1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "GCNSubtarget.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "SIRegisterInfo.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/FloatingPointMode.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/UniformityAnalysis.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/ByteProvider.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 32 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 33 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/KnownBits.h" 44 #include "llvm/Support/ModRef.h" 45 #include <optional> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "si-lower" 50 51 STATISTIC(NumTailCalls, "Number of tail calls"); 52 53 static cl::opt<bool> DisableLoopAlignment( 54 "amdgpu-disable-loop-alignment", 55 cl::desc("Do not align and prefetch loops"), 56 cl::init(false)); 57 58 static cl::opt<bool> UseDivergentRegisterIndexing( 59 "amdgpu-use-divergent-register-indexing", 60 cl::Hidden, 61 cl::desc("Use indirect register addressing for divergent indexes"), 62 cl::init(false)); 63 64 static bool denormalModeIsFlushAllF32(const MachineFunction &MF) { 65 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 66 return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign(); 67 } 68 69 static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) { 70 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 71 return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign(); 72 } 73 74 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 75 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 76 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 77 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 78 return AMDGPU::SGPR0 + Reg; 79 } 80 } 81 llvm_unreachable("Cannot allocate sgpr"); 82 } 83 84 SITargetLowering::SITargetLowering(const TargetMachine &TM, 85 const GCNSubtarget &STI) 86 : AMDGPUTargetLowering(TM, STI), 87 Subtarget(&STI) { 88 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 89 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 90 91 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 92 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 93 94 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 95 96 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 97 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 98 99 addRegisterClass(MVT::f64, V64RegClass); 100 addRegisterClass(MVT::v2f32, V64RegClass); 101 102 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 103 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 104 105 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 106 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 107 108 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 109 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 110 111 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 112 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 113 114 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 115 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 116 117 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 118 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 119 120 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 121 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 122 123 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 124 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 125 126 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 127 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 128 129 addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); 130 addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); 131 132 addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); 133 addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); 134 135 addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); 136 addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); 137 138 addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); 139 addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); 140 141 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 142 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 143 144 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 145 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 146 147 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 148 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 149 150 if (Subtarget->has16BitInsts()) { 151 if (Subtarget->useRealTrue16Insts()) { 152 addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass); 153 addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass); 154 addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass); 155 } else { 156 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 157 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 158 addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass); 159 } 160 161 // Unless there are also VOP3P operations, not operations are really legal. 162 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 163 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 164 addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass); 165 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 166 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 167 addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass); 168 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 169 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 170 addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass); 171 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); 172 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); 173 addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass); 174 addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass); 175 addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass); 176 addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass); 177 } 178 179 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 180 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 181 182 computeRegisterProperties(Subtarget->getRegisterInfo()); 183 184 // The boolean content concept here is too inflexible. Compares only ever 185 // really produce a 1-bit result. Any copy/extend from these will turn into a 186 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 187 // it's what most targets use. 188 setBooleanContents(ZeroOrOneBooleanContent); 189 setBooleanVectorContents(ZeroOrOneBooleanContent); 190 191 // We need to custom lower vector stores from local memory 192 setOperationAction(ISD::LOAD, 193 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 194 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 195 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, 196 MVT::i1, MVT::v32i32}, 197 Custom); 198 199 setOperationAction(ISD::STORE, 200 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 201 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 202 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, 203 MVT::i1, MVT::v32i32}, 204 Custom); 205 206 if (isTypeLegal(MVT::bf16)) { 207 for (unsigned Opc : 208 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 209 ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM, 210 ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT, 211 ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI, 212 ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2, 213 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, 214 ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT, 215 ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE, 216 ISD::SETCC}) { 217 // FIXME: The promoted to type shouldn't need to be explicit 218 setOperationAction(Opc, MVT::bf16, Promote); 219 AddPromotedToType(Opc, MVT::bf16, MVT::f32); 220 } 221 222 setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand); 223 224 setOperationAction(ISD::SELECT, MVT::bf16, Promote); 225 AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16); 226 227 // TODO: Could make these legal 228 setOperationAction(ISD::FABS, MVT::bf16, Expand); 229 setOperationAction(ISD::FNEG, MVT::bf16, Expand); 230 setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand); 231 232 // We only need to custom lower because we can't specify an action for bf16 233 // sources. 234 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 235 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 236 237 setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Promote); 238 AddPromotedToType(ISD::BUILD_VECTOR, MVT::v2bf16, MVT::v2i16); 239 } 240 241 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 242 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 243 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 244 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 245 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 246 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 247 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 248 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 249 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 250 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 251 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 252 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 253 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 254 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 255 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 256 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 257 258 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 259 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 260 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 261 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 262 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 263 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 264 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 265 266 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); 267 268 setOperationAction(ISD::SELECT, MVT::i1, Promote); 269 setOperationAction(ISD::SELECT, MVT::i64, Custom); 270 setOperationAction(ISD::SELECT, MVT::f64, Promote); 271 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 272 273 setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom); 274 275 setOperationAction(ISD::SELECT_CC, 276 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); 277 278 setOperationAction(ISD::SETCC, MVT::i1, Promote); 279 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); 280 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 281 282 setOperationAction(ISD::TRUNCATE, 283 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 284 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 285 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, 286 Expand); 287 setOperationAction(ISD::FP_ROUND, 288 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, 289 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, 290 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, 291 Expand); 292 293 setOperationAction(ISD::SIGN_EXTEND_INREG, 294 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, 295 MVT::v3i16, MVT::v4i16, MVT::Other}, 296 Custom); 297 298 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 299 setOperationAction(ISD::BR_CC, 300 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); 301 302 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); 303 304 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal); 305 306 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, 307 Expand); 308 309 #if 0 310 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal); 311 #endif 312 313 // We only support LOAD/STORE and vector manipulation ops for vectors 314 // with > 4 elements. 315 for (MVT VT : 316 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, 317 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, 318 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, 319 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32, 320 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 321 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, 322 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32, 323 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { 324 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 325 switch (Op) { 326 case ISD::LOAD: 327 case ISD::STORE: 328 case ISD::BUILD_VECTOR: 329 case ISD::BITCAST: 330 case ISD::UNDEF: 331 case ISD::EXTRACT_VECTOR_ELT: 332 case ISD::INSERT_VECTOR_ELT: 333 case ISD::SCALAR_TO_VECTOR: 334 case ISD::IS_FPCLASS: 335 break; 336 case ISD::EXTRACT_SUBVECTOR: 337 case ISD::INSERT_SUBVECTOR: 338 case ISD::CONCAT_VECTORS: 339 setOperationAction(Op, VT, Custom); 340 break; 341 default: 342 setOperationAction(Op, VT, Expand); 343 break; 344 } 345 } 346 } 347 348 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 349 350 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 351 // is expanded to avoid having two separate loops in case the index is a VGPR. 352 353 // Most operations are naturally 32-bit vector operations. We only support 354 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 355 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 356 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 357 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 358 359 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 360 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 361 362 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 363 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 364 365 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 366 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 367 } 368 369 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 370 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 371 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 372 373 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 374 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 375 376 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 377 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 378 379 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 380 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 381 } 382 383 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 384 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 385 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 386 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 388 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 389 390 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 391 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 392 393 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 394 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 395 } 396 397 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 398 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 399 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 400 401 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 402 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 403 404 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 405 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 406 407 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 408 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 409 } 410 411 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 412 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 413 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 414 415 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 416 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 417 418 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 419 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 420 421 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 422 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 423 } 424 425 setOperationAction(ISD::VECTOR_SHUFFLE, 426 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, 427 Expand); 428 429 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16}, 430 Custom); 431 432 // Avoid stack access for these. 433 // TODO: Generalize to more vector types. 434 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, 435 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8, 436 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16}, 437 Custom); 438 439 // Deal with vec3 vector operations when widened to vec4. 440 setOperationAction(ISD::INSERT_SUBVECTOR, 441 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); 442 443 // Deal with vec5/6/7 vector operations when widened to vec8. 444 setOperationAction(ISD::INSERT_SUBVECTOR, 445 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, 446 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, 447 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, 448 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, 449 Custom); 450 451 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 452 // and output demarshalling 453 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); 454 455 // We can't return success/failure, only the old value, 456 // let LLVM add the comparison 457 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, 458 Expand); 459 460 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); 461 462 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); 463 464 // FIXME: This should be narrowed to i32, but that only happens if i64 is 465 // illegal. 