1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/FloatingPointMode.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/UniformityAnalysis.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/ByteProvider.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 31 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/IntrinsicsAMDGPU.h" 39 #include "llvm/IR/IntrinsicsR600.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Support/ModRef.h" 43 #include <optional> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "si-lower" 48 49 STATISTIC(NumTailCalls, "Number of tail calls"); 50 51 static cl::opt<bool> DisableLoopAlignment( 52 "amdgpu-disable-loop-alignment", 53 cl::desc("Do not align and prefetch loops"), 54 cl::init(false)); 55 56 static cl::opt<bool> UseDivergentRegisterIndexing( 57 "amdgpu-use-divergent-register-indexing", 58 cl::Hidden, 59 cl::desc("Use indirect register addressing for divergent indexes"), 60 cl::init(false)); 61 62 static bool denormalModeIsFlushAllF32(const MachineFunction &MF) { 63 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 64 return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign(); 65 } 66 67 static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) { 68 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 69 return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign(); 70 } 71 72 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 73 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 74 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 75 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 76 return AMDGPU::SGPR0 + Reg; 77 } 78 } 79 llvm_unreachable("Cannot allocate sgpr"); 80 } 81 82 SITargetLowering::SITargetLowering(const TargetMachine &TM, 83 const GCNSubtarget &STI) 84 : AMDGPUTargetLowering(TM, STI), 85 Subtarget(&STI) { 86 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 87 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 88 89 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 90 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 91 92 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 93 94 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 95 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 96 97 addRegisterClass(MVT::f64, V64RegClass); 98 addRegisterClass(MVT::v2f32, V64RegClass); 99 100 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 101 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 102 103 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 104 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 105 106 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 107 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 108 109 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 110 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 111 112 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 113 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 114 115 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 116 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 117 118 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 119 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 120 121 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 122 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 123 124 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 125 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 126 127 addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); 128 addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); 129 130 addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); 131 addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); 132 133 addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); 134 addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); 135 136 addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); 137 addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); 138 139 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 140 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 141 142 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 143 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 144 145 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 146 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 147 148 if (Subtarget->has16BitInsts()) { 149 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 150 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 151 152 // Unless there are also VOP3P operations, not operations are really legal. 153 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 154 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 155 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 156 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 157 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 158 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 159 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); 160 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); 161 } 162 163 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 164 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 165 166 computeRegisterProperties(Subtarget->getRegisterInfo()); 167 168 // The boolean content concept here is too inflexible. Compares only ever 169 // really produce a 1-bit result. Any copy/extend from these will turn into a 170 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 171 // it's what most targets use. 172 setBooleanContents(ZeroOrOneBooleanContent); 173 setBooleanVectorContents(ZeroOrOneBooleanContent); 174 175 // We need to custom lower vector stores from local memory 176 setOperationAction(ISD::LOAD, 177 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 178 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 179 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, 180 MVT::i1, MVT::v32i32}, 181 Custom); 182 183 setOperationAction(ISD::STORE, 184 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 185 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 186 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, 187 MVT::i1, MVT::v32i32}, 188 Custom); 189 190 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 191 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 192 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 193 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 194 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 195 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 196 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 197 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 198 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 199 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 200 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 201 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 202 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 203 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 204 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 205 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 206 207 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 208 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 209 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 210 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 211 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 212 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 213 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 214 215 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); 216 217 setOperationAction(ISD::SELECT, MVT::i1, Promote); 218 setOperationAction(ISD::SELECT, MVT::i64, Custom); 219 setOperationAction(ISD::SELECT, MVT::f64, Promote); 220 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 221 222 setOperationAction(ISD::FSQRT, MVT::f64, Custom); 223 224 setOperationAction(ISD::SELECT_CC, 225 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); 226 227 setOperationAction(ISD::SETCC, MVT::i1, Promote); 228 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); 229 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 230 231 setOperationAction(ISD::TRUNCATE, 232 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 233 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 234 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, 235 Expand); 236 setOperationAction(ISD::FP_ROUND, 237 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, 238 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, 239 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, 240 Expand); 241 242 setOperationAction(ISD::SIGN_EXTEND_INREG, 243 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, 244 MVT::v3i16, MVT::v4i16, MVT::Other}, 245 Custom); 246 247 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 248 setOperationAction(ISD::BR_CC, 249 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); 250 251 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); 252 253 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal); 254 255 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, 256 Expand); 257 258 #if 0 259 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal); 260 #endif 261 262 // We only support LOAD/STORE and vector manipulation ops for vectors 263 // with > 4 elements. 264 for (MVT VT : 265 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, 266 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, 267 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, 268 MVT::v4f16, MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, 269 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, MVT::v8i16, 270 MVT::v8f16, MVT::v16i16, MVT::v16f16, MVT::v16i64, MVT::v16f64, 271 MVT::v32i32, MVT::v32f32}) { 272 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 273 switch (Op) { 274 case ISD::LOAD: 275 case ISD::STORE: 276 case ISD::BUILD_VECTOR: 277 case ISD::BITCAST: 278 case ISD::UNDEF: 279 case ISD::EXTRACT_VECTOR_ELT: 280 case ISD::INSERT_VECTOR_ELT: 281 case ISD::SCALAR_TO_VECTOR: 282 case ISD::IS_FPCLASS: 283 break; 284 case ISD::EXTRACT_SUBVECTOR: 285 case ISD::INSERT_SUBVECTOR: 286 case ISD::CONCAT_VECTORS: 287 setOperationAction(Op, VT, Custom); 288 break; 289 default: 290 setOperationAction(Op, VT, Expand); 291 break; 292 } 293 } 294 } 295 296 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 297 298 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 299 // is expanded to avoid having two separate loops in case the index is a VGPR. 300 301 // Most operations are naturally 32-bit vector operations. We only support 302 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 303 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 304 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 305 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 306 307 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 308 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 309 310 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 311 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 312 313 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 314 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 315 } 316 317 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 318 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 319 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 320 321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 322 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 323 324 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 325 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 326 327 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 328 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 329 } 330 331 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 332 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 333 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 334 335 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 336 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 337 338 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 339 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 340 341 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 342 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 343 } 344 345 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 346 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 347 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 348 349 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 350 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 351 352 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 353 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 354 355 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 356 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 357 } 358 359 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 360 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 361 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 362 363 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 364 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 365 366 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 367 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 368 369 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 370 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 371 } 372 373 setOperationAction(ISD::VECTOR_SHUFFLE, 374 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, 375 Expand); 376 377 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); 378 379 // Avoid stack access for these. 380 // TODO: Generalize to more vector types. 381 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, 382 {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 383 MVT::v4i16, MVT::v4f16}, 384 Custom); 385 386 // Deal with vec3 vector operations when widened to vec4. 387 setOperationAction(ISD::INSERT_SUBVECTOR, 388 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); 389 390 // Deal with vec5/6/7 vector operations when widened to vec8. 391 setOperationAction(ISD::INSERT_SUBVECTOR, 392 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, 393 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, 394 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, 395 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, 396 Custom); 397 398 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 399 // and output demarshalling 400 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); 401 402 // We can't return success/failure, only the old value, 403 // let LLVM add the comparison 404 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, 405 Expand); 406 407 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); 408 409 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); 410 411 // FIXME: This should be narrowed to i32, but that only happens if i64 is 412 // illegal. 413 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 414 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); 415 416 // On SI this is s_memtime and s_memrealtime on VI. 417 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 418 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); 419 420 if (Subtarget->has16BitInsts()) { 421 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); 422 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); 423 } 424 425 if (Subtarget->hasMadMacF32Insts()) 426 setOperationAction(ISD::FMAD, MVT::f32, Legal); 427 428 if (!Subtarget->hasBFI()) 429 // fcopysign can be done in a single instruction with BFI. 430 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 431 432 if (!Subtarget->hasBCNT(32)) 433 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 434 435 if (!Subtarget->hasBCNT(64)) 436 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 437 438 if (Subtarget->hasFFBH()) 439 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 440 441 if (Subtarget->hasFFBL()) 442 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 443 444 // We only really have 32-bit BFE instructions (and 16-bit on VI). 445 // 446 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 447 // effort to match them now. We want this to be false for i64 cases when the 448 // extraction isn't restricted to the upper or lower half. Ideally we would 449 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 450 // span the midpoint are probably relatively rare, so don't worry about them 451 // for now. 452 if (Subtarget->hasBFE()) 453 setHasExtractBitsInsn(true); 454 455 // Clamp modifier on add/sub 456 if (Subtarget->hasIntClamp()) 457 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); 458 459 if (Subtarget->hasAddNoCarry()) 460 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, 461 Legal); 462 463 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, 464 Custom); 465 466 // These are really only legal for ieee_mode functions. We should be avoiding 467 // them for functions that don't have ieee_mode enabled, so just say they are 468 // legal. 469 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 470 {MVT::f32, MVT::f64}, Legal); 471 472 if (Subtarget->haveRoundOpsF64()) 473 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); 474 else 475 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, 476 MVT::f64, Custom); 477 478 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 479 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64}, 480 Legal); 481 setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom); 482 483 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); 484 setOperationAction(ISD::FDIV, MVT::f64, Custom); 485 486 setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); 487 setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); 488 489 if (Subtarget->has16BitInsts()) { 490 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, 491 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, 492 MVT::i16, Legal); 493 494 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 495 496 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, 497 MVT::i16, Expand); 498 499 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, 500 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, 501 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 502 ISD::CTPOP}, 503 MVT::i16, Promote); 504 505 setOperationAction(ISD::LOAD, MVT::i16, Custom); 506 507 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 508 509 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 510 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 511 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 512 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 513 514 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); 515 516 // F16 - Constant Actions. 517 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 518 519 // F16 - Load/Store Actions. 520 setOperationAction(ISD::LOAD, MVT::f16, Promote); 521 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 522 setOperationAction(ISD::STORE, MVT::f16, Promote); 523 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 524 525 // F16 - VOP1 Actions. 526 setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS, 527 ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, 528 MVT::f16, Custom); 529 530 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 531 532 setOperationAction( 533 {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, 534 MVT::f16, Promote); 535 536 // F16 - VOP2 Actions. 537 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); 538 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom); 539 setOperationAction(ISD::FFREXP, MVT::f16, Custom); 540 setOperationAction(ISD::FDIV, MVT::f16, Custom); 541 542 // F16 - VOP3 Actions. 543 setOperationAction(ISD::FMA, MVT::f16, Legal); 544 if (STI.hasMadF16()) 545 setOperationAction(ISD::FMAD, MVT::f16, Legal); 546 547 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, 548 MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 549 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 550 switch (Op) { 551 case ISD::LOAD: 552 case ISD::STORE: 553 case ISD::BUILD_VECTOR: 554 case ISD::BITCAST: 555 case ISD::UNDEF: 556 case ISD::EXTRACT_VECTOR_ELT: 557 case ISD::INSERT_VECTOR_ELT: 558 case ISD::INSERT_SUBVECTOR: 559 case ISD::EXTRACT_SUBVECTOR: 560 case ISD::SCALAR_TO_VECTOR: 561 case ISD::IS_FPCLASS: 562 break; 563 case ISD::CONCAT_VECTORS: 564 setOperationAction(Op, VT, Custom); 565 break; 566 default: 567 setOperationAction(Op, VT, Expand); 568 break; 569 } 570 } 571 } 572 573 // v_perm_b32 can handle either of these. 574 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); 575 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 576 577 // XXX - Do these do anything? Vector constants turn into build_vector. 578 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); 579 580 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); 581 582 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 583 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 584 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 585 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 586 587 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 588 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 589 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 590 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 591 592 setOperationAction(ISD::AND, MVT::v2i16, Promote); 593 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 594 setOperationAction(ISD::OR, MVT::v2i16, Promote); 595 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 596 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 597 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 598 599 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 600 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 601 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 602 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 603 604 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 605 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 606 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 607 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 608 609 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 610 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 611 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 612 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 613 614 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 615 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 616 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 617 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 618 619 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 620 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 621 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 622 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 623 624 setOperationAction(ISD::LOAD, MVT::v16i16, Promote); 625 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); 626 setOperationAction(ISD::LOAD, MVT::v16f16, Promote); 627 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); 628 629 setOperationAction(ISD::STORE, MVT::v16i16, Promote); 630 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); 631 setOperationAction(ISD::STORE, MVT::v16f16, Promote); 632 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); 633 634 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 635 MVT::v2i32, Expand); 636 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 637 638 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 639 MVT::v4i32, Expand); 640 641 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 642 MVT::v8i32, Expand); 643 644 if (!Subtarget->hasVOP3PInsts()) 645 setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); 646 647 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 648 // This isn't really legal, but this avoids the legalizer unrolling it (and 649 // allows matching fneg (fabs x) patterns) 650 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 651 652 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); 653 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); 654 655 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 656 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); 657 658 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, 659 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); 660 661 for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 662 setOperationAction( 663 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, 664 Vec16, Custom); 665 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 666 } 667 } 668 669 if (Subtarget->hasVOP3PInsts()) { 670 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, 671 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 672 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, 673 MVT::v2i16, Legal); 674 675 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, 676 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, 677 MVT::v2f16, Legal); 678 679 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, 680 Custom); 681 682 setOperationAction(ISD::VECTOR_SHUFFLE, 683 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, 684 MVT::v16f16, MVT::v16i16}, 685 Custom); 686 687 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) 688 // Split vector operations. 689 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, 690 ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, 691 ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, 692 ISD::SSUBSAT}, 693 VT, Custom); 694 695 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) 696 // Split vector operations. 697 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, 698 VT, Custom); 699 700 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, 701 Custom); 702 703 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 704 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); 705 706 if (Subtarget->hasPackedFP32Ops()) { 707 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, 708 MVT::v2f32, Legal); 709 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, 710 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, 711 Custom); 712 } 713 } 714 715 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); 716 717 if (Subtarget->has16BitInsts()) { 718 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 719 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 720 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 721 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 722 } else { 723 // Legalization hack. 724 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); 725 726 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); 727 } 728 729 setOperationAction(ISD::SELECT, 730 {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 731 MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, 732 Custom); 733 734 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); 735 736 if (Subtarget->hasMad64_32()) 737 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); 738 739 setOperationAction(ISD::INTRINSIC_WO_CHAIN, 740 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, 741 MVT::v2i16, MVT::v2f16, MVT::i128}, 742 Custom); 743 744 setOperationAction(ISD::INTRINSIC_W_CHAIN, 745 {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, 746 MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, 747 MVT::i16, MVT::i8, MVT::i128}, 748 Custom); 749 750 setOperationAction(ISD::INTRINSIC_VOID, 751 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, 752 MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, 753 MVT::i8, MVT::i128}, 754 Custom); 755 756 setTargetDAGCombine({ISD::ADD, 757 ISD::UADDO_CARRY, 758 ISD::SUB, 759 ISD::USUBO_CARRY, 760 ISD::FADD, 761 ISD::FSUB, 762 ISD::FMINNUM, 763 ISD::FMAXNUM, 764 ISD::FMINNUM_IEEE, 765 ISD::FMAXNUM_IEEE, 766 ISD::FMA, 767 ISD::SMIN, 768 ISD::SMAX, 769 ISD::UMIN, 770 ISD::UMAX, 771 ISD::SETCC, 772 ISD::AND, 773 ISD::OR, 774 ISD::XOR, 775 ISD::SINT_TO_FP, 776 ISD::UINT_TO_FP, 777 ISD::FCANONICALIZE, 778 ISD::SCALAR_TO_VECTOR, 779 ISD::ZERO_EXTEND, 780 ISD::SIGN_EXTEND_INREG, 781 ISD::EXTRACT_VECTOR_ELT, 782 ISD::INSERT_VECTOR_ELT, 783 ISD::FCOPYSIGN}); 784 785 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16()) 786 setTargetDAGCombine(ISD::FP_ROUND); 787 788 // All memory operations. Some folding on the pointer operand is done to help 789 // matching the constant offsets in the addressing modes. 790 setTargetDAGCombine({ISD::LOAD, 791 ISD::STORE, 792 ISD::ATOMIC_LOAD, 793 ISD::ATOMIC_STORE, 794 ISD::ATOMIC_CMP_SWAP, 795 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 796 ISD::ATOMIC_SWAP, 797 ISD::ATOMIC_LOAD_ADD, 798 ISD::ATOMIC_LOAD_SUB, 799 ISD::ATOMIC_LOAD_AND, 800 ISD::ATOMIC_LOAD_OR, 801 ISD::ATOMIC_LOAD_XOR, 802 ISD::ATOMIC_LOAD_NAND, 803 ISD::ATOMIC_LOAD_MIN, 804 ISD::ATOMIC_LOAD_MAX, 805 ISD::ATOMIC_LOAD_UMIN, 806 ISD::ATOMIC_LOAD_UMAX, 807 ISD::ATOMIC_LOAD_FADD, 808 ISD::ATOMIC_LOAD_UINC_WRAP, 809 ISD::ATOMIC_LOAD_UDEC_WRAP, 810 ISD::INTRINSIC_VOID, 811 ISD::INTRINSIC_W_CHAIN}); 812 813 // FIXME: In other contexts we pretend this is a per-function property. 814 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 815 816 setSchedulingPreference(Sched::RegPressure); 817 } 818 819 const GCNSubtarget *SITargetLowering::getSubtarget() const { 820 return Subtarget; 821 } 822 823 //===----------------------------------------------------------------------===// 824 // TargetLowering queries 825 //===----------------------------------------------------------------------===// 826 827 // v_mad_mix* support a conversion from f16 to f32. 828 // 829 // There is only one special case when denormals are enabled we don't currently, 830 // where this is OK to use. 831 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 832 EVT DestVT, EVT SrcVT) const { 833 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 834 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 835 DestVT.getScalarType() == MVT::f32 && 836 SrcVT.getScalarType() == MVT::f16 && 837 // TODO: This probably only requires no input flushing? 838 denormalModeIsFlushAllF32(DAG.getMachineFunction()); 839 } 840 841 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 842 LLT DestTy, LLT SrcTy) const { 843 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 844 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 845 DestTy.getScalarSizeInBits() == 32 && 846 SrcTy.getScalarSizeInBits() == 16 && 847 // TODO: This probably only requires no input flushing? 848 denormalModeIsFlushAllF32(*MI.getMF()); 849 } 850 851 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 852 // SI has some legal vector types, but no legal vector operations. Say no 853 // shuffles are legal in order to prefer scalarizing some vector operations. 854 return false; 855 } 856 857 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 858 CallingConv::ID CC, 859 EVT VT) const { 860 if (CC == CallingConv::AMDGPU_KERNEL) 861 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 862 863 if (VT.isVector()) { 864 EVT ScalarVT = VT.getScalarType(); 865 unsigned Size = ScalarVT.getSizeInBits(); 866 if (Size == 16) { 867 if (Subtarget->has16BitInsts()) { 868 if (VT.isInteger()) 869 return MVT::v2i16; 870 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); 871 } 872 return VT.isInteger() ? MVT::i32 : MVT::f32; 873 } 874 875 if (Size < 16) 876 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 877 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 878 } 879 880 if (VT.getSizeInBits() > 32) 881 return MVT::i32; 882 883 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 884 } 885 886 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 887 CallingConv::ID CC, 888 EVT VT) const { 889 if (CC == CallingConv::AMDGPU_KERNEL) 890 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 891 892 if (VT.isVector()) { 893 unsigned NumElts = VT.getVectorNumElements(); 894 EVT ScalarVT = VT.getScalarType(); 895 unsigned Size = ScalarVT.getSizeInBits(); 896 897 // FIXME: Should probably promote 8-bit vectors to i16. 898 if (Size == 16 && Subtarget->has16BitInsts()) 899 return (NumElts + 1) / 2; 900 901 if (Size <= 32) 902 return NumElts; 903 904 if (Size > 32) 905 return NumElts * ((Size + 31) / 32); 906 } else if (VT.getSizeInBits() > 32) 907 return (VT.getSizeInBits() + 31) / 32; 908 909 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 910 } 911 912 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 913 LLVMContext &Context, CallingConv::ID CC, 914 EVT VT, EVT &IntermediateVT, 915 unsigned &NumIntermediates, MVT &RegisterVT) const { 916 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 917 unsigned NumElts = VT.getVectorNumElements(); 918 EVT ScalarVT = VT.getScalarType(); 919 unsigned Size = ScalarVT.getSizeInBits(); 920 // FIXME: We should fix the ABI to be the same on targets without 16-bit 921 // support, but unless we can properly handle 3-vectors, it will be still be 922 // inconsistent. 923 if (Size == 16 && Subtarget->has16BitInsts()) { 924 if (ScalarVT == MVT::bf16) { 925 RegisterVT = MVT::i32; 926 IntermediateVT = MVT::v2bf16; 927 } else { 928 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 929 IntermediateVT = RegisterVT; 930 } 931 NumIntermediates = (NumElts + 1) / 2; 932 return NumIntermediates; 933 } 934 935 if (Size == 32) { 936 RegisterVT = ScalarVT.getSimpleVT(); 937 IntermediateVT = RegisterVT; 938 NumIntermediates = NumElts; 939 return NumIntermediates; 940 } 941 942 if (Size < 16 && Subtarget->has16BitInsts()) { 943 // FIXME: Should probably form v2i16 pieces 944 RegisterVT = MVT::i16; 945 IntermediateVT = ScalarVT; 946 NumIntermediates = NumElts; 947 return NumIntermediates; 948 } 949 950 951 if (Size != 16 && Size <= 32) { 952 RegisterVT = MVT::i32; 953 IntermediateVT = ScalarVT; 954 NumIntermediates = NumElts; 955 return NumIntermediates; 956 } 957 958 if (Size > 32) { 959 RegisterVT = MVT::i32; 960 IntermediateVT = RegisterVT; 961 NumIntermediates = NumElts * ((Size + 31) / 32); 962 return NumIntermediates; 963 } 964 } 965 966 return TargetLowering::getVectorTypeBreakdownForCallingConv( 967 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 968 } 969 970 static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) { 971 assert(MaxNumLanes != 0); 972 973 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 974 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); 975 return EVT::getVectorVT(Ty->getContext(), 976 EVT::getEVT(VT->getElementType()), 977 NumElts); 978 } 979 980 return EVT::getEVT(Ty); 981 } 982 983 // Peek through TFE struct returns to only use the data size. 984 static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) { 985 auto *ST = dyn_cast<StructType>(Ty); 986 if (!ST) 987 return memVTFromLoadIntrData(Ty, MaxNumLanes); 988 989 // TFE intrinsics return an aggregate type. 990 assert(ST->getNumContainedTypes() == 2 && 991 ST->getContainedType(1)->isIntegerTy(32)); 992 return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes); 993 } 994 995 /// Map address space 7 to MVT::v5i32 because that's its in-memory 996 /// representation. This return value is vector-typed because there is no 997 /// MVT::i160 and it is not clear if one can be added. While this could 998 /// cause issues during codegen, these address space 7 pointers will be 999 /// rewritten away by then. Therefore, we can return MVT::v5i32 in order 1000 /// to allow pre-codegen passes that query TargetTransformInfo, often for cost 1001 /// modeling, to work. 1002 MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const { 1003 if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) 1004 return MVT::v5i32; 1005 return AMDGPUTargetLowering::getPointerTy(DL, AS); 1006 } 1007 /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka 1008 /// v8i32 when padding is added. 1009 MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const { 1010 if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) 1011 return MVT::v8i32; 1012 return AMDGPUTargetLowering::getPointerMemTy(DL, AS); 1013 } 1014 1015 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1016 const CallInst &CI, 1017 MachineFunction &MF, 1018 unsigned IntrID) const { 1019 Info.flags = MachineMemOperand::MONone; 1020 if (CI.hasMetadata(LLVMContext::MD_invariant_load)) 1021 Info.flags |= MachineMemOperand::MOInvariant; 1022 1023 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1024 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1025 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1026 (Intrinsic::ID)IntrID); 1027 MemoryEffects ME = Attr.getMemoryEffects(); 1028 if (ME.doesNotAccessMemory()) 1029 return false; 1030 1031 // TODO: Should images get their own address space? 1032 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1033 1034 if (RsrcIntr->IsImage) 1035 Info.align.reset(); 1036 1037 Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg); 1038 if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) { 1039 if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE) 1040 // We conservatively set the memory operand of a buffer intrinsic to the 1041 // base resource pointer, so that we can access alias information about 1042 // those pointers. Cases like "this points at the same value 1043 // but with a different offset" are handled in 1044 // areMemAccessesTriviallyDisjoint. 1045 Info.ptrVal = RsrcArg; 1046 } 1047 1048 Info.flags |= MachineMemOperand::MODereferenceable; 1049 if (ME.onlyReadsMemory()) { 1050 unsigned MaxNumLanes = 4; 1051 1052 if (RsrcIntr->IsImage) { 1053 const AMDGPU::ImageDimIntrinsicInfo *Intr 1054 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1055 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1056 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1057 1058 if (!BaseOpcode->Gather4) { 1059 // If this isn't a gather, we may have excess loaded elements in the 1060 // IR type. Check the dmask for the real number of elements loaded. 1061 unsigned DMask 1062 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1063 MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); 1064 } 1065 } 1066 1067 Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes); 1068 1069 // FIXME: What does alignment mean for an image? 1070 Info.opc = ISD::INTRINSIC_W_CHAIN; 1071 Info.flags |= MachineMemOperand::MOLoad; 1072 } else if (ME.onlyWritesMemory()) { 1073 Info.opc = ISD::INTRINSIC_VOID; 1074 1075 Type *DataTy = CI.getArgOperand(0)->getType(); 1076 if (RsrcIntr->IsImage) { 1077 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1078 unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); 1079 Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes); 1080 } else 1081 Info.memVT = EVT::getEVT(DataTy); 1082 1083 Info.flags |= MachineMemOperand::MOStore; 1084 } else { 1085 // Atomic 1086 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1087 ISD::INTRINSIC_W_CHAIN; 1088 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1089 Info.flags |= MachineMemOperand::MOLoad | 1090 MachineMemOperand::MOStore | 1091 MachineMemOperand::MODereferenceable; 1092 1093 // XXX - Should this be volatile without known ordering? 1094 Info.flags |= MachineMemOperand::MOVolatile; 1095 1096 switch (IntrID) { 1097 default: 1098 break; 1099 case Intrinsic::amdgcn_raw_buffer_load_lds: 1100 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: 1101 case Intrinsic::amdgcn_struct_buffer_load_lds: 1102 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { 1103 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1104 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1105 return true; 1106 } 1107 } 1108 } 1109 return true; 1110 } 1111 1112 switch (IntrID) { 1113 case Intrinsic::amdgcn_ds_ordered_add: 1114 case Intrinsic::amdgcn_ds_ordered_swap: 1115 case Intrinsic::amdgcn_ds_fadd: 1116 case Intrinsic::amdgcn_ds_fmin: 1117 case Intrinsic::amdgcn_ds_fmax: { 1118 Info.opc = ISD::INTRINSIC_W_CHAIN; 1119 Info.memVT = MVT::getVT(CI.getType()); 1120 Info.ptrVal = CI.getOperand(0); 1121 Info.align.reset(); 1122 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1123 1124 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1125 if (!Vol->isZero()) 1126 Info.flags |= MachineMemOperand::MOVolatile; 1127 1128 return true; 1129 } 1130 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1131 Info.opc = ISD::INTRINSIC_W_CHAIN; 1132 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1133 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1134 Info.align.reset(); 1135 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1136 1137 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1138 if (!Vol || !Vol->isZero()) 1139 Info.flags |= MachineMemOperand::MOVolatile; 1140 1141 return true; 1142 } 1143 case Intrinsic::amdgcn_ds_add_gs_reg_rtn: 1144 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: { 1145 Info.opc = ISD::INTRINSIC_W_CHAIN; 1146 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1147 Info.ptrVal = nullptr; 1148 Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER; 1149 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1150 return true; 1151 } 1152 case Intrinsic::amdgcn_ds_append: 1153 case Intrinsic::amdgcn_ds_consume: { 1154 Info.opc = ISD::INTRINSIC_W_CHAIN; 1155 Info.memVT = MVT::getVT(CI.getType()); 1156 Info.ptrVal = CI.getOperand(0); 1157 Info.align.reset(); 1158 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1159 1160 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1161 if (!Vol->isZero()) 1162 Info.flags |= MachineMemOperand::MOVolatile; 1163 1164 return true; 1165 } 1166 case Intrinsic::amdgcn_global_atomic_csub: { 1167 Info.opc = ISD::INTRINSIC_W_CHAIN; 1168 Info.memVT = MVT::getVT(CI.getType()); 1169 Info.ptrVal = CI.getOperand(0); 1170 Info.align.reset(); 1171 Info.flags |= MachineMemOperand::MOLoad | 1172 MachineMemOperand::MOStore | 1173 MachineMemOperand::MOVolatile; 1174 return true; 1175 } 1176 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1177 Info.opc = ISD::INTRINSIC_W_CHAIN; 1178 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1179 1180 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1181 Info.align.reset(); 1182 Info.flags |= MachineMemOperand::MOLoad | 1183 MachineMemOperand::MODereferenceable; 1184 return true; 1185 } 1186 case Intrinsic::amdgcn_global_atomic_fadd: 1187 case Intrinsic::amdgcn_global_atomic_fmin: 1188 case Intrinsic::amdgcn_global_atomic_fmax: 1189 case Intrinsic::amdgcn_flat_atomic_fadd: 1190 case Intrinsic::amdgcn_flat_atomic_fmin: 1191 case Intrinsic::amdgcn_flat_atomic_fmax: 1192 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1193 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { 1194 Info.opc = ISD::INTRINSIC_W_CHAIN; 1195 Info.memVT = MVT::getVT(CI.getType()); 1196 Info.ptrVal = CI.getOperand(0); 1197 Info.align.reset(); 1198 Info.flags |= MachineMemOperand::MOLoad | 1199 MachineMemOperand::MOStore | 1200 MachineMemOperand::MODereferenceable | 1201 MachineMemOperand::MOVolatile; 1202 return true; 1203 } 1204 case Intrinsic::amdgcn_ds_gws_init: 1205 case Intrinsic::amdgcn_ds_gws_barrier: 1206 case Intrinsic::amdgcn_ds_gws_sema_v: 1207 case Intrinsic::amdgcn_ds_gws_sema_br: 1208 case Intrinsic::amdgcn_ds_gws_sema_p: 1209 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1210 Info.opc = ISD::INTRINSIC_VOID; 1211 1212 const GCNTargetMachine &TM = 1213 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1214 1215 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1216 Info.ptrVal = MFI->getGWSPSV(TM); 1217 1218 // This is an abstract access, but we need to specify a type and size. 1219 Info.memVT = MVT::i32; 1220 Info.size = 4; 1221 Info.align = Align(4); 1222 1223 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1224 Info.flags |= MachineMemOperand::MOLoad; 1225 else 1226 Info.flags |= MachineMemOperand::MOStore; 1227 return true; 1228 } 1229 case Intrinsic::amdgcn_global_load_lds: { 1230 Info.opc = ISD::INTRINSIC_VOID; 1231 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1232 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1233 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1234 MachineMemOperand::MOVolatile; 1235 return true; 1236 } 1237 case Intrinsic::amdgcn_ds_bvh_stack_rtn: { 1238 Info.opc = ISD::INTRINSIC_W_CHAIN; 1239 1240 const GCNTargetMachine &TM = 1241 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1242 1243 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1244 Info.ptrVal = MFI->getGWSPSV(TM); 1245 1246 // This is an abstract access, but we need to specify a type and size. 1247 Info.memVT = MVT::i32; 1248 Info.size = 4; 1249 Info.align = Align(4); 1250 1251 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1252 return true; 1253 } 1254 default: 1255 return false; 1256 } 1257 } 1258 1259 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1260 SmallVectorImpl<Value*> &Ops, 1261 Type *&AccessTy) const { 1262 switch (II->getIntrinsicID()) { 1263 case Intrinsic::amdgcn_ds_ordered_add: 1264 case Intrinsic::amdgcn_ds_ordered_swap: 1265 case Intrinsic::amdgcn_ds_append: 1266 case Intrinsic::amdgcn_ds_consume: 1267 case Intrinsic::amdgcn_ds_fadd: 1268 case Intrinsic::amdgcn_ds_fmin: 1269 case Intrinsic::amdgcn_ds_fmax: 1270 case Intrinsic::amdgcn_global_atomic_fadd: 1271 case Intrinsic::amdgcn_flat_atomic_fadd: 1272 case Intrinsic::amdgcn_flat_atomic_fmin: 1273 case Intrinsic::amdgcn_flat_atomic_fmax: 1274 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1275 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: 1276 case Intrinsic::amdgcn_global_atomic_csub: { 1277 Value *Ptr = II->getArgOperand(0); 1278 AccessTy = II->getType(); 1279 Ops.push_back(Ptr); 1280 return true; 1281 } 1282 default: 1283 return false; 1284 } 1285 } 1286 1287 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1288 if (!Subtarget->hasFlatInstOffsets()) { 1289 // Flat instructions do not have offsets, and only have the register 1290 // address. 1291 return AM.BaseOffs == 0 && AM.Scale == 0; 1292 } 1293 1294 return AM.Scale == 0 && 1295 (AM.BaseOffs == 0 || 1296 Subtarget->getInstrInfo()->isLegalFLATOffset( 1297 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); 1298 } 1299 1300 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1301 if (Subtarget->hasFlatGlobalInsts()) 1302 return AM.Scale == 0 && 1303 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1304 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1305 SIInstrFlags::FlatGlobal)); 1306 1307 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1308 // Assume the we will use FLAT for all global memory accesses 1309 // on VI. 1310 // FIXME: This assumption is currently wrong. On VI we still use 1311 // MUBUF instructions for the r + i addressing mode. As currently 1312 // implemented, the MUBUF instructions only work on buffer < 4GB. 1313 // It may be possible to support > 4GB buffers with MUBUF instructions, 1314 // by setting the stride value in the resource descriptor which would 1315 // increase the size limit to (stride * 4GB). However, this is risky, 1316 // because it has never been validated. 1317 return isLegalFlatAddressingMode(AM); 1318 } 1319 1320 return isLegalMUBUFAddressingMode(AM); 1321 } 1322 1323 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1324 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1325 // additionally can do r + r + i with addr64. 32-bit has more addressing 1326 // mode options. Depending on the resource constant, it can also do 1327 // (i64 r0) + (i32 r1) * (i14 i). 1328 // 1329 // Private arrays end up using a scratch buffer most of the time, so also 1330 // assume those use MUBUF instructions. Scratch loads / stores are currently 1331 // implemented as mubuf instructions with offen bit set, so slightly 1332 // different than the normal addr64. 1333 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1334 return false; 1335 1336 // FIXME: Since we can split immediate into soffset and immediate offset, 1337 // would it make sense to allow any immediate? 1338 1339 switch (AM.Scale) { 1340 case 0: // r + i or just i, depending on HasBaseReg. 1341 return true; 1342 case 1: 1343 return true; // We have r + r or r + i. 1344 case 2: 1345 if (AM.HasBaseReg) { 1346 // Reject 2 * r + r. 1347 return false; 1348 } 1349 1350 // Allow 2 * r as r + r 1351 // Or 2 * r + i is allowed as r + r + i. 1352 return true; 1353 default: // Don't allow n * r 1354 return false; 1355 } 1356 } 1357 1358 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1359 const AddrMode &AM, Type *Ty, 1360 unsigned AS, Instruction *I) const { 1361 // No global is ever allowed as a base. 1362 if (AM.BaseGV) 1363 return false; 1364 1365 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1366 return isLegalGlobalAddressingMode(AM); 1367 1368 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1369 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1370 AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE) { 1371 // If the offset isn't a multiple of 4, it probably isn't going to be 1372 // correctly aligned. 1373 // FIXME: Can we get the real alignment here? 1374 if (AM.BaseOffs % 4 != 0) 1375 return isLegalMUBUFAddressingMode(AM); 1376 1377 // There are no SMRD extloads, so if we have to do a small type access we 1378 // will use a MUBUF load. 1379 // FIXME?: We also need to do this if unaligned, but we don't know the 1380 // alignment here. 1381 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1382 return isLegalGlobalAddressingMode(AM); 1383 1384 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1385 // SMRD instructions have an 8-bit, dword offset on SI. 1386 if (!isUInt<8>(AM.BaseOffs / 4)) 1387 return false; 1388 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1389 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1390 // in 8-bits, it can use a smaller encoding. 1391 if (!isUInt<32>(AM.BaseOffs / 4)) 1392 return false; 1393 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) { 1394 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1395 if (!isUInt<20>(AM.BaseOffs)) 1396 return false; 1397 } else { 1398 // On GFX9 the offset is signed 21-bit in bytes (but must not be negative 1399 // for S_BUFFER_* instructions). 1400 if (!isInt<21>(AM.BaseOffs)) 1401 return false; 1402 } 1403 1404 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1405 return true; 1406 1407 if (AM.Scale == 1 && AM.HasBaseReg) 1408 return true; 1409 1410 return false; 1411 } 1412 1413 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 1414 return isLegalMUBUFAddressingMode(AM); 1415 1416 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1417 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1418 // field. 1419 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1420 // an 8-bit dword offset but we don't know the alignment here. 1421 if (!isUInt<16>(AM.BaseOffs)) 1422 return false; 1423 1424 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1425 return true; 1426 1427 if (AM.Scale == 1 && AM.HasBaseReg) 1428 return true; 1429 1430 return false; 1431 } 1432 1433 if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1434 // For an unknown address space, this usually means that this is for some 1435 // reason being used for pure arithmetic, and not based on some addressing 1436 // computation. We don't have instructions that compute pointers with any 1437 // addressing modes, so treat them as having no offset like flat 1438 // instructions. 1439 return isLegalFlatAddressingMode(AM); 1440 } 1441 1442 // Assume a user alias of global for unknown address spaces. 1443 return isLegalGlobalAddressingMode(AM); 1444 } 1445 1446 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1447 const MachineFunction &MF) const { 1448 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1449 return (MemVT.getSizeInBits() <= 4 * 32); 1450 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1451 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1452 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1453 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1454 return (MemVT.getSizeInBits() <= 2 * 32); 1455 } 1456 return true; 1457 } 1458 1459 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1460 unsigned Size, unsigned AddrSpace, Align Alignment, 1461 MachineMemOperand::Flags Flags, unsigned *IsFast) const { 1462 if (IsFast) 1463 *IsFast = 0; 1464 1465 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1466 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1467 // Check if alignment requirements for ds_read/write instructions are 1468 // disabled. 1469 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) 1470 return false; 1471 1472 Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. 1473 if (Subtarget->hasLDSMisalignedBug() && Size > 32 && 1474 Alignment < RequiredAlignment) 1475 return false; 1476 1477 // Either, the alignment requirements are "enabled", or there is an 1478 // unaligned LDS access related hardware bug though alignment requirements 1479 // are "disabled". In either case, we need to check for proper alignment 1480 // requirements. 1481 // 1482 switch (Size) { 1483 case 64: 1484 // SI has a hardware bug in the LDS / GDS bounds checking: if the base 1485 // address is negative, then the instruction is incorrectly treated as 1486 // out-of-bounds even if base + offsets is in bounds. Split vectorized 1487 // loads here to avoid emitting ds_read2_b32. We may re-combine the 1488 // load later in the SILoadStoreOptimizer. 1489 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) 1490 return false; 1491 1492 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1493 // can do a 4 byte aligned, 8 byte access in a single operation using 1494 // ds_read2/write2_b32 with adjacent offsets. 1495 RequiredAlignment = Align(4); 1496 1497 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1498 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ 1499 // ds_write2_b32 depending on the alignment. In either case with either 1500 // alignment there is no faster way of doing this. 1501 1502 // The numbers returned here and below are not additive, it is a 'speed 1503 // rank'. They are just meant to be compared to decide if a certain way 1504 // of lowering an operation is faster than another. For that purpose 1505 // naturally aligned operation gets it bitsize to indicate that "it 1506 // operates with a speed comparable to N-bit wide load". With the full 1507 // alignment ds128 is slower than ds96 for example. If underaligned it 1508 // is comparable to a speed of a single dword access, which would then 1509 // mean 32 < 128 and it is faster to issue a wide load regardless. 1510 // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a 1511 // wider load which will not be aligned anymore the latter is slower. 1512 if (IsFast) 1513 *IsFast = (Alignment >= RequiredAlignment) ? 64 1514 : (Alignment < Align(4)) ? 32 1515 : 1; 1516 return true; 1517 } 1518 1519 break; 1520 case 96: 1521 if (!Subtarget->hasDS96AndDS128()) 1522 return false; 1523 1524 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1525 // gfx8 and older. 1526 1527 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1528 // Naturally aligned access is fastest. However, also report it is Fast 1529 // if memory is aligned less than DWORD. A narrow load or store will be 1530 // be equally slow as a single ds_read_b96/ds_write_b96, but there will 1531 // be more of them, so overall we will pay less penalty issuing a single 1532 // instruction. 1533 1534 // See comment on the values above. 1535 if (IsFast) 1536 *IsFast = (Alignment >= RequiredAlignment) ? 96 1537 : (Alignment < Align(4)) ? 32 1538 : 1; 1539 return true; 1540 } 1541 1542 break; 1543 case 128: 1544 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) 1545 return false; 1546 1547 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1548 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1549 // single operation using ds_read2/write2_b64. 1550 RequiredAlignment = Align(8); 1551 1552 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1553 // Naturally aligned access is fastest. However, also report it is Fast 1554 // if memory is aligned less than DWORD. A narrow load or store will be 1555 // be equally slow as a single ds_read_b128/ds_write_b128, but there 1556 // will be more of them, so overall we will pay less penalty issuing a 1557 // single instruction. 1558 1559 // See comment on the values above. 1560 if (IsFast) 1561 *IsFast = (Alignment >= RequiredAlignment) ? 128 1562 : (Alignment < Align(4)) ? 32 1563 : 1; 1564 return true; 1565 } 1566 1567 break; 1568 default: 1569 if (Size > 32) 1570 return false; 1571 1572 break; 1573 } 1574 1575 // See comment on the values above. 1576 // Note that we have a single-dword or sub-dword here, so if underaligned 1577 // it is a slowest possible access, hence returned value is 0. 1578 if (IsFast) 1579 *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; 1580 1581 return Alignment >= RequiredAlignment || 1582 Subtarget->hasUnalignedDSAccessEnabled(); 1583 } 1584 1585 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1586 bool AlignedBy4 = Alignment >= Align(4); 1587 if (IsFast) 1588 *IsFast = AlignedBy4; 1589 1590 return AlignedBy4 || 1591 Subtarget->enableFlatScratch() || 1592 Subtarget->hasUnalignedScratchAccess(); 1593 } 1594 1595 // FIXME: We have to be conservative here and assume that flat operations 1596 // will access scratch. If we had access to the IR function, then we 1597 // could determine if any private memory was used in the function. 1598 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1599 !Subtarget->hasUnalignedScratchAccess()) { 1600 bool AlignedBy4 = Alignment >= Align(4); 1601 if (IsFast) 1602 *IsFast = AlignedBy4; 1603 1604 return AlignedBy4; 1605 } 1606 1607 // So long as they are correct, wide global memory operations perform better 1608 // than multiple smaller memory ops -- even when misaligned 1609 if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { 1610 if (IsFast) 1611 *IsFast = Size; 1612 1613 return Alignment >= Align(4) || 1614 Subtarget->hasUnalignedBufferAccessEnabled(); 1615 } 1616 1617 // Smaller than dword value must be aligned. 1618 if (Size < 32) 1619 return false; 1620 1621 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1622 // byte-address are ignored, thus forcing Dword alignment. 1623 // This applies to private, global, and constant memory. 1624 if (IsFast) 1625 *IsFast = 1; 1626 1627 return Size >= 32 && Alignment >= Align(4); 1628 } 1629 1630 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1631 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1632 unsigned *IsFast) const { 1633 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1634 Alignment, Flags, IsFast); 1635 } 1636 1637 EVT SITargetLowering::getOptimalMemOpType( 1638 const MemOp &Op, const AttributeList &FuncAttributes) const { 1639 // FIXME: Should account for address space here. 1640 1641 // The default fallback uses the private pointer size as a guess for a type to 1642 // use. Make sure we switch these to 64-bit accesses. 1643 1644 if (Op.size() >= 16 && 1645 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1646 return MVT::v4i32; 1647 1648 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1649 return MVT::v2i32; 1650 1651 // Use the default. 1652 return MVT::Other; 1653 } 1654 1655 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1656 const MemSDNode *MemNode = cast<MemSDNode>(N); 1657 return MemNode->getMemOperand()->getFlags() & MONoClobber; 1658 } 1659 1660 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1661 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1662 AS == AMDGPUAS::PRIVATE_ADDRESS; 1663 } 1664 1665 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1666 unsigned DestAS) const { 1667 // Flat -> private/local is a simple truncate. 1668 // Flat -> global is no-op 1669 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1670 return true; 1671 1672 const GCNTargetMachine &TM = 1673 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1674 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1675 } 1676 1677 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1678 const MemSDNode *MemNode = cast<MemSDNode>(N); 1679 1680 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1681 } 1682 1683 TargetLoweringBase::LegalizeTypeAction 1684 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1685 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1686 VT.getScalarType().bitsLE(MVT::i16)) 1687 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1688 return TargetLoweringBase::getPreferredVectorAction(VT); 1689 } 1690 1691 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1692 Type *Ty) const { 1693 // FIXME: Could be smarter if called for vector constants. 1694 return true; 1695 } 1696 1697 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 1698 unsigned Index) const { 1699 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 1700 return false; 1701 1702 // TODO: Add more cases that are cheap. 1703 return Index == 0; 1704 } 1705 1706 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1707 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1708 switch (Op) { 1709 case ISD::LOAD: 1710 case ISD::STORE: 1711 1712 // These operations are done with 32-bit instructions anyway. 1713 case ISD::AND: 1714 case ISD::OR: 1715 case ISD::XOR: 1716 case ISD::SELECT: 1717 // TODO: Extensions? 1718 return true; 1719 default: 1720 return false; 1721 } 1722 } 1723 1724 // SimplifySetCC uses this function to determine whether or not it should 1725 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1726 if (VT == MVT::i1 && Op == ISD::SETCC) 1727 return false; 1728 1729 return TargetLowering::isTypeDesirableForOp(Op, VT); 1730 } 1731 1732 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1733 const SDLoc &SL, 1734 SDValue Chain, 1735 uint64_t Offset) const { 1736 const DataLayout &DL = DAG.getDataLayout(); 1737 MachineFunction &MF = DAG.getMachineFunction(); 1738 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1739 1740 const ArgDescriptor *InputPtrReg; 1741 const TargetRegisterClass *RC; 1742 LLT ArgTy; 1743 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1744 1745 std::tie(InputPtrReg, RC, ArgTy) = 1746 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1747 1748 // We may not have the kernarg segment argument if we have no kernel 1749 // arguments. 1750 if (!InputPtrReg) 1751 return DAG.getConstant(0, SL, PtrVT); 1752 1753 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1754 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1755 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1756 1757 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1758 } 1759 1760 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1761 const SDLoc &SL) const { 1762 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1763 FIRST_IMPLICIT); 1764 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1765 } 1766 1767 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, 1768 const SDLoc &SL) const { 1769 1770 Function &F = DAG.getMachineFunction().getFunction(); 1771 std::optional<uint32_t> KnownSize = 1772 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 1773 if (KnownSize.has_value()) 1774 return DAG.getConstant(*KnownSize, SL, MVT::i32); 1775 return SDValue(); 1776 } 1777 1778 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1779 const SDLoc &SL, SDValue Val, 1780 bool Signed, 1781 const ISD::InputArg *Arg) const { 1782 // First, if it is a widened vector, narrow it. 1783 if (VT.isVector() && 1784 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1785 EVT NarrowedVT = 1786 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1787 VT.getVectorNumElements()); 1788 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1789 DAG.getConstant(0, SL, MVT::i32)); 1790 } 1791 1792 // Then convert the vector elements or scalar value. 1793 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1794 VT.bitsLT(MemVT)) { 1795 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1796 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1797 } 1798 1799 if (MemVT.isFloatingPoint()) 1800 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1801 else if (Signed) 1802 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1803 else 1804 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1805 1806 return Val; 1807 } 1808 1809 SDValue SITargetLowering::lowerKernargMemParameter( 1810 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1811 uint64_t Offset, Align Alignment, bool Signed, 1812 const ISD::InputArg *Arg) const { 1813 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1814 1815 // Try to avoid using an extload by loading earlier than the argument address, 1816 // and extracting the relevant bits. The load should hopefully be merged with 1817 // the previous argument. 