     if (!DAG.isKnownNeverSNaN(Var))
12857       return SDValue();
12858 
12859     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12860 
12861     if ((!K0->hasOneUse() ||
12862          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
12863         (!K1->hasOneUse() ||
12864          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
12865       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
12866                          Var, SDValue(K0, 0), SDValue(K1, 0));
12867     }
12868   }
12869 
12870   return SDValue();
12871 }
12872 
12873 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
12874                                                DAGCombinerInfo &DCI) const {
12875   SelectionDAG &DAG = DCI.DAG;
12876 
12877   EVT VT = N->getValueType(0);
12878   unsigned Opc = N->getOpcode();
12879   SDValue Op0 = N->getOperand(0);
12880   SDValue Op1 = N->getOperand(1);
12881 
12882   // Only do this if the inner op has one use since this will just increases
12883   // register pressure for no benefit.
12884 
12885   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
12886       !VT.isVector() &&
12887       (VT == MVT::i32 || VT == MVT::f32 ||
12888        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
12889     // max(max(a, b), c) -> max3(a, b, c)
12890     // min(min(a, b), c) -> min3(a, b, c)
12891     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
12892       SDLoc DL(N);
12893       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
12894                          DL,
12895                          N->getValueType(0),
12896                          Op0.getOperand(0),
12897                          Op0.getOperand(1),
12898                          Op1);
12899     }
12900 
12901     // Try commuted.
12902     // max(a, max(b, c)) -> max3(a, b, c)
12903     // min(a, min(b, c)) -> min3(a, b, c)
12904     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
12905       SDLoc DL(N);
12906       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
12907                          DL,
12908                          N->getValueType(0),
12909                          Op0,
12910                          Op1.getOperand(0),
12911                          Op1.getOperand(1));
12912     }
12913   }
12914 
12915   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
12916   // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0)
12917   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
12918     if (SDValue Med3 = performIntMed3ImmCombine(
12919             DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true))
12920       return Med3;
12921   }
12922   if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) {
12923     if (SDValue Med3 = performIntMed3ImmCombine(
12924             DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true))
12925       return Med3;
12926   }
12927 
12928   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
12929     if (SDValue Med3 = performIntMed3ImmCombine(
12930             DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false))
12931       return Med3;
12932   }
12933   if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) {
12934     if (SDValue Med3 = performIntMed3ImmCombine(
12935             DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false))
12936       return Med3;
12937   }
12938 
12939   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
12940   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
12941        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
12942        (Opc == AMDGPUISD::FMIN_LEGACY &&
12943         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
12944       (VT == MVT::f32 || VT == MVT::f64 ||
12945        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
12946        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
12947       Op0.hasOneUse()) {
12948     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
12949       return Res;
12950   }
12951 
12952   return SDValue();
12953 }
12954 
12955 static bool isClampZeroToOne(SDValue A, SDValue B) {
12956   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
12957     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
12958       // FIXME: Should this be allowing -0.0?
12959       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
12960              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
12961     }
12962   }
12963 
12964   return false;
12965 }
12966 
12967 // FIXME: Should only worry about snans for version with chain.
12968 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
12969                                               DAGCombinerInfo &DCI) const {
12970   EVT VT = N->getValueType(0);
12971   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
12972   // NaNs. With a NaN input, the order of the operands may change the result.
12973 
12974   SelectionDAG &DAG = DCI.DAG;
12975   SDLoc SL(N);
12976 
12977   SDValue Src0 = N->getOperand(0);
12978   SDValue Src1 = N->getOperand(1);
12979   SDValue Src2 = N->getOperand(2);
12980 
12981   if (isClampZeroToOne(Src0, Src1)) {
12982     // const_a, const_b, x -> clamp is safe in all cases including signaling
12983     // nans.
12984     // FIXME: Should this be allowing -0.0?
12985     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
12986   }
12987 
12988   const MachineFunction &MF = DAG.getMachineFunction();
12989   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12990 
12991   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
12992   // handling no dx10-clamp?
12993   if (Info->getMode().DX10Clamp) {
12994     // If NaNs is clamped to 0, we are free to reorder the inputs.
12995 
12996     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
12997       std::swap(Src0, Src1);
12998 
12999     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
13000       std::swap(Src1, Src2);
13001 
13002     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
13003       std::swap(Src0, Src1);
13004 
13005     if (isClampZeroToOne(Src1, Src2))
13006       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
13007   }
13008 
13009   return SDValue();
13010 }
13011 
13012 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
13013                                                  DAGCombinerInfo &DCI) const {
13014   SDValue Src0 = N->getOperand(0);
13015   SDValue Src1 = N->getOperand(1);
13016   if (Src0.isUndef() && Src1.isUndef())
13017     return DCI.DAG.getUNDEF(N->getValueType(0));
13018   return SDValue();
13019 }
13020 
13021 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
13022 // expanded into a set of cmp/select instructions.
13023 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
13024                                                 unsigned NumElem,
13025                                                 bool IsDivergentIdx,
13026                                                 const GCNSubtarget *Subtarget) {
13027   if (UseDivergentRegisterIndexing)
13028     return false;
13029 
13030   unsigned VecSize = EltSize * NumElem;
13031 
13032   // Sub-dword vectors of size 2 dword or less have better implementation.
13033   if (VecSize <= 64 && EltSize < 32)
13034     return false;
13035 
13036   // Always expand the rest of sub-dword instructions, otherwise it will be
13037   // lowered via memory.
13038   if (EltSize < 32)
13039     return true;
13040 
13041   // Always do this if var-idx is divergent, otherwise it will become a loop.
13042   if (IsDivergentIdx)
13043     return true;
13044 
13045   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
13046   unsigned NumInsts = NumElem /* Number of compares */ +
13047                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
13048 
13049   // On some architectures (GFX9) movrel is not available and it's better
13050   // to expand.
13051   if (!Subtarget->hasMovrel())
13052     return NumInsts <= 16;
13053 
13054   // If movrel is available, use it instead of expanding for vector of 8
13055   // elements.
13056   return NumInsts <= 15;
13057 }
13058 
13059 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
13060   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
13061   if (isa<ConstantSDNode>(Idx))
13062     return false;
13063 
13064   SDValue Vec = N->getOperand(0);
13065   EVT VecVT = Vec.getValueType();
13066   EVT EltVT = VecVT.getVectorElementType();
13067   unsigned EltSize = EltVT.getSizeInBits();
13068   unsigned NumElem = VecVT.getVectorNumElements();
13069 
13070   return SITargetLowering::shouldExpandVectorDynExt(
13071       EltSize, NumElem, Idx->isDivergent(), getSubtarget());
13072 }
13073 
13074 SDValue SITargetLowering::performExtractVectorEltCombine(
13075   SDNode *N, DAGCombinerInfo &DCI) const {
13076   SDValue Vec = N->getOperand(0);
13077   SelectionDAG &DAG = DCI.DAG;
13078 
13079   EVT VecVT = Vec.getValueType();
13080   EVT VecEltVT = VecVT.getVectorElementType();
13081   EVT ResVT = N->getValueType(0);
13082 
13083   unsigned VecSize = VecVT.getSizeInBits();
13084   unsigned VecEltSize = VecEltVT.getSizeInBits();
13085 
13086   if ((Vec.getOpcode() == ISD::FNEG ||
13087        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
13088     SDLoc SL(N);
13089     SDValue Idx = N->getOperand(1);
13090     SDValue Elt =
13091         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx);
13092     return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt);
13093   }
13094 
13095   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
13096   //    =>
13097   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
13098   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
13099   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
13100   if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
13101     SDLoc SL(N);
13102     SDValue Idx = N->getOperand(1);
13103     unsigned Opc = Vec.getOpcode();
13104 
13105     switch(Opc) {
13106     default:
13107       break;
13108       // TODO: Support other binary operations.
13109     case ISD::FADD:
13110     case ISD::FSUB:
13111     case ISD::FMUL:
13112     case ISD::ADD:
13113     case ISD::UMIN:
13114     case ISD::UMAX:
13115     case ISD::SMIN:
13116     case ISD::SMAX:
13117     case ISD::FMAXNUM:
13118     case ISD::FMINNUM:
13119     case ISD::FMAXNUM_IEEE:
13120     case ISD::FMINNUM_IEEE:
13121     case ISD::FMAXIMUM:
13122     case ISD::FMINIMUM: {
13123       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
13124                                  Vec.getOperand(0), Idx);
13125       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
13126                                  Vec.getOperand(1), Idx);
13127 
13128       DCI.AddToWorklist(Elt0.getNode());
13129       DCI.AddToWorklist(Elt1.getNode());
13130       return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags());
13131     }
13132     }
13133   }
13134 
13135   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
13136   if (shouldExpandVectorDynExt(N)) {
13137     SDLoc SL(N);
13138     SDValue Idx = N->getOperand(1);
13139     SDValue V;
13140     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
13141       SDValue IC = DAG.getVectorIdxConstant(I, SL);
13142       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC);
13143       if (I == 0)
13144         V = Elt;
13145       else
13146         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
13147     }
13148     return V;
13149   }
13150 
13151   if (!DCI.isBeforeLegalize())
13152     return SDValue();
13153 
13154   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
13155   // elements. This exposes more load reduction opportunities by replacing
13156   // multiple small extract_vector_elements with a single 32-bit extract.
13157   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
13158   if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() &&
13159       VecSize > 32 && VecSize % 32 == 0 && Idx) {
13160     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
13161 
13162     unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
13163     unsigned EltIdx = BitIndex / 32;
13164     unsigned LeftoverBitIdx = BitIndex % 32;
13165     SDLoc SL(N);
13166 
13167     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
13168     DCI.AddToWorklist(Cast.getNode());
13169 
13170     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
13171                               DAG.getConstant(EltIdx, SL, MVT::i32));
13172     DCI.AddToWorklist(Elt.getNode());
13173     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
13174                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
13175     DCI.AddToWorklist(Srl.getNode());
13176 
13177     EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger();
13178     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl);
13179     DCI.AddToWorklist(Trunc.getNode());
13180 
13181     if (VecEltVT == ResVT) {
13182       return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
13183     }
13184 
13185     assert(ResVT.isScalarInteger());
13186     return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT);
13187   }
13188 
13189   return SDValue();
13190 }
13191 
13192 SDValue
13193 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
13194                                                 DAGCombinerInfo &DCI) const {
13195   SDValue Vec = N->getOperand(0);
13196   SDValue Idx = N->getOperand(2);
13197   EVT VecVT = Vec.getValueType();
13198   EVT EltVT = VecVT.getVectorElementType();
13199 
13200   // INSERT_VECTOR_ELT (<n x e>, var-idx)
13201   // => BUILD_VECTOR n x select (e, const-idx)
13202   if (!shouldExpandVectorDynExt(N))
13203     return SDValue();
13204 
13205   SelectionDAG &DAG = DCI.DAG;
13206   SDLoc SL(N);
13207   SDValue Ins = N->getOperand(1);
13208   EVT IdxVT = Idx.getValueType();
13209 
13210   SmallVector<SDValue, 16> Ops;
13211   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
13212     SDValue IC = DAG.getConstant(I, SL, IdxVT);
13213     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
13214     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
13215     Ops.push_back(V);
13216   }
13217 
13218   return DAG.getBuildVector(VecVT, SL, Ops);
13219 }
13220 
13221 /// Return the source of an fp_extend from f16 to f32, or a converted FP
13222 /// constant.
13223 static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) {
13224   if (Src.getOpcode() == ISD::FP_EXTEND &&
13225       Src.getOperand(0).getValueType() == MVT::f16) {
13226     return Src.getOperand(0);
13227   }
13228 
13229   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) {
13230     APFloat Val = CFP->getValueAPF();
13231     bool LosesInfo = true;
13232     Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo);
13233     if (!LosesInfo)
13234       return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16);
13235   }
13236 
13237   return SDValue();
13238 }
13239 
13240 SDValue SITargetLowering::performFPRoundCombine(SDNode *N,
13241                                                 DAGCombinerInfo &DCI) const {
13242   assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
13243          "combine only useful on gfx8");
13244 
13245   SDValue TruncSrc = N->getOperand(0);
13246   EVT VT = N->getValueType(0);
13247   if (VT != MVT::f16)
13248     return SDValue();
13249 
13250   if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 ||
13251       TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse())
13252     return SDValue();
13253 
13254   SelectionDAG &DAG = DCI.DAG;
13255   SDLoc SL(N);
13256 
13257   // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3,
13258   // and expanding it with min/max saves 1 instruction vs. casting to f32 and
13259   // casting back.
13260 
13261   // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) =>
13262   // fmin(fmax(a, b), fmax(fmin(a, b), c))
13263   SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0));
13264   if (!A)
13265     return SDValue();
13266 
13267   SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1));
13268   if (!B)
13269     return SDValue();
13270 
13271   SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2));
13272   if (!C)
13273     return SDValue();
13274 
13275   // This changes signaling nan behavior. If an input is a signaling nan, it
13276   // would have been quieted by the fpext originally. We don't care because
13277   // these are unconstrained ops. If we needed to insert quieting canonicalizes
13278   // we would be worse off than just doing the promotion.
13279   SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B);
13280   SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B);
13281   SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C);
13282   return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
13283 }
13284 
13285 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
13286                                           const SDNode *N0,
13287                                           const SDNode *N1) const {
13288   EVT VT = N0->getValueType(0);
13289 
13290   // Only do this if we are not trying to support denormals. v_mad_f32 does not
13291   // support denormals ever.