466 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 467 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); 468 469 // On SI this is s_memtime and s_memrealtime on VI. 470 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 471 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); 472 473 if (Subtarget->has16BitInsts()) { 474 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); 475 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); 476 } else { 477 setOperationAction(ISD::FSQRT, MVT::f16, Custom); 478 } 479 480 if (Subtarget->hasMadMacF32Insts()) 481 setOperationAction(ISD::FMAD, MVT::f32, Legal); 482 483 if (!Subtarget->hasBFI()) 484 // fcopysign can be done in a single instruction with BFI. 485 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 486 487 if (!Subtarget->hasBCNT(32)) 488 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 489 490 if (!Subtarget->hasBCNT(64)) 491 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 492 493 if (Subtarget->hasFFBH()) 494 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 495 496 if (Subtarget->hasFFBL()) 497 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 498 499 // We only really have 32-bit BFE instructions (and 16-bit on VI). 500 // 501 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 502 // effort to match them now. We want this to be false for i64 cases when the 503 // extraction isn't restricted to the upper or lower half. Ideally we would 504 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 505 // span the midpoint are probably relatively rare, so don't worry about them 506 // for now. 507 if (Subtarget->hasBFE()) 508 setHasExtractBitsInsn(true); 509 510 // Clamp modifier on add/sub 511 if (Subtarget->hasIntClamp()) 512 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); 513 514 if (Subtarget->hasAddNoCarry()) 515 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, 516 Legal); 517 518 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, 519 Custom); 520 521 // These are really only legal for ieee_mode functions. We should be avoiding 522 // them for functions that don't have ieee_mode enabled, so just say they are 523 // legal. 524 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 525 {MVT::f32, MVT::f64}, Legal); 526 527 if (Subtarget->haveRoundOpsF64()) 528 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64, 529 Legal); 530 else 531 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR}, 532 MVT::f64, Custom); 533 534 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 535 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64}, 536 Legal); 537 setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom); 538 539 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); 540 setOperationAction(ISD::FDIV, MVT::f64, Custom); 541 542 setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); 543 setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); 544 545 // Custom lower these because we can't specify a rule based on an illegal 546 // source bf16. 547 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom); 548 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom); 549 550 if (Subtarget->has16BitInsts()) { 551 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, 552 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, 553 MVT::i16, Legal); 554 555 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 556 557 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, 558 MVT::i16, Expand); 559 560 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, 561 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, 562 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 563 ISD::CTPOP}, 564 MVT::i16, Promote); 565 566 setOperationAction(ISD::LOAD, MVT::i16, Custom); 567 568 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 569 570 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 571 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 572 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 573 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 574 575 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); 576 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 577 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 578 579 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom); 580 581 // F16 - Constant Actions. 582 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 583 setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); 584 585 // F16 - Load/Store Actions. 586 setOperationAction(ISD::LOAD, MVT::f16, Promote); 587 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 588 setOperationAction(ISD::STORE, MVT::f16, Promote); 589 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 590 591 // BF16 - Load/Store Actions. 592 setOperationAction(ISD::LOAD, MVT::bf16, Promote); 593 AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16); 594 setOperationAction(ISD::STORE, MVT::bf16, Promote); 595 AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16); 596 597 // F16 - VOP1 Actions. 598 setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS, 599 ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, 600 MVT::f16, Custom); 601 602 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote); 603 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote); 604 605 // F16 - VOP2 Actions. 606 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16}, 607 Expand); 608 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom); 609 setOperationAction(ISD::FFREXP, MVT::f16, Custom); 610 setOperationAction(ISD::FDIV, MVT::f16, Custom); 611 612 // F16 - VOP3 Actions. 613 setOperationAction(ISD::FMA, MVT::f16, Legal); 614 if (STI.hasMadF16()) 615 setOperationAction(ISD::FMAD, MVT::f16, Legal); 616 617 for (MVT VT : 618 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16, 619 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, 620 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) { 621 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 622 switch (Op) { 623 case ISD::LOAD: 624 case ISD::STORE: 625 case ISD::BUILD_VECTOR: 626 case ISD::BITCAST: 627 case ISD::UNDEF: 628 case ISD::EXTRACT_VECTOR_ELT: 629 case ISD::INSERT_VECTOR_ELT: 630 case ISD::INSERT_SUBVECTOR: 631 case ISD::EXTRACT_SUBVECTOR: 632 case ISD::SCALAR_TO_VECTOR: 633 case ISD::IS_FPCLASS: 634 break; 635 case ISD::CONCAT_VECTORS: 636 setOperationAction(Op, VT, Custom); 637 break; 638 default: 639 setOperationAction(Op, VT, Expand); 640 break; 641 } 642 } 643 } 644 645 // v_perm_b32 can handle either of these. 646 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); 647 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 648 649 // XXX - Do these do anything? Vector constants turn into build_vector. 650 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); 651 652 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, 653 Legal); 654 655 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 656 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 657 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 658 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 659 660 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 661 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 662 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 663 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 664 665 setOperationAction(ISD::AND, MVT::v2i16, Promote); 666 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 667 setOperationAction(ISD::OR, MVT::v2i16, Promote); 668 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 669 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 670 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 671 672 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 673 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 674 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 675 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 676 setOperationAction(ISD::LOAD, MVT::v4bf16, Promote); 677 AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32); 678 679 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 680 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 681 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 682 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 683 setOperationAction(ISD::STORE, MVT::v4bf16, Promote); 684 AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32); 685 686 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 687 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 688 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 689 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 690 setOperationAction(ISD::LOAD, MVT::v8bf16, Promote); 691 AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32); 692 693 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 694 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 695 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 696 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 697 698 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 699 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 700 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 701 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 702 setOperationAction(ISD::STORE, MVT::v8bf16, Promote); 703 AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32); 704 705 setOperationAction(ISD::LOAD, MVT::v16i16, Promote); 706 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); 707 setOperationAction(ISD::LOAD, MVT::v16f16, Promote); 708 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); 709 setOperationAction(ISD::LOAD, MVT::v16bf16, Promote); 710 AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32); 711 712 setOperationAction(ISD::STORE, MVT::v16i16, Promote); 713 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); 714 setOperationAction(ISD::STORE, MVT::v16f16, Promote); 715 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); 716 setOperationAction(ISD::STORE, MVT::v16bf16, Promote); 717 AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32); 718 719 setOperationAction(ISD::LOAD, MVT::v32i16, Promote); 720 AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32); 721 setOperationAction(ISD::LOAD, MVT::v32f16, Promote); 722 AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32); 723 setOperationAction(ISD::LOAD, MVT::v32bf16, Promote); 724 AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32); 725 726 setOperationAction(ISD::STORE, MVT::v32i16, Promote); 727 AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32); 728 setOperationAction(ISD::STORE, MVT::v32f16, Promote); 729 AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32); 730 setOperationAction(ISD::STORE, MVT::v32bf16, Promote); 731 AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32); 732 733 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 734 MVT::v2i32, Expand); 735 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 736 737 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 738 MVT::v4i32, Expand); 739 740 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 741 MVT::v8i32, Expand); 742 743 if (!Subtarget->hasVOP3PInsts()) 744 setOperationAction(ISD::BUILD_VECTOR, 745 {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom); 746 747 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 748 // This isn't really legal, but this avoids the legalizer unrolling it (and 749 // allows matching fneg (fabs x) patterns) 750 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 751 752 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); 753 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); 754 755 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 756 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, 757 Custom); 758 759 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, 760 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, 761 Expand); 762 763 for (MVT Vec16 : 764 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, 765 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { 766 setOperationAction( 767 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, 768 Vec16, Custom); 769 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 770 } 771 } 772 773 if (Subtarget->hasVOP3PInsts()) { 774 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, 775 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 776 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, 777 MVT::v2i16, Legal); 778 779 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, 780 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, 781 MVT::v2f16, Legal); 782 783 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, 784 Custom); 785 786 setOperationAction(ISD::VECTOR_SHUFFLE, 787 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, 788 MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16}, 789 Custom); 790 791 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16}) 792 // Split vector operations. 793 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, 794 ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, 795 ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, 796 ISD::SSUBSAT}, 797 VT, Custom); 798 799 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}) 800 // Split vector operations. 801 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, 802 VT, Custom); 803 804 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, 805 Custom); 806 807 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 808 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16}, 809 Custom); 810 811 if (Subtarget->hasPackedFP32Ops()) { 812 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, 813 MVT::v2f32, Legal); 814 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, 815 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, 816 Custom); 817 } 818 } 819 820 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); 821 822 if (Subtarget->has16BitInsts()) { 823 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 824 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 825 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 826 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 827 } else { 828 // Legalization hack. 829 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); 830 831 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); 832 } 833 834 setOperationAction(ISD::SELECT, 835 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8, 836 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16, 837 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16, 838 MVT::v32f16, MVT::v32bf16}, 839 Custom); 840 841 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); 842 843 if (Subtarget->hasScalarSMulU64()) 844 setOperationAction(ISD::MUL, MVT::i64, Custom); 845 846 if (Subtarget->hasMad64_32()) 847 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); 848 849 if (Subtarget->hasPrefetch()) 850 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 851 852 if (Subtarget->hasIEEEMinMax()) 853 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, 854 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal); 855 856 setOperationAction(ISD::INTRINSIC_WO_CHAIN, 857 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, 858 MVT::v2i16, MVT::v2f16, MVT::i128, MVT::i8}, 859 Custom); 860 861 setOperationAction(ISD::INTRINSIC_W_CHAIN, 862 {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, 863 MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, 864 MVT::i16, MVT::i8, MVT::i128}, 865 Custom); 866 867 setOperationAction(ISD::INTRINSIC_VOID, 868 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, 869 MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, 870 MVT::i8, MVT::i128}, 871 Custom); 872 873 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 874 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 875 876 // TODO: Could move this to custom lowering, could benefit from combines on 877 // extract of relevant bits. 878 setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal); 879 880 setOperationAction(ISD::MUL, MVT::i1, Promote); 881 882 setTargetDAGCombine({ISD::ADD, 883 ISD::UADDO_CARRY, 884 ISD::SUB, 885 ISD::USUBO_CARRY, 886 ISD::FADD, 887 ISD::FSUB, 888 ISD::FDIV, 889 ISD::FMINNUM, 890 ISD::FMAXNUM, 891 ISD::FMINNUM_IEEE, 892 ISD::FMAXNUM_IEEE, 893 ISD::FMINIMUM, 894 ISD::FMAXIMUM, 895 ISD::FMA, 896 ISD::SMIN, 897 ISD::SMAX, 898 ISD::UMIN, 899 ISD::UMAX, 900 ISD::SETCC, 901 ISD::AND, 902 ISD::OR, 903 ISD::XOR, 904 ISD::FSHR, 905 ISD::SINT_TO_FP, 906 ISD::UINT_TO_FP, 907 ISD::FCANONICALIZE, 908 ISD::SCALAR_TO_VECTOR, 909 ISD::ZERO_EXTEND, 910 ISD::SIGN_EXTEND_INREG, 911 ISD::EXTRACT_VECTOR_ELT, 912 ISD::INSERT_VECTOR_ELT, 913 ISD::FCOPYSIGN}); 914 915 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16()) 916 setTargetDAGCombine(ISD::FP_ROUND); 917 918 // All memory operations. Some folding on the pointer operand is done to help 919 // matching the constant offsets in the addressing modes. 920 setTargetDAGCombine({ISD::LOAD, 921 ISD::STORE, 922 ISD::ATOMIC_LOAD, 923 ISD::ATOMIC_STORE, 924 ISD::ATOMIC_CMP_SWAP, 925 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 926 ISD::ATOMIC_SWAP, 927 ISD::ATOMIC_LOAD_ADD, 928 ISD::ATOMIC_LOAD_SUB, 929 ISD::ATOMIC_LOAD_AND, 930 ISD::ATOMIC_LOAD_OR, 931 ISD::ATOMIC_LOAD_XOR, 932 ISD::ATOMIC_LOAD_NAND, 933 ISD::ATOMIC_LOAD_MIN, 934 ISD::ATOMIC_LOAD_MAX, 935 ISD::ATOMIC_LOAD_UMIN, 936 ISD::ATOMIC_LOAD_UMAX, 937 ISD::ATOMIC_LOAD_FADD, 938 ISD::ATOMIC_LOAD_UINC_WRAP, 939 ISD::ATOMIC_LOAD_UDEC_WRAP, 940 ISD::INTRINSIC_VOID, 941 ISD::INTRINSIC_W_CHAIN}); 942 943 // FIXME: In other contexts we pretend this is a per-function property. 944 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 945 946 setSchedulingPreference(Sched::RegPressure); 947 } 948 949 const GCNSubtarget *SITargetLowering::getSubtarget() const { 950 return Subtarget; 951 } 952 953 //===----------------------------------------------------------------------===// 954 // TargetLowering queries 955 //===----------------------------------------------------------------------===// 956 957 // v_mad_mix* support a conversion from f16 to f32. 