1818 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1819 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1820 int64_t AlignDownOffset = alignDown(Offset, 4); 1821 int64_t OffsetDiff = Offset - AlignDownOffset; 1822 1823 EVT IntVT = MemVT.changeTypeToInteger(); 1824 1825 // TODO: If we passed in the base kernel offset we could have a better 1826 // alignment than 4, but we don't really need it. 1827 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1828 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1829 MachineMemOperand::MODereferenceable | 1830 MachineMemOperand::MOInvariant); 1831 1832 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1833 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1834 1835 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1836 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1837 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1838 1839 1840 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1841 } 1842 1843 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1844 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1845 MachineMemOperand::MODereferenceable | 1846 MachineMemOperand::MOInvariant); 1847 1848 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1849 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1850 } 1851 1852 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1853 const SDLoc &SL, SDValue Chain, 1854 const ISD::InputArg &Arg) const { 1855 MachineFunction &MF = DAG.getMachineFunction(); 1856 MachineFrameInfo &MFI = MF.getFrameInfo(); 1857 1858 if (Arg.Flags.isByVal()) { 1859 unsigned Size = Arg.Flags.getByValSize(); 1860 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1861 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1862 } 1863 1864 unsigned ArgOffset = VA.getLocMemOffset(); 1865 unsigned ArgSize = VA.getValVT().getStoreSize(); 1866 1867 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1868 1869 // Create load nodes to retrieve arguments from the stack. 1870 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1871 SDValue ArgValue; 1872 1873 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1874 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1875 MVT MemVT = VA.getValVT(); 1876 1877 switch (VA.getLocInfo()) { 1878 default: 1879 break; 1880 case CCValAssign::BCvt: 1881 MemVT = VA.getLocVT(); 1882 break; 1883 case CCValAssign::SExt: 1884 ExtType = ISD::SEXTLOAD; 1885 break; 1886 case CCValAssign::ZExt: 1887 ExtType = ISD::ZEXTLOAD; 1888 break; 1889 case CCValAssign::AExt: 1890 ExtType = ISD::EXTLOAD; 1891 break; 1892 } 1893 1894 ArgValue = DAG.getExtLoad( 1895 ExtType, SL, VA.getLocVT(), Chain, FIN, 1896 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1897 MemVT); 1898 return ArgValue; 1899 } 1900 1901 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1902 const SIMachineFunctionInfo &MFI, 1903 EVT VT, 1904 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1905 const ArgDescriptor *Reg; 1906 const TargetRegisterClass *RC; 1907 LLT Ty; 1908 1909 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1910 if (!Reg) { 1911 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 1912 // It's possible for a kernarg intrinsic call to appear in a kernel with 1913 // no allocated segment, in which case we do not add the user sgpr 1914 // argument, so just return null. 1915 return DAG.getConstant(0, SDLoc(), VT); 1916 } 1917 1918 // It's undefined behavior if a function marked with the amdgpu-no-* 1919 // attributes uses the corresponding intrinsic. 1920 return DAG.getUNDEF(VT); 1921 } 1922 1923 return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); 1924 } 1925 1926 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1927 CallingConv::ID CallConv, 1928 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1929 FunctionType *FType, 1930 SIMachineFunctionInfo *Info) { 1931 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1932 const ISD::InputArg *Arg = &Ins[I]; 1933 1934 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1935 "vector type argument should have been split"); 1936 1937 // First check if it's a PS input addr. 1938 if (CallConv == CallingConv::AMDGPU_PS && 1939 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1940 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1941 1942 // Inconveniently only the first part of the split is marked as isSplit, 1943 // so skip to the end. We only want to increment PSInputNum once for the 1944 // entire split argument. 1945 if (Arg->Flags.isSplit()) { 1946 while (!Arg->Flags.isSplitEnd()) { 1947 assert((!Arg->VT.isVector() || 1948 Arg->VT.getScalarSizeInBits() == 16) && 1949 "unexpected vector split in ps argument type"); 1950 if (!SkipArg) 1951 Splits.push_back(*Arg); 1952 Arg = &Ins[++I]; 1953 } 1954 } 1955 1956 if (SkipArg) { 1957 // We can safely skip PS inputs. 1958 Skipped.set(Arg->getOrigArgIndex()); 1959 ++PSInputNum; 1960 continue; 1961 } 1962 1963 Info->markPSInputAllocated(PSInputNum); 1964 if (Arg->Used) 1965 Info->markPSInputEnabled(PSInputNum); 1966 1967 ++PSInputNum; 1968 } 1969 1970 Splits.push_back(*Arg); 1971 } 1972 } 1973 1974 // Allocate special inputs passed in VGPRs. 1975 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1976 MachineFunction &MF, 1977 const SIRegisterInfo &TRI, 1978 SIMachineFunctionInfo &Info) const { 1979 const LLT S32 = LLT::scalar(32); 1980 MachineRegisterInfo &MRI = MF.getRegInfo(); 1981 1982 if (Info.hasWorkItemIDX()) { 1983 Register Reg = AMDGPU::VGPR0; 1984 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1985 1986 CCInfo.AllocateReg(Reg); 1987 unsigned Mask = (Subtarget->hasPackedTID() && 1988 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 1989 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1990 } 1991 1992 if (Info.hasWorkItemIDY()) { 1993 assert(Info.hasWorkItemIDX()); 1994 if (Subtarget->hasPackedTID()) { 1995 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1996 0x3ff << 10)); 1997 } else { 1998 unsigned Reg = AMDGPU::VGPR1; 1999 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2000 2001 CCInfo.AllocateReg(Reg); 2002 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 2003 } 2004 } 2005 2006 if (Info.hasWorkItemIDZ()) { 2007 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 2008 if (Subtarget->hasPackedTID()) { 2009 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 2010 0x3ff << 20)); 2011 } else { 2012 unsigned Reg = AMDGPU::VGPR2; 2013 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2014 2015 CCInfo.AllocateReg(Reg); 2016 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 2017 } 2018 } 2019 } 2020 2021 // Try to allocate a VGPR at the end of the argument list, or if no argument 2022 // VGPRs are left allocating a stack slot. 2023 // If \p Mask is is given it indicates bitfield position in the register. 2024 // If \p Arg is given use it with new ]p Mask instead of allocating new. 2025 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 2026 ArgDescriptor Arg = ArgDescriptor()) { 2027 if (Arg.isSet()) 2028 return ArgDescriptor::createArg(Arg, Mask); 2029 2030 ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 2031 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 2032 if (RegIdx == ArgVGPRs.size()) { 2033 // Spill to stack required. 2034 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 2035 2036 return ArgDescriptor::createStack(Offset, Mask); 2037 } 2038 2039 unsigned Reg = ArgVGPRs[RegIdx]; 2040 Reg = CCInfo.AllocateReg(Reg); 2041 assert(Reg != AMDGPU::NoRegister); 2042 2043 MachineFunction &MF = CCInfo.getMachineFunction(); 2044 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 2045 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 2046 return ArgDescriptor::createRegister(Reg, Mask); 2047 } 2048 2049 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 2050 const TargetRegisterClass *RC, 2051 unsigned NumArgRegs) { 2052 ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32); 2053 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 2054 if (RegIdx == ArgSGPRs.size()) 2055 report_fatal_error("ran out of SGPRs for arguments"); 2056 2057 unsigned Reg = ArgSGPRs[RegIdx]; 2058 Reg = CCInfo.AllocateReg(Reg); 2059 assert(Reg != AMDGPU::NoRegister); 2060 2061 MachineFunction &MF = CCInfo.getMachineFunction(); 2062 MF.addLiveIn(Reg, RC); 2063 return ArgDescriptor::createRegister(Reg); 2064 } 2065 2066 // If this has a fixed position, we still should allocate the register in the 2067 // CCInfo state. Technically we could get away with this for values passed 2068 // outside of the normal argument range. 2069 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 2070 const TargetRegisterClass *RC, 2071 MCRegister Reg) { 2072 Reg = CCInfo.AllocateReg(Reg); 2073 assert(Reg != AMDGPU::NoRegister); 2074 MachineFunction &MF = CCInfo.getMachineFunction(); 2075 MF.addLiveIn(Reg, RC); 2076 } 2077 2078 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 2079 if (Arg) { 2080 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 2081 Arg.getRegister()); 2082 } else 2083 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 2084 } 2085 2086 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 2087 if (Arg) { 2088 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 2089 Arg.getRegister()); 2090 } else 2091 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 2092 } 2093 2094 /// Allocate implicit function VGPR arguments at the end of allocated user 2095 /// arguments. 2096 void SITargetLowering::allocateSpecialInputVGPRs( 2097 CCState &CCInfo, MachineFunction &MF, 2098 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2099 const unsigned Mask = 0x3ff; 2100 ArgDescriptor Arg; 2101 2102 if (Info.hasWorkItemIDX()) { 2103 Arg = allocateVGPR32Input(CCInfo, Mask); 2104 Info.setWorkItemIDX(Arg); 2105 } 2106 2107 if (Info.hasWorkItemIDY()) { 2108 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2109 Info.setWorkItemIDY(Arg); 2110 } 2111 2112 if (Info.hasWorkItemIDZ()) 2113 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2114 } 2115 2116 /// Allocate implicit function VGPR arguments in fixed registers. 2117 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2118 CCState &CCInfo, MachineFunction &MF, 2119 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2120 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2121 if (!Reg) 2122 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2123 2124 const unsigned Mask = 0x3ff; 2125 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2126 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2127 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2128 } 2129 2130 void SITargetLowering::allocateSpecialInputSGPRs( 2131 CCState &CCInfo, 2132 MachineFunction &MF, 2133 const SIRegisterInfo &TRI, 2134 SIMachineFunctionInfo &Info) const { 2135 auto &ArgInfo = Info.getArgInfo(); 2136 2137 // TODO: Unify handling with private memory pointers. 2138 if (Info.hasDispatchPtr()) 2139 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2140 2141 const Module *M = MF.getFunction().getParent(); 2142 if (Info.hasQueuePtr() && 2143 AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) 2144 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2145 2146 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2147 // constant offset from the kernarg segment. 2148 if (Info.hasImplicitArgPtr()) 2149 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2150 2151 if (Info.hasDispatchID()) 2152 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2153 2154 // flat_scratch_init is not applicable for non-kernel functions. 2155 2156 if (Info.hasWorkGroupIDX()) 2157 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2158 2159 if (Info.hasWorkGroupIDY()) 2160 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2161 2162 if (Info.hasWorkGroupIDZ()) 2163 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2164 2165 if (Info.hasLDSKernelId()) 2166 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); 2167 } 2168 2169 // Allocate special inputs passed in user SGPRs. 2170 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2171 MachineFunction &MF, 2172 const SIRegisterInfo &TRI, 2173 SIMachineFunctionInfo &Info) const { 2174 if (Info.hasImplicitBufferPtr()) { 2175 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2176 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2177 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2178 } 2179 2180 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2181 if (Info.hasPrivateSegmentBuffer()) { 2182 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2183 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2184 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2185 } 2186 2187 if (Info.hasDispatchPtr()) { 2188 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2189 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2190 CCInfo.AllocateReg(DispatchPtrReg); 2191 } 2192 2193 const Module *M = MF.getFunction().getParent(); 2194 if (Info.hasQueuePtr() && 2195 AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { 2196 Register QueuePtrReg = Info.addQueuePtr(TRI); 2197 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2198 CCInfo.AllocateReg(QueuePtrReg); 2199 } 2200 2201 if (Info.hasKernargSegmentPtr()) { 2202 MachineRegisterInfo &MRI = MF.getRegInfo(); 2203 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2204 CCInfo.AllocateReg(InputPtrReg); 2205 2206 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2207 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2208 } 2209 2210 if (Info.hasDispatchID()) { 2211 Register DispatchIDReg = Info.addDispatchID(TRI); 2212 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2213 CCInfo.AllocateReg(DispatchIDReg); 2214 } 2215 2216 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2217 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2218 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2219 CCInfo.AllocateReg(FlatScratchInitReg); 2220 } 2221 2222 if (Info.hasLDSKernelId()) { 2223 Register Reg = Info.addLDSKernelId(); 2224 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2225 CCInfo.AllocateReg(Reg); 2226 } 2227 2228 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2229 // these from the dispatch pointer. 2230 } 2231 2232 // Allocate special input registers that are initialized per-wave. 2233 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2234 MachineFunction &MF, 2235 SIMachineFunctionInfo &Info, 2236 CallingConv::ID CallConv, 2237 bool IsShader) const { 2238 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); 2239 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { 2240 // Note: user SGPRs are handled by the front-end for graphics shaders 2241 // Pad up the used user SGPRs with dead inputs. 2242 2243 // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately 2244 // before enabling architected SGPRs for workgroup IDs. 2245 assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget"); 2246 2247 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); 2248 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to 2249 // rely on it to reach 16 since if we end up having no stack usage, it will 2250 // not really be added. 2251 unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + 2252 Info.hasWorkGroupIDY() + 2253 Info.hasWorkGroupIDZ() + 2254 Info.hasWorkGroupInfo(); 2255 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { 2256 Register Reg = Info.addReservedUserSGPR(); 2257 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2258 CCInfo.AllocateReg(Reg); 2259 } 2260 } 2261 2262 if (Info.hasWorkGroupIDX()) { 2263 Register Reg = Info.addWorkGroupIDX(HasArchitectedSGPRs); 2264 if (!HasArchitectedSGPRs) 2265 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2266 2267 CCInfo.AllocateReg(Reg); 2268 } 2269 2270 if (Info.hasWorkGroupIDY()) { 2271 Register Reg = Info.addWorkGroupIDY(HasArchitectedSGPRs); 2272 if (!HasArchitectedSGPRs) 2273 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2274 2275 CCInfo.AllocateReg(Reg); 2276 } 2277 2278 if (Info.hasWorkGroupIDZ()) { 2279 Register Reg = Info.addWorkGroupIDZ(HasArchitectedSGPRs); 2280 if (!HasArchitectedSGPRs) 2281 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2282 2283 CCInfo.AllocateReg(Reg); 2284 } 2285 2286 if (Info.hasWorkGroupInfo()) { 2287 Register Reg = Info.addWorkGroupInfo(); 2288 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2289 CCInfo.AllocateReg(Reg); 2290 } 2291 2292 if (Info.hasPrivateSegmentWaveByteOffset()) { 2293 // Scratch wave offset passed in system SGPR. 2294 unsigned PrivateSegmentWaveByteOffsetReg; 2295 2296 if (IsShader) { 2297 PrivateSegmentWaveByteOffsetReg = 2298 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2299 2300 // This is true if the scratch wave byte offset doesn't have a fixed 2301 // location. 2302 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2303 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2304 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2305 } 2306 } else 2307 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2308 2309 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2310 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2311 } 2312 2313 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || 2314 Info.getNumPreloadedSGPRs() >= 16); 2315 } 2316 2317 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2318 MachineFunction &MF, 2319 const SIRegisterInfo &TRI, 2320 SIMachineFunctionInfo &Info) { 2321 // Now that we've figured out where the scratch register inputs are, see if 2322 // should reserve the arguments and use them directly. 2323 MachineFrameInfo &MFI = MF.getFrameInfo(); 2324 bool HasStackObjects = MFI.hasStackObjects(); 2325 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2326 2327 // Record that we know we have non-spill stack objects so we don't need to 2328 // check all stack objects later. 2329 if (HasStackObjects) 2330 Info.setHasNonSpillStackObjects(true); 2331 2332 // Everything live out of a block is spilled with fast regalloc, so it's 2333 // almost certain that spilling will be required. 2334 if (TM.getOptLevel() == CodeGenOpt::None) 2335 HasStackObjects = true; 2336 2337 // For now assume stack access is needed in any callee functions, so we need 2338 // the scratch registers to pass in. 2339 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2340 2341 if (!ST.enableFlatScratch()) { 2342 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2343 // If we have stack objects, we unquestionably need the private buffer 2344 // resource. For the Code Object V2 ABI, this will be the first 4 user 2345 // SGPR inputs. We can reserve those and use them directly. 2346 2347 Register PrivateSegmentBufferReg = 2348 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2349 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2350 } else { 2351 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2352 // We tentatively reserve the last registers (skipping the last registers 2353 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2354 // we'll replace these with the ones immediately after those which were 2355 // really allocated. In the prologue copies will be inserted from the 2356 // argument to these reserved registers. 2357 2358 // Without HSA, relocations are used for the scratch pointer and the 2359 // buffer resource setup is always inserted in the prologue. Scratch wave 2360 // offset is still in an input SGPR. 2361 Info.setScratchRSrcReg(ReservedBufferReg); 2362 } 2363 } 2364 2365 MachineRegisterInfo &MRI = MF.getRegInfo(); 2366 2367 // For entry functions we have to set up the stack pointer if we use it, 2368 // whereas non-entry functions get this "for free". This means there is no 2369 // intrinsic advantage to using S32 over S34 in cases where we do not have 2370 // calls but do need a frame pointer (i.e. if we are requested to have one 2371 // because frame pointer elimination is disabled). To keep things simple we 2372 // only ever use S32 as the call ABI stack pointer, and so using it does not 2373 // imply we need a separate frame pointer. 2374 // 2375 // Try to use s32 as the SP, but move it if it would interfere with input 2376 // arguments. This won't work with calls though. 2377 // 2378 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2379 // registers. 2380 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2381 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2382 } else { 2383 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2384 2385 if (MFI.hasCalls()) 2386 report_fatal_error("call in graphics shader with too many input SGPRs"); 2387 2388 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2389 if (!MRI.isLiveIn(Reg)) { 2390 Info.setStackPtrOffsetReg(Reg); 2391 break; 2392 } 2393 } 2394 2395 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2396 report_fatal_error("failed to find register for SP"); 2397 } 2398 2399 // hasFP should be accurate for entry functions even before the frame is 2400 // finalized, because it does not rely on the known stack size, only 2401 // properties like whether variable sized objects are present. 2402 if (ST.getFrameLowering()->hasFP(MF)) { 2403 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2404 } 2405 } 2406 2407 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2408 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2409 return !Info->isEntryFunction(); 2410 } 2411 2412 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2413 2414 } 2415 2416 void SITargetLowering::insertCopiesSplitCSR( 2417 MachineBasicBlock *Entry, 2418 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2419 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2420 2421 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2422 if (!IStart) 2423 return; 2424 2425 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2426 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2427 MachineBasicBlock::iterator MBBI = Entry->begin(); 2428 for (const MCPhysReg *I = IStart; *I; ++I) { 2429 const TargetRegisterClass *RC = nullptr; 2430 if (AMDGPU::SReg_64RegClass.contains(*I)) 2431 RC = &AMDGPU::SGPR_64RegClass; 2432 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2433 RC = &AMDGPU::SGPR_32RegClass; 2434 else 2435 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2436 2437 Register NewVR = MRI->createVirtualRegister(RC); 2438 // Create copy from CSR to a virtual register. 2439 Entry->addLiveIn(*I); 2440 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2441 .addReg(*I); 2442 2443 // Insert the copy-back instructions right before the terminator. 2444 for (auto *Exit : Exits) 2445 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2446 TII->get(TargetOpcode::COPY), *I) 2447 .addReg(NewVR); 2448 } 2449 } 2450 2451 SDValue SITargetLowering::LowerFormalArguments( 2452 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2453 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2454 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2455 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2456 2457 MachineFunction &MF = DAG.getMachineFunction(); 2458 const Function &Fn = MF.getFunction(); 2459 FunctionType *FType = MF.getFunction().getFunctionType(); 2460 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2461 2462 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2463 DiagnosticInfoUnsupported NoGraphicsHSA( 2464 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2465 DAG.getContext()->diagnose(NoGraphicsHSA); 2466 return DAG.getEntryNode(); 2467 } 2468 2469 SmallVector<ISD::InputArg, 16> Splits; 2470 SmallVector<CCValAssign, 16> ArgLocs; 2471 BitVector Skipped(Ins.size()); 2472 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2473 *DAG.getContext()); 2474 2475 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2476 bool IsKernel = AMDGPU::isKernel(CallConv); 2477 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2478 2479 if (IsGraphics) { 2480 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2481 !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && 2482 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2483 !Info->hasWorkItemIDZ()); 2484 if (!Subtarget->enableFlatScratch()) 2485 assert(!Info->hasFlatScratchInit()); 2486 if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs()) 2487 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2488 !Info->hasWorkGroupIDZ()); 2489 } 2490 2491 if (CallConv == CallingConv::AMDGPU_PS) { 2492 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2493 2494 // At least one interpolation mode must be enabled or else the GPU will 2495 // hang. 2496 // 2497 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2498 // set PSInputAddr, the user wants to enable some bits after the compilation 2499 // based on run-time states. Since we can't know what the final PSInputEna 2500 // will look like, so we shouldn't do anything here and the user should take 2501 // responsibility for the correct programming. 2502 // 2503 // Otherwise, the following restrictions apply: 2504 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2505 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2506 // enabled too. 2507 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2508 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2509 CCInfo.AllocateReg(AMDGPU::VGPR0); 2510 CCInfo.AllocateReg(AMDGPU::VGPR1); 2511 Info->markPSInputAllocated(0); 2512 Info->markPSInputEnabled(0); 2513 } 2514 if (Subtarget->isAmdPalOS()) { 2515 // For isAmdPalOS, the user does not enable some bits after compilation 2516 // based on run-time states; the register values being generated here are 2517 // the final ones set in hardware. Therefore we need to apply the 2518 // workaround to PSInputAddr and PSInputEnable together. (The case where 2519 // a bit is set in PSInputAddr but not PSInputEnable is where the 2520 // frontend set up an input arg for a particular interpolation mode, but 2521 // nothing uses that input arg. Really we should have an earlier pass 2522 // that removes such an arg.) 2523 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2524 if ((PsInputBits & 0x7F) == 0 || 2525 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2526 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); 2527 } 2528 } else if (IsKernel) { 2529 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2530 } else { 2531 Splits.append(Ins.begin(), Ins.end()); 2532 } 2533 2534 if (IsEntryFunc) { 2535 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2536 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2537 } else if (!IsGraphics) { 2538 // For the fixed ABI, pass workitem IDs in the last argument register. 2539 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2540 } 2541 2542 if (IsKernel) { 2543 analyzeFormalArgumentsCompute(CCInfo, Ins); 2544 } else { 2545 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2546 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2547 } 2548 2549 SmallVector<SDValue, 16> Chains; 2550 2551 // FIXME: This is the minimum kernel argument alignment. We should improve 2552 // this to the maximum alignment of the arguments. 2553 // 2554 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2555 // kern arg offset. 2556 const Align KernelArgBaseAlign = Align(16); 2557 2558 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2559 const ISD::InputArg &Arg = Ins[i]; 2560 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2561 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2562 continue; 2563 } 2564 2565 CCValAssign &VA = ArgLocs[ArgIdx++]; 2566 MVT VT = VA.getLocVT(); 2567 2568 if (IsEntryFunc && VA.isMemLoc()) { 2569 VT = Ins[i].VT; 2570 EVT MemVT = VA.getLocVT(); 2571 2572 const uint64_t Offset = VA.getLocMemOffset(); 2573 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2574 2575 if (Arg.Flags.isByRef()) { 2576 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2577 2578 const GCNTargetMachine &TM = 2579 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2580 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2581 Arg.Flags.getPointerAddrSpace())) { 2582 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2583 Arg.Flags.getPointerAddrSpace()); 2584 } 2585 2586 InVals.push_back(Ptr); 2587 continue; 2588 } 2589 2590 SDValue Arg = lowerKernargMemParameter( 2591 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2592 Chains.push_back(Arg.getValue(1)); 2593 2594 auto *ParamTy = 2595 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2596 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2597 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2598 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2599 // On SI local pointers are just offsets into LDS, so they are always 2600 // less than 16-bits. On CI and newer they could potentially be 2601 // real pointers, so we can't guarantee their size. 2602 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2603 DAG.getValueType(MVT::i16)); 2604 } 2605 2606 InVals.push_back(Arg); 2607 continue; 2608 } else if (!IsEntryFunc && VA.isMemLoc()) { 2609 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2610 InVals.push_back(Val); 2611 if (!Arg.Flags.isByVal()) 2612 Chains.push_back(Val.getValue(1)); 2613 continue; 2614 } 2615 2616 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2617 2618 Register Reg = VA.getLocReg(); 2619 const TargetRegisterClass *RC = nullptr; 2620 if (AMDGPU::VGPR_32RegClass.contains(Reg)) 2621 RC = &AMDGPU::VGPR_32RegClass; 2622 else if (AMDGPU::SGPR_32RegClass.contains(Reg)) 2623 RC = &AMDGPU::SGPR_32RegClass; 2624 else 2625 llvm_unreachable("Unexpected register class in LowerFormalArguments!"); 2626 EVT ValVT = VA.getValVT(); 2627 2628 Reg = MF.addLiveIn(Reg, RC); 2629 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2630 2631 if (Arg.Flags.isSRet()) { 2632 // The return object should be reasonably addressable. 2633 2634 // FIXME: This helps when the return is a real sret. If it is a 2635 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2636 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2637 unsigned NumBits 2638 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2639 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2640 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2641 } 2642 2643 // If this is an 8 or 16-bit value, it is really passed promoted 2644 // to 32 bits. Insert an assert[sz]ext to capture this, then 2645 // truncate to the right size. 2646 switch (VA.getLocInfo()) { 2647 case CCValAssign::Full: 2648 break; 2649 case CCValAssign::BCvt: 2650 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2651 break; 2652 case CCValAssign::SExt: 2653 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2654 DAG.getValueType(ValVT)); 2655 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2656 break; 2657 case CCValAssign::ZExt: 2658 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2659 DAG.getValueType(ValVT)); 2660 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2661 break; 2662 case CCValAssign::AExt: 2663 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2664 break; 2665 default: 2666 llvm_unreachable("Unknown loc info!"); 2667 } 2668 2669 InVals.push_back(Val); 2670 } 2671 2672 // Start adding system SGPRs. 2673 if (IsEntryFunc) { 2674 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2675 } else { 2676 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2677 if (!IsGraphics) 2678 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2679 } 2680 2681 auto &ArgUsageInfo = 2682 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2683 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2684 2685 unsigned StackArgSize = CCInfo.getStackSize(); 2686 Info->setBytesInStackArgArea(StackArgSize); 2687 2688 return Chains.empty() ? Chain : 2689 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2690 } 2691 2692 // TODO: If return values can't fit in registers, we should return as many as 2693 // possible in registers before passing on stack. 2694 bool SITargetLowering::CanLowerReturn( 2695 CallingConv::ID CallConv, 2696 MachineFunction &MF, bool IsVarArg, 2697 const SmallVectorImpl<ISD::OutputArg> &Outs, 2698 LLVMContext &Context) const { 2699 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2700 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2701 // for shaders. Vector types should be explicitly handled by CC. 2702 if (AMDGPU::isEntryFunctionCC(CallConv)) 2703 return true; 2704 2705 SmallVector<CCValAssign, 16> RVLocs; 2706 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2707 if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg))) 2708 return false; 2709 2710 // We must use the stack if return would require unavailable registers. 2711 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF); 2712 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs(); 2713 for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) 2714 if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i))) 2715 return false; 2716 2717 return true; 2718 } 2719 2720 SDValue 2721 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2722 bool isVarArg, 2723 const SmallVectorImpl<ISD::OutputArg> &Outs, 2724 const SmallVectorImpl<SDValue> &OutVals, 2725 const SDLoc &DL, SelectionDAG &DAG) const { 2726 MachineFunction &MF = DAG.getMachineFunction(); 2727 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2728 2729 if (AMDGPU::isKernel(CallConv)) { 2730 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2731 OutVals, DL, DAG); 2732 } 2733 2734 bool IsShader = AMDGPU::isShader(CallConv); 2735 2736 Info->setIfReturnsVoid(Outs.empty()); 2737 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2738 2739 // CCValAssign - represent the assignment of the return value to a location. 2740 SmallVector<CCValAssign, 48> RVLocs; 2741 SmallVector<ISD::OutputArg, 48> Splits; 2742 2743 // CCState - Info about the registers and stack slots. 2744 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2745 *DAG.getContext()); 2746 2747 // Analyze outgoing return values. 2748 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2749 2750 SDValue Glue; 2751 SmallVector<SDValue, 48> RetOps; 2752 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2753 2754 // Copy the result values into the output registers. 2755 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2756 ++I, ++RealRVLocIdx) { 2757 CCValAssign &VA = RVLocs[I]; 2758 assert(VA.isRegLoc() && "Can only return in registers!"); 2759 // TODO: Partially return in registers if return values don't fit. 2760 SDValue Arg = OutVals[RealRVLocIdx]; 2761 2762 // Copied from other backends. 2763 switch (VA.getLocInfo()) { 2764 case CCValAssign::Full: 2765 break; 2766 case CCValAssign::BCvt: 2767 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2768 break; 2769 case CCValAssign::SExt: 2770 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2771 break; 2772 case CCValAssign::ZExt: 2773 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2774 break; 2775 case CCValAssign::AExt: 2776 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2777 break; 2778 default: 2779 llvm_unreachable("Unknown loc info!"); 2780 } 2781 2782 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); 2783 Glue = Chain.getValue(1); 2784 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2785 } 2786 2787 // FIXME: Does sret work properly? 2788 if (!Info->isEntryFunction()) { 2789 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2790 const MCPhysReg *I = 2791 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2792 if (I) { 2793 for (; *I; ++I) { 2794 if (AMDGPU::SReg_64RegClass.contains(*I)) 2795 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2796 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2797 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2798 else 2799 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2800 } 2801 } 2802 } 2803 2804 // Update chain and glue. 2805 RetOps[0] = Chain; 2806 if (Glue.getNode()) 2807 RetOps.push_back(Glue); 2808 2809 unsigned Opc = AMDGPUISD::ENDPGM; 2810 if (!IsWaveEnd) 2811 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE; 2812 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2813 } 2814 2815 SDValue SITargetLowering::LowerCallResult( 2816 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 2817 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2818 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2819 SDValue ThisVal) const { 2820 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2821 2822 // Assign locations to each value returned by this call. 2823 SmallVector<CCValAssign, 16> RVLocs; 2824 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2825 *DAG.getContext()); 2826 CCInfo.AnalyzeCallResult(Ins, RetCC); 2827 2828 // Copy all of the result registers out of their specified physreg. 2829 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2830 CCValAssign VA = RVLocs[i]; 2831 SDValue Val; 2832 2833 if (VA.isRegLoc()) { 2834 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); 2835 Chain = Val.getValue(1); 2836 InGlue = Val.getValue(2); 2837 } else if (VA.isMemLoc()) { 2838 report_fatal_error("TODO: return values in memory"); 2839 } else 2840 llvm_unreachable("unknown argument location type"); 2841 2842 switch (VA.getLocInfo()) { 2843 case CCValAssign::Full: 2844 break; 2845 case CCValAssign::BCvt: 2846 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2847 break; 2848 case CCValAssign::ZExt: 2849 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2850 DAG.getValueType(VA.getValVT())); 2851 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2852 break; 2853 case CCValAssign::SExt: 2854 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2855 DAG.getValueType(VA.getValVT())); 2856 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2857 break; 2858 case CCValAssign::AExt: 2859 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2860 break; 2861 default: 2862 llvm_unreachable("Unknown loc info!"); 2863 } 2864 2865 InVals.push_back(Val); 2866 } 2867 2868 return Chain; 2869 } 2870 2871 // Add code to pass special inputs required depending on used features separate 2872 // from the explicit user arguments present in the IR. 2873 void SITargetLowering::passSpecialInputs( 2874 CallLoweringInfo &CLI, 2875 CCState &CCInfo, 2876 const SIMachineFunctionInfo &Info, 2877 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2878 SmallVectorImpl<SDValue> &MemOpChains, 2879 SDValue Chain) const { 2880 // If we don't have a call site, this was a call inserted by 2881 // legalization. These can never use special inputs. 2882 if (!CLI.CB) 2883 return; 2884 2885 SelectionDAG &DAG = CLI.DAG; 2886 const SDLoc &DL = CLI.DL; 2887 const Function &F = DAG.getMachineFunction().getFunction(); 2888 2889 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2890 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2891 2892 const AMDGPUFunctionArgInfo *CalleeArgInfo 2893 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2894 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2895 auto &ArgUsageInfo = 2896 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2897 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2898 } 2899 2900 // TODO: Unify with private memory register handling. This is complicated by 2901 // the fact that at least in kernels, the input argument is not necessarily 2902 // in the same location as the input. 2903 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 2904 StringLiteral> ImplicitAttrs[] = { 2905 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 2906 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 2907 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 2908 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 2909 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 2910 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 2911 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, 2912 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, 2913 }; 2914 2915 for (auto Attr : ImplicitAttrs) { 2916 const ArgDescriptor *OutgoingArg; 2917 const TargetRegisterClass *ArgRC; 2918 LLT ArgTy; 2919 2920 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 2921 2922 // If the callee does not use the attribute value, skip copying the value. 2923 if (CLI.CB->hasFnAttr(Attr.second)) 2924 continue; 2925 2926 std::tie(OutgoingArg, ArgRC, ArgTy) = 2927 CalleeArgInfo->getPreloadedValue(InputID); 2928 if (!OutgoingArg) 2929 continue; 2930 2931 const ArgDescriptor *IncomingArg; 2932 const TargetRegisterClass *IncomingArgRC; 2933 LLT Ty; 2934 std::tie(IncomingArg, IncomingArgRC, Ty) = 2935 CallerArgInfo.getPreloadedValue(InputID); 2936 assert(IncomingArgRC == ArgRC); 2937 2938 // All special arguments are ints for now. 2939 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2940 SDValue InputReg; 2941 2942 if (IncomingArg) { 2943 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2944 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 2945 // The implicit arg ptr is special because it doesn't have a corresponding 2946 // input for kernels, and is computed from the kernarg segment pointer. 2947 InputReg = getImplicitArgPtr(DAG, DL); 2948 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 2949 std::optional<uint32_t> Id = 2950 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 2951 if (Id.has_value()) { 2952 InputReg = DAG.getConstant(*Id, DL, ArgVT); 2953 } else { 2954 InputReg = DAG.getUNDEF(ArgVT); 2955 } 2956 } else { 2957 // We may have proven the input wasn't needed, although the ABI is 2958 // requiring it. We just need to allocate the register appropriately. 2959 InputReg = DAG.getUNDEF(ArgVT); 2960 } 2961 2962 if (OutgoingArg->isRegister()) { 2963 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2964 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2965 report_fatal_error("failed to allocate implicit input argument"); 2966 } else { 2967 unsigned SpecialArgOffset = 2968 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2969 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2970 SpecialArgOffset); 2971 MemOpChains.push_back(ArgStore); 2972 } 2973 } 2974 2975 // Pack workitem IDs into a single register or pass it as is if already 2976 // packed. 2977 const ArgDescriptor *OutgoingArg; 2978 const TargetRegisterClass *ArgRC; 2979 LLT Ty; 2980 2981 std::tie(OutgoingArg, ArgRC, Ty) = 2982 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2983 if (!OutgoingArg) 2984 std::tie(OutgoingArg, ArgRC, Ty) = 2985 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2986 if (!OutgoingArg) 2987 std::tie(OutgoingArg, ArgRC, Ty) = 2988 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2989 if (!OutgoingArg) 2990 return; 2991 2992 const ArgDescriptor *IncomingArgX = std::get<0>( 2993 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2994 const ArgDescriptor *IncomingArgY = std::get<0>( 2995 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2996 const ArgDescriptor *IncomingArgZ = std::get<0>( 2997 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2998 2999 SDValue InputReg; 3000 SDLoc SL; 3001 3002 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 3003 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 3004 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 3005 3006 // If incoming ids are not packed we need to pack them. 3007 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 3008 NeedWorkItemIDX) { 3009 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 3010 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 3011 } else { 3012 InputReg = DAG.getConstant(0, DL, MVT::i32); 3013 } 3014 } 3015 3016 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 3017 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 3018 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 3019 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 3020 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 3021 InputReg = InputReg.getNode() ? 3022 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 3023 } 3024 3025 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 3026 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 3027 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 3028 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 3029 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 3030 InputReg = InputReg.getNode() ? 3031 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 3032 } 3033 3034 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 3035 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 3036 // We're in a situation where the outgoing function requires the workitem 3037 // ID, but the calling function does not have it (e.g a graphics function 3038 // calling a C calling convention function). This is illegal, but we need 3039 // to produce something. 3040 InputReg = DAG.getUNDEF(MVT::i32); 3041 } else { 3042 // Workitem ids are already packed, any of present incoming arguments 3043 // will carry all required fields. 3044 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 3045 IncomingArgX ? *IncomingArgX : 3046 IncomingArgY ? *IncomingArgY : 3047 *IncomingArgZ, ~0u); 3048 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 3049 } 3050 } 3051 3052 if (OutgoingArg->isRegister()) { 3053 if (InputReg) 3054 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 3055 3056 CCInfo.AllocateReg(OutgoingArg->getRegister()); 3057 } else { 3058 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 3059 if (InputReg) { 3060 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 3061 SpecialArgOffset); 3062 MemOpChains.push_back(ArgStore); 3063 } 3064 } 3065 } 3066 3067 static bool canGuaranteeTCO(CallingConv::ID CC) { 3068 return CC == CallingConv::Fast; 3069 } 3070 3071 /// Return true if we might ever do TCO for calls with this calling convention. 3072 static bool mayTailCallThisCC(CallingConv::ID CC) { 3073 switch (CC) { 3074 case CallingConv::C: 3075 case CallingConv::AMDGPU_Gfx: 3076 return true; 3077 default: 3078 return canGuaranteeTCO(CC); 3079 } 3080 } 3081 3082 bool SITargetLowering::isEligibleForTailCallOptimization( 3083 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 3084 const SmallVectorImpl<ISD::OutputArg> &Outs, 3085 const SmallVectorImpl<SDValue> &OutVals, 3086 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 3087 if (!mayTailCallThisCC(CalleeCC)) 3088 return false; 3089 3090 // For a divergent call target, we need to do a waterfall loop over the 3091 // possible callees which precludes us from using a simple jump. 3092 if (Callee->isDivergent()) 3093 return false; 3094 3095 MachineFunction &MF = DAG.getMachineFunction(); 3096 const Function &CallerF = MF.getFunction(); 3097 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3098 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3099 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3100 3101 // Kernels aren't callable, and don't have a live in return address so it 3102 // doesn't make sense to do a tail call with entry functions. 3103 if (!CallerPreserved) 3104 return false; 3105 3106 bool CCMatch = CallerCC == CalleeCC; 3107 3108 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 3109 if (canGuaranteeTCO(CalleeCC) && CCMatch) 3110 return true; 3111 return false; 3112 } 3113 3114 // TODO: Can we handle var args? 3115 if (IsVarArg) 3116 return false; 3117 3118 for (const Argument &Arg : CallerF.args()) { 3119 if (Arg.hasByValAttr()) 3120 return false; 3121 } 3122 3123 LLVMContext &Ctx = *DAG.getContext(); 3124 3125 // Check that the call results are passed in the same way. 3126 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3127 CCAssignFnForCall(CalleeCC, IsVarArg), 3128 CCAssignFnForCall(CallerCC, IsVarArg))) 3129 return false; 3130 3131 // The callee has to preserve all registers the caller needs to preserve. 3132 if (!CCMatch) { 3133 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3134 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3135 return false; 3136 } 3137 3138 // Nothing more to check if the callee is taking no arguments. 3139 if (Outs.empty()) 3140 return true; 3141 3142 SmallVector<CCValAssign, 16> ArgLocs; 3143 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3144 3145 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3146 3147 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3148 // If the stack arguments for this call do not fit into our own save area then 3149 // the call cannot be made tail. 3150 // TODO: Is this really necessary? 3151 if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) 3152 return false; 3153 3154 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3155 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3156 } 3157 3158 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3159 if (!CI->isTailCall()) 3160 return false; 3161 3162 const Function *ParentFn = CI->getParent()->getParent(); 3163 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3164 return false; 3165 return true; 3166 } 3167 3168 // The wave scratch offset register is used as the global base pointer. 3169 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3170 SmallVectorImpl<SDValue> &InVals) const { 3171 SelectionDAG &DAG = CLI.DAG; 3172 const SDLoc &DL = CLI.DL; 3173 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3174 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3175 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3176 SDValue Chain = CLI.Chain; 3177 SDValue Callee = CLI.Callee; 3178 bool &IsTailCall = CLI.IsTailCall; 3179 CallingConv::ID CallConv = CLI.CallConv; 3180 bool IsVarArg = CLI.IsVarArg; 3181 bool IsSibCall = false; 3182 bool IsThisReturn = false; 3183 MachineFunction &MF = DAG.getMachineFunction(); 3184 3185 if (Callee.isUndef() || isNullConstant(Callee)) { 3186 if (!CLI.IsTailCall) { 3187 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3188 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3189 } 3190 3191 return Chain; 3192 } 3193 3194 if (IsVarArg) { 3195 return lowerUnhandledCall(CLI, InVals, 3196 "unsupported call to variadic function "); 3197 } 3198 3199 if (!CLI.CB) 3200 report_fatal_error("unsupported libcall legalization"); 3201 3202 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3203 return lowerUnhandledCall(CLI, InVals, 3204 "unsupported required tail call to function "); 3205 } 3206 3207 if (IsTailCall) { 3208 IsTailCall = isEligibleForTailCallOptimization( 3209 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3210 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 3211 report_fatal_error("failed to perform tail call elimination on a call " 3212 "site marked musttail"); 3213 } 3214 3215 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3216 3217 // A sibling call is one where we're under the usual C ABI and not planning 3218 // to change that but can still do a tail call: 3219 if (!TailCallOpt && IsTailCall) 3220 IsSibCall = true; 3221 3222 if (IsTailCall) 3223 ++NumTailCalls; 3224 } 3225 3226 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3227 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3228 SmallVector<SDValue, 8> MemOpChains; 3229 3230 // Analyze operands of the call, assigning locations to each operand. 3231 SmallVector<CCValAssign, 16> ArgLocs; 3232 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3233 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3234 3235 if (CallConv != CallingConv::AMDGPU_Gfx) { 3236 // With a fixed ABI, allocate fixed registers before user arguments. 3237 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3238 } 3239 3240 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3241 3242 // Get a count of how many bytes are to be pushed on the stack. 3243 unsigned NumBytes = CCInfo.getStackSize(); 3244 3245 if (IsSibCall) { 3246 // Since we're not changing the ABI to make this a tail call, the memory 3247 // operands are already available in the caller's incoming argument space. 3248 NumBytes = 0; 3249 } 3250 3251 // FPDiff is the byte offset of the call's argument area from the callee's. 3252 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3253 // by this amount for a tail call. In a sibling call it must be 0 because the 3254 // caller will deallocate the entire stack and the callee still expects its 3255 // arguments to begin at SP+0. Completely unused for non-tail calls. 3256 int32_t FPDiff = 0; 3257 MachineFrameInfo &MFI = MF.getFrameInfo(); 3258 3259 // Adjust the stack pointer for the new arguments... 3260 // These operations are automatically eliminated by the prolog/epilog pass 3261 if (!IsSibCall) { 3262 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3263 3264 if (!Subtarget->enableFlatScratch()) { 3265 SmallVector<SDValue, 4> CopyFromChains; 3266 3267 // In the HSA case, this should be an identity copy. 3268 SDValue ScratchRSrcReg 3269 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3270 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 3271 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3272 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3273 } 3274 } 3275 3276 MVT PtrVT = MVT::i32; 3277 3278 // Walk the register/memloc assignments, inserting copies/loads. 3279 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3280 CCValAssign &VA = ArgLocs[i]; 3281 SDValue Arg = OutVals[i]; 3282 3283 // Promote the value if needed. 3284 switch (VA.getLocInfo()) { 3285 case CCValAssign::Full: 3286 break; 3287 case CCValAssign::BCvt: 3288 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3289 break; 3290 case CCValAssign::ZExt: 3291 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3292 break; 3293 case CCValAssign::SExt: 3294 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3295 break; 3296 case CCValAssign::AExt: 3297 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3298 break; 3299 case CCValAssign::FPExt: 3300 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3301 break; 3302 default: 3303 llvm_unreachable("Unknown loc info!"); 3304 } 3305 3306 if (VA.isRegLoc()) { 3307 RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); 3308 } else { 3309 assert(VA.isMemLoc()); 3310 3311 SDValue DstAddr; 3312 MachinePointerInfo DstInfo; 3313 3314 unsigned LocMemOffset = VA.getLocMemOffset(); 3315 int32_t Offset = LocMemOffset; 3316 3317 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3318 MaybeAlign Alignment; 3319 3320 if (IsTailCall) { 3321 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3322 unsigned OpSize = Flags.isByVal() ? 3323 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3324 3325 // FIXME: We can have better than the minimum byval required alignment. 3326 Alignment = 3327 Flags.isByVal() 3328 ? Flags.getNonZeroByValAlign() 3329 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3330 3331 Offset = Offset + FPDiff; 3332 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3333 3334 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3335 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3336 3337 // Make sure any stack arguments overlapping with where we're storing 3338 // are loaded before this eventual operation. Otherwise they'll be 3339 // clobbered. 3340 3341 // FIXME: Why is this really necessary? This seems to just result in a 3342 // lot of code to copy the stack and write them back to the same 3343 // locations, which are supposed to be immutable? 3344 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3345 } else { 3346 // Stores to the argument stack area are relative to the stack pointer. 3347 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3348 MVT::i32); 3349 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3350 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3351 Alignment = 3352 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3353 } 3354 3355 if (Outs[i].Flags.isByVal()) { 3356 SDValue SizeNode = 3357 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3358 SDValue Cpy = 3359 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3360 Outs[i].Flags.getNonZeroByValAlign(), 3361 /*isVol = */ false, /*AlwaysInline = */ true, 3362 /*isTailCall = */ false, DstInfo, 3363 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3364 3365 MemOpChains.push_back(Cpy); 3366 } else { 3367 SDValue Store = 3368 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3369 MemOpChains.push_back(Store); 3370 } 3371 } 3372 } 3373 3374 if (!MemOpChains.empty()) 3375 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3376 3377 // Build a sequence of copy-to-reg nodes chained together with token chain 3378 // and flag operands which copy the outgoing args into the appropriate regs. 3379 SDValue InGlue; 3380 for (auto &RegToPass : RegsToPass) { 3381 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3382 RegToPass.second, InGlue); 3383 InGlue = Chain.getValue(1); 3384 } 3385 3386 3387 // We don't usually want to end the call-sequence here because we would tidy 3388 // the frame up *after* the call, however in the ABI-changing tail-call case 3389 // we've carefully laid out the parameters so that when sp is reset they'll be 3390 // in the correct location. 3391 if (IsTailCall && !IsSibCall) { 3392 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); 3393 InGlue = Chain.getValue(1); 3394 } 3395 3396 std::vector<SDValue> Ops; 3397 Ops.push_back(Chain); 3398 Ops.push_back(Callee); 3399 // Add a redundant copy of the callee global which will not be legalized, as 3400 // we need direct access to the callee later. 3401 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3402 const GlobalValue *GV = GSD->getGlobal(); 3403 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3404 } else { 3405 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3406 } 3407 3408 if (IsTailCall) { 3409 // Each tail call may have to adjust the stack by a different amount, so 3410 // this information must travel along with the operation for eventual 3411 // consumption by emitEpilogue. 3412 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3413 } 3414 3415 // Add argument registers to the end of the list so that they are known live 3416 // into the call. 3417 for (auto &RegToPass : RegsToPass) { 3418 Ops.push_back(DAG.getRegister(RegToPass.first, 3419 RegToPass.second.getValueType())); 3420 } 3421 3422 // Add a register mask operand representing the call-preserved registers. 3423 3424 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3425 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3426 assert(Mask && "Missing call preserved mask for calling convention"); 3427 Ops.push_back(DAG.getRegisterMask(Mask)); 3428 3429 if (InGlue.getNode()) 3430 Ops.push_back(InGlue); 3431 3432 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3433 3434 // If we're doing a tall call, use a TC_RETURN here rather than an 3435 // actual call instruction. 3436 if (IsTailCall) { 3437 MFI.setHasTailCall(); 3438 unsigned OPC = CallConv == CallingConv::AMDGPU_Gfx ? 3439 AMDGPUISD::TC_RETURN_GFX : AMDGPUISD::TC_RETURN; 3440 return DAG.getNode(OPC, DL, NodeTys, Ops); 3441 } 3442 3443 // Returns a chain and a flag for retval copy to use. 3444 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3445 Chain = Call.getValue(0); 3446 InGlue = Call.getValue(1); 3447 3448 uint64_t CalleePopBytes = NumBytes; 3449 Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL); 3450 if (!Ins.empty()) 3451 InGlue = Chain.getValue(1); 3452 3453 // Handle result values, copying them out of physregs into vregs that we 3454 // return. 3455 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 3456 InVals, IsThisReturn, 3457 IsThisReturn ? OutVals[0] : SDValue()); 3458 } 3459 3460 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3461 // except for applying the wave size scale to the increment amount. 3462 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3463 SDValue Op, SelectionDAG &DAG) const { 3464 const MachineFunction &MF = DAG.getMachineFunction(); 3465 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3466 3467 SDLoc dl(Op); 3468 EVT VT = Op.getValueType(); 3469 SDValue Tmp1 = Op; 3470 SDValue Tmp2 = Op.getValue(1); 3471 SDValue Tmp3 = Op.getOperand(2); 3472 SDValue Chain = Tmp1.getOperand(0); 3473 3474 Register SPReg = Info->getStackPtrOffsetReg(); 3475 3476 // Chain the dynamic stack allocation so that it doesn't modify the stack 3477 // pointer when other instructions are using the stack. 3478 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3479 3480 SDValue Size = Tmp2.getOperand(1); 3481 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3482 Chain = SP.getValue(1); 3483 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3484 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3485 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3486 unsigned Opc = 3487 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3488 ISD::ADD : ISD::SUB; 3489 3490 SDValue ScaledSize = DAG.getNode( 3491 ISD::SHL, dl, VT, Size, 3492 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3493 3494 Align StackAlign = TFL->getStackAlign(); 3495 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3496 if (Alignment && *Alignment > StackAlign) { 3497 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3498 DAG.getConstant(-(uint64_t)Alignment->value() 3499 << ST.getWavefrontSizeLog2(), 3500 dl, VT)); 3501 } 3502 3503 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3504 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 3505 3506 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3507 } 3508 3509 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3510 SelectionDAG &DAG) const { 3511 // We only handle constant sizes here to allow non-entry block, static sized 3512 // allocas. A truly dynamic value is more difficult to support because we 3513 // don't know if the size value is uniform or not. If the size isn't uniform, 3514 // we would need to do a wave reduction to get the maximum size to know how 3515 // much to increment the uniform stack pointer. 3516 SDValue Size = Op.getOperand(1); 3517 if (isa<ConstantSDNode>(Size)) 3518 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3519 3520 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3521 } 3522 3523 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3524 const MachineFunction &MF) const { 3525 Register Reg = StringSwitch<Register>(RegName) 3526 .Case("m0", AMDGPU::M0) 3527 .Case("exec", AMDGPU::EXEC) 3528 .Case("exec_lo", AMDGPU::EXEC_LO) 3529 .Case("exec_hi", AMDGPU::EXEC_HI) 3530 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3531 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3532 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3533 .Default(Register()); 3534 3535 if (Reg == AMDGPU::NoRegister) { 3536 report_fatal_error(Twine("invalid register name \"" 3537 + StringRef(RegName) + "\".")); 3538 3539 } 3540 3541 if (!Subtarget->hasFlatScrRegister() && 3542 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3543 report_fatal_error(Twine("invalid register \"" 3544 + StringRef(RegName) + "\" for subtarget.")); 3545 } 3546 3547 switch (Reg) { 3548 case AMDGPU::M0: 3549 case AMDGPU::EXEC_LO: 3550 case AMDGPU::EXEC_HI: 3551 case AMDGPU::FLAT_SCR_LO: 3552 case AMDGPU::FLAT_SCR_HI: 3553 if (VT.getSizeInBits() == 32) 3554 return Reg; 3555 break; 3556 case AMDGPU::EXEC: 3557 case AMDGPU::FLAT_SCR: 3558 if (VT.getSizeInBits() == 64) 3559 return Reg; 3560 break; 3561 default: 3562 llvm_unreachable("missing register type checking"); 3563 } 3564 3565 report_fatal_error(Twine("invalid type for register \"" 3566 + StringRef(RegName) + "\".")); 3567 } 3568 3569 // If kill is not the last instruction, split the block so kill is always a 3570 // proper terminator. 3571 MachineBasicBlock * 3572 SITargetLowering::splitKillBlock(MachineInstr &MI, 3573 MachineBasicBlock *BB) const { 3574 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3575 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3576 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3577 return SplitBB; 3578 } 3579 3580 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3581 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3582 // be the first instruction in the remainder block. 3583 // 3584 /// \returns { LoopBody, Remainder } 3585 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3586 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3587 MachineFunction *MF = MBB.getParent(); 3588 MachineBasicBlock::iterator I(&MI); 3589 3590 // To insert the loop we need to split the block. Move everything after this 3591 // point to a new block, and insert a new empty block between the two. 3592 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3593 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3594 MachineFunction::iterator MBBI(MBB); 3595 ++MBBI; 3596 3597 MF->insert(MBBI, LoopBB); 3598 MF->insert(MBBI, RemainderBB); 3599 3600 LoopBB->addSuccessor(LoopBB); 3601 LoopBB->addSuccessor(RemainderBB); 3602 3603 // Move the rest of the block into a new block. 3604 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3605 3606 if (InstInLoop) { 3607 auto Next = std::next(I); 3608 3609 // Move instruction to loop body. 3610 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3611 3612 // Move the rest of the block. 