13292   if (((VT == MVT::f32 &&
13293         denormalModeIsFlushAllF32(DAG.getMachineFunction())) ||
13294        (VT == MVT::f16 && Subtarget->hasMadF16() &&
13295         denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) &&
13296       isOperationLegal(ISD::FMAD, VT))
13297     return ISD::FMAD;
13298 
13299   const TargetOptions &Options = DAG.getTarget().Options;
13300   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
13301        (N0->getFlags().hasAllowContract() &&
13302         N1->getFlags().hasAllowContract())) &&
13303       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
13304     return ISD::FMA;
13305   }
13306 
13307   return 0;
13308 }
13309 
13310 // For a reassociatable opcode perform:
13311 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
13312 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
13313                                                SelectionDAG &DAG) const {
13314   EVT VT = N->getValueType(0);
13315   if (VT != MVT::i32 && VT != MVT::i64)
13316     return SDValue();
13317 
13318   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
13319     return SDValue();
13320 
13321   unsigned Opc = N->getOpcode();
13322   SDValue Op0 = N->getOperand(0);
13323   SDValue Op1 = N->getOperand(1);
13324 
13325   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
13326     return SDValue();
13327 
13328   if (Op0->isDivergent())
13329     std::swap(Op0, Op1);
13330 
13331   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
13332     return SDValue();
13333 
13334   SDValue Op2 = Op1.getOperand(1);
13335   Op1 = Op1.getOperand(0);
13336   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
13337     return SDValue();
13338 
13339   if (Op1->isDivergent())
13340     std::swap(Op1, Op2);
13341 
13342   SDLoc SL(N);
13343   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
13344   return DAG.getNode(Opc, SL, VT, Add1, Op2);
13345 }
13346 
13347 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
13348                            EVT VT,
13349                            SDValue N0, SDValue N1, SDValue N2,
13350                            bool Signed) {
13351   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
13352   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
13353   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
13354   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
13355 }
13356 
13357 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
13358 // multiplies, if any.
13359 //
13360 // Full 64-bit multiplies that feed into an addition are lowered here instead
13361 // of using the generic expansion. The generic expansion ends up with
13362 // a tree of ADD nodes that prevents us from using the "add" part of the
13363 // MAD instruction. The expansion produced here results in a chain of ADDs
13364 // instead of a tree.
13365 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
13366                                             DAGCombinerInfo &DCI) const {
13367   assert(N->getOpcode() == ISD::ADD);
13368 
13369   SelectionDAG &DAG = DCI.DAG;
13370   EVT VT = N->getValueType(0);
13371   SDLoc SL(N);
13372   SDValue LHS = N->getOperand(0);
13373   SDValue RHS = N->getOperand(1);
13374 
13375   if (VT.isVector())
13376     return SDValue();
13377 
13378   // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
13379   // result in scalar registers for uniform values.
13380   if (!N->isDivergent() && Subtarget->hasSMulHi())
13381     return SDValue();
13382 
13383   unsigned NumBits = VT.getScalarSizeInBits();
13384   if (NumBits <= 32 || NumBits > 64)
13385     return SDValue();
13386 
13387   if (LHS.getOpcode() != ISD::MUL) {
13388     assert(RHS.getOpcode() == ISD::MUL);
13389     std::swap(LHS, RHS);
13390   }
13391 
13392   // Avoid the fold if it would unduly increase the number of multiplies due to
13393   // multiple uses, except on hardware with full-rate multiply-add (which is
13394   // part of full-rate 64-bit ops).
13395   if (!Subtarget->hasFullRate64Ops()) {
13396     unsigned NumUsers = 0;
13397     for (SDNode *Use : LHS->uses()) {
13398       // There is a use that does not feed into addition, so the multiply can't
13399       // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
13400       if (Use->getOpcode() != ISD::ADD)
13401         return SDValue();
13402 
13403       // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
13404       // MUL + 3xADD + 3xADDC over 3xMAD.
13405       ++NumUsers;
13406       if (NumUsers >= 3)
13407         return SDValue();
13408     }
13409   }
13410 
13411   SDValue MulLHS = LHS.getOperand(0);
13412   SDValue MulRHS = LHS.getOperand(1);
13413   SDValue AddRHS = RHS;
13414 
13415   // Always check whether operands are small unsigned values, since that
13416   // knowledge is useful in more cases. Check for small signed values only if
13417   // doing so can unlock a shorter code sequence.
13418   bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
13419   bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
13420 
13421   bool MulSignedLo = false;
13422   if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
13423     MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
13424                   numBitsSigned(MulRHS, DAG) <= 32;
13425   }
13426 
13427   // The operands and final result all have the same number of bits. If
13428   // operands need to be extended, they can be extended with garbage. The
13429   // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
13430   // truncated away in the end.
13431   if (VT != MVT::i64) {
13432     MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
13433     MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
13434     AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
13435   }
13436 
13437   // The basic code generated is conceptually straightforward. Pseudo code:
13438   //
13439   //   accum = mad_64_32 lhs.lo, rhs.lo, accum
13440   //   accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
13441   //   accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
13442   //
13443   // The second and third lines are optional, depending on whether the factors
13444   // are {sign,zero}-extended or not.
13445   //
13446   // The actual DAG is noisier than the pseudo code, but only due to
13447   // instructions that disassemble values into low and high parts, and
13448   // assemble the final result.
13449   SDValue One = DAG.getConstant(1, SL, MVT::i32);
13450 
13451   auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
13452   auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
13453   SDValue Accum =
13454       getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
13455 
13456   if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
13457     SDValue AccumLo, AccumHi;
13458     std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32);
13459 
13460     if (!MulLHSUnsigned32) {
13461       auto MulLHSHi =
13462           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
13463       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
13464       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
13465     }
13466 
13467     if (!MulRHSUnsigned32) {
13468       auto MulRHSHi =
13469           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
13470       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
13471       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
13472     }
13473 
13474     Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
13475     Accum = DAG.getBitcast(MVT::i64, Accum);
13476   }
13477 
13478   if (VT != MVT::i64)
13479     Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
13480   return Accum;
13481 }
13482 
13483 // Collect the ultimate src of each of the mul node's operands, and confirm
13484 // each operand is 8 bytes.
13485 static std::optional<ByteProvider<SDValue>>
13486 handleMulOperand(const SDValue &MulOperand) {
13487   auto Byte0 = calculateByteProvider(MulOperand, 0, 0);
13488   if (!Byte0 || Byte0->isConstantZero()) {
13489     return std::nullopt;
13490   }
13491   auto Byte1 = calculateByteProvider(MulOperand, 1, 0);
13492   if (Byte1 && !Byte1->isConstantZero()) {
13493     return std::nullopt;
13494   }
13495   return Byte0;
13496 }
13497 
13498 static unsigned addPermMasks(unsigned First, unsigned Second) {
13499   unsigned FirstCs = First & 0x0c0c0c0c;
13500   unsigned SecondCs = Second & 0x0c0c0c0c;
13501   unsigned FirstNoCs = First & ~0x0c0c0c0c;
13502   unsigned SecondNoCs = Second & ~0x0c0c0c0c;
13503 
13504   assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
13505   assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
13506   assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
13507   assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
13508 
13509   return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
13510 }
13511 
13512 static void placeSources(ByteProvider<SDValue> &Src0,
13513                          ByteProvider<SDValue> &Src1,
13514                          SmallVectorImpl<std::pair<SDValue, unsigned>> &Src0s,
13515                          SmallVectorImpl<std::pair<SDValue, unsigned>> &Src1s,
13516                          int Step) {
13517 
13518   assert(Src0.Src.has_value() && Src1.Src.has_value());
13519   // Src0s and Src1s are empty, just place arbitrarily.
13520   if (Step == 0) {
13521     Src0s.push_back({*Src0.Src, (Src0.SrcOffset << 24) + 0x0c0c0c});
13522     Src1s.push_back({*Src1.Src, (Src1.SrcOffset << 24) + 0x0c0c0c});
13523     return;
13524   }
13525 
13526   for (int BPI = 0; BPI < 2; BPI++) {
13527     std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1};
13528     if (BPI == 1) {
13529       BPP = {Src1, Src0};
13530     }
13531     unsigned ZeroMask = 0x0c0c0c0c;
13532     unsigned FMask = 0xFF << (8 * (3 - Step));
13533 
13534     unsigned FirstMask =
13535         BPP.first.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask);
13536     unsigned SecondMask =
13537         BPP.second.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask);
13538     // Attempt to find Src vector which contains our SDValue, if so, add our
13539     // perm mask to the existing one. If we are unable to find a match for the
13540     // first SDValue, attempt to find match for the second.
13541     int FirstGroup = -1;
13542     for (int I = 0; I < 2; I++) {
13543       SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs =
13544           I == 0 ? Src0s : Src1s;
13545       auto MatchesFirst = [&BPP](std::pair<SDValue, unsigned> IterElt) {
13546         return IterElt.first == *BPP.first.Src;
13547       };
13548 
13549       auto Match = llvm::find_if(Srcs, MatchesFirst);
13550       if (Match != Srcs.end()) {
13551         Match->second = addPermMasks(FirstMask, Match->second);
13552         FirstGroup = I;
13553         break;
13554       }
13555     }
13556     if (FirstGroup != -1) {
13557       SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs =
13558           FirstGroup == 1 ? Src0s : Src1s;
13559       auto MatchesSecond = [&BPP](std::pair<SDValue, unsigned> IterElt) {
13560         return IterElt.first == *BPP.second.Src;
13561       };
13562       auto Match = llvm::find_if(Srcs, MatchesSecond);
13563       if (Match != Srcs.end()) {
13564         Match->second = addPermMasks(SecondMask, Match->second);
13565       } else
13566         Srcs.push_back({*BPP.second.Src, SecondMask});
13567       return;
13568     }
13569   }
13570 
13571   // If we have made it here, then we could not find a match in Src0s or Src1s
13572   // for either Src0 or Src1, so just place them arbitrarily.
13573 
13574   unsigned ZeroMask = 0x0c0c0c0c;
13575   unsigned FMask = 0xFF << (8 * (3 - Step));
13576 
13577   Src0s.push_back(
13578       {*Src0.Src, (Src0.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask))});
13579   Src1s.push_back(
13580       {*Src1.Src, (Src1.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask))});
13581 
13582   return;
13583 }
13584 
13585 static SDValue
13586 resolveSources(SelectionDAG &DAG, SDLoc SL,
13587                SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs,
13588                bool IsSigned, bool IsAny) {
13589 
13590   // If we just have one source, just permute it accordingly.
13591   if (Srcs.size() == 1) {
13592     auto Elt = Srcs.begin();
13593     auto EltVal = DAG.getBitcastedAnyExtOrTrunc(Elt->first, SL, MVT::i32);
13594 
13595     // v_perm will produce the original value.
13596     if (Elt->second == 0x3020100)
13597       return EltVal;
13598 
13599     return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltVal, EltVal,
13600                        DAG.getConstant(Elt->second, SL, MVT::i32));
13601   }
13602 
13603   auto FirstElt = Srcs.begin();
13604   auto SecondElt = std::next(FirstElt);
13605 
13606   SmallVector<SDValue, 2> Perms;
13607 
13608   // If we have multiple sources in the chain, combine them via perms (using
13609   // calculated perm mask) and Ors.
13610   while (true) {
13611     auto FirstMask = FirstElt->second;
13612     auto SecondMask = SecondElt->second;
13613 
13614     unsigned FirstCs = FirstMask & 0x0c0c0c0c;
13615     unsigned FirstPlusFour = FirstMask | 0x04040404;
13616     // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any
13617     // original 0x0C.
13618     FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
13619 
13620     auto PermMask = addPermMasks(FirstMask, SecondMask);
13621     auto FirstVal =
13622         DAG.getBitcastedAnyExtOrTrunc(FirstElt->first, SL, MVT::i32);
13623     auto SecondVal =
13624         DAG.getBitcastedAnyExtOrTrunc(SecondElt->first, SL, MVT::i32);
13625 
13626     Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal,
13627                                 SecondVal,
13628                                 DAG.getConstant(PermMask, SL, MVT::i32)));
13629 
13630     FirstElt = std::next(SecondElt);
13631     if (FirstElt == Srcs.end())
13632       break;
13633 
13634     SecondElt = std::next(FirstElt);
13635     // If we only have a FirstElt, then just combine that into the cumulative
13636     // source node.
13637     if (SecondElt == Srcs.end()) {
13638       auto EltVal =
13639           DAG.getBitcastedAnyExtOrTrunc(FirstElt->first, SL, MVT::i32);
13640 
13641       Perms.push_back(
13642           DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltVal, EltVal,
13643                       DAG.getConstant(FirstElt->second, SL, MVT::i32)));
13644       break;
13645     }
13646   }
13647 
13648   assert(Perms.size() == 1 || Perms.size() == 2);
13649   return Perms.size() == 2
13650              ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1])
13651              : Perms[0];
13652 }
13653 
13654 static void fixMasks(SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs,
13655                      unsigned ChainLength) {
13656   for (auto &[EntryVal, EntryMask] : Srcs) {
13657     EntryMask = EntryMask >> ((4 - ChainLength) * 8);
13658     auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
13659     EntryMask += ZeroMask;
13660   }
13661 }
13662 
13663 static bool isMul(const SDValue Op) {
13664   auto Opcode = Op.getOpcode();
13665 
13666   return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 ||
13667           Opcode == AMDGPUISD::MUL_I24);
13668 }
13669 
13670 static std::optional<bool>
13671 checkDot4MulSignedness(const SDValue &N, ByteProvider<SDValue> &Src0,
13672                        ByteProvider<SDValue> &Src1, const SDValue &S0Op,
13673                        const SDValue &S1Op, const SelectionDAG &DAG) {
13674   // If we both ops are i8s (pre legalize-dag), then the signedness semantics
13675   // of the dot4 is irrelevant.
13676   if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8)
13677     return false;
13678 
13679   auto Known0 = DAG.computeKnownBits(S0Op, 0);
13680   bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0;
13681   bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
13682   auto Known1 = DAG.computeKnownBits(S1Op, 0);
13683   bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0;
13684   bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
13685 
13686   assert(!(S0IsUnsigned && S0IsSigned));
13687   assert(!(S1IsUnsigned && S1IsSigned));
13688 
13689   // There are 9 possible permutations of
13690   // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned}
13691 
13692   // In two permutations, the sign bits are known to be the same for both Ops,
13693   // so simply return Signed / Unsigned corresponding to the MSB
13694 
13695   if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
13696     return S0IsSigned;
13697 
13698   // In another two permutations, the sign bits are known to be opposite. In
13699   // this case return std::nullopt to indicate a bad match.