958 // 959 // There is only one special case when denormals are enabled we don't currently, 960 // where this is OK to use. 961 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 962 EVT DestVT, EVT SrcVT) const { 963 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 964 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 965 DestVT.getScalarType() == MVT::f32 && 966 SrcVT.getScalarType() == MVT::f16 && 967 // TODO: This probably only requires no input flushing? 968 denormalModeIsFlushAllF32(DAG.getMachineFunction()); 969 } 970 971 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 972 LLT DestTy, LLT SrcTy) const { 973 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 974 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 975 DestTy.getScalarSizeInBits() == 32 && 976 SrcTy.getScalarSizeInBits() == 16 && 977 // TODO: This probably only requires no input flushing? 978 denormalModeIsFlushAllF32(*MI.getMF()); 979 } 980 981 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 982 // SI has some legal vector types, but no legal vector operations. Say no 983 // shuffles are legal in order to prefer scalarizing some vector operations. 984 return false; 985 } 986 987 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 988 CallingConv::ID CC, 989 EVT VT) const { 990 if (CC == CallingConv::AMDGPU_KERNEL) 991 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 992 993 if (VT.isVector()) { 994 EVT ScalarVT = VT.getScalarType(); 995 unsigned Size = ScalarVT.getSizeInBits(); 996 if (Size == 16) { 997 if (Subtarget->has16BitInsts()) { 998 if (VT.isInteger()) 999 return MVT::v2i16; 1000 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); 1001 } 1002 return VT.isInteger() ? MVT::i32 : MVT::f32; 1003 } 1004 1005 if (Size < 16) 1006 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 1007 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 1008 } 1009 1010 if (VT.getSizeInBits() > 32) 1011 return MVT::i32; 1012 1013 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1014 } 1015 1016 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1017 CallingConv::ID CC, 1018 EVT VT) const { 1019 if (CC == CallingConv::AMDGPU_KERNEL) 1020 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1021 1022 if (VT.isVector()) { 1023 unsigned NumElts = VT.getVectorNumElements(); 1024 EVT ScalarVT = VT.getScalarType(); 1025 unsigned Size = ScalarVT.getSizeInBits(); 1026 1027 // FIXME: Should probably promote 8-bit vectors to i16. 1028 if (Size == 16 && Subtarget->has16BitInsts()) 1029 return (NumElts + 1) / 2; 1030 1031 if (Size <= 32) 1032 return NumElts; 1033 1034 if (Size > 32) 1035 return NumElts * ((Size + 31) / 32); 1036 } else if (VT.getSizeInBits() > 32) 1037 return (VT.getSizeInBits() + 31) / 32; 1038 1039 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1040 } 1041 1042 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 1043 LLVMContext &Context, CallingConv::ID CC, 1044 EVT VT, EVT &IntermediateVT, 1045 unsigned &NumIntermediates, MVT &RegisterVT) const { 1046 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 1047 unsigned NumElts = VT.getVectorNumElements(); 1048 EVT ScalarVT = VT.getScalarType(); 1049 unsigned Size = ScalarVT.getSizeInBits(); 1050 // FIXME: We should fix the ABI to be the same on targets without 16-bit 1051 // support, but unless we can properly handle 3-vectors, it will be still be 1052 // inconsistent. 1053 if (Size == 16 && Subtarget->has16BitInsts()) { 1054 if (ScalarVT == MVT::bf16) { 1055 RegisterVT = MVT::i32; 1056 IntermediateVT = MVT::v2bf16; 1057 } else { 1058 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 1059 IntermediateVT = RegisterVT; 1060 } 1061 NumIntermediates = (NumElts + 1) / 2; 1062 return NumIntermediates; 1063 } 1064 1065 if (Size == 32) { 1066 RegisterVT = ScalarVT.getSimpleVT(); 1067 IntermediateVT = RegisterVT; 1068 NumIntermediates = NumElts; 1069 return NumIntermediates; 1070 } 1071 1072 if (Size < 16 && Subtarget->has16BitInsts()) { 1073 // FIXME: Should probably form v2i16 pieces 1074 RegisterVT = MVT::i16; 1075 IntermediateVT = ScalarVT; 1076 NumIntermediates = NumElts; 1077 return NumIntermediates; 1078 } 1079 1080 1081 if (Size != 16 && Size <= 32) { 1082 RegisterVT = MVT::i32; 1083 IntermediateVT = ScalarVT; 1084 NumIntermediates = NumElts; 1085 return NumIntermediates; 1086 } 1087 1088 if (Size > 32) { 1089 RegisterVT = MVT::i32; 1090 IntermediateVT = RegisterVT; 1091 NumIntermediates = NumElts * ((Size + 31) / 32); 1092 return NumIntermediates; 1093 } 1094 } 1095 1096 return TargetLowering::getVectorTypeBreakdownForCallingConv( 1097 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 1098 } 1099 1100 static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) { 1101 assert(MaxNumLanes != 0); 1102 1103 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1104 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); 1105 return EVT::getVectorVT(Ty->getContext(), 1106 EVT::getEVT(VT->getElementType()), 1107 NumElts); 1108 } 1109 1110 return EVT::getEVT(Ty); 1111 } 1112 1113 // Peek through TFE struct returns to only use the data size. 1114 static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) { 1115 auto *ST = dyn_cast<StructType>(Ty); 1116 if (!ST) 1117 return memVTFromLoadIntrData(Ty, MaxNumLanes); 1118 1119 // TFE intrinsics return an aggregate type. 1120 assert(ST->getNumContainedTypes() == 2 && 1121 ST->getContainedType(1)->isIntegerTy(32)); 1122 return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes); 1123 } 1124 1125 /// Map address space 7 to MVT::v5i32 because that's its in-memory 1126 /// representation. This return value is vector-typed because there is no 1127 /// MVT::i160 and it is not clear if one can be added. While this could 1128 /// cause issues during codegen, these address space 7 pointers will be 1129 /// rewritten away by then. Therefore, we can return MVT::v5i32 in order 1130 /// to allow pre-codegen passes that query TargetTransformInfo, often for cost 1131 /// modeling, to work. 1132 MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const { 1133 if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) 1134 return MVT::v5i32; 1135 if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && 1136 DL.getPointerSizeInBits(AS) == 192) 1137 return MVT::v6i32; 1138 return AMDGPUTargetLowering::getPointerTy(DL, AS); 1139 } 1140 /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka 1141 /// v8i32 when padding is added. 1142 /// The in-memory representation of a p9 is {p8, i32, i32}, which is 1143 /// also v8i32 with padding. 1144 MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const { 1145 if ((AMDGPUAS::BUFFER_FAT_POINTER == AS && 1146 DL.getPointerSizeInBits(AS) == 160) || 1147 (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && 1148 DL.getPointerSizeInBits(AS) == 192)) 1149 return MVT::v8i32; 1150 return AMDGPUTargetLowering::getPointerMemTy(DL, AS); 1151 } 1152 1153 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1154 const CallInst &CI, 1155 MachineFunction &MF, 1156 unsigned IntrID) const { 1157 Info.flags = MachineMemOperand::MONone; 1158 if (CI.hasMetadata(LLVMContext::MD_invariant_load)) 1159 Info.flags |= MachineMemOperand::MOInvariant; 1160 1161 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1162 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1163 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1164 (Intrinsic::ID)IntrID); 1165 MemoryEffects ME = Attr.getMemoryEffects(); 1166 if (ME.doesNotAccessMemory()) 1167 return false; 1168 1169 // TODO: Should images get their own address space? 1170 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1171 1172 if (RsrcIntr->IsImage) 1173 Info.align.reset(); 1174 1175 Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg); 1176 if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) { 1177 if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE) 1178 // We conservatively set the memory operand of a buffer intrinsic to the 1179 // base resource pointer, so that we can access alias information about 1180 // those pointers. Cases like "this points at the same value 1181 // but with a different offset" are handled in 1182 // areMemAccessesTriviallyDisjoint. 1183 Info.ptrVal = RsrcArg; 1184 } 1185 1186 auto *Aux = cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1)); 1187 if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE) 1188 Info.flags |= MachineMemOperand::MOVolatile; 1189 Info.flags |= MachineMemOperand::MODereferenceable; 1190 if (ME.onlyReadsMemory()) { 1191 unsigned MaxNumLanes = 4; 1192 1193 if (RsrcIntr->IsImage) { 1194 const AMDGPU::ImageDimIntrinsicInfo *Intr 1195 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1196 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1197 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1198 1199 if (!BaseOpcode->Gather4) { 1200 // If this isn't a gather, we may have excess loaded elements in the 1201 // IR type. Check the dmask for the real number of elements loaded. 1202 unsigned DMask 1203 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1204 MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); 1205 } 1206 } 1207 1208 Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes); 1209 1210 // FIXME: What does alignment mean for an image? 1211 Info.opc = ISD::INTRINSIC_W_CHAIN; 1212 Info.flags |= MachineMemOperand::MOLoad; 1213 } else if (ME.onlyWritesMemory()) { 1214 Info.opc = ISD::INTRINSIC_VOID; 1215 1216 Type *DataTy = CI.getArgOperand(0)->getType(); 1217 if (RsrcIntr->IsImage) { 1218 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1219 unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); 1220 Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes); 1221 } else 1222 Info.memVT = EVT::getEVT(DataTy); 1223 1224 Info.flags |= MachineMemOperand::MOStore; 1225 } else { 1226 // Atomic 1227 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1228 ISD::INTRINSIC_W_CHAIN; 1229 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1230 Info.flags |= MachineMemOperand::MOLoad | 1231 MachineMemOperand::MOStore | 1232 MachineMemOperand::MODereferenceable; 1233 1234 switch (IntrID) { 1235 default: 1236 // XXX - Should this be volatile without known ordering? 1237 Info.flags |= MachineMemOperand::MOVolatile; 1238 break; 1239 case Intrinsic::amdgcn_raw_buffer_load_lds: 1240 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: 1241 case Intrinsic::amdgcn_struct_buffer_load_lds: 1242 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { 1243 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1244 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1245 Info.ptrVal = CI.getArgOperand(1); 1246 return true; 1247 } 1248 } 1249 } 1250 return true; 1251 } 1252 1253 switch (IntrID) { 1254 case Intrinsic::amdgcn_ds_ordered_add: 1255 case Intrinsic::amdgcn_ds_ordered_swap: 1256 case Intrinsic::amdgcn_ds_fadd: 1257 case Intrinsic::amdgcn_ds_fmin: 1258 case Intrinsic::amdgcn_ds_fmax: { 1259 Info.opc = ISD::INTRINSIC_W_CHAIN; 1260 Info.memVT = MVT::getVT(CI.getType()); 1261 Info.ptrVal = CI.getOperand(0); 1262 Info.align.reset(); 1263 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1264 1265 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1266 if (!Vol->isZero()) 1267 Info.flags |= MachineMemOperand::MOVolatile; 1268 1269 return true; 1270 } 1271 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1272 Info.opc = ISD::INTRINSIC_W_CHAIN; 1273 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1274 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1275 Info.align.reset(); 1276 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1277 1278 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1279 if (!Vol || !Vol->isZero()) 1280 Info.flags |= MachineMemOperand::MOVolatile; 1281 1282 return true; 1283 } 1284 case Intrinsic::amdgcn_ds_add_gs_reg_rtn: 1285 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: { 1286 Info.opc = ISD::INTRINSIC_W_CHAIN; 1287 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1288 Info.ptrVal = nullptr; 1289 Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER; 1290 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1291 return true; 1292 } 1293 case Intrinsic::amdgcn_ds_append: 1294 case Intrinsic::amdgcn_ds_consume: { 1295 Info.opc = ISD::INTRINSIC_W_CHAIN; 1296 Info.memVT = MVT::getVT(CI.getType()); 1297 Info.ptrVal = CI.getOperand(0); 1298 Info.align.reset(); 1299 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1300 1301 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1302 if (!Vol->isZero()) 1303 Info.flags |= MachineMemOperand::MOVolatile; 1304 1305 return true; 1306 } 1307 case Intrinsic::amdgcn_global_atomic_csub: { 1308 Info.opc = ISD::INTRINSIC_W_CHAIN; 1309 Info.memVT = MVT::getVT(CI.getType()); 1310 Info.ptrVal = CI.getOperand(0); 1311 Info.align.reset(); 1312 Info.flags |= MachineMemOperand::MOLoad | 1313 MachineMemOperand::MOStore | 1314 MachineMemOperand::MOVolatile; 1315 return true; 1316 } 1317 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1318 Info.opc = ISD::INTRINSIC_W_CHAIN; 1319 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1320 1321 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1322 Info.align.reset(); 1323 Info.flags |= MachineMemOperand::MOLoad | 1324 MachineMemOperand::MODereferenceable; 1325 return true; 1326 } 1327 case Intrinsic::amdgcn_global_atomic_fadd: 1328 case Intrinsic::amdgcn_global_atomic_fmin: 1329 case Intrinsic::amdgcn_global_atomic_fmax: 1330 case Intrinsic::amdgcn_global_atomic_fmin_num: 1331 case Intrinsic::amdgcn_global_atomic_fmax_num: 1332 case Intrinsic::amdgcn_global_atomic_ordered_add_b64: 1333 case Intrinsic::amdgcn_flat_atomic_fadd: 1334 case Intrinsic::amdgcn_flat_atomic_fmin: 1335 case Intrinsic::amdgcn_flat_atomic_fmax: 1336 case Intrinsic::amdgcn_flat_atomic_fmin_num: 1337 case Intrinsic::amdgcn_flat_atomic_fmax_num: 1338 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1339 case Intrinsic::amdgcn_atomic_cond_sub_u32: 1340 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { 1341 Info.opc = ISD::INTRINSIC_W_CHAIN; 1342 Info.memVT = MVT::getVT(CI.getType()); 1343 Info.ptrVal = CI.getOperand(0); 1344 Info.align.reset(); 1345 Info.flags |= MachineMemOperand::MOLoad | 1346 MachineMemOperand::MOStore | 1347 MachineMemOperand::MODereferenceable | 1348 MachineMemOperand::MOVolatile; 1349 return true; 1350 } 1351 case Intrinsic::amdgcn_global_load_tr: { 1352 Info.opc = ISD::INTRINSIC_W_CHAIN; 1353 Info.memVT = MVT::getVT(CI.getType()); 1354 Info.ptrVal = CI.getOperand(0); 1355 Info.align.reset(); 1356 Info.flags |= MachineMemOperand::MOLoad; 1357 return true; 1358 } 1359 case Intrinsic::amdgcn_ds_gws_init: 1360 case Intrinsic::amdgcn_ds_gws_barrier: 1361 case Intrinsic::amdgcn_ds_gws_sema_v: 1362 case Intrinsic::amdgcn_ds_gws_sema_br: 1363 case Intrinsic::amdgcn_ds_gws_sema_p: 1364 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1365 Info.opc = ISD::INTRINSIC_VOID; 1366 1367 const GCNTargetMachine &TM = 1368 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1369 1370 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1371 Info.ptrVal = MFI->getGWSPSV(TM); 1372 1373 // This is an abstract access, but we need to specify a type and size. 1374 Info.memVT = MVT::i32; 1375 Info.size = 4; 1376 Info.align = Align(4); 1377 1378 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1379 Info.flags |= MachineMemOperand::MOLoad; 1380 else 1381 Info.flags |= MachineMemOperand::MOStore; 1382 return true; 1383 } 1384 case Intrinsic::amdgcn_global_load_lds: { 1385 Info.opc = ISD::INTRINSIC_VOID; 1386 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1387 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1388 Info.ptrVal = CI.getArgOperand(1); 1389 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1390 return true; 1391 } 1392 case Intrinsic::amdgcn_ds_bvh_stack_rtn: { 1393 Info.opc = ISD::INTRINSIC_W_CHAIN; 1394 1395 const GCNTargetMachine &TM = 1396 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1397 1398 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1399 Info.ptrVal = MFI->getGWSPSV(TM); 1400 1401 // This is an abstract access, but we need to specify a type and size. 1402 Info.memVT = MVT::i32; 1403 Info.size = 4; 1404 Info.align = Align(4); 1405 1406 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1407 return true; 1408 } 1409 default: 1410 return false; 1411 } 1412 } 1413 1414 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1415 SmallVectorImpl<Value*> &Ops, 1416 Type *&AccessTy) const { 1417 switch (II->getIntrinsicID()) { 1418 case Intrinsic::amdgcn_global_load_tr: 1419 case Intrinsic::amdgcn_ds_ordered_add: 1420 case Intrinsic::amdgcn_ds_ordered_swap: 1421 case Intrinsic::amdgcn_ds_append: 1422 case Intrinsic::amdgcn_ds_consume: 1423 case Intrinsic::amdgcn_ds_fadd: 1424 case Intrinsic::amdgcn_ds_fmin: 1425 case Intrinsic::amdgcn_ds_fmax: 1426 case Intrinsic::amdgcn_global_atomic_fadd: 1427 case Intrinsic::amdgcn_flat_atomic_fadd: 1428 case Intrinsic::amdgcn_flat_atomic_fmin: 1429 case Intrinsic::amdgcn_flat_atomic_fmax: 1430 case Intrinsic::amdgcn_flat_atomic_fmin_num: 1431 case Intrinsic::amdgcn_flat_atomic_fmax_num: 1432 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1433 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: 1434 case Intrinsic::amdgcn_global_atomic_csub: { 1435 Value *Ptr = II->getArgOperand(0); 1436 AccessTy = II->getType(); 1437 Ops.push_back(Ptr); 1438 return true; 1439 } 1440 default: 1441 return false; 1442 } 1443 } 1444 1445 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM, 1446 unsigned AddrSpace, 1447 uint64_t FlatVariant) const { 1448 if (!Subtarget->hasFlatInstOffsets()) { 1449 // Flat instructions do not have offsets, and only have the register 1450 // address. 