3613 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3614 } else { 3615 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3616 } 3617 3618 MBB.addSuccessor(LoopBB); 3619 3620 return std::pair(LoopBB, RemainderBB); 3621 } 3622 3623 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3624 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3625 MachineBasicBlock *MBB = MI.getParent(); 3626 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3627 auto I = MI.getIterator(); 3628 auto E = std::next(I); 3629 3630 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3631 .addImm(0); 3632 3633 MIBundleBuilder Bundler(*MBB, I, E); 3634 finalizeBundle(*MBB, Bundler.begin()); 3635 } 3636 3637 MachineBasicBlock * 3638 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3639 MachineBasicBlock *BB) const { 3640 const DebugLoc &DL = MI.getDebugLoc(); 3641 3642 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3643 3644 MachineBasicBlock *LoopBB; 3645 MachineBasicBlock *RemainderBB; 3646 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3647 3648 // Apparently kill flags are only valid if the def is in the same block? 3649 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3650 Src->setIsKill(false); 3651 3652 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3653 3654 MachineBasicBlock::iterator I = LoopBB->end(); 3655 3656 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3657 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3658 3659 // Clear TRAP_STS.MEM_VIOL 3660 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3661 .addImm(0) 3662 .addImm(EncodedReg); 3663 3664 bundleInstWithWaitcnt(MI); 3665 3666 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3667 3668 // Load and check TRAP_STS.MEM_VIOL 3669 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3670 .addImm(EncodedReg); 3671 3672 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3673 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3674 .addReg(Reg, RegState::Kill) 3675 .addImm(0); 3676 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3677 .addMBB(LoopBB); 3678 3679 return RemainderBB; 3680 } 3681 3682 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3683 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3684 // will only do one iteration. In the worst case, this will loop 64 times. 3685 // 3686 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3687 static MachineBasicBlock::iterator 3688 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3689 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3690 const DebugLoc &DL, const MachineOperand &Idx, 3691 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3692 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3693 Register &SGPRIdxReg) { 3694 3695 MachineFunction *MF = OrigBB.getParent(); 3696 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3697 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3698 MachineBasicBlock::iterator I = LoopBB.begin(); 3699 3700 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3701 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3702 Register NewExec = MRI.createVirtualRegister(BoolRC); 3703 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3704 Register CondReg = MRI.createVirtualRegister(BoolRC); 3705 3706 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3707 .addReg(InitReg) 3708 .addMBB(&OrigBB) 3709 .addReg(ResultReg) 3710 .addMBB(&LoopBB); 3711 3712 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3713 .addReg(InitSaveExecReg) 3714 .addMBB(&OrigBB) 3715 .addReg(NewExec) 3716 .addMBB(&LoopBB); 3717 3718 // Read the next variant <- also loop target. 3719 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3720 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3721 3722 // Compare the just read M0 value to all possible Idx values. 3723 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3724 .addReg(CurrentIdxReg) 3725 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3726 3727 // Update EXEC, save the original EXEC value to VCC. 3728 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3729 : AMDGPU::S_AND_SAVEEXEC_B64), 3730 NewExec) 3731 .addReg(CondReg, RegState::Kill); 3732 3733 MRI.setSimpleHint(NewExec, CondReg); 3734 3735 if (UseGPRIdxMode) { 3736 if (Offset == 0) { 3737 SGPRIdxReg = CurrentIdxReg; 3738 } else { 3739 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3740 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3741 .addReg(CurrentIdxReg, RegState::Kill) 3742 .addImm(Offset); 3743 } 3744 } else { 3745 // Move index from VCC into M0 3746 if (Offset == 0) { 3747 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3748 .addReg(CurrentIdxReg, RegState::Kill); 3749 } else { 3750 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3751 .addReg(CurrentIdxReg, RegState::Kill) 3752 .addImm(Offset); 3753 } 3754 } 3755 3756 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3757 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3758 MachineInstr *InsertPt = 3759 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3760 : AMDGPU::S_XOR_B64_term), Exec) 3761 .addReg(Exec) 3762 .addReg(NewExec); 3763 3764 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3765 // s_cbranch_scc0? 3766 3767 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3768 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3769 .addMBB(&LoopBB); 3770 3771 return InsertPt->getIterator(); 3772 } 3773 3774 // This has slightly sub-optimal regalloc when the source vector is killed by 3775 // the read. The register allocator does not understand that the kill is 3776 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3777 // subregister from it, using 1 more VGPR than necessary. This was saved when 3778 // this was expanded after register allocation. 3779 static MachineBasicBlock::iterator 3780 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3781 unsigned InitResultReg, unsigned PhiReg, int Offset, 3782 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3783 MachineFunction *MF = MBB.getParent(); 3784 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3785 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3786 MachineRegisterInfo &MRI = MF->getRegInfo(); 3787 const DebugLoc &DL = MI.getDebugLoc(); 3788 MachineBasicBlock::iterator I(&MI); 3789 3790 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3791 Register DstReg = MI.getOperand(0).getReg(); 3792 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3793 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3794 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3795 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3796 3797 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3798 3799 // Save the EXEC mask 3800 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3801 .addReg(Exec); 3802 3803 MachineBasicBlock *LoopBB; 3804 MachineBasicBlock *RemainderBB; 3805 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3806 3807 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3808 3809 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3810 InitResultReg, DstReg, PhiReg, TmpExec, 3811 Offset, UseGPRIdxMode, SGPRIdxReg); 3812 3813 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3814 MachineFunction::iterator MBBI(LoopBB); 3815 ++MBBI; 3816 MF->insert(MBBI, LandingPad); 3817 LoopBB->removeSuccessor(RemainderBB); 3818 LandingPad->addSuccessor(RemainderBB); 3819 LoopBB->addSuccessor(LandingPad); 3820 MachineBasicBlock::iterator First = LandingPad->begin(); 3821 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3822 .addReg(SaveExec); 3823 3824 return InsPt; 3825 } 3826 3827 // Returns subreg index, offset 3828 static std::pair<unsigned, int> 3829 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3830 const TargetRegisterClass *SuperRC, 3831 unsigned VecReg, 3832 int Offset) { 3833 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3834 3835 // Skip out of bounds offsets, or else we would end up using an undefined 3836 // register. 3837 if (Offset >= NumElts || Offset < 0) 3838 return std::pair(AMDGPU::sub0, Offset); 3839 3840 return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3841 } 3842 3843 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3844 MachineRegisterInfo &MRI, MachineInstr &MI, 3845 int Offset) { 3846 MachineBasicBlock *MBB = MI.getParent(); 3847 const DebugLoc &DL = MI.getDebugLoc(); 3848 MachineBasicBlock::iterator I(&MI); 3849 3850 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3851 3852 assert(Idx->getReg() != AMDGPU::NoRegister); 3853 3854 if (Offset == 0) { 3855 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3856 } else { 3857 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3858 .add(*Idx) 3859 .addImm(Offset); 3860 } 3861 } 3862 3863 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3864 MachineRegisterInfo &MRI, MachineInstr &MI, 3865 int Offset) { 3866 MachineBasicBlock *MBB = MI.getParent(); 3867 const DebugLoc &DL = MI.getDebugLoc(); 3868 MachineBasicBlock::iterator I(&MI); 3869 3870 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3871 3872 if (Offset == 0) 3873 return Idx->getReg(); 3874 3875 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3876 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3877 .add(*Idx) 3878 .addImm(Offset); 3879 return Tmp; 3880 } 3881 3882 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3883 MachineBasicBlock &MBB, 3884 const GCNSubtarget &ST) { 3885 const SIInstrInfo *TII = ST.getInstrInfo(); 3886 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3887 MachineFunction *MF = MBB.getParent(); 3888 MachineRegisterInfo &MRI = MF->getRegInfo(); 3889 3890 Register Dst = MI.getOperand(0).getReg(); 3891 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3892 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3893 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3894 3895 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3896 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3897 3898 unsigned SubReg; 3899 std::tie(SubReg, Offset) 3900 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3901 3902 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3903 3904 // Check for a SGPR index. 3905 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3906 MachineBasicBlock::iterator I(&MI); 3907 const DebugLoc &DL = MI.getDebugLoc(); 3908 3909 if (UseGPRIdxMode) { 3910 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3911 // to avoid interfering with other uses, so probably requires a new 3912 // optimization pass. 3913 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3914 3915 const MCInstrDesc &GPRIDXDesc = 3916 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3917 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3918 .addReg(SrcReg) 3919 .addReg(Idx) 3920 .addImm(SubReg); 3921 } else { 3922 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3923 3924 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3925 .addReg(SrcReg, 0, SubReg) 3926 .addReg(SrcReg, RegState::Implicit); 3927 } 3928 3929 MI.eraseFromParent(); 3930 3931 return &MBB; 3932 } 3933 3934 // Control flow needs to be inserted if indexing with a VGPR. 3935 const DebugLoc &DL = MI.getDebugLoc(); 3936 MachineBasicBlock::iterator I(&MI); 3937 3938 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3939 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3940 3941 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3942 3943 Register SGPRIdxReg; 3944 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3945 UseGPRIdxMode, SGPRIdxReg); 3946 3947 MachineBasicBlock *LoopBB = InsPt->getParent(); 3948 3949 if (UseGPRIdxMode) { 3950 const MCInstrDesc &GPRIDXDesc = 3951 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3952 3953 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3954 .addReg(SrcReg) 3955 .addReg(SGPRIdxReg) 3956 .addImm(SubReg); 3957 } else { 3958 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3959 .addReg(SrcReg, 0, SubReg) 3960 .addReg(SrcReg, RegState::Implicit); 3961 } 3962 3963 MI.eraseFromParent(); 3964 3965 return LoopBB; 3966 } 3967 3968 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3969 MachineBasicBlock &MBB, 3970 const GCNSubtarget &ST) { 3971 const SIInstrInfo *TII = ST.getInstrInfo(); 3972 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3973 MachineFunction *MF = MBB.getParent(); 3974 MachineRegisterInfo &MRI = MF->getRegInfo(); 3975 3976 Register Dst = MI.getOperand(0).getReg(); 3977 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3978 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3979 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3980 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3981 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3982 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3983 3984 // This can be an immediate, but will be folded later. 3985 assert(Val->getReg()); 3986 3987 unsigned SubReg; 3988 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3989 SrcVec->getReg(), 3990 Offset); 3991 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3992 3993 if (Idx->getReg() == AMDGPU::NoRegister) { 3994 MachineBasicBlock::iterator I(&MI); 3995 const DebugLoc &DL = MI.getDebugLoc(); 3996 3997 assert(Offset == 0); 3998 3999 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 4000 .add(*SrcVec) 4001 .add(*Val) 4002 .addImm(SubReg); 4003 4004 MI.eraseFromParent(); 4005 return &MBB; 4006 } 4007 4008 // Check for a SGPR index. 4009 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 4010 MachineBasicBlock::iterator I(&MI); 4011 const DebugLoc &DL = MI.getDebugLoc(); 4012 4013 if (UseGPRIdxMode) { 4014 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 4015 4016 const MCInstrDesc &GPRIDXDesc = 4017 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4018 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 4019 .addReg(SrcVec->getReg()) 4020 .add(*Val) 4021 .addReg(Idx) 4022 .addImm(SubReg); 4023 } else { 4024 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 4025 4026 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4027 TRI.getRegSizeInBits(*VecRC), 32, false); 4028 BuildMI(MBB, I, DL, MovRelDesc, Dst) 4029 .addReg(SrcVec->getReg()) 4030 .add(*Val) 4031 .addImm(SubReg); 4032 } 4033 MI.eraseFromParent(); 4034 return &MBB; 4035 } 4036 4037 // Control flow needs to be inserted if indexing with a VGPR. 4038 if (Val->isReg()) 4039 MRI.clearKillFlags(Val->getReg()); 4040 4041 const DebugLoc &DL = MI.getDebugLoc(); 4042 4043 Register PhiReg = MRI.createVirtualRegister(VecRC); 4044 4045 Register SGPRIdxReg; 4046 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 4047 UseGPRIdxMode, SGPRIdxReg); 4048 MachineBasicBlock *LoopBB = InsPt->getParent(); 4049 4050 if (UseGPRIdxMode) { 4051 const MCInstrDesc &GPRIDXDesc = 4052 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4053 4054 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 4055 .addReg(PhiReg) 4056 .add(*Val) 4057 .addReg(SGPRIdxReg) 4058 .addImm(AMDGPU::sub0); 4059 } else { 4060 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4061 TRI.getRegSizeInBits(*VecRC), 32, false); 4062 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 4063 .addReg(PhiReg) 4064 .add(*Val) 4065 .addImm(AMDGPU::sub0); 4066 } 4067 4068 MI.eraseFromParent(); 4069 return LoopBB; 4070 } 4071 4072 static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI, 4073 MachineBasicBlock &BB, 4074 const GCNSubtarget &ST, 4075 unsigned Opc) { 4076 MachineRegisterInfo &MRI = BB.getParent()->getRegInfo(); 4077 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4078 const DebugLoc &DL = MI.getDebugLoc(); 4079 const SIInstrInfo *TII = ST.getInstrInfo(); 4080 4081 // Reduction operations depend on whether the input operand is SGPR or VGPR. 4082 Register SrcReg = MI.getOperand(1).getReg(); 4083 bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg)); 4084 Register DstReg = MI.getOperand(0).getReg(); 4085 MachineBasicBlock *RetBB = nullptr; 4086 if (isSGPR) { 4087 // These operations with a uniform value i.e. SGPR are idempotent. 4088 // Reduced value will be same as given sgpr. 4089 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg); 4090 RetBB = &BB; 4091 } else { 4092 // TODO: Implement DPP Strategy and switch based on immediate strategy 4093 // operand. For now, for all the cases (default, Iterative and DPP we use 4094 // iterative approach by default.) 4095 4096 // To reduce the VGPR using iterative approach, we need to iterate 4097 // over all the active lanes. Lowering consists of ComputeLoop, 4098 // which iterate over only active lanes. We use copy of EXEC register 4099 // as induction variable and every active lane modifies it using bitset0 4100 // so that we will get the next active lane for next iteration. 4101 MachineBasicBlock::iterator I = BB.end(); 4102 Register SrcReg = MI.getOperand(1).getReg(); 4103 4104 // Create Control flow for loop 4105 // Split MI's Machine Basic block into For loop 4106 auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true); 4107 4108 // Create virtual registers required for lowering. 4109 const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass(); 4110 const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg); 4111 Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass); 4112 Register InitalValReg = MRI.createVirtualRegister(DstRegClass); 4113 4114 Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass); 4115 Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); 4116 Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); 4117 4118 Register FF1Reg = MRI.createVirtualRegister(DstRegClass); 4119 Register LaneValueReg = MRI.createVirtualRegister(DstRegClass); 4120 4121 bool IsWave32 = ST.isWave32(); 4122 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 4123 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4124 4125 // Create initail values of induction variable from Exec, Accumulator and 4126 // insert branch instr to newly created ComputeBlockk 4127 uint32_t InitalValue = 4128 (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0; 4129 auto TmpSReg = 4130 BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg); 4131 BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg) 4132 .addImm(InitalValue); 4133 BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop); 4134 4135 // Start constructing ComputeLoop 4136 I = ComputeLoop->end(); 4137 auto Accumulator = 4138 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg) 4139 .addReg(InitalValReg) 4140 .addMBB(&BB); 4141 auto ActiveBits = 4142 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg) 4143 .addReg(TmpSReg->getOperand(0).getReg()) 4144 .addMBB(&BB); 4145 4146 // Perform the computations 4147 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64; 4148 auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg) 4149 .addReg(ActiveBits->getOperand(0).getReg()); 4150 auto LaneValue = BuildMI(*ComputeLoop, I, DL, 4151 TII->get(AMDGPU::V_READLANE_B32), LaneValueReg) 4152 .addReg(SrcReg) 4153 .addReg(FF1->getOperand(0).getReg()); 4154 auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg) 4155 .addReg(Accumulator->getOperand(0).getReg()) 4156 .addReg(LaneValue->getOperand(0).getReg()); 4157 4158 // Manipulate the iterator to get the next active lane 4159 unsigned BITSETOpc = 4160 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64; 4161 auto NewActiveBits = 4162 BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg) 4163 .addReg(FF1->getOperand(0).getReg()) 4164 .addReg(ActiveBits->getOperand(0).getReg()); 4165 4166 // Add phi nodes 4167 Accumulator.addReg(NewAccumulator->getOperand(0).getReg()) 4168 .addMBB(ComputeLoop); 4169 ActiveBits.addReg(NewActiveBits->getOperand(0).getReg()) 4170 .addMBB(ComputeLoop); 4171 4172 // Creating branching 4173 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64; 4174 BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc)) 4175 .addReg(NewActiveBits->getOperand(0).getReg()) 4176 .addImm(0); 4177 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4178 .addMBB(ComputeLoop); 4179 4180 RetBB = ComputeEnd; 4181 } 4182 MI.eraseFromParent(); 4183 return RetBB; 4184 } 4185 4186 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 4187 MachineInstr &MI, MachineBasicBlock *BB) const { 4188 4189 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4190 MachineFunction *MF = BB->getParent(); 4191 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 4192 4193 switch (MI.getOpcode()) { 4194 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32: 4195 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32); 4196 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32: 4197 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32); 4198 case AMDGPU::S_UADDO_PSEUDO: 4199 case AMDGPU::S_USUBO_PSEUDO: { 4200 const DebugLoc &DL = MI.getDebugLoc(); 4201 MachineOperand &Dest0 = MI.getOperand(0); 4202 MachineOperand &Dest1 = MI.getOperand(1); 4203 MachineOperand &Src0 = MI.getOperand(2); 4204 MachineOperand &Src1 = MI.getOperand(3); 4205 4206 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 4207 ? AMDGPU::S_ADD_I32 4208 : AMDGPU::S_SUB_I32; 4209 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 4210 4211 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 4212 .addImm(1) 4213 .addImm(0); 4214 4215 MI.eraseFromParent(); 4216 return BB; 4217 } 4218 case AMDGPU::S_ADD_U64_PSEUDO: 4219 case AMDGPU::S_SUB_U64_PSEUDO: { 4220 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4221 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4222 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4223 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4224 const DebugLoc &DL = MI.getDebugLoc(); 4225 4226 MachineOperand &Dest = MI.getOperand(0); 4227 MachineOperand &Src0 = MI.getOperand(1); 4228 MachineOperand &Src1 = MI.getOperand(2); 4229 4230 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4231 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4232 4233 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4234 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4235 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4236 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4237 4238 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4239 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4240 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4241 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4242 4243 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4244 4245 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4246 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4247 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 4248 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 4249 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4250 .addReg(DestSub0) 4251 .addImm(AMDGPU::sub0) 4252 .addReg(DestSub1) 4253 .addImm(AMDGPU::sub1); 4254 MI.eraseFromParent(); 4255 return BB; 4256 } 4257 case AMDGPU::V_ADD_U64_PSEUDO: 4258 case AMDGPU::V_SUB_U64_PSEUDO: { 4259 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4260 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4261 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4262 const DebugLoc &DL = MI.getDebugLoc(); 4263 4264 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4265 4266 MachineOperand &Dest = MI.getOperand(0); 4267 MachineOperand &Src0 = MI.getOperand(1); 4268 MachineOperand &Src1 = MI.getOperand(2); 4269 4270 if (IsAdd && ST.hasLshlAddB64()) { 4271 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), 4272 Dest.getReg()) 4273 .add(Src0) 4274 .addImm(0) 4275 .add(Src1); 4276 TII->legalizeOperands(*Add); 4277 MI.eraseFromParent(); 4278 return BB; 4279 } 4280 4281 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4282 4283 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4284 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4285 4286 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4287 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4288 4289 const TargetRegisterClass *Src0RC = Src0.isReg() 4290 ? MRI.getRegClass(Src0.getReg()) 4291 : &AMDGPU::VReg_64RegClass; 4292 const TargetRegisterClass *Src1RC = Src1.isReg() 4293 ? MRI.getRegClass(Src1.getReg()) 4294 : &AMDGPU::VReg_64RegClass; 4295 4296 const TargetRegisterClass *Src0SubRC = 4297 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); 4298 const TargetRegisterClass *Src1SubRC = 4299 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); 4300 4301 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4302 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4303 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4304 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4305 4306 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4307 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4308 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4309 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4310 4311 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4312 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4313 .addReg(CarryReg, RegState::Define) 4314 .add(SrcReg0Sub0) 4315 .add(SrcReg1Sub0) 4316 .addImm(0); // clamp bit 4317 4318 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4319 MachineInstr *HiHalf = 4320 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4321 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4322 .add(SrcReg0Sub1) 4323 .add(SrcReg1Sub1) 4324 .addReg(CarryReg, RegState::Kill) 4325 .addImm(0); // clamp bit 4326 4327 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4328 .addReg(DestSub0) 4329 .addImm(AMDGPU::sub0) 4330 .addReg(DestSub1) 4331 .addImm(AMDGPU::sub1); 4332 TII->legalizeOperands(*LoHalf); 4333 TII->legalizeOperands(*HiHalf); 4334 MI.eraseFromParent(); 4335 return BB; 4336 } 4337 case AMDGPU::S_ADD_CO_PSEUDO: 4338 case AMDGPU::S_SUB_CO_PSEUDO: { 4339 // This pseudo has a chance to be selected 4340 // only from uniform add/subcarry node. All the VGPR operands 4341 // therefore assumed to be splat vectors. 4342 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4343 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4344 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4345 MachineBasicBlock::iterator MII = MI; 4346 const DebugLoc &DL = MI.getDebugLoc(); 4347 MachineOperand &Dest = MI.getOperand(0); 4348 MachineOperand &CarryDest = MI.getOperand(1); 4349 MachineOperand &Src0 = MI.getOperand(2); 4350 MachineOperand &Src1 = MI.getOperand(3); 4351 MachineOperand &Src2 = MI.getOperand(4); 4352 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4353 ? AMDGPU::S_ADDC_U32 4354 : AMDGPU::S_SUBB_U32; 4355 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4356 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4357 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4358 .addReg(Src0.getReg()); 4359 Src0.setReg(RegOp0); 4360 } 4361 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4362 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4363 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4364 .addReg(Src1.getReg()); 4365 Src1.setReg(RegOp1); 4366 } 4367 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4368 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4369 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4370 .addReg(Src2.getReg()); 4371 Src2.setReg(RegOp2); 4372 } 4373 4374 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4375 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4376 assert(WaveSize == 64 || WaveSize == 32); 4377 4378 if (WaveSize == 64) { 4379 if (ST.hasScalarCompareEq64()) { 4380 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4381 .addReg(Src2.getReg()) 4382 .addImm(0); 4383 } else { 4384 const TargetRegisterClass *SubRC = 4385 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); 4386 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4387 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4388 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4389 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4390 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4391 4392 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4393 .add(Src2Sub0) 4394 .add(Src2Sub1); 4395 4396 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4397 .addReg(Src2_32, RegState::Kill) 4398 .addImm(0); 4399 } 4400 } else { 4401 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4402 .addReg(Src2.getReg()) 4403 .addImm(0); 4404 } 4405 4406 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4407 4408 unsigned SelOpc = 4409 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4410 4411 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4412 .addImm(-1) 4413 .addImm(0); 4414 4415 MI.eraseFromParent(); 4416 return BB; 4417 } 4418 case AMDGPU::SI_INIT_M0: { 4419 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4420 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4421 .add(MI.getOperand(0)); 4422 MI.eraseFromParent(); 4423 return BB; 4424 } 4425 case AMDGPU::GET_GROUPSTATICSIZE: { 4426 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4427 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4428 DebugLoc DL = MI.getDebugLoc(); 4429 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4430 .add(MI.getOperand(0)) 4431 .addImm(MFI->getLDSSize()); 4432 MI.eraseFromParent(); 4433 return BB; 4434 } 4435 case AMDGPU::SI_INDIRECT_SRC_V1: 4436 case AMDGPU::SI_INDIRECT_SRC_V2: 4437 case AMDGPU::SI_INDIRECT_SRC_V4: 4438 case AMDGPU::SI_INDIRECT_SRC_V8: 4439 case AMDGPU::SI_INDIRECT_SRC_V9: 4440 case AMDGPU::SI_INDIRECT_SRC_V10: 4441 case AMDGPU::SI_INDIRECT_SRC_V11: 4442 case AMDGPU::SI_INDIRECT_SRC_V12: 4443 case AMDGPU::SI_INDIRECT_SRC_V16: 4444 case AMDGPU::SI_INDIRECT_SRC_V32: 4445 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4446 case AMDGPU::SI_INDIRECT_DST_V1: 4447 case AMDGPU::SI_INDIRECT_DST_V2: 4448 case AMDGPU::SI_INDIRECT_DST_V4: 4449 case AMDGPU::SI_INDIRECT_DST_V8: 4450 case AMDGPU::SI_INDIRECT_DST_V9: 4451 case AMDGPU::SI_INDIRECT_DST_V10: 4452 case AMDGPU::SI_INDIRECT_DST_V11: 4453 case AMDGPU::SI_INDIRECT_DST_V12: 4454 case AMDGPU::SI_INDIRECT_DST_V16: 4455 case AMDGPU::SI_INDIRECT_DST_V32: 4456 return emitIndirectDst(MI, *BB, *getSubtarget()); 4457 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4458 case AMDGPU::SI_KILL_I1_PSEUDO: 4459 return splitKillBlock(MI, BB); 4460 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4461 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4462 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4463 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4464 4465 Register Dst = MI.getOperand(0).getReg(); 4466 Register Src0 = MI.getOperand(1).getReg(); 4467 Register Src1 = MI.getOperand(2).getReg(); 4468 const DebugLoc &DL = MI.getDebugLoc(); 4469 Register SrcCond = MI.getOperand(3).getReg(); 4470 4471 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4472 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4473 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4474 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4475 4476 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4477 .addReg(SrcCond); 4478 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4479 .addImm(0) 4480 .addReg(Src0, 0, AMDGPU::sub0) 4481 .addImm(0) 4482 .addReg(Src1, 0, AMDGPU::sub0) 4483 .addReg(SrcCondCopy); 4484 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4485 .addImm(0) 4486 .addReg(Src0, 0, AMDGPU::sub1) 4487 .addImm(0) 4488 .addReg(Src1, 0, AMDGPU::sub1) 4489 .addReg(SrcCondCopy); 4490 4491 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4492 .addReg(DstLo) 4493 .addImm(AMDGPU::sub0) 4494 .addReg(DstHi) 4495 .addImm(AMDGPU::sub1); 4496 MI.eraseFromParent(); 4497 return BB; 4498 } 4499 case AMDGPU::SI_BR_UNDEF: { 4500 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4501 const DebugLoc &DL = MI.getDebugLoc(); 4502 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4503 .add(MI.getOperand(0)); 4504 Br->getOperand(1).setIsUndef(); // read undef SCC 4505 MI.eraseFromParent(); 4506 return BB; 4507 } 4508 case AMDGPU::ADJCALLSTACKUP: 4509 case AMDGPU::ADJCALLSTACKDOWN: { 4510 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4511 MachineInstrBuilder MIB(*MF, &MI); 4512 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4513 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4514 return BB; 4515 } 4516 case AMDGPU::SI_CALL_ISEL: { 4517 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4518 const DebugLoc &DL = MI.getDebugLoc(); 4519 4520 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4521 4522 MachineInstrBuilder MIB; 4523 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4524 4525 for (const MachineOperand &MO : MI.operands()) 4526 MIB.add(MO); 4527 4528 MIB.cloneMemRefs(MI); 4529 MI.eraseFromParent(); 4530 return BB; 4531 } 4532 case AMDGPU::V_ADD_CO_U32_e32: 4533 case AMDGPU::V_SUB_CO_U32_e32: 4534 case AMDGPU::V_SUBREV_CO_U32_e32: { 4535 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4536 const DebugLoc &DL = MI.getDebugLoc(); 4537 unsigned Opc = MI.getOpcode(); 4538 4539 bool NeedClampOperand = false; 4540 if (TII->pseudoToMCOpcode(Opc) == -1) { 4541 Opc = AMDGPU::getVOPe64(Opc); 4542 NeedClampOperand = true; 4543 } 4544 4545 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4546 if (TII->isVOP3(*I)) { 4547 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4548 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4549 I.addReg(TRI->getVCC(), RegState::Define); 4550 } 4551 I.add(MI.getOperand(1)) 4552 .add(MI.getOperand(2)); 4553 if (NeedClampOperand) 4554 I.addImm(0); // clamp bit for e64 encoding 4555 4556 TII->legalizeOperands(*I); 4557 4558 MI.eraseFromParent(); 4559 return BB; 4560 } 4561 case AMDGPU::V_ADDC_U32_e32: 4562 case AMDGPU::V_SUBB_U32_e32: 4563 case AMDGPU::V_SUBBREV_U32_e32: 4564 // These instructions have an implicit use of vcc which counts towards the 4565 // constant bus limit. 4566 TII->legalizeOperands(MI); 4567 return BB; 4568 case AMDGPU::DS_GWS_INIT: 4569 case AMDGPU::DS_GWS_SEMA_BR: 4570 case AMDGPU::DS_GWS_BARRIER: 4571 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); 4572 [[fallthrough]]; 4573 case AMDGPU::DS_GWS_SEMA_V: 4574 case AMDGPU::DS_GWS_SEMA_P: 4575 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4576 // A s_waitcnt 0 is required to be the instruction immediately following. 4577 if (getSubtarget()->hasGWSAutoReplay()) { 4578 bundleInstWithWaitcnt(MI); 4579 return BB; 4580 } 4581 4582 return emitGWSMemViolTestLoop(MI, BB); 4583 case AMDGPU::S_SETREG_B32: { 4584 // Try to optimize cases that only set the denormal mode or rounding mode. 4585 // 4586 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4587 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4588 // instead. 4589 // 4590 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4591 // allow you to have a no side effect instruction in the output of a 4592 // sideeffecting pattern. 4593 unsigned ID, Offset, Width; 4594 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4595 if (ID != AMDGPU::Hwreg::ID_MODE) 4596 return BB; 4597 4598 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4599 const unsigned SetMask = WidthMask << Offset; 4600 4601 if (getSubtarget()->hasDenormModeInst()) { 4602 unsigned SetDenormOp = 0; 4603 unsigned SetRoundOp = 0; 4604 4605 // The dedicated instructions can only set the whole denorm or round mode 4606 // at once, not a subset of bits in either. 4607 if (SetMask == 4608 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4609 // If this fully sets both the round and denorm mode, emit the two 4610 // dedicated instructions for these. 4611 SetRoundOp = AMDGPU::S_ROUND_MODE; 4612 SetDenormOp = AMDGPU::S_DENORM_MODE; 4613 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4614 SetRoundOp = AMDGPU::S_ROUND_MODE; 4615 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4616 SetDenormOp = AMDGPU::S_DENORM_MODE; 4617 } 4618 4619 if (SetRoundOp || SetDenormOp) { 4620 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4621 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4622 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4623 unsigned ImmVal = Def->getOperand(1).getImm(); 4624 if (SetRoundOp) { 4625 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4626 .addImm(ImmVal & 0xf); 4627 4628 // If we also have the denorm mode, get just the denorm mode bits. 4629 ImmVal >>= 4; 4630 } 4631 4632 if (SetDenormOp) { 4633 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4634 .addImm(ImmVal & 0xf); 4635 } 4636 4637 MI.eraseFromParent(); 4638 return BB; 4639 } 4640 } 4641 } 4642 4643 // If only FP bits are touched, used the no side effects pseudo. 4644 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4645 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4646 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4647 4648 return BB; 4649 } 4650 case AMDGPU::S_INVERSE_BALLOT_U32: 4651 case AMDGPU::S_INVERSE_BALLOT_U64: { 4652 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4653 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4654 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4655 const DebugLoc &DL = MI.getDebugLoc(); 4656 const Register DstReg = MI.getOperand(0).getReg(); 4657 Register MaskReg = MI.getOperand(1).getReg(); 4658 4659 const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg); 4660 4661 if (IsVALU) { 4662 MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI); 4663 } 4664 4665 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg); 4666 MI.eraseFromParent(); 4667 return BB; 4668 } 4669 case AMDGPU::ENDPGM_TRAP: { 4670 const DebugLoc &DL = MI.getDebugLoc(); 4671 if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) { 4672 MI.setDesc(TII->get(AMDGPU::S_ENDPGM)); 4673 MI.addOperand(MachineOperand::CreateImm(0)); 4674 return BB; 4675 } 4676 4677 // We need a block split to make the real endpgm a terminator. We also don't 4678 // want to break phis in successor blocks, so we can't just delete to the 4679 // end of the block. 4680 4681 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 4682 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 4683 MF->push_back(TrapBB); 4684 BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM)) 4685 .addImm(0); 4686 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 4687 .addMBB(TrapBB); 4688 4689 BB->addSuccessor(TrapBB); 4690 MI.eraseFromParent(); 4691 return SplitBB; 4692 } 4693 default: 4694 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4695 } 4696 } 4697 4698 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { 4699 switch (Op.getValue(0).getSimpleValueType().SimpleTy) { 4700 case MVT::f32: 4701 return Subtarget->hasAtomicFaddRtnInsts(); 4702 case MVT::v2f16: 4703 case MVT::f64: 4704 return Subtarget->hasGFX90AInsts(); 4705 default: 4706 return false; 4707 } 4708 } 4709 4710 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4711 // This currently forces unfolding various combinations of fsub into fma with 4712 // free fneg'd operands. As long as we have fast FMA (controlled by 4713 // isFMAFasterThanFMulAndFAdd), we should perform these. 4714 4715 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4716 // most of these combines appear to be cycle neutral but save on instruction 4717 // count / code size. 4718 return true; 4719 } 4720 4721 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 4722 4723 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4724 EVT VT) const { 4725 if (!VT.isVector()) { 4726 return MVT::i1; 4727 } 4728 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4729 } 4730 4731 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4732 // TODO: Should i16 be used always if legal? For now it would force VALU 4733 // shifts. 4734 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4735 } 4736 4737 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4738 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4739 ? Ty.changeElementSize(16) 4740 : Ty.changeElementSize(32); 4741 } 4742 4743 // Answering this is somewhat tricky and depends on the specific device which 4744 // have different rates for fma or all f64 operations. 4745 // 4746 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4747 // regardless of which device (although the number of cycles differs between 4748 // devices), so it is always profitable for f64. 4749 // 4750 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4751 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4752 // which we can always do even without fused FP ops since it returns the same 4753 // result as the separate operations and since it is always full 4754 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4755 // however does not support denormals, so we do report fma as faster if we have 4756 // a fast fma device and require denormals. 4757 // 4758 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4759 EVT VT) const { 4760 VT = VT.getScalarType(); 4761 4762 switch (VT.getSimpleVT().SimpleTy) { 4763 case MVT::f32: { 4764 // If mad is not available this depends only on if f32 fma is full rate. 4765 if (!Subtarget->hasMadMacF32Insts()) 4766 return Subtarget->hasFastFMAF32(); 4767 4768 // Otherwise f32 mad is always full rate and returns the same result as 4769 // the separate operations so should be preferred over fma. 4770 // However does not support denormals. 4771 if (!denormalModeIsFlushAllF32(MF)) 4772 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4773 4774 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4775 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4776 } 4777 case MVT::f64: 4778 return true; 4779 case MVT::f16: 4780 return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF); 4781 default: 4782 break; 4783 } 4784 4785 return false; 4786 } 4787 4788 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4789 LLT Ty) const { 4790 switch (Ty.getScalarSizeInBits()) { 4791 case 16: 4792 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 4793 case 32: 4794 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 4795 case 64: 4796 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 4797 default: 4798 break; 4799 } 4800 4801 return false; 4802 } 4803 4804 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 4805 if (!Ty.isScalar()) 4806 return false; 4807 4808 if (Ty.getScalarSizeInBits() == 16) 4809 return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF()); 4810 if (Ty.getScalarSizeInBits() == 32) 4811 return Subtarget->hasMadMacF32Insts() && 4812 denormalModeIsFlushAllF32(*MI.getMF()); 4813 4814 return false; 4815 } 4816 4817 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4818 const SDNode *N) const { 4819 // TODO: Check future ftz flag 4820 // v_mad_f32/v_mac_f32 do not support denormals. 4821 EVT VT = N->getValueType(0); 4822 if (VT == MVT::f32) 4823 return Subtarget->hasMadMacF32Insts() && 4824 denormalModeIsFlushAllF32(DAG.getMachineFunction()); 4825 if (VT == MVT::f16) { 4826 return Subtarget->hasMadF16() && 4827 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); 4828 } 4829 4830 return false; 4831 } 4832 4833 //===----------------------------------------------------------------------===// 4834 // Custom DAG Lowering Operations 4835 //===----------------------------------------------------------------------===// 4836 4837 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4838 // wider vector type is legal. 4839 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4840 SelectionDAG &DAG) const { 4841 unsigned Opc = Op.getOpcode(); 4842 EVT VT = Op.getValueType(); 4843 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4844 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 4845 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4846 VT == MVT::v32f32); 4847 4848 SDValue Lo, Hi; 4849 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4850 4851 SDLoc SL(Op); 4852 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4853 Op->getFlags()); 4854 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4855 Op->getFlags()); 4856 4857 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4858 } 4859 4860 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4861 // wider vector type is legal. 4862 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4863 SelectionDAG &DAG) const { 4864 unsigned Opc = Op.getOpcode(); 4865 EVT VT = Op.getValueType(); 4866 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4867 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 4868 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4869 VT == MVT::v32f32); 4870 4871 SDValue Lo0, Hi0; 4872 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4873 SDValue Lo1, Hi1; 4874 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4875 4876 SDLoc SL(Op); 4877 4878 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4879 Op->getFlags()); 4880 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4881 Op->getFlags()); 4882 4883 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4884 } 4885 4886 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4887 SelectionDAG &DAG) const { 4888 unsigned Opc = Op.getOpcode(); 4889 EVT VT = Op.getValueType(); 4890 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 4891 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || 4892 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4893 VT == MVT::v32f32); 4894 4895 SDValue Lo0, Hi0; 4896 SDValue Op0 = Op.getOperand(0); 4897 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 4898 ? DAG.SplitVectorOperand(Op.getNode(), 0) 4899 : std::pair(Op0, Op0); 4900 SDValue Lo1, Hi1; 4901 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4902 SDValue Lo2, Hi2; 4903 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4904 4905 SDLoc SL(Op); 4906 auto ResVT = DAG.GetSplitDestVTs(VT); 4907 4908 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 4909 Op->getFlags()); 4910 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 4911 Op->getFlags()); 4912 4913 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4914 } 4915 4916 4917 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4918 switch (Op.getOpcode()) { 4919 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4920 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4921 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4922 case ISD::LOAD: { 4923 SDValue Result = LowerLOAD(Op, DAG); 4924 assert((!Result.getNode() || 4925 Result.getNode()->getNumValues() == 2) && 4926 "Load should return a value and a chain"); 4927 return Result; 4928 } 4929 case ISD::FSQRT: 4930 if (Op.getValueType() == MVT::f64) 4931 return lowerFSQRTF64(Op, DAG); 4932 return SDValue(); 4933 case ISD::FSIN: 4934 case ISD::FCOS: 4935 return LowerTrig(Op, DAG); 4936 case ISD::SELECT: return LowerSELECT(Op, DAG); 4937 case ISD::FDIV: return LowerFDIV(Op, DAG); 4938 case ISD::FFREXP: return LowerFFREXP(Op, DAG); 4939 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4940 case ISD::STORE: return LowerSTORE(Op, DAG); 4941 case ISD::GlobalAddress: { 4942 MachineFunction &MF = DAG.getMachineFunction(); 4943 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4944 return LowerGlobalAddress(MFI, Op, DAG); 4945 } 4946 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4947 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4948 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4949 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4950 case ISD::INSERT_SUBVECTOR: 4951 return lowerINSERT_SUBVECTOR(Op, DAG); 4952 case ISD::INSERT_VECTOR_ELT: 4953 return lowerINSERT_VECTOR_ELT(Op, DAG); 4954 case ISD::EXTRACT_VECTOR_ELT: 4955 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4956 case ISD::VECTOR_SHUFFLE: 4957 return lowerVECTOR_SHUFFLE(Op, DAG); 4958 case ISD::SCALAR_TO_VECTOR: 4959 return lowerSCALAR_TO_VECTOR(Op, DAG); 4960 case ISD::BUILD_VECTOR: 4961 return lowerBUILD_VECTOR(Op, DAG); 4962 case ISD::FP_ROUND: 4963 case ISD::STRICT_FP_ROUND: 4964 return lowerFP_ROUND(Op, DAG); 4965 case ISD::FPTRUNC_ROUND: { 4966 unsigned Opc; 4967 SDLoc DL(Op); 4968 4969 if (Op.getOperand(0)->getValueType(0) != MVT::f32) 4970 return SDValue(); 4971 4972 // Get the rounding mode from the last operand 4973 int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4974 if (RoundMode == (int)RoundingMode::TowardPositive) 4975 Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; 4976 else if (RoundMode == (int)RoundingMode::TowardNegative) 4977 Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; 4978 else 4979 return SDValue(); 4980 4981 return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); 4982 } 4983 case ISD::TRAP: 4984 return lowerTRAP(Op, DAG); 4985 case ISD::DEBUGTRAP: 4986 return lowerDEBUGTRAP(Op, DAG); 4987 case ISD::FABS: 4988 case ISD::FNEG: 4989 case ISD::FCANONICALIZE: 4990 case ISD::BSWAP: 4991 return splitUnaryVectorOp(Op, DAG); 4992 case ISD::FMINNUM: 4993 case ISD::FMAXNUM: 4994 return lowerFMINNUM_FMAXNUM(Op, DAG); 4995 case ISD::FLDEXP: 4996 case ISD::STRICT_FLDEXP: 4997 return lowerFLDEXP(Op, DAG); 4998 case ISD::FMA: 4999 return splitTernaryVectorOp(Op, DAG); 5000 case ISD::FP_TO_SINT: 5001 case ISD::FP_TO_UINT: 5002 return LowerFP_TO_INT(Op, DAG); 5003 case ISD::SHL: 5004 case ISD::SRA: 5005 case ISD::SRL: 5006 case ISD::ADD: 5007 case ISD::SUB: 5008 case ISD::MUL: 5009 case ISD::SMIN: 5010 case ISD::SMAX: 5011 case ISD::UMIN: 5012 case ISD::UMAX: 5013 case ISD::FADD: 5014 case ISD::FMUL: 5015 case ISD::FMINNUM_IEEE: 5016 case ISD::FMAXNUM_IEEE: 5017 case ISD::UADDSAT: 5018 case ISD::USUBSAT: 5019 case ISD::SADDSAT: 5020 case ISD::SSUBSAT: 5021 return splitBinaryVectorOp(Op, DAG); 5022 case ISD::SMULO: 5023 case ISD::UMULO: 5024 return lowerXMULO(Op, DAG); 5025 case ISD::SMUL_LOHI: 5026 case ISD::UMUL_LOHI: 5027 return lowerXMUL_LOHI(Op, DAG); 5028 case ISD::DYNAMIC_STACKALLOC: 5029 return LowerDYNAMIC_STACKALLOC(Op, DAG); 5030 } 5031 return SDValue(); 5032 } 5033 5034 // Used for D16: Casts the result of an instruction into the right vector, 5035 // packs values if loads return unpacked values. 5036 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 5037 const SDLoc &DL, 5038 SelectionDAG &DAG, bool Unpacked) { 5039 if (!LoadVT.isVector()) 5040 return Result; 5041 5042 // Cast back to the original packed type or to a larger type that is a 5043 // multiple of 32 bit for D16. Widening the return type is a required for 5044 // legalization. 5045 EVT FittingLoadVT = LoadVT; 5046 if ((LoadVT.getVectorNumElements() % 2) == 1) { 5047 FittingLoadVT = 5048 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 5049 LoadVT.getVectorNumElements() + 1); 5050 } 5051 5052 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 5053 // Truncate to v2i16/v4i16. 5054 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 5055 5056 // Workaround legalizer not scalarizing truncate after vector op 5057 // legalization but not creating intermediate vector trunc. 5058 SmallVector<SDValue, 4> Elts; 5059 DAG.ExtractVectorElements(Result, Elts); 5060 for (SDValue &Elt : Elts) 5061 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 5062 5063 // Pad illegal v1i16/v3fi6 to v4i16 5064 if ((LoadVT.getVectorNumElements() % 2) == 1) 5065 Elts.push_back(DAG.getUNDEF(MVT::i16)); 5066 5067 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 5068 5069 // Bitcast to original type (v2f16/v4f16). 5070 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 5071 } 5072 5073 // Cast back to the original packed type. 5074 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 5075 } 5076 5077 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 5078 MemSDNode *M, 5079 SelectionDAG &DAG, 5080 ArrayRef<SDValue> Ops, 5081 bool IsIntrinsic) const { 5082 SDLoc DL(M); 5083 5084 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 5085 EVT LoadVT = M->getValueType(0); 5086 5087 EVT EquivLoadVT = LoadVT; 5088 if (LoadVT.isVector()) { 5089 if (Unpacked) { 5090 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 5091 LoadVT.getVectorNumElements()); 5092 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 5093 // Widen v3f16 to legal type 5094 EquivLoadVT = 5095 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 5096 LoadVT.getVectorNumElements() + 1); 5097 } 5098 } 5099 5100 // Change from v4f16/v2f16 to EquivLoadVT. 5101 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 5102 5103 SDValue Load 5104 = DAG.getMemIntrinsicNode( 5105 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 5106 VTList, Ops, M->getMemoryVT(), 5107 M->getMemOperand()); 5108 5109 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 5110 5111 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 5112 } 5113 5114 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 5115 SelectionDAG &DAG, 5116 ArrayRef<SDValue> Ops) const { 5117 SDLoc DL(M); 5118 EVT LoadVT = M->getValueType(0); 5119 EVT EltType = LoadVT.getScalarType(); 5120 EVT IntVT = LoadVT.changeTypeToInteger(); 5121 5122 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 5123 5124 assert(M->getNumValues() == 2 || M->getNumValues() == 3); 5125 bool IsTFE = M->getNumValues() == 3; 5126 5127 unsigned Opc; 5128 if (IsFormat) { 5129 Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE 5130 : AMDGPUISD::BUFFER_LOAD_FORMAT; 5131 } else { 5132 // TODO: Support non-format TFE loads. 5133 if (IsTFE) 5134 return SDValue(); 5135 Opc = AMDGPUISD::BUFFER_LOAD; 5136 } 5137 5138 if (IsD16) { 5139 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 5140 } 5141 5142 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 5143 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 5144 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 5145 5146 if (isTypeLegal(LoadVT)) { 5147 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 5148 M->getMemOperand(), DAG); 5149 } 5150 5151 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 5152 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 5153 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 5154 M->getMemOperand(), DAG); 5155 return DAG.getMergeValues( 5156 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 5157 DL); 5158 } 5159 5160 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 5161 SDNode *N, SelectionDAG &DAG) { 5162 EVT VT = N->getValueType(0); 5163 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 5164 unsigned CondCode = CD->getZExtValue(); 5165 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 5166 return DAG.getUNDEF(VT); 5167 5168 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 5169 5170 SDValue LHS = N->getOperand(1); 5171 SDValue RHS = N->getOperand(2); 5172 5173 SDLoc DL(N); 5174 5175 EVT CmpVT = LHS.getValueType(); 5176 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 5177 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 5178 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5179 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 5180 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 5181 } 5182 5183 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 5184 5185 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 5186 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 5187 5188 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 5189 DAG.getCondCode(CCOpcode)); 5190 if (VT.bitsEq(CCVT)) 5191 return SetCC; 5192 return DAG.getZExtOrTrunc(SetCC, DL, VT); 5193 } 5194 5195 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 5196 SDNode *N, SelectionDAG &DAG) { 5197 EVT VT = N->getValueType(0); 5198 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 5199 5200 unsigned CondCode = CD->getZExtValue(); 5201 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 5202 return DAG.getUNDEF(VT); 5203 5204 SDValue Src0 = N->getOperand(1); 5205 SDValue Src1 = N->getOperand(2); 5206 EVT CmpVT = Src0.getValueType(); 5207 SDLoc SL(N); 5208 5209 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 5210 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 5211 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 5212 } 5213 5214 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 5215 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 5216 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 5217 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 5218 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 5219 Src1, DAG.getCondCode(CCOpcode)); 5220 if (VT.bitsEq(CCVT)) 5221 return SetCC; 5222 return DAG.getZExtOrTrunc(SetCC, SL, VT); 5223 } 5224 5225 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 5226 SelectionDAG &DAG) { 5227 EVT VT = N->getValueType(0); 5228 SDValue Src = N->getOperand(1); 5229 SDLoc SL(N); 5230 5231 if (Src.getOpcode() == ISD::SETCC) { 5232 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 5233 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 5234 Src.getOperand(1), Src.getOperand(2)); 5235 } 5236 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 5237 // (ballot 0) -> 0 5238 if (Arg->isZero()) 5239 return DAG.getConstant(0, SL, VT); 5240 5241 // (ballot 1) -> EXEC/EXEC_LO 5242 if (Arg->isOne()) { 5243 Register Exec; 5244 if (VT.getScalarSizeInBits() == 32) 5245 Exec = AMDGPU::EXEC_LO; 5246 else if (VT.getScalarSizeInBits() == 64) 5247 Exec = AMDGPU::EXEC; 5248 else 5249 return SDValue(); 5250 5251 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 5252 } 5253 } 5254 5255 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 5256 // ISD::SETNE) 5257 return DAG.getNode( 5258 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 5259 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 5260 } 5261 5262 void SITargetLowering::ReplaceNodeResults(SDNode *N, 5263 SmallVectorImpl<SDValue> &Results, 5264 SelectionDAG &DAG) const { 5265 switch (N->getOpcode()) { 5266 case ISD::INSERT_VECTOR_ELT: { 5267 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 5268 Results.push_back(Res); 5269 return; 5270 } 5271 case ISD::EXTRACT_VECTOR_ELT: { 5272 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 5273 Results.push_back(Res); 5274 return; 5275 } 5276 case ISD::INTRINSIC_WO_CHAIN: { 5277 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5278 switch (IID) { 5279 case Intrinsic::amdgcn_make_buffer_rsrc: 5280 Results.push_back(lowerPointerAsRsrcIntrin(N, DAG)); 5281 return; 5282 case Intrinsic::amdgcn_cvt_pkrtz: { 5283 SDValue Src0 = N->getOperand(1); 5284 SDValue Src1 = N->getOperand(2); 5285 SDLoc SL(N); 5286 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 5287 Src0, Src1); 5288 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 5289 return; 5290 } 5291 case Intrinsic::amdgcn_cvt_pknorm_i16: 5292 case Intrinsic::amdgcn_cvt_pknorm_u16: 5293 case Intrinsic::amdgcn_cvt_pk_i16: 5294 case Intrinsic::amdgcn_cvt_pk_u16: { 5295 SDValue Src0 = N->getOperand(1); 5296 SDValue Src1 = N->getOperand(2); 5297 SDLoc SL(N); 5298 unsigned Opcode; 5299 5300 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5301 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5302 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5303 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5304 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5305 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5306 else 5307 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5308 5309 EVT VT = N->getValueType(0); 5310 if (isTypeLegal(VT)) 5311 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5312 else { 5313 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5314 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5315 } 5316 return; 5317 } 5318 } 5319 break; 5320 } 5321 case ISD::INTRINSIC_W_CHAIN: { 5322 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5323 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5324 // FIXME: Hacky 5325 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5326 Results.push_back(Res.getOperand(I)); 5327 } 5328 } else { 5329 Results.push_back(Res); 5330 Results.push_back(Res.getValue(1)); 5331 } 5332 return; 5333 } 5334 5335 break; 5336 } 5337 case ISD::SELECT: { 5338 SDLoc SL(N); 5339 EVT VT = N->getValueType(0); 5340 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 5341 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 5342 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 5343 5344 EVT SelectVT = NewVT; 5345 if (NewVT.bitsLT(MVT::i32)) { 5346 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 5347 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 5348 SelectVT = MVT::i32; 5349 } 5350 5351 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 5352 N->getOperand(0), LHS, RHS); 5353 5354 if (NewVT != SelectVT) 5355 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 5356 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 5357 return; 5358 } 5359 case ISD::FNEG: { 5360 if (N->getValueType(0) != MVT::v2f16) 5361 break; 5362 5363 SDLoc SL(N); 5364 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5365 5366 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 5367 BC, 5368 DAG.getConstant(0x80008000, SL, MVT::i32)); 5369 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5370 return; 5371 } 5372 case ISD::FABS: { 5373 if (N->getValueType(0) != MVT::v2f16) 5374 break; 5375 5376 SDLoc SL(N); 5377 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5378 5379 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 5380 BC, 5381 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 5382 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5383 return; 5384 } 5385 default: 5386 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); 5387 break; 5388 } 5389 } 5390 5391 /// Helper function for LowerBRCOND 5392 static SDNode *findUser(SDValue Value, unsigned Opcode) { 5393 5394 SDNode *Parent = Value.getNode(); 5395 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 5396 I != E; ++I) { 5397 5398 if (I.getUse().get() != Value) 5399 continue; 5400 5401 if (I->getOpcode() == Opcode) 5402 return *I; 5403 } 5404 return nullptr; 5405 } 5406 5407 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 5408 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 5409 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 5410 case Intrinsic::amdgcn_if: 5411 return AMDGPUISD::IF; 5412 case Intrinsic::amdgcn_else: 5413 return AMDGPUISD::ELSE; 5414 case Intrinsic::amdgcn_loop: 5415 return AMDGPUISD::LOOP; 5416 case Intrinsic::amdgcn_end_cf: 5417 llvm_unreachable("should not occur"); 5418 default: 5419 return 0; 5420 } 5421 } 5422 5423 // break, if_break, else_break are all only used as inputs to loop, not 5424 // directly as branch conditions. 5425 return 0; 5426 } 5427 5428 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 5429 const Triple &TT = getTargetMachine().getTargetTriple(); 5430 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5431 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5432 AMDGPU::shouldEmitConstantsToTextSection(TT); 5433 } 5434 5435 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 5436 // FIXME: Either avoid relying on address space here or change the default 5437 // address space for functions to avoid the explicit check. 5438 return (GV->getValueType()->isFunctionTy() || 5439 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 5440 !shouldEmitFixup(GV) && 5441 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 5442 } 5443 5444 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 5445 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 5446 } 5447 5448 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 5449 if (!GV->hasExternalLinkage()) 5450 return true; 5451 5452 const auto OS = getTargetMachine().getTargetTriple().getOS(); 5453 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 5454 } 5455 5456 /// This transforms the control flow intrinsics to get the branch destination as 5457 /// last parameter, also switches branch target with BR if the need arise 5458 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 5459 SelectionDAG &DAG) const { 5460 SDLoc DL(BRCOND); 5461 5462 SDNode *Intr = BRCOND.getOperand(1).getNode(); 5463 SDValue Target = BRCOND.getOperand(2); 5464 SDNode *BR = nullptr; 5465 SDNode *SetCC = nullptr; 5466 5467 if (Intr->getOpcode() == ISD::SETCC) { 5468 // As long as we negate the condition everything is fine 5469 SetCC = Intr; 5470 Intr = SetCC->getOperand(0).getNode(); 5471 5472 } else { 5473 // Get the target from BR if we don't negate the condition 5474 BR = findUser(BRCOND, ISD::BR); 5475 assert(BR && "brcond missing unconditional branch user"); 5476 Target = BR->getOperand(1); 5477 } 5478 5479 unsigned CFNode = isCFIntrinsic(Intr); 5480 if (CFNode == 0) { 5481 // This is a uniform branch so we don't need to legalize. 