13700 
13701   if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
13702     return std::nullopt;
13703 
13704   // In the remaining five permutations, we don't know the value of the sign
13705   // bit for at least one Op. Since we have a valid ByteProvider, we know that
13706   // the upper bits must be extension bits. Thus, the only ways for the sign
13707   // bit to be unknown is if it was sign extended from unknown value, or if it
13708   // was any extended. In either case, it is correct to use the signed
13709   // version of the signedness semantics of dot4
13710 
13711   // In two of such permutations, we known the sign bit is set for
13712   // one op, and the other is unknown. It is okay to used signed version of
13713   // dot4.
13714   if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
13715       ((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
13716     return true;
13717 
13718   // In one such permutation, we don't know either of the sign bits. It is okay
13719   // to used the signed version of dot4.
13720   if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
13721     return true;
13722 
13723   // In two of such permutations, we known the sign bit is unset for
13724   // one op, and the other is unknown. Return std::nullopt to indicate a
13725   // bad match.
13726   if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
13727       ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
13728     return std::nullopt;
13729 
13730   llvm_unreachable("Fully covered condition");
13731 }
13732 
13733 SDValue SITargetLowering::performAddCombine(SDNode *N,
13734                                             DAGCombinerInfo &DCI) const {
13735   SelectionDAG &DAG = DCI.DAG;
13736   EVT VT = N->getValueType(0);
13737   SDLoc SL(N);
13738   SDValue LHS = N->getOperand(0);
13739   SDValue RHS = N->getOperand(1);
13740 
13741   if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
13742     if (Subtarget->hasMad64_32()) {
13743       if (SDValue Folded = tryFoldToMad64_32(N, DCI))
13744         return Folded;
13745     }
13746   }
13747 
13748   if (SDValue V = reassociateScalarOps(N, DAG)) {
13749     return V;
13750   }
13751 
13752   if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() &&
13753       (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) {
13754     SDValue TempNode(N, 0);
13755     std::optional<bool> IsSigned;
13756     SmallVector<std::pair<SDValue, unsigned>, 4> Src0s;
13757     SmallVector<std::pair<SDValue, unsigned>, 4> Src1s;
13758     SmallVector<SDValue, 4> Src2s;
13759 
13760     // Match the v_dot4 tree, while collecting src nodes.
13761     int ChainLength = 0;
13762     for (int I = 0; I < 4; I++) {
13763       auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1;
13764       if (MulIdx == -1)
13765         break;
13766       auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
13767       if (!Src0)
13768         break;
13769       auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
13770       if (!Src1)
13771         break;
13772 
13773       auto IterIsSigned = checkDot4MulSignedness(
13774           TempNode->getOperand(MulIdx), *Src0, *Src1,
13775           TempNode->getOperand(MulIdx)->getOperand(0),
13776           TempNode->getOperand(MulIdx)->getOperand(1), DAG);
13777       if (!IterIsSigned)
13778         break;
13779       if (!IsSigned)
13780         IsSigned = *IterIsSigned;
13781       if (*IterIsSigned != *IsSigned)
13782         break;
13783       placeSources(*Src0, *Src1, Src0s, Src1s, I);
13784       auto AddIdx = 1 - MulIdx;
13785       // Allow the special case where add (add (mul24, 0), mul24) became ->
13786       // add (mul24, mul24).
13787       if (I == 2 && isMul(TempNode->getOperand(AddIdx))) {
13788         Src2s.push_back(TempNode->getOperand(AddIdx));
13789         auto Src0 =
13790             handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0));
13791         if (!Src0)
13792           break;
13793         auto Src1 =
13794             handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1));
13795         if (!Src1)
13796           break;
13797         auto IterIsSigned = checkDot4MulSignedness(
13798             TempNode->getOperand(AddIdx), *Src0, *Src1,
13799             TempNode->getOperand(AddIdx)->getOperand(0),
13800             TempNode->getOperand(AddIdx)->getOperand(1), DAG);
13801         if (!IterIsSigned)
13802           break;
13803         assert(IsSigned);
13804         if (*IterIsSigned != *IsSigned)
13805           break;
13806         placeSources(*Src0, *Src1, Src0s, Src1s, I + 1);
13807         Src2s.push_back(DAG.getConstant(0, SL, MVT::i32));
13808         ChainLength = I + 2;
13809         break;
13810       }
13811 
13812       TempNode = TempNode->getOperand(AddIdx);
13813       Src2s.push_back(TempNode);
13814       ChainLength = I + 1;
13815       if (TempNode->getNumOperands() < 2)
13816         break;
13817       LHS = TempNode->getOperand(0);
13818       RHS = TempNode->getOperand(1);
13819     }
13820 
13821     if (ChainLength < 2)
13822       return SDValue();
13823 
13824     // Masks were constructed with assumption that we would find a chain of
13825     // length 4. If not, then we need to 0 out the MSB bits (via perm mask of
13826     // 0x0c) so they do not affect dot calculation.
13827     if (ChainLength < 4) {
13828       fixMasks(Src0s, ChainLength);
13829       fixMasks(Src1s, ChainLength);
13830     }
13831 
13832     SDValue Src0, Src1;
13833 
13834     // If we are just using a single source for both, and have permuted the
13835     // bytes consistently, we can just use the sources without permuting
13836     // (commutation).
13837     bool UseOriginalSrc = false;
13838     if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 &&
13839         Src0s.begin()->second == Src1s.begin()->second &&
13840         Src0s.begin()->first.getValueSizeInBits() == 32 &&
13841         Src1s.begin()->first.getValueSizeInBits() == 32) {
13842       SmallVector<unsigned, 4> SrcBytes;
13843       auto Src0Mask = Src0s.begin()->second;
13844       SrcBytes.push_back(Src0Mask & 0xFF000000);
13845       bool UniqueEntries = true;
13846       for (auto I = 1; I < 4; I++) {
13847         auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8));
13848 
13849         if (is_contained(SrcBytes, NextByte)) {
13850           UniqueEntries = false;
13851           break;
13852         }
13853         SrcBytes.push_back(NextByte);
13854       }
13855 
13856       if (UniqueEntries) {
13857         UseOriginalSrc = true;
13858         // Must be 32 bits to enter above conditional.
13859         assert(Src0s.begin()->first.getValueSizeInBits() == 32);
13860         assert(Src1s.begin()->first.getValueSizeInBits() == 32);
13861         Src0 = DAG.getBitcast(MVT::getIntegerVT(32), Src0s.begin()->first);
13862         Src1 = DAG.getBitcast(MVT::getIntegerVT(32), Src1s.begin()->first);
13863       }
13864     }
13865 
13866     if (!UseOriginalSrc) {
13867       Src0 = resolveSources(DAG, SL, Src0s, false, true);
13868       Src1 = resolveSources(DAG, SL, Src1s, false, true);
13869     }
13870 
13871     assert(IsSigned);
13872     SDValue Src2 =
13873         DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
13874 
13875     SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4
13876                                                   : Intrinsic::amdgcn_udot4,
13877                                         SL, MVT::i64);
13878 
13879     assert(!VT.isVector());
13880     auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0,
13881                            Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1));
13882 
13883     return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT);
13884   }
13885 
13886   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
13887     return SDValue();
13888 
13889   // add x, zext (setcc) => uaddo_carry x, 0, setcc
13890   // add x, sext (setcc) => usubo_carry x, 0, setcc
13891   unsigned Opc = LHS.getOpcode();
13892   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
13893       Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY)
13894     std::swap(RHS, LHS);
13895 
13896   Opc = RHS.getOpcode();
13897   switch (Opc) {
13898   default: break;
13899   case ISD::ZERO_EXTEND:
13900   case ISD::SIGN_EXTEND:
13901   case ISD::ANY_EXTEND: {
13902     auto Cond = RHS.getOperand(0);
13903     // If this won't be a real VOPC output, we would still need to insert an
13904     // extra instruction anyway.
13905     if (!isBoolSGPR(Cond))
13906       break;
13907     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
13908     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
13909     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY;
13910     return DAG.getNode(Opc, SL, VTList, Args);
13911   }
13912   case ISD::UADDO_CARRY: {
13913     // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc
13914     if (!isNullConstant(RHS.getOperand(1)))
13915       break;
13916     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
13917     return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args);
13918   }
13919   }
13920   return SDValue();
13921 }
13922 
13923 SDValue SITargetLowering::performSubCombine(SDNode *N,
13924                                             DAGCombinerInfo &DCI) const {
13925   SelectionDAG &DAG = DCI.DAG;
13926   EVT VT = N->getValueType(0);
13927 
13928   if (VT != MVT::i32)
13929     return SDValue();
13930 
13931   SDLoc SL(N);
13932   SDValue LHS = N->getOperand(0);
13933   SDValue RHS = N->getOperand(1);
13934 
13935   // sub x, zext (setcc) => usubo_carry x, 0, setcc
13936   // sub x, sext (setcc) => uaddo_carry x, 0, setcc
13937   unsigned Opc = RHS.getOpcode();
13938   switch (Opc) {
13939   default: break;
13940   case ISD::ZERO_EXTEND:
13941   case ISD::SIGN_EXTEND:
13942   case ISD::ANY_EXTEND: {
13943     auto Cond = RHS.getOperand(0);
13944     // If this won't be a real VOPC output, we would still need to insert an
13945     // extra instruction anyway.
13946     if (!isBoolSGPR(Cond))
13947       break;
13948     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
13949     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
13950     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
13951     return DAG.getNode(Opc, SL, VTList, Args);
13952   }
13953   }
13954 
13955   if (LHS.getOpcode() == ISD::USUBO_CARRY) {
13956     // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc
13957     if (!isNullConstant(LHS.getOperand(1)))
13958       return SDValue();
13959     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
13960     return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args);
13961   }
13962   return SDValue();
13963 }
13964 
13965 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
13966   DAGCombinerInfo &DCI) const {
13967 
13968   if (N->getValueType(0) != MVT::i32)
13969     return SDValue();
13970 
13971   if (!isNullConstant(N->getOperand(1)))
13972     return SDValue();
13973 
13974   SelectionDAG &DAG = DCI.DAG;
13975   SDValue LHS = N->getOperand(0);
13976 
13977   // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc
13978   // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc
13979   unsigned LHSOpc = LHS.getOpcode();
13980   unsigned Opc = N->getOpcode();
13981   if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) ||
13982       (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) {
13983     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
13984     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
13985   }
13986   return SDValue();
13987 }
13988 
13989 SDValue SITargetLowering::performFAddCombine(SDNode *N,
13990                                              DAGCombinerInfo &DCI) const {
13991   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
13992     return SDValue();
13993 
13994   SelectionDAG &DAG = DCI.DAG;
13995   EVT VT = N->getValueType(0);
13996 
13997   SDLoc SL(N);
13998   SDValue LHS = N->getOperand(0);
13999   SDValue RHS = N->getOperand(1);
14000 
14001   // These should really be instruction patterns, but writing patterns with
14002   // source modifiers is a pain.
14003 
14004   // fadd (fadd (a, a), b) -> mad 2.0, a, b
14005   if (LHS.getOpcode() == ISD::FADD) {
14006     SDValue A = LHS.getOperand(0);
14007     if (A == LHS.getOperand(1)) {
14008       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
14009       if (FusedOp != 0) {
14010         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
14011         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
14012       }
14013     }
14014   }
14015 
14016   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
14017   if (RHS.getOpcode() == ISD::FADD) {
14018     SDValue A = RHS.getOperand(0);
14019     if (A == RHS.getOperand(1)) {
14020       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
14021       if (FusedOp != 0) {
14022         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
14023         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
14024       }
14025     }
14026   }
14027 
14028   return SDValue();
14029 }
14030 
14031 SDValue SITargetLowering::performFSubCombine(SDNode *N,
14032                                              DAGCombinerInfo &DCI) const {
14033   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
14034     return SDValue();
14035 
14036   SelectionDAG &DAG = DCI.DAG;
14037   SDLoc SL(N);
14038   EVT VT = N->getValueType(0);
14039   assert(!VT.isVector());
14040 
14041   // Try to get the fneg to fold into the source modifier. This undoes generic
14042   // DAG combines and folds them into the mad.
14043   //
14044   // Only do this if we are not trying to support denormals. v_mad_f32 does
14045   // not support denormals ever.