1451 return AM.BaseOffs == 0 && AM.Scale == 0; 1452 } 1453 1454 return AM.Scale == 0 && 1455 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1456 AM.BaseOffs, AddrSpace, FlatVariant)); 1457 } 1458 1459 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1460 if (Subtarget->hasFlatGlobalInsts()) 1461 return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS, 1462 SIInstrFlags::FlatGlobal); 1463 1464 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1465 // Assume the we will use FLAT for all global memory accesses 1466 // on VI. 1467 // FIXME: This assumption is currently wrong. On VI we still use 1468 // MUBUF instructions for the r + i addressing mode. As currently 1469 // implemented, the MUBUF instructions only work on buffer < 4GB. 1470 // It may be possible to support > 4GB buffers with MUBUF instructions, 1471 // by setting the stride value in the resource descriptor which would 1472 // increase the size limit to (stride * 4GB). However, this is risky, 1473 // because it has never been validated. 1474 return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS, 1475 SIInstrFlags::FLAT); 1476 } 1477 1478 return isLegalMUBUFAddressingMode(AM); 1479 } 1480 1481 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1482 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1483 // additionally can do r + r + i with addr64. 32-bit has more addressing 1484 // mode options. Depending on the resource constant, it can also do 1485 // (i64 r0) + (i32 r1) * (i14 i). 1486 // 1487 // Private arrays end up using a scratch buffer most of the time, so also 1488 // assume those use MUBUF instructions. Scratch loads / stores are currently 1489 // implemented as mubuf instructions with offen bit set, so slightly 1490 // different than the normal addr64. 1491 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1492 if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs)) 1493 return false; 1494 1495 // FIXME: Since we can split immediate into soffset and immediate offset, 1496 // would it make sense to allow any immediate? 1497 1498 switch (AM.Scale) { 1499 case 0: // r + i or just i, depending on HasBaseReg. 1500 return true; 1501 case 1: 1502 return true; // We have r + r or r + i. 1503 case 2: 1504 if (AM.HasBaseReg) { 1505 // Reject 2 * r + r. 1506 return false; 1507 } 1508 1509 // Allow 2 * r as r + r 1510 // Or 2 * r + i is allowed as r + r + i. 1511 return true; 1512 default: // Don't allow n * r 1513 return false; 1514 } 1515 } 1516 1517 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1518 const AddrMode &AM, Type *Ty, 1519 unsigned AS, Instruction *I) const { 1520 // No global is ever allowed as a base. 1521 if (AM.BaseGV) 1522 return false; 1523 1524 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1525 return isLegalGlobalAddressingMode(AM); 1526 1527 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1528 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1529 AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE || 1530 AS == AMDGPUAS::BUFFER_STRIDED_POINTER) { 1531 // If the offset isn't a multiple of 4, it probably isn't going to be 1532 // correctly aligned. 1533 // FIXME: Can we get the real alignment here? 1534 if (AM.BaseOffs % 4 != 0) 1535 return isLegalMUBUFAddressingMode(AM); 1536 1537 // There are no SMRD extloads, so if we have to do a small type access we 1538 // will use a MUBUF load. 1539 // FIXME?: We also need to do this if unaligned, but we don't know the 1540 // alignment here. 1541 // TODO: Update this for GFX12 which does have scalar sub-dword loads. 1542 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1543 return isLegalGlobalAddressingMode(AM); 1544 1545 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1546 // SMRD instructions have an 8-bit, dword offset on SI. 1547 if (!isUInt<8>(AM.BaseOffs / 4)) 1548 return false; 1549 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1550 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1551 // in 8-bits, it can use a smaller encoding. 1552 if (!isUInt<32>(AM.BaseOffs / 4)) 1553 return false; 1554 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) { 1555 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1556 if (!isUInt<20>(AM.BaseOffs)) 1557 return false; 1558 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) { 1559 // On GFX9 the offset is signed 21-bit in bytes (but must not be negative 1560 // for S_BUFFER_* instructions). 1561 if (!isInt<21>(AM.BaseOffs)) 1562 return false; 1563 } else { 1564 // On GFX12, all offsets are signed 24-bit in bytes. 1565 if (!isInt<24>(AM.BaseOffs)) 1566 return false; 1567 } 1568 1569 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1570 return true; 1571 1572 if (AM.Scale == 1 && AM.HasBaseReg) 1573 return true; 1574 1575 return false; 1576 } 1577 1578 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 1579 return Subtarget->enableFlatScratch() 1580 ? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS, 1581 SIInstrFlags::FlatScratch) 1582 : isLegalMUBUFAddressingMode(AM); 1583 1584 if (AS == AMDGPUAS::LOCAL_ADDRESS || 1585 (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) { 1586 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1587 // field. 1588 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1589 // an 8-bit dword offset but we don't know the alignment here. 1590 if (!isUInt<16>(AM.BaseOffs)) 1591 return false; 1592 1593 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1594 return true; 1595 1596 if (AM.Scale == 1 && AM.HasBaseReg) 1597 return true; 1598 1599 return false; 1600 } 1601 1602 if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1603 // For an unknown address space, this usually means that this is for some 1604 // reason being used for pure arithmetic, and not based on some addressing 1605 // computation. We don't have instructions that compute pointers with any 1606 // addressing modes, so treat them as having no offset like flat 1607 // instructions. 1608 return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS, 1609 SIInstrFlags::FLAT); 1610 } 1611 1612 // Assume a user alias of global for unknown address spaces. 1613 return isLegalGlobalAddressingMode(AM); 1614 } 1615 1616 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1617 const MachineFunction &MF) const { 1618 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1619 return (MemVT.getSizeInBits() <= 4 * 32); 1620 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1621 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1622 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1623 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1624 return (MemVT.getSizeInBits() <= 2 * 32); 1625 } 1626 return true; 1627 } 1628 1629 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1630 unsigned Size, unsigned AddrSpace, Align Alignment, 1631 MachineMemOperand::Flags Flags, unsigned *IsFast) const { 1632 if (IsFast) 1633 *IsFast = 0; 1634 1635 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1636 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1637 // Check if alignment requirements for ds_read/write instructions are 1638 // disabled. 1639 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) 1640 return false; 1641 1642 Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. 1643 if (Subtarget->hasLDSMisalignedBug() && Size > 32 && 1644 Alignment < RequiredAlignment) 1645 return false; 1646 1647 // Either, the alignment requirements are "enabled", or there is an 1648 // unaligned LDS access related hardware bug though alignment requirements 1649 // are "disabled". In either case, we need to check for proper alignment 1650 // requirements. 1651 // 1652 switch (Size) { 1653 case 64: 1654 // SI has a hardware bug in the LDS / GDS bounds checking: if the base 1655 // address is negative, then the instruction is incorrectly treated as 1656 // out-of-bounds even if base + offsets is in bounds. Split vectorized 1657 // loads here to avoid emitting ds_read2_b32. We may re-combine the 1658 // load later in the SILoadStoreOptimizer. 1659 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) 1660 return false; 1661 1662 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1663 // can do a 4 byte aligned, 8 byte access in a single operation using 1664 // ds_read2/write2_b32 with adjacent offsets. 1665 RequiredAlignment = Align(4); 1666 1667 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1668 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ 1669 // ds_write2_b32 depending on the alignment. In either case with either 1670 // alignment there is no faster way of doing this. 1671 1672 // The numbers returned here and below are not additive, it is a 'speed 1673 // rank'. They are just meant to be compared to decide if a certain way 1674 // of lowering an operation is faster than another. For that purpose 1675 // naturally aligned operation gets it bitsize to indicate that "it 1676 // operates with a speed comparable to N-bit wide load". With the full 1677 // alignment ds128 is slower than ds96 for example. If underaligned it 1678 // is comparable to a speed of a single dword access, which would then 1679 // mean 32 < 128 and it is faster to issue a wide load regardless. 1680 // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a 1681 // wider load which will not be aligned anymore the latter is slower. 1682 if (IsFast) 1683 *IsFast = (Alignment >= RequiredAlignment) ? 64 1684 : (Alignment < Align(4)) ? 32 1685 : 1; 1686 return true; 1687 } 1688 1689 break; 1690 case 96: 1691 if (!Subtarget->hasDS96AndDS128()) 1692 return false; 1693 1694 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1695 // gfx8 and older. 1696 1697 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1698 // Naturally aligned access is fastest. However, also report it is Fast 1699 // if memory is aligned less than DWORD. A narrow load or store will be 1700 // be equally slow as a single ds_read_b96/ds_write_b96, but there will 1701 // be more of them, so overall we will pay less penalty issuing a single 1702 // instruction. 1703 1704 // See comment on the values above. 1705 if (IsFast) 1706 *IsFast = (Alignment >= RequiredAlignment) ? 96 1707 : (Alignment < Align(4)) ? 32 1708 : 1; 1709 return true; 1710 } 1711 1712 break; 1713 case 128: 1714 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) 1715 return false; 1716 1717 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1718 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1719 // single operation using ds_read2/write2_b64. 1720 RequiredAlignment = Align(8); 1721 1722 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1723 // Naturally aligned access is fastest. However, also report it is Fast 1724 // if memory is aligned less than DWORD. A narrow load or store will be 1725 // be equally slow as a single ds_read_b128/ds_write_b128, but there 1726 // will be more of them, so overall we will pay less penalty issuing a 1727 // single instruction. 1728 1729 // See comment on the values above. 1730 if (IsFast) 1731 *IsFast = (Alignment >= RequiredAlignment) ? 128 1732 : (Alignment < Align(4)) ? 32 1733 : 1; 1734 return true; 1735 } 1736 1737 break; 1738 default: 1739 if (Size > 32) 1740 return false; 1741 1742 break; 1743 } 1744 1745 // See comment on the values above. 1746 // Note that we have a single-dword or sub-dword here, so if underaligned 1747 // it is a slowest possible access, hence returned value is 0. 1748 if (IsFast) 1749 *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; 1750 1751 return Alignment >= RequiredAlignment || 1752 Subtarget->hasUnalignedDSAccessEnabled(); 1753 } 1754 1755 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1756 bool AlignedBy4 = Alignment >= Align(4); 1757 if (IsFast) 1758 *IsFast = AlignedBy4; 1759 1760 return AlignedBy4 || 1761 Subtarget->enableFlatScratch() || 1762 Subtarget->hasUnalignedScratchAccess(); 1763 } 1764 1765 // FIXME: We have to be conservative here and assume that flat operations 1766 // will access scratch. If we had access to the IR function, then we 1767 // could determine if any private memory was used in the function. 1768 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1769 !Subtarget->hasUnalignedScratchAccess()) { 1770 bool AlignedBy4 = Alignment >= Align(4); 1771 if (IsFast) 1772 *IsFast = AlignedBy4; 1773 1774 return AlignedBy4; 1775 } 1776 1777 // So long as they are correct, wide global memory operations perform better 1778 // than multiple smaller memory ops -- even when misaligned 1779 if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { 1780 if (IsFast) 1781 *IsFast = Size; 1782 1783 return Alignment >= Align(4) || 1784 Subtarget->hasUnalignedBufferAccessEnabled(); 1785 } 1786 1787 // Smaller than dword value must be aligned. 1788 if (Size < 32) 1789 return false; 1790 1791 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1792 // byte-address are ignored, thus forcing Dword alignment. 1793 // This applies to private, global, and constant memory. 1794 if (IsFast) 1795 *IsFast = 1; 1796 1797 return Size >= 32 && Alignment >= Align(4); 1798 } 1799 1800 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1801 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1802 unsigned *IsFast) const { 1803 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1804 Alignment, Flags, IsFast); 1805 } 1806 1807 EVT SITargetLowering::getOptimalMemOpType( 1808 const MemOp &Op, const AttributeList &FuncAttributes) const { 1809 // FIXME: Should account for address space here. 1810 1811 // The default fallback uses the private pointer size as a guess for a type to 1812 // use. Make sure we switch these to 64-bit accesses. 1813 1814 if (Op.size() >= 16 && 1815 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1816 return MVT::v4i32; 1817 1818 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1819 return MVT::v2i32; 1820 1821 // Use the default. 1822 return MVT::Other; 1823 } 1824 1825 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1826 const MemSDNode *MemNode = cast<MemSDNode>(N); 1827 return MemNode->getMemOperand()->getFlags() & MONoClobber; 1828 } 1829 1830 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1831 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1832 AS == AMDGPUAS::PRIVATE_ADDRESS; 1833 } 1834 1835 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1836 unsigned DestAS) const { 1837 // Flat -> private/local is a simple truncate. 1838 // Flat -> global is no-op 1839 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1840 return true; 1841 1842 const GCNTargetMachine &TM = 1843 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1844 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1845 } 1846 1847 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1848 const MemSDNode *MemNode = cast<MemSDNode>(N); 1849 1850 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1851 } 1852 1853 TargetLoweringBase::LegalizeTypeAction 1854 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1855 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1856 VT.getScalarType().bitsLE(MVT::i16)) 1857 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1858 return TargetLoweringBase::getPreferredVectorAction(VT); 1859 } 1860 1861 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1862 Type *Ty) const { 1863 // FIXME: Could be smarter if called for vector constants. 1864 return true; 1865 } 1866 1867 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 1868 unsigned Index) const { 1869 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 1870 return false; 1871 1872 // TODO: Add more cases that are cheap. 1873 return Index == 0; 1874 } 1875 1876 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1877 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1878 switch (Op) { 1879 case ISD::LOAD: 1880 case ISD::STORE: 1881 1882 // These operations are done with 32-bit instructions anyway. 1883 case ISD::AND: 1884 case ISD::OR: 1885 case ISD::XOR: 1886 case ISD::SELECT: 1887 // TODO: Extensions? 1888 return true; 1889 default: 1890 return false; 1891 } 1892 } 1893 1894 // SimplifySetCC uses this function to determine whether or not it should 1895 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1896 if (VT == MVT::i1 && Op == ISD::SETCC) 1897 return false; 1898 1899 return TargetLowering::isTypeDesirableForOp(Op, VT); 1900 } 1901 1902 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1903 const SDLoc &SL, 1904 SDValue Chain, 1905 uint64_t Offset) const { 1906 const DataLayout &DL = DAG.getDataLayout(); 1907 MachineFunction &MF = DAG.getMachineFunction(); 1908 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1909 1910 const ArgDescriptor *InputPtrReg; 1911 const TargetRegisterClass *RC; 1912 LLT ArgTy; 1913 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1914 1915 std::tie(InputPtrReg, RC, ArgTy) = 1916 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1917 1918 // We may not have the kernarg segment argument if we have no kernel 1919 // arguments. 