5482 return BRCOND; 5483 } 5484 5485 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 5486 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 5487 5488 assert(!SetCC || 5489 (SetCC->getConstantOperandVal(1) == 1 && 5490 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 5491 ISD::SETNE)); 5492 5493 // operands of the new intrinsic call 5494 SmallVector<SDValue, 4> Ops; 5495 if (HaveChain) 5496 Ops.push_back(BRCOND.getOperand(0)); 5497 5498 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 5499 Ops.push_back(Target); 5500 5501 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 5502 5503 // build the new intrinsic call 5504 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 5505 5506 if (!HaveChain) { 5507 SDValue Ops[] = { 5508 SDValue(Result, 0), 5509 BRCOND.getOperand(0) 5510 }; 5511 5512 Result = DAG.getMergeValues(Ops, DL).getNode(); 5513 } 5514 5515 if (BR) { 5516 // Give the branch instruction our target 5517 SDValue Ops[] = { 5518 BR->getOperand(0), 5519 BRCOND.getOperand(2) 5520 }; 5521 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 5522 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 5523 } 5524 5525 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 5526 5527 // Copy the intrinsic results to registers 5528 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 5529 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 5530 if (!CopyToReg) 5531 continue; 5532 5533 Chain = DAG.getCopyToReg( 5534 Chain, DL, 5535 CopyToReg->getOperand(1), 5536 SDValue(Result, i - 1), 5537 SDValue()); 5538 5539 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 5540 } 5541 5542 // Remove the old intrinsic from the chain 5543 DAG.ReplaceAllUsesOfValueWith( 5544 SDValue(Intr, Intr->getNumValues() - 1), 5545 Intr->getOperand(0)); 5546 5547 return Chain; 5548 } 5549 5550 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 5551 SelectionDAG &DAG) const { 5552 MVT VT = Op.getSimpleValueType(); 5553 SDLoc DL(Op); 5554 // Checking the depth 5555 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 5556 return DAG.getConstant(0, DL, VT); 5557 5558 MachineFunction &MF = DAG.getMachineFunction(); 5559 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5560 // Check for kernel and shader functions 5561 if (Info->isEntryFunction()) 5562 return DAG.getConstant(0, DL, VT); 5563 5564 MachineFrameInfo &MFI = MF.getFrameInfo(); 5565 // There is a call to @llvm.returnaddress in this function 5566 MFI.setReturnAddressIsTaken(true); 5567 5568 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5569 // Get the return address reg and mark it as an implicit live-in 5570 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5571 5572 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5573 } 5574 5575 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5576 SDValue Op, 5577 const SDLoc &DL, 5578 EVT VT) const { 5579 return Op.getValueType().bitsLE(VT) ? 5580 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5581 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5582 DAG.getTargetConstant(0, DL, MVT::i32)); 5583 } 5584 5585 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5586 assert(Op.getValueType() == MVT::f16 && 5587 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5588 5589 SDValue Src = Op.getOperand(0); 5590 EVT SrcVT = Src.getValueType(); 5591 if (SrcVT != MVT::f64) 5592 return Op; 5593 5594 // TODO: Handle strictfp 5595 if (Op.getOpcode() != ISD::FP_ROUND) 5596 return Op; 5597 5598 SDLoc DL(Op); 5599 5600 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5601 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5602 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5603 } 5604 5605 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5606 SelectionDAG &DAG) const { 5607 EVT VT = Op.getValueType(); 5608 const MachineFunction &MF = DAG.getMachineFunction(); 5609 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5610 bool IsIEEEMode = Info->getMode().IEEE; 5611 5612 // FIXME: Assert during selection that this is only selected for 5613 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5614 // mode functions, but this happens to be OK since it's only done in cases 5615 // where there is known no sNaN. 5616 if (IsIEEEMode) 5617 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5618 5619 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) 5620 return splitBinaryVectorOp(Op, DAG); 5621 return Op; 5622 } 5623 5624 SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const { 5625 bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP; 5626 EVT VT = Op.getValueType(); 5627 assert(VT == MVT::f16); 5628 5629 SDValue Exp = Op.getOperand(IsStrict ? 2 : 1); 5630 EVT ExpVT = Exp.getValueType(); 5631 if (ExpVT == MVT::i16) 5632 return Op; 5633 5634 SDLoc DL(Op); 5635 5636 // Correct the exponent type for f16 to i16. 5637 // Clamp the range of the exponent to the instruction's range. 5638 5639 // TODO: This should be a generic narrowing legalization, and can easily be 5640 // for GlobalISel. 5641 5642 SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT); 5643 SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp); 5644 5645 SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT); 5646 SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp); 5647 5648 SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp); 5649 5650 if (IsStrict) { 5651 return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other}, 5652 {Op.getOperand(0), Op.getOperand(1), TruncExp}); 5653 } 5654 5655 return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp); 5656 } 5657 5658 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5659 EVT VT = Op.getValueType(); 5660 SDLoc SL(Op); 5661 SDValue LHS = Op.getOperand(0); 5662 SDValue RHS = Op.getOperand(1); 5663 bool isSigned = Op.getOpcode() == ISD::SMULO; 5664 5665 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5666 const APInt &C = RHSC->getAPIntValue(); 5667 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5668 if (C.isPowerOf2()) { 5669 // smulo(x, signed_min) is same as umulo(x, signed_min). 5670 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5671 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5672 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5673 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5674 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5675 SL, VT, Result, ShiftAmt), 5676 LHS, ISD::SETNE); 5677 return DAG.getMergeValues({ Result, Overflow }, SL); 5678 } 5679 } 5680 5681 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5682 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5683 SL, VT, LHS, RHS); 5684 5685 SDValue Sign = isSigned 5686 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5687 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5688 : DAG.getConstant(0, SL, VT); 5689 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5690 5691 return DAG.getMergeValues({ Result, Overflow }, SL); 5692 } 5693 5694 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 5695 if (Op->isDivergent()) { 5696 // Select to V_MAD_[IU]64_[IU]32. 5697 return Op; 5698 } 5699 if (Subtarget->hasSMulHi()) { 5700 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 5701 return SDValue(); 5702 } 5703 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 5704 // calculate the high part, so we might as well do the whole thing with 5705 // V_MAD_[IU]64_[IU]32. 5706 return Op; 5707 } 5708 5709 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5710 if (!Subtarget->isTrapHandlerEnabled() || 5711 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 5712 return lowerTrapEndpgm(Op, DAG); 5713 5714 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 5715 unsigned CodeObjectVersion = AMDGPU::getCodeObjectVersion(*M); 5716 if (CodeObjectVersion <= AMDGPU::AMDHSA_COV3) 5717 return lowerTrapHsaQueuePtr(Op, DAG); 5718 5719 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : 5720 lowerTrapHsaQueuePtr(Op, DAG); 5721 } 5722 5723 SDValue SITargetLowering::lowerTrapEndpgm( 5724 SDValue Op, SelectionDAG &DAG) const { 5725 SDLoc SL(Op); 5726 SDValue Chain = Op.getOperand(0); 5727 return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain); 5728 } 5729 5730 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, 5731 const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { 5732 MachineFunction &MF = DAG.getMachineFunction(); 5733 uint64_t Offset = getImplicitParameterOffset(MF, Param); 5734 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); 5735 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5736 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, 5737 MachineMemOperand::MODereferenceable | 5738 MachineMemOperand::MOInvariant); 5739 } 5740 5741 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 5742 SDValue Op, SelectionDAG &DAG) const { 5743 SDLoc SL(Op); 5744 SDValue Chain = Op.getOperand(0); 5745 5746 SDValue QueuePtr; 5747 // For code object version 5, QueuePtr is passed through implicit kernarg. 5748 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 5749 if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { 5750 QueuePtr = 5751 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); 5752 } else { 5753 MachineFunction &MF = DAG.getMachineFunction(); 5754 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5755 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5756 5757 if (UserSGPR == AMDGPU::NoRegister) { 5758 // We probably are in a function incorrectly marked with 5759 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the 5760 // trap, so just use a null pointer. 5761 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 5762 } else { 5763 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, 5764 MVT::i64); 5765 } 5766 } 5767 5768 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5769 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5770 QueuePtr, SDValue()); 5771 5772 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5773 SDValue Ops[] = { 5774 ToReg, 5775 DAG.getTargetConstant(TrapID, SL, MVT::i16), 5776 SGPR01, 5777 ToReg.getValue(1) 5778 }; 5779 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5780 } 5781 5782 SDValue SITargetLowering::lowerTrapHsa( 5783 SDValue Op, SelectionDAG &DAG) const { 5784 SDLoc SL(Op); 5785 SDValue Chain = Op.getOperand(0); 5786 5787 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5788 SDValue Ops[] = { 5789 Chain, 5790 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5791 }; 5792 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5793 } 5794 5795 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5796 SDLoc SL(Op); 5797 SDValue Chain = Op.getOperand(0); 5798 MachineFunction &MF = DAG.getMachineFunction(); 5799 5800 if (!Subtarget->isTrapHandlerEnabled() || 5801 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 5802 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5803 "debugtrap handler not supported", 5804 Op.getDebugLoc(), 5805 DS_Warning); 5806 LLVMContext &Ctx = MF.getFunction().getContext(); 5807 Ctx.diagnose(NoTrap); 5808 return Chain; 5809 } 5810 5811 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 5812 SDValue Ops[] = { 5813 Chain, 5814 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5815 }; 5816 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5817 } 5818 5819 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5820 SelectionDAG &DAG) const { 5821 if (Subtarget->hasApertureRegs()) { 5822 const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) 5823 ? AMDGPU::SRC_SHARED_BASE 5824 : AMDGPU::SRC_PRIVATE_BASE; 5825 // Note: this feature (register) is broken. When used as a 32-bit operand, 5826 // it returns a wrong value (all zeroes?). The real value is in the upper 32 5827 // bits. 5828 // 5829 // To work around the issue, directly emit a 64 bit mov from this register 5830 // then extract the high bits. Note that this shouldn't even result in a 5831 // shift being emitted and simply become a pair of registers (e.g.): 5832 // s_mov_b64 s[6:7], src_shared_base 5833 // v_mov_b32_e32 v1, s7 5834 // 5835 // FIXME: It would be more natural to emit a CopyFromReg here, but then copy 5836 // coalescing would kick in and it would think it's okay to use the "HI" 5837 // subregister directly (instead of extracting the HI 32 bits) which is an 5838 // artificial (unusable) register. 5839 // Register TableGen definitions would need an overhaul to get rid of the 5840 // artificial "HI" aperture registers and prevent this kind of issue from 5841 // happening. 5842 SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, 5843 DAG.getRegister(ApertureRegNo, MVT::i64)); 5844 return DAG.getNode( 5845 ISD::TRUNCATE, DL, MVT::i32, 5846 DAG.getNode(ISD::SRL, DL, MVT::i64, 5847 {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); 5848 } 5849 5850 // For code object version 5, private_base and shared_base are passed through 5851 // implicit kernargs. 5852 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 5853 if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { 5854 ImplicitParameter Param = 5855 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; 5856 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); 5857 } 5858 5859 MachineFunction &MF = DAG.getMachineFunction(); 5860 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5861 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5862 if (UserSGPR == AMDGPU::NoRegister) { 5863 // We probably are in a function incorrectly marked with 5864 // amdgpu-no-queue-ptr. This is undefined. 5865 return DAG.getUNDEF(MVT::i32); 5866 } 5867 5868 SDValue QueuePtr = CreateLiveInRegister( 5869 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5870 5871 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5872 // private_segment_aperture_base_hi. 5873 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5874 5875 SDValue Ptr = 5876 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5877 5878 // TODO: Use custom target PseudoSourceValue. 5879 // TODO: We should use the value from the IR intrinsic call, but it might not 5880 // be available and how do we get it? 5881 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5882 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5883 commonAlignment(Align(64), StructOffset), 5884 MachineMemOperand::MODereferenceable | 5885 MachineMemOperand::MOInvariant); 5886 } 5887 5888 /// Return true if the value is a known valid address, such that a null check is 5889 /// not necessary. 5890 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 5891 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 5892 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 5893 isa<BasicBlockSDNode>(Val)) 5894 return true; 5895 5896 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 5897 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 5898 5899 // TODO: Search through arithmetic, handle arguments and loads 5900 // marked nonnull. 5901 return false; 5902 } 5903 5904 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5905 SelectionDAG &DAG) const { 5906 SDLoc SL(Op); 5907 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5908 5909 SDValue Src = ASC->getOperand(0); 5910 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5911 unsigned SrcAS = ASC->getSrcAddressSpace(); 5912 5913 const AMDGPUTargetMachine &TM = 5914 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5915 5916 // flat -> local/private 5917 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 5918 unsigned DestAS = ASC->getDestAddressSpace(); 5919 5920 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5921 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5922 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5923 5924 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5925 return Ptr; 5926 5927 unsigned NullVal = TM.getNullPointerValue(DestAS); 5928 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5929 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5930 5931 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 5932 SegmentNullPtr); 5933 } 5934 } 5935 5936 // local/private -> flat 5937 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5938 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5939 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5940 5941 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5942 SDValue CvtPtr = 5943 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5944 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 5945 5946 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5947 return CvtPtr; 5948 5949 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5950 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5951 5952 SDValue NonNull 5953 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5954 5955 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 5956 FlatNullPtr); 5957 } 5958 } 5959 5960 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5961 Op.getValueType() == MVT::i64) { 5962 const SIMachineFunctionInfo *Info = 5963 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); 5964 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); 5965 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); 5966 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 5967 } 5968 5969 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5970 Src.getValueType() == MVT::i64) 5971 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5972 5973 // global <-> flat are no-ops and never emitted. 5974 5975 const MachineFunction &MF = DAG.getMachineFunction(); 5976 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5977 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5978 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5979 5980 return DAG.getUNDEF(ASC->getValueType(0)); 5981 } 5982 5983 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5984 // the small vector and inserting them into the big vector. That is better than 5985 // the default expansion of doing it via a stack slot. Even though the use of 5986 // the stack slot would be optimized away afterwards, the stack slot itself 5987 // remains. 5988 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5989 SelectionDAG &DAG) const { 5990 SDValue Vec = Op.getOperand(0); 5991 SDValue Ins = Op.getOperand(1); 5992 SDValue Idx = Op.getOperand(2); 5993 EVT VecVT = Vec.getValueType(); 5994 EVT InsVT = Ins.getValueType(); 5995 EVT EltVT = VecVT.getVectorElementType(); 5996 unsigned InsNumElts = InsVT.getVectorNumElements(); 5997 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5998 SDLoc SL(Op); 5999 6000 if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) { 6001 // Insert 32-bit registers at a time. 6002 assert(InsNumElts % 2 == 0 && "expect legal vector types"); 6003 6004 unsigned VecNumElts = VecVT.getVectorNumElements(); 6005 EVT NewVecVT = 6006 EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2); 6007 EVT NewInsVT = InsNumElts == 2 ? MVT::i32 6008 : EVT::getVectorVT(*DAG.getContext(), 6009 MVT::i32, InsNumElts / 2); 6010 6011 Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec); 6012 Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins); 6013 6014 for (unsigned I = 0; I != InsNumElts / 2; ++I) { 6015 SDValue Elt; 6016 if (InsNumElts == 2) { 6017 Elt = Ins; 6018 } else { 6019 Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins, 6020 DAG.getConstant(I, SL, MVT::i32)); 6021 } 6022 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt, 6023 DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32)); 6024 } 6025 6026 return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec); 6027 } 6028 6029 for (unsigned I = 0; I != InsNumElts; ++I) { 6030 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 6031 DAG.getConstant(I, SL, MVT::i32)); 6032 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 6033 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 6034 } 6035 return Vec; 6036 } 6037 6038 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 6039 SelectionDAG &DAG) const { 6040 SDValue Vec = Op.getOperand(0); 6041 SDValue InsVal = Op.getOperand(1); 6042 SDValue Idx = Op.getOperand(2); 6043 EVT VecVT = Vec.getValueType(); 6044 EVT EltVT = VecVT.getVectorElementType(); 6045 unsigned VecSize = VecVT.getSizeInBits(); 6046 unsigned EltSize = EltVT.getSizeInBits(); 6047 SDLoc SL(Op); 6048 6049 // Specially handle the case of v4i16 with static indexing. 6050 unsigned NumElts = VecVT.getVectorNumElements(); 6051 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 6052 if (NumElts == 4 && EltSize == 16 && KIdx) { 6053 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 6054 6055 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 6056 DAG.getConstant(0, SL, MVT::i32)); 6057 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 6058 DAG.getConstant(1, SL, MVT::i32)); 6059 6060 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 6061 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 6062 6063 unsigned Idx = KIdx->getZExtValue(); 6064 bool InsertLo = Idx < 2; 6065 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 6066 InsertLo ? LoVec : HiVec, 6067 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 6068 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 6069 6070 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 6071 6072 SDValue Concat = InsertLo ? 6073 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 6074 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 6075 6076 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 6077 } 6078 6079 // Static indexing does not lower to stack access, and hence there is no need 6080 // for special custom lowering to avoid stack access. 6081 if (isa<ConstantSDNode>(Idx)) 6082 return SDValue(); 6083 6084 // Avoid stack access for dynamic indexing by custom lowering to 6085 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 6086 6087 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); 6088 6089 MVT IntVT = MVT::getIntegerVT(VecSize); 6090 6091 // Convert vector index to bit-index and get the required bit mask. 6092 assert(isPowerOf2_32(EltSize)); 6093 const auto EltMask = maskTrailingOnes<uint64_t>(EltSize); 6094 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 6095 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 6096 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 6097 DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); 6098 6099 // 1. Create a congruent vector with the target value in each element. 6100 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 6101 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 6102 6103 // 2. Mask off all other indicies except the required index within (1). 6104 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 6105 6106 // 3. Mask off the required index within the target vector. 6107 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 6108 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 6109 DAG.getNOT(SL, BFM, IntVT), BCVec); 6110 6111 // 4. Get (2) and (3) ORed into the target vector. 6112 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 6113 6114 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 6115 } 6116 6117 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 6118 SelectionDAG &DAG) const { 6119 SDLoc SL(Op); 6120 6121 EVT ResultVT = Op.getValueType(); 6122 SDValue Vec = Op.getOperand(0); 6123 SDValue Idx = Op.getOperand(1); 6124 EVT VecVT = Vec.getValueType(); 6125 unsigned VecSize = VecVT.getSizeInBits(); 6126 EVT EltVT = VecVT.getVectorElementType(); 6127 6128 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 6129 6130 // Make sure we do any optimizations that will make it easier to fold 6131 // source modifiers before obscuring it with bit operations. 6132 6133 // XXX - Why doesn't this get called when vector_shuffle is expanded? 6134 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 6135 return Combined; 6136 6137 if (VecSize == 128 || VecSize == 256) { 6138 SDValue Lo, Hi; 6139 EVT LoVT, HiVT; 6140 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 6141 6142 if (VecSize == 128) { 6143 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 6144 Lo = DAG.getBitcast(LoVT, 6145 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6146 DAG.getConstant(0, SL, MVT::i32))); 6147 Hi = DAG.getBitcast(HiVT, 6148 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6149 DAG.getConstant(1, SL, MVT::i32))); 6150 } else { 6151 assert(VecSize == 256); 6152 6153 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); 6154 SDValue Parts[4]; 6155 for (unsigned P = 0; P < 4; ++P) { 6156 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6157 DAG.getConstant(P, SL, MVT::i32)); 6158 } 6159 6160 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 6161 Parts[0], Parts[1])); 6162 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 6163 Parts[2], Parts[3])); 6164 } 6165 6166 EVT IdxVT = Idx.getValueType(); 6167 unsigned NElem = VecVT.getVectorNumElements(); 6168 assert(isPowerOf2_32(NElem)); 6169 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 6170 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 6171 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 6172 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 6173 } 6174 6175 assert(VecSize <= 64); 6176 6177 MVT IntVT = MVT::getIntegerVT(VecSize); 6178 6179 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. 6180 SDValue VecBC = peekThroughBitcasts(Vec); 6181 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { 6182 SDValue Src = VecBC.getOperand(0); 6183 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); 6184 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); 6185 } 6186 6187 unsigned EltSize = EltVT.getSizeInBits(); 6188 assert(isPowerOf2_32(EltSize)); 6189 6190 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 6191 6192 // Convert vector index to bit-index (* EltSize) 6193 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 6194 6195 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 6196 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 6197 6198 if (ResultVT == MVT::f16) { 6199 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 6200 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 6201 } 6202 6203 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 6204 } 6205 6206 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 6207 assert(Elt % 2 == 0); 6208 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 6209 } 6210 6211 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 6212 SelectionDAG &DAG) const { 6213 SDLoc SL(Op); 6214 EVT ResultVT = Op.getValueType(); 6215 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 6216 6217 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 6218 EVT EltVT = PackVT.getVectorElementType(); 6219 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 6220 6221 // vector_shuffle <0,1,6,7> lhs, rhs 6222 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 6223 // 6224 // vector_shuffle <6,7,2,3> lhs, rhs 6225 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 6226 // 6227 // vector_shuffle <6,7,0,1> lhs, rhs 6228 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 6229 6230 // Avoid scalarizing when both halves are reading from consecutive elements. 6231 SmallVector<SDValue, 4> Pieces; 6232 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 6233 if (elementPairIsContiguous(SVN->getMask(), I)) { 6234 const int Idx = SVN->getMaskElt(I); 6235 int VecIdx = Idx < SrcNumElts ? 0 : 1; 6236 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 6237 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 6238 PackVT, SVN->getOperand(VecIdx), 6239 DAG.getConstant(EltIdx, SL, MVT::i32)); 6240 Pieces.push_back(SubVec); 6241 } else { 6242 const int Idx0 = SVN->getMaskElt(I); 6243 const int Idx1 = SVN->getMaskElt(I + 1); 6244 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 6245 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 6246 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 6247 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 6248 6249 SDValue Vec0 = SVN->getOperand(VecIdx0); 6250 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 6251 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 6252 6253 SDValue Vec1 = SVN->getOperand(VecIdx1); 6254 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 6255 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 6256 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 6257 } 6258 } 6259 6260 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 6261 } 6262 6263 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 6264 SelectionDAG &DAG) const { 6265 SDValue SVal = Op.getOperand(0); 6266 EVT ResultVT = Op.getValueType(); 6267 EVT SValVT = SVal.getValueType(); 6268 SDValue UndefVal = DAG.getUNDEF(SValVT); 6269 SDLoc SL(Op); 6270 6271 SmallVector<SDValue, 8> VElts; 6272 VElts.push_back(SVal); 6273 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) 6274 VElts.push_back(UndefVal); 6275 6276 return DAG.getBuildVector(ResultVT, SL, VElts); 6277 } 6278 6279 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 6280 SelectionDAG &DAG) const { 6281 SDLoc SL(Op); 6282 EVT VT = Op.getValueType(); 6283 6284 if (VT == MVT::v4i16 || VT == MVT::v4f16 || 6285 VT == MVT::v8i16 || VT == MVT::v8f16) { 6286 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 6287 VT.getVectorNumElements() / 2); 6288 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 6289 6290 // Turn into pair of packed build_vectors. 6291 // TODO: Special case for constants that can be materialized with s_mov_b64. 6292 SmallVector<SDValue, 4> LoOps, HiOps; 6293 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 6294 LoOps.push_back(Op.getOperand(I)); 6295 HiOps.push_back(Op.getOperand(I + E)); 6296 } 6297 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 6298 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 6299 6300 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 6301 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 6302 6303 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 6304 { CastLo, CastHi }); 6305 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 6306 } 6307 6308 if (VT == MVT::v16i16 || VT == MVT::v16f16) { 6309 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 6310 VT.getVectorNumElements() / 4); 6311 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 6312 6313 SmallVector<SDValue, 4> Parts[4]; 6314 for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { 6315 for (unsigned P = 0; P < 4; ++P) 6316 Parts[P].push_back(Op.getOperand(I + P * E)); 6317 } 6318 SDValue Casts[4]; 6319 for (unsigned P = 0; P < 4; ++P) { 6320 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 6321 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 6322 } 6323 6324 SDValue Blend = 6325 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); 6326 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 6327 } 6328 6329 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 6330 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 6331 6332 SDValue Lo = Op.getOperand(0); 6333 SDValue Hi = Op.getOperand(1); 6334 6335 // Avoid adding defined bits with the zero_extend. 6336 if (Hi.isUndef()) { 6337 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 6338 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 6339 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 6340 } 6341 6342 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 6343 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 6344 6345 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 6346 DAG.getConstant(16, SL, MVT::i32)); 6347 if (Lo.isUndef()) 6348 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 6349 6350 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 6351 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 6352 6353 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 6354 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 6355 } 6356 6357 bool 6358 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 6359 // We can fold offsets for anything that doesn't require a GOT relocation. 6360 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 6361 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 6362 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 6363 !shouldEmitGOTReloc(GA->getGlobal()); 6364 } 6365 6366 static SDValue 6367 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 6368 const SDLoc &DL, int64_t Offset, EVT PtrVT, 6369 unsigned GAFlags = SIInstrInfo::MO_NONE) { 6370 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 6371 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 6372 // lowered to the following code sequence: 6373 // 6374 // For constant address space: 6375 // s_getpc_b64 s[0:1] 6376 // s_add_u32 s0, s0, $symbol 6377 // s_addc_u32 s1, s1, 0 6378 // 6379 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6380 // a fixup or relocation is emitted to replace $symbol with a literal 6381 // constant, which is a pc-relative offset from the encoding of the $symbol 6382 // operand to the global variable. 6383 // 6384 // For global address space: 6385 // s_getpc_b64 s[0:1] 6386 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 6387 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 6388 // 6389 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6390 // fixups or relocations are emitted to replace $symbol@*@lo and 6391 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 6392 // which is a 64-bit pc-relative offset from the encoding of the $symbol 6393 // operand to the global variable. 6394 // 6395 // What we want here is an offset from the value returned by s_getpc 6396 // (which is the address of the s_add_u32 instruction) to the global 6397 // variable, but since the encoding of $symbol starts 4 bytes after the start 6398 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 6399 // small. This requires us to add 4 to the global variable offset in order to 6400 // compute the correct address. Similarly for the s_addc_u32 instruction, the 6401 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 6402 // instruction. 6403 SDValue PtrLo = 6404 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 6405 SDValue PtrHi; 6406 if (GAFlags == SIInstrInfo::MO_NONE) { 6407 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 6408 } else { 6409 PtrHi = 6410 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 6411 } 6412 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 6413 } 6414 6415 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 6416 SDValue Op, 6417 SelectionDAG &DAG) const { 6418 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 6419 SDLoc DL(GSD); 6420 EVT PtrVT = Op.getValueType(); 6421 6422 const GlobalValue *GV = GSD->getGlobal(); 6423 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6424 shouldUseLDSConstAddress(GV)) || 6425 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 6426 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 6427 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6428 GV->hasExternalLinkage()) { 6429 Type *Ty = GV->getValueType(); 6430 // HIP uses an unsized array `extern __shared__ T s[]` or similar 6431 // zero-sized type in other languages to declare the dynamic shared 6432 // memory which size is not known at the compile time. They will be 6433 // allocated by the runtime and placed directly after the static 6434 // allocated ones. They all share the same offset. 6435 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 6436 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 6437 // Adjust alignment for that dynamic shared memory array. 6438 Function &F = DAG.getMachineFunction().getFunction(); 6439 MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV)); 6440 return SDValue( 6441 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 6442 } 6443 } 6444 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 6445 } 6446 6447 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 6448 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 6449 SIInstrInfo::MO_ABS32_LO); 6450 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 6451 } 6452 6453 if (shouldEmitFixup(GV)) 6454 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 6455 else if (shouldEmitPCReloc(GV)) 6456 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 6457 SIInstrInfo::MO_REL32); 6458 6459 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 6460 SIInstrInfo::MO_GOTPCREL32); 6461 6462 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 6463 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 6464 const DataLayout &DataLayout = DAG.getDataLayout(); 6465 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 6466 MachinePointerInfo PtrInfo 6467 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 6468 6469 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 6470 MachineMemOperand::MODereferenceable | 6471 MachineMemOperand::MOInvariant); 6472 } 6473 6474 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 6475 const SDLoc &DL, SDValue V) const { 6476 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 6477 // the destination register. 6478 // 6479 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 6480 // so we will end up with redundant moves to m0. 6481 // 6482 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 6483 6484 // A Null SDValue creates a glue result. 6485 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 6486 V, Chain); 6487 return SDValue(M0, 0); 6488 } 6489 6490 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 6491 SDValue Op, 6492 MVT VT, 6493 unsigned Offset) const { 6494 SDLoc SL(Op); 6495 SDValue Param = lowerKernargMemParameter( 6496 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 6497 // The local size values will have the hi 16-bits as zero. 6498 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 6499 DAG.getValueType(VT)); 6500 } 6501 6502 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6503 EVT VT) { 6504 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6505 "non-hsa intrinsic with hsa target", 6506 DL.getDebugLoc()); 6507 DAG.getContext()->diagnose(BadIntrin); 6508 return DAG.getUNDEF(VT); 6509 } 6510 6511 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6512 EVT VT) { 6513 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6514 "intrinsic not supported on subtarget", 6515 DL.getDebugLoc()); 6516 DAG.getContext()->diagnose(BadIntrin); 6517 return DAG.getUNDEF(VT); 6518 } 6519 6520 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 6521 ArrayRef<SDValue> Elts) { 6522 assert(!Elts.empty()); 6523 MVT Type; 6524 unsigned NumElts = Elts.size(); 6525 6526 if (NumElts <= 12) { 6527 Type = MVT::getVectorVT(MVT::f32, NumElts); 6528 } else { 6529 assert(Elts.size() <= 16); 6530 Type = MVT::v16f32; 6531 NumElts = 16; 6532 } 6533 6534 SmallVector<SDValue, 16> VecElts(NumElts); 6535 for (unsigned i = 0; i < Elts.size(); ++i) { 6536 SDValue Elt = Elts[i]; 6537 if (Elt.getValueType() != MVT::f32) 6538 Elt = DAG.getBitcast(MVT::f32, Elt); 6539 VecElts[i] = Elt; 6540 } 6541 for (unsigned i = Elts.size(); i < NumElts; ++i) 6542 VecElts[i] = DAG.getUNDEF(MVT::f32); 6543 6544 if (NumElts == 1) 6545 return VecElts[0]; 6546 return DAG.getBuildVector(Type, DL, VecElts); 6547 } 6548 6549 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 6550 SDValue Src, int ExtraElts) { 6551 EVT SrcVT = Src.getValueType(); 6552 6553 SmallVector<SDValue, 8> Elts; 6554 6555 if (SrcVT.isVector()) 6556 DAG.ExtractVectorElements(Src, Elts); 6557 else 6558 Elts.push_back(Src); 6559 6560 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 6561 while (ExtraElts--) 6562 Elts.push_back(Undef); 6563 6564 return DAG.getBuildVector(CastVT, DL, Elts); 6565 } 6566 6567 // Re-construct the required return value for a image load intrinsic. 6568 // This is more complicated due to the optional use TexFailCtrl which means the required 6569 // return type is an aggregate 6570 static SDValue constructRetValue(SelectionDAG &DAG, 6571 MachineSDNode *Result, 6572 ArrayRef<EVT> ResultTypes, 6573 bool IsTexFail, bool Unpacked, bool IsD16, 6574 int DMaskPop, int NumVDataDwords, 6575 const SDLoc &DL) { 6576 // Determine the required return type. This is the same regardless of IsTexFail flag 6577 EVT ReqRetVT = ResultTypes[0]; 6578 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 6579 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6580 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 6581 6582 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6583 DMaskPop : (DMaskPop + 1) / 2; 6584 6585 MVT DataDwordVT = NumDataDwords == 1 ? 6586 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 6587 6588 MVT MaskPopVT = MaskPopDwords == 1 ? 6589 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 6590 6591 SDValue Data(Result, 0); 6592 SDValue TexFail; 6593 6594 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 6595 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 6596 if (MaskPopVT.isVector()) { 6597 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 6598 SDValue(Result, 0), ZeroIdx); 6599 } else { 6600 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 6601 SDValue(Result, 0), ZeroIdx); 6602 } 6603 } 6604 6605 if (DataDwordVT.isVector()) 6606 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 6607 NumDataDwords - MaskPopDwords); 6608 6609 if (IsD16) 6610 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 6611 6612 EVT LegalReqRetVT = ReqRetVT; 6613 if (!ReqRetVT.isVector()) { 6614 if (!Data.getValueType().isInteger()) 6615 Data = DAG.getNode(ISD::BITCAST, DL, 6616 Data.getValueType().changeTypeToInteger(), Data); 6617 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 6618 } else { 6619 // We need to widen the return vector to a legal type 6620 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 6621 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 6622 LegalReqRetVT = 6623 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 6624 ReqRetVT.getVectorNumElements() + 1); 6625 } 6626 } 6627 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 6628 6629 if (IsTexFail) { 6630 TexFail = 6631 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 6632 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 6633 6634 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 6635 } 6636 6637 if (Result->getNumValues() == 1) 6638 return Data; 6639 6640 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 6641 } 6642 6643 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 6644 SDValue *LWE, bool &IsTexFail) { 6645 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 6646 6647 uint64_t Value = TexFailCtrlConst->getZExtValue(); 6648 if (Value) { 6649 IsTexFail = true; 6650 } 6651 6652 SDLoc DL(TexFailCtrlConst); 6653 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 6654 Value &= ~(uint64_t)0x1; 6655 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 6656 Value &= ~(uint64_t)0x2; 6657 6658 return Value == 0; 6659 } 6660 6661 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 6662 MVT PackVectorVT, 6663 SmallVectorImpl<SDValue> &PackedAddrs, 6664 unsigned DimIdx, unsigned EndIdx, 6665 unsigned NumGradients) { 6666 SDLoc DL(Op); 6667 for (unsigned I = DimIdx; I < EndIdx; I++) { 6668 SDValue Addr = Op.getOperand(I); 6669 6670 // Gradients are packed with undef for each coordinate. 6671 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 6672 // 1D: undef,dx/dh; undef,dx/dv 6673 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 6674 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 6675 if (((I + 1) >= EndIdx) || 6676 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 6677 I == DimIdx + NumGradients - 1))) { 6678 if (Addr.getValueType() != MVT::i16) 6679 Addr = DAG.getBitcast(MVT::i16, Addr); 6680 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 6681 } else { 6682 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 6683 I++; 6684 } 6685 Addr = DAG.getBitcast(MVT::f32, Addr); 6686 PackedAddrs.push_back(Addr); 6687 } 6688 } 6689 6690 SDValue SITargetLowering::lowerImage(SDValue Op, 6691 const AMDGPU::ImageDimIntrinsicInfo *Intr, 6692 SelectionDAG &DAG, bool WithChain) const { 6693 SDLoc DL(Op); 6694 MachineFunction &MF = DAG.getMachineFunction(); 6695 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 6696 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 6697 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 6698 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 6699 unsigned IntrOpcode = Intr->BaseOpcode; 6700 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 6701 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 6702 6703 SmallVector<EVT, 3> ResultTypes(Op->values()); 6704 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 6705 bool IsD16 = false; 6706 bool IsG16 = false; 6707 bool IsA16 = false; 6708 SDValue VData; 6709 int NumVDataDwords; 6710 bool AdjustRetType = false; 6711 6712 // Offset of intrinsic arguments 6713 const unsigned ArgOffset = WithChain ? 2 : 1; 6714 6715 unsigned DMask; 6716 unsigned DMaskLanes = 0; 6717 6718 if (BaseOpcode->Atomic) { 6719 VData = Op.getOperand(2); 6720 6721 bool Is64Bit = VData.getValueType() == MVT::i64; 6722 if (BaseOpcode->AtomicX2) { 6723 SDValue VData2 = Op.getOperand(3); 6724 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 6725 {VData, VData2}); 6726 if (Is64Bit) 6727 VData = DAG.getBitcast(MVT::v4i32, VData); 6728 6729 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 6730 DMask = Is64Bit ? 0xf : 0x3; 6731 NumVDataDwords = Is64Bit ? 4 : 2; 6732 } else { 6733 DMask = Is64Bit ? 0x3 : 0x1; 6734 NumVDataDwords = Is64Bit ? 2 : 1; 6735 } 6736 } else { 6737 auto *DMaskConst = 6738 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 6739 DMask = DMaskConst->getZExtValue(); 6740 DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); 6741 6742 if (BaseOpcode->Store) { 6743 VData = Op.getOperand(2); 6744 6745 MVT StoreVT = VData.getSimpleValueType(); 6746 if (StoreVT.getScalarType() == MVT::f16) { 6747 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6748 return Op; // D16 is unsupported for this instruction 6749 6750 IsD16 = true; 6751 VData = handleD16VData(VData, DAG, true); 6752 } 6753 6754 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 6755 } else { 6756 // Work out the num dwords based on the dmask popcount and underlying type 6757 // and whether packing is supported. 6758 MVT LoadVT = ResultTypes[0].getSimpleVT(); 6759 if (LoadVT.getScalarType() == MVT::f16) { 6760 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6761 return Op; // D16 is unsupported for this instruction 6762 6763 IsD16 = true; 6764 } 6765 6766 // Confirm that the return type is large enough for the dmask specified 6767 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 6768 (!LoadVT.isVector() && DMaskLanes > 1)) 6769 return Op; 6770 6771 // The sq block of gfx8 and gfx9 do not estimate register use correctly 6772 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 6773 // instructions. 6774 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 6775 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 6776 NumVDataDwords = (DMaskLanes + 1) / 2; 6777 else 6778 NumVDataDwords = DMaskLanes; 6779 6780 AdjustRetType = true; 6781 } 6782 } 6783 6784 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 6785 SmallVector<SDValue, 4> VAddrs; 6786 6787 // Check for 16 bit addresses or derivatives and pack if true. 6788 MVT VAddrVT = 6789 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 6790 MVT VAddrScalarVT = VAddrVT.getScalarType(); 6791 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6792 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6793 6794 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6795 VAddrScalarVT = VAddrVT.getScalarType(); 6796 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6797 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6798 6799 // Push back extra arguments. 6800 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 6801 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 6802 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 6803 // Special handling of bias when A16 is on. Bias is of type half but 6804 // occupies full 32-bit. 6805 SDValue Bias = DAG.getBuildVector( 6806 MVT::v2f16, DL, 6807 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 6808 VAddrs.push_back(Bias); 6809 } else { 6810 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 6811 "Bias needs to be converted to 16 bit in A16 mode"); 6812 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 6813 } 6814 } 6815 6816 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 6817 // 16 bit gradients are supported, but are tied to the A16 control 6818 // so both gradients and addresses must be 16 bit 6819 LLVM_DEBUG( 6820 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6821 "require 16 bit args for both gradients and addresses"); 6822 return Op; 6823 } 6824 6825 if (IsA16) { 6826 if (!ST->hasA16()) { 6827 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6828 "support 16 bit addresses\n"); 6829 return Op; 6830 } 6831 } 6832 6833 // We've dealt with incorrect input so we know that if IsA16, IsG16 6834 // are set then we have to compress/pack operands (either address, 6835 // gradient or both) 6836 // In the case where a16 and gradients are tied (no G16 support) then we 6837 // have already verified that both IsA16 and IsG16 are true 6838 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 6839 // Activate g16 6840 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6841 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6842 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6843 } 6844 6845 // Add gradients (packed or unpacked) 6846 if (IsG16) { 6847 // Pack the gradients 6848 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6849 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 6850 ArgOffset + Intr->GradientStart, 6851 ArgOffset + Intr->CoordStart, Intr->NumGradients); 6852 } else { 6853 for (unsigned I = ArgOffset + Intr->GradientStart; 6854 I < ArgOffset + Intr->CoordStart; I++) 6855 VAddrs.push_back(Op.getOperand(I)); 6856 } 6857 6858 // Add addresses (packed or unpacked) 6859 if (IsA16) { 6860 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 6861 ArgOffset + Intr->CoordStart, VAddrEnd, 6862 0 /* No gradients */); 6863 } else { 6864 // Add uncompressed address 6865 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6866 VAddrs.push_back(Op.getOperand(I)); 6867 } 6868 6869 // If the register allocator cannot place the address registers contiguously 6870 // without introducing moves, then using the non-sequential address encoding 6871 // is always preferable, since it saves VALU instructions and is usually a 6872 // wash in terms of code size or even better. 6873 // 6874 // However, we currently have no way of hinting to the register allocator that 6875 // MIMG addresses should be placed contiguously when it is possible to do so, 6876 // so force non-NSA for the common 2-address case as a heuristic. 6877 // 6878 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6879 // allocation when possible. 6880 // 6881 // Partial NSA is allowed on GFX11 where the final register is a contiguous 6882 // set of the remaining addresses. 6883 const unsigned NSAMaxSize = ST->getNSAMaxSize(); 6884 const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding(); 6885 const bool UseNSA = ST->hasNSAEncoding() && 6886 VAddrs.size() >= ST->getNSAThreshold(MF) && 6887 (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding); 6888 const bool UsePartialNSA = 6889 UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize; 6890 6891 SDValue VAddr; 6892 if (UsePartialNSA) { 6893 VAddr = getBuildDwordsVector(DAG, DL, 6894 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1)); 6895 } 6896 else if (!UseNSA) { 6897 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6898 } 6899 6900 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6901 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6902 SDValue Unorm; 6903 if (!BaseOpcode->Sampler) { 6904 Unorm = True; 6905 } else { 6906 auto UnormConst = 6907 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6908 6909 Unorm = UnormConst->getZExtValue() ? True : False; 6910 } 6911 6912 SDValue TFE; 6913 SDValue LWE; 6914 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6915 bool IsTexFail = false; 6916 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6917 return Op; 6918 6919 if (IsTexFail) { 6920 if (!DMaskLanes) { 6921 // Expecting to get an error flag since TFC is on - and dmask is 0 6922 // Force dmask to be at least 1 otherwise the instruction will fail 6923 DMask = 0x1; 6924 DMaskLanes = 1; 6925 NumVDataDwords = 1; 6926 } 6927 NumVDataDwords += 1; 6928 AdjustRetType = true; 6929 } 6930 6931 // Has something earlier tagged that the return type needs adjusting 6932 // This happens if the instruction is a load or has set TexFailCtrl flags 6933 if (AdjustRetType) { 6934 // NumVDataDwords reflects the true number of dwords required in the return type 6935 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6936 // This is a no-op load. This can be eliminated 6937 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6938 if (isa<MemSDNode>(Op)) 6939 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6940 return Undef; 6941 } 6942 6943 EVT NewVT = NumVDataDwords > 1 ? 6944 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6945 : MVT::i32; 6946 6947 ResultTypes[0] = NewVT; 6948 if (ResultTypes.size() == 3) { 6949 // Original result was aggregate type used for TexFailCtrl results 6950 // The actual instruction returns as a vector type which has now been 6951 // created. Remove the aggregate result. 6952 ResultTypes.erase(&ResultTypes[1]); 6953 } 6954 } 6955 6956 unsigned CPol = cast<ConstantSDNode>( 6957 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 6958 if (BaseOpcode->Atomic) 6959 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 6960 if (CPol & ~AMDGPU::CPol::ALL) 6961 return Op; 6962 6963 SmallVector<SDValue, 26> Ops; 6964 if (BaseOpcode->Store || BaseOpcode->Atomic) 6965 Ops.push_back(VData); // vdata 6966 if (UsePartialNSA) { 6967 append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1)); 6968 Ops.push_back(VAddr); 6969 } 6970 else if (UseNSA) 6971 append_range(Ops, VAddrs); 6972 else 6973 Ops.push_back(VAddr); 6974 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6975 if (BaseOpcode->Sampler) 6976 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6977 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6978 if (IsGFX10Plus) 6979 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6980 Ops.push_back(Unorm); 6981 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 6982 Ops.push_back(IsA16 && // r128, a16 for gfx9 6983 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6984 if (IsGFX10Plus) 6985 Ops.push_back(IsA16 ? True : False); 6986 if (!Subtarget->hasGFX90AInsts()) { 6987 Ops.push_back(TFE); //tfe 6988 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { 6989 report_fatal_error("TFE is not supported on this GPU"); 6990 } 6991 Ops.push_back(LWE); // lwe 6992 if (!IsGFX10Plus) 6993 Ops.push_back(DimInfo->DA ? True : False); 6994 if (BaseOpcode->HasD16) 6995 Ops.push_back(IsD16 ? True : False); 6996 if (isa<MemSDNode>(Op)) 6997 Ops.push_back(Op.getOperand(0)); // chain 6998 6999 int NumVAddrDwords = 7000 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 7001 int Opcode = -1; 7002 7003 if (IsGFX11Plus) { 7004 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 7005 UseNSA ? AMDGPU::MIMGEncGfx11NSA 7006 : AMDGPU::MIMGEncGfx11Default, 7007 NumVDataDwords, NumVAddrDwords); 7008 } else if (IsGFX10Plus) { 7009 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 7010 UseNSA ? AMDGPU::MIMGEncGfx10NSA 7011 : AMDGPU::MIMGEncGfx10Default, 7012 NumVDataDwords, NumVAddrDwords); 7013 } else { 7014 if (Subtarget->hasGFX90AInsts()) { 7015 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 7016 NumVDataDwords, NumVAddrDwords); 7017 if (Opcode == -1) 7018 report_fatal_error( 7019 "requested image instruction is not supported on this GPU"); 7020 } 7021 if (Opcode == -1 && 7022 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7023 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 7024 NumVDataDwords, NumVAddrDwords); 7025 if (Opcode == -1) 7026 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 7027 NumVDataDwords, NumVAddrDwords); 7028 } 7029 if (Opcode == -1) 7030 return Op; 7031 7032 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 7033 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 7034 MachineMemOperand *MemRef = MemOp->getMemOperand(); 7035 DAG.setNodeMemRefs(NewNode, {MemRef}); 7036 } 7037 7038 if (BaseOpcode->AtomicX2) { 7039 SmallVector<SDValue, 1> Elt; 7040 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 7041 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 7042 } 7043 if (BaseOpcode->Store) 7044 return SDValue(NewNode, 0); 7045 return constructRetValue(DAG, NewNode, 7046 OrigResultTypes, IsTexFail, 7047 Subtarget->hasUnpackedD16VMem(), IsD16, 7048 DMaskLanes, NumVDataDwords, DL); 7049 } 7050 7051 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 7052 SDValue Offset, SDValue CachePolicy, 7053 SelectionDAG &DAG) const { 7054 MachineFunction &MF = DAG.getMachineFunction(); 7055 7056 const DataLayout &DataLayout = DAG.getDataLayout(); 7057 Align Alignment = 7058 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 7059 7060 MachineMemOperand *MMO = MF.getMachineMemOperand( 7061 MachinePointerInfo(), 7062 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 7063 MachineMemOperand::MOInvariant, 7064 VT.getStoreSize(), Alignment); 7065 7066 if (!Offset->isDivergent()) { 7067 SDValue Ops[] = { 7068 Rsrc, 7069 Offset, // Offset 7070 CachePolicy 7071 }; 7072 7073 // Widen vec3 load to vec4. 7074 if (VT.isVector() && VT.getVectorNumElements() == 3) { 7075 EVT WidenedVT = 7076 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 7077 auto WidenedOp = DAG.getMemIntrinsicNode( 7078 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 7079 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 7080 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 7081 DAG.getVectorIdxConstant(0, DL)); 7082 return Subvector; 7083 } 7084 7085 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 7086 DAG.getVTList(VT), Ops, VT, MMO); 7087 } 7088 7089 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 7090 // assume that the buffer is unswizzled. 7091 SmallVector<SDValue, 4> Loads; 7092 unsigned NumLoads = 1; 7093 MVT LoadVT = VT.getSimpleVT(); 7094 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 7095 assert((LoadVT.getScalarType() == MVT::i32 || 7096 LoadVT.getScalarType() == MVT::f32)); 7097 7098 if (NumElts == 8 || NumElts == 16) { 7099 NumLoads = NumElts / 4; 7100 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 7101 } 7102 7103 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 7104 SDValue Ops[] = { 7105 DAG.getEntryNode(), // Chain 7106 Rsrc, // rsrc 7107 DAG.getConstant(0, DL, MVT::i32), // vindex 7108 {}, // voffset 7109 {}, // soffset 7110 {}, // offset 7111 CachePolicy, // cachepolicy 7112 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7113 }; 7114 7115 // Use the alignment to ensure that the required offsets will fit into the 7116 // immediate offsets. 7117 setBufferOffsets(Offset, DAG, &Ops[3], 7118 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 7119 7120 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 7121 for (unsigned i = 0; i < NumLoads; ++i) { 7122 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 7123 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 7124 LoadVT, MMO, DAG)); 7125 } 7126 7127 if (NumElts == 8 || NumElts == 16) 7128 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 7129 7130 return Loads[0]; 7131 } 7132 7133 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, 7134 unsigned Dim, 7135 const ArgDescriptor &Arg) const { 7136 SDLoc SL(Op); 7137 MachineFunction &MF = DAG.getMachineFunction(); 7138 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); 7139 if (MaxID == 0) 7140 return DAG.getConstant(0, SL, MVT::i32); 7141 7142 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 7143 SDLoc(DAG.getEntryNode()), Arg); 7144 7145 // Don't bother inserting AssertZext for packed IDs since we're emitting the 7146 // masking operations anyway. 7147 // 7148 // TODO: We could assert the top bit is 0 for the source copy. 7149 if (Arg.isMasked()) 7150 return Val; 7151 7152 // Preserve the known bits after expansion to a copy. 7153 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); 7154 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, 7155 DAG.getValueType(SmallVT)); 7156 } 7157 7158 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7159 SelectionDAG &DAG) const { 7160 MachineFunction &MF = DAG.getMachineFunction(); 7161 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 7162 7163 EVT VT = Op.getValueType(); 7164 SDLoc DL(Op); 7165 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7166 7167 // TODO: Should this propagate fast-math-flags? 7168 7169 switch (IntrinsicID) { 7170 case Intrinsic::amdgcn_implicit_buffer_ptr: { 7171 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 7172 return emitNonHSAIntrinsicError(DAG, DL, VT); 7173 return getPreloadedValue(DAG, *MFI, VT, 7174 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 7175 } 7176 case Intrinsic::amdgcn_dispatch_ptr: 7177 case Intrinsic::amdgcn_queue_ptr: { 7178 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 7179 DiagnosticInfoUnsupported BadIntrin( 7180 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 7181 DL.getDebugLoc()); 7182 DAG.getContext()->diagnose(BadIntrin); 7183 return DAG.getUNDEF(VT); 7184 } 7185 7186 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 7187 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 7188 return getPreloadedValue(DAG, *MFI, VT, RegID); 7189 } 7190 case Intrinsic::amdgcn_implicitarg_ptr: { 7191 if (MFI->isEntryFunction()) 7192 return getImplicitArgPtr(DAG, DL); 7193 return getPreloadedValue(DAG, *MFI, VT, 7194 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 7195 } 7196 case Intrinsic::amdgcn_kernarg_segment_ptr: { 7197 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 7198 // This only makes sense to call in a kernel, so just lower to null. 7199 return DAG.getConstant(0, DL, VT); 7200 } 7201 7202 return getPreloadedValue(DAG, *MFI, VT, 7203 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 7204 } 7205 case Intrinsic::amdgcn_dispatch_id: { 7206 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 7207 } 7208 case Intrinsic::amdgcn_rcp: 7209 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 7210 case Intrinsic::amdgcn_rsq: 7211 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 7212 case Intrinsic::amdgcn_rsq_legacy: 7213 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7214 return emitRemovedIntrinsicError(DAG, DL, VT); 7215 return SDValue(); 7216 case Intrinsic::amdgcn_rcp_legacy: 7217 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7218 return emitRemovedIntrinsicError(DAG, DL, VT); 7219 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 7220 case Intrinsic::amdgcn_rsq_clamp: { 7221 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 7222 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 7223 7224 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 7225 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 7226 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 7227 7228 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 7229 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 7230 DAG.getConstantFP(Max, DL, VT)); 7231 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 7232 DAG.getConstantFP(Min, DL, VT)); 7233 } 7234 case Intrinsic::r600_read_ngroups_x: 7235 if (Subtarget->isAmdHsaOS()) 7236 return emitNonHSAIntrinsicError(DAG, DL, VT); 7237 7238 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7239 SI::KernelInputOffsets::NGROUPS_X, Align(4), 7240 false); 7241 case Intrinsic::r600_read_ngroups_y: 7242 if (Subtarget->isAmdHsaOS()) 7243 return emitNonHSAIntrinsicError(DAG, DL, VT); 7244 7245 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7246 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 7247 false); 7248 case Intrinsic::r600_read_ngroups_z: 7249 if (Subtarget->isAmdHsaOS()) 7250 return emitNonHSAIntrinsicError(DAG, DL, VT); 7251 7252 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7253 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 7254 false); 7255 case Intrinsic::r600_read_global_size_x: 7256 if (Subtarget->isAmdHsaOS()) 7257 return emitNonHSAIntrinsicError(DAG, DL, VT); 7258 7259 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7260 SI::KernelInputOffsets::GLOBAL_SIZE_X, 7261 Align(4), false); 7262 case Intrinsic::r600_read_global_size_y: 7263 if (Subtarget->isAmdHsaOS()) 7264 return emitNonHSAIntrinsicError(DAG, DL, VT); 7265 7266 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7267 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 7268 Align(4), false); 7269 case Intrinsic::r600_read_global_size_z: 7270 if (Subtarget->isAmdHsaOS()) 7271 return emitNonHSAIntrinsicError(DAG, DL, VT); 7272 7273 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7274 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 7275 Align(4), false); 7276 case Intrinsic::r600_read_local_size_x: 7277 if (Subtarget->isAmdHsaOS()) 7278 return emitNonHSAIntrinsicError(DAG, DL, VT); 7279 7280 return lowerImplicitZextParam(DAG, Op, MVT::i16, 7281 SI::KernelInputOffsets::LOCAL_SIZE_X); 7282 case Intrinsic::r600_read_local_size_y: 7283 if (Subtarget->isAmdHsaOS()) 7284 return emitNonHSAIntrinsicError(DAG, DL, VT); 7285 7286 return lowerImplicitZextParam(DAG, Op, MVT::i16, 7287 SI::KernelInputOffsets::LOCAL_SIZE_Y); 7288 case Intrinsic::r600_read_local_size_z: 7289 if (Subtarget->isAmdHsaOS()) 7290 return emitNonHSAIntrinsicError(DAG, DL, VT); 7291 7292 return lowerImplicitZextParam(DAG, Op, MVT::i16, 7293 SI::KernelInputOffsets::LOCAL_SIZE_Z); 7294 case Intrinsic::amdgcn_workgroup_id_x: 7295 return getPreloadedValue(DAG, *MFI, VT, 7296 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 7297 case Intrinsic::amdgcn_workgroup_id_y: 7298 return getPreloadedValue(DAG, *MFI, VT, 7299 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 7300 case Intrinsic::amdgcn_workgroup_id_z: 7301 return getPreloadedValue(DAG, *MFI, VT, 7302 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 7303 case Intrinsic::amdgcn_lds_kernel_id: { 7304 if (MFI->isEntryFunction()) 7305 return getLDSKernelId(DAG, DL); 7306 return getPreloadedValue(DAG, *MFI, VT, 7307 AMDGPUFunctionArgInfo::LDS_KERNEL_ID); 7308 } 7309 case Intrinsic::amdgcn_workitem_id_x: 7310 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); 7311 case Intrinsic::amdgcn_workitem_id_y: 7312 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); 7313 case Intrinsic::amdgcn_workitem_id_z: 7314 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); 7315 case Intrinsic::amdgcn_wavefrontsize: 7316 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 7317 SDLoc(Op), MVT::i32); 7318 case Intrinsic::amdgcn_s_buffer_load: { 7319 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7320 if (CPol & ~AMDGPU::CPol::ALL) 7321 return Op; 7322 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 7323 DAG); 7324 } 7325 case Intrinsic::amdgcn_fdiv_fast: 7326 return lowerFDIV_FAST(Op, DAG); 7327 case Intrinsic::amdgcn_sin: 7328 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 7329 7330 case Intrinsic::amdgcn_cos: 7331 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 7332 7333 case Intrinsic::amdgcn_mul_u24: 7334 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7335 case Intrinsic::amdgcn_mul_i24: 7336 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7337 7338 case Intrinsic::amdgcn_log_clamp: { 7339 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 7340 return SDValue(); 7341 7342 return emitRemovedIntrinsicError(DAG, DL, VT); 7343 } 7344 case Intrinsic::amdgcn_ldexp: 7345 return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7346 7347 case Intrinsic::amdgcn_fract: 7348 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 7349 7350 case Intrinsic::amdgcn_class: 7351 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 7352 Op.getOperand(1), Op.getOperand(2)); 7353 case Intrinsic::amdgcn_div_fmas: 7354 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 7355 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 7356 Op.getOperand(4)); 7357 7358 case Intrinsic::amdgcn_div_fixup: 7359 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 7360 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7361 7362 case Intrinsic::amdgcn_div_scale: { 7363 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 7364 7365 // Translate to the operands expected by the machine instruction. The 7366 // first parameter must be the same as the first instruction. 