14046   SDValue LHS = N->getOperand(0);
14047   SDValue RHS = N->getOperand(1);
14048   if (LHS.getOpcode() == ISD::FADD) {
14049     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
14050     SDValue A = LHS.getOperand(0);
14051     if (A == LHS.getOperand(1)) {
14052       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
14053       if (FusedOp != 0){
14054         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
14055         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
14056 
14057         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
14058       }
14059     }
14060   }
14061 
14062   if (RHS.getOpcode() == ISD::FADD) {
14063     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
14064 
14065     SDValue A = RHS.getOperand(0);
14066     if (A == RHS.getOperand(1)) {
14067       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
14068       if (FusedOp != 0){
14069         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
14070         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
14071       }
14072     }
14073   }
14074 
14075   return SDValue();
14076 }
14077 
14078 SDValue SITargetLowering::performFDivCombine(SDNode *N,
14079                                              DAGCombinerInfo &DCI) const {
14080   SelectionDAG &DAG = DCI.DAG;
14081   SDLoc SL(N);
14082   EVT VT = N->getValueType(0);
14083   if (VT != MVT::f16 || !Subtarget->has16BitInsts())
14084     return SDValue();
14085 
14086   SDValue LHS = N->getOperand(0);
14087   SDValue RHS = N->getOperand(1);
14088 
14089   SDNodeFlags Flags = N->getFlags();
14090   SDNodeFlags RHSFlags = RHS->getFlags();
14091   if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() ||
14092       !RHS->hasOneUse())
14093     return SDValue();
14094 
14095   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
14096     bool IsNegative = false;
14097     if (CLHS->isExactlyValue(1.0) ||
14098         (IsNegative = CLHS->isExactlyValue(-1.0))) {
14099       // fdiv contract 1.0, (sqrt contract x) -> rsq for f16
14100       // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16
14101       if (RHS.getOpcode() == ISD::FSQRT) {
14102         // TODO: Or in RHS flags, somehow missing from SDNodeFlags
14103         SDValue Rsq =
14104             DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags);
14105         return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq;
14106       }
14107     }
14108   }
14109 
14110   return SDValue();
14111 }
14112 
14113 SDValue SITargetLowering::performFMACombine(SDNode *N,
14114                                             DAGCombinerInfo &DCI) const {
14115   SelectionDAG &DAG = DCI.DAG;
14116   EVT VT = N->getValueType(0);
14117   SDLoc SL(N);
14118 
14119   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
14120     return SDValue();
14121 
14122   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
14123   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
14124   SDValue Op1 = N->getOperand(0);
14125   SDValue Op2 = N->getOperand(1);
14126   SDValue FMA = N->getOperand(2);
14127 
14128   if (FMA.getOpcode() != ISD::FMA ||
14129       Op1.getOpcode() != ISD::FP_EXTEND ||
14130       Op2.getOpcode() != ISD::FP_EXTEND)
14131     return SDValue();
14132 
14133   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
14134   // regardless of the denorm mode setting. Therefore,
14135   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
14136   const TargetOptions &Options = DAG.getTarget().Options;
14137   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
14138       (N->getFlags().hasAllowContract() &&
14139        FMA->getFlags().hasAllowContract())) {
14140     Op1 = Op1.getOperand(0);
14141     Op2 = Op2.getOperand(0);
14142     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14143         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14144       return SDValue();
14145 
14146     SDValue Vec1 = Op1.getOperand(0);
14147     SDValue Idx1 = Op1.getOperand(1);
14148     SDValue Vec2 = Op2.getOperand(0);
14149 
14150     SDValue FMAOp1 = FMA.getOperand(0);
14151     SDValue FMAOp2 = FMA.getOperand(1);
14152     SDValue FMAAcc = FMA.getOperand(2);
14153 
14154     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
14155         FMAOp2.getOpcode() != ISD::FP_EXTEND)
14156       return SDValue();
14157 
14158     FMAOp1 = FMAOp1.getOperand(0);
14159     FMAOp2 = FMAOp2.getOperand(0);
14160     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14161         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14162       return SDValue();
14163 
14164     SDValue Vec3 = FMAOp1.getOperand(0);
14165     SDValue Vec4 = FMAOp2.getOperand(0);
14166     SDValue Idx2 = FMAOp1.getOperand(1);
14167 
14168     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
14169         // Idx1 and Idx2 cannot be the same.
14170         Idx1 == Idx2)
14171       return SDValue();
14172 
14173     if (Vec1 == Vec2 || Vec3 == Vec4)
14174       return SDValue();
14175 
14176     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
14177       return SDValue();
14178 
14179     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
14180         (Vec1 == Vec4 && Vec2 == Vec3)) {
14181       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
14182                          DAG.getTargetConstant(0, SL, MVT::i1));
14183     }
14184   }
14185   return SDValue();
14186 }
14187 
14188 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
14189                                               DAGCombinerInfo &DCI) const {
14190   SelectionDAG &DAG = DCI.DAG;
14191   SDLoc SL(N);
14192 
14193   SDValue LHS = N->getOperand(0);
14194   SDValue RHS = N->getOperand(1);
14195   EVT VT = LHS.getValueType();
14196   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
14197 
14198   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
14199   if (!CRHS) {
14200     CRHS = dyn_cast<ConstantSDNode>(LHS);
14201     if (CRHS) {
14202       std::swap(LHS, RHS);
14203       CC = getSetCCSwappedOperands(CC);
14204     }
14205   }
14206 
14207   if (CRHS) {
14208     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
14209         isBoolSGPR(LHS.getOperand(0))) {
14210       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
14211       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
14212       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
14213       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
14214       if ((CRHS->isAllOnes() &&
14215            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
14216           (CRHS->isZero() &&
14217            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
14218         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
14219                            DAG.getConstant(-1, SL, MVT::i1));
14220       if ((CRHS->isAllOnes() &&
14221            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
14222           (CRHS->isZero() &&
14223            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
14224         return LHS.getOperand(0);
14225     }
14226 
14227     const APInt &CRHSVal = CRHS->getAPIntValue();
14228     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14229         LHS.getOpcode() == ISD::SELECT &&
14230         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14231         isa<ConstantSDNode>(LHS.getOperand(2)) &&
14232         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
14233         isBoolSGPR(LHS.getOperand(0))) {
14234       // Given CT != FT:
14235       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
14236       // setcc (select cc, CT, CF), CF, ne => cc
14237       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
14238       // setcc (select cc, CT, CF), CT, eq => cc
14239       const APInt &CT = LHS.getConstantOperandAPInt(1);
14240       const APInt &CF = LHS.getConstantOperandAPInt(2);
14241 
14242       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
14243           (CT == CRHSVal && CC == ISD::SETNE))
14244         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
14245                            DAG.getConstant(-1, SL, MVT::i1));
14246       if ((CF == CRHSVal && CC == ISD::SETNE) ||
14247           (CT == CRHSVal && CC == ISD::SETEQ))
14248         return LHS.getOperand(0);
14249     }
14250   }
14251 
14252   if (VT != MVT::f32 && VT != MVT::f64 &&
14253       (!Subtarget->has16BitInsts() || VT != MVT::f16))
14254     return SDValue();
14255 
14256   // Match isinf/isfinite pattern
14257   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
14258   // (fcmp one (fabs x), inf) -> (fp_class x,
14259   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
14260   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
14261     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
14262     if (!CRHS)
14263       return SDValue();
14264 
14265     const APFloat &APF = CRHS->getValueAPF();
14266     if (APF.isInfinity() && !APF.isNegative()) {
14267       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
14268                                  SIInstrFlags::N_INFINITY;
14269       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
14270                                     SIInstrFlags::P_ZERO |
14271                                     SIInstrFlags::N_NORMAL |
14272                                     SIInstrFlags::P_NORMAL |
14273                                     SIInstrFlags::N_SUBNORMAL |
14274                                     SIInstrFlags::P_SUBNORMAL;
14275       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
14276       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
14277                          DAG.getConstant(Mask, SL, MVT::i32));
14278     }
14279   }
14280 
14281   return SDValue();
14282 }
14283 
14284 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
14285                                                      DAGCombinerInfo &DCI) const {
14286   SelectionDAG &DAG = DCI.DAG;
14287   SDLoc SL(N);
14288   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
14289 
14290   SDValue Src = N->getOperand(0);
14291   SDValue Shift = N->getOperand(0);
14292 
14293   // TODO: Extend type shouldn't matter (assuming legal types).
14294   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
14295     Shift = Shift.getOperand(0);
14296 
14297   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
14298     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
14299     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
14300     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
14301     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
14302     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
14303     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
14304       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
14305                                  SDLoc(Shift.getOperand(0)), MVT::i32);
14306 
14307       unsigned ShiftOffset = 8 * Offset;
14308       if (Shift.getOpcode() == ISD::SHL)
14309         ShiftOffset -= C->getZExtValue();
14310       else
14311         ShiftOffset += C->getZExtValue();
14312 
14313       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
14314         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
14315                            MVT::f32, Shifted);
14316       }
14317     }
14318   }
14319 
14320   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14321   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
14322   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
14323     // We simplified Src. If this node is not dead, visit it again so it is
14324     // folded properly.
14325     if (N->getOpcode() != ISD::DELETED_NODE)
14326       DCI.AddToWorklist(N);
14327     return SDValue(N, 0);
14328   }
14329 
14330   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
14331   if (SDValue DemandedSrc =
14332           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
14333     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
14334 
14335   return SDValue();
14336 }
14337 
14338 SDValue SITargetLowering::performClampCombine(SDNode *N,
14339                                               DAGCombinerInfo &DCI) const {
14340   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
14341   if (!CSrc)
14342     return SDValue();
14343 
14344   const MachineFunction &MF = DCI.DAG.getMachineFunction();
14345   const APFloat &F = CSrc->getValueAPF();
14346   APFloat Zero = APFloat::getZero(F.getSemantics());
14347   if (F < Zero ||
14348       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
14349     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
14350   }
14351 
14352   APFloat One(F.getSemantics(), "1.0");
14353   if (F > One)
14354     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
14355 
14356   return SDValue(CSrc, 0);
14357 }
14358 
14359 
14360 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
14361                                             DAGCombinerInfo &DCI) const {
14362   if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
14363     return SDValue();
14364   switch (N->getOpcode()) {
14365   case ISD::ADD:
14366     return performAddCombine(N, DCI);
14367   case ISD::SUB:
14368     return performSubCombine(N, DCI);
14369   case ISD::UADDO_CARRY:
14370   case ISD::USUBO_CARRY:
14371     return performAddCarrySubCarryCombine(N, DCI);
14372   case ISD::FADD:
14373     return performFAddCombine(N, DCI);
14374   case ISD::FSUB:
14375     return performFSubCombine(N, DCI);
14376   case ISD::FDIV:
14377     return performFDivCombine(N, DCI);
14378   case ISD::SETCC:
14379     return performSetCCCombine(N, DCI);
14380   case ISD::FMAXNUM:
14381   case ISD::FMINNUM:
14382   case ISD::FMAXNUM_IEEE:
14383   case ISD::FMINNUM_IEEE:
14384   case ISD::FMAXIMUM:
14385   case ISD::FMINIMUM:
14386   case ISD::SMAX:
14387   case ISD::SMIN:
14388   case ISD::UMAX:
14389   case ISD::UMIN:
14390   case AMDGPUISD::FMIN_LEGACY:
14391   case AMDGPUISD::FMAX_LEGACY:
14392     return performMinMaxCombine(N, DCI);
14393   case ISD::FMA:
14394     return performFMACombine(N, DCI);
14395   case ISD::AND:
14396     return performAndCombine(N, DCI);
14397   case ISD::OR:
14398     return performOrCombine(N, DCI);
14399   case ISD::FSHR: {
14400     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14401     if (N->getValueType(0) == MVT::i32 && N->isDivergent() &&
14402         TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
14403       return matchPERM(N, DCI);
14404     }
14405     break;
14406   }
14407   case ISD::XOR:
14408     return performXorCombine(N, DCI);
14409   case ISD::ZERO_EXTEND:
14410     return performZeroExtendCombine(N, DCI);
14411   case ISD::SIGN_EXTEND_INREG:
14412     return performSignExtendInRegCombine(N , DCI);
14413   case AMDGPUISD::FP_CLASS:
14414     return performClassCombine(N, DCI);
14415   case ISD::FCANONICALIZE:
14416     return performFCanonicalizeCombine(N, DCI);
14417   case AMDGPUISD::RCP:
14418     return performRcpCombine(N, DCI);
14419   case ISD::FLDEXP:
14420   case AMDGPUISD::FRACT:
14421   case AMDGPUISD::RSQ:
14422   case AMDGPUISD::RCP_LEGACY:
14423   case AMDGPUISD::RCP_IFLAG:
14424   case AMDGPUISD::RSQ_CLAMP: {
14425     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
14426     SDValue Src = N->getOperand(0);
14427     if (Src.isUndef())
14428       return Src;
14429     break;
14430   }
14431   case ISD::SINT_TO_FP:
14432   case ISD::UINT_TO_FP:
14433     return performUCharToFloatCombine(N, DCI);
14434   case ISD::FCOPYSIGN:
14435     return performFCopySignCombine(N, DCI);
14436   case AMDGPUISD::CVT_F32_UBYTE0:
14437   case AMDGPUISD::CVT_F32_UBYTE1:
14438   case AMDGPUISD::CVT_F32_UBYTE2:
14439   case AMDGPUISD::CVT_F32_UBYTE3:
14440     return performCvtF32UByteNCombine(N, DCI);
14441   case AMDGPUISD::FMED3:
14442     return performFMed3Combine(N, DCI);
14443   case AMDGPUISD::CVT_PKRTZ_F16_F32:
14444     return performCvtPkRTZCombine(N, DCI);
14445   case AMDGPUISD::CLAMP:
14446     return performClampCombine(N, DCI);
14447   case ISD::SCALAR_TO_VECTOR: {
14448     SelectionDAG &DAG = DCI.DAG;
14449     EVT VT = N->getValueType(0);
14450 
14451     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
14452     if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2f16) {
14453       SDLoc SL(N);
14454       SDValue Src = N->getOperand(0);
14455       EVT EltVT = Src.getValueType();
14456       if (EltVT != MVT::i16)
14457         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
14458 
14459       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
14460       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
14461     }
14462 
14463     break;
14464   }
14465   case ISD::EXTRACT_VECTOR_ELT:
14466     return performExtractVectorEltCombine(N, DCI);
14467   case ISD::INSERT_VECTOR_ELT:
14468     return performInsertVectorEltCombine(N, DCI);
14469   case ISD::FP_ROUND:
14470     return performFPRoundCombine(N, DCI);
14471   case ISD::LOAD: {
14472     if (SDValue Widened = widenLoad(cast<LoadSDNode>(N), DCI))
14473       return Widened;
14474     [[fallthrough]];
14475   }
14476   default: {
14477     if (!DCI.isBeforeLegalize()) {
14478       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
14479         return performMemSDNodeCombine(MemNode, DCI);
14480     }
14481 
14482     break;
14483   }
14484   }
14485 
14486   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
14487 }
14488 
14489 /// Helper function for adjustWritemask
14490 static unsigned SubIdx2Lane(unsigned Idx) {
14491   switch (Idx) {
14492   default: return ~0u;
14493   case AMDGPU::sub0: return 0;
14494   case AMDGPU::sub1: return 1;
14495   case AMDGPU::sub2: return 2;
14496   case AMDGPU::sub3: return 3;
14497   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
14498   }
14499 }
14500 
14501 /// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions
14502 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
14503                                           SelectionDAG &DAG) const {
14504   unsigned Opcode = Node->getMachineOpcode();
14505 
14506   // Subtract 1 because the vdata output is not a MachineSDNode operand.