1920 if (!InputPtrReg) 1921 return DAG.getConstant(Offset, SL, PtrVT); 1922 1923 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1924 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1925 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1926 1927 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset)); 1928 } 1929 1930 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1931 const SDLoc &SL) const { 1932 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1933 FIRST_IMPLICIT); 1934 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1935 } 1936 1937 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, 1938 const SDLoc &SL) const { 1939 1940 Function &F = DAG.getMachineFunction().getFunction(); 1941 std::optional<uint32_t> KnownSize = 1942 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 1943 if (KnownSize.has_value()) 1944 return DAG.getConstant(*KnownSize, SL, MVT::i32); 1945 return SDValue(); 1946 } 1947 1948 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1949 const SDLoc &SL, SDValue Val, 1950 bool Signed, 1951 const ISD::InputArg *Arg) const { 1952 // First, if it is a widened vector, narrow it. 1953 if (VT.isVector() && 1954 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1955 EVT NarrowedVT = 1956 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1957 VT.getVectorNumElements()); 1958 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1959 DAG.getConstant(0, SL, MVT::i32)); 1960 } 1961 1962 // Then convert the vector elements or scalar value. 1963 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1964 VT.bitsLT(MemVT)) { 1965 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1966 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1967 } 1968 1969 if (MemVT.isFloatingPoint()) 1970 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1971 else if (Signed) 1972 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1973 else 1974 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1975 1976 return Val; 1977 } 1978 1979 SDValue SITargetLowering::lowerKernargMemParameter( 1980 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1981 uint64_t Offset, Align Alignment, bool Signed, 1982 const ISD::InputArg *Arg) const { 1983 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1984 1985 // Try to avoid using an extload by loading earlier than the argument address, 1986 // and extracting the relevant bits. The load should hopefully be merged with 1987 // the previous argument. 1988 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1989 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1990 int64_t AlignDownOffset = alignDown(Offset, 4); 1991 int64_t OffsetDiff = Offset - AlignDownOffset; 1992 1993 EVT IntVT = MemVT.changeTypeToInteger(); 1994 1995 // TODO: If we passed in the base kernel offset we could have a better 1996 // alignment than 4, but we don't really need it. 1997 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1998 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1999 MachineMemOperand::MODereferenceable | 2000 MachineMemOperand::MOInvariant); 2001 2002 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 2003 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 2004 2005 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 2006 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 2007 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 2008 2009 2010 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 2011 } 2012 2013 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 2014 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 2015 MachineMemOperand::MODereferenceable | 2016 MachineMemOperand::MOInvariant); 2017 2018 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 2019 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 2020 } 2021 2022 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 2023 const SDLoc &SL, SDValue Chain, 2024 const ISD::InputArg &Arg) const { 2025 MachineFunction &MF = DAG.getMachineFunction(); 2026 MachineFrameInfo &MFI = MF.getFrameInfo(); 2027 2028 if (Arg.Flags.isByVal()) { 2029 unsigned Size = Arg.Flags.getByValSize(); 2030 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 2031 return DAG.getFrameIndex(FrameIdx, MVT::i32); 2032 } 2033 2034 unsigned ArgOffset = VA.getLocMemOffset(); 2035 unsigned ArgSize = VA.getValVT().getStoreSize(); 2036 2037 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 2038 2039 // Create load nodes to retrieve arguments from the stack. 2040 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2041 SDValue ArgValue; 2042 2043 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 2044 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 2045 MVT MemVT = VA.getValVT(); 2046 2047 switch (VA.getLocInfo()) { 2048 default: 2049 break; 2050 case CCValAssign::BCvt: 2051 MemVT = VA.getLocVT(); 2052 break; 2053 case CCValAssign::SExt: 2054 ExtType = ISD::SEXTLOAD; 2055 break; 2056 case CCValAssign::ZExt: 2057 ExtType = ISD::ZEXTLOAD; 2058 break; 2059 case CCValAssign::AExt: 2060 ExtType = ISD::EXTLOAD; 2061 break; 2062 } 2063 2064 ArgValue = DAG.getExtLoad( 2065 ExtType, SL, VA.getLocVT(), Chain, FIN, 2066 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 2067 MemVT); 2068 return ArgValue; 2069 } 2070 2071 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 2072 const SIMachineFunctionInfo &MFI, 2073 EVT VT, 2074 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 2075 const ArgDescriptor *Reg = nullptr; 2076 const TargetRegisterClass *RC; 2077 LLT Ty; 2078 2079 CallingConv::ID CC = DAG.getMachineFunction().getFunction().getCallingConv(); 2080 const ArgDescriptor WorkGroupIDX = 2081 ArgDescriptor::createRegister(AMDGPU::TTMP9); 2082 // If GridZ is not programmed in an entry function then the hardware will set 2083 // it to all zeros, so there is no need to mask the GridY value in the low 2084 // order bits. 2085 const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister( 2086 AMDGPU::TTMP7, 2087 AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu); 2088 const ArgDescriptor WorkGroupIDZ = 2089 ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u); 2090 if (Subtarget->hasArchitectedSGPRs() && AMDGPU::isCompute(CC)) { 2091 switch (PVID) { 2092 case AMDGPUFunctionArgInfo::WORKGROUP_ID_X: 2093 Reg = &WorkGroupIDX; 2094 RC = &AMDGPU::SReg_32RegClass; 2095 Ty = LLT::scalar(32); 2096 break; 2097 case AMDGPUFunctionArgInfo::WORKGROUP_ID_Y: 2098 Reg = &WorkGroupIDY; 2099 RC = &AMDGPU::SReg_32RegClass; 2100 Ty = LLT::scalar(32); 2101 break; 2102 case AMDGPUFunctionArgInfo::WORKGROUP_ID_Z: 2103 Reg = &WorkGroupIDZ; 2104 RC = &AMDGPU::SReg_32RegClass; 2105 Ty = LLT::scalar(32); 2106 break; 2107 default: 2108 break; 2109 } 2110 } 2111 2112 if (!Reg) 2113 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 2114 if (!Reg) { 2115 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 2116 // It's possible for a kernarg intrinsic call to appear in a kernel with 2117 // no allocated segment, in which case we do not add the user sgpr 2118 // argument, so just return null. 2119 return DAG.getConstant(0, SDLoc(), VT); 2120 } 2121 2122 // It's undefined behavior if a function marked with the amdgpu-no-* 2123 // attributes uses the corresponding intrinsic. 2124 return DAG.getUNDEF(VT); 2125 } 2126 2127 return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); 2128 } 2129 2130 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 2131 CallingConv::ID CallConv, 2132 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 2133 FunctionType *FType, 2134 SIMachineFunctionInfo *Info) { 2135 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 2136 const ISD::InputArg *Arg = &Ins[I]; 2137 2138 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 2139 "vector type argument should have been split"); 2140 2141 // First check if it's a PS input addr. 2142 if (CallConv == CallingConv::AMDGPU_PS && 2143 !Arg->Flags.isInReg() && PSInputNum <= 15) { 2144 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 2145 2146 // Inconveniently only the first part of the split is marked as isSplit, 2147 // so skip to the end. We only want to increment PSInputNum once for the 2148 // entire split argument. 2149 if (Arg->Flags.isSplit()) { 2150 while (!Arg->Flags.isSplitEnd()) { 2151 assert((!Arg->VT.isVector() || 2152 Arg->VT.getScalarSizeInBits() == 16) && 2153 "unexpected vector split in ps argument type"); 2154 if (!SkipArg) 2155 Splits.push_back(*Arg); 2156 Arg = &Ins[++I]; 2157 } 2158 } 2159 2160 if (SkipArg) { 2161 // We can safely skip PS inputs. 2162 Skipped.set(Arg->getOrigArgIndex()); 2163 ++PSInputNum; 2164 continue; 2165 } 2166 2167 Info->markPSInputAllocated(PSInputNum); 2168 if (Arg->Used) 2169 Info->markPSInputEnabled(PSInputNum); 2170 2171 ++PSInputNum; 2172 } 2173 2174 Splits.push_back(*Arg); 2175 } 2176 } 2177 2178 // Allocate special inputs passed in VGPRs. 2179 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 2180 MachineFunction &MF, 2181 const SIRegisterInfo &TRI, 2182 SIMachineFunctionInfo &Info) const { 2183 const LLT S32 = LLT::scalar(32); 2184 MachineRegisterInfo &MRI = MF.getRegInfo(); 2185 2186 if (Info.hasWorkItemIDX()) { 2187 Register Reg = AMDGPU::VGPR0; 2188 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2189 2190 CCInfo.AllocateReg(Reg); 2191 unsigned Mask = (Subtarget->hasPackedTID() && 2192 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 2193 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2194 } 2195 2196 if (Info.hasWorkItemIDY()) { 2197 assert(Info.hasWorkItemIDX()); 2198 if (Subtarget->hasPackedTID()) { 2199 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 2200 0x3ff << 10)); 2201 } else { 2202 unsigned Reg = AMDGPU::VGPR1; 2203 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2204 2205 CCInfo.AllocateReg(Reg); 2206 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 2207 } 2208 } 2209 2210 if (Info.hasWorkItemIDZ()) { 2211 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 2212 if (Subtarget->hasPackedTID()) { 2213 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 2214 0x3ff << 20)); 2215 } else { 2216 unsigned Reg = AMDGPU::VGPR2; 2217 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2218 2219 CCInfo.AllocateReg(Reg); 2220 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 2221 } 2222 } 2223 } 2224 2225 // Try to allocate a VGPR at the end of the argument list, or if no argument 2226 // VGPRs are left allocating a stack slot. 2227 // If \p Mask is is given it indicates bitfield position in the register. 2228 // If \p Arg is given use it with new ]p Mask instead of allocating new. 2229 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 2230 ArgDescriptor Arg = ArgDescriptor()) { 2231 if (Arg.isSet()) 2232 return ArgDescriptor::createArg(Arg, Mask); 2233 2234 ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 2235 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 2236 if (RegIdx == ArgVGPRs.size()) { 2237 // Spill to stack required. 2238 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 2239 2240 return ArgDescriptor::createStack(Offset, Mask); 2241 } 2242 2243 unsigned Reg = ArgVGPRs[RegIdx]; 2244 Reg = CCInfo.AllocateReg(Reg); 2245 assert(Reg != AMDGPU::NoRegister); 2246 2247 MachineFunction &MF = CCInfo.getMachineFunction(); 2248 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 2249 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 2250 return ArgDescriptor::createRegister(Reg, Mask); 2251 } 2252 2253 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 2254 const TargetRegisterClass *RC, 2255 unsigned NumArgRegs) { 2256 ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32); 2257 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 2258 if (RegIdx == ArgSGPRs.size()) 2259 report_fatal_error("ran out of SGPRs for arguments"); 2260 2261 unsigned Reg = ArgSGPRs[RegIdx]; 2262 Reg = CCInfo.AllocateReg(Reg); 2263 assert(Reg != AMDGPU::NoRegister); 2264 2265 MachineFunction &MF = CCInfo.getMachineFunction(); 2266 MF.addLiveIn(Reg, RC); 2267 return ArgDescriptor::createRegister(Reg); 2268 } 2269 2270 // If this has a fixed position, we still should allocate the register in the 2271 // CCInfo state. Technically we could get away with this for values passed 2272 // outside of the normal argument range. 2273 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 2274 const TargetRegisterClass *RC, 2275 MCRegister Reg) { 2276 Reg = CCInfo.AllocateReg(Reg); 2277 assert(Reg != AMDGPU::NoRegister); 2278 MachineFunction &MF = CCInfo.getMachineFunction(); 2279 MF.addLiveIn(Reg, RC); 2280 } 2281 2282 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 2283 if (Arg) { 2284 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 2285 Arg.getRegister()); 2286 } else 2287 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 2288 } 2289 2290 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 2291 if (Arg) { 2292 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 2293 Arg.getRegister()); 2294 } else 2295 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 2296 } 2297 2298 /// Allocate implicit function VGPR arguments at the end of allocated user 2299 /// arguments. 2300 void SITargetLowering::allocateSpecialInputVGPRs( 2301 CCState &CCInfo, MachineFunction &MF, 2302 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2303 const unsigned Mask = 0x3ff; 2304 ArgDescriptor Arg; 2305 2306 if (Info.hasWorkItemIDX()) { 2307 Arg = allocateVGPR32Input(CCInfo, Mask); 2308 Info.setWorkItemIDX(Arg); 2309 } 2310 2311 if (Info.hasWorkItemIDY()) { 2312 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2313 Info.setWorkItemIDY(Arg); 2314 } 2315 2316 if (Info.hasWorkItemIDZ()) 2317 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2318 } 2319 2320 /// Allocate implicit function VGPR arguments in fixed registers. 2321 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2322 CCState &CCInfo, MachineFunction &MF, 2323 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2324 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2325 if (!Reg) 2326 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2327 2328 const unsigned Mask = 0x3ff; 2329 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2330 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2331 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2332 } 2333 2334 void SITargetLowering::allocateSpecialInputSGPRs( 2335 CCState &CCInfo, 2336 MachineFunction &MF, 2337 const SIRegisterInfo &TRI, 2338 SIMachineFunctionInfo &Info) const { 2339 auto &ArgInfo = Info.getArgInfo(); 2340 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); 2341 2342 // TODO: Unify handling with private memory pointers. 2343 if (UserSGPRInfo.hasDispatchPtr()) 2344 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2345 2346 const Module *M = MF.getFunction().getParent(); 2347 if (UserSGPRInfo.hasQueuePtr() && 2348 AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) 2349 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2350 2351 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2352 // constant offset from the kernarg segment. 2353 if (Info.hasImplicitArgPtr()) 2354 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2355 2356 if (UserSGPRInfo.hasDispatchID()) 2357 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2358 2359 // flat_scratch_init is not applicable for non-kernel functions. 2360 2361 if (Info.hasWorkGroupIDX()) 2362 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2363 2364 if (Info.hasWorkGroupIDY()) 2365 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2366 2367 if (Info.hasWorkGroupIDZ()) 2368 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2369 2370 if (Info.hasLDSKernelId()) 2371 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); 2372 } 2373 2374 // Allocate special inputs passed in user SGPRs. 2375 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2376 MachineFunction &MF, 2377 const SIRegisterInfo &TRI, 2378 SIMachineFunctionInfo &Info) const { 2379 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); 2380 if (UserSGPRInfo.hasImplicitBufferPtr()) { 2381 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2382 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2383 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2384 } 2385 2386 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2387 if (UserSGPRInfo.hasPrivateSegmentBuffer()) { 2388 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2389 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2390 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2391 } 2392 2393 if (UserSGPRInfo.hasDispatchPtr()) { 2394 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2395 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2396 CCInfo.AllocateReg(DispatchPtrReg); 2397 } 2398 2399 const Module *M = MF.getFunction().getParent(); 2400 if (UserSGPRInfo.hasQueuePtr() && 2401 AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { 2402 Register QueuePtrReg = Info.addQueuePtr(TRI); 2403 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2404 CCInfo.AllocateReg(QueuePtrReg); 2405 } 2406 2407 if (UserSGPRInfo.hasKernargSegmentPtr()) { 2408 MachineRegisterInfo &MRI = MF.getRegInfo(); 2409 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2410 CCInfo.AllocateReg(InputPtrReg); 2411 2412 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2413 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2414 } 2415 2416 if (UserSGPRInfo.hasDispatchID()) { 2417 Register DispatchIDReg = Info.addDispatchID(TRI); 2418 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2419 CCInfo.AllocateReg(DispatchIDReg); 2420 } 2421 2422 if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2423 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2424 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2425 CCInfo.AllocateReg(FlatScratchInitReg); 2426 } 2427 2428 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2429 // these from the dispatch pointer. 2430 } 2431 2432 // Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be 2433 // sequential starting from the first argument. 