7367 SDValue Numerator = Op.getOperand(1); 7368 SDValue Denominator = Op.getOperand(2); 7369 7370 // Note this order is opposite of the machine instruction's operations, 7371 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 7372 // intrinsic has the numerator as the first operand to match a normal 7373 // division operation. 7374 7375 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 7376 7377 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 7378 Denominator, Numerator); 7379 } 7380 case Intrinsic::amdgcn_icmp: { 7381 // There is a Pat that handles this variant, so return it as-is. 7382 if (Op.getOperand(1).getValueType() == MVT::i1 && 7383 Op.getConstantOperandVal(2) == 0 && 7384 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 7385 return Op; 7386 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 7387 } 7388 case Intrinsic::amdgcn_fcmp: { 7389 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 7390 } 7391 case Intrinsic::amdgcn_ballot: 7392 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 7393 case Intrinsic::amdgcn_fmed3: 7394 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 7395 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7396 case Intrinsic::amdgcn_fdot2: 7397 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 7398 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 7399 Op.getOperand(4)); 7400 case Intrinsic::amdgcn_fmul_legacy: 7401 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 7402 Op.getOperand(1), Op.getOperand(2)); 7403 case Intrinsic::amdgcn_sffbh: 7404 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 7405 case Intrinsic::amdgcn_sbfe: 7406 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 7407 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7408 case Intrinsic::amdgcn_ubfe: 7409 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 7410 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7411 case Intrinsic::amdgcn_cvt_pkrtz: 7412 case Intrinsic::amdgcn_cvt_pknorm_i16: 7413 case Intrinsic::amdgcn_cvt_pknorm_u16: 7414 case Intrinsic::amdgcn_cvt_pk_i16: 7415 case Intrinsic::amdgcn_cvt_pk_u16: { 7416 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 7417 EVT VT = Op.getValueType(); 7418 unsigned Opcode; 7419 7420 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 7421 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 7422 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 7423 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 7424 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 7425 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 7426 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 7427 Opcode = AMDGPUISD::CVT_PK_I16_I32; 7428 else 7429 Opcode = AMDGPUISD::CVT_PK_U16_U32; 7430 7431 if (isTypeLegal(VT)) 7432 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7433 7434 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 7435 Op.getOperand(1), Op.getOperand(2)); 7436 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 7437 } 7438 case Intrinsic::amdgcn_fmad_ftz: 7439 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 7440 Op.getOperand(2), Op.getOperand(3)); 7441 7442 case Intrinsic::amdgcn_if_break: 7443 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 7444 Op->getOperand(1), Op->getOperand(2)), 0); 7445 7446 case Intrinsic::amdgcn_groupstaticsize: { 7447 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 7448 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 7449 return Op; 7450 7451 const Module *M = MF.getFunction().getParent(); 7452 const GlobalValue *GV = 7453 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 7454 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 7455 SIInstrInfo::MO_ABS32_LO); 7456 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7457 } 7458 case Intrinsic::amdgcn_is_shared: 7459 case Intrinsic::amdgcn_is_private: { 7460 SDLoc SL(Op); 7461 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 7462 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 7463 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 7464 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 7465 Op.getOperand(1)); 7466 7467 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 7468 DAG.getConstant(1, SL, MVT::i32)); 7469 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 7470 } 7471 case Intrinsic::amdgcn_perm: 7472 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 7473 Op.getOperand(2), Op.getOperand(3)); 7474 case Intrinsic::amdgcn_reloc_constant: { 7475 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 7476 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 7477 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 7478 auto RelocSymbol = cast<GlobalVariable>( 7479 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 7480 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 7481 SIInstrInfo::MO_ABS32_LO); 7482 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7483 } 7484 default: 7485 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7486 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7487 return lowerImage(Op, ImageDimIntr, DAG, false); 7488 7489 return Op; 7490 } 7491 } 7492 7493 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 7494 SelectionDAG &DAG, 7495 unsigned NewOpcode) const { 7496 SDLoc DL(Op); 7497 7498 SDValue VData = Op.getOperand(2); 7499 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 7500 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7501 SDValue Ops[] = { 7502 Op.getOperand(0), // Chain 7503 VData, // vdata 7504 Rsrc, // rsrc 7505 DAG.getConstant(0, DL, MVT::i32), // vindex 7506 Offsets.first, // voffset 7507 Op.getOperand(5), // soffset 7508 Offsets.second, // offset 7509 Op.getOperand(6), // cachepolicy 7510 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7511 }; 7512 7513 auto *M = cast<MemSDNode>(Op); 7514 7515 EVT MemVT = VData.getValueType(); 7516 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7517 M->getMemOperand()); 7518 } 7519 7520 // Return a value to use for the idxen operand by examining the vindex operand. 7521 static unsigned getIdxEn(SDValue VIndex) { 7522 // No need to set idxen if vindex is known to be zero. 7523 return isNullConstant(VIndex) ? 0 : 1; 7524 } 7525 7526 SDValue 7527 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 7528 unsigned NewOpcode) const { 7529 SDLoc DL(Op); 7530 7531 SDValue VData = Op.getOperand(2); 7532 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 7533 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7534 SDValue Ops[] = { 7535 Op.getOperand(0), // Chain 7536 VData, // vdata 7537 Rsrc, // rsrc 7538 Op.getOperand(4), // vindex 7539 Offsets.first, // voffset 7540 Op.getOperand(6), // soffset 7541 Offsets.second, // offset 7542 Op.getOperand(7), // cachepolicy 7543 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7544 }; 7545 7546 auto *M = cast<MemSDNode>(Op); 7547 7548 EVT MemVT = VData.getValueType(); 7549 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7550 M->getMemOperand()); 7551 } 7552 7553 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 7554 SelectionDAG &DAG) const { 7555 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7556 SDLoc DL(Op); 7557 7558 switch (IntrID) { 7559 case Intrinsic::amdgcn_ds_ordered_add: 7560 case Intrinsic::amdgcn_ds_ordered_swap: { 7561 MemSDNode *M = cast<MemSDNode>(Op); 7562 SDValue Chain = M->getOperand(0); 7563 SDValue M0 = M->getOperand(2); 7564 SDValue Value = M->getOperand(3); 7565 unsigned IndexOperand = M->getConstantOperandVal(7); 7566 unsigned WaveRelease = M->getConstantOperandVal(8); 7567 unsigned WaveDone = M->getConstantOperandVal(9); 7568 7569 unsigned OrderedCountIndex = IndexOperand & 0x3f; 7570 IndexOperand &= ~0x3f; 7571 unsigned CountDw = 0; 7572 7573 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 7574 CountDw = (IndexOperand >> 24) & 0xf; 7575 IndexOperand &= ~(0xf << 24); 7576 7577 if (CountDw < 1 || CountDw > 4) { 7578 report_fatal_error( 7579 "ds_ordered_count: dword count must be between 1 and 4"); 7580 } 7581 } 7582 7583 if (IndexOperand) 7584 report_fatal_error("ds_ordered_count: bad index operand"); 7585 7586 if (WaveDone && !WaveRelease) 7587 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 7588 7589 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 7590 unsigned ShaderType = 7591 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 7592 unsigned Offset0 = OrderedCountIndex << 2; 7593 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); 7594 7595 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 7596 Offset1 |= (CountDw - 1) << 6; 7597 7598 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) 7599 Offset1 |= ShaderType << 2; 7600 7601 unsigned Offset = Offset0 | (Offset1 << 8); 7602 7603 SDValue Ops[] = { 7604 Chain, 7605 Value, 7606 DAG.getTargetConstant(Offset, DL, MVT::i16), 7607 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 7608 }; 7609 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 7610 M->getVTList(), Ops, M->getMemoryVT(), 7611 M->getMemOperand()); 7612 } 7613 case Intrinsic::amdgcn_ds_fadd: { 7614 MemSDNode *M = cast<MemSDNode>(Op); 7615 unsigned Opc; 7616 switch (IntrID) { 7617 case Intrinsic::amdgcn_ds_fadd: 7618 Opc = ISD::ATOMIC_LOAD_FADD; 7619 break; 7620 } 7621 7622 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 7623 M->getOperand(0), M->getOperand(2), M->getOperand(3), 7624 M->getMemOperand()); 7625 } 7626 case Intrinsic::amdgcn_ds_fmin: 7627 case Intrinsic::amdgcn_ds_fmax: { 7628 MemSDNode *M = cast<MemSDNode>(Op); 7629 unsigned Opc; 7630 switch (IntrID) { 7631 case Intrinsic::amdgcn_ds_fmin: 7632 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 7633 break; 7634 case Intrinsic::amdgcn_ds_fmax: 7635 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 7636 break; 7637 default: 7638 llvm_unreachable("Unknown intrinsic!"); 7639 } 7640 SDValue Ops[] = { 7641 M->getOperand(0), // Chain 7642 M->getOperand(2), // Ptr 7643 M->getOperand(3) // Value 7644 }; 7645 7646 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 7647 M->getMemoryVT(), M->getMemOperand()); 7648 } 7649 case Intrinsic::amdgcn_buffer_load: 7650 case Intrinsic::amdgcn_buffer_load_format: { 7651 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 7652 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7653 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7654 SDValue Ops[] = { 7655 Op.getOperand(0), // Chain 7656 Op.getOperand(2), // rsrc 7657 Op.getOperand(3), // vindex 7658 SDValue(), // voffset -- will be set by setBufferOffsets 7659 SDValue(), // soffset -- will be set by setBufferOffsets 7660 SDValue(), // offset -- will be set by setBufferOffsets 7661 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7662 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7663 }; 7664 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 7665 7666 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 7667 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 7668 7669 EVT VT = Op.getValueType(); 7670 EVT IntVT = VT.changeTypeToInteger(); 7671 auto *M = cast<MemSDNode>(Op); 7672 EVT LoadVT = Op.getValueType(); 7673 7674 if (LoadVT.getScalarType() == MVT::f16) 7675 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 7676 M, DAG, Ops); 7677 7678 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 7679 if (LoadVT.getScalarType() == MVT::i8 || 7680 LoadVT.getScalarType() == MVT::i16) 7681 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 7682 7683 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 7684 M->getMemOperand(), DAG); 7685 } 7686 case Intrinsic::amdgcn_raw_buffer_load: 7687 case Intrinsic::amdgcn_raw_ptr_buffer_load: 7688 case Intrinsic::amdgcn_raw_buffer_load_format: 7689 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: { 7690 const bool IsFormat = 7691 IntrID == Intrinsic::amdgcn_raw_buffer_load_format || 7692 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format; 7693 7694 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 7695 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7696 SDValue Ops[] = { 7697 Op.getOperand(0), // Chain 7698 Rsrc, // rsrc 7699 DAG.getConstant(0, DL, MVT::i32), // vindex 7700 Offsets.first, // voffset 7701 Op.getOperand(4), // soffset 7702 Offsets.second, // offset 7703 Op.getOperand(5), // cachepolicy, swizzled buffer 7704 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7705 }; 7706 7707 auto *M = cast<MemSDNode>(Op); 7708 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 7709 } 7710 case Intrinsic::amdgcn_struct_buffer_load: 7711 case Intrinsic::amdgcn_struct_ptr_buffer_load: 7712 case Intrinsic::amdgcn_struct_buffer_load_format: 7713 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: { 7714 const bool IsFormat = 7715 IntrID == Intrinsic::amdgcn_struct_buffer_load_format || 7716 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format; 7717 7718 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 7719 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7720 SDValue Ops[] = { 7721 Op.getOperand(0), // Chain 7722 Rsrc, // rsrc 7723 Op.getOperand(3), // vindex 7724 Offsets.first, // voffset 7725 Op.getOperand(5), // soffset 7726 Offsets.second, // offset 7727 Op.getOperand(6), // cachepolicy, swizzled buffer 7728 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7729 }; 7730 7731 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 7732 } 7733 case Intrinsic::amdgcn_tbuffer_load: { 7734 MemSDNode *M = cast<MemSDNode>(Op); 7735 EVT LoadVT = Op.getValueType(); 7736 7737 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7738 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7739 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7740 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7741 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7742 SDValue Ops[] = { 7743 Op.getOperand(0), // Chain 7744 Op.getOperand(2), // rsrc 7745 Op.getOperand(3), // vindex 7746 Op.getOperand(4), // voffset 7747 Op.getOperand(5), // soffset 7748 Op.getOperand(6), // offset 7749 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7750 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7751 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 7752 }; 7753 7754 if (LoadVT.getScalarType() == MVT::f16) 7755 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7756 M, DAG, Ops); 7757 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7758 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7759 DAG); 7760 } 7761 case Intrinsic::amdgcn_raw_tbuffer_load: 7762 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: { 7763 MemSDNode *M = cast<MemSDNode>(Op); 7764 EVT LoadVT = Op.getValueType(); 7765 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 7766 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7767 7768 SDValue Ops[] = { 7769 Op.getOperand(0), // Chain 7770 Rsrc, // rsrc 7771 DAG.getConstant(0, DL, MVT::i32), // vindex 7772 Offsets.first, // voffset 7773 Op.getOperand(4), // soffset 7774 Offsets.second, // offset 7775 Op.getOperand(5), // format 7776 Op.getOperand(6), // cachepolicy, swizzled buffer 7777 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7778 }; 7779 7780 if (LoadVT.getScalarType() == MVT::f16) 7781 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7782 M, DAG, Ops); 7783 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7784 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7785 DAG); 7786 } 7787 case Intrinsic::amdgcn_struct_tbuffer_load: 7788 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: { 7789 MemSDNode *M = cast<MemSDNode>(Op); 7790 EVT LoadVT = Op.getValueType(); 7791 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 7792 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7793 7794 SDValue Ops[] = { 7795 Op.getOperand(0), // Chain 7796 Rsrc, // rsrc 7797 Op.getOperand(3), // vindex 7798 Offsets.first, // voffset 7799 Op.getOperand(5), // soffset 7800 Offsets.second, // offset 7801 Op.getOperand(6), // format 7802 Op.getOperand(7), // cachepolicy, swizzled buffer 7803 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7804 }; 7805 7806 if (LoadVT.getScalarType() == MVT::f16) 7807 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7808 M, DAG, Ops); 7809 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7810 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7811 DAG); 7812 } 7813 case Intrinsic::amdgcn_buffer_atomic_swap: 7814 case Intrinsic::amdgcn_buffer_atomic_add: 7815 case Intrinsic::amdgcn_buffer_atomic_sub: 7816 case Intrinsic::amdgcn_buffer_atomic_csub: 7817 case Intrinsic::amdgcn_buffer_atomic_smin: 7818 case Intrinsic::amdgcn_buffer_atomic_umin: 7819 case Intrinsic::amdgcn_buffer_atomic_smax: 7820 case Intrinsic::amdgcn_buffer_atomic_umax: 7821 case Intrinsic::amdgcn_buffer_atomic_and: 7822 case Intrinsic::amdgcn_buffer_atomic_or: 7823 case Intrinsic::amdgcn_buffer_atomic_xor: 7824 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7825 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7826 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7827 SDValue Ops[] = { 7828 Op.getOperand(0), // Chain 7829 Op.getOperand(2), // vdata 7830 Op.getOperand(3), // rsrc 7831 Op.getOperand(4), // vindex 7832 SDValue(), // voffset -- will be set by setBufferOffsets 7833 SDValue(), // soffset -- will be set by setBufferOffsets 7834 SDValue(), // offset -- will be set by setBufferOffsets 7835 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7836 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7837 }; 7838 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7839 7840 EVT VT = Op.getValueType(); 7841 7842 auto *M = cast<MemSDNode>(Op); 7843 unsigned Opcode = 0; 7844 7845 switch (IntrID) { 7846 case Intrinsic::amdgcn_buffer_atomic_swap: 7847 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7848 break; 7849 case Intrinsic::amdgcn_buffer_atomic_add: 7850 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7851 break; 7852 case Intrinsic::amdgcn_buffer_atomic_sub: 7853 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7854 break; 7855 case Intrinsic::amdgcn_buffer_atomic_csub: 7856 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7857 break; 7858 case Intrinsic::amdgcn_buffer_atomic_smin: 7859 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7860 break; 7861 case Intrinsic::amdgcn_buffer_atomic_umin: 7862 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7863 break; 7864 case Intrinsic::amdgcn_buffer_atomic_smax: 7865 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7866 break; 7867 case Intrinsic::amdgcn_buffer_atomic_umax: 7868 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7869 break; 7870 case Intrinsic::amdgcn_buffer_atomic_and: 7871 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7872 break; 7873 case Intrinsic::amdgcn_buffer_atomic_or: 7874 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7875 break; 7876 case Intrinsic::amdgcn_buffer_atomic_xor: 7877 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7878 break; 7879 case Intrinsic::amdgcn_buffer_atomic_fadd: 7880 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7881 break; 7882 default: 7883 llvm_unreachable("unhandled atomic opcode"); 7884 } 7885 7886 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7887 M->getMemOperand()); 7888 } 7889 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7890 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd: 7891 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7892 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7893 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd: 7894 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7895 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 7896 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin: 7897 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7898 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 7899 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin: 7900 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7901 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 7902 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax: 7903 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7904 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 7905 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax: 7906 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7907 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7908 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap: 7909 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7910 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7911 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add: 7912 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7913 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7914 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub: 7915 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7916 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7917 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin: 7918 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7919 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7920 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin: 7921 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7922 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7923 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax: 7924 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7925 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7926 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax: 7927 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7928 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7929 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and: 7930 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7931 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7932 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or: 7933 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7934 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7935 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor: 7936 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7937 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7938 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc: 7939 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7940 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7941 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec: 7942 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7943 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7944 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap: 7945 return lowerStructBufferAtomicIntrin(Op, DAG, 7946 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7947 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7948 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add: 7949 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7950 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7951 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub: 7952 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7953 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7954 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin: 7955 return lowerStructBufferAtomicIntrin(Op, DAG, 7956 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7957 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7958 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin: 7959 return lowerStructBufferAtomicIntrin(Op, DAG, 7960 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7961 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7962 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax: 7963 return lowerStructBufferAtomicIntrin(Op, DAG, 7964 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7965 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7966 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax: 7967 return lowerStructBufferAtomicIntrin(Op, DAG, 7968 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7969 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7970 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and: 7971 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7972 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7973 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or: 7974 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7975 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7976 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor: 7977 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7978 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7979 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc: 7980 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7981 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7982 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec: 7983 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7984 7985 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7986 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7987 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 7988 SDValue Ops[] = { 7989 Op.getOperand(0), // Chain 7990 Op.getOperand(2), // src 7991 Op.getOperand(3), // cmp 7992 Op.getOperand(4), // rsrc 7993 Op.getOperand(5), // vindex 7994 SDValue(), // voffset -- will be set by setBufferOffsets 7995 SDValue(), // soffset -- will be set by setBufferOffsets 7996 SDValue(), // offset -- will be set by setBufferOffsets 7997 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7998 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7999 }; 8000 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 8001 8002 EVT VT = Op.getValueType(); 8003 auto *M = cast<MemSDNode>(Op); 8004 8005 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8006 Op->getVTList(), Ops, VT, M->getMemOperand()); 8007 } 8008 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 8009 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: { 8010 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG); 8011 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8012 SDValue Ops[] = { 8013 Op.getOperand(0), // Chain 8014 Op.getOperand(2), // src 8015 Op.getOperand(3), // cmp 8016 Rsrc, // rsrc 8017 DAG.getConstant(0, DL, MVT::i32), // vindex 8018 Offsets.first, // voffset 8019 Op.getOperand(6), // soffset 8020 Offsets.second, // offset 8021 Op.getOperand(7), // cachepolicy 8022 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8023 }; 8024 EVT VT = Op.getValueType(); 8025 auto *M = cast<MemSDNode>(Op); 8026 8027 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8028 Op->getVTList(), Ops, VT, M->getMemOperand()); 8029 } 8030 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 8031 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: { 8032 SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG); 8033 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 8034 SDValue Ops[] = { 8035 Op.getOperand(0), // Chain 8036 Op.getOperand(2), // src 8037 Op.getOperand(3), // cmp 8038 Rsrc, // rsrc 8039 Op.getOperand(5), // vindex 8040 Offsets.first, // voffset 8041 Op.getOperand(7), // soffset 8042 Offsets.second, // offset 8043 Op.getOperand(8), // cachepolicy 8044 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8045 }; 8046 EVT VT = Op.getValueType(); 8047 auto *M = cast<MemSDNode>(Op); 8048 8049 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8050 Op->getVTList(), Ops, VT, M->getMemOperand()); 8051 } 8052 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 8053 MemSDNode *M = cast<MemSDNode>(Op); 8054 SDValue NodePtr = M->getOperand(2); 8055 SDValue RayExtent = M->getOperand(3); 8056 SDValue RayOrigin = M->getOperand(4); 8057 SDValue RayDir = M->getOperand(5); 8058 SDValue RayInvDir = M->getOperand(6); 8059 SDValue TDescr = M->getOperand(7); 8060 8061 assert(NodePtr.getValueType() == MVT::i32 || 8062 NodePtr.getValueType() == MVT::i64); 8063 assert(RayDir.getValueType() == MVT::v3f16 || 8064 RayDir.getValueType() == MVT::v3f32); 8065 8066 if (!Subtarget->hasGFX10_AEncoding()) { 8067 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 8068 return SDValue(); 8069 } 8070 8071 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 8072 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 8073 const bool Is64 = NodePtr.getValueType() == MVT::i64; 8074 const unsigned NumVDataDwords = 4; 8075 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 8076 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; 8077 const bool UseNSA = 8078 Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize(); 8079 const unsigned BaseOpcodes[2][2] = { 8080 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 8081 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 8082 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 8083 int Opcode; 8084 if (UseNSA) { 8085 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 8086 IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA 8087 : AMDGPU::MIMGEncGfx10NSA, 8088 NumVDataDwords, NumVAddrDwords); 8089 } else { 8090 Opcode = 8091 AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 8092 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default 8093 : AMDGPU::MIMGEncGfx10Default, 8094 NumVDataDwords, NumVAddrDwords); 8095 } 8096 assert(Opcode != -1); 8097 8098 SmallVector<SDValue, 16> Ops; 8099 8100 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 8101 SmallVector<SDValue, 3> Lanes; 8102 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 8103 if (Lanes[0].getValueSizeInBits() == 32) { 8104 for (unsigned I = 0; I < 3; ++I) 8105 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 8106 } else { 8107 if (IsAligned) { 8108 Ops.push_back( 8109 DAG.getBitcast(MVT::i32, 8110 DAG.getBuildVector(MVT::v2f16, DL, 8111 { Lanes[0], Lanes[1] }))); 8112 Ops.push_back(Lanes[2]); 8113 } else { 8114 SDValue Elt0 = Ops.pop_back_val(); 8115 Ops.push_back( 8116 DAG.getBitcast(MVT::i32, 8117 DAG.getBuildVector(MVT::v2f16, DL, 8118 { Elt0, Lanes[0] }))); 8119 Ops.push_back( 8120 DAG.getBitcast(MVT::i32, 8121 DAG.getBuildVector(MVT::v2f16, DL, 8122 { Lanes[1], Lanes[2] }))); 8123 } 8124 } 8125 }; 8126 8127 if (UseNSA && IsGFX11Plus) { 8128 Ops.push_back(NodePtr); 8129 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 8130 Ops.push_back(RayOrigin); 8131 if (IsA16) { 8132 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; 8133 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); 8134 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); 8135 for (unsigned I = 0; I < 3; ++I) { 8136 MergedLanes.push_back(DAG.getBitcast( 8137 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, 8138 {DirLanes[I], InvDirLanes[I]}))); 8139 } 8140 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); 8141 } else { 8142 Ops.push_back(RayDir); 8143 Ops.push_back(RayInvDir); 8144 } 8145 } else { 8146 if (Is64) 8147 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 8148 2); 8149 else 8150 Ops.push_back(NodePtr); 8151 8152 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 8153 packLanes(RayOrigin, true); 8154 packLanes(RayDir, true); 8155 packLanes(RayInvDir, false); 8156 } 8157 8158 if (!UseNSA) { 8159 // Build a single vector containing all the operands so far prepared. 8160 if (NumVAddrDwords > 12) { 8161 SDValue Undef = DAG.getUNDEF(MVT::i32); 8162 Ops.append(16 - Ops.size(), Undef); 8163 } 8164 assert(Ops.size() >= 8 && Ops.size() <= 12); 8165 SDValue MergedOps = DAG.getBuildVector( 8166 MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); 8167 Ops.clear(); 8168 Ops.push_back(MergedOps); 8169 } 8170 8171 Ops.push_back(TDescr); 8172 Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1)); 8173 Ops.push_back(M->getChain()); 8174 8175 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 8176 MachineMemOperand *MemRef = M->getMemOperand(); 8177 DAG.setNodeMemRefs(NewNode, {MemRef}); 8178 return SDValue(NewNode, 0); 8179 } 8180 case Intrinsic::amdgcn_global_atomic_fmin: 8181 case Intrinsic::amdgcn_global_atomic_fmax: 8182 case Intrinsic::amdgcn_flat_atomic_fmin: 8183 case Intrinsic::amdgcn_flat_atomic_fmax: { 8184 MemSDNode *M = cast<MemSDNode>(Op); 8185 SDValue Ops[] = { 8186 M->getOperand(0), // Chain 8187 M->getOperand(2), // Ptr 8188 M->getOperand(3) // Value 8189 }; 8190 unsigned Opcode = 0; 8191 switch (IntrID) { 8192 case Intrinsic::amdgcn_global_atomic_fmin: 8193 case Intrinsic::amdgcn_flat_atomic_fmin: { 8194 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 8195 break; 8196 } 8197 case Intrinsic::amdgcn_global_atomic_fmax: 8198 case Intrinsic::amdgcn_flat_atomic_fmax: { 8199 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 8200 break; 8201 } 8202 default: 8203 llvm_unreachable("unhandled atomic opcode"); 8204 } 8205 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 8206 M->getVTList(), Ops, M->getMemoryVT(), 8207 M->getMemOperand()); 8208 } 8209 default: 8210 8211 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8212 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 8213 return lowerImage(Op, ImageDimIntr, DAG, true); 8214 8215 return SDValue(); 8216 } 8217 } 8218 8219 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 8220 // dwordx4 if on SI and handle TFE loads. 8221 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 8222 SDVTList VTList, 8223 ArrayRef<SDValue> Ops, EVT MemVT, 8224 MachineMemOperand *MMO, 8225 SelectionDAG &DAG) const { 8226 LLVMContext &C = *DAG.getContext(); 8227 MachineFunction &MF = DAG.getMachineFunction(); 8228 EVT VT = VTList.VTs[0]; 8229 8230 assert(VTList.NumVTs == 2 || VTList.NumVTs == 3); 8231 bool IsTFE = VTList.NumVTs == 3; 8232 if (IsTFE) { 8233 unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); 8234 unsigned NumOpDWords = NumValueDWords + 1; 8235 EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); 8236 SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); 8237 MachineMemOperand *OpDWordsMMO = 8238 MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); 8239 SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, 8240 OpDWordsVT, OpDWordsMMO, DAG); 8241 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, 8242 DAG.getVectorIdxConstant(NumValueDWords, DL)); 8243 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 8244 SDValue ValueDWords = 8245 NumValueDWords == 1 8246 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) 8247 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 8248 EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, 8249 ZeroIdx); 8250 SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); 8251 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); 8252 } 8253 8254 if (!Subtarget->hasDwordx3LoadStores() && 8255 (VT == MVT::v3i32 || VT == MVT::v3f32)) { 8256 EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); 8257 EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); 8258 MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); 8259 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 8260 SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 8261 WidenedMemVT, WidenedMMO); 8262 SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, 8263 DAG.getVectorIdxConstant(0, DL)); 8264 return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); 8265 } 8266 8267 return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); 8268 } 8269 8270 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 8271 bool ImageStore) const { 8272 EVT StoreVT = VData.getValueType(); 8273 8274 // No change for f16 and legal vector D16 types. 8275 if (!StoreVT.isVector()) 8276 return VData; 8277 8278 SDLoc DL(VData); 8279 unsigned NumElements = StoreVT.getVectorNumElements(); 8280 8281 if (Subtarget->hasUnpackedD16VMem()) { 8282 // We need to unpack the packed data to store. 8283 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 8284 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 8285 8286 EVT EquivStoreVT = 8287 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 8288 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 8289 return DAG.UnrollVectorOp(ZExt.getNode()); 8290 } 8291 8292 // The sq block of gfx8.1 does not estimate register use correctly for d16 8293 // image store instructions. The data operand is computed as if it were not a 8294 // d16 image instruction. 8295 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 8296 // Bitcast to i16 8297 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 8298 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 8299 8300 // Decompose into scalars 8301 SmallVector<SDValue, 4> Elts; 8302 DAG.ExtractVectorElements(IntVData, Elts); 8303 8304 // Group pairs of i16 into v2i16 and bitcast to i32 8305 SmallVector<SDValue, 4> PackedElts; 8306 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 8307 SDValue Pair = 8308 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 8309 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 8310 PackedElts.push_back(IntPair); 8311 } 8312 if ((NumElements % 2) == 1) { 8313 // Handle v3i16 8314 unsigned I = Elts.size() / 2; 8315 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 8316 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 8317 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 8318 PackedElts.push_back(IntPair); 8319 } 8320 8321 // Pad using UNDEF 8322 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 8323 8324 // Build final vector 8325 EVT VecVT = 8326 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 8327 return DAG.getBuildVector(VecVT, DL, PackedElts); 8328 } 8329 8330 if (NumElements == 3) { 8331 EVT IntStoreVT = 8332 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 8333 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 8334 8335 EVT WidenedStoreVT = EVT::getVectorVT( 8336 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 8337 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 8338 WidenedStoreVT.getStoreSizeInBits()); 8339 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 8340 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 8341 } 8342 8343 assert(isTypeLegal(StoreVT)); 8344 return VData; 8345 } 8346 8347 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 8348 SelectionDAG &DAG) const { 8349 SDLoc DL(Op); 8350 SDValue Chain = Op.getOperand(0); 8351 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 8352 MachineFunction &MF = DAG.getMachineFunction(); 8353 8354 switch (IntrinsicID) { 8355 case Intrinsic::amdgcn_exp_compr: { 8356 if (!Subtarget->hasCompressedExport()) { 8357 DiagnosticInfoUnsupported BadIntrin( 8358 DAG.getMachineFunction().getFunction(), 8359 "intrinsic not supported on subtarget", DL.getDebugLoc()); 8360 DAG.getContext()->diagnose(BadIntrin); 8361 } 8362 SDValue Src0 = Op.getOperand(4); 8363 SDValue Src1 = Op.getOperand(5); 8364 // Hack around illegal type on SI by directly selecting it. 8365 if (isTypeLegal(Src0.getValueType())) 8366 return SDValue(); 8367 8368 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 8369 SDValue Undef = DAG.getUNDEF(MVT::f32); 8370 const SDValue Ops[] = { 8371 Op.getOperand(2), // tgt 8372 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 8373 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 8374 Undef, // src2 8375 Undef, // src3 8376 Op.getOperand(7), // vm 8377 DAG.getTargetConstant(1, DL, MVT::i1), // compr 8378 Op.getOperand(3), // en 8379 Op.getOperand(0) // Chain 8380 }; 8381 8382 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 8383 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 8384 } 8385 case Intrinsic::amdgcn_s_barrier: { 8386 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 8387 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 8388 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 8389 if (WGSize <= ST.getWavefrontSize()) 8390 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 8391 Op.getOperand(0)), 0); 8392 } 8393 return SDValue(); 8394 }; 8395 case Intrinsic::amdgcn_tbuffer_store: { 8396 SDValue VData = Op.getOperand(2); 8397 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8398 if (IsD16) 8399 VData = handleD16VData(VData, DAG); 8400 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 8401 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 8402 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 8403 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 8404 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8405 SDValue Ops[] = { 8406 Chain, 8407 VData, // vdata 8408 Op.getOperand(3), // rsrc 8409 Op.getOperand(4), // vindex 8410 Op.getOperand(5), // voffset 8411 Op.getOperand(6), // soffset 8412 Op.getOperand(7), // offset 8413 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 8414 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8415 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8416 }; 8417 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8418 AMDGPUISD::TBUFFER_STORE_FORMAT; 8419 MemSDNode *M = cast<MemSDNode>(Op); 8420 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8421 M->getMemoryVT(), M->getMemOperand()); 8422 } 8423 8424 case Intrinsic::amdgcn_struct_tbuffer_store: 8425 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: { 8426 SDValue VData = Op.getOperand(2); 8427 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8428 if (IsD16) 8429 VData = handleD16VData(VData, DAG); 8430 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8431 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8432 SDValue Ops[] = { 8433 Chain, 8434 VData, // vdata 8435 Rsrc, // rsrc 8436 Op.getOperand(4), // vindex 8437 Offsets.first, // voffset 8438 Op.getOperand(6), // soffset 8439 Offsets.second, // offset 8440 Op.getOperand(7), // format 8441 Op.getOperand(8), // cachepolicy, swizzled buffer 8442 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8443 }; 8444 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8445 AMDGPUISD::TBUFFER_STORE_FORMAT; 8446 MemSDNode *M = cast<MemSDNode>(Op); 8447 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8448 M->getMemoryVT(), M->getMemOperand()); 8449 } 8450 8451 case Intrinsic::amdgcn_raw_tbuffer_store: 8452 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: { 8453 SDValue VData = Op.getOperand(2); 8454 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8455 if (IsD16) 8456 VData = handleD16VData(VData, DAG); 8457 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8458 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8459 SDValue Ops[] = { 8460 Chain, 8461 VData, // vdata 8462 Rsrc, // rsrc 8463 DAG.getConstant(0, DL, MVT::i32), // vindex 8464 Offsets.first, // voffset 8465 Op.getOperand(5), // soffset 8466 Offsets.second, // offset 8467 Op.getOperand(6), // format 8468 Op.getOperand(7), // cachepolicy, swizzled buffer 8469 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8470 }; 8471 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8472 AMDGPUISD::TBUFFER_STORE_FORMAT; 8473 MemSDNode *M = cast<MemSDNode>(Op); 8474 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8475 M->getMemoryVT(), M->getMemOperand()); 8476 } 8477 8478 case Intrinsic::amdgcn_buffer_store: 8479 case Intrinsic::amdgcn_buffer_store_format: { 8480 SDValue VData = Op.getOperand(2); 8481 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8482 if (IsD16) 8483 VData = handleD16VData(VData, DAG); 8484 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 8485 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 8486 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8487 SDValue Ops[] = { 8488 Chain, 8489 VData, 8490 Op.getOperand(3), // rsrc 8491 Op.getOperand(4), // vindex 8492 SDValue(), // voffset -- will be set by setBufferOffsets 8493 SDValue(), // soffset -- will be set by setBufferOffsets 8494 SDValue(), // offset -- will be set by setBufferOffsets 8495 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8496 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8497 }; 8498 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 8499 8500 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 8501 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8502 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8503 MemSDNode *M = cast<MemSDNode>(Op); 8504 8505 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8506 EVT VDataType = VData.getValueType().getScalarType(); 8507 if (VDataType == MVT::i8 || VDataType == MVT::i16) 8508 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8509 8510 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8511 M->getMemoryVT(), M->getMemOperand()); 8512 } 8513 8514 case Intrinsic::amdgcn_raw_buffer_store: 8515 case Intrinsic::amdgcn_raw_ptr_buffer_store: 8516 case Intrinsic::amdgcn_raw_buffer_store_format: 8517 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: { 8518 const bool IsFormat = 8519 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format || 8520 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format; 8521 8522 SDValue VData = Op.getOperand(2); 8523 EVT VDataVT = VData.getValueType(); 8524 EVT EltType = VDataVT.getScalarType(); 8525 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8526 if (IsD16) { 8527 VData = handleD16VData(VData, DAG); 8528 VDataVT = VData.getValueType(); 8529 } 8530 8531 if (!isTypeLegal(VDataVT)) { 8532 VData = 8533 DAG.getNode(ISD::BITCAST, DL, 8534 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8535 } 8536 8537 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8538 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8539 SDValue Ops[] = { 8540 Chain, 8541 VData, 8542 Rsrc, 8543 DAG.getConstant(0, DL, MVT::i32), // vindex 8544 Offsets.first, // voffset 8545 Op.getOperand(5), // soffset 8546 Offsets.second, // offset 8547 Op.getOperand(6), // cachepolicy, swizzled buffer 8548 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8549 }; 8550 unsigned Opc = 8551 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 8552 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8553 MemSDNode *M = cast<MemSDNode>(Op); 8554 8555 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8556 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8557 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 8558 8559 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8560 M->getMemoryVT(), M->getMemOperand()); 8561 } 8562 8563 case Intrinsic::amdgcn_struct_buffer_store: 8564 case Intrinsic::amdgcn_struct_ptr_buffer_store: 8565 case Intrinsic::amdgcn_struct_buffer_store_format: 8566 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: { 8567 const bool IsFormat = 8568 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format || 8569 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format; 8570 8571 SDValue VData = Op.getOperand(2); 8572 EVT VDataVT = VData.getValueType(); 8573 EVT EltType = VDataVT.getScalarType(); 8574 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8575 8576 if (IsD16) { 8577 VData = handleD16VData(VData, DAG); 8578 VDataVT = VData.getValueType(); 8579 } 8580 8581 if (!isTypeLegal(VDataVT)) { 8582 VData = 8583 DAG.getNode(ISD::BITCAST, DL, 8584 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8585 } 8586 8587 auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8588 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8589 SDValue Ops[] = { 8590 Chain, 8591 VData, 8592 Rsrc, 8593 Op.getOperand(4), // vindex 8594 Offsets.first, // voffset 8595 Op.getOperand(6), // soffset 8596 Offsets.second, // offset 8597 Op.getOperand(7), // cachepolicy, swizzled buffer 8598 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8599 }; 8600 unsigned Opc = 8601 !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8602 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8603 MemSDNode *M = cast<MemSDNode>(Op); 8604 8605 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8606 EVT VDataType = VData.getValueType().getScalarType(); 8607 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8608 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8609 8610 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8611 M->getMemoryVT(), M->getMemOperand()); 8612 } 8613 case Intrinsic::amdgcn_raw_buffer_load_lds: 8614 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: 8615 case Intrinsic::amdgcn_struct_buffer_load_lds: 8616 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { 8617 unsigned Opc; 8618 bool HasVIndex = 8619 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds || 8620 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds; 8621 unsigned OpOffset = HasVIndex ? 1 : 0; 8622 SDValue VOffset = Op.getOperand(5 + OpOffset); 8623 auto CVOffset = dyn_cast<ConstantSDNode>(VOffset); 8624 bool HasVOffset = !CVOffset || !CVOffset->isZero(); 8625 unsigned Size = Op->getConstantOperandVal(4); 8626 8627 switch (Size) { 8628 default: 8629 return SDValue(); 8630 case 1: 8631 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN 8632 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN 8633 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN 8634 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; 8635 break; 8636 case 2: 8637 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN 8638 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN 8639 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN 8640 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; 8641 break; 8642 case 4: 8643 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN 8644 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN 8645 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN 8646 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; 8647 break; 8648 } 8649 8650 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8651 8652 SmallVector<SDValue, 8> Ops; 8653 8654 if (HasVIndex && HasVOffset) 8655 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, 8656 { Op.getOperand(5), // VIndex 8657 VOffset })); 8658 else if (HasVIndex) 8659 Ops.push_back(Op.getOperand(5)); 8660 else if (HasVOffset) 8661 Ops.push_back(VOffset); 8662 8663 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8664 Ops.push_back(Rsrc); 8665 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset 8666 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset 8667 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); 8668 Ops.push_back( 8669 DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol 8670 Ops.push_back( 8671 DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz 8672 Ops.push_back(M0Val.getValue(0)); // Chain 8673 Ops.push_back(M0Val.getValue(1)); // Glue 8674 8675 auto *M = cast<MemSDNode>(Op); 8676 MachineMemOperand *LoadMMO = M->getMemOperand(); 8677 // Don't set the offset value here because the pointer points to the base of 8678 // the buffer. 8679 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8680 8681 MachinePointerInfo StorePtrI = LoadPtrI; 8682 StorePtrI.V = nullptr; 8683 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8684 8685 auto F = LoadMMO->getFlags() & 8686 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8687 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8688 Size, LoadMMO->getBaseAlign()); 8689 8690 MachineMemOperand *StoreMMO = 8691 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8692 sizeof(int32_t), LoadMMO->getBaseAlign()); 8693 8694 auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); 8695 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8696 8697 return SDValue(Load, 0); 8698 } 8699 case Intrinsic::amdgcn_global_load_lds: { 8700 unsigned Opc; 8701 unsigned Size = Op->getConstantOperandVal(4); 8702 switch (Size) { 8703 default: 8704 return SDValue(); 8705 case 1: 8706 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; 8707 break; 8708 case 2: 8709 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; 8710 break; 8711 case 4: 8712 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; 8713 break; 8714 } 8715 8716 auto *M = cast<MemSDNode>(Op); 8717 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8718 8719 SmallVector<SDValue, 6> Ops; 8720 8721 SDValue Addr = Op.getOperand(2); // Global ptr 8722 SDValue VOffset; 8723 // Try to split SAddr and VOffset. Global and LDS pointers share the same 8724 // immediate offset, so we cannot use a regular SelectGlobalSAddr(). 8725 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { 8726 SDValue LHS = Addr.getOperand(0); 8727 SDValue RHS = Addr.getOperand(1); 8728 8729 if (LHS->isDivergent()) 8730 std::swap(LHS, RHS); 8731 8732 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && 8733 RHS.getOperand(0).getValueType() == MVT::i32) { 8734 // add (i64 sgpr), (zero_extend (i32 vgpr)) 8735 Addr = LHS; 8736 VOffset = RHS.getOperand(0); 8737 } 8738 } 8739 8740 Ops.push_back(Addr); 8741 if (!Addr->isDivergent()) { 8742 Opc = AMDGPU::getGlobalSaddrOp(Opc); 8743 if (!VOffset) 8744 VOffset = SDValue( 8745 DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, 8746 DAG.getTargetConstant(0, DL, MVT::i32)), 0); 8747 Ops.push_back(VOffset); 8748 } 8749 8750 Ops.push_back(Op.getOperand(5)); // Offset 8751 Ops.push_back(Op.getOperand(6)); // CPol 8752 Ops.push_back(M0Val.getValue(0)); // Chain 8753 Ops.push_back(M0Val.getValue(1)); // Glue 8754 8755 MachineMemOperand *LoadMMO = M->getMemOperand(); 8756 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8757 LoadPtrI.Offset = Op->getConstantOperandVal(5); 8758 MachinePointerInfo StorePtrI = LoadPtrI; 8759 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 8760 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8761 auto F = LoadMMO->getFlags() & 8762 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8763 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8764 Size, LoadMMO->getBaseAlign()); 8765 MachineMemOperand *StoreMMO = 8766 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8767 sizeof(int32_t), Align(4)); 8768 8769 auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 8770 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8771 8772 return SDValue(Load, 0); 8773 } 8774 case Intrinsic::amdgcn_end_cf: 8775 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 8776 Op->getOperand(2), Chain), 0); 8777 8778 default: { 8779 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8780 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8781 return lowerImage(Op, ImageDimIntr, DAG, true); 8782 8783 return Op; 8784 } 8785 } 8786 } 8787 8788 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 8789 // offset (the offset that is included in bounds checking and swizzling, to be 8790 // split between the instruction's voffset and immoffset fields) and soffset 8791 // (the offset that is excluded from bounds checking and swizzling, to go in 8792 // the instruction's soffset field). This function takes the first kind of 8793 // offset and figures out how to split it between voffset and immoffset. 8794 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 8795 SDValue Offset, SelectionDAG &DAG) const { 8796 SDLoc DL(Offset); 8797 const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(); 8798 SDValue N0 = Offset; 8799 ConstantSDNode *C1 = nullptr; 8800 8801 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 8802 N0 = SDValue(); 8803 else if (DAG.isBaseWithConstantOffset(N0)) { 8804 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 8805 N0 = N0.getOperand(0); 8806 } 8807 8808 if (C1) { 8809 unsigned ImmOffset = C1->getZExtValue(); 8810 // If the immediate value is too big for the immoffset field, put only bits 8811 // that would normally fit in the immoffset field. The remaining value that 8812 // is copied/added for the voffset field is a large power of 2, and it 8813 // stands more chance of being CSEd with the copy/add for another similar 8814 // load/store. 8815 // However, do not do that rounding down if that is a negative 8816 // number, as it appears to be illegal to have a negative offset in the 8817 // vgpr, even if adding the immediate offset makes it positive. 8818 unsigned Overflow = ImmOffset & ~MaxImm; 8819 ImmOffset -= Overflow; 8820 if ((int32_t)Overflow < 0) { 8821 Overflow += ImmOffset; 8822 ImmOffset = 0; 8823 } 8824 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 8825 if (Overflow) { 8826 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 8827 if (!N0) 8828 N0 = OverflowVal; 8829 else { 8830 SDValue Ops[] = { N0, OverflowVal }; 8831 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 8832 } 8833 } 8834 } 8835 if (!N0) 8836 N0 = DAG.getConstant(0, DL, MVT::i32); 8837 if (!C1) 8838 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 8839 return {N0, SDValue(C1, 0)}; 8840 } 8841 8842 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 8843 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 8844 // pointed to by Offsets. 8845 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 8846 SelectionDAG &DAG, SDValue *Offsets, 8847 Align Alignment) const { 8848 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8849 SDLoc DL(CombinedOffset); 8850 if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 8851 uint32_t Imm = C->getZExtValue(); 8852 uint32_t SOffset, ImmOffset; 8853 if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) { 8854 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 8855 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8856 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8857 return; 8858 } 8859 } 8860 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 8861 SDValue N0 = CombinedOffset.getOperand(0); 8862 SDValue N1 = CombinedOffset.getOperand(1); 8863 uint32_t SOffset, ImmOffset; 8864 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 8865 if (Offset >= 0 && 8866 TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) { 8867 Offsets[0] = N0; 8868 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8869 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8870 return; 8871 } 8872 } 8873 Offsets[0] = CombinedOffset; 8874 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 8875 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 8876 } 8877 8878 SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer, 8879 SelectionDAG &DAG) const { 8880 if (!MaybePointer.getValueType().isScalarInteger()) 8881 return MaybePointer; 8882 8883 SDLoc DL(MaybePointer); 8884 8885 SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer); 8886 return Rsrc; 8887 } 8888 8889 // Wrap a global or flat pointer into a buffer intrinsic using the flags 8890 // specified in the intrinsic. 8891 SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op, 8892 SelectionDAG &DAG) const { 8893 SDLoc Loc(Op); 8894 8895 SDValue Pointer = Op->getOperand(1); 8896 SDValue Stride = Op->getOperand(2); 8897 SDValue NumRecords = Op->getOperand(3); 8898 SDValue Flags = Op->getOperand(4); 8899 8900 auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32); 8901 SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32); 8902 SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask); 8903 std::optional<uint32_t> ConstStride = std::nullopt; 8904 if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride)) 8905 ConstStride = ConstNode->getZExtValue(); 8906 8907 SDValue NewHighHalf = Masked; 8908 if (!ConstStride || *ConstStride != 0) { 8909 SDValue ShiftedStride; 8910 if (ConstStride) { 8911 ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32); 8912 } else { 8913 SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32); 8914 ShiftedStride = 8915 DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride, 8916 DAG.getShiftAmountConstant(16, MVT::i32, Loc)); 8917 } 8918 NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride); 8919 } 8920 8921 SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf, 8922 NewHighHalf, NumRecords, Flags); 8923 SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc); 8924 return RsrcPtr; 8925 } 8926 8927 // Handle 8 bit and 16 bit buffer loads 8928 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 8929 EVT LoadVT, SDLoc DL, 8930 ArrayRef<SDValue> Ops, 8931 MemSDNode *M) const { 8932 EVT IntVT = LoadVT.changeTypeToInteger(); 8933 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 8934 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 8935 8936 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 8937 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 8938 Ops, IntVT, 8939 M->getMemOperand()); 8940 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 8941 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 8942 8943 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 8944 } 8945 8946 // Handle 8 bit and 16 bit buffer stores 8947 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 8948 EVT VDataType, SDLoc DL, 8949 SDValue Ops[], 8950 MemSDNode *M) const { 8951 if (VDataType == MVT::f16) 8952 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 8953 8954 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 8955 Ops[1] = BufferStoreExt; 8956 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 8957 AMDGPUISD::BUFFER_STORE_SHORT; 8958 ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9); 8959 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 8960 M->getMemOperand()); 8961 } 8962 8963 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 8964 ISD::LoadExtType ExtType, SDValue Op, 8965 const SDLoc &SL, EVT VT) { 8966 if (VT.bitsLT(Op.getValueType())) 8967 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 8968 8969 switch (ExtType) { 8970 case ISD::SEXTLOAD: 8971 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 8972 case ISD::ZEXTLOAD: 8973 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 8974 case ISD::EXTLOAD: 8975 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 8976 case ISD::NON_EXTLOAD: 8977 return Op; 8978 } 8979 8980 llvm_unreachable("invalid ext type"); 8981 } 8982 8983 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 8984 SelectionDAG &DAG = DCI.DAG; 8985 if (Ld->getAlign() < Align(4) || Ld->isDivergent()) 8986 return SDValue(); 8987 8988 // FIXME: Constant loads should all be marked invariant. 