14507   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
14508   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
14509     return Node; // not implemented for D16
14510 
14511   SDNode *Users[5] = { nullptr };
14512   unsigned Lane = 0;
14513   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
14514   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
14515   unsigned NewDmask = 0;
14516   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
14517   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
14518   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
14519                   (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx)))
14520                      ? true
14521                      : false;
14522   unsigned TFCLane = 0;
14523   bool HasChain = Node->getNumValues() > 1;
14524 
14525   if (OldDmask == 0) {
14526     // These are folded out, but on the chance it happens don't assert.
14527     return Node;
14528   }
14529 
14530   unsigned OldBitsSet = llvm::popcount(OldDmask);
14531   // Work out which is the TFE/LWE lane if that is enabled.
14532   if (UsesTFC) {
14533     TFCLane = OldBitsSet;
14534   }
14535 
14536   // Try to figure out the used register components
14537   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
14538        I != E; ++I) {
14539 
14540     // Don't look at users of the chain.
14541     if (I.getUse().getResNo() != 0)
14542       continue;
14543 
14544     // Abort if we can't understand the usage
14545     if (!I->isMachineOpcode() ||
14546         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
14547       return Node;
14548 
14549     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
14550     // Note that subregs are packed, i.e. Lane==0 is the first bit set
14551     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
14552     // set, etc.
14553     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
14554     if (Lane == ~0u)
14555       return Node;
14556 
14557     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
14558     if (UsesTFC && Lane == TFCLane) {
14559       Users[Lane] = *I;
14560     } else {
14561       // Set which texture component corresponds to the lane.
14562       unsigned Comp;
14563       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
14564         Comp = llvm::countr_zero(Dmask);
14565         Dmask &= ~(1 << Comp);
14566       }
14567 
14568       // Abort if we have more than one user per component.
14569       if (Users[Lane])
14570         return Node;
14571 
14572       Users[Lane] = *I;
14573       NewDmask |= 1 << Comp;
14574     }
14575   }
14576 
14577   // Don't allow 0 dmask, as hardware assumes one channel enabled.
14578   bool NoChannels = !NewDmask;
14579   if (NoChannels) {
14580     if (!UsesTFC) {
14581       // No uses of the result and not using TFC. Then do nothing.
14582       return Node;
14583     }
14584     // If the original dmask has one channel - then nothing to do
14585     if (OldBitsSet == 1)
14586       return Node;
14587     // Use an arbitrary dmask - required for the instruction to work
14588     NewDmask = 1;
14589   }
14590   // Abort if there's no change
14591   if (NewDmask == OldDmask)
14592     return Node;
14593 
14594   unsigned BitsSet = llvm::popcount(NewDmask);
14595 
14596   // Check for TFE or LWE - increase the number of channels by one to account
14597   // for the extra return value
14598   // This will need adjustment for D16 if this is also included in
14599   // adjustWriteMask (this function) but at present D16 are excluded.
14600   unsigned NewChannels = BitsSet + UsesTFC;
14601 
14602   int NewOpcode =
14603       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
14604   assert(NewOpcode != -1 &&
14605          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
14606          "failed to find equivalent MIMG op");
14607 
14608   // Adjust the writemask in the node
14609   SmallVector<SDValue, 12> Ops;
14610   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
14611   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
14612   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
14613 
14614   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
14615 
14616   MVT ResultVT = NewChannels == 1 ?
14617     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
14618                            NewChannels == 5 ? 8 : NewChannels);
14619   SDVTList NewVTList = HasChain ?
14620     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
14621 
14622 
14623   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
14624                                               NewVTList, Ops);
14625 
14626   if (HasChain) {
14627     // Update chain.
14628     DAG.setNodeMemRefs(NewNode, Node->memoperands());
14629     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
14630   }
14631 
14632   if (NewChannels == 1) {
14633     assert(Node->hasNUsesOfValue(1, 0));
14634     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
14635                                       SDLoc(Node), Users[Lane]->getValueType(0),
14636                                       SDValue(NewNode, 0));
14637     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
14638     return nullptr;
14639   }
14640 
14641   // Update the users of the node with the new indices
14642   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
14643     SDNode *User = Users[i];
14644     if (!User) {
14645       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
14646       // Users[0] is still nullptr because channel 0 doesn't really have a use.
14647       if (i || !NoChannels)
14648         continue;
14649     } else {
14650       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
14651       SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
14652       if (NewUser != User) {
14653         DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0));
14654         DAG.RemoveDeadNode(User);
14655       }
14656     }
14657 
14658     switch (Idx) {
14659     default: break;
14660     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
14661     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
14662     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
14663     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
14664     }
14665   }
14666 
14667   DAG.RemoveDeadNode(Node);
14668   return nullptr;
14669 }
14670 
14671 static bool isFrameIndexOp(SDValue Op) {
14672   if (Op.getOpcode() == ISD::AssertZext)
14673     Op = Op.getOperand(0);
14674 
14675   return isa<FrameIndexSDNode>(Op);
14676 }
14677 
14678 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
14679 /// with frame index operands.
14680 /// LLVM assumes that inputs are to these instructions are registers.
14681 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
14682                                                         SelectionDAG &DAG) const {
14683   if (Node->getOpcode() == ISD::CopyToReg) {
14684     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
14685     SDValue SrcVal = Node->getOperand(2);
14686 
14687     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
14688     // to try understanding copies to physical registers.
14689     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
14690       SDLoc SL(Node);
14691       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
14692       SDValue VReg = DAG.getRegister(
14693         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
14694 
14695       SDNode *Glued = Node->getGluedNode();
14696       SDValue ToVReg
14697         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
14698                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
14699       SDValue ToResultReg
14700         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
14701                            VReg, ToVReg.getValue(1));
14702       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
14703       DAG.RemoveDeadNode(Node);
14704       return ToResultReg.getNode();
14705     }
14706   }
14707 
14708   SmallVector<SDValue, 8> Ops;
14709   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
14710     if (!isFrameIndexOp(Node->getOperand(i))) {
14711       Ops.push_back(Node->getOperand(i));
14712       continue;
14713     }
14714 
14715     SDLoc DL(Node);
14716     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
14717                                      Node->getOperand(i).getValueType(),
14718                                      Node->getOperand(i)), 0));
14719   }
14720 
14721   return DAG.UpdateNodeOperands(Node, Ops);
14722 }
14723 
14724 /// Fold the instructions after selecting them.
14725 /// Returns null if users were already updated.
14726 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
14727                                           SelectionDAG &DAG) const {
14728   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14729   unsigned Opcode = Node->getMachineOpcode();
14730 
14731   if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() &&
14732       !TII->isGather4(Opcode) &&
14733       AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) {
14734     return adjustWritemask(Node, DAG);
14735   }
14736 
14737   if (Opcode == AMDGPU::INSERT_SUBREG ||
14738       Opcode == AMDGPU::REG_SEQUENCE) {
14739     legalizeTargetIndependentNode(Node, DAG);
14740     return Node;
14741   }
14742 
14743   switch (Opcode) {
14744   case AMDGPU::V_DIV_SCALE_F32_e64:
14745   case AMDGPU::V_DIV_SCALE_F64_e64: {
14746     // Satisfy the operand register constraint when one of the inputs is
14747     // undefined. Ordinarily each undef value will have its own implicit_def of
14748     // a vreg, so force these to use a single register.
14749     SDValue Src0 = Node->getOperand(1);
14750     SDValue Src1 = Node->getOperand(3);
14751     SDValue Src2 = Node->getOperand(5);
14752 
14753     if ((Src0.isMachineOpcode() &&
14754          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
14755         (Src0 == Src1 || Src0 == Src2))
14756       break;
14757 
14758     MVT VT = Src0.getValueType().getSimpleVT();
14759     const TargetRegisterClass *RC =
14760         getRegClassFor(VT, Src0.getNode()->isDivergent());
14761 
14762     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
14763     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
14764 
14765     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
14766                                       UndefReg, Src0, SDValue());
14767 
14768     // src0 must be the same register as src1 or src2, even if the value is
14769     // undefined, so make sure we don't violate this constraint.
14770     if (Src0.isMachineOpcode() &&
14771         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
14772       if (Src1.isMachineOpcode() &&
14773           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
14774         Src0 = Src1;
14775       else if (Src2.isMachineOpcode() &&
14776                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
14777         Src0 = Src2;
14778       else {
14779         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
14780         Src0 = UndefReg;
14781         Src1 = UndefReg;
14782       }
14783     } else
14784       break;
14785 
14786     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
14787     Ops[1] = Src0;
14788     Ops[3] = Src1;
14789     Ops[5] = Src2;
14790     Ops.push_back(ImpDef.getValue(1));
14791     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
14792   }
14793   default:
14794     break;
14795   }
14796 
14797   return Node;
14798 }
14799 
14800 // Any MIMG instructions that use tfe or lwe require an initialization of the
14801 // result register that will be written in the case of a memory access failure.
14802 // The required code is also added to tie this init code to the result of the
14803 // img instruction.
14804 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
14805   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14806   const SIRegisterInfo &TRI = TII->getRegisterInfo();
14807   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
14808   MachineBasicBlock &MBB = *MI.getParent();
14809 
14810   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
14811   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
14812   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
14813 
14814   if (!TFE && !LWE) // intersect_ray
14815     return;
14816 
14817   unsigned TFEVal = TFE ? TFE->getImm() : 0;
14818   unsigned LWEVal = LWE ? LWE->getImm() : 0;
14819   unsigned D16Val = D16 ? D16->getImm() : 0;
14820 
14821   if (!TFEVal && !LWEVal)
14822     return;
14823 
14824   // At least one of TFE or LWE are non-zero
14825   // We have to insert a suitable initialization of the result value and
14826   // tie this to the dest of the image instruction.
14827 
14828   const DebugLoc &DL = MI.getDebugLoc();
14829 
14830   int DstIdx =
14831       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
14832 
14833   // Calculate which dword we have to initialize to 0.
14834   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
14835 
14836   // check that dmask operand is found.
14837   assert(MO_Dmask && "Expected dmask operand in instruction");
14838 
14839   unsigned dmask = MO_Dmask->getImm();
14840   // Determine the number of active lanes taking into account the
14841   // Gather4 special case
14842   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask);
14843 
14844   bool Packed = !Subtarget->hasUnpackedD16VMem();
14845 
14846   unsigned InitIdx =
14847       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
14848 
14849   // Abandon attempt if the dst size isn't large enough
14850   // - this is in fact an error but this is picked up elsewhere and
14851   // reported correctly.
14852   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
14853   if (DstSize < InitIdx)
14854     return;
14855 
14856   // Create a register for the initialization value.
14857   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
14858   unsigned NewDst = 0; // Final initialized value will be in here
14859 
14860   // If PRTStrictNull feature is enabled (the default) then initialize
14861   // all the result registers to 0, otherwise just the error indication
14862   // register (VGPRn+1)
14863   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
14864   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
14865 
14866   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
14867   for (; SizeLeft; SizeLeft--, CurrIdx++) {
14868     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
14869     // Initialize dword
14870     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
14871     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
14872       .addImm(0);
14873     // Insert into the super-reg
14874     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
14875       .addReg(PrevDst)
14876       .addReg(SubReg)
14877       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
14878 
14879     PrevDst = NewDst;
14880   }
14881 
14882   // Add as an implicit operand
14883   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
14884 
14885   // Tie the just added implicit operand to the dst
14886   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
14887 }
14888 
14889 /// Assign the register class depending on the number of
14890 /// bits set in the writemask
14891 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
14892                                                      SDNode *Node) const {
14893   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14894 
14895   MachineFunction *MF = MI.getParent()->getParent();
14896   MachineRegisterInfo &MRI = MF->getRegInfo();
14897   SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
14898 
14899   if (TII->isVOP3(MI.getOpcode())) {
14900     // Make sure constant bus requirements are respected.
14901     TII->legalizeOperandsVOP3(MRI, MI);
14902 
14903     // Prefer VGPRs over AGPRs in mAI instructions where possible.
14904     // This saves a chain-copy of registers and better balance register
14905     // use between vgpr and agpr as agpr tuples tend to be big.
14906     if (!MI.getDesc().operands().empty()) {
14907       unsigned Opc = MI.getOpcode();
14908       bool HasAGPRs = Info->mayNeedAGPRs();
14909       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
14910       int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
14911       for (auto I :
14912            {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
14913             AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) {
14914         if (I == -1)
14915           break;
14916         if ((I == Src2Idx) && (HasAGPRs))
14917           break;
14918         MachineOperand &Op = MI.getOperand(I);
14919         if (!Op.isReg() || !Op.getReg().isVirtual())
14920           continue;
14921         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
14922         if (!TRI->hasAGPRs(RC))
14923           continue;
14924         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
14925         if (!Src || !Src->isCopy() ||
14926             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
14927           continue;
14928         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
14929         // All uses of agpr64 and agpr32 can also accept vgpr except for
14930         // v_accvgpr_read, but we do not produce agpr reads during selection,
14931         // so no use checks are needed.
14932         MRI.setRegClass(Op.getReg(), NewRC);
14933       }
14934 
14935       if (!HasAGPRs)
14936         return;
14937 
14938       // Resolve the rest of AV operands to AGPRs.
14939       if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
14940         if (Src2->isReg() && Src2->getReg().isVirtual()) {
14941           auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
14942           if (TRI->isVectorSuperClass(RC)) {
14943             auto *NewRC = TRI->getEquivalentAGPRClass(RC);
14944             MRI.setRegClass(Src2->getReg(), NewRC);
14945             if (Src2->isTied())
14946               MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
14947           }
14948         }
14949       }
14950     }
14951 
14952     return;
14953   }
14954 
14955   if (TII->isImage(MI)) {
14956     if (!MI.mayStore())
14957       AddIMGInit(MI);
14958     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
14959   }
14960 }
14961 
14962 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
14963                               uint64_t Val) {
14964   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
14965   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
14966 }
14967 
14968 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
14969                                                 const SDLoc &DL,
14970                                                 SDValue Ptr) const {
14971   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14972 
14973   // Build the half of the subregister with the constants before building the
14974   // full 128-bit register. If we are building multiple resource descriptors,
14975   // this will allow CSEing of the 2-component register.