2434 void SITargetLowering::allocatePreloadKernArgSGPRs( 2435 CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs, 2436 const SmallVectorImpl<ISD::InputArg> &Ins, MachineFunction &MF, 2437 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2438 Function &F = MF.getFunction(); 2439 unsigned LastExplicitArgOffset = 2440 MF.getSubtarget<GCNSubtarget>().getExplicitKernelArgOffset(); 2441 GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo(); 2442 bool InPreloadSequence = true; 2443 unsigned InIdx = 0; 2444 for (auto &Arg : F.args()) { 2445 if (!InPreloadSequence || !Arg.hasInRegAttr()) 2446 break; 2447 2448 int ArgIdx = Arg.getArgNo(); 2449 // Don't preload non-original args or parts not in the current preload 2450 // sequence. 2451 if (InIdx < Ins.size() && (!Ins[InIdx].isOrigArg() || 2452 (int)Ins[InIdx].getOrigArgIndex() != ArgIdx)) 2453 break; 2454 2455 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() && 2456 (int)Ins[InIdx].getOrigArgIndex() == ArgIdx; 2457 InIdx++) { 2458 assert(ArgLocs[ArgIdx].isMemLoc()); 2459 auto &ArgLoc = ArgLocs[InIdx]; 2460 const Align KernelArgBaseAlign = Align(16); 2461 unsigned ArgOffset = ArgLoc.getLocMemOffset(); 2462 Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset); 2463 unsigned NumAllocSGPRs = 2464 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32; 2465 2466 // Arg is preloaded into the previous SGPR. 2467 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) { 2468 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back( 2469 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]); 2470 continue; 2471 } 2472 2473 unsigned Padding = ArgOffset - LastExplicitArgOffset; 2474 unsigned PaddingSGPRs = alignTo(Padding, 4) / 4; 2475 // Check for free user SGPRs for preloading. 2476 if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ > 2477 SGPRInfo.getNumFreeUserSGPRs()) { 2478 InPreloadSequence = false; 2479 break; 2480 } 2481 2482 // Preload this argument. 2483 const TargetRegisterClass *RC = 2484 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32); 2485 SmallVectorImpl<MCRegister> *PreloadRegs = 2486 Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs); 2487 2488 if (PreloadRegs->size() > 1) 2489 RC = &AMDGPU::SGPR_32RegClass; 2490 for (auto &Reg : *PreloadRegs) { 2491 assert(Reg); 2492 MF.addLiveIn(Reg, RC); 2493 CCInfo.AllocateReg(Reg); 2494 } 2495 2496 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset; 2497 } 2498 } 2499 } 2500 2501 void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, 2502 const SIRegisterInfo &TRI, 2503 SIMachineFunctionInfo &Info) const { 2504 // Always allocate this last since it is a synthetic preload. 2505 if (Info.hasLDSKernelId()) { 2506 Register Reg = Info.addLDSKernelId(); 2507 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2508 CCInfo.AllocateReg(Reg); 2509 } 2510 } 2511 2512 // Allocate special input registers that are initialized per-wave. 2513 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2514 MachineFunction &MF, 2515 SIMachineFunctionInfo &Info, 2516 CallingConv::ID CallConv, 2517 bool IsShader) const { 2518 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); 2519 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { 2520 // Note: user SGPRs are handled by the front-end for graphics shaders 2521 // Pad up the used user SGPRs with dead inputs. 2522 2523 // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately 2524 // before enabling architected SGPRs for workgroup IDs. 2525 assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget"); 2526 2527 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); 2528 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to 2529 // rely on it to reach 16 since if we end up having no stack usage, it will 2530 // not really be added. 2531 unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + 2532 Info.hasWorkGroupIDY() + 2533 Info.hasWorkGroupIDZ() + 2534 Info.hasWorkGroupInfo(); 2535 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { 2536 Register Reg = Info.addReservedUserSGPR(); 2537 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2538 CCInfo.AllocateReg(Reg); 2539 } 2540 } 2541 2542 if (!HasArchitectedSGPRs) { 2543 if (Info.hasWorkGroupIDX()) { 2544 Register Reg = Info.addWorkGroupIDX(); 2545 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2546 CCInfo.AllocateReg(Reg); 2547 } 2548 2549 if (Info.hasWorkGroupIDY()) { 2550 Register Reg = Info.addWorkGroupIDY(); 2551 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2552 CCInfo.AllocateReg(Reg); 2553 } 2554 2555 if (Info.hasWorkGroupIDZ()) { 2556 Register Reg = Info.addWorkGroupIDZ(); 2557 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2558 CCInfo.AllocateReg(Reg); 2559 } 2560 } 2561 2562 if (Info.hasWorkGroupInfo()) { 2563 Register Reg = Info.addWorkGroupInfo(); 2564 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2565 CCInfo.AllocateReg(Reg); 2566 } 2567 2568 if (Info.hasPrivateSegmentWaveByteOffset()) { 2569 // Scratch wave offset passed in system SGPR. 2570 unsigned PrivateSegmentWaveByteOffsetReg; 2571 2572 if (IsShader) { 2573 PrivateSegmentWaveByteOffsetReg = 2574 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2575 2576 // This is true if the scratch wave byte offset doesn't have a fixed 2577 // location. 2578 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2579 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2580 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2581 } 2582 } else 2583 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2584 2585 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2586 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2587 } 2588 2589 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || 2590 Info.getNumPreloadedSGPRs() >= 16); 2591 } 2592 2593 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2594 MachineFunction &MF, 2595 const SIRegisterInfo &TRI, 2596 SIMachineFunctionInfo &Info) { 2597 // Now that we've figured out where the scratch register inputs are, see if 2598 // should reserve the arguments and use them directly. 2599 MachineFrameInfo &MFI = MF.getFrameInfo(); 2600 bool HasStackObjects = MFI.hasStackObjects(); 2601 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2602 2603 // Record that we know we have non-spill stack objects so we don't need to 2604 // check all stack objects later. 2605 if (HasStackObjects) 2606 Info.setHasNonSpillStackObjects(true); 2607 2608 // Everything live out of a block is spilled with fast regalloc, so it's 2609 // almost certain that spilling will be required. 2610 if (TM.getOptLevel() == CodeGenOptLevel::None) 2611 HasStackObjects = true; 2612 2613 // For now assume stack access is needed in any callee functions, so we need 2614 // the scratch registers to pass in. 2615 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2616 2617 if (!ST.enableFlatScratch()) { 2618 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2619 // If we have stack objects, we unquestionably need the private buffer 2620 // resource. For the Code Object V2 ABI, this will be the first 4 user 2621 // SGPR inputs. We can reserve those and use them directly. 2622 2623 Register PrivateSegmentBufferReg = 2624 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2625 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2626 } else { 2627 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2628 // We tentatively reserve the last registers (skipping the last registers 2629 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2630 // we'll replace these with the ones immediately after those which were 2631 // really allocated. In the prologue copies will be inserted from the 2632 // argument to these reserved registers. 2633 2634 // Without HSA, relocations are used for the scratch pointer and the 2635 // buffer resource setup is always inserted in the prologue. Scratch wave 2636 // offset is still in an input SGPR. 2637 Info.setScratchRSrcReg(ReservedBufferReg); 2638 } 2639 } 2640 2641 MachineRegisterInfo &MRI = MF.getRegInfo(); 2642 2643 // For entry functions we have to set up the stack pointer if we use it, 2644 // whereas non-entry functions get this "for free". This means there is no 2645 // intrinsic advantage to using S32 over S34 in cases where we do not have 2646 // calls but do need a frame pointer (i.e. if we are requested to have one 2647 // because frame pointer elimination is disabled). To keep things simple we 2648 // only ever use S32 as the call ABI stack pointer, and so using it does not 2649 // imply we need a separate frame pointer. 2650 // 2651 // Try to use s32 as the SP, but move it if it would interfere with input 2652 // arguments. This won't work with calls though. 2653 // 2654 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2655 // registers. 2656 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2657 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2658 } else { 2659 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2660 2661 if (MFI.hasCalls()) 2662 report_fatal_error("call in graphics shader with too many input SGPRs"); 2663 2664 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2665 if (!MRI.isLiveIn(Reg)) { 2666 Info.setStackPtrOffsetReg(Reg); 2667 break; 2668 } 2669 } 2670 2671 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2672 report_fatal_error("failed to find register for SP"); 2673 } 2674 2675 // hasFP should be accurate for entry functions even before the frame is 2676 // finalized, because it does not rely on the known stack size, only 2677 // properties like whether variable sized objects are present. 2678 if (ST.getFrameLowering()->hasFP(MF)) { 2679 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2680 } 2681 } 2682 2683 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2684 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2685 return !Info->isEntryFunction(); 2686 } 2687 2688 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2689 2690 } 2691 2692 void SITargetLowering::insertCopiesSplitCSR( 2693 MachineBasicBlock *Entry, 2694 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2695 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2696 2697 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2698 if (!IStart) 2699 return; 2700 2701 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2702 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2703 MachineBasicBlock::iterator MBBI = Entry->begin(); 2704 for (const MCPhysReg *I = IStart; *I; ++I) { 2705 const TargetRegisterClass *RC = nullptr; 2706 if (AMDGPU::SReg_64RegClass.contains(*I)) 2707 RC = &AMDGPU::SGPR_64RegClass; 2708 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2709 RC = &AMDGPU::SGPR_32RegClass; 2710 else 2711 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2712 2713 Register NewVR = MRI->createVirtualRegister(RC); 2714 // Create copy from CSR to a virtual register. 2715 Entry->addLiveIn(*I); 2716 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2717 .addReg(*I); 2718 2719 // Insert the copy-back instructions right before the terminator. 2720 for (auto *Exit : Exits) 2721 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2722 TII->get(TargetOpcode::COPY), *I) 2723 .addReg(NewVR); 2724 } 2725 } 2726 2727 SDValue SITargetLowering::LowerFormalArguments( 2728 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2729 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2730 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2731 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2732 2733 MachineFunction &MF = DAG.getMachineFunction(); 2734 const Function &Fn = MF.getFunction(); 2735 FunctionType *FType = MF.getFunction().getFunctionType(); 2736 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2737 2738 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2739 DiagnosticInfoUnsupported NoGraphicsHSA( 2740 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2741 DAG.getContext()->diagnose(NoGraphicsHSA); 2742 return DAG.getEntryNode(); 2743 } 2744 2745 SmallVector<ISD::InputArg, 16> Splits; 2746 SmallVector<CCValAssign, 16> ArgLocs; 2747 BitVector Skipped(Ins.size()); 2748 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2749 *DAG.getContext()); 2750 2751 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2752 bool IsKernel = AMDGPU::isKernel(CallConv); 2753 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2754 2755 if (IsGraphics) { 2756 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); 2757 assert(!UserSGPRInfo.hasDispatchPtr() && 2758 !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && 2759 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && 2760 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); 2761 (void)UserSGPRInfo; 2762 if (!Subtarget->enableFlatScratch()) 2763 assert(!UserSGPRInfo.hasFlatScratchInit()); 2764 if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs()) 2765 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2766 !Info->hasWorkGroupIDZ()); 2767 } 2768 2769 if (CallConv == CallingConv::AMDGPU_PS) { 2770 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2771 2772 // At least one interpolation mode must be enabled or else the GPU will 2773 // hang. 2774 // 2775 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2776 // set PSInputAddr, the user wants to enable some bits after the compilation 2777 // based on run-time states. Since we can't know what the final PSInputEna 2778 // will look like, so we shouldn't do anything here and the user should take 2779 // responsibility for the correct programming. 2780 // 2781 // Otherwise, the following restrictions apply: 2782 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2783 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2784 // enabled too. 2785 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2786 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2787 CCInfo.AllocateReg(AMDGPU::VGPR0); 2788 CCInfo.AllocateReg(AMDGPU::VGPR1); 2789 Info->markPSInputAllocated(0); 2790 Info->markPSInputEnabled(0); 2791 } 2792 if (Subtarget->isAmdPalOS()) { 2793 // For isAmdPalOS, the user does not enable some bits after compilation 2794 // based on run-time states; the register values being generated here are 2795 // the final ones set in hardware. Therefore we need to apply the 2796 // workaround to PSInputAddr and PSInputEnable together. (The case where 2797 // a bit is set in PSInputAddr but not PSInputEnable is where the 2798 // frontend set up an input arg for a particular interpolation mode, but 2799 // nothing uses that input arg. Really we should have an earlier pass 2800 // that removes such an arg.) 2801 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2802 if ((PsInputBits & 0x7F) == 0 || 2803 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2804 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); 2805 } 2806 } else if (IsKernel) { 2807 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2808 } else { 2809 Splits.append(Ins.begin(), Ins.end()); 2810 } 2811 2812 if (IsKernel) 2813 analyzeFormalArgumentsCompute(CCInfo, Ins); 2814 2815 if (IsEntryFunc) { 2816 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2817 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2818 if (IsKernel && Subtarget->hasKernargPreload() && 2819 !Subtarget->needsKernargPreloadBackwardsCompatibility()) 2820 allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info); 2821 2822 allocateLDSKernelId(CCInfo, MF, *TRI, *Info); 2823 } else if (!IsGraphics) { 2824 // For the fixed ABI, pass workitem IDs in the last argument register. 2825 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2826 2827 // FIXME: Sink this into allocateSpecialInputSGPRs 2828 if (!Subtarget->enableFlatScratch()) 2829 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2830 2831 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2832 } 2833 2834 if (!IsKernel) { 2835 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2836 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2837 } 2838 2839 SmallVector<SDValue, 16> Chains; 2840 2841 // FIXME: This is the minimum kernel argument alignment. We should improve 2842 // this to the maximum alignment of the arguments. 2843 // 2844 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2845 // kern arg offset. 