8989 unsigned AS = Ld->getAddressSpace(); 8990 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 8991 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 8992 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 8993 return SDValue(); 8994 8995 // Don't do this early, since it may interfere with adjacent load merging for 8996 // illegal types. We can avoid losing alignment information for exotic types 8997 // pre-legalize. 8998 EVT MemVT = Ld->getMemoryVT(); 8999 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 9000 MemVT.getSizeInBits() >= 32) 9001 return SDValue(); 9002 9003 SDLoc SL(Ld); 9004 9005 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 9006 "unexpected vector extload"); 9007 9008 // TODO: Drop only high part of range. 9009 SDValue Ptr = Ld->getBasePtr(); 9010 SDValue NewLoad = DAG.getLoad( 9011 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, 9012 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), 9013 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), 9014 nullptr); // Drop ranges 9015 9016 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 9017 if (MemVT.isFloatingPoint()) { 9018 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 9019 "unexpected fp extload"); 9020 TruncVT = MemVT.changeTypeToInteger(); 9021 } 9022 9023 SDValue Cvt = NewLoad; 9024 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 9025 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 9026 DAG.getValueType(TruncVT)); 9027 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 9028 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 9029 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 9030 } else { 9031 assert(Ld->getExtensionType() == ISD::EXTLOAD); 9032 } 9033 9034 EVT VT = Ld->getValueType(0); 9035 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9036 9037 DCI.AddToWorklist(Cvt.getNode()); 9038 9039 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 9040 // the appropriate extension from the 32-bit load. 9041 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 9042 DCI.AddToWorklist(Cvt.getNode()); 9043 9044 // Handle conversion back to floating point if necessary. 9045 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 9046 9047 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 9048 } 9049 9050 static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, 9051 const SIMachineFunctionInfo &Info) { 9052 // TODO: Should check if the address can definitely not access stack. 9053 if (Info.isEntryFunction()) 9054 return Info.hasFlatScratchInit(); 9055 return true; 9056 } 9057 9058 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 9059 SDLoc DL(Op); 9060 LoadSDNode *Load = cast<LoadSDNode>(Op); 9061 ISD::LoadExtType ExtType = Load->getExtensionType(); 9062 EVT MemVT = Load->getMemoryVT(); 9063 9064 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 9065 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 9066 return SDValue(); 9067 9068 // FIXME: Copied from PPC 9069 // First, load into 32 bits, then truncate to 1 bit. 9070 9071 SDValue Chain = Load->getChain(); 9072 SDValue BasePtr = Load->getBasePtr(); 9073 MachineMemOperand *MMO = Load->getMemOperand(); 9074 9075 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 9076 9077 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 9078 BasePtr, RealMemVT, MMO); 9079 9080 if (!MemVT.isVector()) { 9081 SDValue Ops[] = { 9082 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 9083 NewLD.getValue(1) 9084 }; 9085 9086 return DAG.getMergeValues(Ops, DL); 9087 } 9088 9089 SmallVector<SDValue, 3> Elts; 9090 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 9091 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 9092 DAG.getConstant(I, DL, MVT::i32)); 9093 9094 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 9095 } 9096 9097 SDValue Ops[] = { 9098 DAG.getBuildVector(MemVT, DL, Elts), 9099 NewLD.getValue(1) 9100 }; 9101 9102 return DAG.getMergeValues(Ops, DL); 9103 } 9104 9105 if (!MemVT.isVector()) 9106 return SDValue(); 9107 9108 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 9109 "Custom lowering for non-i32 vectors hasn't been implemented."); 9110 9111 Align Alignment = Load->getAlign(); 9112 unsigned AS = Load->getAddressSpace(); 9113 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && 9114 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 9115 return SplitVectorLoad(Op, DAG); 9116 } 9117 9118 MachineFunction &MF = DAG.getMachineFunction(); 9119 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9120 // If there is a possibility that flat instruction access scratch memory 9121 // then we need to use the same legalization rules we use for private. 9122 if (AS == AMDGPUAS::FLAT_ADDRESS && 9123 !Subtarget->hasMultiDwordFlatScratchAddressing()) 9124 AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ? 9125 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 9126 9127 unsigned NumElements = MemVT.getVectorNumElements(); 9128 9129 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 9130 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 9131 if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { 9132 if (MemVT.isPow2VectorType()) 9133 return SDValue(); 9134 return WidenOrSplitVectorLoad(Op, DAG); 9135 } 9136 // Non-uniform loads will be selected to MUBUF instructions, so they 9137 // have the same legalization requirements as global and private 9138 // loads. 9139 // 9140 } 9141 9142 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 9143 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 9144 AS == AMDGPUAS::GLOBAL_ADDRESS) { 9145 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 9146 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 9147 Alignment >= Align(4) && NumElements < 32) { 9148 if (MemVT.isPow2VectorType()) 9149 return SDValue(); 9150 return WidenOrSplitVectorLoad(Op, DAG); 9151 } 9152 // Non-uniform loads will be selected to MUBUF instructions, so they 9153 // have the same legalization requirements as global and private 9154 // loads. 9155 // 9156 } 9157 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 9158 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 9159 AS == AMDGPUAS::GLOBAL_ADDRESS || 9160 AS == AMDGPUAS::FLAT_ADDRESS) { 9161 if (NumElements > 4) 9162 return SplitVectorLoad(Op, DAG); 9163 // v3 loads not supported on SI. 9164 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 9165 return WidenOrSplitVectorLoad(Op, DAG); 9166 9167 // v3 and v4 loads are supported for private and global memory. 9168 return SDValue(); 9169 } 9170 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 9171 // Depending on the setting of the private_element_size field in the 9172 // resource descriptor, we can only make private accesses up to a certain 9173 // size. 9174 switch (Subtarget->getMaxPrivateElementSize()) { 9175 case 4: { 9176 SDValue Ops[2]; 9177 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 9178 return DAG.getMergeValues(Ops, DL); 9179 } 9180 case 8: 9181 if (NumElements > 2) 9182 return SplitVectorLoad(Op, DAG); 9183 return SDValue(); 9184 case 16: 9185 // Same as global/flat 9186 if (NumElements > 4) 9187 return SplitVectorLoad(Op, DAG); 9188 // v3 loads not supported on SI. 9189 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 9190 return WidenOrSplitVectorLoad(Op, DAG); 9191 9192 return SDValue(); 9193 default: 9194 llvm_unreachable("unsupported private_element_size"); 9195 } 9196 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 9197 unsigned Fast = 0; 9198 auto Flags = Load->getMemOperand()->getFlags(); 9199 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 9200 Load->getAlign(), Flags, &Fast) && 9201 Fast > 1) 9202 return SDValue(); 9203 9204 if (MemVT.isVector()) 9205 return SplitVectorLoad(Op, DAG); 9206 } 9207 9208 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 9209 MemVT, *Load->getMemOperand())) { 9210 SDValue Ops[2]; 9211 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 9212 return DAG.getMergeValues(Ops, DL); 9213 } 9214 9215 return SDValue(); 9216 } 9217 9218 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 9219 EVT VT = Op.getValueType(); 9220 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256) 9221 return splitTernaryVectorOp(Op, DAG); 9222 9223 assert(VT.getSizeInBits() == 64); 9224 9225 SDLoc DL(Op); 9226 SDValue Cond = Op.getOperand(0); 9227 9228 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 9229 SDValue One = DAG.getConstant(1, DL, MVT::i32); 9230 9231 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 9232 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 9233 9234 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 9235 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 9236 9237 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 9238 9239 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 9240 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 9241 9242 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 9243 9244 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 9245 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 9246 } 9247 9248 // Catch division cases where we can use shortcuts with rcp and rsq 9249 // instructions. 9250 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 9251 SelectionDAG &DAG) const { 9252 SDLoc SL(Op); 9253 SDValue LHS = Op.getOperand(0); 9254 SDValue RHS = Op.getOperand(1); 9255 EVT VT = Op.getValueType(); 9256 const SDNodeFlags Flags = Op->getFlags(); 9257 9258 bool AllowInaccurateRcp = Flags.hasApproximateFuncs() || 9259 DAG.getTarget().Options.UnsafeFPMath; 9260 9261 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 9262 // Without !fpmath accuracy information, we can't do more because we don't 9263 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 9264 // f16 is always accurate enough 9265 if (!AllowInaccurateRcp && VT != MVT::f16) 9266 return SDValue(); 9267 9268 if (CLHS->isExactlyValue(1.0)) { 9269 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 9270 // the CI documentation has a worst case error of 1 ulp. 9271 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 9272 // use it as long as we aren't trying to use denormals. 9273 // 9274 // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp. 9275 9276 // 1.0 / sqrt(x) -> rsq(x) 9277 9278 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 9279 // error seems really high at 2^29 ULP. 9280 9281 // XXX - do we need afn for this or is arcp sufficent? 9282 if (RHS.getOpcode() == ISD::FSQRT) 9283 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 9284 9285 // 1.0 / x -> rcp(x) 9286 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 9287 } 9288 9289 // Same as for 1.0, but expand the sign out of the constant. 9290 if (CLHS->isExactlyValue(-1.0)) { 9291 // -1.0 / x -> rcp (fneg x) 9292 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 9293 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 9294 } 9295 } 9296 9297 // For f16 require arcp only. 9298 // For f32 require afn+arcp. 9299 if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal())) 9300 return SDValue(); 9301 9302 // Turn into multiply by the reciprocal. 9303 // x / y -> x * (1.0 / y) 9304 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 9305 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 9306 } 9307 9308 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 9309 SelectionDAG &DAG) const { 9310 SDLoc SL(Op); 9311 SDValue X = Op.getOperand(0); 9312 SDValue Y = Op.getOperand(1); 9313 EVT VT = Op.getValueType(); 9314 const SDNodeFlags Flags = Op->getFlags(); 9315 9316 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 9317 DAG.getTarget().Options.UnsafeFPMath; 9318 if (!AllowInaccurateDiv) 9319 return SDValue(); 9320 9321 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 9322 SDValue One = DAG.getConstantFP(1.0, SL, VT); 9323 9324 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 9325 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 9326 9327 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 9328 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 9329 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 9330 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 9331 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 9332 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 9333 } 9334 9335 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 9336 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 9337 SDNodeFlags Flags) { 9338 if (GlueChain->getNumValues() <= 1) { 9339 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 9340 } 9341 9342 assert(GlueChain->getNumValues() == 3); 9343 9344 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 9345 switch (Opcode) { 9346 default: llvm_unreachable("no chain equivalent for opcode"); 9347 case ISD::FMUL: 9348 Opcode = AMDGPUISD::FMUL_W_CHAIN; 9349 break; 9350 } 9351 9352 return DAG.getNode(Opcode, SL, VTList, 9353 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 9354 Flags); 9355 } 9356 9357 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 9358 EVT VT, SDValue A, SDValue B, SDValue C, 9359 SDValue GlueChain, SDNodeFlags Flags) { 9360 if (GlueChain->getNumValues() <= 1) { 9361 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 9362 } 9363 9364 assert(GlueChain->getNumValues() == 3); 9365 9366 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 9367 switch (Opcode) { 9368 default: llvm_unreachable("no chain equivalent for opcode"); 9369 case ISD::FMA: 9370 Opcode = AMDGPUISD::FMA_W_CHAIN; 9371 break; 9372 } 9373 9374 return DAG.getNode(Opcode, SL, VTList, 9375 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 9376 Flags); 9377 } 9378 9379 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 9380 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 9381 return FastLowered; 9382 9383 SDLoc SL(Op); 9384 SDValue Src0 = Op.getOperand(0); 9385 SDValue Src1 = Op.getOperand(1); 9386 9387 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 9388 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 9389 9390 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 9391 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 9392 9393 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 9394 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 9395 9396 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 9397 } 9398 9399 // Faster 2.5 ULP division that does not support denormals. 9400 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 9401 SDNodeFlags Flags = Op->getFlags(); 9402 SDLoc SL(Op); 9403 SDValue LHS = Op.getOperand(1); 9404 SDValue RHS = Op.getOperand(2); 9405 9406 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags); 9407 9408 const APFloat K0Val(0x1p+96f); 9409 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 9410 9411 const APFloat K1Val(0x1p-32f); 9412 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 9413 9414 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 9415 9416 EVT SetCCVT = 9417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 9418 9419 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 9420 9421 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags); 9422 9423 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags); 9424 9425 // rcp does not support denormals. 9426 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags); 9427 9428 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags); 9429 9430 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags); 9431 } 9432 9433 // Returns immediate value for setting the F32 denorm mode when using the 9434 // S_DENORM_MODE instruction. 9435 static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, 9436 const SIMachineFunctionInfo *Info, 9437 const GCNSubtarget *ST) { 9438 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 9439 uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue(); 9440 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2); 9441 return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32); 9442 } 9443 9444 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 9445 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 9446 return FastLowered; 9447 9448 // The selection matcher assumes anything with a chain selecting to a 9449 // mayRaiseFPException machine instruction. Since we're introducing a chain 9450 // here, we need to explicitly report nofpexcept for the regular fdiv 9451 // lowering. 9452 SDNodeFlags Flags = Op->getFlags(); 9453 Flags.setNoFPExcept(true); 9454 9455 SDLoc SL(Op); 9456 SDValue LHS = Op.getOperand(0); 9457 SDValue RHS = Op.getOperand(1); 9458 9459 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 9460 9461 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 9462 9463 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9464 {RHS, RHS, LHS}, Flags); 9465 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9466 {LHS, RHS, LHS}, Flags); 9467 9468 // Denominator is scaled to not be denormal, so using rcp is ok. 9469 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 9470 DenominatorScaled, Flags); 9471 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 9472 DenominatorScaled, Flags); 9473 9474 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 9475 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 9476 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 9477 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 9478 9479 const MachineFunction &MF = DAG.getMachineFunction(); 9480 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9481 const DenormalMode DenormMode = Info->getMode().FP32Denormals; 9482 9483 const bool HasFP32Denormals = DenormMode == DenormalMode::getIEEE(); 9484 9485 if (!HasFP32Denormals) { 9486 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 9487 // lowering. The chain dependence is insufficient, and we need glue. We do 9488 // not need the glue variants in a strictfp function. 9489 9490 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 9491 9492 SDNode *EnableDenorm; 9493 if (Subtarget->hasDenormModeInst()) { 9494 const SDValue EnableDenormValue = 9495 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget); 9496 9497 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 9498 DAG.getEntryNode(), EnableDenormValue).getNode(); 9499 } else { 9500 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 9501 SL, MVT::i32); 9502 EnableDenorm = 9503 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 9504 {EnableDenormValue, BitField, DAG.getEntryNode()}); 9505 } 9506 9507 SDValue Ops[3] = { 9508 NegDivScale0, 9509 SDValue(EnableDenorm, 0), 9510 SDValue(EnableDenorm, 1) 9511 }; 9512 9513 NegDivScale0 = DAG.getMergeValues(Ops, SL); 9514 } 9515 9516 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 9517 ApproxRcp, One, NegDivScale0, Flags); 9518 9519 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 9520 ApproxRcp, Fma0, Flags); 9521 9522 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 9523 Fma1, Fma1, Flags); 9524 9525 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 9526 NumeratorScaled, Mul, Flags); 9527 9528 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 9529 Fma2, Fma1, Mul, Fma2, Flags); 9530 9531 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 9532 NumeratorScaled, Fma3, Flags); 9533 9534 if (!HasFP32Denormals) { 9535 // FIXME: This mishandles dynamic denormal mode. We need to query the 9536 // current mode and restore the original. 9537 9538 SDNode *DisableDenorm; 9539 if (Subtarget->hasDenormModeInst()) { 9540 const SDValue DisableDenormValue = getSPDenormModeValue( 9541 FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget); 9542 9543 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 9544 Fma4.getValue(1), DisableDenormValue, 9545 Fma4.getValue(2)).getNode(); 9546 } else { 9547 const SDValue DisableDenormValue = 9548 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 9549 9550 DisableDenorm = DAG.getMachineNode( 9551 AMDGPU::S_SETREG_B32, SL, MVT::Other, 9552 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 9553 } 9554 9555 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 9556 SDValue(DisableDenorm, 0), DAG.getRoot()); 9557 DAG.setRoot(OutputChain); 9558 } 9559 9560 SDValue Scale = NumeratorScaled.getValue(1); 9561 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 9562 {Fma4, Fma1, Fma3, Scale}, Flags); 9563 9564 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 9565 } 9566 9567 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 9568 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 9569 return FastLowered; 9570 9571 SDLoc SL(Op); 9572 SDValue X = Op.getOperand(0); 9573 SDValue Y = Op.getOperand(1); 9574 9575 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 9576 9577 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 9578 9579 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 9580 9581 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 9582 9583 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 9584 9585 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 9586 9587 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 9588 9589 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 9590 9591 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 9592 9593 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 9594 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 9595 9596 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 9597 NegDivScale0, Mul, DivScale1); 9598 9599 SDValue Scale; 9600 9601 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 9602 // Workaround a hardware bug on SI where the condition output from div_scale 9603 // is not usable. 9604 9605 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 9606 9607 // Figure out if the scale to use for div_fmas. 9608 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 9609 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 9610 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 9611 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 9612 9613 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 9614 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 9615 9616 SDValue Scale0Hi 9617 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 9618 SDValue Scale1Hi 9619 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 9620 9621 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 9622 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 9623 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 9624 } else { 9625 Scale = DivScale1.getValue(1); 9626 } 9627 9628 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 9629 Fma4, Fma3, Mul, Scale); 9630 9631 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 9632 } 9633 9634 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 9635 EVT VT = Op.getValueType(); 9636 9637 if (VT == MVT::f32) 9638 return LowerFDIV32(Op, DAG); 9639 9640 if (VT == MVT::f64) 9641 return LowerFDIV64(Op, DAG); 9642 9643 if (VT == MVT::f16) 9644 return LowerFDIV16(Op, DAG); 9645 9646 llvm_unreachable("Unexpected type for fdiv"); 9647 } 9648 9649 SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const { 9650 SDLoc dl(Op); 9651 SDValue Val = Op.getOperand(0); 9652 EVT VT = Val.getValueType(); 9653 EVT ResultExpVT = Op->getValueType(1); 9654 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32; 9655 9656 SDValue Mant = DAG.getNode( 9657 ISD::INTRINSIC_WO_CHAIN, dl, VT, 9658 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val); 9659 9660 SDValue Exp = DAG.getNode( 9661 ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT, 9662 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val); 9663 9664 if (Subtarget->hasFractBug()) { 9665 SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val); 9666 SDValue Inf = DAG.getConstantFP( 9667 APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT); 9668 9669 SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT); 9670 SDValue Zero = DAG.getConstant(0, dl, InstrExpVT); 9671 Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero); 9672 Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val); 9673 } 9674 9675 SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT); 9676 return DAG.getMergeValues({Mant, CastExp}, dl); 9677 } 9678 9679 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 9680 SDLoc DL(Op); 9681 StoreSDNode *Store = cast<StoreSDNode>(Op); 9682 EVT VT = Store->getMemoryVT(); 9683 9684 if (VT == MVT::i1) { 9685 return DAG.getTruncStore(Store->getChain(), DL, 9686 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 9687 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 9688 } 9689 9690 assert(VT.isVector() && 9691 Store->getValue().getValueType().getScalarType() == MVT::i32); 9692 9693 unsigned AS = Store->getAddressSpace(); 9694 if (Subtarget->hasLDSMisalignedBug() && 9695 AS == AMDGPUAS::FLAT_ADDRESS && 9696 Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 9697 return SplitVectorStore(Op, DAG); 9698 } 9699 9700 MachineFunction &MF = DAG.getMachineFunction(); 9701 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9702 // If there is a possibility that flat instruction access scratch memory 9703 // then we need to use the same legalization rules we use for private. 9704 if (AS == AMDGPUAS::FLAT_ADDRESS && 9705 !Subtarget->hasMultiDwordFlatScratchAddressing()) 9706 AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ? 9707 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 9708 9709 unsigned NumElements = VT.getVectorNumElements(); 9710 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 9711 AS == AMDGPUAS::FLAT_ADDRESS) { 9712 if (NumElements > 4) 9713 return SplitVectorStore(Op, DAG); 9714 // v3 stores not supported on SI. 9715 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 9716 return SplitVectorStore(Op, DAG); 9717 9718 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 9719 VT, *Store->getMemOperand())) 9720 return expandUnalignedStore(Store, DAG); 9721 9722 return SDValue(); 9723 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 9724 switch (Subtarget->getMaxPrivateElementSize()) { 9725 case 4: 9726 return scalarizeVectorStore(Store, DAG); 9727 case 8: 9728 if (NumElements > 2) 9729 return SplitVectorStore(Op, DAG); 9730 return SDValue(); 9731 case 16: 9732 if (NumElements > 4 || 9733 (NumElements == 3 && !Subtarget->enableFlatScratch())) 9734 return SplitVectorStore(Op, DAG); 9735 return SDValue(); 9736 default: 9737 llvm_unreachable("unsupported private_element_size"); 9738 } 9739 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 9740 unsigned Fast = 0; 9741 auto Flags = Store->getMemOperand()->getFlags(); 9742 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 9743 Store->getAlign(), Flags, &Fast) && 9744 Fast > 1) 9745 return SDValue(); 9746 9747 if (VT.isVector()) 9748 return SplitVectorStore(Op, DAG); 9749 9750 return expandUnalignedStore(Store, DAG); 9751 } 9752 9753 // Probably an invalid store. If so we'll end up emitting a selection error. 9754 return SDValue(); 9755 } 9756 9757 SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const { 9758 // For double type, the SQRT and RSQ instructions don't have required 9759 // precision, we apply Goldschmidt's algorithm to improve the result: 9760 // 9761 // y0 = rsq(x) 9762 // g0 = x * y0 9763 // h0 = 0.5 * y0 9764 // 9765 // r0 = 0.5 - h0 * g0 9766 // g1 = g0 * r0 + g0 9767 // h1 = h0 * r0 + h0 9768 // 9769 // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1 9770 // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1 9771 // h2 = h1 * r1 + h1 9772 // 9773 // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2 9774 // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2 9775 // 9776 // sqrt(x) = g3 9777 9778 SDNodeFlags Flags = Op->getFlags(); 9779 9780 SDLoc DL(Op); 9781 9782 SDValue X = Op.getOperand(0); 9783 SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64); 9784 9785 SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT); 9786 9787 SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32); 9788 9789 // Scale up input if it is too small. 9790 SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32); 9791 SDValue ScaleUp = 9792 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt); 9793 SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags); 9794 9795 SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX); 9796 9797 SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY); 9798 9799 SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64); 9800 SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half); 9801 9802 SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0); 9803 SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half); 9804 9805 SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0); 9806 9807 SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0); 9808 9809 SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1); 9810 SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX); 9811 9812 SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1); 9813 9814 SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2); 9815 SDValue SqrtD1 = 9816 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX); 9817 9818 SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2); 9819 9820 SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32); 9821 SDValue ScaleDown = 9822 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt); 9823 SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags); 9824 9825 // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check 9826 // with finite only or nsz because rsq(+/-0) = +/-inf 9827 9828 // TODO: Check for DAZ and expand to subnormals 9829 SDValue IsZeroOrInf = 9830 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, 9831 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); 9832 9833 // If x is +INF, +0, or -0, use its original value 9834 return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet, 9835 Flags); 9836 } 9837 9838 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 9839 SDLoc DL(Op); 9840 EVT VT = Op.getValueType(); 9841 SDValue Arg = Op.getOperand(0); 9842 SDValue TrigVal; 9843 9844 // Propagate fast-math flags so that the multiply we introduce can be folded 9845 // if Arg is already the result of a multiply by constant. 9846 auto Flags = Op->getFlags(); 9847 9848 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 9849 9850 if (Subtarget->hasTrigReducedRange()) { 9851 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9852 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 9853 } else { 9854 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9855 } 9856 9857 switch (Op.getOpcode()) { 9858 case ISD::FCOS: 9859 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 9860 case ISD::FSIN: 9861 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 9862 default: 9863 llvm_unreachable("Wrong trig opcode"); 9864 } 9865 } 9866 9867 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 9868 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 9869 assert(AtomicNode->isCompareAndSwap()); 9870 unsigned AS = AtomicNode->getAddressSpace(); 9871 9872 // No custom lowering required for local address space 9873 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 9874 return Op; 9875 9876 // Non-local address space requires custom lowering for atomic compare 9877 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 9878 SDLoc DL(Op); 9879 SDValue ChainIn = Op.getOperand(0); 9880 SDValue Addr = Op.getOperand(1); 9881 SDValue Old = Op.getOperand(2); 9882 SDValue New = Op.getOperand(3); 9883 EVT VT = Op.getValueType(); 9884 MVT SimpleVT = VT.getSimpleVT(); 9885 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 9886 9887 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 9888 SDValue Ops[] = { ChainIn, Addr, NewOld }; 9889 9890 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 9891 Ops, VT, AtomicNode->getMemOperand()); 9892 } 9893 9894 //===----------------------------------------------------------------------===// 9895 // Custom DAG optimizations 9896 //===----------------------------------------------------------------------===// 9897 9898 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 9899 DAGCombinerInfo &DCI) const { 9900 EVT VT = N->getValueType(0); 9901 EVT ScalarVT = VT.getScalarType(); 9902 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 9903 return SDValue(); 9904 9905 SelectionDAG &DAG = DCI.DAG; 9906 SDLoc DL(N); 9907 9908 SDValue Src = N->getOperand(0); 9909 EVT SrcVT = Src.getValueType(); 9910 9911 // TODO: We could try to match extracting the higher bytes, which would be 9912 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 9913 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 9914 // about in practice. 9915 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 9916 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 9917 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 9918 DCI.AddToWorklist(Cvt.getNode()); 9919 9920 // For the f16 case, fold to a cast to f32 and then cast back to f16. 9921 if (ScalarVT != MVT::f32) { 9922 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 9923 DAG.getTargetConstant(0, DL, MVT::i32)); 9924 } 9925 return Cvt; 9926 } 9927 } 9928 9929 return SDValue(); 9930 } 9931 9932 SDValue SITargetLowering::performFCopySignCombine(SDNode *N, 9933 DAGCombinerInfo &DCI) const { 9934 SDValue MagnitudeOp = N->getOperand(0); 9935 SDValue SignOp = N->getOperand(1); 9936 SelectionDAG &DAG = DCI.DAG; 9937 SDLoc DL(N); 9938 9939 // f64 fcopysign is really an f32 copysign on the high bits, so replace the 9940 // lower half with a copy. 9941 // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y) 9942 if (MagnitudeOp.getValueType() == MVT::f64) { 9943 SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp); 9944 SDValue MagLo = 9945 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, 9946 DAG.getConstant(0, DL, MVT::i32)); 9947 SDValue MagHi = 9948 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, 9949 DAG.getConstant(1, DL, MVT::i32)); 9950 9951 SDValue HiOp = 9952 DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp); 9953 9954 SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp); 9955 9956 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector); 9957 } 9958 9959 if (SignOp.getValueType() != MVT::f64) 9960 return SDValue(); 9961 9962 // Reduce width of sign operand, we only need the highest bit. 9963 // 9964 // fcopysign f64:x, f64:y -> 9965 // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1) 9966 // TODO: In some cases it might make sense to go all the way to f16. 9967 SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp); 9968 SDValue SignAsF32 = 9969 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector, 9970 DAG.getConstant(1, DL, MVT::i32)); 9971 9972 return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0), 9973 SignAsF32); 9974 } 9975 9976 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 9977 // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no 9978 // bits 9979 9980 // This is a variant of 9981 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 9982 // 9983 // The normal DAG combiner will do this, but only if the add has one use since 9984 // that would increase the number of instructions. 9985 // 9986 // This prevents us from seeing a constant offset that can be folded into a 9987 // memory instruction's addressing mode. If we know the resulting add offset of 9988 // a pointer can be folded into an addressing offset, we can replace the pointer 9989 // operand with the add of new constant offset. This eliminates one of the uses, 9990 // and may allow the remaining use to also be simplified. 9991 // 9992 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 9993 unsigned AddrSpace, 9994 EVT MemVT, 9995 DAGCombinerInfo &DCI) const { 9996 SDValue N0 = N->getOperand(0); 9997 SDValue N1 = N->getOperand(1); 9998 9999 // We only do this to handle cases where it's profitable when there are 10000 // multiple uses of the add, so defer to the standard combine. 10001 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 10002 N0->hasOneUse()) 10003 return SDValue(); 10004 10005 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 10006 if (!CN1) 10007 return SDValue(); 10008 10009 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 10010 if (!CAdd) 10011 return SDValue(); 10012 10013 SelectionDAG &DAG = DCI.DAG; 10014 10015 if (N0->getOpcode() == ISD::OR && 10016 !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) 10017 return SDValue(); 10018 10019 // If the resulting offset is too large, we can't fold it into the 10020 // addressing mode offset. 10021 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 10022 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 10023 10024 AddrMode AM; 10025 AM.HasBaseReg = true; 10026 AM.BaseOffs = Offset.getSExtValue(); 10027 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 10028 return SDValue(); 10029 10030 SDLoc SL(N); 10031 EVT VT = N->getValueType(0); 10032 10033 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 10034 SDValue COffset = DAG.getConstant(Offset, SL, VT); 10035 10036 SDNodeFlags Flags; 10037 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 10038 (N0.getOpcode() == ISD::OR || 10039 N0->getFlags().hasNoUnsignedWrap())); 10040 10041 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 10042 } 10043 10044 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 10045 /// by the chain and intrinsic ID. Theoretically we would also need to check the 10046 /// specific intrinsic, but they all place the pointer operand first. 10047 static unsigned getBasePtrIndex(const MemSDNode *N) { 10048 switch (N->getOpcode()) { 10049 case ISD::STORE: 10050 case ISD::INTRINSIC_W_CHAIN: 10051 case ISD::INTRINSIC_VOID: 10052 return 2; 10053 default: 10054 return 1; 10055 } 10056 } 10057 10058 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 10059 DAGCombinerInfo &DCI) const { 10060 SelectionDAG &DAG = DCI.DAG; 10061 SDLoc SL(N); 10062 10063 unsigned PtrIdx = getBasePtrIndex(N); 10064 SDValue Ptr = N->getOperand(PtrIdx); 10065 10066 // TODO: We could also do this for multiplies. 10067 if (Ptr.getOpcode() == ISD::SHL) { 10068 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 10069 N->getMemoryVT(), DCI); 10070 if (NewPtr) { 10071 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 10072 10073 NewOps[PtrIdx] = NewPtr; 10074 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 10075 } 10076 } 10077 10078 return SDValue(); 10079 } 10080 10081 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 10082 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 10083 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 10084 (Opc == ISD::XOR && Val == 0); 10085 } 10086 10087 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 10088 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 10089 // integer combine opportunities since most 64-bit operations are decomposed 10090 // this way. TODO: We won't want this for SALU especially if it is an inline 10091 // immediate. 10092 SDValue SITargetLowering::splitBinaryBitConstantOp( 10093 DAGCombinerInfo &DCI, 10094 const SDLoc &SL, 10095 unsigned Opc, SDValue LHS, 10096 const ConstantSDNode *CRHS) const { 10097 uint64_t Val = CRHS->getZExtValue(); 10098 uint32_t ValLo = Lo_32(Val); 10099 uint32_t ValHi = Hi_32(Val); 10100 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10101 10102 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 10103 bitOpWithConstantIsReducible(Opc, ValHi)) || 10104 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 10105 // If we need to materialize a 64-bit immediate, it will be split up later 10106 // anyway. Avoid creating the harder to understand 64-bit immediate 10107 // materialization. 10108 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 10109 } 10110 10111 return SDValue(); 10112 } 10113 10114 // Returns true if argument is a boolean value which is not serialized into 10115 // memory or argument and does not require v_cndmask_b32 to be deserialized. 10116 static bool isBoolSGPR(SDValue V) { 10117 if (V.getValueType() != MVT::i1) 10118 return false; 10119 switch (V.getOpcode()) { 10120 default: 10121 break; 10122 case ISD::SETCC: 10123 case AMDGPUISD::FP_CLASS: 10124 return true; 10125 case ISD::AND: 10126 case ISD::OR: 10127 case ISD::XOR: 10128 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 10129 } 10130 return false; 10131 } 10132 10133 // If a constant has all zeroes or all ones within each byte return it. 10134 // Otherwise return 0. 10135 static uint32_t getConstantPermuteMask(uint32_t C) { 10136 // 0xff for any zero byte in the mask 10137 uint32_t ZeroByteMask = 0; 10138 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 10139 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 10140 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 10141 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 10142 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 10143 if ((NonZeroByteMask & C) != NonZeroByteMask) 10144 return 0; // Partial bytes selected. 10145 return C; 10146 } 10147 10148 // Check if a node selects whole bytes from its operand 0 starting at a byte 10149 // boundary while masking the rest. Returns select mask as in the v_perm_b32 10150 // or -1 if not succeeded. 10151 // Note byte select encoding: 10152 // value 0-3 selects corresponding source byte; 10153 // value 0xc selects zero; 10154 // value 0xff selects 0xff. 10155 static uint32_t getPermuteMask(SDValue V) { 10156 assert(V.getValueSizeInBits() == 32); 10157 10158 if (V.getNumOperands() != 2) 10159 return ~0; 10160 10161 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 10162 if (!N1) 10163 return ~0; 10164 10165 uint32_t C = N1->getZExtValue(); 10166 10167 switch (V.getOpcode()) { 10168 default: 10169 break; 10170 case ISD::AND: 10171 if (uint32_t ConstMask = getConstantPermuteMask(C)) 10172 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 10173 break; 10174 10175 case ISD::OR: 10176 if (uint32_t ConstMask = getConstantPermuteMask(C)) 10177 return (0x03020100 & ~ConstMask) | ConstMask; 10178 break; 10179 10180 case ISD::SHL: 10181 if (C % 8) 10182 return ~0; 10183 10184 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 10185 10186 case ISD::SRL: 10187 if (C % 8) 10188 return ~0; 10189 10190 return uint32_t(0x0c0c0c0c03020100ull >> C); 10191 } 10192 10193 return ~0; 10194 } 10195 10196 SDValue SITargetLowering::performAndCombine(SDNode *N, 10197 DAGCombinerInfo &DCI) const { 10198 if (DCI.isBeforeLegalize()) 10199 return SDValue(); 10200 10201 SelectionDAG &DAG = DCI.DAG; 10202 EVT VT = N->getValueType(0); 10203 SDValue LHS = N->getOperand(0); 10204 SDValue RHS = N->getOperand(1); 10205 10206 10207 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 10208 if (VT == MVT::i64 && CRHS) { 10209 if (SDValue Split 10210 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 10211 return Split; 10212 } 10213 10214 if (CRHS && VT == MVT::i32) { 10215 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 10216 // nb = number of trailing zeroes in mask 10217 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 10218 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 10219 uint64_t Mask = CRHS->getZExtValue(); 10220 unsigned Bits = llvm::popcount(Mask); 10221 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 10222 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 10223 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 10224 unsigned Shift = CShift->getZExtValue(); 10225 unsigned NB = CRHS->getAPIntValue().countr_zero(); 10226 unsigned Offset = NB + Shift; 10227 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 10228 SDLoc SL(N); 10229 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 10230 LHS->getOperand(0), 10231 DAG.getConstant(Offset, SL, MVT::i32), 10232 DAG.getConstant(Bits, SL, MVT::i32)); 10233 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10234 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 10235 DAG.getValueType(NarrowVT)); 10236 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 10237 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 10238 return Shl; 10239 } 10240 } 10241 } 10242 10243 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 10244 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 10245 isa<ConstantSDNode>(LHS.getOperand(2))) { 10246 uint32_t Sel = getConstantPermuteMask(Mask); 10247 if (!Sel) 10248 return SDValue(); 10249 10250 // Select 0xc for all zero bytes 10251 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 10252 SDLoc DL(N); 10253 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 10254 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 10255 } 10256 } 10257 10258 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 10259 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 10260 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 10261 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 10262 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 10263 10264 SDValue X = LHS.getOperand(0); 10265 SDValue Y = RHS.getOperand(0); 10266 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || 10267 !isTypeLegal(X.getValueType())) 10268 return SDValue(); 10269 10270 if (LCC == ISD::SETO) { 10271 if (X != LHS.getOperand(1)) 10272 return SDValue(); 10273 10274 if (RCC == ISD::SETUNE) { 10275 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 10276 if (!C1 || !C1->isInfinity() || C1->isNegative()) 10277 return SDValue(); 10278 10279 const uint32_t Mask = SIInstrFlags::N_NORMAL | 10280 SIInstrFlags::N_SUBNORMAL | 10281 SIInstrFlags::N_ZERO | 10282 SIInstrFlags::P_ZERO | 10283 SIInstrFlags::P_SUBNORMAL | 10284 SIInstrFlags::P_NORMAL; 10285 10286 static_assert(((~(SIInstrFlags::S_NAN | 10287 SIInstrFlags::Q_NAN | 10288 SIInstrFlags::N_INFINITY | 10289 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 10290 "mask not equal"); 10291 10292 SDLoc DL(N); 10293 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 10294 X, DAG.getConstant(Mask, DL, MVT::i32)); 10295 } 10296 } 10297 } 10298 10299 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 10300 std::swap(LHS, RHS); 10301 10302 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 10303 RHS.hasOneUse()) { 10304 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 10305 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 10306 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 10307 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 10308 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 10309 (RHS.getOperand(0) == LHS.getOperand(0) && 10310 LHS.getOperand(0) == LHS.getOperand(1))) { 10311 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 10312 unsigned NewMask = LCC == ISD::SETO ? 10313 Mask->getZExtValue() & ~OrdMask : 10314 Mask->getZExtValue() & OrdMask; 10315 10316 SDLoc DL(N); 10317 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 10318 DAG.getConstant(NewMask, DL, MVT::i32)); 10319 } 10320 } 10321 10322 if (VT == MVT::i32 && 10323 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 10324 // and x, (sext cc from i1) => select cc, x, 0 10325 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 10326 std::swap(LHS, RHS); 10327 if (isBoolSGPR(RHS.getOperand(0))) 10328 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 10329 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 10330 } 10331 10332 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 10333 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10334 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 10335 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 10336 uint32_t LHSMask = getPermuteMask(LHS); 10337 uint32_t RHSMask = getPermuteMask(RHS); 10338 if (LHSMask != ~0u && RHSMask != ~0u) { 10339 // Canonicalize the expression in an attempt to have fewer unique masks 10340 // and therefore fewer registers used to hold the masks. 10341 if (LHSMask > RHSMask) { 10342 std::swap(LHSMask, RHSMask); 10343 std::swap(LHS, RHS); 10344 } 10345 10346 // Select 0xc for each lane used from source operand. Zero has 0xc mask 10347 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 10348 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 10349 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 10350 10351 // Check of we need to combine values from two sources within a byte. 10352 if (!(LHSUsedLanes & RHSUsedLanes) && 10353 // If we select high and lower word keep it for SDWA. 10354 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 10355 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 10356 // Each byte in each mask is either selector mask 0-3, or has higher 10357 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 10358 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 10359 // mask which is not 0xff wins. By anding both masks we have a correct 10360 // result except that 0x0c shall be corrected to give 0x0c only. 10361 uint32_t Mask = LHSMask & RHSMask; 10362 for (unsigned I = 0; I < 32; I += 8) { 10363 uint32_t ByteSel = 0xff << I; 10364 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 10365 Mask &= (0x0c << I) & 0xffffffff; 10366 } 10367 10368 // Add 4 to each active LHS lane. It will not affect any existing 0xff 10369 // or 0x0c. 10370 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 10371 SDLoc DL(N); 10372 10373 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 10374 LHS.getOperand(0), RHS.getOperand(0), 10375 DAG.getConstant(Sel, DL, MVT::i32)); 10376 } 10377 } 10378 } 10379 10380 return SDValue(); 10381 } 10382 10383 // A key component of v_perm is a mapping between byte position of the src 10384 // operands, and the byte position of the dest. To provide such, we need: 1. the 10385 // node that provides x byte of the dest of the OR, and 2. the byte of the node 10386 // used to provide that x byte. calculateByteProvider finds which node provides 10387 // a certain byte of the dest of the OR, and calculateSrcByte takes that node, 10388 // and finds an ultimate src and byte position For example: The supported 10389 // LoadCombine pattern for vector loads is as follows 10390 // t1 10391 // or 10392 // / \ 10393 // t2 t3 10394 // zext shl 10395 // | | \ 10396 // t4 t5 16 10397 // or anyext 10398 // / \ | 10399 // t6 t7 t8 10400 // srl shl or 10401 // / | / \ / \ 10402 // t9 t10 t11 t12 t13 t14 10403 // trunc* 8 trunc* 8 and and 10404 // | | / | | \ 10405 // t15 t16 t17 t18 t19 t20 10406 // trunc* 255 srl -256 10407 // | / \ 10408 // t15 t15 16 10409 // 10410 // *In this example, the truncs are from i32->i16 10411 // 10412 // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3 10413 // respectively. calculateSrcByte would find (given node) -> ultimate src & 10414 // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3. 10415 // After finding the mapping, we can combine the tree into vperm t15, t16, 10416 // 0x05000407 10417 10418 // Find the source and byte position from a node. 10419 // \p DestByte is the byte position of the dest of the or that the src 10420 // ultimately provides. \p SrcIndex is the byte of the src that maps to this 10421 // dest of the or byte. \p Depth tracks how many recursive iterations we have 10422 // performed. 10423 static const std::optional<ByteProvider<SDValue>> 10424 calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0, 10425 unsigned Depth = 0) { 10426 // We may need to recursively traverse a series of SRLs 10427 if (Depth >= 6) 10428 return std::nullopt; 10429 10430 switch (Op->getOpcode()) { 10431 case ISD::TRUNCATE: { 10432 if (Op->getOperand(0).getScalarValueSizeInBits() != 32) 10433 return std::nullopt; 10434 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 10435 } 10436 10437 case ISD::SRL: { 10438 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 10439 if (!ShiftOp) 10440 return std::nullopt; 10441 10442 uint64_t BitShift = ShiftOp->getZExtValue(); 10443 10444 if (BitShift % 8 != 0) 10445 return std::nullopt; 10446 10447 SrcIndex += BitShift / 8; 10448 10449 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 10450 } 10451 10452 default: { 10453 if (Op.getScalarValueSizeInBits() != 32) 10454 return std::nullopt; 10455 10456 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex); 10457 } 10458 } 10459 llvm_unreachable("fully handled switch"); 10460 } 10461 10462 // For a byte position in the result of an Or, traverse the tree and find the 10463 // node (and the byte of the node) which ultimately provides this {Or, 10464 // BytePosition}. \p Op is the operand we are currently examining. \p Index is 10465 // the byte position of the Op that corresponds with the originally requested 10466 // byte of the Or \p Depth tracks how many recursive iterations we have 10467 // performed. \p StartingIndex is the originally requested byte of the Or 10468 static const std::optional<ByteProvider<SDValue>> 10469 calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth, 10470 unsigned StartingIndex = 0) { 10471 // Finding Src tree of RHS of or typically requires at least 1 additional 10472 // depth 10473 if (Depth > 6) 10474 return std::nullopt; 10475 10476 unsigned BitWidth = Op.getScalarValueSizeInBits(); 10477 if (BitWidth % 8 != 0) 10478 return std::nullopt; 10479 assert(Index < BitWidth / 8 && "invalid index requested"); 10480 10481 switch (Op.getOpcode()) { 10482 case ISD::OR: { 10483 auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1, 10484 StartingIndex); 10485 if (!RHS) 10486 return std::nullopt; 10487 auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1, 10488 StartingIndex); 10489 if (!LHS) 10490 return std::nullopt; 10491 // A well formed Or will have two ByteProviders for each byte, one of which 10492 // is constant zero 10493 if (!LHS->isConstantZero() && !RHS->isConstantZero()) 10494 return std::nullopt; 10495 if (!LHS || LHS->isConstantZero()) 10496 return RHS; 10497 if (!RHS || RHS->isConstantZero()) 10498 return LHS; 10499 return std::nullopt; 10500 } 10501 10502 case ISD::AND: { 10503 auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 10504 if (!BitMaskOp) 10505 return std::nullopt; 10506 10507 uint32_t BitMask = BitMaskOp->getZExtValue(); 10508 // Bits we expect for our StartingIndex 10509 uint32_t IndexMask = 0xFF << (Index * 8); 10510 10511 if ((IndexMask & BitMask) != IndexMask) { 10512 // If the result of the and partially provides the byte, then it 10513 // is not well formatted 10514 if (IndexMask & BitMask) 10515 return std::nullopt; 10516 return ByteProvider<SDValue>::getConstantZero(); 10517 } 10518 10519 return calculateSrcByte(Op->getOperand(0), StartingIndex, Index); 10520 } 10521 10522 case ISD::SRL: { 10523 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 10524 if (!ShiftOp) 10525 return std::nullopt; 10526 10527 uint64_t BitShift = ShiftOp->getZExtValue(); 10528 if (BitShift % 8) 10529 return std::nullopt; 10530 10531 auto BitsProvided = Op.getScalarValueSizeInBits(); 10532 if (BitsProvided % 8 != 0) 10533 return std::nullopt; 10534 10535 uint64_t BytesProvided = BitsProvided / 8; 10536 uint64_t ByteShift = BitShift / 8; 10537 // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes. 10538 // If the byte we are trying to provide (as tracked by index) falls in this 10539 // range, then the SRL provides the byte. The byte of interest of the src of 10540 // the SRL is Index + ByteShift 10541 return BytesProvided - ByteShift > Index 10542 ? calculateSrcByte(Op->getOperand(0), StartingIndex, 10543 Index + ByteShift) 10544 : ByteProvider<SDValue>::getConstantZero(); 10545 } 10546 10547 case ISD::SHL: { 10548 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 10549 if (!ShiftOp) 10550 return std::nullopt; 10551 10552 uint64_t BitShift = ShiftOp->getZExtValue(); 10553 if (BitShift % 8 != 0) 10554 return std::nullopt; 10555 uint64_t ByteShift = BitShift / 8; 10556 10557 // If we are shifting by an amount greater than (or equal to) 10558 // the index we are trying to provide, then it provides 0s. If not, 10559 // then this bytes are not definitively 0s, and the corresponding byte 10560 // of interest is Index - ByteShift of the src 10561 return Index < ByteShift 10562 ? ByteProvider<SDValue>::getConstantZero() 10563 : calculateByteProvider(Op.getOperand(0), Index - ByteShift, 10564 Depth + 1, StartingIndex); 10565 } 10566 case ISD::ANY_EXTEND: 10567 case ISD::SIGN_EXTEND: 10568 case ISD::ZERO_EXTEND: { 10569 SDValue NarrowOp = Op->getOperand(0); 10570 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); 10571 if (NarrowBitWidth % 8 != 0) 10572 return std::nullopt; 10573 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 10574 10575 if (Index >= NarrowByteWidth) 10576 return Op.getOpcode() == ISD::ZERO_EXTEND 10577 ? std::optional<ByteProvider<SDValue>>( 10578 ByteProvider<SDValue>::getConstantZero()) 10579 : std::nullopt; 10580 return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex); 10581 } 10582 10583 case ISD::TRUNCATE: { 10584 unsigned NarrowBitWidth = Op.getScalarValueSizeInBits(); 10585 if (NarrowBitWidth % 8 != 0) 10586 return std::nullopt; 10587 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 10588 10589 if (NarrowByteWidth >= Index) { 10590 return calculateByteProvider(Op.getOperand(0), Index, Depth + 1, 10591 StartingIndex); 10592 } 10593 10594 return std::nullopt; 10595 } 10596 10597 case ISD::LOAD: { 10598 auto L = cast<LoadSDNode>(Op.getNode()); 10599 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 10600 if (NarrowBitWidth % 8 != 0) 10601 return std::nullopt; 10602 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 10603 10604 // If the width of the load does not reach byte we are trying to provide for 10605 // and it is not a ZEXTLOAD, then the load does not provide for the byte in 10606 // question 10607 if (Index >= NarrowByteWidth) { 10608 return L->getExtensionType() == ISD::ZEXTLOAD 10609 ? std::optional<ByteProvider<SDValue>>( 10610 ByteProvider<SDValue>::getConstantZero()) 10611 : std::nullopt; 10612 } 10613 10614 if (NarrowByteWidth > Index) { 10615 return calculateSrcByte(Op, StartingIndex, Index); 10616 } 10617 10618 return std::nullopt; 10619 } 10620 10621 case ISD::BSWAP: 10622 return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1, 10623 Depth + 1, StartingIndex); 10624 default: { 10625 return std::nullopt; 10626 } 10627 } 10628 10629 llvm_unreachable("fully handled switch"); 10630 } 10631 10632 // Returns true if the Operand is a scalar and is 16 bits 10633 static bool is16BitScalarOp(SDValue &Operand) { 10634 switch (Operand.getOpcode()) { 10635 case ISD::ANY_EXTEND: 10636 case ISD::SIGN_EXTEND: 10637 case ISD::ZERO_EXTEND: { 10638 auto OpVT = Operand.getOperand(0).getValueType(); 10639 return !OpVT.isVector() && OpVT.getSizeInBits() == 16; 10640 } 10641 case ISD::LOAD: { 10642 LoadSDNode *L = cast<LoadSDNode>(Operand.getNode()); 10643 auto ExtType = cast<LoadSDNode>(L)->getExtensionType(); 10644 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD || 10645 ExtType == ISD::EXTLOAD) { 10646 auto MemVT = L->getMemoryVT(); 10647 return !MemVT.isVector() && MemVT.getSizeInBits() == 16; 10648 } 10649 return false; 10650 } 10651 default: 10652 return false; 10653 } 10654 } 10655 10656 // Returns true if the mask matches consecutive bytes, and the first byte 10657 // begins at a power of 2 byte offset from 0th byte 10658 static bool addresses16Bits(int Mask) { 10659 int Low8 = Mask & 0xff; 10660 int Hi8 = (Mask & 0xff00) >> 8; 10661 10662 assert(Low8 < 8 && Hi8 < 8); 10663 // Are the bytes contiguous in the order of increasing addresses. 10664 bool IsConsecutive = (Hi8 - Low8 == 1); 10665 // Is the first byte at location that is aligned for 16 bit instructions. 10666 // A counter example is taking 2 consecutive bytes starting at the 8th bit. 10667 // In this case, we still need code to extract the 16 bit operand, so it 10668 // is better to use i8 v_perm 10669 bool Is16Aligned = !(Low8 % 2); 10670 10671 return IsConsecutive && Is16Aligned; 10672 } 10673 10674 // Do not lower into v_perm if the operands are actually 16 bit 10675 // and the selected bits (based on PermMask) correspond with two 10676 // easily addressable 16 bit operands. 10677 static bool hasEightBitAccesses(uint64_t PermMask, SDValue &Op, 10678 SDValue &OtherOp) { 10679 int Low16 = PermMask & 0xffff; 10680 int Hi16 = (PermMask & 0xffff0000) >> 16; 10681 10682 // ByteProvider only accepts 32 bit operands 10683 assert(Op.getValueType().getSizeInBits() == 32); 10684 assert(OtherOp.getValueType().getSizeInBits() == 32); 10685 10686 auto OpIs16Bit = is16BitScalarOp(Op); 10687 auto OtherOpIs16Bit = is16BitScalarOp(Op); 10688 10689 // If there is a size mismatch, then we must use masking on at least one 10690 // operand 10691 if (OpIs16Bit != OtherOpIs16Bit) 10692 return true; 10693 10694 // If both operands are 16 bit, return whether or not we cleanly address both 10695 if (is16BitScalarOp(Op) && is16BitScalarOp(OtherOp)) 10696 return !addresses16Bits(Low16) || !addresses16Bits(Hi16); 10697 10698 // Both are 32 bit operands 10699 return true; 10700 } 10701 10702 SDValue SITargetLowering::performOrCombine(SDNode *N, 10703 DAGCombinerInfo &DCI) const { 10704 SelectionDAG &DAG = DCI.DAG; 10705 SDValue LHS = N->getOperand(0); 10706 SDValue RHS = N->getOperand(1); 10707 10708 EVT VT = N->getValueType(0); 10709 if (VT == MVT::i1) { 10710 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 10711 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 10712 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 10713 SDValue Src = LHS.getOperand(0); 10714 if (Src != RHS.getOperand(0)) 10715 return SDValue(); 10716 10717 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 10718 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 10719 if (!CLHS || !CRHS) 10720 return SDValue(); 10721 10722 // Only 10 bits are used. 10723 static const uint32_t MaxMask = 0x3ff; 10724 10725 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 10726 SDLoc DL(N); 10727 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 10728 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 10729 } 10730 10731 return SDValue(); 10732 } 10733 10734 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 10735 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 10736 LHS.getOpcode() == AMDGPUISD::PERM && 10737 isa<ConstantSDNode>(LHS.getOperand(2))) { 10738 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 10739 if (!Sel) 10740 return SDValue(); 10741 10742 Sel |= LHS.getConstantOperandVal(2); 10743 SDLoc DL(N); 10744 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 10745 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 10746 } 10747 10748 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 10749 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10750 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 10751 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 10752 10753 // If all the uses of an or need to extract the individual elements, do not 10754 // attempt to lower into v_perm 10755 auto usesCombinedOperand = [](SDNode *OrUse) { 10756 // If we have any non-vectorized use, then it is a candidate for v_perm 10757 if (OrUse->getOpcode() != ISD::BITCAST || 10758 !OrUse->getValueType(0).isVector()) 10759 return true; 10760 10761 // If we have any non-vectorized use, then it is a candidate for v_perm 10762 for (auto VUse : OrUse->uses()) { 10763 if (!VUse->getValueType(0).isVector()) 10764 return true; 10765 10766 // If the use of a vector is a store, then combining via a v_perm 10767 // is beneficial. 10768 // TODO -- whitelist more uses 10769 for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg}) 10770 if (VUse->getOpcode() == VectorwiseOp) 10771 return true; 10772 } 10773 return false; 10774 }; 10775 10776 if (!any_of(N->uses(), usesCombinedOperand)) 10777 return SDValue(); 10778 10779 uint32_t LHSMask = getPermuteMask(LHS); 10780 uint32_t RHSMask = getPermuteMask(RHS); 10781 10782 if (LHSMask != ~0u && RHSMask != ~0u) { 10783 // Canonicalize the expression in an attempt to have fewer unique masks 10784 // and therefore fewer registers used to hold the masks. 10785 if (LHSMask > RHSMask) { 10786 std::swap(LHSMask, RHSMask); 10787 std::swap(LHS, RHS); 10788 } 10789 10790 // Select 0xc for each lane used from source operand. Zero has 0xc mask 10791 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 10792 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 10793 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 10794 10795 // Check of we need to combine values from two sources within a byte. 10796 if (!