14976   const SDValue Ops0[] = {
14977     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
14978     buildSMovImm32(DAG, DL, 0),
14979     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
14980     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
14981     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
14982   };
14983 
14984   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
14985                                                 MVT::v2i32, Ops0), 0);
14986 
14987   // Combine the constants and the pointer.
14988   const SDValue Ops1[] = {
14989     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
14990     Ptr,
14991     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
14992     SubRegHi,
14993     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
14994   };
14995 
14996   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
14997 }
14998 
14999 /// Return a resource descriptor with the 'Add TID' bit enabled
15000 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
15001 ///        of the resource descriptor) to create an offset, which is added to
15002 ///        the resource pointer.
15003 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
15004                                            SDValue Ptr, uint32_t RsrcDword1,
15005                                            uint64_t RsrcDword2And3) const {
15006   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
15007   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
15008   if (RsrcDword1) {
15009     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
15010                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
15011                     0);
15012   }
15013 
15014   SDValue DataLo = buildSMovImm32(DAG, DL,
15015                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
15016   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
15017 
15018   const SDValue Ops[] = {
15019     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
15020     PtrLo,
15021     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
15022     PtrHi,
15023     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
15024     DataLo,
15025     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
15026     DataHi,
15027     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
15028   };
15029 
15030   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
15031 }
15032 
15033 //===----------------------------------------------------------------------===//
15034 //                         SI Inline Assembly Support
15035 //===----------------------------------------------------------------------===//
15036 
15037 std::pair<unsigned, const TargetRegisterClass *>
15038 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
15039                                                StringRef Constraint,
15040                                                MVT VT) const {
15041   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
15042 
15043   const TargetRegisterClass *RC = nullptr;
15044   if (Constraint.size() == 1) {
15045     const unsigned BitWidth = VT.getSizeInBits();
15046     switch (Constraint[0]) {
15047     default:
15048       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15049     case 's':
15050     case 'r':
15051       switch (BitWidth) {
15052       case 16:
15053         RC = &AMDGPU::SReg_32RegClass;
15054         break;
15055       case 64:
15056         RC = &AMDGPU::SGPR_64RegClass;
15057         break;
15058       default:
15059         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
15060         if (!RC)
15061           return std::pair(0U, nullptr);
15062         break;
15063       }
15064       break;
15065     case 'v':
15066       switch (BitWidth) {
15067       case 16:
15068         RC = &AMDGPU::VGPR_32RegClass;
15069         break;
15070       default:
15071         RC = TRI->getVGPRClassForBitWidth(BitWidth);
15072         if (!RC)
15073           return std::pair(0U, nullptr);
15074         break;
15075       }
15076       break;
15077     case 'a':
15078       if (!Subtarget->hasMAIInsts())
15079         break;
15080       switch (BitWidth) {
15081       case 16:
15082         RC = &AMDGPU::AGPR_32RegClass;
15083         break;
15084       default:
15085         RC = TRI->getAGPRClassForBitWidth(BitWidth);
15086         if (!RC)
15087           return std::pair(0U, nullptr);
15088         break;
15089       }
15090       break;
15091     }
15092     // We actually support i128, i16 and f16 as inline parameters
15093     // even if they are not reported as legal
15094     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
15095                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
15096       return std::pair(0U, RC);
15097   }
15098 
15099   if (Constraint.starts_with("{") && Constraint.ends_with("}")) {
15100     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
15101     if (RegName.consume_front("v")) {
15102       RC = &AMDGPU::VGPR_32RegClass;
15103     } else if (RegName.consume_front("s")) {
15104       RC = &AMDGPU::SGPR_32RegClass;
15105     } else if (RegName.consume_front("a")) {
15106       RC = &AMDGPU::AGPR_32RegClass;
15107     }
15108 
15109     if (RC) {
15110       uint32_t Idx;
15111       if (RegName.consume_front("[")) {
15112         uint32_t End;
15113         bool Failed = RegName.consumeInteger(10, Idx);
15114         Failed |= !RegName.consume_front(":");
15115         Failed |= RegName.consumeInteger(10, End);
15116         Failed |= !RegName.consume_back("]");
15117         if (!Failed) {
15118           uint32_t Width = (End - Idx + 1) * 32;
15119           MCRegister Reg = RC->getRegister(Idx);
15120           if (SIRegisterInfo::isVGPRClass(RC))
15121             RC = TRI->getVGPRClassForBitWidth(Width);
15122           else if (SIRegisterInfo::isSGPRClass(RC))
15123             RC = TRI->getSGPRClassForBitWidth(Width);
15124           else if (SIRegisterInfo::isAGPRClass(RC))
15125             RC = TRI->getAGPRClassForBitWidth(Width);
15126           if (RC) {
15127             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
15128             return std::pair(Reg, RC);
15129           }
15130         }
15131       } else {
15132         bool Failed = RegName.getAsInteger(10, Idx);
15133         if (!Failed && Idx < RC->getNumRegs())
15134           return std::pair(RC->getRegister(Idx), RC);
15135       }
15136     }
15137   }
15138 
15139   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15140   if (Ret.first)
15141     Ret.second = TRI->getPhysRegBaseClass(Ret.first);
15142 
15143   return Ret;
15144 }
15145 
15146 static bool isImmConstraint(StringRef Constraint) {
15147   if (Constraint.size() == 1) {
15148     switch (Constraint[0]) {
15149     default: break;
15150     case 'I':
15151     case 'J':
15152     case 'A':
15153     case 'B':
15154     case 'C':
15155       return true;
15156     }
15157   } else if (Constraint == "DA" ||
15158              Constraint == "DB") {
15159     return true;
15160   }
15161   return false;
15162 }
15163 
15164 SITargetLowering::ConstraintType
15165 SITargetLowering::getConstraintType(StringRef Constraint) const {
15166   if (Constraint.size() == 1) {
15167     switch (Constraint[0]) {
15168     default: break;
15169     case 's':
15170     case 'v':
15171     case 'a':
15172       return C_RegisterClass;
15173     }
15174   }
15175   if (isImmConstraint(Constraint)) {
15176     return C_Other;
15177   }
15178   return TargetLowering::getConstraintType(Constraint);
15179 }
15180 
15181 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
15182   if (!AMDGPU::isInlinableIntLiteral(Val)) {
15183     Val = Val & maskTrailingOnes<uint64_t>(Size);
15184   }
15185   return Val;
15186 }
15187 
15188 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15189                                                     StringRef Constraint,
15190                                                     std::vector<SDValue> &Ops,
15191                                                     SelectionDAG &DAG) const {
15192   if (isImmConstraint(Constraint)) {
15193     uint64_t Val;
15194     if (getAsmOperandConstVal(Op, Val) &&
15195         checkAsmConstraintVal(Op, Constraint, Val)) {
15196       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
15197       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
15198     }
15199   } else {
15200     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15201   }
15202 }
15203 
15204 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
15205   unsigned Size = Op.getScalarValueSizeInBits();
15206   if (Size > 64)
15207     return false;
15208 
15209   if (Size == 16 && !Subtarget->has16BitInsts())
15210     return false;
15211 
15212   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15213     Val = C->getSExtValue();
15214     return true;
15215   }
15216   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
15217     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
15218     return true;
15219   }
15220   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
15221     if (Size != 16 || Op.getNumOperands() != 2)
15222       return false;
15223     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
15224       return false;
15225     if (ConstantSDNode *C = V->getConstantSplatNode()) {
15226       Val = C->getSExtValue();
15227       return true;
15228     }
15229     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
15230       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
15231       return true;
15232     }
15233   }
15234 
15235   return false;
15236 }
15237 
15238 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint,
15239                                              uint64_t Val) const {
15240   if (Constraint.size() == 1) {
15241     switch (Constraint[0]) {
15242     case 'I':
15243       return AMDGPU::isInlinableIntLiteral(Val);
15244     case 'J':
15245       return isInt<16>(Val);
15246     case 'A':
15247       return checkAsmConstraintValA(Op, Val);
15248     case 'B':
15249       return isInt<32>(Val);
15250     case 'C':
15251       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
15252              AMDGPU::isInlinableIntLiteral(Val);
15253     default:
15254       break;
15255     }
15256   } else if (Constraint.size() == 2) {
15257     if (Constraint == "DA") {
15258       int64_t HiBits = static_cast<int32_t>(Val >> 32);
15259       int64_t LoBits = static_cast<int32_t>(Val);
15260       return checkAsmConstraintValA(Op, HiBits, 32) &&
15261              checkAsmConstraintValA(Op, LoBits, 32);
15262     }
15263     if (Constraint == "DB") {
15264       return true;
15265     }
15266   }
15267   llvm_unreachable("Invalid asm constraint");
15268 }
15269 
15270 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
15271                                               uint64_t Val,
15272                                               unsigned MaxSize) const {
15273   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
15274   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
15275   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
15276       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
15277       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
15278     return true;
15279   }
15280   return false;
15281 }
15282 
15283 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
15284   switch (UnalignedClassID) {
15285   case AMDGPU::VReg_64RegClassID:
15286     return AMDGPU::VReg_64_Align2RegClassID;
15287   case AMDGPU::VReg_96RegClassID:
15288     return AMDGPU::VReg_96_Align2RegClassID;
15289   case AMDGPU::VReg_128RegClassID:
15290     return AMDGPU::VReg_128_Align2RegClassID;
15291   case AMDGPU::VReg_160RegClassID:
15292     return AMDGPU::VReg_160_Align2RegClassID;
15293   case AMDGPU::VReg_192RegClassID:
15294     return AMDGPU::VReg_192_Align2RegClassID;
15295   case AMDGPU::VReg_224RegClassID:
15296     return AMDGPU::VReg_224_Align2RegClassID;
15297   case AMDGPU::VReg_256RegClassID:
15298     return AMDGPU::VReg_256_Align2RegClassID;
15299   case AMDGPU::VReg_288RegClassID:
15300     return AMDGPU::VReg_288_Align2RegClassID;
15301   case AMDGPU::VReg_320RegClassID:
15302     return AMDGPU::VReg_320_Align2RegClassID;
15303   case AMDGPU::VReg_352RegClassID:
15304     return AMDGPU::VReg_352_Align2RegClassID;
15305   case AMDGPU::VReg_384RegClassID:
15306     return AMDGPU::VReg_384_Align2RegClassID;
15307   case AMDGPU::VReg_512RegClassID:
15308     return AMDGPU::VReg_512_Align2RegClassID;
15309   case AMDGPU::VReg_1024RegClassID:
15310     return AMDGPU::VReg_1024_Align2RegClassID;
15311   case AMDGPU::AReg_64RegClassID:
15312     return AMDGPU::AReg_64_Align2RegClassID;
15313   case AMDGPU::AReg_96RegClassID:
15314     return AMDGPU::AReg_96_Align2RegClassID;
15315   case AMDGPU::AReg_128RegClassID:
15316     return AMDGPU::AReg_128_Align2RegClassID;
15317   case AMDGPU::AReg_160RegClassID:
15318     return AMDGPU::AReg_160_Align2RegClassID;
15319   case AMDGPU::AReg_192RegClassID:
15320     return AMDGPU::AReg_192_Align2RegClassID;
15321   case AMDGPU::AReg_256RegClassID:
15322     return AMDGPU::AReg_256_Align2RegClassID;
15323   case AMDGPU::AReg_512RegClassID:
15324     return AMDGPU::AReg_512_Align2RegClassID;
15325   case AMDGPU::AReg_1024RegClassID:
15326     return AMDGPU::AReg_1024_Align2RegClassID;
15327   default:
15328     return -1;
15329   }
15330 }
15331 
15332 // Figure out which registers should be reserved for stack access. Only after
15333 // the function is legalized do we know all of the non-spill stack objects or if
15334 // calls are present.
15335 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
15336   MachineRegisterInfo &MRI = MF.getRegInfo();
15337   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
15338   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
15339   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
15340   const SIInstrInfo *TII = ST.getInstrInfo();
15341 
15342   if (Info->isEntryFunction()) {
15343     // Callable functions have fixed registers used for stack access.
15344     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
15345   }
15346 
15347   // TODO: Move this logic to getReservedRegs()
15348   // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling.
15349   unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
15350   Register SReg = ST.isWave32()
15351                       ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
15352                       : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2,
15353                                                      &AMDGPU::SGPR_64RegClass);
15354   Info->setSGPRForEXECCopy(SReg);
15355 
15356   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
15357                              Info->getStackPtrOffsetReg()));
15358   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
15359     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
15360 
15361   // We need to worry about replacing the default register with itself in case
15362   // of MIR testcases missing the MFI.
15363   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
15364     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
15365 
15366   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
15367     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
15368 
15369   Info->limitOccupancy(MF);
15370 
15371   if (ST.isWave32() && !MF.empty()) {
15372     for (auto &MBB : MF) {
15373       for (auto &MI : MBB) {
15374         TII->fixImplicitOperands(MI);
15375       }
15376     }
15377   }
15378 
15379   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
15380   // classes if required. Ideally the register class constraints would differ
15381   // per-subtarget, but there's no easy way to achieve that right now. This is
15382   // not a problem for VGPRs because the correctly aligned VGPR class is implied
15383   // from using them as the register class for legal types.