2846 const Align KernelArgBaseAlign = Align(16); 2847 2848 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2849 const ISD::InputArg &Arg = Ins[i]; 2850 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2851 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2852 continue; 2853 } 2854 2855 CCValAssign &VA = ArgLocs[ArgIdx++]; 2856 MVT VT = VA.getLocVT(); 2857 2858 if (IsEntryFunc && VA.isMemLoc()) { 2859 VT = Ins[i].VT; 2860 EVT MemVT = VA.getLocVT(); 2861 2862 const uint64_t Offset = VA.getLocMemOffset(); 2863 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2864 2865 if (Arg.Flags.isByRef()) { 2866 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2867 2868 const GCNTargetMachine &TM = 2869 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2870 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2871 Arg.Flags.getPointerAddrSpace())) { 2872 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2873 Arg.Flags.getPointerAddrSpace()); 2874 } 2875 2876 InVals.push_back(Ptr); 2877 continue; 2878 } 2879 2880 SDValue NewArg; 2881 if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) { 2882 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 2883 // In this case the argument is packed into the previous preload SGPR. 2884 int64_t AlignDownOffset = alignDown(Offset, 4); 2885 int64_t OffsetDiff = Offset - AlignDownOffset; 2886 EVT IntVT = MemVT.changeTypeToInteger(); 2887 2888 const SIMachineFunctionInfo *Info = 2889 MF.getInfo<SIMachineFunctionInfo>(); 2890 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 2891 Register Reg = 2892 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0]; 2893 2894 assert(Reg); 2895 Register VReg = MRI.getLiveInVirtReg(Reg); 2896 SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); 2897 2898 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32); 2899 SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt); 2900 2901 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract); 2902 ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal); 2903 NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal, 2904 Ins[i].Flags.isSExt(), &Ins[i]); 2905 2906 NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL); 2907 } else { 2908 const SIMachineFunctionInfo *Info = 2909 MF.getInfo<SIMachineFunctionInfo>(); 2910 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 2911 const SmallVectorImpl<MCRegister> &PreloadRegs = 2912 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs; 2913 2914 SDValue Copy; 2915 if (PreloadRegs.size() == 1) { 2916 Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]); 2917 const TargetRegisterClass *RC = MRI.getRegClass(VReg); 2918 NewArg = DAG.getCopyFromReg( 2919 Chain, DL, VReg, 2920 EVT::getIntegerVT(*DAG.getContext(), 2921 TRI->getRegSizeInBits(*RC))); 2922 2923 } else { 2924 // If the kernarg alignment does not match the alignment of the SGPR 2925 // tuple RC that can accommodate this argument, it will be built up 2926 // via copies from from the individual SGPRs that the argument was 2927 // preloaded to. 2928 SmallVector<SDValue, 4> Elts; 2929 for (auto Reg : PreloadRegs) { 2930 Register VReg = MRI.getLiveInVirtReg(Reg); 2931 Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); 2932 Elts.push_back(Copy); 2933 } 2934 NewArg = 2935 DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32, 2936 PreloadRegs.size()), 2937 DL, Elts); 2938 } 2939 2940 SDValue CMemVT; 2941 if (VT.isScalarInteger() && VT.bitsLT(NewArg.getSimpleValueType())) 2942 CMemVT = DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewArg); 2943 else 2944 CMemVT = DAG.getBitcast(MemVT, NewArg); 2945 NewArg = convertArgType(DAG, VT, MemVT, DL, CMemVT, 2946 Ins[i].Flags.isSExt(), &Ins[i]); 2947 NewArg = DAG.getMergeValues({NewArg, Chain}, DL); 2948 } 2949 } else { 2950 NewArg = 2951 lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset, 2952 Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2953 } 2954 Chains.push_back(NewArg.getValue(1)); 2955 2956 auto *ParamTy = 2957 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2958 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2959 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2960 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2961 // On SI local pointers are just offsets into LDS, so they are always 2962 // less than 16-bits. On CI and newer they could potentially be 2963 // real pointers, so we can't guarantee their size. 2964 NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg, 2965 DAG.getValueType(MVT::i16)); 2966 } 2967 2968 InVals.push_back(NewArg); 2969 continue; 2970 } else if (!IsEntryFunc && VA.isMemLoc()) { 2971 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2972 InVals.push_back(Val); 2973 if (!Arg.Flags.isByVal()) 2974 Chains.push_back(Val.getValue(1)); 2975 continue; 2976 } 2977 2978 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2979 2980 Register Reg = VA.getLocReg(); 2981 const TargetRegisterClass *RC = nullptr; 2982 if (AMDGPU::VGPR_32RegClass.contains(Reg)) 2983 RC = &AMDGPU::VGPR_32RegClass; 2984 else if (AMDGPU::SGPR_32RegClass.contains(Reg)) 2985 RC = &AMDGPU::SGPR_32RegClass; 2986 else 2987 llvm_unreachable("Unexpected register class in LowerFormalArguments!"); 2988 EVT ValVT = VA.getValVT(); 2989 2990 Reg = MF.addLiveIn(Reg, RC); 2991 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2992 2993 if (Arg.Flags.isSRet()) { 2994 // The return object should be reasonably addressable. 2995 2996 // FIXME: This helps when the return is a real sret. If it is a 2997 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2998 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2999 unsigned NumBits 3000 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 3001 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 3002 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 3003 } 3004 3005 // If this is an 8 or 16-bit value, it is really passed promoted 3006 // to 32 bits. Insert an assert[sz]ext to capture this, then 3007 // truncate to the right size. 3008 switch (VA.getLocInfo()) { 3009 case CCValAssign::Full: 3010 break; 3011 case CCValAssign::BCvt: 3012 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 3013 break; 3014 case CCValAssign::SExt: 3015 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 3016 DAG.getValueType(ValVT)); 3017 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3018 break; 3019 case CCValAssign::ZExt: 3020 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 3021 DAG.getValueType(ValVT)); 3022 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3023 break; 3024 case CCValAssign::AExt: 3025 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 3026 break; 3027 default: 3028 llvm_unreachable("Unknown loc info!"); 3029 } 3030 3031 InVals.push_back(Val); 3032 } 3033 3034 // Start adding system SGPRs. 3035 if (IsEntryFunc) 3036 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 3037 3038 auto &ArgUsageInfo = 3039 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 3040 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 3041 3042 unsigned StackArgSize = CCInfo.getStackSize(); 3043 Info->setBytesInStackArgArea(StackArgSize); 3044 3045 return Chains.empty() ? Chain : 3046 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3047 } 3048 3049 // TODO: If return values can't fit in registers, we should return as many as 3050 // possible in registers before passing on stack. 3051 bool SITargetLowering::CanLowerReturn( 3052 CallingConv::ID CallConv, 3053 MachineFunction &MF, bool IsVarArg, 3054 const SmallVectorImpl<ISD::OutputArg> &Outs, 3055 LLVMContext &Context) const { 3056 // Replacing returns with sret/stack usage doesn't make sense for shaders. 3057 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 3058 // for shaders. Vector types should be explicitly handled by CC. 3059 if (AMDGPU::isEntryFunctionCC(CallConv)) 3060 return true; 3061 3062 SmallVector<CCValAssign, 16> RVLocs; 3063 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3064 if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg))) 3065 return false; 3066 3067 // We must use the stack if return would require unavailable registers. 3068 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF); 3069 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs(); 3070 for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) 3071 if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i))) 3072 return false; 3073 3074 return true; 3075 } 3076 3077 SDValue 3078 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3079 bool isVarArg, 3080 const SmallVectorImpl<ISD::OutputArg> &Outs, 3081 const SmallVectorImpl<SDValue> &OutVals, 3082 const SDLoc &DL, SelectionDAG &DAG) const { 3083 MachineFunction &MF = DAG.getMachineFunction(); 3084 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3085 3086 if (AMDGPU::isKernel(CallConv)) { 3087 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 3088 OutVals, DL, DAG); 3089 } 3090 3091 bool IsShader = AMDGPU::isShader(CallConv); 3092 3093 Info->setIfReturnsVoid(Outs.empty()); 3094 bool IsWaveEnd = Info->returnsVoid() && IsShader; 3095 3096 // CCValAssign - represent the assignment of the return value to a location. 3097 SmallVector<CCValAssign, 48> RVLocs; 3098 SmallVector<ISD::OutputArg, 48> Splits; 3099 3100 // CCState - Info about the registers and stack slots. 3101 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 3102 *DAG.getContext()); 3103 3104 // Analyze outgoing return values. 3105 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 3106 3107 SDValue Glue; 3108 SmallVector<SDValue, 48> RetOps; 3109 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 3110 3111 // Copy the result values into the output registers. 3112 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 3113 ++I, ++RealRVLocIdx) { 3114 CCValAssign &VA = RVLocs[I]; 3115 assert(VA.isRegLoc() && "Can only return in registers!"); 3116 // TODO: Partially return in registers if return values don't fit. 3117 SDValue Arg = OutVals[RealRVLocIdx]; 3118 3119 // Copied from other backends. 3120 switch (VA.getLocInfo()) { 3121 case CCValAssign::Full: 3122 break; 3123 case CCValAssign::BCvt: 3124 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3125 break; 3126 case CCValAssign::SExt: 3127 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3128 break; 3129 case CCValAssign::ZExt: 3130 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3131 break; 3132 case CCValAssign::AExt: 3133 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3134 break; 3135 default: 3136 llvm_unreachable("Unknown loc info!"); 3137 } 3138 3139 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); 3140 Glue = Chain.getValue(1); 3141 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3142 } 3143 3144 // FIXME: Does sret work properly? 3145 if (!Info->isEntryFunction()) { 3146 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 3147 const MCPhysReg *I = 3148 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 3149 if (I) { 3150 for (; *I; ++I) { 3151 if (AMDGPU::SReg_64RegClass.contains(*I)) 3152 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 3153 else if (AMDGPU::SReg_32RegClass.contains(*I)) 3154 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 3155 else 3156 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 3157 } 3158 } 3159 } 3160 3161 // Update chain and glue. 3162 RetOps[0] = Chain; 3163 if (Glue.getNode()) 3164 RetOps.push_back(Glue); 3165 3166 unsigned Opc = AMDGPUISD::ENDPGM; 3167 if (!IsWaveEnd) 3168 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE; 3169 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 3170 } 3171 3172 SDValue SITargetLowering::LowerCallResult( 3173 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 3174 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3175 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 3176 SDValue ThisVal) const { 3177 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 3178 3179 // Assign locations to each value returned by this call. 3180 SmallVector<CCValAssign, 16> RVLocs; 3181 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3182 *DAG.getContext()); 3183 CCInfo.AnalyzeCallResult(Ins, RetCC); 3184 3185 // Copy all of the result registers out of their specified physreg. 3186 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3187 CCValAssign VA = RVLocs[i]; 3188 SDValue Val; 3189 3190 if (VA.isRegLoc()) { 3191 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); 3192 Chain = Val.getValue(1); 3193 InGlue = Val.getValue(2); 3194 } else if (VA.isMemLoc()) { 3195 report_fatal_error("TODO: return values in memory"); 3196 } else 3197 llvm_unreachable("unknown argument location type"); 3198 3199 switch (VA.getLocInfo()) { 3200 case CCValAssign::Full: 3201 break; 3202 case CCValAssign::BCvt: 3203 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3204 break; 3205 case CCValAssign::ZExt: 3206 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 3207 DAG.getValueType(VA.getValVT())); 3208 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3209 break; 3210 case CCValAssign::SExt: 3211 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 3212 DAG.getValueType(VA.getValVT())); 3213 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3214 break; 3215 case CCValAssign::AExt: 3216 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3217 break; 3218 default: 3219 llvm_unreachable("Unknown loc info!"); 3220 } 3221 3222 InVals.push_back(Val); 3223 } 3224 3225 return Chain; 3226 } 3227 3228 // Add code to pass special inputs required depending on used features separate 3229 // from the explicit user arguments present in the IR. 3230 void SITargetLowering::passSpecialInputs( 3231 CallLoweringInfo &CLI, 3232 CCState &CCInfo, 3233 const SIMachineFunctionInfo &Info, 3234 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 3235 SmallVectorImpl<SDValue> &MemOpChains, 3236 SDValue Chain) const { 3237 // If we don't have a call site, this was a call inserted by 3238 // legalization. These can never use special inputs. 3239 if (!CLI.CB) 3240 return; 3241 3242 SelectionDAG &DAG = CLI.DAG; 3243 const SDLoc &DL = CLI.DL; 3244 const Function &F = DAG.getMachineFunction().getFunction(); 3245 3246 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 3247 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 3248 3249 const AMDGPUFunctionArgInfo *CalleeArgInfo 3250 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 3251 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 3252 auto &ArgUsageInfo = 3253 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 3254 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 3255 } 3256 3257 // TODO: Unify with private memory register handling. This is complicated by 3258 // the fact that at least in kernels, the input argument is not necessarily 3259 // in the same location as the input. 3260 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 3261 StringLiteral> ImplicitAttrs[] = { 3262 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 3263 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 3264 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 3265 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 3266 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 3267 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 3268 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, 3269 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, 3270 }; 3271 3272 for (auto Attr : ImplicitAttrs) { 3273 const ArgDescriptor *OutgoingArg; 3274 const TargetRegisterClass *ArgRC; 3275 LLT ArgTy; 3276 3277 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 3278 3279 // If the callee does not use the attribute value, skip copying the value. 3280 if (CLI.CB->hasFnAttr(Attr.second)) 3281 continue; 3282 3283 std::tie(OutgoingArg, ArgRC, ArgTy) = 3284 CalleeArgInfo->getPreloadedValue(InputID); 3285 if (!OutgoingArg) 3286 continue; 3287 3288 const ArgDescriptor *IncomingArg; 3289 const TargetRegisterClass *IncomingArgRC; 3290 LLT Ty; 3291 std::tie(IncomingArg, IncomingArgRC, Ty) = 3292 CallerArgInfo.getPreloadedValue(InputID); 3293 assert(IncomingArgRC == ArgRC); 3294 3295 // All special arguments are ints for now. 3296 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 3297 SDValue InputReg; 3298 3299 if (IncomingArg) { 3300 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 3301 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 3302 // The implicit arg ptr is special because it doesn't have a corresponding 3303 // input for kernels, and is computed from the kernarg segment pointer. 3304 InputReg = getImplicitArgPtr(DAG, DL); 3305 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 3306 std::optional<uint32_t> Id = 3307 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 3308 if (Id.has_value()) { 3309 InputReg = DAG.getConstant(*Id, DL, ArgVT); 3310 } else { 3311 InputReg = DAG.getUNDEF(ArgVT); 3312 } 3313 } else { 3314 // We may have proven the input wasn't needed, although the ABI is 3315 // requiring it. We just need to allocate the register appropriately. 3316 InputReg = DAG.getUNDEF(ArgVT); 3317 } 3318 3319 if (OutgoingArg->isRegister()) { 3320 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 3321 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 3322 report_fatal_error("failed to allocate implicit input argument"); 3323 } else { 3324 unsigned SpecialArgOffset = 3325 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 3326 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 3327 SpecialArgOffset); 3328 MemOpChains.push_back(ArgStore); 3329 } 3330 } 3331 3332 // Pack workitem IDs into a single register or pass it as is if already 3333 // packed. 3334 const ArgDescriptor *OutgoingArg; 3335 const TargetRegisterClass *ArgRC; 3336 LLT Ty; 3337 3338 std::tie(OutgoingArg, ArgRC, Ty) = 3339 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 3340 if (!OutgoingArg) 3341 std::tie(OutgoingArg, ArgRC, Ty) = 3342 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 3343 if (!OutgoingArg) 3344 std::tie(OutgoingArg, ArgRC, Ty) = 3345 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 3346 if (!OutgoingArg) 3347 return; 3348 3349 const ArgDescriptor *IncomingArgX = std::get<0>( 3350 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 3351 const ArgDescriptor *IncomingArgY = std::get<0>( 3352 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 3353 const ArgDescriptor *IncomingArgZ = std::get<0>( 3354 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 3355 3356 SDValue InputReg; 3357 SDLoc SL; 3358 3359 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 3360 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 3361 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 3362 3363 // If incoming ids are not packed we need to pack them. 3364 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 3365 NeedWorkItemIDX) { 3366 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 3367 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 3368 } else { 3369 InputReg = DAG.getConstant(0, DL, MVT::i32); 3370 } 3371 } 3372 3373 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 3374 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 3375 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 3376 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 3377 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 3378 InputReg = InputReg.getNode() ? 