(LHSUsedLanes & RHSUsedLanes) && 10797 // If we select high and lower word keep it for SDWA. 10798 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 10799 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 10800 // Kill zero bytes selected by other mask. Zero value is 0xc. 10801 LHSMask &= ~RHSUsedLanes; 10802 RHSMask &= ~LHSUsedLanes; 10803 // Add 4 to each active LHS lane 10804 LHSMask |= LHSUsedLanes & 0x04040404; 10805 // Combine masks 10806 uint32_t Sel = LHSMask | RHSMask; 10807 SDLoc DL(N); 10808 10809 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 10810 LHS.getOperand(0), RHS.getOperand(0), 10811 DAG.getConstant(Sel, DL, MVT::i32)); 10812 } 10813 } 10814 if (LHSMask == ~0u || RHSMask == ~0u) { 10815 SmallVector<ByteProvider<SDValue>, 8> PermNodes; 10816 10817 // VT is known to be MVT::i32, so we need to provide 4 bytes. 10818 assert(VT == MVT::i32); 10819 for (int i = 0; i < 4; i++) { 10820 // Find the ByteProvider that provides the ith byte of the result of OR 10821 std::optional<ByteProvider<SDValue>> P = 10822 calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i); 10823 // TODO support constantZero 10824 if (!P || P->isConstantZero()) 10825 return SDValue(); 10826 10827 PermNodes.push_back(*P); 10828 } 10829 if (PermNodes.size() != 4) 10830 return SDValue(); 10831 10832 int FirstSrc = 0; 10833 std::optional<int> SecondSrc; 10834 uint64_t permMask = 0x00000000; 10835 for (size_t i = 0; i < PermNodes.size(); i++) { 10836 auto PermOp = PermNodes[i]; 10837 // Since the mask is applied to Src1:Src2, Src1 bytes must be offset 10838 // by sizeof(Src2) = 4 10839 int SrcByteAdjust = 4; 10840 10841 if (!PermOp.hasSameSrc(PermNodes[FirstSrc])) { 10842 if (SecondSrc.has_value()) 10843 if (!PermOp.hasSameSrc(PermNodes[*SecondSrc])) 10844 return SDValue(); 10845 // Set the index of the second distinct Src node 10846 SecondSrc = i; 10847 assert(PermNodes[*SecondSrc].Src->getValueType().getSizeInBits() == 10848 32); 10849 SrcByteAdjust = 0; 10850 } 10851 assert(PermOp.SrcOffset + SrcByteAdjust < 8); 10852 assert(!DAG.getDataLayout().isBigEndian()); 10853 permMask |= (PermOp.SrcOffset + SrcByteAdjust) << (i * 8); 10854 } 10855 10856 SDValue Op = *PermNodes[FirstSrc].Src; 10857 SDValue OtherOp = SecondSrc.has_value() ? *PermNodes[*SecondSrc].Src 10858 : *PermNodes[FirstSrc].Src; 10859 10860 // Check that we are not just extracting the bytes in order from an op 10861 if (Op == OtherOp) { 10862 int Low16 = permMask & 0xffff; 10863 int Hi16 = (permMask & 0xffff0000) >> 16; 10864 10865 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100); 10866 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302); 10867 10868 // The perm op would really just produce Op. So combine into Op 10869 if (WellFormedLow && WellFormedHi) 10870 return Op; 10871 } 10872 10873 if (hasEightBitAccesses(permMask, Op, OtherOp)) { 10874 SDLoc DL(N); 10875 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp, 10876 DAG.getConstant(permMask, DL, MVT::i32)); 10877 } 10878 } 10879 } 10880 10881 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 10882 return SDValue(); 10883 10884 // TODO: This could be a generic combine with a predicate for extracting the 10885 // high half of an integer being free. 10886 10887 // (or i64:x, (zero_extend i32:y)) -> 10888 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 10889 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 10890 RHS.getOpcode() != ISD::ZERO_EXTEND) 10891 std::swap(LHS, RHS); 10892 10893 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 10894 SDValue ExtSrc = RHS.getOperand(0); 10895 EVT SrcVT = ExtSrc.getValueType(); 10896 if (SrcVT == MVT::i32) { 10897 SDLoc SL(N); 10898 SDValue LowLHS, HiBits; 10899 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 10900 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 10901 10902 DCI.AddToWorklist(LowOr.getNode()); 10903 DCI.AddToWorklist(HiBits.getNode()); 10904 10905 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 10906 LowOr, HiBits); 10907 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 10908 } 10909 } 10910 10911 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10912 if (CRHS) { 10913 if (SDValue Split 10914 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 10915 N->getOperand(0), CRHS)) 10916 return Split; 10917 } 10918 10919 return SDValue(); 10920 } 10921 10922 SDValue SITargetLowering::performXorCombine(SDNode *N, 10923 DAGCombinerInfo &DCI) const { 10924 if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) 10925 return RV; 10926 10927 SDValue LHS = N->getOperand(0); 10928 SDValue RHS = N->getOperand(1); 10929 10930 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 10931 SelectionDAG &DAG = DCI.DAG; 10932 10933 EVT VT = N->getValueType(0); 10934 if (CRHS && VT == MVT::i64) { 10935 if (SDValue Split 10936 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 10937 return Split; 10938 } 10939 10940 // Make sure to apply the 64-bit constant splitting fold before trying to fold 10941 // fneg-like xors into 64-bit select. 10942 if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) { 10943 // This looks like an fneg, try to fold as a source modifier. 10944 if (CRHS && CRHS->getAPIntValue().isSignMask() && 10945 shouldFoldFNegIntoSrc(N, LHS)) { 10946 // xor (select c, a, b), 0x80000000 -> 10947 // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b))) 10948 SDLoc DL(N); 10949 SDValue CastLHS = 10950 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1)); 10951 SDValue CastRHS = 10952 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2)); 10953 SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS); 10954 SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS); 10955 SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32, 10956 LHS->getOperand(0), FNegLHS, FNegRHS); 10957 return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect); 10958 } 10959 } 10960 10961 return SDValue(); 10962 } 10963 10964 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 10965 DAGCombinerInfo &DCI) const { 10966 if (!Subtarget->has16BitInsts() || 10967 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10968 return SDValue(); 10969 10970 EVT VT = N->getValueType(0); 10971 if (VT != MVT::i32) 10972 return SDValue(); 10973 10974 SDValue Src = N->getOperand(0); 10975 if (Src.getValueType() != MVT::i16) 10976 return SDValue(); 10977 10978 return SDValue(); 10979 } 10980 10981 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 10982 DAGCombinerInfo &DCI) 10983 const { 10984 SDValue Src = N->getOperand(0); 10985 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 10986 10987 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 10988 VTSign->getVT() == MVT::i8) || 10989 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 10990 VTSign->getVT() == MVT::i16)) && 10991 Src.hasOneUse()) { 10992 auto *M = cast<MemSDNode>(Src); 10993 SDValue Ops[] = { 10994 Src.getOperand(0), // Chain 10995 Src.getOperand(1), // rsrc 10996 Src.getOperand(2), // vindex 10997 Src.getOperand(3), // voffset 10998 Src.getOperand(4), // soffset 10999 Src.getOperand(5), // offset 11000 Src.getOperand(6), 11001 Src.getOperand(7) 11002 }; 11003 // replace with BUFFER_LOAD_BYTE/SHORT 11004 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 11005 Src.getOperand(0).getValueType()); 11006 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 11007 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 11008 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 11009 ResList, 11010 Ops, M->getMemoryVT(), 11011 M->getMemOperand()); 11012 return DCI.DAG.getMergeValues({BufferLoadSignExt, 11013 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 11014 } 11015 return SDValue(); 11016 } 11017 11018 SDValue SITargetLowering::performClassCombine(SDNode *N, 11019 DAGCombinerInfo &DCI) const { 11020 SelectionDAG &DAG = DCI.DAG; 11021 SDValue Mask = N->getOperand(1); 11022 11023 // fp_class x, 0 -> false 11024 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 11025 if (CMask->isZero()) 11026 return DAG.getConstant(0, SDLoc(N), MVT::i1); 11027 } 11028 11029 if (N->getOperand(0).isUndef()) 11030 return DAG.getUNDEF(MVT::i1); 11031 11032 return SDValue(); 11033 } 11034 11035 SDValue SITargetLowering::performRcpCombine(SDNode *N, 11036 DAGCombinerInfo &DCI) const { 11037 EVT VT = N->getValueType(0); 11038 SDValue N0 = N->getOperand(0); 11039 11040 if (N0.isUndef()) { 11041 return DCI.DAG.getConstantFP( 11042 APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N), 11043 VT); 11044 } 11045 11046 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 11047 N0.getOpcode() == ISD::SINT_TO_FP)) { 11048 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 11049 N->getFlags()); 11050 } 11051 11052 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 11053 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 11054 N0.getOperand(0), N->getFlags()); 11055 } 11056 11057 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 11058 } 11059 11060 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 11061 unsigned MaxDepth) const { 11062 unsigned Opcode = Op.getOpcode(); 11063 if (Opcode == ISD::FCANONICALIZE) 11064 return true; 11065 11066 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 11067 const auto &F = CFP->getValueAPF(); 11068 if (F.isNaN() && F.isSignaling()) 11069 return false; 11070 if (!F.isDenormal()) 11071 return true; 11072 11073 DenormalMode Mode = 11074 DAG.getMachineFunction().getDenormalMode(F.getSemantics()); 11075 return Mode == DenormalMode::getIEEE(); 11076 } 11077 11078 // If source is a result of another standard FP operation it is already in 11079 // canonical form. 11080 if (MaxDepth == 0) 11081 return false; 11082 11083 switch (Opcode) { 11084 // These will flush denorms if required. 11085 case ISD::FADD: 11086 case ISD::FSUB: 11087 case ISD::FMUL: 11088 case ISD::FCEIL: 11089 case ISD::FFLOOR: 11090 case ISD::FMA: 11091 case ISD::FMAD: 11092 case ISD::FSQRT: 11093 case ISD::FDIV: 11094 case ISD::FREM: 11095 case ISD::FP_ROUND: 11096 case ISD::FP_EXTEND: 11097 case ISD::FLDEXP: 11098 case AMDGPUISD::FMUL_LEGACY: 11099 case AMDGPUISD::FMAD_FTZ: 11100 case AMDGPUISD::RCP: 11101 case AMDGPUISD::RSQ: 11102 case AMDGPUISD::RSQ_CLAMP: 11103 case AMDGPUISD::RCP_LEGACY: 11104 case AMDGPUISD::RCP_IFLAG: 11105 case AMDGPUISD::LOG: 11106 case AMDGPUISD::EXP: 11107 case AMDGPUISD::DIV_SCALE: 11108 case AMDGPUISD::DIV_FMAS: 11109 case AMDGPUISD::DIV_FIXUP: 11110 case AMDGPUISD::FRACT: 11111 case AMDGPUISD::CVT_PKRTZ_F16_F32: 11112 case AMDGPUISD::CVT_F32_UBYTE0: 11113 case AMDGPUISD::CVT_F32_UBYTE1: 11114 case AMDGPUISD::CVT_F32_UBYTE2: 11115 case AMDGPUISD::CVT_F32_UBYTE3: 11116 return true; 11117 11118 // It can/will be lowered or combined as a bit operation. 11119 // Need to check their input recursively to handle. 11120 case ISD::FNEG: 11121 case ISD::FABS: 11122 case ISD::FCOPYSIGN: 11123 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 11124 11125 case ISD::FSIN: 11126 case ISD::FCOS: 11127 case ISD::FSINCOS: 11128 return Op.getValueType().getScalarType() != MVT::f16; 11129 11130 case ISD::FMINNUM: 11131 case ISD::FMAXNUM: 11132 case ISD::FMINNUM_IEEE: 11133 case ISD::FMAXNUM_IEEE: 11134 case AMDGPUISD::CLAMP: 11135 case AMDGPUISD::FMED3: 11136 case AMDGPUISD::FMAX3: 11137 case AMDGPUISD::FMIN3: { 11138 // FIXME: Shouldn't treat the generic operations different based these. 11139 // However, we aren't really required to flush the result from 11140 // minnum/maxnum.. 11141 11142 // snans will be quieted, so we only need to worry about denormals. 11143 if (Subtarget->supportsMinMaxDenormModes() || 11144 // FIXME: denormalsEnabledForType is broken for dynamic 11145 denormalsEnabledForType(DAG, Op.getValueType())) 11146 return true; 11147 11148 // Flushing may be required. 11149 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 11150 // targets need to check their input recursively. 11151 11152 // FIXME: Does this apply with clamp? It's implemented with max. 11153 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 11154 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 11155 return false; 11156 } 11157 11158 return true; 11159 } 11160 case ISD::SELECT: { 11161 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 11162 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 11163 } 11164 case ISD::BUILD_VECTOR: { 11165 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 11166 SDValue SrcOp = Op.getOperand(i); 11167 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 11168 return false; 11169 } 11170 11171 return true; 11172 } 11173 case ISD::EXTRACT_VECTOR_ELT: 11174 case ISD::EXTRACT_SUBVECTOR: { 11175 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 11176 } 11177 case ISD::INSERT_VECTOR_ELT: { 11178 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 11179 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 11180 } 11181 case ISD::UNDEF: 11182 // Could be anything. 11183 return false; 11184 11185 case ISD::BITCAST: 11186 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 11187 case ISD::TRUNCATE: { 11188 // Hack round the mess we make when legalizing extract_vector_elt 11189 if (Op.getValueType() == MVT::i16) { 11190 SDValue TruncSrc = Op.getOperand(0); 11191 if (TruncSrc.getValueType() == MVT::i32 && 11192 TruncSrc.getOpcode() == ISD::BITCAST && 11193 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 11194 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 11195 } 11196 } 11197 return false; 11198 } 11199 case ISD::INTRINSIC_WO_CHAIN: { 11200 unsigned IntrinsicID 11201 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11202 // TODO: Handle more intrinsics 11203 switch (IntrinsicID) { 11204 case Intrinsic::amdgcn_cvt_pkrtz: 11205 case Intrinsic::amdgcn_cubeid: 11206 case Intrinsic::amdgcn_frexp_mant: 11207 case Intrinsic::amdgcn_fdot2: 11208 case Intrinsic::amdgcn_rcp: 11209 case Intrinsic::amdgcn_rsq: 11210 case Intrinsic::amdgcn_rsq_clamp: 11211 case Intrinsic::amdgcn_rcp_legacy: 11212 case Intrinsic::amdgcn_rsq_legacy: 11213 case Intrinsic::amdgcn_trig_preop: 11214 case Intrinsic::amdgcn_log: 11215 case Intrinsic::amdgcn_exp2: 11216 return true; 11217 default: 11218 break; 11219 } 11220 11221 [[fallthrough]]; 11222 } 11223 default: 11224 // FIXME: denormalsEnabledForType is broken for dynamic 11225 return denormalsEnabledForType(DAG, Op.getValueType()) && 11226 DAG.isKnownNeverSNaN(Op); 11227 } 11228 11229 llvm_unreachable("invalid operation"); 11230 } 11231 11232 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 11233 unsigned MaxDepth) const { 11234 MachineRegisterInfo &MRI = MF.getRegInfo(); 11235 MachineInstr *MI = MRI.getVRegDef(Reg); 11236 unsigned Opcode = MI->getOpcode(); 11237 11238 if (Opcode == AMDGPU::G_FCANONICALIZE) 11239 return true; 11240 11241 std::optional<FPValueAndVReg> FCR; 11242 // Constant splat (can be padded with undef) or scalar constant. 11243 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 11244 if (FCR->Value.isSignaling()) 11245 return false; 11246 if (!FCR->Value.isDenormal()) 11247 return true; 11248 11249 DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics()); 11250 return Mode == DenormalMode::getIEEE(); 11251 } 11252 11253 if (MaxDepth == 0) 11254 return false; 11255 11256 switch (Opcode) { 11257 case AMDGPU::G_FADD: 11258 case AMDGPU::G_FSUB: 11259 case AMDGPU::G_FMUL: 11260 case AMDGPU::G_FCEIL: 11261 case AMDGPU::G_FFLOOR: 11262 case AMDGPU::G_FRINT: 11263 case AMDGPU::G_FNEARBYINT: 11264 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: 11265 case AMDGPU::G_INTRINSIC_TRUNC: 11266 case AMDGPU::G_INTRINSIC_ROUNDEVEN: 11267 case AMDGPU::G_FMA: 11268 case AMDGPU::G_FMAD: 11269 case AMDGPU::G_FSQRT: 11270 case AMDGPU::G_FDIV: 11271 case AMDGPU::G_FREM: 11272 case AMDGPU::G_FPOW: 11273 case AMDGPU::G_FPEXT: 11274 case AMDGPU::G_FLOG: 11275 case AMDGPU::G_FLOG2: 11276 case AMDGPU::G_FLOG10: 11277 case AMDGPU::G_FPTRUNC: 11278 case AMDGPU::G_AMDGPU_RCP_IFLAG: 11279 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: 11280 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: 11281 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: 11282 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: 11283 return true; 11284 case AMDGPU::G_FNEG: 11285 case AMDGPU::G_FABS: 11286 case AMDGPU::G_FCOPYSIGN: 11287 return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); 11288 case AMDGPU::G_FMINNUM: 11289 case AMDGPU::G_FMAXNUM: 11290 case AMDGPU::G_FMINNUM_IEEE: 11291 case AMDGPU::G_FMAXNUM_IEEE: { 11292 if (Subtarget->supportsMinMaxDenormModes() || 11293 // FIXME: denormalsEnabledForType is broken for dynamic 11294 denormalsEnabledForType(MRI.getType(Reg), MF)) 11295 return true; 11296 11297 [[fallthrough]]; 11298 } 11299 case AMDGPU::G_BUILD_VECTOR: 11300 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 11301 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 11302 return false; 11303 return true; 11304 case AMDGPU::G_INTRINSIC: 11305 switch (MI->getIntrinsicID()) { 11306 case Intrinsic::amdgcn_fmul_legacy: 11307 case Intrinsic::amdgcn_fmad_ftz: 11308 case Intrinsic::amdgcn_sqrt: 11309 case Intrinsic::amdgcn_fmed3: 11310 case Intrinsic::amdgcn_sin: 11311 case Intrinsic::amdgcn_cos: 11312 case Intrinsic::amdgcn_log: 11313 case Intrinsic::amdgcn_exp2: 11314 case Intrinsic::amdgcn_log_clamp: 11315 case Intrinsic::amdgcn_rcp: 11316 case Intrinsic::amdgcn_rcp_legacy: 11317 case Intrinsic::amdgcn_rsq: 11318 case Intrinsic::amdgcn_rsq_clamp: 11319 case Intrinsic::amdgcn_rsq_legacy: 11320 case Intrinsic::amdgcn_div_scale: 11321 case Intrinsic::amdgcn_div_fmas: 11322 case Intrinsic::amdgcn_div_fixup: 11323 case Intrinsic::amdgcn_fract: 11324 case Intrinsic::amdgcn_ldexp: 11325 case Intrinsic::amdgcn_cvt_pkrtz: 11326 case Intrinsic::amdgcn_cubeid: 11327 case Intrinsic::amdgcn_cubema: 11328 case Intrinsic::amdgcn_cubesc: 11329 case Intrinsic::amdgcn_cubetc: 11330 case Intrinsic::amdgcn_frexp_mant: 11331 case Intrinsic::amdgcn_fdot2: 11332 case Intrinsic::amdgcn_trig_preop: 11333 return true; 11334 default: 11335 break; 11336 } 11337 11338 [[fallthrough]]; 11339 default: 11340 return false; 11341 } 11342 11343 llvm_unreachable("invalid operation"); 11344 } 11345 11346 // Constant fold canonicalize. 11347 SDValue SITargetLowering::getCanonicalConstantFP( 11348 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 11349 // Flush denormals to 0 if not enabled. 11350 if (C.isDenormal()) { 11351 DenormalMode Mode = 11352 DAG.getMachineFunction().getDenormalMode(C.getSemantics()); 11353 if (Mode == DenormalMode::getPreserveSign()) { 11354 return DAG.getConstantFP( 11355 APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT); 11356 } 11357 11358 if (Mode != DenormalMode::getIEEE()) 11359 return SDValue(); 11360 } 11361 11362 if (C.isNaN()) { 11363 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 11364 if (C.isSignaling()) { 11365 // Quiet a signaling NaN. 11366 // FIXME: Is this supposed to preserve payload bits? 11367 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 11368 } 11369 11370 // Make sure it is the canonical NaN bitpattern. 11371 // 11372 // TODO: Can we use -1 as the canonical NaN value since it's an inline 11373 // immediate? 11374 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 11375 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 11376 } 11377 11378 // Already canonical. 11379 return DAG.getConstantFP(C, SL, VT); 11380 } 11381 11382 static bool vectorEltWillFoldAway(SDValue Op) { 11383 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 11384 } 11385 11386 SDValue SITargetLowering::performFCanonicalizeCombine( 11387 SDNode *N, 11388 DAGCombinerInfo &DCI) const { 11389 SelectionDAG &DAG = DCI.DAG; 11390 SDValue N0 = N->getOperand(0); 11391 EVT VT = N->getValueType(0); 11392 11393 // fcanonicalize undef -> qnan 11394 if (N0.isUndef()) { 11395 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 11396 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 11397 } 11398 11399 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 11400 EVT VT = N->getValueType(0); 11401 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 11402 } 11403 11404 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 11405 // (fcanonicalize k) 11406 // 11407 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 11408 11409 // TODO: This could be better with wider vectors that will be split to v2f16, 11410 // and to consider uses since there aren't that many packed operations. 11411 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 11412 isTypeLegal(MVT::v2f16)) { 11413 SDLoc SL(N); 11414 SDValue NewElts[2]; 11415 SDValue Lo = N0.getOperand(0); 11416 SDValue Hi = N0.getOperand(1); 11417 EVT EltVT = Lo.getValueType(); 11418 11419 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 11420 for (unsigned I = 0; I != 2; ++I) { 11421 SDValue Op = N0.getOperand(I); 11422 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 11423 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 11424 CFP->getValueAPF()); 11425 } else if (Op.isUndef()) { 11426 // Handled below based on what the other operand is. 11427 NewElts[I] = Op; 11428 } else { 11429 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 11430 } 11431 } 11432 11433 // If one half is undef, and one is constant, prefer a splat vector rather 11434 // than the normal qNaN. If it's a register, prefer 0.0 since that's 11435 // cheaper to use and may be free with a packed operation. 11436 if (NewElts[0].isUndef()) { 11437 if (isa<ConstantFPSDNode>(NewElts[1])) 11438 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 11439 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 11440 } 11441 11442 if (NewElts[1].isUndef()) { 11443 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 11444 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 11445 } 11446 11447 return DAG.getBuildVector(VT, SL, NewElts); 11448 } 11449 } 11450 11451 unsigned SrcOpc = N0.getOpcode(); 11452 11453 // If it's free to do so, push canonicalizes further up the source, which may 11454 // find a canonical source. 11455 // 11456 // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for 11457 // sNaNs. 11458 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 11459 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 11460 if (CRHS && N0.hasOneUse()) { 11461 SDLoc SL(N); 11462 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 11463 N0.getOperand(0)); 11464 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 11465 DCI.AddToWorklist(Canon0.getNode()); 11466 11467 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 11468 } 11469 } 11470 11471 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 11472 } 11473 11474 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 11475 switch (Opc) { 11476 case ISD::FMAXNUM: 11477 case ISD::FMAXNUM_IEEE: 11478 return AMDGPUISD::FMAX3; 11479 case ISD::SMAX: 11480 return AMDGPUISD::SMAX3; 11481 case ISD::UMAX: 11482 return AMDGPUISD::UMAX3; 11483 case ISD::FMINNUM: 11484 case ISD::FMINNUM_IEEE: 11485 return AMDGPUISD::FMIN3; 11486 case ISD::SMIN: 11487 return AMDGPUISD::SMIN3; 11488 case ISD::UMIN: 11489 return AMDGPUISD::UMIN3; 11490 default: 11491 llvm_unreachable("Not a min/max opcode"); 11492 } 11493 } 11494 11495 SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG, 11496 const SDLoc &SL, SDValue Src, 11497 SDValue MinVal, 11498 SDValue MaxVal, 11499 bool Signed) const { 11500 11501 // med3 comes from 11502 // min(max(x, K0), K1), K0 < K1 11503 // max(min(x, K0), K1), K1 < K0 11504 // 11505 // "MinVal" and "MaxVal" respectively refer to the rhs of the 11506 // min/max op. 11507 ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal); 11508 ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal); 11509 11510 if (!MinK || !MaxK) 11511 return SDValue(); 11512 11513 if (Signed) { 11514 if (MaxK->getAPIntValue().sge(MinK->getAPIntValue())) 11515 return SDValue(); 11516 } else { 11517 if (MaxK->getAPIntValue().uge(MinK->getAPIntValue())) 11518 return SDValue(); 11519 } 11520 11521 EVT VT = MinK->getValueType(0); 11522 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 11523 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) 11524 return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal); 11525 11526 // Note: we could also extend to i32 and use i32 med3 if i16 med3 is 11527 // not available, but this is unlikely to be profitable as constants 11528 // will often need to be materialized & extended, especially on 11529 // pre-GFX10 where VOP3 instructions couldn't take literal operands. 11530 return SDValue(); 11531 } 11532 11533 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 11534 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 11535 return C; 11536 11537 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 11538 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 11539 return C; 11540 } 11541 11542 return nullptr; 11543 } 11544 11545 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 11546 const SDLoc &SL, 11547 SDValue Op0, 11548 SDValue Op1) const { 11549 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 11550 if (!K1) 11551 return SDValue(); 11552 11553 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 11554 if (!K0) 11555 return SDValue(); 11556 11557 // Ordered >= (although NaN inputs should have folded away by now). 11558 if (K0->getValueAPF() > K1->getValueAPF()) 11559 return SDValue(); 11560 11561 const MachineFunction &MF = DAG.getMachineFunction(); 11562 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11563 11564 // TODO: Check IEEE bit enabled? 11565 EVT VT = Op0.getValueType(); 11566 if (Info->getMode().DX10Clamp) { 11567 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 11568 // hardware fmed3 behavior converting to a min. 11569 // FIXME: Should this be allowing -0.0? 11570 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 11571 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 11572 } 11573 11574 // med3 for f16 is only available on gfx9+, and not available for v2f16. 11575 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 11576 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 11577 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 11578 // then give the other result, which is different from med3 with a NaN 11579 // input. 11580 SDValue Var = Op0.getOperand(0); 11581 if (!DAG.isKnownNeverSNaN(Var)) 11582 return SDValue(); 11583 11584 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11585 11586 if ((!K0->hasOneUse() || 11587 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 11588 (!K1->hasOneUse() || 11589 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 11590 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 11591 Var, SDValue(K0, 0), SDValue(K1, 0)); 11592 } 11593 } 11594 11595 return SDValue(); 11596 } 11597 11598 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 11599 DAGCombinerInfo &DCI) const { 11600 SelectionDAG &DAG = DCI.DAG; 11601 11602 EVT VT = N->getValueType(0); 11603 unsigned Opc = N->getOpcode(); 11604 SDValue Op0 = N->getOperand(0); 11605 SDValue Op1 = N->getOperand(1); 11606 11607 // Only do this if the inner op has one use since this will just increases 11608 // register pressure for no benefit. 11609 11610 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 11611 !VT.isVector() && 11612 (VT == MVT::i32 || VT == MVT::f32 || 11613 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 11614 // max(max(a, b), c) -> max3(a, b, c) 11615 // min(min(a, b), c) -> min3(a, b, c) 11616 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 11617 SDLoc DL(N); 11618 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 11619 DL, 11620 N->getValueType(0), 11621 Op0.getOperand(0), 11622 Op0.getOperand(1), 11623 Op1); 11624 } 11625 11626 // Try commuted. 11627 // max(a, max(b, c)) -> max3(a, b, c) 11628 // min(a, min(b, c)) -> min3(a, b, c) 11629 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 11630 SDLoc DL(N); 11631 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 11632 DL, 11633 N->getValueType(0), 11634 Op0, 11635 Op1.getOperand(0), 11636 Op1.getOperand(1)); 11637 } 11638 } 11639 11640 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 11641 // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0) 11642 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 11643 if (SDValue Med3 = performIntMed3ImmCombine( 11644 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true)) 11645 return Med3; 11646 } 11647 if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) { 11648 if (SDValue Med3 = performIntMed3ImmCombine( 11649 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true)) 11650 return Med3; 11651 } 11652 11653 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 11654 if (SDValue Med3 = performIntMed3ImmCombine( 11655 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false)) 11656 return Med3; 11657 } 11658 if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) { 11659 if (SDValue Med3 = performIntMed3ImmCombine( 11660 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false)) 11661 return Med3; 11662 } 11663 11664 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 11665 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 11666 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 11667 (Opc == AMDGPUISD::FMIN_LEGACY && 11668 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 11669 (VT == MVT::f32 || VT == MVT::f64 || 11670 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 11671 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 11672 Op0.hasOneUse()) { 11673 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 11674 return Res; 11675 } 11676 11677 return SDValue(); 11678 } 11679 11680 static bool isClampZeroToOne(SDValue A, SDValue B) { 11681 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 11682 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 11683 // FIXME: Should this be allowing -0.0? 11684 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 11685 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 11686 } 11687 } 11688 11689 return false; 11690 } 11691 11692 // FIXME: Should only worry about snans for version with chain. 11693 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 11694 DAGCombinerInfo &DCI) const { 11695 EVT VT = N->getValueType(0); 11696 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 11697 // NaNs. With a NaN input, the order of the operands may change the result. 11698 11699 SelectionDAG &DAG = DCI.DAG; 11700 SDLoc SL(N); 11701 11702 SDValue Src0 = N->getOperand(0); 11703 SDValue Src1 = N->getOperand(1); 11704 SDValue Src2 = N->getOperand(2); 11705 11706 if (isClampZeroToOne(Src0, Src1)) { 11707 // const_a, const_b, x -> clamp is safe in all cases including signaling 11708 // nans. 11709 // FIXME: Should this be allowing -0.0? 11710 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 11711 } 11712 11713 const MachineFunction &MF = DAG.getMachineFunction(); 11714 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11715 11716 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 11717 // handling no dx10-clamp? 11718 if (Info->getMode().DX10Clamp) { 11719 // If NaNs is clamped to 0, we are free to reorder the inputs. 11720 11721 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 11722 std::swap(Src0, Src1); 11723 11724 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 11725 std::swap(Src1, Src2); 11726 11727 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 11728 std::swap(Src0, Src1); 11729 11730 if (isClampZeroToOne(Src1, Src2)) 11731 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 11732 } 11733 11734 return SDValue(); 11735 } 11736 11737 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 11738 DAGCombinerInfo &DCI) const { 11739 SDValue Src0 = N->getOperand(0); 11740 SDValue Src1 = N->getOperand(1); 11741 if (Src0.isUndef() && Src1.isUndef()) 11742 return DCI.DAG.getUNDEF(N->getValueType(0)); 11743 return SDValue(); 11744 } 11745 11746 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 11747 // expanded into a set of cmp/select instructions. 11748 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 11749 unsigned NumElem, 11750 bool IsDivergentIdx, 11751 const GCNSubtarget *Subtarget) { 11752 if (UseDivergentRegisterIndexing) 11753 return false; 11754 11755 unsigned VecSize = EltSize * NumElem; 11756 11757 // Sub-dword vectors of size 2 dword or less have better implementation. 11758 if (VecSize <= 64 && EltSize < 32) 11759 return false; 11760 11761 // Always expand the rest of sub-dword instructions, otherwise it will be 11762 // lowered via memory. 11763 if (EltSize < 32) 11764 return true; 11765 11766 // Always do this if var-idx is divergent, otherwise it will become a loop. 11767 if (IsDivergentIdx) 11768 return true; 11769 11770 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 11771 unsigned NumInsts = NumElem /* Number of compares */ + 11772 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 11773 11774 // On some architectures (GFX9) movrel is not available and it's better 11775 // to expand. 11776 if (!Subtarget->hasMovrel()) 11777 return NumInsts <= 16; 11778 11779 // If movrel is available, use it instead of expanding for vector of 8 11780 // elements. 11781 return NumInsts <= 15; 11782 } 11783 11784 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { 11785 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 11786 if (isa<ConstantSDNode>(Idx)) 11787 return false; 11788 11789 SDValue Vec = N->getOperand(0); 11790 EVT VecVT = Vec.getValueType(); 11791 EVT EltVT = VecVT.getVectorElementType(); 11792 unsigned EltSize = EltVT.getSizeInBits(); 11793 unsigned NumElem = VecVT.getVectorNumElements(); 11794 11795 return SITargetLowering::shouldExpandVectorDynExt( 11796 EltSize, NumElem, Idx->isDivergent(), getSubtarget()); 11797 } 11798 11799 SDValue SITargetLowering::performExtractVectorEltCombine( 11800 SDNode *N, DAGCombinerInfo &DCI) const { 11801 SDValue Vec = N->getOperand(0); 11802 SelectionDAG &DAG = DCI.DAG; 11803 11804 EVT VecVT = Vec.getValueType(); 11805 EVT VecEltVT = VecVT.getVectorElementType(); 11806 EVT ResVT = N->getValueType(0); 11807 11808 unsigned VecSize = VecVT.getSizeInBits(); 11809 unsigned VecEltSize = VecEltVT.getSizeInBits(); 11810 11811 if ((Vec.getOpcode() == ISD::FNEG || 11812 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 11813 SDLoc SL(N); 11814 SDValue Idx = N->getOperand(1); 11815 SDValue Elt = 11816 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); 11817 return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); 11818 } 11819 11820 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 11821 // => 11822 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 11823 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 11824 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 11825 if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { 11826 SDLoc SL(N); 11827 SDValue Idx = N->getOperand(1); 11828 unsigned Opc = Vec.getOpcode(); 11829 11830 switch(Opc) { 11831 default: 11832 break; 11833 // TODO: Support other binary operations. 11834 case ISD::FADD: 11835 case ISD::FSUB: 11836 case ISD::FMUL: 11837 case ISD::ADD: 11838 case ISD::UMIN: 11839 case ISD::UMAX: 11840 case ISD::SMIN: 11841 case ISD::SMAX: 11842 case ISD::FMAXNUM: 11843 case ISD::FMINNUM: 11844 case ISD::FMAXNUM_IEEE: 11845 case ISD::FMINNUM_IEEE: { 11846 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, 11847 Vec.getOperand(0), Idx); 11848 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, 11849 Vec.getOperand(1), Idx); 11850 11851 DCI.AddToWorklist(Elt0.getNode()); 11852 DCI.AddToWorklist(Elt1.getNode()); 11853 return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); 11854 } 11855 } 11856 } 11857 11858 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 11859 if (shouldExpandVectorDynExt(N)) { 11860 SDLoc SL(N); 11861 SDValue Idx = N->getOperand(1); 11862 SDValue V; 11863 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 11864 SDValue IC = DAG.getVectorIdxConstant(I, SL); 11865 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); 11866 if (I == 0) 11867 V = Elt; 11868 else 11869 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 11870 } 11871 return V; 11872 } 11873 11874 if (!DCI.isBeforeLegalize()) 11875 return SDValue(); 11876 11877 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 11878 // elements. This exposes more load reduction opportunities by replacing 11879 // multiple small extract_vector_elements with a single 32-bit extract. 11880 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11881 if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && 11882 VecSize > 32 && VecSize % 32 == 0 && Idx) { 11883 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 11884 11885 unsigned BitIndex = Idx->getZExtValue() * VecEltSize; 11886 unsigned EltIdx = BitIndex / 32; 11887 unsigned LeftoverBitIdx = BitIndex % 32; 11888 SDLoc SL(N); 11889 11890 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 11891 DCI.AddToWorklist(Cast.getNode()); 11892 11893 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 11894 DAG.getConstant(EltIdx, SL, MVT::i32)); 11895 DCI.AddToWorklist(Elt.getNode()); 11896 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 11897 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 11898 DCI.AddToWorklist(Srl.getNode()); 11899 11900 EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); 11901 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); 11902 DCI.AddToWorklist(Trunc.getNode()); 11903 11904 if (VecEltVT == ResVT) { 11905 return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); 11906 } 11907 11908 assert(ResVT.isScalarInteger()); 11909 return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); 11910 } 11911 11912 return SDValue(); 11913 } 11914 11915 SDValue 11916 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 11917 DAGCombinerInfo &DCI) const { 11918 SDValue Vec = N->getOperand(0); 11919 SDValue Idx = N->getOperand(2); 11920 EVT VecVT = Vec.getValueType(); 11921 EVT EltVT = VecVT.getVectorElementType(); 11922 11923 // INSERT_VECTOR_ELT (<n x e>, var-idx) 11924 // => BUILD_VECTOR n x select (e, const-idx) 11925 if (!shouldExpandVectorDynExt(N)) 11926 return SDValue(); 11927 11928 SelectionDAG &DAG = DCI.DAG; 11929 SDLoc SL(N); 11930 SDValue Ins = N->getOperand(1); 11931 EVT IdxVT = Idx.getValueType(); 11932 11933 SmallVector<SDValue, 16> Ops; 11934 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 11935 SDValue IC = DAG.getConstant(I, SL, IdxVT); 11936 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 11937 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 11938 Ops.push_back(V); 11939 } 11940 11941 return DAG.getBuildVector(VecVT, SL, Ops); 11942 } 11943 11944 /// Return the source of an fp_extend from f16 to f32, or a converted FP 11945 /// constant. 11946 static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) { 11947 if (Src.getOpcode() == ISD::FP_EXTEND && 11948 Src.getOperand(0).getValueType() == MVT::f16) { 11949 return Src.getOperand(0); 11950 } 11951 11952 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) { 11953 APFloat Val = CFP->getValueAPF(); 11954 bool LosesInfo = true; 11955 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 11956 if (!LosesInfo) 11957 return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16); 11958 } 11959 11960 return SDValue(); 11961 } 11962 11963 SDValue SITargetLowering::performFPRoundCombine(SDNode *N, 11964 DAGCombinerInfo &DCI) const { 11965 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() && 11966 "combine only useful on gfx8"); 11967 11968 SDValue TruncSrc = N->getOperand(0); 11969 EVT VT = N->getValueType(0); 11970 if (VT != MVT::f16) 11971 return SDValue(); 11972 11973 if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 || 11974 TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse()) 11975 return SDValue(); 11976 11977 SelectionDAG &DAG = DCI.DAG; 11978 SDLoc SL(N); 11979 11980 // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3, 11981 // and expanding it with min/max saves 1 instruction vs. casting to f32 and 11982 // casting back. 11983 11984 // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) => 11985 // fmin(fmax(a, b), fmax(fmin(a, b), c)) 11986 SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0)); 11987 if (!A) 11988 return SDValue(); 11989 11990 SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1)); 11991 if (!B) 11992 return SDValue(); 11993 11994 SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2)); 11995 if (!C) 11996 return SDValue(); 11997 11998 // This changes signaling nan behavior. If an input is a signaling nan, it 11999 // would have been quieted by the fpext originally. We don't care because 12000 // these are unconstrained ops. If we needed to insert quieting canonicalizes 12001 // we would be worse off than just doing the promotion. 12002 SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B); 12003 SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B); 12004 SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C); 12005 return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1); 12006 } 12007 12008 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 12009 const SDNode *N0, 12010 const SDNode *N1) const { 12011 EVT VT = N0->getValueType(0); 12012 12013 // Only do this if we are not trying to support denormals. v_mad_f32 does not 12014 // support denormals ever. 12015 if (((VT == MVT::f32 && 12016 denormalModeIsFlushAllF32(DAG.getMachineFunction())) || 12017 (VT == MVT::f16 && Subtarget->hasMadF16() && 12018 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) && 12019 isOperationLegal(ISD::FMAD, VT)) 12020 return ISD::FMAD; 12021 12022 const TargetOptions &Options = DAG.getTarget().Options; 12023 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 12024 (N0->getFlags().hasAllowContract() && 12025 N1->getFlags().hasAllowContract())) && 12026 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 12027 return ISD::FMA; 12028 } 12029 12030 return 0; 12031 } 12032 12033 // For a reassociatable opcode perform: 12034 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 12035 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 12036 SelectionDAG &DAG) const { 12037 EVT VT = N->getValueType(0); 12038 if (VT != MVT::i32 && VT != MVT::i64) 12039 return SDValue(); 12040 12041 if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) 12042 return SDValue(); 12043 12044 unsigned Opc = N->getOpcode(); 12045 SDValue Op0 = N->getOperand(0); 12046 SDValue Op1 = N->getOperand(1); 12047 12048 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 12049 return SDValue(); 12050 12051 if (Op0->isDivergent()) 12052 std::swap(Op0, Op1); 12053 12054 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 12055 return SDValue(); 12056 12057 SDValue Op2 = Op1.getOperand(1); 12058 Op1 = Op1.getOperand(0); 12059 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 12060 return SDValue(); 12061 12062 if (Op1->isDivergent()) 12063 std::swap(Op1, Op2); 12064 12065 SDLoc SL(N); 12066 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 12067 return DAG.getNode(Opc, SL, VT, Add1, Op2); 12068 } 12069 12070 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 12071 EVT VT, 12072 SDValue N0, SDValue N1, SDValue N2, 12073 bool Signed) { 12074 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 12075 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 12076 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 12077 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 12078 } 12079 12080 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high 12081 // multiplies, if any. 12082 // 12083 // Full 64-bit multiplies that feed into an addition are lowered here instead 12084 // of using the generic expansion. The generic expansion ends up with 12085 // a tree of ADD nodes that prevents us from using the "add" part of the 12086 // MAD instruction. The expansion produced here results in a chain of ADDs 12087 // instead of a tree. 12088 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, 12089 DAGCombinerInfo &DCI) const { 12090 assert(N->getOpcode() == ISD::ADD); 12091 12092 SelectionDAG &DAG = DCI.DAG; 12093 EVT VT = N->getValueType(0); 12094 SDLoc SL(N); 12095 SDValue LHS = N->getOperand(0); 12096 SDValue RHS = N->getOperand(1); 12097 12098 if (VT.isVector()) 12099 return SDValue(); 12100 12101 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall 12102 // result in scalar registers for uniform values. 12103 if (!N->isDivergent() && Subtarget->hasSMulHi()) 12104 return SDValue(); 12105 12106 unsigned NumBits = VT.getScalarSizeInBits(); 12107 if (NumBits <= 32 || NumBits > 64) 12108 return SDValue(); 12109 12110 if (LHS.getOpcode() != ISD::MUL) { 12111 assert(RHS.getOpcode() == ISD::MUL); 12112 std::swap(LHS, RHS); 12113 } 12114 12115 // Avoid the fold if it would unduly increase the number of multiplies due to 12116 // multiple uses, except on hardware with full-rate multiply-add (which is 12117 // part of full-rate 64-bit ops). 12118 if (!Subtarget->hasFullRate64Ops()) { 12119 unsigned NumUsers = 0; 12120 for (SDNode *Use : LHS->uses()) { 12121 // There is a use that does not feed into addition, so the multiply can't 12122 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. 12123 if (Use->getOpcode() != ISD::ADD) 12124 return SDValue(); 12125 12126 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer 12127 // MUL + 3xADD + 3xADDC over 3xMAD. 12128 ++NumUsers; 12129 if (NumUsers >= 3) 12130 return SDValue(); 12131 } 12132 } 12133 12134 SDValue MulLHS = LHS.getOperand(0); 12135 SDValue MulRHS = LHS.getOperand(1); 12136 SDValue AddRHS = RHS; 12137 12138 // Always check whether operands are small unsigned values, since that 12139 // knowledge is useful in more cases. Check for small signed values only if 12140 // doing so can unlock a shorter code sequence. 12141 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; 12142 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; 12143 12144 bool MulSignedLo = false; 12145 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { 12146 MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && 12147 numBitsSigned(MulRHS, DAG) <= 32; 12148 } 12149 12150 // The operands and final result all have the same number of bits. If 12151 // operands need to be extended, they can be extended with garbage. The 12152 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is 12153 // truncated away in the end. 12154 if (VT != MVT::i64) { 12155 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); 12156 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); 12157 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); 12158 } 12159 12160 // The basic code generated is conceptually straightforward. Pseudo code: 12161 // 12162 // accum = mad_64_32 lhs.lo, rhs.lo, accum 12163 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi 12164 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi 12165 // 12166 // The second and third lines are optional, depending on whether the factors 12167 // are {sign,zero}-extended or not. 12168 // 12169 // The actual DAG is noisier than the pseudo code, but only due to 12170 // instructions that disassemble values into low and high parts, and 12171 // assemble the final result. 12172 SDValue One = DAG.getConstant(1, SL, MVT::i32); 12173 12174 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); 12175 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); 12176 SDValue Accum = 12177 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); 12178 12179 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { 12180 SDValue AccumLo, AccumHi; 12181 std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32); 12182 12183 if (!MulLHSUnsigned32) { 12184 auto MulLHSHi = 12185 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); 12186 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); 12187 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 12188 } 12189 12190 if (!MulRHSUnsigned32) { 12191 auto MulRHSHi = 12192 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); 12193 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); 12194 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 12195 } 12196 12197 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); 12198 Accum = DAG.getBitcast(MVT::i64, Accum); 12199 } 12200 12201 if (VT != MVT::i64) 12202 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); 12203 return Accum; 12204 } 12205 12206 SDValue SITargetLowering::performAddCombine(SDNode *N, 12207 DAGCombinerInfo &DCI) const { 12208 SelectionDAG &DAG = DCI.DAG; 12209 EVT VT = N->getValueType(0); 12210 SDLoc SL(N); 12211 SDValue LHS = N->getOperand(0); 12212 SDValue RHS = N->getOperand(1); 12213 12214 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { 12215 if (Subtarget->hasMad64_32()) { 12216 if (SDValue Folded = tryFoldToMad64_32(N, DCI)) 12217 return Folded; 12218 } 12219 12220 return SDValue(); 12221 } 12222 12223 if (SDValue V = reassociateScalarOps(N, DAG)) { 12224 return V; 12225 } 12226 12227 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 12228 return SDValue(); 12229 12230 // add x, zext (setcc) => uaddo_carry x, 0, setcc 12231 // add x, sext (setcc) => usubo_carry x, 0, setcc 12232 unsigned Opc = LHS.getOpcode(); 12233 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 12234 Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY) 12235 std::swap(RHS, LHS); 12236 12237 Opc = RHS.getOpcode(); 12238 switch (Opc) { 12239 default: break; 12240 case ISD::ZERO_EXTEND: 12241 case ISD::SIGN_EXTEND: 12242 case ISD::ANY_EXTEND: { 12243 auto Cond = RHS.getOperand(0); 12244 // If this won't be a real VOPC output, we would still need to insert an 12245 // extra instruction anyway. 12246 if (!isBoolSGPR(Cond)) 12247 break; 12248 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 12249 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 12250 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY; 12251 return DAG.getNode(Opc, SL, VTList, Args); 12252 } 12253 case ISD::UADDO_CARRY: { 12254 // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc 12255 if (!isNullConstant(RHS.getOperand(1))) 12256 break; 12257 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 12258 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args); 12259 } 12260 } 12261 return SDValue(); 12262 } 12263 12264 SDValue SITargetLowering::performSubCombine(SDNode *N, 12265 DAGCombinerInfo &DCI) const { 12266 SelectionDAG &DAG = DCI.DAG; 12267 EVT VT = N->getValueType(0); 12268 12269 if (VT != MVT::i32) 12270 return SDValue(); 12271 12272 SDLoc SL(N); 12273 SDValue LHS = N->getOperand(0); 12274 SDValue RHS = N->getOperand(1); 12275 12276 // sub x, zext (setcc) => usubo_carry x, 0, setcc 12277 // sub x, sext (setcc) => uaddo_carry x, 0, setcc 12278 unsigned Opc = RHS.getOpcode(); 12279 switch (Opc) { 12280 default: break; 12281 case ISD::ZERO_EXTEND: 12282 case ISD::SIGN_EXTEND: 12283 case ISD::ANY_EXTEND: { 12284 auto Cond = RHS.getOperand(0); 12285 // If this won't be a real VOPC output, we would still need to insert an 12286 // extra instruction anyway. 12287 if (!isBoolSGPR(Cond)) 12288 break; 12289 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 12290 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 12291 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 12292 return DAG.getNode(Opc, SL, VTList, Args); 12293 } 12294 } 12295 12296 if (LHS.getOpcode() == ISD::USUBO_CARRY) { 12297 // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc 12298 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 12299 if (!C || !C->isZero()) 12300 return SDValue(); 12301 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 12302 return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args); 12303 } 12304 return SDValue(); 12305 } 12306 12307 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 12308 DAGCombinerInfo &DCI) const { 12309 12310 if (N->getValueType(0) != MVT::i32) 12311 return SDValue(); 12312 12313 if (!isNullConstant(N->getOperand(1))) 12314 return SDValue(); 12315 12316 SelectionDAG &DAG = DCI.DAG; 12317 SDValue LHS = N->getOperand(0); 12318 12319 // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc 12320 // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc 12321 unsigned LHSOpc = LHS.getOpcode(); 12322 unsigned Opc = N->getOpcode(); 12323 if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) || 12324 (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) { 12325 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 12326 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 12327 } 12328 return SDValue(); 12329 } 12330 12331 SDValue SITargetLowering::performFAddCombine(SDNode *N, 12332 DAGCombinerInfo &DCI) const { 12333 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 12334 return SDValue(); 12335 12336 SelectionDAG &DAG = DCI.DAG; 12337 EVT VT = N->getValueType(0); 12338 12339 SDLoc SL(N); 12340 SDValue LHS = N->getOperand(0); 12341 SDValue RHS = N->getOperand(1); 12342 12343 // These should really be instruction patterns, but writing patterns with 12344 // source modifiers is a pain. 12345 12346 // fadd (fadd (a, a), b) -> mad 2.0, a, b 12347 if (LHS.getOpcode() == ISD::FADD) { 12348 SDValue A = LHS.getOperand(0); 12349 if (A == LHS.getOperand(1)) { 12350 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 12351 if (FusedOp != 0) { 12352 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 12353 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 12354 } 12355 } 12356 } 12357 12358 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 12359 if (RHS.getOpcode() == ISD::FADD) { 12360 SDValue A = RHS.getOperand(0); 12361 if (A == RHS.getOperand(1)) { 12362 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 12363 if (FusedOp != 0) { 12364 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 12365 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 12366 } 12367 } 12368 } 12369 12370 return SDValue(); 12371 } 12372 12373 SDValue SITargetLowering::performFSubCombine(SDNode *N, 12374 DAGCombinerInfo &DCI) const { 12375 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 12376 return SDValue(); 12377 12378 SelectionDAG &DAG = DCI.DAG; 12379 SDLoc SL(N); 12380 EVT VT = N->getValueType(0); 12381 assert(!VT.isVector()); 12382 12383 // Try to get the fneg to fold into the source modifier. This undoes generic 12384 // DAG combines and folds them into the mad. 12385 // 12386 // Only do this if we are not trying to support denormals. v_mad_f32 does 12387 // not support denormals ever. 12388 SDValue LHS = N->getOperand(0); 12389 SDValue RHS = N->getOperand(1); 12390 if (LHS.getOpcode() == ISD::FADD) { 12391 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 12392 SDValue A = LHS.getOperand(0); 12393 if (A == LHS.getOperand(1)) { 12394 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 12395 if (FusedOp != 0){ 12396 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 12397 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 12398 12399 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 12400 } 12401 } 12402 } 12403 12404 if (RHS.getOpcode() == ISD::FADD) { 12405 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 12406 12407 SDValue A = RHS.getOperand(0); 12408 if (A == RHS.getOperand(1)) { 12409 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 12410 if (FusedOp != 0){ 12411 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 12412 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 12413 } 12414 } 12415 } 12416 12417 return SDValue(); 12418 } 12419 12420 SDValue SITargetLowering::performFMACombine(SDNode *N, 12421 DAGCombinerInfo &DCI) const { 12422 SelectionDAG &DAG = DCI.DAG; 12423 EVT VT = N->getValueType(0); 12424 SDLoc SL(N); 12425 12426 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 12427 return SDValue(); 12428 12429 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 12430 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 12431 SDValue Op1 = N->getOperand(0); 12432 SDValue Op2 = N->getOperand(1); 12433 SDValue FMA = N->getOperand(2); 12434 12435 if (FMA.getOpcode() != ISD::FMA || 12436 Op1.getOpcode() != ISD::FP_EXTEND || 12437 Op2.getOpcode() != ISD::FP_EXTEND) 12438 return SDValue(); 12439 12440 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 12441 // regardless of the denorm mode setting. Therefore, 12442 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. 12443 const TargetOptions &Options = DAG.getTarget().Options; 12444 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 12445 (N->getFlags().hasAllowContract() && 12446 FMA->getFlags().hasAllowContract())) { 12447 Op1 = Op1.getOperand(0); 12448 Op2 = Op2.getOperand(0); 12449 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12450 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12451 return SDValue(); 12452 12453 SDValue Vec1 = Op1.getOperand(0); 12454 SDValue Idx1 = Op1.getOperand(1); 12455 SDValue Vec2 = Op2.getOperand(0); 12456 12457 SDValue FMAOp1 = FMA.getOperand(0); 12458 SDValue FMAOp2 = FMA.getOperand(1); 12459 SDValue FMAAcc = FMA.getOperand(2); 12460 12461 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 12462 FMAOp2.getOpcode() != ISD::FP_EXTEND) 12463 return SDValue(); 12464 12465 FMAOp1 = FMAOp1.getOperand(0); 12466 FMAOp2 = FMAOp2.getOperand(0); 12467 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12468 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12469 return SDValue(); 12470 12471 SDValue Vec3 = FMAOp1.getOperand(0); 12472 SDValue Vec4 = FMAOp2.getOperand(0); 12473 SDValue Idx2 = FMAOp1.getOperand(1); 12474 12475 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 12476 // Idx1 and Idx2 cannot be the same. 12477 Idx1 == Idx2) 12478 return SDValue(); 12479 12480 if (Vec1 == Vec2 || Vec3 == Vec4) 12481 return SDValue(); 12482 12483 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 12484 return SDValue(); 12485 12486 if ((Vec1 == Vec3 && Vec2 == Vec4) || 12487 (Vec1 == Vec4 && Vec2 == Vec3)) { 12488 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 12489 DAG.getTargetConstant(0, SL, MVT::i1)); 12490 } 12491 } 12492 return SDValue(); 12493 } 12494 12495 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 12496 DAGCombinerInfo &DCI) const { 12497 SelectionDAG &DAG = DCI.DAG; 12498 SDLoc SL(N); 12499 12500 SDValue LHS = N->getOperand(0); 12501 SDValue RHS = N->getOperand(1); 12502 EVT VT = LHS.getValueType(); 12503 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12504 12505 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 12506 if (!CRHS) { 12507 CRHS = dyn_cast<ConstantSDNode>(LHS); 12508 if (CRHS) { 12509 std::swap(LHS, RHS); 12510 CC = getSetCCSwappedOperands(CC); 12511 } 12512 } 12513 12514 if (CRHS) { 12515 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 12516 isBoolSGPR(LHS.getOperand(0))) { 12517 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 12518 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 12519 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 12520 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 12521 if ((CRHS->isAllOnes() && 12522 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 12523 (CRHS->isZero() && 12524 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 12525 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 12526 DAG.getConstant(-1, SL, MVT::i1)); 12527 if ((CRHS->isAllOnes() && 12528 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 12529 (CRHS->isZero() && 12530 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 12531 return LHS.getOperand(0); 12532 } 12533 12534 const APInt &CRHSVal = CRHS->getAPIntValue(); 12535 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 12536 LHS.getOpcode() == ISD::SELECT && 12537 isa<ConstantSDNode>(LHS.getOperand(1)) && 12538 isa<ConstantSDNode>(LHS.getOperand(2)) && 12539 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 12540 isBoolSGPR(LHS.getOperand(0))) { 12541 // Given CT != FT: 12542 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 12543 // setcc (select cc, CT, CF), CF, ne => cc 12544 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 12545 // setcc (select cc, CT, CF), CT, eq => cc 12546 const APInt &CT = LHS.getConstantOperandAPInt(1); 12547 const APInt &CF = LHS.getConstantOperandAPInt(2); 12548 12549 if ((CF == CRHSVal && CC == ISD::SETEQ) || 12550 (CT == CRHSVal && CC == ISD::SETNE)) 12551 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 12552 DAG.getConstant(-1, SL, MVT::i1)); 12553 if ((CF == CRHSVal && CC == ISD::SETNE) || 12554 (CT == CRHSVal && CC == ISD::SETEQ)) 12555 return LHS.getOperand(0); 12556 } 12557 } 12558 12559 if (VT != MVT::f32 && VT != MVT::f64 && 12560 (!Subtarget->has16BitInsts() || VT != MVT::f16)) 12561 return SDValue(); 12562 12563 // Match isinf/isfinite pattern 12564 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 12565 // (fcmp one (fabs x), inf) -> (fp_class x, 12566 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 12567 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 12568 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 12569 if (!CRHS) 12570 return SDValue(); 12571 12572 const APFloat &APF = CRHS->getValueAPF(); 12573 if (APF.isInfinity() && !APF.isNegative()) { 12574 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 12575 SIInstrFlags::N_INFINITY; 12576 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 12577 SIInstrFlags::P_ZERO | 12578 SIInstrFlags::N_NORMAL | 12579 SIInstrFlags::P_NORMAL | 12580 SIInstrFlags::N_SUBNORMAL | 12581 SIInstrFlags::P_SUBNORMAL; 12582 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 12583 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 12584 DAG.getConstant(Mask, SL, MVT::i32)); 12585 } 12586 } 12587 12588 return SDValue(); 12589 } 12590 12591 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 12592 DAGCombinerInfo &DCI) const { 12593 SelectionDAG &DAG = DCI.DAG; 12594 SDLoc SL(N); 12595 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 12596 12597 SDValue Src = N->getOperand(0); 12598 SDValue Shift = N->getOperand(0); 12599 12600 // TODO: Extend type shouldn't matter (assuming legal types). 12601 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 12602 Shift = Shift.getOperand(0); 12603 12604 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 12605 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 12606 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 12607 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 12608 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 12609 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 12610 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 12611 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 12612 SDLoc(Shift.getOperand(0)), MVT::i32); 12613 12614 unsigned ShiftOffset = 8 * Offset; 12615 if (Shift.getOpcode() == ISD::SHL) 12616 ShiftOffset -= C->getZExtValue(); 12617 else 12618 ShiftOffset += C->getZExtValue(); 12619 12620 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 12621 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 12622 MVT::f32, Shifted); 12623 } 12624 } 12625 } 12626 12627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12628 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 12629 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 12630 // We simplified Src. If this node is not dead, visit it again so it is 12631 // folded properly. 