15384   if (ST.needsAlignedVGPRs()) {
15385     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
15386       const Register Reg = Register::index2VirtReg(I);
15387       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
15388       if (!RC)
15389         continue;
15390       int NewClassID = getAlignedAGPRClassID(RC->getID());
15391       if (NewClassID != -1)
15392         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
15393     }
15394   }
15395 
15396   TargetLoweringBase::finalizeLowering(MF);
15397 }
15398 
15399 void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15400                                                      KnownBits &Known,
15401                                                      const APInt &DemandedElts,
15402                                                      const SelectionDAG &DAG,
15403                                                      unsigned Depth) const {
15404   Known.resetAll();
15405   unsigned Opc = Op.getOpcode();
15406   switch (Opc) {
15407   case ISD::INTRINSIC_WO_CHAIN: {
15408     unsigned IID = Op.getConstantOperandVal(0);
15409     switch (IID) {
15410     case Intrinsic::amdgcn_mbcnt_lo:
15411     case Intrinsic::amdgcn_mbcnt_hi: {
15412       const GCNSubtarget &ST =
15413           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
15414       // These return at most the (wavefront size - 1) + src1
15415       // As long as src1 is an immediate we can calc known bits
15416       KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
15417       unsigned Src1ValBits = Src1Known.countMaxActiveBits();
15418       unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2());
15419       // Cater for potential carry
15420       MaxActiveBits += Src1ValBits ? 1 : 0;
15421       unsigned Size = Op.getValueType().getSizeInBits();
15422       if (MaxActiveBits < Size)
15423         Known.Zero.setHighBits(Size - MaxActiveBits);
15424       return;
15425     }
15426     }
15427     break;
15428   }
15429   }
15430   return AMDGPUTargetLowering::computeKnownBitsForTargetNode(
15431       Op, Known, DemandedElts, DAG, Depth);
15432 }
15433 
15434 void SITargetLowering::computeKnownBitsForFrameIndex(
15435   const int FI, KnownBits &Known, const MachineFunction &MF) const {
15436   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
15437 
15438   // Set the high bits to zero based on the maximum allowed scratch size per
15439   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
15440   // calculation won't overflow, so assume the sign bit is never set.
15441   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
15442 }
15443 
15444 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
15445                                    KnownBits &Known, unsigned Dim) {
15446   unsigned MaxValue =
15447       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
15448   Known.Zero.setHighBits(llvm::countl_zero(MaxValue));
15449 }
15450 
15451 void SITargetLowering::computeKnownBitsForTargetInstr(
15452     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
15453     const MachineRegisterInfo &MRI, unsigned Depth) const {
15454   const MachineInstr *MI = MRI.getVRegDef(R);
15455   switch (MI->getOpcode()) {
15456   case AMDGPU::G_INTRINSIC:
15457   case AMDGPU::G_INTRINSIC_CONVERGENT: {
15458     switch (cast<GIntrinsic>(MI)->getIntrinsicID()) {
15459     case Intrinsic::amdgcn_workitem_id_x:
15460       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
15461       break;
15462     case Intrinsic::amdgcn_workitem_id_y:
15463       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
15464       break;
15465     case Intrinsic::amdgcn_workitem_id_z:
15466       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
15467       break;
15468     case Intrinsic::amdgcn_mbcnt_lo:
15469     case Intrinsic::amdgcn_mbcnt_hi: {
15470       // These return at most the wavefront size - 1.
15471       unsigned Size = MRI.getType(R).getSizeInBits();
15472       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
15473       break;
15474     }
15475     case Intrinsic::amdgcn_groupstaticsize: {
15476       // We can report everything over the maximum size as 0. We can't report
15477       // based on the actual size because we don't know if it's accurate or not
15478       // at any given point.
15479       Known.Zero.setHighBits(
15480           llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize()));
15481       break;
15482     }
15483     }
15484     break;
15485   }
15486   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
15487     Known.Zero.setHighBits(24);
15488     break;
15489   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
15490     Known.Zero.setHighBits(16);
15491     break;
15492   case AMDGPU::G_AMDGPU_SMED3:
15493   case AMDGPU::G_AMDGPU_UMED3: {
15494     auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs();
15495 
15496     KnownBits Known2;
15497     KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1);
15498     if (Known2.isUnknown())
15499       break;
15500 
15501     KnownBits Known1;
15502     KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1);
15503     if (Known1.isUnknown())
15504       break;
15505 
15506     KnownBits Known0;
15507     KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1);
15508     if (Known0.isUnknown())
15509       break;
15510 
15511     // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling.
15512     Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero;
15513     Known.One = Known0.One & Known1.One & Known2.One;
15514     break;
15515   }
15516   }
15517 }
15518 
15519 Align SITargetLowering::computeKnownAlignForTargetInstr(
15520   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
15521   unsigned Depth) const {
15522   const MachineInstr *MI = MRI.getVRegDef(R);
15523   if (auto *GI = dyn_cast<GIntrinsic>(MI)) {
15524     // FIXME: Can this move to generic code? What about the case where the call
15525     // site specifies a lower alignment?
15526     Intrinsic::ID IID = GI->getIntrinsicID();
15527     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
15528     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
15529     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
15530       return *RetAlign;
15531   }
15532   return Align(1);
15533 }
15534 
15535 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15536   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
15537   const Align CacheLineAlign = Align(64);
15538 
15539   // Pre-GFX10 target did not benefit from loop alignment
15540   if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() ||
15541       getSubtarget()->hasInstFwdPrefetchBug())
15542     return PrefAlign;
15543 
15544   // On GFX10 I$ is 4 x 64 bytes cache lines.
15545   // By default prefetcher keeps one cache line behind and reads two ahead.
15546   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
15547   // behind and one ahead.
15548   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
15549   // If loop fits 64 bytes it always spans no more than two cache lines and
15550   // does not need an alignment.
15551   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
15552   // Else if loop is less or equal 192 bytes we need two lines behind.
15553 
15554   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
15555   const MachineBasicBlock *Header = ML->getHeader();
15556   if (Header->getAlignment() != PrefAlign)
15557     return Header->getAlignment(); // Already processed.
15558 
15559   unsigned LoopSize = 0;
15560   for (const MachineBasicBlock *MBB : ML->blocks()) {
15561     // If inner loop block is aligned assume in average half of the alignment
15562     // size to be added as nops.
15563     if (MBB != Header)
15564       LoopSize += MBB->getAlignment().value() / 2;
15565 
15566     for (const MachineInstr &MI : *MBB) {
15567       LoopSize += TII->getInstSizeInBytes(MI);
15568       if (LoopSize > 192)
15569         return PrefAlign;
15570     }
15571   }
15572 
15573   if (LoopSize <= 64)
15574     return PrefAlign;
15575 
15576   if (LoopSize <= 128)
15577     return CacheLineAlign;
15578 
15579   // If any of parent loops is surrounded by prefetch instructions do not
15580   // insert new for inner loop, which would reset parent's settings.
15581   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
15582     if (MachineBasicBlock *Exit = P->getExitBlock()) {
15583       auto I = Exit->getFirstNonDebugInstr();
15584       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
15585         return CacheLineAlign;
15586     }
15587   }
15588 
15589   MachineBasicBlock *Pre = ML->getLoopPreheader();
15590   MachineBasicBlock *Exit = ML->getExitBlock();
15591 
15592   if (Pre && Exit) {
15593     auto PreTerm = Pre->getFirstTerminator();
15594     if (PreTerm == Pre->begin() ||
15595         std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
15596       BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
15597           .addImm(1); // prefetch 2 lines behind PC
15598 
15599     auto ExitHead = Exit->getFirstNonDebugInstr();
15600     if (ExitHead == Exit->end() ||
15601         ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
15602       BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
15603           .addImm(2); // prefetch 1 line behind PC
15604   }
15605 
15606   return CacheLineAlign;
15607 }
15608 
15609 LLVM_ATTRIBUTE_UNUSED
15610 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
15611   assert(N->getOpcode() == ISD::CopyFromReg);
15612   do {
15613     // Follow the chain until we find an INLINEASM node.
15614     N = N->getOperand(0).getNode();
15615     if (N->getOpcode() == ISD::INLINEASM ||
15616         N->getOpcode() == ISD::INLINEASM_BR)
15617       return true;
15618   } while (N->getOpcode() == ISD::CopyFromReg);
15619   return false;
15620 }
15621 
15622 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N,
15623                                                   FunctionLoweringInfo *FLI,
15624                                                   UniformityInfo *UA) const {
15625   switch (N->getOpcode()) {
15626   case ISD::CopyFromReg: {
15627     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
15628     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
15629     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
15630     Register Reg = R->getReg();
15631 
15632     // FIXME: Why does this need to consider isLiveIn?
15633     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
15634       return !TRI->isSGPRReg(MRI, Reg);
15635 
15636     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
15637       return UA->isDivergent(V);
15638 
15639     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
15640     return !TRI->isSGPRReg(MRI, Reg);
15641   }
15642   case ISD::LOAD: {
15643     const LoadSDNode *L = cast<LoadSDNode>(N);
15644     unsigned AS = L->getAddressSpace();
15645     // A flat load may access private memory.
15646     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
15647   }
15648   case ISD::CALLSEQ_END:
15649     return true;
15650   case ISD::INTRINSIC_WO_CHAIN:
15651     return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0));
15652   case ISD::INTRINSIC_W_CHAIN:
15653     return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1));
15654   case AMDGPUISD::ATOMIC_CMP_SWAP:
15655   case AMDGPUISD::ATOMIC_LOAD_FMIN:
15656   case AMDGPUISD::ATOMIC_LOAD_FMAX:
15657   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
15658   case AMDGPUISD::BUFFER_ATOMIC_ADD:
15659   case AMDGPUISD::BUFFER_ATOMIC_SUB:
15660   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
15661   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
15662   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
15663   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
15664   case AMDGPUISD::BUFFER_ATOMIC_AND:
15665   case AMDGPUISD::BUFFER_ATOMIC_OR:
15666   case AMDGPUISD::BUFFER_ATOMIC_XOR:
15667   case AMDGPUISD::BUFFER_ATOMIC_INC:
15668   case AMDGPUISD::BUFFER_ATOMIC_DEC:
15669   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
15670   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
15671   case AMDGPUISD::BUFFER_ATOMIC_FADD:
15672   case AMDGPUISD::BUFFER_ATOMIC_FADD_BF16:
15673   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
15674   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
15675     // Target-specific read-modify-write atomics are sources of divergence.
15676     return true;
15677   default:
15678     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
15679       // Generic read-modify-write atomics are sources of divergence.
15680       return A->readMem() && A->writeMem();
15681     }
15682     return false;
15683   }
15684 }
15685 
15686 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
15687                                                EVT VT) const {
15688   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
15689   case MVT::f32:
15690     return !denormalModeIsFlushAllF32(DAG.getMachineFunction());
15691   case MVT::f64:
15692   case MVT::f16:
15693     return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
15694   default:
15695     return false;
15696   }
15697 }
15698 
15699 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
15700                                                MachineFunction &MF) const {
15701   switch (Ty.getScalarSizeInBits()) {
15702   case 32:
15703     return !denormalModeIsFlushAllF32(MF);
15704   case 64:
15705   case 16:
15706     return !denormalModeIsFlushAllF64F16(MF);
15707   default:
15708     return false;
15709   }
15710 }
15711 
15712 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
15713                                                     const SelectionDAG &DAG,
15714                                                     bool SNaN,
15715                                                     unsigned Depth) const {
15716   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
15717     const MachineFunction &MF = DAG.getMachineFunction();
15718     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
15719 
15720     if (Info->getMode().DX10Clamp)
15721       return true; // Clamped to 0.
15722     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
15723   }
15724 
15725   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
15726                                                             SNaN, Depth);
15727 }
15728 
15729 // Global FP atomic instructions have a hardcoded FP mode and do not support
15730 // FP32 denormals, and only support v2f16 denormals.
15731 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
15732   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
15733   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
15734   if (&Flt == &APFloat::IEEEsingle())
15735     return DenormMode == DenormalMode::getPreserveSign();
15736   return DenormMode == DenormalMode::getIEEE();
15737 }
15738 
15739 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
15740 // floating point atomic instructions. May generate more efficient code,
15741 // but may not respect rounding and denormal modes, and may give incorrect
15742 // results for certain memory destinations.
15743 bool unsafeFPAtomicsDisabled(Function *F) {
15744   return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() !=
15745          "true";
15746 }
15747 
15748 TargetLowering::AtomicExpansionKind
15749 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
15750   unsigned AS = RMW->getPointerAddressSpace();
15751   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
15752     return AtomicExpansionKind::NotAtomic;
15753 
15754   auto SSID = RMW->getSyncScopeID();
15755 
15756   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
15757     OptimizationRemarkEmitter ORE(RMW->getFunction());
15758     LLVMContext &Ctx = RMW->getFunction()->getContext();
15759     SmallVector<StringRef> SSNs;
15760     Ctx.getSyncScopeNames(SSNs);
15761     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
15762                         ? "system"
15763                         : SSNs[RMW->getSyncScopeID()];
15764     ORE.emit([&]() {
15765       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
15766              << "Hardware instruction generated for atomic "
15767              << RMW->getOperationName(RMW->getOperation())
15768              << " operation at memory scope " << MemScope
15769              << " due to an unsafe request.";
15770     });
15771     return Kind;
15772   };
15773 
15774   bool HasSystemScope =
15775       SSID == SyncScope::System ||
15776       SSID == RMW->getContext().getOrInsertSyncScopeID("one-as");
15777 
15778   switch (RMW->getOperation()) {
15779   case AtomicRMWInst::FAdd: {
15780     Type *Ty = RMW->getType();
15781 
15782     if (Ty->isHalfTy())
15783       return AtomicExpansionKind::CmpXChg;
15784 
15785     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
15786       return AtomicExpansionKind::CmpXChg;
15787 
15788     if (AMDGPU::isFlatGlobalAddrSpace(AS) &&
15789         Subtarget->hasAtomicFaddNoRtnInsts()) {
15790       if (Subtarget->hasGFX940Insts())
15791         return AtomicExpansionKind::None;
15792 
15793       if (unsafeFPAtomicsDisabled(RMW->getFunction()))
15794         return AtomicExpansionKind::CmpXChg;
15795 
15796       // Always expand system scope fp atomics.