12632 if (N->getOpcode() != ISD::DELETED_NODE) 12633 DCI.AddToWorklist(N); 12634 return SDValue(N, 0); 12635 } 12636 12637 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 12638 if (SDValue DemandedSrc = 12639 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 12640 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 12641 12642 return SDValue(); 12643 } 12644 12645 SDValue SITargetLowering::performClampCombine(SDNode *N, 12646 DAGCombinerInfo &DCI) const { 12647 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 12648 if (!CSrc) 12649 return SDValue(); 12650 12651 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 12652 const APFloat &F = CSrc->getValueAPF(); 12653 APFloat Zero = APFloat::getZero(F.getSemantics()); 12654 if (F < Zero || 12655 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 12656 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 12657 } 12658 12659 APFloat One(F.getSemantics(), "1.0"); 12660 if (F > One) 12661 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 12662 12663 return SDValue(CSrc, 0); 12664 } 12665 12666 12667 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 12668 DAGCombinerInfo &DCI) const { 12669 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 12670 return SDValue(); 12671 switch (N->getOpcode()) { 12672 case ISD::ADD: 12673 return performAddCombine(N, DCI); 12674 case ISD::SUB: 12675 return performSubCombine(N, DCI); 12676 case ISD::UADDO_CARRY: 12677 case ISD::USUBO_CARRY: 12678 return performAddCarrySubCarryCombine(N, DCI); 12679 case ISD::FADD: 12680 return performFAddCombine(N, DCI); 12681 case ISD::FSUB: 12682 return performFSubCombine(N, DCI); 12683 case ISD::SETCC: 12684 return performSetCCCombine(N, DCI); 12685 case ISD::FMAXNUM: 12686 case ISD::FMINNUM: 12687 case ISD::FMAXNUM_IEEE: 12688 case ISD::FMINNUM_IEEE: 12689 case ISD::SMAX: 12690 case ISD::SMIN: 12691 case ISD::UMAX: 12692 case ISD::UMIN: 12693 case AMDGPUISD::FMIN_LEGACY: 12694 case AMDGPUISD::FMAX_LEGACY: 12695 return performMinMaxCombine(N, DCI); 12696 case ISD::FMA: 12697 return performFMACombine(N, DCI); 12698 case ISD::AND: 12699 return performAndCombine(N, DCI); 12700 case ISD::OR: 12701 return performOrCombine(N, DCI); 12702 case ISD::XOR: 12703 return performXorCombine(N, DCI); 12704 case ISD::ZERO_EXTEND: 12705 return performZeroExtendCombine(N, DCI); 12706 case ISD::SIGN_EXTEND_INREG: 12707 return performSignExtendInRegCombine(N , DCI); 12708 case AMDGPUISD::FP_CLASS: 12709 return performClassCombine(N, DCI); 12710 case ISD::FCANONICALIZE: 12711 return performFCanonicalizeCombine(N, DCI); 12712 case AMDGPUISD::RCP: 12713 return performRcpCombine(N, DCI); 12714 case ISD::FLDEXP: 12715 case AMDGPUISD::FRACT: 12716 case AMDGPUISD::RSQ: 12717 case AMDGPUISD::RCP_LEGACY: 12718 case AMDGPUISD::RCP_IFLAG: 12719 case AMDGPUISD::RSQ_CLAMP: { 12720 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 12721 SDValue Src = N->getOperand(0); 12722 if (Src.isUndef()) 12723 return Src; 12724 break; 12725 } 12726 case ISD::SINT_TO_FP: 12727 case ISD::UINT_TO_FP: 12728 return performUCharToFloatCombine(N, DCI); 12729 case ISD::FCOPYSIGN: 12730 return performFCopySignCombine(N, DCI); 12731 case AMDGPUISD::CVT_F32_UBYTE0: 12732 case AMDGPUISD::CVT_F32_UBYTE1: 12733 case AMDGPUISD::CVT_F32_UBYTE2: 12734 case AMDGPUISD::CVT_F32_UBYTE3: 12735 return performCvtF32UByteNCombine(N, DCI); 12736 case AMDGPUISD::FMED3: 12737 return performFMed3Combine(N, DCI); 12738 case AMDGPUISD::CVT_PKRTZ_F16_F32: 12739 return performCvtPkRTZCombine(N, DCI); 12740 case AMDGPUISD::CLAMP: 12741 return performClampCombine(N, DCI); 12742 case ISD::SCALAR_TO_VECTOR: { 12743 SelectionDAG &DAG = DCI.DAG; 12744 EVT VT = N->getValueType(0); 12745 12746 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 12747 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 12748 SDLoc SL(N); 12749 SDValue Src = N->getOperand(0); 12750 EVT EltVT = Src.getValueType(); 12751 if (EltVT == MVT::f16) 12752 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 12753 12754 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 12755 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 12756 } 12757 12758 break; 12759 } 12760 case ISD::EXTRACT_VECTOR_ELT: 12761 return performExtractVectorEltCombine(N, DCI); 12762 case ISD::INSERT_VECTOR_ELT: 12763 return performInsertVectorEltCombine(N, DCI); 12764 case ISD::FP_ROUND: 12765 return performFPRoundCombine(N, DCI); 12766 case ISD::LOAD: { 12767 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 12768 return Widended; 12769 [[fallthrough]]; 12770 } 12771 default: { 12772 if (!DCI.isBeforeLegalize()) { 12773 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 12774 return performMemSDNodeCombine(MemNode, DCI); 12775 } 12776 12777 break; 12778 } 12779 } 12780 12781 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 12782 } 12783 12784 /// Helper function for adjustWritemask 12785 static unsigned SubIdx2Lane(unsigned Idx) { 12786 switch (Idx) { 12787 default: return ~0u; 12788 case AMDGPU::sub0: return 0; 12789 case AMDGPU::sub1: return 1; 12790 case AMDGPU::sub2: return 2; 12791 case AMDGPU::sub3: return 3; 12792 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 12793 } 12794 } 12795 12796 /// Adjust the writemask of MIMG instructions 12797 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 12798 SelectionDAG &DAG) const { 12799 unsigned Opcode = Node->getMachineOpcode(); 12800 12801 // Subtract 1 because the vdata output is not a MachineSDNode operand. 12802 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 12803 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 12804 return Node; // not implemented for D16 12805 12806 SDNode *Users[5] = { nullptr }; 12807 unsigned Lane = 0; 12808 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 12809 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 12810 unsigned NewDmask = 0; 12811 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 12812 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 12813 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 12814 Node->getConstantOperandVal(LWEIdx)) 12815 ? true 12816 : false; 12817 unsigned TFCLane = 0; 12818 bool HasChain = Node->getNumValues() > 1; 12819 12820 if (OldDmask == 0) { 12821 // These are folded out, but on the chance it happens don't assert. 12822 return Node; 12823 } 12824 12825 unsigned OldBitsSet = llvm::popcount(OldDmask); 12826 // Work out which is the TFE/LWE lane if that is enabled. 12827 if (UsesTFC) { 12828 TFCLane = OldBitsSet; 12829 } 12830 12831 // Try to figure out the used register components 12832 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 12833 I != E; ++I) { 12834 12835 // Don't look at users of the chain. 12836 if (I.getUse().getResNo() != 0) 12837 continue; 12838 12839 // Abort if we can't understand the usage 12840 if (!I->isMachineOpcode() || 12841 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 12842 return Node; 12843 12844 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 12845 // Note that subregs are packed, i.e. Lane==0 is the first bit set 12846 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 12847 // set, etc. 12848 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 12849 if (Lane == ~0u) 12850 return Node; 12851 12852 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 12853 if (UsesTFC && Lane == TFCLane) { 12854 Users[Lane] = *I; 12855 } else { 12856 // Set which texture component corresponds to the lane. 12857 unsigned Comp; 12858 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 12859 Comp = llvm::countr_zero(Dmask); 12860 Dmask &= ~(1 << Comp); 12861 } 12862 12863 // Abort if we have more than one user per component. 12864 if (Users[Lane]) 12865 return Node; 12866 12867 Users[Lane] = *I; 12868 NewDmask |= 1 << Comp; 12869 } 12870 } 12871 12872 // Don't allow 0 dmask, as hardware assumes one channel enabled. 12873 bool NoChannels = !NewDmask; 12874 if (NoChannels) { 12875 if (!UsesTFC) { 12876 // No uses of the result and not using TFC. Then do nothing. 12877 return Node; 12878 } 12879 // If the original dmask has one channel - then nothing to do 12880 if (OldBitsSet == 1) 12881 return Node; 12882 // Use an arbitrary dmask - required for the instruction to work 12883 NewDmask = 1; 12884 } 12885 // Abort if there's no change 12886 if (NewDmask == OldDmask) 12887 return Node; 12888 12889 unsigned BitsSet = llvm::popcount(NewDmask); 12890 12891 // Check for TFE or LWE - increase the number of channels by one to account 12892 // for the extra return value 12893 // This will need adjustment for D16 if this is also included in 12894 // adjustWriteMask (this function) but at present D16 are excluded. 12895 unsigned NewChannels = BitsSet + UsesTFC; 12896 12897 int NewOpcode = 12898 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 12899 assert(NewOpcode != -1 && 12900 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 12901 "failed to find equivalent MIMG op"); 12902 12903 // Adjust the writemask in the node 12904 SmallVector<SDValue, 12> Ops; 12905 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 12906 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 12907 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 12908 12909 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 12910 12911 MVT ResultVT = NewChannels == 1 ? 12912 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 12913 NewChannels == 5 ? 8 : NewChannels); 12914 SDVTList NewVTList = HasChain ? 12915 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 12916 12917 12918 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 12919 NewVTList, Ops); 12920 12921 if (HasChain) { 12922 // Update chain. 12923 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 12924 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 12925 } 12926 12927 if (NewChannels == 1) { 12928 assert(Node->hasNUsesOfValue(1, 0)); 12929 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 12930 SDLoc(Node), Users[Lane]->getValueType(0), 12931 SDValue(NewNode, 0)); 12932 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 12933 return nullptr; 12934 } 12935 12936 // Update the users of the node with the new indices 12937 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 12938 SDNode *User = Users[i]; 12939 if (!User) { 12940 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 12941 // Users[0] is still nullptr because channel 0 doesn't really have a use. 12942 if (i || !NoChannels) 12943 continue; 12944 } else { 12945 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 12946 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 12947 } 12948 12949 switch (Idx) { 12950 default: break; 12951 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 12952 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 12953 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 12954 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 12955 } 12956 } 12957 12958 DAG.RemoveDeadNode(Node); 12959 return nullptr; 12960 } 12961 12962 static bool isFrameIndexOp(SDValue Op) { 12963 if (Op.getOpcode() == ISD::AssertZext) 12964 Op = Op.getOperand(0); 12965 12966 return isa<FrameIndexSDNode>(Op); 12967 } 12968 12969 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 12970 /// with frame index operands. 12971 /// LLVM assumes that inputs are to these instructions are registers. 12972 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 12973 SelectionDAG &DAG) const { 12974 if (Node->getOpcode() == ISD::CopyToReg) { 12975 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 12976 SDValue SrcVal = Node->getOperand(2); 12977 12978 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 12979 // to try understanding copies to physical registers. 12980 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 12981 SDLoc SL(Node); 12982 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12983 SDValue VReg = DAG.getRegister( 12984 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 12985 12986 SDNode *Glued = Node->getGluedNode(); 12987 SDValue ToVReg 12988 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 12989 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 12990 SDValue ToResultReg 12991 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 12992 VReg, ToVReg.getValue(1)); 12993 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 12994 DAG.RemoveDeadNode(Node); 12995 return ToResultReg.getNode(); 12996 } 12997 } 12998 12999 SmallVector<SDValue, 8> Ops; 13000 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 13001 if (!isFrameIndexOp(Node->getOperand(i))) { 13002 Ops.push_back(Node->getOperand(i)); 13003 continue; 13004 } 13005 13006 SDLoc DL(Node); 13007 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 13008 Node->getOperand(i).getValueType(), 13009 Node->getOperand(i)), 0)); 13010 } 13011 13012 return DAG.UpdateNodeOperands(Node, Ops); 13013 } 13014 13015 /// Fold the instructions after selecting them. 13016 /// Returns null if users were already updated. 13017 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 13018 SelectionDAG &DAG) const { 13019 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 13020 unsigned Opcode = Node->getMachineOpcode(); 13021 13022 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 13023 !TII->isGather4(Opcode) && 13024 AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { 13025 return adjustWritemask(Node, DAG); 13026 } 13027 13028 if (Opcode == AMDGPU::INSERT_SUBREG || 13029 Opcode == AMDGPU::REG_SEQUENCE) { 13030 legalizeTargetIndependentNode(Node, DAG); 13031 return Node; 13032 } 13033 13034 switch (Opcode) { 13035 case AMDGPU::V_DIV_SCALE_F32_e64: 13036 case AMDGPU::V_DIV_SCALE_F64_e64: { 13037 // Satisfy the operand register constraint when one of the inputs is 13038 // undefined. Ordinarily each undef value will have its own implicit_def of 13039 // a vreg, so force these to use a single register. 13040 SDValue Src0 = Node->getOperand(1); 13041 SDValue Src1 = Node->getOperand(3); 13042 SDValue Src2 = Node->getOperand(5); 13043 13044 if ((Src0.isMachineOpcode() && 13045 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 13046 (Src0 == Src1 || Src0 == Src2)) 13047 break; 13048 13049 MVT VT = Src0.getValueType().getSimpleVT(); 13050 const TargetRegisterClass *RC = 13051 getRegClassFor(VT, Src0.getNode()->isDivergent()); 13052 13053 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 13054 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 13055 13056 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 13057 UndefReg, Src0, SDValue()); 13058 13059 // src0 must be the same register as src1 or src2, even if the value is 13060 // undefined, so make sure we don't violate this constraint. 13061 if (Src0.isMachineOpcode() && 13062 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 13063 if (Src1.isMachineOpcode() && 13064 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 13065 Src0 = Src1; 13066 else if (Src2.isMachineOpcode() && 13067 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 13068 Src0 = Src2; 13069 else { 13070 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 13071 Src0 = UndefReg; 13072 Src1 = UndefReg; 13073 } 13074 } else 13075 break; 13076 13077 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 13078 Ops[1] = Src0; 13079 Ops[3] = Src1; 13080 Ops[5] = Src2; 13081 Ops.push_back(ImpDef.getValue(1)); 13082 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 13083 } 13084 default: 13085 break; 13086 } 13087 13088 return Node; 13089 } 13090 13091 // Any MIMG instructions that use tfe or lwe require an initialization of the 13092 // result register that will be written in the case of a memory access failure. 13093 // The required code is also added to tie this init code to the result of the 13094 // img instruction. 13095 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 13096 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 13097 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 13098 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 13099 MachineBasicBlock &MBB = *MI.getParent(); 13100 13101 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 13102 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 13103 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 13104 13105 if (!TFE && !LWE) // intersect_ray 13106 return; 13107 13108 unsigned TFEVal = TFE ? TFE->getImm() : 0; 13109 unsigned LWEVal = LWE->getImm(); 13110 unsigned D16Val = D16 ? D16->getImm() : 0; 13111 13112 if (!TFEVal && !LWEVal) 13113 return; 13114 13115 // At least one of TFE or LWE are non-zero 13116 // We have to insert a suitable initialization of the result value and 13117 // tie this to the dest of the image instruction. 13118 13119 const DebugLoc &DL = MI.getDebugLoc(); 13120 13121 int DstIdx = 13122 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 13123 13124 // Calculate which dword we have to initialize to 0. 13125 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 13126 13127 // check that dmask operand is found. 13128 assert(MO_Dmask && "Expected dmask operand in instruction"); 13129 13130 unsigned dmask = MO_Dmask->getImm(); 13131 // Determine the number of active lanes taking into account the 13132 // Gather4 special case 13133 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); 13134 13135 bool Packed = !Subtarget->hasUnpackedD16VMem(); 13136 13137 unsigned InitIdx = 13138 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 13139 13140 // Abandon attempt if the dst size isn't large enough 13141 // - this is in fact an error but this is picked up elsewhere and 13142 // reported correctly. 13143 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 13144 if (DstSize < InitIdx) 13145 return; 13146 13147 // Create a register for the initialization value. 13148 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 13149 unsigned NewDst = 0; // Final initialized value will be in here 13150 13151 // If PRTStrictNull feature is enabled (the default) then initialize 13152 // all the result registers to 0, otherwise just the error indication 13153 // register (VGPRn+1) 13154 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 13155 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 13156 13157 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 13158 for (; SizeLeft; SizeLeft--, CurrIdx++) { 13159 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 13160 // Initialize dword 13161 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 13162 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 13163 .addImm(0); 13164 // Insert into the super-reg 13165 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 13166 .addReg(PrevDst) 13167 .addReg(SubReg) 13168 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 13169 13170 PrevDst = NewDst; 13171 } 13172 13173 // Add as an implicit operand 13174 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 13175 13176 // Tie the just added implicit operand to the dst 13177 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 13178 } 13179 13180 /// Assign the register class depending on the number of 13181 /// bits set in the writemask 13182 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 13183 SDNode *Node) const { 13184 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 13185 13186 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 13187 13188 if (TII->isVOP3(MI.getOpcode())) { 13189 // Make sure constant bus requirements are respected. 13190 TII->legalizeOperandsVOP3(MRI, MI); 13191 13192 // Prefer VGPRs over AGPRs in mAI instructions where possible. 13193 // This saves a chain-copy of registers and better balance register 13194 // use between vgpr and agpr as agpr tuples tend to be big. 13195 if (!MI.getDesc().operands().empty()) { 13196 unsigned Opc = MI.getOpcode(); 13197 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 13198 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 13199 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 13200 if (I == -1) 13201 break; 13202 MachineOperand &Op = MI.getOperand(I); 13203 if (!Op.isReg() || !Op.getReg().isVirtual()) 13204 continue; 13205 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 13206 if (!TRI->hasAGPRs(RC)) 13207 continue; 13208 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 13209 if (!Src || !Src->isCopy() || 13210 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 13211 continue; 13212 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 13213 // All uses of agpr64 and agpr32 can also accept vgpr except for 13214 // v_accvgpr_read, but we do not produce agpr reads during selection, 13215 // so no use checks are needed. 13216 MRI.setRegClass(Op.getReg(), NewRC); 13217 } 13218 13219 // Resolve the rest of AV operands to AGPRs. 13220 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { 13221 if (Src2->isReg() && Src2->getReg().isVirtual()) { 13222 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); 13223 if (TRI->isVectorSuperClass(RC)) { 13224 auto *NewRC = TRI->getEquivalentAGPRClass(RC); 13225 MRI.setRegClass(Src2->getReg(), NewRC); 13226 if (Src2->isTied()) 13227 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); 13228 } 13229 } 13230 } 13231 } 13232 13233 return; 13234 } 13235 13236 if (TII->isMIMG(MI)) { 13237 if (!MI.mayStore()) 13238 AddIMGInit(MI); 13239 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); 13240 } 13241 } 13242 13243 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 13244 uint64_t Val) { 13245 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 13246 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 13247 } 13248 13249 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 13250 const SDLoc &DL, 13251 SDValue Ptr) const { 13252 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 13253 13254 // Build the half of the subregister with the constants before building the 13255 // full 128-bit register. If we are building multiple resource descriptors, 13256 // this will allow CSEing of the 2-component register. 13257 const SDValue Ops0[] = { 13258 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 13259 buildSMovImm32(DAG, DL, 0), 13260 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 13261 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 13262 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 13263 }; 13264 13265 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 13266 MVT::v2i32, Ops0), 0); 13267 13268 // Combine the constants and the pointer. 13269 const SDValue Ops1[] = { 13270 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 13271 Ptr, 13272 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 13273 SubRegHi, 13274 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 13275 }; 13276 13277 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 13278 } 13279 13280 /// Return a resource descriptor with the 'Add TID' bit enabled 13281 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 13282 /// of the resource descriptor) to create an offset, which is added to 13283 /// the resource pointer. 13284 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 13285 SDValue Ptr, uint32_t RsrcDword1, 13286 uint64_t RsrcDword2And3) const { 13287 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 13288 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 13289 if (RsrcDword1) { 13290 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 13291 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 13292 0); 13293 } 13294 13295 SDValue DataLo = buildSMovImm32(DAG, DL, 13296 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 13297 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 13298 13299 const SDValue Ops[] = { 13300 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 13301 PtrLo, 13302 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 13303 PtrHi, 13304 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 13305 DataLo, 13306 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 13307 DataHi, 13308 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 13309 }; 13310 13311 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 13312 } 13313 13314 //===----------------------------------------------------------------------===// 13315 // SI Inline Assembly Support 13316 //===----------------------------------------------------------------------===// 13317 13318 std::pair<unsigned, const TargetRegisterClass *> 13319 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 13320 StringRef Constraint, 13321 MVT VT) const { 13322 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 13323 13324 const TargetRegisterClass *RC = nullptr; 13325 if (Constraint.size() == 1) { 13326 const unsigned BitWidth = VT.getSizeInBits(); 13327 switch (Constraint[0]) { 13328 default: 13329 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13330 case 's': 13331 case 'r': 13332 switch (BitWidth) { 13333 case 16: 13334 RC = &AMDGPU::SReg_32RegClass; 13335 break; 13336 case 64: 13337 RC = &AMDGPU::SGPR_64RegClass; 13338 break; 13339 default: 13340 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 13341 if (!RC) 13342 return std::pair(0U, nullptr); 13343 break; 13344 } 13345 break; 13346 case 'v': 13347 switch (BitWidth) { 13348 case 16: 13349 RC = &AMDGPU::VGPR_32RegClass; 13350 break; 13351 default: 13352 RC = TRI->getVGPRClassForBitWidth(BitWidth); 13353 if (!RC) 13354 return std::pair(0U, nullptr); 13355 break; 13356 } 13357 break; 13358 case 'a': 13359 if (!Subtarget->hasMAIInsts()) 13360 break; 13361 switch (BitWidth) { 13362 case 16: 13363 RC = &AMDGPU::AGPR_32RegClass; 13364 break; 13365 default: 13366 RC = TRI->getAGPRClassForBitWidth(BitWidth); 13367 if (!RC) 13368 return std::pair(0U, nullptr); 13369 break; 13370 } 13371 break; 13372 } 13373 // We actually support i128, i16 and f16 as inline parameters 13374 // even if they are not reported as legal 13375 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 13376 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 13377 return std::pair(0U, RC); 13378 } 13379 13380 if (Constraint.startswith("{") && Constraint.endswith("}")) { 13381 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 13382 if (RegName.consume_front("v")) { 13383 RC = &AMDGPU::VGPR_32RegClass; 13384 } else if (RegName.consume_front("s")) { 13385 RC = &AMDGPU::SGPR_32RegClass; 13386 } else if (RegName.consume_front("a")) { 13387 RC = &AMDGPU::AGPR_32RegClass; 13388 } 13389 13390 if (RC) { 13391 uint32_t Idx; 13392 if (RegName.consume_front("[")) { 13393 uint32_t End; 13394 bool Failed = RegName.consumeInteger(10, Idx); 13395 Failed |= !RegName.consume_front(":"); 13396 Failed |= RegName.consumeInteger(10, End); 13397 Failed |= !RegName.consume_back("]"); 13398 if (!Failed) { 13399 uint32_t Width = (End - Idx + 1) * 32; 13400 MCRegister Reg = RC->getRegister(Idx); 13401 if (SIRegisterInfo::isVGPRClass(RC)) 13402 RC = TRI->getVGPRClassForBitWidth(Width); 13403 else if (SIRegisterInfo::isSGPRClass(RC)) 13404 RC = TRI->getSGPRClassForBitWidth(Width); 13405 else if (SIRegisterInfo::isAGPRClass(RC)) 13406 RC = TRI->getAGPRClassForBitWidth(Width); 13407 if (RC) { 13408 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 13409 return std::pair(Reg, RC); 13410 } 13411 } 13412 } else { 13413 bool Failed = RegName.getAsInteger(10, Idx); 13414 if (!Failed && Idx < RC->getNumRegs()) 13415 return std::pair(RC->getRegister(Idx), RC); 13416 } 13417 } 13418 } 13419 13420 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13421 if (Ret.first) 13422 Ret.second = TRI->getPhysRegBaseClass(Ret.first); 13423 13424 return Ret; 13425 } 13426 13427 static bool isImmConstraint(StringRef Constraint) { 13428 if (Constraint.size() == 1) { 13429 switch (Constraint[0]) { 13430 default: break; 13431 case 'I': 13432 case 'J': 13433 case 'A': 13434 case 'B': 13435 case 'C': 13436 return true; 13437 } 13438 } else if (Constraint == "DA" || 13439 Constraint == "DB") { 13440 return true; 13441 } 13442 return false; 13443 } 13444 13445 SITargetLowering::ConstraintType 13446 SITargetLowering::getConstraintType(StringRef Constraint) const { 13447 if (Constraint.size() == 1) { 13448 switch (Constraint[0]) { 13449 default: break; 13450 case 's': 13451 case 'v': 13452 case 'a': 13453 return C_RegisterClass; 13454 } 13455 } 13456 if (isImmConstraint(Constraint)) { 13457 return C_Other; 13458 } 13459 return TargetLowering::getConstraintType(Constraint); 13460 } 13461 13462 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 13463 if (!AMDGPU::isInlinableIntLiteral(Val)) { 13464 Val = Val & maskTrailingOnes<uint64_t>(Size); 13465 } 13466 return Val; 13467 } 13468 13469 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13470 std::string &Constraint, 13471 std::vector<SDValue> &Ops, 13472 SelectionDAG &DAG) const { 13473 if (isImmConstraint(Constraint)) { 13474 uint64_t Val; 13475 if (getAsmOperandConstVal(Op, Val) && 13476 checkAsmConstraintVal(Op, Constraint, Val)) { 13477 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 13478 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 13479 } 13480 } else { 13481 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13482 } 13483 } 13484 13485 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 13486 unsigned Size = Op.getScalarValueSizeInBits(); 13487 if (Size > 64) 13488 return false; 13489 13490 if (Size == 16 && !Subtarget->has16BitInsts()) 13491 return false; 13492 13493 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 13494 Val = C->getSExtValue(); 13495 return true; 13496 } 13497 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 13498 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 13499 return true; 13500 } 13501 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 13502 if (Size != 16 || Op.getNumOperands() != 2) 13503 return false; 13504 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 13505 return false; 13506 if (ConstantSDNode *C = V->getConstantSplatNode()) { 13507 Val = C->getSExtValue(); 13508 return true; 13509 } 13510 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 13511 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 13512 return true; 13513 } 13514 } 13515 13516 return false; 13517 } 13518 13519 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 13520 const std::string &Constraint, 13521 uint64_t Val) const { 13522 if (Constraint.size() == 1) { 13523 switch (Constraint[0]) { 13524 case 'I': 13525 return AMDGPU::isInlinableIntLiteral(Val); 13526 case 'J': 13527 return isInt<16>(Val); 13528 case 'A': 13529 return checkAsmConstraintValA(Op, Val); 13530 case 'B': 13531 return isInt<32>(Val); 13532 case 'C': 13533 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 13534 AMDGPU::isInlinableIntLiteral(Val); 13535 default: 13536 break; 13537 } 13538 } else if (Constraint.size() == 2) { 13539 if (Constraint == "DA") { 13540 int64_t HiBits = static_cast<int32_t>(Val >> 32); 13541 int64_t LoBits = static_cast<int32_t>(Val); 13542 return checkAsmConstraintValA(Op, HiBits, 32) && 13543 checkAsmConstraintValA(Op, LoBits, 32); 13544 } 13545 if (Constraint == "DB") { 13546 return true; 13547 } 13548 } 13549 llvm_unreachable("Invalid asm constraint"); 13550 } 13551 13552 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 13553 uint64_t Val, 13554 unsigned MaxSize) const { 13555 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 13556 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 13557 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 13558 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 13559 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 13560 return true; 13561 } 13562 return false; 13563 } 13564 13565 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 13566 switch (UnalignedClassID) { 13567 case AMDGPU::VReg_64RegClassID: 13568 return AMDGPU::VReg_64_Align2RegClassID; 13569 case AMDGPU::VReg_96RegClassID: 13570 return AMDGPU::VReg_96_Align2RegClassID; 13571 case AMDGPU::VReg_128RegClassID: 13572 return AMDGPU::VReg_128_Align2RegClassID; 13573 case AMDGPU::VReg_160RegClassID: 13574 return AMDGPU::VReg_160_Align2RegClassID; 13575 case AMDGPU::VReg_192RegClassID: 13576 return AMDGPU::VReg_192_Align2RegClassID; 13577 case AMDGPU::VReg_224RegClassID: 13578 return AMDGPU::VReg_224_Align2RegClassID; 13579 case AMDGPU::VReg_256RegClassID: 13580 return AMDGPU::VReg_256_Align2RegClassID; 13581 case AMDGPU::VReg_288RegClassID: 13582 return AMDGPU::VReg_288_Align2RegClassID; 13583 case AMDGPU::VReg_320RegClassID: 13584 return AMDGPU::VReg_320_Align2RegClassID; 13585 case AMDGPU::VReg_352RegClassID: 13586 return AMDGPU::VReg_352_Align2RegClassID; 13587 case AMDGPU::VReg_384RegClassID: 13588 return AMDGPU::VReg_384_Align2RegClassID; 13589 case AMDGPU::VReg_512RegClassID: 13590 return AMDGPU::VReg_512_Align2RegClassID; 13591 case AMDGPU::VReg_1024RegClassID: 13592 return AMDGPU::VReg_1024_Align2RegClassID; 13593 case AMDGPU::AReg_64RegClassID: 13594 return AMDGPU::AReg_64_Align2RegClassID; 13595 case AMDGPU::AReg_96RegClassID: 13596 return AMDGPU::AReg_96_Align2RegClassID; 13597 case AMDGPU::AReg_128RegClassID: 13598 return AMDGPU::AReg_128_Align2RegClassID; 13599 case AMDGPU::AReg_160RegClassID: 13600 return AMDGPU::AReg_160_Align2RegClassID; 13601 case AMDGPU::AReg_192RegClassID: 13602 return AMDGPU::AReg_192_Align2RegClassID; 13603 case AMDGPU::AReg_256RegClassID: 13604 return AMDGPU::AReg_256_Align2RegClassID; 13605 case AMDGPU::AReg_512RegClassID: 13606 return AMDGPU::AReg_512_Align2RegClassID; 13607 case AMDGPU::AReg_1024RegClassID: 13608 return AMDGPU::AReg_1024_Align2RegClassID; 13609 default: 13610 return -1; 13611 } 13612 } 13613 13614 // Figure out which registers should be reserved for stack access. Only after 13615 // the function is legalized do we know all of the non-spill stack objects or if 13616 // calls are present. 13617 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 13618 MachineRegisterInfo &MRI = MF.getRegInfo(); 13619 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 13620 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 13621 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 13622 const SIInstrInfo *TII = ST.getInstrInfo(); 13623 13624 if (Info->isEntryFunction()) { 13625 // Callable functions have fixed registers used for stack access. 13626 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 13627 } 13628 13629 // TODO: Move this logic to getReservedRegs() 13630 // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling. 13631 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF); 13632 Register SReg = ST.isWave32() 13633 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1) 13634 : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2, 13635 &AMDGPU::SGPR_64RegClass); 13636 Info->setSGPRForEXECCopy(SReg); 13637 13638 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 13639 Info->getStackPtrOffsetReg())); 13640 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 13641 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 13642 13643 // We need to worry about replacing the default register with itself in case 13644 // of MIR testcases missing the MFI. 13645 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 13646 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 13647 13648 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 13649 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 13650 13651 Info->limitOccupancy(MF); 13652 13653 if (ST.isWave32() && !MF.empty()) { 13654 for (auto &MBB : MF) { 13655 for (auto &MI : MBB) { 13656 TII->fixImplicitOperands(MI); 13657 } 13658 } 13659 } 13660 13661 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 13662 // classes if required. Ideally the register class constraints would differ 13663 // per-subtarget, but there's no easy way to achieve that right now. This is 13664 // not a problem for VGPRs because the correctly aligned VGPR class is implied 13665 // from using them as the register class for legal types. 13666 if (ST.needsAlignedVGPRs()) { 13667 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 13668 const Register Reg = Register::index2VirtReg(I); 13669 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 13670 if (!RC) 13671 continue; 13672 int NewClassID = getAlignedAGPRClassID(RC->getID()); 13673 if (NewClassID != -1) 13674 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 13675 } 13676 } 13677 13678 TargetLoweringBase::finalizeLowering(MF); 13679 } 13680 13681 void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13682 KnownBits &Known, 13683 const APInt &DemandedElts, 13684 const SelectionDAG &DAG, 13685 unsigned Depth) const { 13686 Known.resetAll(); 13687 unsigned Opc = Op.getOpcode(); 13688 switch (Opc) { 13689 case ISD::INTRINSIC_WO_CHAIN: { 13690 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13691 switch (IID) { 13692 case Intrinsic::amdgcn_mbcnt_lo: 13693 case Intrinsic::amdgcn_mbcnt_hi: { 13694 const GCNSubtarget &ST = 13695 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 13696 // These return at most the (wavefront size - 1) + src1 13697 // As long as src1 is an immediate we can calc known bits 13698 KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); 13699 unsigned Src1ValBits = Src1Known.countMaxActiveBits(); 13700 unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2()); 13701 // Cater for potential carry 13702 MaxActiveBits += Src1ValBits ? 1 : 0; 13703 unsigned Size = Op.getValueType().getSizeInBits(); 13704 if (MaxActiveBits < Size) 13705 Known.Zero.setHighBits(Size - MaxActiveBits); 13706 return; 13707 } 13708 } 13709 break; 13710 } 13711 } 13712 return AMDGPUTargetLowering::computeKnownBitsForTargetNode( 13713 Op, Known, DemandedElts, DAG, Depth); 13714 } 13715 13716 void SITargetLowering::computeKnownBitsForFrameIndex( 13717 const int FI, KnownBits &Known, const MachineFunction &MF) const { 13718 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 13719 13720 // Set the high bits to zero based on the maximum allowed scratch size per 13721 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 13722 // calculation won't overflow, so assume the sign bit is never set. 13723 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 13724 } 13725 13726 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 13727 KnownBits &Known, unsigned Dim) { 13728 unsigned MaxValue = 13729 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 13730 Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); 13731 } 13732 13733 void SITargetLowering::computeKnownBitsForTargetInstr( 13734 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 13735 const MachineRegisterInfo &MRI, unsigned Depth) const { 13736 const MachineInstr *MI = MRI.getVRegDef(R); 13737 switch (MI->getOpcode()) { 13738 case AMDGPU::G_INTRINSIC: { 13739 switch (MI->getIntrinsicID()) { 13740 case Intrinsic::amdgcn_workitem_id_x: 13741 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 13742 break; 13743 case Intrinsic::amdgcn_workitem_id_y: 13744 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 13745 break; 13746 case Intrinsic::amdgcn_workitem_id_z: 13747 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 13748 break; 13749 case Intrinsic::amdgcn_mbcnt_lo: 13750 case Intrinsic::amdgcn_mbcnt_hi: { 13751 // These return at most the wavefront size - 1. 13752 unsigned Size = MRI.getType(R).getSizeInBits(); 13753 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 13754 break; 13755 } 13756 case Intrinsic::amdgcn_groupstaticsize: { 13757 // We can report everything over the maximum size as 0. We can't report 13758 // based on the actual size because we don't know if it's accurate or not 13759 // at any given point. 13760 Known.Zero.setHighBits( 13761 llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize())); 13762 break; 13763 } 13764 } 13765 break; 13766 } 13767 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 13768 Known.Zero.setHighBits(24); 13769 break; 13770 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 13771 Known.Zero.setHighBits(16); 13772 break; 13773 case AMDGPU::G_AMDGPU_SMED3: 13774 case AMDGPU::G_AMDGPU_UMED3: { 13775 auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); 13776 13777 KnownBits Known2; 13778 KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1); 13779 if (Known2.isUnknown()) 13780 break; 13781 13782 KnownBits Known1; 13783 KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1); 13784 if (Known1.isUnknown()) 13785 break; 13786 13787 KnownBits Known0; 13788 KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1); 13789 if (Known0.isUnknown()) 13790 break; 13791 13792 // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. 13793 Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; 13794 Known.One = Known0.One & Known1.One & Known2.One; 13795 break; 13796 } 13797 } 13798 } 13799 13800 Align SITargetLowering::computeKnownAlignForTargetInstr( 13801 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 13802 unsigned Depth) const { 13803 const MachineInstr *MI = MRI.getVRegDef(R); 13804 switch (MI->getOpcode()) { 13805 case AMDGPU::G_INTRINSIC: 13806 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 13807 // FIXME: Can this move to generic code? What about the case where the call 13808 // site specifies a lower alignment? 13809 Intrinsic::ID IID = MI->getIntrinsicID(); 13810 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 13811 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 13812 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 13813 return *RetAlign; 13814 return Align(1); 13815 } 13816 default: 13817 return Align(1); 13818 } 13819 } 13820 13821 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13822 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 13823 const Align CacheLineAlign = Align(64); 13824 13825 // Pre-GFX10 target did not benefit from loop alignment 13826 if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || 13827 getSubtarget()->hasInstFwdPrefetchBug()) 13828 return PrefAlign; 13829 13830 // On GFX10 I$ is 4 x 64 bytes cache lines. 13831 // By default prefetcher keeps one cache line behind and reads two ahead. 13832 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 13833 // behind and one ahead. 13834 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 13835 // If loop fits 64 bytes it always spans no more than two cache lines and 13836 // does not need an alignment. 13837 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 13838 // Else if loop is less or equal 192 bytes we need two lines behind. 13839 13840 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 13841 const MachineBasicBlock *Header = ML->getHeader(); 13842 if (Header->getAlignment() != PrefAlign) 13843 return Header->getAlignment(); // Already processed. 13844 13845 unsigned LoopSize = 0; 13846 for (const MachineBasicBlock *MBB : ML->blocks()) { 13847 // If inner loop block is aligned assume in average half of the alignment 13848 // size to be added as nops. 13849 if (MBB != Header) 13850 LoopSize += MBB->getAlignment().value() / 2; 13851 13852 for (const MachineInstr &MI : *MBB) { 13853 LoopSize += TII->getInstSizeInBytes(MI); 13854 if (LoopSize > 192) 13855 return PrefAlign; 13856 } 13857 } 13858 13859 if (LoopSize <= 64) 13860 return PrefAlign; 13861 13862 if (LoopSize <= 128) 13863 return CacheLineAlign; 13864 13865 // If any of parent loops is surrounded by prefetch instructions do not 13866 // insert new for inner loop, which would reset parent's settings. 13867 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 13868 if (MachineBasicBlock *Exit = P->getExitBlock()) { 13869 auto I = Exit->getFirstNonDebugInstr(); 13870 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 13871 return CacheLineAlign; 13872 } 13873 } 13874 13875 MachineBasicBlock *Pre = ML->getLoopPreheader(); 13876 MachineBasicBlock *Exit = ML->getExitBlock(); 13877 13878 if (Pre && Exit) { 13879 auto PreTerm = Pre->getFirstTerminator(); 13880 if (PreTerm == Pre->begin() || 13881 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) 13882 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 13883 .addImm(1); // prefetch 2 lines behind PC 13884 13885 auto ExitHead = Exit->getFirstNonDebugInstr(); 13886 if (ExitHead == Exit->end() || 13887 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) 13888 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 13889 .addImm(2); // prefetch 1 line behind PC 13890 } 13891 13892 return CacheLineAlign; 13893 } 13894 13895 LLVM_ATTRIBUTE_UNUSED 13896 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 13897 assert(N->getOpcode() == ISD::CopyFromReg); 13898 do { 13899 // Follow the chain until we find an INLINEASM node. 13900 N = N->getOperand(0).getNode(); 13901 if (N->getOpcode() == ISD::INLINEASM || 13902 N->getOpcode() == ISD::INLINEASM_BR) 13903 return true; 13904 } while (N->getOpcode() == ISD::CopyFromReg); 13905 return false; 13906 } 13907 13908 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N, 13909 FunctionLoweringInfo *FLI, 13910 UniformityInfo *UA) const { 13911 switch (N->getOpcode()) { 13912 case ISD::CopyFromReg: { 13913 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 13914 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 13915 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 13916 Register Reg = R->getReg(); 13917 13918 // FIXME: Why does this need to consider isLiveIn? 13919 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 13920 return !TRI->isSGPRReg(MRI, Reg); 13921 13922 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 13923 return UA->isDivergent(V); 13924 13925 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 13926 return !TRI->isSGPRReg(MRI, Reg); 13927 } 13928 case ISD::LOAD: { 13929 const LoadSDNode *L = cast<LoadSDNode>(N); 13930 unsigned AS = L->getAddressSpace(); 13931 // A flat load may access private memory. 13932 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 13933 } 13934 case ISD::CALLSEQ_END: 13935 return true; 13936 case ISD::INTRINSIC_WO_CHAIN: 13937 return AMDGPU::isIntrinsicSourceOfDivergence( 13938 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 13939 case ISD::INTRINSIC_W_CHAIN: 13940 return AMDGPU::isIntrinsicSourceOfDivergence( 13941 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 13942 case AMDGPUISD::ATOMIC_CMP_SWAP: 13943 case AMDGPUISD::ATOMIC_LOAD_FMIN: 13944 case AMDGPUISD::ATOMIC_LOAD_FMAX: 13945 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 13946 case AMDGPUISD::BUFFER_ATOMIC_ADD: 13947 case AMDGPUISD::BUFFER_ATOMIC_SUB: 13948 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 13949 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 13950 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 13951 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 13952 case AMDGPUISD::BUFFER_ATOMIC_AND: 13953 case AMDGPUISD::BUFFER_ATOMIC_OR: 13954 case AMDGPUISD::BUFFER_ATOMIC_XOR: 13955 case AMDGPUISD::BUFFER_ATOMIC_INC: 13956 case AMDGPUISD::BUFFER_ATOMIC_DEC: 13957 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 13958 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 13959 case AMDGPUISD::BUFFER_ATOMIC_FADD: 13960 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 13961 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 13962 // Target-specific read-modify-write atomics are sources of divergence. 13963 return true; 13964 default: 13965 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 13966 // Generic read-modify-write atomics are sources of divergence. 13967 return A->readMem() && A->writeMem(); 13968 } 13969 return false; 13970 } 13971 } 13972 13973 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 13974 EVT VT) const { 13975 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 13976 case MVT::f32: 13977 return !denormalModeIsFlushAllF32(DAG.getMachineFunction()); 13978 case MVT::f64: 13979 case MVT::f16: 13980 return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); 13981 default: 13982 return false; 13983 } 13984 } 13985 13986 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 13987 MachineFunction &MF) const { 13988 switch (Ty.getScalarSizeInBits()) { 13989 case 32: 13990 return !denormalModeIsFlushAllF32(MF); 13991 case 64: 13992 case 16: 13993 return !denormalModeIsFlushAllF64F16(MF); 13994 default: 13995 return false; 13996 } 13997 } 13998 13999 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 14000 const SelectionDAG &DAG, 14001 bool SNaN, 14002 unsigned Depth) const { 14003 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 14004 const MachineFunction &MF = DAG.getMachineFunction(); 14005 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 14006 14007 if (Info->getMode().DX10Clamp) 14008 return true; // Clamped to 0. 14009 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 14010 } 14011 14012 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 14013 SNaN, Depth); 14014 } 14015 14016 // Global FP atomic instructions have a hardcoded FP mode and do not support 14017 // FP32 denormals, and only support v2f16 denormals. 14018 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 14019 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 14020 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 14021 if (&Flt == &APFloat::IEEEsingle()) 14022 return DenormMode == DenormalMode::getPreserveSign(); 14023 return DenormMode == DenormalMode::getIEEE(); 14024 } 14025 14026 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 14027 // floating point atomic instructions. May generate more efficient code, 14028 // but may not respect rounding and denormal modes, and may give incorrect 14029 // results for certain memory destinations. 14030 bool unsafeFPAtomicsDisabled(Function *F) { 14031 return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() != 14032 "true"; 14033 } 14034 14035 TargetLowering::AtomicExpansionKind 14036 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 14037 unsigned AS = RMW->getPointerAddressSpace(); 14038 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 14039 return AtomicExpansionKind::NotAtomic; 14040 14041 auto SSID = RMW->getSyncScopeID(); 14042 14043 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 14044 OptimizationRemarkEmitter ORE(RMW->getFunction()); 14045 LLVMContext &Ctx = RMW->getFunction()->getContext(); 14046 SmallVector<StringRef> SSNs; 14047 Ctx.getSyncScopeNames(SSNs); 14048 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 14049 ? "system" 14050 : SSNs[RMW->getSyncScopeID()]; 14051 ORE.emit([&]() { 14052 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 14053 << "Hardware instruction generated for atomic " 14054 << RMW->getOperationName(RMW->getOperation()) 14055 << " operation at memory scope " << MemScope 14056 << " due to an unsafe request."; 14057 }); 14058 return Kind; 14059 }; 14060 14061 bool HasSystemScope = 14062 SSID == SyncScope::System || 14063 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); 14064 14065 switch (RMW->getOperation()) { 14066 case AtomicRMWInst::FAdd: { 14067 Type *Ty = RMW->getType(); 14068 14069 if (Ty->isHalfTy()) 14070 return AtomicExpansionKind::CmpXChg; 14071 14072 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 14073 return AtomicExpansionKind::CmpXChg; 14074 14075 if (AMDGPU::isFlatGlobalAddrSpace(AS) && 14076 Subtarget->hasAtomicFaddNoRtnInsts()) { 14077 if (Subtarget->hasGFX940Insts()) 14078 return AtomicExpansionKind::None; 14079 14080 if (unsafeFPAtomicsDisabled(RMW->getFunction())) 14081 return AtomicExpansionKind::CmpXChg; 14082 14083 // Always expand system scope fp atomics. 14084 if (HasSystemScope) 14085 return AtomicExpansionKind::CmpXChg; 14086 14087 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) { 14088 // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+. 14089 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) 14090 return ReportUnsafeHWInst(AtomicExpansionKind::None); 14091 // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. 14092 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) 14093 return ReportUnsafeHWInst(AtomicExpansionKind::None); 14094 } 14095 14096 // flat atomic fadd f32: gfx940, gfx11+. 14097 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && 14098 Subtarget->hasFlatAtomicFaddF32Inst()) 14099 return ReportUnsafeHWInst(AtomicExpansionKind::None); 14100 14101 // global and flat atomic fadd f64: gfx90a, gfx940. 14102 if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts()) 14103 return ReportUnsafeHWInst(AtomicExpansionKind::None); 14104 14105 // If it is in flat address space, and the type is float, we will try to 14106 // expand it, if the target supports global and lds atomic fadd. The 14107 // reason we need that is, in the expansion, we emit the check of address 14108 // space. If it is in global address space, we emit the global atomic 14109 // fadd; if it is in shared address space, we emit the LDS atomic fadd. 14110 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && 14111 Subtarget->hasLDSFPAtomicAdd()) { 14112 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) 14113 return AtomicExpansionKind::Expand; 14114 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) 14115 return AtomicExpansionKind::Expand; 14116 } 14117 14118 return AtomicExpansionKind::CmpXChg; 14119 } 14120 14121 // DS FP atomics do respect the denormal mode, but the rounding mode is 14122 // fixed to round-to-nearest-even. 14123 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 14124 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 14125 if (!Ty->isDoubleTy()) 14126 return AtomicExpansionKind::None; 14127 14128 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 14129 return AtomicExpansionKind::None; 14130 14131 return RMW->getFunction() 14132 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 14133 .getValueAsString() == "true" 14134 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 14135 : AtomicExpansionKind::CmpXChg; 14136 } 14137 14138 return AtomicExpansionKind::CmpXChg; 14139 } 14140 case AtomicRMWInst::FMin: 14141 case AtomicRMWInst::FMax: 14142 case AtomicRMWInst::Min: 14143 case AtomicRMWInst::Max: 14144 case AtomicRMWInst::UMin: 14145 case AtomicRMWInst::UMax: { 14146 if (AMDGPU::isFlatGlobalAddrSpace(AS)) { 14147 if (RMW->getType()->isFloatTy() && 14148 unsafeFPAtomicsDisabled(RMW->getFunction())) 14149 return AtomicExpansionKind::CmpXChg; 14150 14151 // Always expand system scope min/max atomics. 14152 if (HasSystemScope) 14153 return AtomicExpansionKind::CmpXChg; 14154 } 14155 break; 14156 } 14157 default: 14158 break; 14159 } 14160 14161 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 14162 } 14163 14164 TargetLowering::AtomicExpansionKind 14165 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 14166 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 14167 ? AtomicExpansionKind::NotAtomic 14168 : AtomicExpansionKind::None; 14169 } 14170 14171 TargetLowering::AtomicExpansionKind 14172 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 14173 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 14174 ? AtomicExpansionKind::NotAtomic 14175 : AtomicExpansionKind::None; 14176 } 14177 14178 TargetLowering::AtomicExpansionKind 14179 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { 14180 return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 14181 ? AtomicExpansionKind::NotAtomic 14182 : AtomicExpansionKind::None; 14183 } 14184 14185 const TargetRegisterClass * 14186 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 14187 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 14188 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 14189 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 14190 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 14191 : &AMDGPU::SReg_32RegClass; 14192 if (!TRI->isSGPRClass(RC) && !isDivergent) 14193 return TRI->getEquivalentSGPRClass(RC); 14194 else if (TRI->isSGPRClass(RC) && isDivergent) 14195 return TRI->getEquivalentVGPRClass(RC); 14196 14197 return RC; 14198 } 14199 14200 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 14201 // uniform values (as produced by the mask results of control flow intrinsics) 14202 // used outside of divergent blocks. The phi users need to also be treated as 14203 // always uniform. 14204 // 14205 // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis? 14206 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 14207 unsigned WaveSize) { 14208 // FIXME: We assume we never cast the mask results of a control flow 14209 // intrinsic. 14210 // Early exit if the type won't be consistent as a compile time hack. 14211 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 14212 if (!IT || IT->getBitWidth() != WaveSize) 14213 return false; 14214 14215 if (!isa<Instruction>(V)) 14216 return false; 14217 if (!Visited.insert(V).second) 14218 return false; 14219 bool Result = false; 14220 for (const auto *U : V->users()) { 14221 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 14222 if (V == U->getOperand(1)) { 14223 switch (Intrinsic->getIntrinsicID()) { 14224 default: 14225 Result = false; 14226 break; 14227 case Intrinsic::amdgcn_if_break: 14228 case Intrinsic::amdgcn_if: 14229 case Intrinsic::amdgcn_else: 14230 Result = true; 14231 break; 14232 } 14233 } 14234 if (V == U->getOperand(0)) { 14235 switch (Intrinsic->getIntrinsicID()) { 14236 default: 14237 Result = false; 14238 break; 14239 case Intrinsic::amdgcn_end_cf: 14240 case Intrinsic::amdgcn_loop: 14241 Result = true; 14242 break; 14243 } 14244 } 14245 } else { 14246 Result = hasCFUser(U, Visited, WaveSize); 14247 } 14248 if (Result) 14249 break; 14250 } 14251 return Result; 14252 } 14253 14254 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 14255 const Value *V) const { 14256 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 14257 if (CI->isInlineAsm()) { 14258 // FIXME: This cannot give a correct answer. This should only trigger in 14259 // the case where inline asm returns mixed SGPR and VGPR results, used 14260 // outside the defining block. We don't have a specific result to 14261 // consider, so this assumes if any value is SGPR, the overall register 14262 // also needs to be SGPR. 14263 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 14264 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 14265 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 14266 for (auto &TC : TargetConstraints) { 14267 if (TC.Type == InlineAsm::isOutput) { 14268 ComputeConstraintToUse(TC, SDValue()); 14269 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 14270 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 14271 if (RC && SIRI->isSGPRClass(RC)) 14272 return true; 14273 } 14274 } 14275 } 14276 } 14277 SmallPtrSet<const Value *, 16> Visited; 14278 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 14279 } 14280 14281 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { 14282 SDNode::use_iterator I = N->use_begin(), E = N->use_end(); 14283 for (; I != E; ++I) { 14284 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { 14285 if (getBasePtrIndex(M) == I.getOperandNo()) 14286 return true; 14287 } 14288 } 14289 return false; 14290 } 14291 14292 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, 14293 SDValue N1) const { 14294 if (!N0.hasOneUse()) 14295 return false; 14296 // Take care of the opportunity to keep N0 uniform 14297 if (N0->isDivergent() || !N1->isDivergent()) 14298 return true; 14299 // Check if we have a good chance to form the memory access pattern with the 14300 // base and offset 14301 return (DAG.isBaseWithConstantOffset(N0) && 14302 hasMemSDNodeUser(*N0->use_begin())); 14303 } 14304 14305 bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, 14306 Register N0, Register N1) const { 14307 return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks 14308 } 14309 14310 MachineMemOperand::Flags 14311 SITargetLowering::getTargetMMOFlags(const Instruction &I) const { 14312 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. 14313 if (I.getMetadata("amdgpu.noclobber")) 14314 return MONoClobber; 14315 return MachineMemOperand::MONone; 14316 } 14317 14318 bool SITargetLowering::checkForPhysRegDependency( 14319 SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, 14320 const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { 14321 if (User->getOpcode() != ISD::CopyToReg) 14322 return false; 14323 if (!Def->isMachineOpcode()) 14324 return false; 14325 MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def); 14326 if (!MDef) 14327 return false; 14328 14329 unsigned ResNo = User->getOperand(Op).getResNo(); 14330 if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) 14331 return false; 14332 const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); 14333 if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { 14334 PhysReg = AMDGPU::SCC; 14335 const TargetRegisterClass *RC = 14336 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); 14337 Cost = RC->getCopyCost(); 14338 return true; 14339 } 14340 return false; 14341 } 14342 14343 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { 14344 assert(Subtarget->hasAtomicFaddInsts() && 14345 "target should have atomic fadd instructions"); 14346 assert(AI->getType()->isFloatTy() && 14347 AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && 14348 "generic atomicrmw expansion only supports FP32 operand in flat " 14349 "address space"); 14350 assert(AI->getOperation() == AtomicRMWInst::FAdd && 14351 "only fadd is supported for now"); 14352 14353 // Given: atomicrmw fadd ptr %addr, float %val ordering 14354 // 14355 // With this expansion we produce the following code: 14356 // [...] 14357 // br label %atomicrmw.check.shared 14358 // 14359 // atomicrmw.check.shared: 14360 // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr) 14361 // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private 14362 // 14363 // atomicrmw.shared: 14364 // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3) 14365 // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared, 14366 // float %val ordering 14367 // br label %atomicrmw.phi 14368 // 14369 // atomicrmw.check.private: 14370 // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr) 14371 // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global 14372 // 14373 // atomicrmw.private: 14374 // %cast.private = addrspacecast ptr %addr to ptr addrspace(5) 14375 // %loaded.private = load float, ptr addrspace(5) %cast.private 14376 // %val.new = fadd float %loaded.private, %val 14377 // store float %val.new, ptr addrspace(5) %cast.private 14378 // br label %atomicrmw.phi 14379 // 14380 // atomicrmw.global: 14381 // %cast.global = addrspacecast ptr %addr to ptr addrspace(1) 14382 // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global, 14383 // float %val ordering 14384 // br label %atomicrmw.phi 14385 // 14386 // atomicrmw.phi: 14387 // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], 14388 // [ %loaded.private, %atomicrmw.private ], 14389 // [ %loaded.global, %atomicrmw.global ] 14390 // br label %atomicrmw.end 14391 // 14392 // atomicrmw.end: 14393 // [...] 14394 14395 IRBuilder<> Builder(AI); 14396 LLVMContext &Ctx = Builder.getContext(); 14397 14398 BasicBlock *BB = Builder.GetInsertBlock(); 14399 Function *F = BB->getParent(); 14400 BasicBlock *ExitBB = 14401 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 14402 BasicBlock *CheckSharedBB = 14403 BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB); 14404 BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); 14405 BasicBlock *CheckPrivateBB = 14406 BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); 14407 BasicBlock *PrivateBB = 14408 BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); 14409 BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); 14410 BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); 14411 14412 Value *Val = AI->getValOperand(); 14413 Type *ValTy = Val->getType(); 14414 Value *Addr = AI->getPointerOperand(); 14415 14416 auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr, 14417 Value *Val) -> Value * { 14418 AtomicRMWInst *OldVal = 14419 Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(), 14420 AI->getOrdering(), AI->getSyncScopeID()); 14421 SmallVector<std::pair<unsigned, MDNode *>> MDs; 14422 AI->getAllMetadata(MDs); 14423 for (auto &P : MDs) 14424 OldVal->setMetadata(P.first, P.second); 14425 return OldVal; 14426 }; 14427 14428 std::prev(BB->end())->eraseFromParent(); 14429 Builder.SetInsertPoint(BB); 14430 Builder.CreateBr(CheckSharedBB); 14431 14432 Builder.SetInsertPoint(CheckSharedBB); 14433 CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, 14434 {Addr}, nullptr, "is.shared"); 14435 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); 14436 14437 Builder.SetInsertPoint(SharedBB); 14438 Value *CastToLocal = Builder.CreateAddrSpaceCast( 14439 Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS)); 14440 Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val); 14441 Builder.CreateBr(PhiBB); 14442 14443 Builder.SetInsertPoint(CheckPrivateBB); 14444 CallInst *IsPrivate = Builder.CreateIntrinsic( 14445 Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private"); 14446 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); 14447 14448 Builder.SetInsertPoint(PrivateBB); 14449 Value *CastToPrivate = Builder.CreateAddrSpaceCast( 14450 Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS)); 14451 Value *LoadedPrivate = 14452 Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private"); 14453 Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new"); 14454 Builder.CreateStore(NewVal, CastToPrivate); 14455 Builder.CreateBr(PhiBB); 14456 14457 Builder.SetInsertPoint(GlobalBB); 14458 Value *CastToGlobal = Builder.CreateAddrSpaceCast( 14459 Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS)); 14460 Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val); 14461 Builder.CreateBr(PhiBB); 14462 14463 Builder.SetInsertPoint(PhiBB); 14464 PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi"); 14465 Loaded->addIncoming(LoadedShared, SharedBB); 14466 Loaded->addIncoming(LoadedPrivate, PrivateBB); 14467 Loaded->addIncoming(LoadedGlobal, GlobalBB); 14468 Builder.CreateBr(ExitBB); 14469 14470 AI->replaceAllUsesWith(Loaded); 14471 AI->eraseFromParent(); 14472 } 14473 14474 LoadInst * 14475 SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { 14476 IRBuilder<> Builder(AI); 14477 auto Order = AI->getOrdering(); 14478 14479 // The optimization removes store aspect of the atomicrmw. Therefore, cache 14480 // must be flushed if the atomic ordering had a release semantics. This is 14481 // not necessary a fence, a release fence just coincides to do that flush. 14482 // Avoid replacing of an atomicrmw with a release semantics. 14483 if (isReleaseOrStronger(Order)) 14484 return nullptr; 14485 14486 LoadInst *LI = Builder.CreateAlignedLoad( 14487 AI->getType(), AI->getPointerOperand(), AI->getAlign()); 14488 LI->setAtomic(Order, AI->getSyncScopeID()); 14489 LI->copyMetadata(*AI); 14490 LI->takeName(AI); 14491 AI->replaceAllUsesWith(LI); 14492 AI->eraseFromParent(); 14493 return LI; 14494 } 14495