15797       if (HasSystemScope)
15798         return AtomicExpansionKind::CmpXChg;
15799 
15800       if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) {
15801         // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+.
15802         if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
15803           return ReportUnsafeHWInst(AtomicExpansionKind::None);
15804         // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+.
15805         if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
15806           return ReportUnsafeHWInst(AtomicExpansionKind::None);
15807       }
15808 
15809       // flat atomic fadd f32: gfx940, gfx11+.
15810       if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
15811           Subtarget->hasFlatAtomicFaddF32Inst())
15812         return ReportUnsafeHWInst(AtomicExpansionKind::None);
15813 
15814       // global and flat atomic fadd f64: gfx90a, gfx940.
15815       if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts())
15816         return ReportUnsafeHWInst(AtomicExpansionKind::None);
15817 
15818       // If it is in flat address space, and the type is float, we will try to
15819       // expand it, if the target supports global and lds atomic fadd. The
15820       // reason we need that is, in the expansion, we emit the check of address
15821       // space. If it is in global address space, we emit the global atomic
15822       // fadd; if it is in shared address space, we emit the LDS atomic fadd.
15823       if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
15824           Subtarget->hasLDSFPAtomicAdd()) {
15825         if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
15826           return AtomicExpansionKind::Expand;
15827         if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
15828           return AtomicExpansionKind::Expand;
15829       }
15830 
15831       return AtomicExpansionKind::CmpXChg;
15832     }
15833 
15834     // DS FP atomics do respect the denormal mode, but the rounding mode is
15835     // fixed to round-to-nearest-even.
15836     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
15837     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
15838       if (!Ty->isDoubleTy())
15839         return AtomicExpansionKind::None;
15840 
15841       if (fpModeMatchesGlobalFPAtomicMode(RMW))
15842         return AtomicExpansionKind::None;
15843 
15844       return RMW->getFunction()
15845                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
15846                          .getValueAsString() == "true"
15847                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
15848                  : AtomicExpansionKind::CmpXChg;
15849     }
15850 
15851     return AtomicExpansionKind::CmpXChg;
15852   }
15853   case AtomicRMWInst::FMin:
15854   case AtomicRMWInst::FMax:
15855   case AtomicRMWInst::Min:
15856   case AtomicRMWInst::Max:
15857   case AtomicRMWInst::UMin:
15858   case AtomicRMWInst::UMax: {
15859     if (AMDGPU::isFlatGlobalAddrSpace(AS)) {
15860       if (RMW->getType()->isFloatTy() &&
15861           unsafeFPAtomicsDisabled(RMW->getFunction()))
15862         return AtomicExpansionKind::CmpXChg;
15863 
15864       // Always expand system scope min/max atomics.
15865       if (HasSystemScope)
15866         return AtomicExpansionKind::CmpXChg;
15867     }
15868     break;
15869   }
15870   default:
15871     break;
15872   }
15873 
15874   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
15875 }
15876 
15877 TargetLowering::AtomicExpansionKind
15878 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
15879   return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
15880              ? AtomicExpansionKind::NotAtomic
15881              : AtomicExpansionKind::None;
15882 }
15883 
15884 TargetLowering::AtomicExpansionKind
15885 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
15886   return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
15887              ? AtomicExpansionKind::NotAtomic
15888              : AtomicExpansionKind::None;
15889 }
15890 
15891 TargetLowering::AtomicExpansionKind
15892 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
15893   return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
15894              ? AtomicExpansionKind::NotAtomic
15895              : AtomicExpansionKind::None;
15896 }
15897 
15898 const TargetRegisterClass *
15899 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
15900   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
15901   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
15902   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
15903     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
15904                                                : &AMDGPU::SReg_32RegClass;
15905   if (!TRI->isSGPRClass(RC) && !isDivergent)
15906     return TRI->getEquivalentSGPRClass(RC);
15907   else if (TRI->isSGPRClass(RC) && isDivergent)
15908     return TRI->getEquivalentVGPRClass(RC);
15909 
15910   return RC;
15911 }
15912 
15913 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
15914 // uniform values (as produced by the mask results of control flow intrinsics)
15915 // used outside of divergent blocks. The phi users need to also be treated as
15916 // always uniform.
15917 //
15918 // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis?
15919 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
15920                       unsigned WaveSize) {
15921   // FIXME: We assume we never cast the mask results of a control flow
15922   // intrinsic.
15923   // Early exit if the type won't be consistent as a compile time hack.
15924   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
15925   if (!IT || IT->getBitWidth() != WaveSize)
15926     return false;
15927 
15928   if (!isa<Instruction>(V))
15929     return false;
15930   if (!Visited.insert(V).second)
15931     return false;
15932   bool Result = false;
15933   for (const auto *U : V->users()) {
15934     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
15935       if (V == U->getOperand(1)) {
15936         switch (Intrinsic->getIntrinsicID()) {
15937         default:
15938           Result = false;
15939           break;
15940         case Intrinsic::amdgcn_if_break:
15941         case Intrinsic::amdgcn_if:
15942         case Intrinsic::amdgcn_else:
15943           Result = true;
15944           break;
15945         }
15946       }
15947       if (V == U->getOperand(0)) {
15948         switch (Intrinsic->getIntrinsicID()) {
15949         default:
15950           Result = false;
15951           break;
15952         case Intrinsic::amdgcn_end_cf:
15953         case Intrinsic::amdgcn_loop:
15954           Result = true;
15955           break;
15956         }
15957       }
15958     } else {
15959       Result = hasCFUser(U, Visited, WaveSize);
15960     }
15961     if (Result)
15962       break;
15963   }
15964   return Result;
15965 }
15966 
15967 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
15968                                                const Value *V) const {
15969   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
15970     if (CI->isInlineAsm()) {
15971       // FIXME: This cannot give a correct answer. This should only trigger in
15972       // the case where inline asm returns mixed SGPR and VGPR results, used
15973       // outside the defining block. We don't have a specific result to
15974       // consider, so this assumes if any value is SGPR, the overall register
15975       // also needs to be SGPR.
15976       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
15977       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
15978           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
15979       for (auto &TC : TargetConstraints) {
15980         if (TC.Type == InlineAsm::isOutput) {
15981           ComputeConstraintToUse(TC, SDValue());
15982           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
15983               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
15984           if (RC && SIRI->isSGPRClass(RC))
15985             return true;
15986         }
15987       }
15988     }
15989   }
15990   SmallPtrSet<const Value *, 16> Visited;
15991   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
15992 }
15993 
15994 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
15995   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
15996   for (; I != E; ++I) {
15997     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
15998       if (getBasePtrIndex(M) == I.getOperandNo())
15999         return true;
16000     }
16001   }
16002   return false;
16003 }
16004 
16005 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
16006                                            SDValue N1) const {
16007   if (!N0.hasOneUse())
16008     return false;
16009   // Take care of the opportunity to keep N0 uniform
16010   if (N0->isDivergent() || !N1->isDivergent())
16011     return true;
16012   // Check if we have a good chance to form the memory access pattern with the
16013   // base and offset
16014   return (DAG.isBaseWithConstantOffset(N0) &&
16015           hasMemSDNodeUser(*N0->use_begin()));
16016 }
16017 
16018 bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI,
16019                                            Register N0, Register N1) const {
16020   return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks
16021 }
16022 
16023 MachineMemOperand::Flags
16024 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
16025   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
16026   if (I.getMetadata("amdgpu.noclobber"))
16027     return MONoClobber;
16028   return MachineMemOperand::MONone;
16029 }
16030 
16031 bool SITargetLowering::checkForPhysRegDependency(
16032     SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI,
16033     const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const {
16034   if (User->getOpcode() != ISD::CopyToReg)
16035     return false;
16036   if (!Def->isMachineOpcode())
16037     return false;
16038   MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def);
16039   if (!MDef)
16040     return false;
16041 
16042   unsigned ResNo = User->getOperand(Op).getResNo();
16043   if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1)
16044     return false;
16045   const MCInstrDesc &II = TII->get(MDef->getMachineOpcode());
16046   if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
16047     PhysReg = AMDGPU::SCC;
16048     const TargetRegisterClass *RC =
16049         TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
16050     Cost = RC->getCopyCost();
16051     return true;
16052   }
16053   return false;
16054 }
16055 
16056 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const {
16057   assert(Subtarget->hasAtomicFaddInsts() &&
16058          "target should have atomic fadd instructions");
16059   assert(AI->getType()->isFloatTy() &&
16060          AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS &&
16061          "generic atomicrmw expansion only supports FP32 operand in flat "
16062          "address space");
16063   assert(AI->getOperation() == AtomicRMWInst::FAdd &&
16064          "only fadd is supported for now");
16065 
16066   // Given: atomicrmw fadd ptr %addr, float %val ordering
16067   //
16068   // With this expansion we produce the following code:
16069   //   [...]
16070   //   br label %atomicrmw.check.shared
16071   //
16072   // atomicrmw.check.shared:
16073   //   %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr)
16074   //   br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private
16075   //
16076   // atomicrmw.shared:
16077   //   %cast.shared = addrspacecast ptr %addr to ptr addrspace(3)
16078   //   %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared,
16079   //                                   float %val ordering
16080   //   br label %atomicrmw.phi
16081   //
16082   // atomicrmw.check.private:
16083   //   %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr)
16084   //   br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global
16085   //
16086   // atomicrmw.private:
16087   //   %cast.private = addrspacecast ptr %addr to ptr addrspace(5)
16088   //   %loaded.private = load float, ptr addrspace(5) %cast.private
16089   //   %val.new = fadd float %loaded.private, %val
16090   //   store float %val.new, ptr addrspace(5) %cast.private
16091   //   br label %atomicrmw.phi
16092   //
16093   // atomicrmw.global:
16094   //   %cast.global = addrspacecast ptr %addr to ptr addrspace(1)
16095   //   %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global,
16096   //                                   float %val ordering
16097   //   br label %atomicrmw.phi
16098   //
16099   // atomicrmw.phi:
16100   //   %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ],
16101   //                           [ %loaded.private, %atomicrmw.private ],
16102   //                           [ %loaded.global, %atomicrmw.global ]
16103   //   br label %atomicrmw.end
16104   //
16105   // atomicrmw.end:
16106   //    [...]
16107 
16108   IRBuilder<> Builder(AI);
16109   LLVMContext &Ctx = Builder.getContext();
16110 
16111   BasicBlock *BB = Builder.GetInsertBlock();
16112   Function *F = BB->getParent();
16113   BasicBlock *ExitBB =
16114       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
16115   BasicBlock *CheckSharedBB =
16116       BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB);
16117   BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB);
16118   BasicBlock *CheckPrivateBB =
16119       BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB);
16120   BasicBlock *PrivateBB =
16121       BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB);
16122   BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB);
16123   BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB);
16124 
16125   Value *Val = AI->getValOperand();
16126   Type *ValTy = Val->getType();
16127   Value *Addr = AI->getPointerOperand();
16128 
16129   auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr,
16130                                  Value *Val) -> Value * {
16131     AtomicRMWInst *OldVal =
16132         Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(),
16133                                 AI->getOrdering(), AI->getSyncScopeID());
16134     SmallVector<std::pair<unsigned, MDNode *>> MDs;
16135     AI->getAllMetadata(MDs);
16136     for (auto &P : MDs)
16137       OldVal->setMetadata(P.first, P.second);
16138     return OldVal;
16139   };
16140 
16141   std::prev(BB->end())->eraseFromParent();
16142   Builder.SetInsertPoint(BB);
16143   Builder.CreateBr(CheckSharedBB);
16144 
16145   Builder.SetInsertPoint(CheckSharedBB);
16146   CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {},
16147                                                {Addr}, nullptr, "is.shared");
16148   Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
16149 
16150   Builder.SetInsertPoint(SharedBB);
16151   Value *CastToLocal = Builder.CreateAddrSpaceCast(
16152       Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS));
16153   Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val);
16154   Builder.CreateBr(PhiBB);
16155 
16156   Builder.SetInsertPoint(CheckPrivateBB);
16157   CallInst *IsPrivate = Builder.CreateIntrinsic(
16158       Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private");
16159   Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
16160 
16161   Builder.SetInsertPoint(PrivateBB);
16162   Value *CastToPrivate = Builder.CreateAddrSpaceCast(
16163       Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS));
16164   Value *LoadedPrivate =
16165       Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private");
16166   Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new");
16167   Builder.CreateStore(NewVal, CastToPrivate);
16168   Builder.CreateBr(PhiBB);
16169 
16170   Builder.SetInsertPoint(GlobalBB);
16171   Value *CastToGlobal = Builder.CreateAddrSpaceCast(
16172       Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS));
16173   Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val);
16174   Builder.CreateBr(PhiBB);
16175 
16176   Builder.SetInsertPoint(PhiBB);
16177   PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi");
16178   Loaded->addIncoming(LoadedShared, SharedBB);
16179   Loaded->addIncoming(LoadedPrivate, PrivateBB);
16180   Loaded->addIncoming(LoadedGlobal, GlobalBB);
16181   Builder.CreateBr(ExitBB);
16182 
16183   AI->replaceAllUsesWith(Loaded);
16184   AI->eraseFromParent();
16185 }
16186 
16187 LoadInst *
16188 SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
16189   IRBuilder<> Builder(AI);
16190   auto Order = AI->getOrdering();
16191 
16192   // The optimization removes store aspect of the atomicrmw. Therefore, cache
16193   // must be flushed if the atomic ordering had a release semantics. This is
16194   // not necessary a fence, a release fence just coincides to do that flush.
16195   // Avoid replacing of an atomicrmw with a release semantics.
16196   if (isReleaseOrStronger(Order))
16197     return nullptr;
16198 
16199   LoadInst *LI = Builder.CreateAlignedLoad(
16200       AI->getType(), AI->getPointerOperand(), AI->getAlign());
16201   LI->setAtomic(Order, AI->getSyncScopeID());
16202   LI->copyMetadata(*AI);
16203   LI->takeName(AI);
16204   AI->replaceAllUsesWith(LI);
16205   AI->eraseFromParent();
16206   return LI;
16207 }
16208