3379 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 3380 } 3381 3382 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 3383 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 3384 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 3385 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 3386 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 3387 InputReg = InputReg.getNode() ? 3388 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 3389 } 3390 3391 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 3392 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 3393 // We're in a situation where the outgoing function requires the workitem 3394 // ID, but the calling function does not have it (e.g a graphics function 3395 // calling a C calling convention function). This is illegal, but we need 3396 // to produce something. 3397 InputReg = DAG.getUNDEF(MVT::i32); 3398 } else { 3399 // Workitem ids are already packed, any of present incoming arguments 3400 // will carry all required fields. 3401 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 3402 IncomingArgX ? *IncomingArgX : 3403 IncomingArgY ? *IncomingArgY : 3404 *IncomingArgZ, ~0u); 3405 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 3406 } 3407 } 3408 3409 if (OutgoingArg->isRegister()) { 3410 if (InputReg) 3411 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 3412 3413 CCInfo.AllocateReg(OutgoingArg->getRegister()); 3414 } else { 3415 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 3416 if (InputReg) { 3417 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 3418 SpecialArgOffset); 3419 MemOpChains.push_back(ArgStore); 3420 } 3421 } 3422 } 3423 3424 static bool canGuaranteeTCO(CallingConv::ID CC) { 3425 return CC == CallingConv::Fast; 3426 } 3427 3428 /// Return true if we might ever do TCO for calls with this calling convention. 3429 static bool mayTailCallThisCC(CallingConv::ID CC) { 3430 switch (CC) { 3431 case CallingConv::C: 3432 case CallingConv::AMDGPU_Gfx: 3433 return true; 3434 default: 3435 return canGuaranteeTCO(CC); 3436 } 3437 } 3438 3439 bool SITargetLowering::isEligibleForTailCallOptimization( 3440 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 3441 const SmallVectorImpl<ISD::OutputArg> &Outs, 3442 const SmallVectorImpl<SDValue> &OutVals, 3443 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 3444 if (AMDGPU::isChainCC(CalleeCC)) 3445 return true; 3446 3447 if (!mayTailCallThisCC(CalleeCC)) 3448 return false; 3449 3450 // For a divergent call target, we need to do a waterfall loop over the 3451 // possible callees which precludes us from using a simple jump. 3452 if (Callee->isDivergent()) 3453 return false; 3454 3455 MachineFunction &MF = DAG.getMachineFunction(); 3456 const Function &CallerF = MF.getFunction(); 3457 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3458 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3459 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3460 3461 // Kernels aren't callable, and don't have a live in return address so it 3462 // doesn't make sense to do a tail call with entry functions. 3463 if (!CallerPreserved) 3464 return false; 3465 3466 bool CCMatch = CallerCC == CalleeCC; 3467 3468 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 3469 if (canGuaranteeTCO(CalleeCC) && CCMatch) 3470 return true; 3471 return false; 3472 } 3473 3474 // TODO: Can we handle var args? 3475 if (IsVarArg) 3476 return false; 3477 3478 for (const Argument &Arg : CallerF.args()) { 3479 if (Arg.hasByValAttr()) 3480 return false; 3481 } 3482 3483 LLVMContext &Ctx = *DAG.getContext(); 3484 3485 // Check that the call results are passed in the same way. 3486 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3487 CCAssignFnForCall(CalleeCC, IsVarArg), 3488 CCAssignFnForCall(CallerCC, IsVarArg))) 3489 return false; 3490 3491 // The callee has to preserve all registers the caller needs to preserve. 3492 if (!CCMatch) { 3493 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3494 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3495 return false; 3496 } 3497 3498 // Nothing more to check if the callee is taking no arguments. 3499 if (Outs.empty()) 3500 return true; 3501 3502 SmallVector<CCValAssign, 16> ArgLocs; 3503 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3504 3505 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3506 3507 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3508 // If the stack arguments for this call do not fit into our own save area then 3509 // the call cannot be made tail. 3510 // TODO: Is this really necessary? 3511 if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) 3512 return false; 3513 3514 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3515 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3516 } 3517 3518 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3519 if (!CI->isTailCall()) 3520 return false; 3521 3522 const Function *ParentFn = CI->getParent()->getParent(); 3523 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3524 return false; 3525 return true; 3526 } 3527 3528 // The wave scratch offset register is used as the global base pointer. 3529 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3530 SmallVectorImpl<SDValue> &InVals) const { 3531 CallingConv::ID CallConv = CLI.CallConv; 3532 bool IsChainCallConv = AMDGPU::isChainCC(CallConv); 3533 3534 SelectionDAG &DAG = CLI.DAG; 3535 3536 TargetLowering::ArgListEntry RequestedExec; 3537 if (IsChainCallConv) { 3538 // The last argument should be the value that we need to put in EXEC. 3539 // Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we 3540 // don't treat it like the rest of the arguments. 3541 RequestedExec = CLI.Args.back(); 3542 assert(RequestedExec.Node && "No node for EXEC"); 3543 3544 if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize())) 3545 return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC"); 3546 3547 assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg"); 3548 CLI.Outs.pop_back(); 3549 CLI.OutVals.pop_back(); 3550 3551 if (RequestedExec.Ty->isIntegerTy(64)) { 3552 assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up"); 3553 CLI.Outs.pop_back(); 3554 CLI.OutVals.pop_back(); 3555 } 3556 3557 assert(CLI.Outs.back().OrigArgIndex != 2 && 3558 "Haven't popped all the pieces of the EXEC mask"); 3559 } 3560 3561 const SDLoc &DL = CLI.DL; 3562 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3563 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3564 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3565 SDValue Chain = CLI.Chain; 3566 SDValue Callee = CLI.Callee; 3567 bool &IsTailCall = CLI.IsTailCall; 3568 bool IsVarArg = CLI.IsVarArg; 3569 bool IsSibCall = false; 3570 bool IsThisReturn = false; 3571 MachineFunction &MF = DAG.getMachineFunction(); 3572 3573 if (Callee.isUndef() || isNullConstant(Callee)) { 3574 if (!CLI.IsTailCall) { 3575 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3576 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3577 } 3578 3579 return Chain; 3580 } 3581 3582 if (IsVarArg) { 3583 return lowerUnhandledCall(CLI, InVals, 3584 "unsupported call to variadic function "); 3585 } 3586 3587 if (!CLI.CB) 3588 report_fatal_error("unsupported libcall legalization"); 3589 3590 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3591 return lowerUnhandledCall(CLI, InVals, 3592 "unsupported required tail call to function "); 3593 } 3594 3595 if (IsTailCall) { 3596 IsTailCall = isEligibleForTailCallOptimization( 3597 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3598 if (!IsTailCall && 3599 ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) { 3600 report_fatal_error("failed to perform tail call elimination on a call " 3601 "site marked musttail or on llvm.amdgcn.cs.chain"); 3602 } 3603 3604 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3605 3606 // A sibling call is one where we're under the usual C ABI and not planning 3607 // to change that but can still do a tail call: 3608 if (!TailCallOpt && IsTailCall) 3609 IsSibCall = true; 3610 3611 if (IsTailCall) 3612 ++NumTailCalls; 3613 } 3614 3615 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3616 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3617 SmallVector<SDValue, 8> MemOpChains; 3618 3619 // Analyze operands of the call, assigning locations to each operand. 3620 SmallVector<CCValAssign, 16> ArgLocs; 3621 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3622 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3623 3624 if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) { 3625 // With a fixed ABI, allocate fixed registers before user arguments. 3626 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3627 } 3628 3629 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3630 3631 // Get a count of how many bytes are to be pushed on the stack. 3632 unsigned NumBytes = CCInfo.getStackSize(); 3633 3634 if (IsSibCall) { 3635 // Since we're not changing the ABI to make this a tail call, the memory 3636 // operands are already available in the caller's incoming argument space. 3637 NumBytes = 0; 3638 } 3639 3640 // FPDiff is the byte offset of the call's argument area from the callee's. 3641 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3642 // by this amount for a tail call. In a sibling call it must be 0 because the 3643 // caller will deallocate the entire stack and the callee still expects its 3644 // arguments to begin at SP+0. Completely unused for non-tail calls. 3645 int32_t FPDiff = 0; 3646 MachineFrameInfo &MFI = MF.getFrameInfo(); 3647 3648 // Adjust the stack pointer for the new arguments... 3649 // These operations are automatically eliminated by the prolog/epilog pass 3650 if (!IsSibCall) 3651 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3652 3653 if (!IsSibCall || IsChainCallConv) { 3654 if (!Subtarget->enableFlatScratch()) { 3655 SmallVector<SDValue, 4> CopyFromChains; 3656 3657 // In the HSA case, this should be an identity copy. 3658 SDValue ScratchRSrcReg 3659 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3660 RegsToPass.emplace_back(IsChainCallConv 3661 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 3662 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, 3663 ScratchRSrcReg); 3664 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3665 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3666 } 3667 } 3668 3669 MVT PtrVT = MVT::i32; 3670 3671 // Walk the register/memloc assignments, inserting copies/loads. 3672 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3673 CCValAssign &VA = ArgLocs[i]; 3674 SDValue Arg = OutVals[i]; 3675 3676 // Promote the value if needed. 3677 switch (VA.getLocInfo()) { 3678 case CCValAssign::Full: 3679 break; 3680 case CCValAssign::BCvt: 3681 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3682 break; 3683 case CCValAssign::ZExt: 3684 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3685 break; 3686 case CCValAssign::SExt: 3687 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3688 break; 3689 case CCValAssign::AExt: 3690 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3691 break; 3692 case CCValAssign::FPExt: 3693 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3694 break; 3695 default: 3696 llvm_unreachable("Unknown loc info!"); 3697 } 3698 3699 if (VA.isRegLoc()) { 3700 RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); 3701 } else { 3702 assert(VA.isMemLoc()); 3703 3704 SDValue DstAddr; 3705 MachinePointerInfo DstInfo; 3706 3707 unsigned LocMemOffset = VA.getLocMemOffset(); 3708 int32_t Offset = LocMemOffset; 3709 3710 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3711 MaybeAlign Alignment; 3712 3713 if (IsTailCall) { 3714 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3715 unsigned OpSize = Flags.isByVal() ? 3716 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3717 3718 // FIXME: We can have better than the minimum byval required alignment. 3719 Alignment = 3720 Flags.isByVal() 3721 ? Flags.getNonZeroByValAlign() 3722 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3723 3724 Offset = Offset + FPDiff; 3725 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3726 3727 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3728 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3729 3730 // Make sure any stack arguments overlapping with where we're storing 3731 // are loaded before this eventual operation. Otherwise they'll be 3732 // clobbered. 3733 3734 // FIXME: Why is this really necessary? This seems to just result in a 3735 // lot of code to copy the stack and write them back to the same 3736 // locations, which are supposed to be immutable? 3737 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3738 } else { 3739 // Stores to the argument stack area are relative to the stack pointer. 3740 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3741 MVT::i32); 3742 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3743 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3744 Alignment = 3745 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3746 } 3747 3748 if (Outs[i].Flags.isByVal()) { 3749 SDValue SizeNode = 3750 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3751 SDValue Cpy = 3752 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3753 Outs[i].Flags.getNonZeroByValAlign(), 3754 /*isVol = */ false, /*AlwaysInline = */ true, 3755 /*isTailCall = */ false, DstInfo, 3756 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3757 3758 MemOpChains.push_back(Cpy); 3759 } else { 3760 SDValue Store = 3761 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3762 MemOpChains.push_back(Store); 3763 } 3764 } 3765 } 3766 3767 if (!MemOpChains.empty()) 3768 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3769 3770 // Build a sequence of copy-to-reg nodes chained together with token chain 3771 // and flag operands which copy the outgoing args into the appropriate regs. 3772 SDValue InGlue; 3773 for (auto &RegToPass : RegsToPass) { 3774 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3775 RegToPass.second, InGlue); 3776 InGlue = Chain.getValue(1); 3777 } 3778 3779 3780 // We don't usually want to end the call-sequence here because we would tidy 3781 // the frame up *after* the call, however in the ABI-changing tail-call case 3782 // we've carefully laid out the parameters so that when sp is reset they'll be 3783 // in the correct location. 3784 if (IsTailCall && !IsSibCall) { 3785 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); 3786 InGlue = Chain.getValue(1); 3787 } 3788 3789 std::vector<SDValue> Ops; 3790 Ops.push_back(Chain); 3791 Ops.push_back(Callee); 3792 // Add a redundant copy of the callee global which will not be legalized, as 3793 // we need direct access to the callee later. 3794 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3795 const GlobalValue *GV = GSD->getGlobal(); 3796 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3797 } else { 3798 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3799 } 3800 3801 if (IsTailCall) { 3802 // Each tail call may have to adjust the stack by a different amount, so 3803 // this information must travel along with the operation for eventual 3804 // consumption by emitEpilogue. 3805 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3806 } 3807 3808 if (IsChainCallConv) 3809 Ops.push_back(RequestedExec.Node); 3810 3811 // Add argument registers to the end of the list so that they are known live 3812 // into the call. 3813 for (auto &RegToPass : RegsToPass) { 3814 Ops.push_back(DAG.getRegister(RegToPass.first, 3815 RegToPass.second.getValueType())); 3816 } 3817 3818 // Add a register mask operand representing the call-preserved registers. 3819 auto *TRI = static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 3820 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3821 assert(Mask && "Missing call preserved mask for calling convention"); 3822 Ops.push_back(DAG.getRegisterMask(Mask)); 3823 3824 if (InGlue.getNode()) 3825 Ops.push_back(InGlue); 3826 3827 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3828 3829 // If we're doing a tall call, use a TC_RETURN here rather than an 3830 // actual call instruction. 3831 if (IsTailCall) { 3832 MFI.setHasTailCall(); 3833 unsigned OPC = AMDGPUISD::TC_RETURN; 3834 switch (CallConv) { 3835 case CallingConv::AMDGPU_Gfx: 3836 OPC = AMDGPUISD::TC_RETURN_GFX; 3837 break; 3838 case CallingConv::AMDGPU_CS_Chain: 3839 case CallingConv::AMDGPU_CS_ChainPreserve: 3840 OPC = AMDGPUISD::TC_RETURN_CHAIN; 3841 break; 3842 } 3843 3844 return DAG.getNode(OPC, DL, NodeTys, Ops); 3845 } 3846 3847 // Returns a chain and a flag for retval copy to use. 3848 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3849 Chain = Call.getValue(0); 3850 InGlue = Call.getValue(1); 3851 3852 uint64_t CalleePopBytes = NumBytes; 3853 Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL); 3854 if (!Ins.empty()) 3855 InGlue = Chain.getValue(1); 3856 3857 // Handle result values, copying them out of physregs into vregs that we 3858 // return. 3859 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 3860 InVals, IsThisReturn, 3861 IsThisReturn ? OutVals[0] : SDValue()); 3862 } 3863 3864 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3865 // except for applying the wave size scale to the increment amount. 3866 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3867 SDValue Op, SelectionDAG &DAG) const { 3868 const MachineFunction &MF = DAG.getMachineFunction(); 3869 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3870 3871 SDLoc dl(Op); 3872 EVT VT = Op.getValueType(); 3873 SDValue Tmp1 = Op; 3874 SDValue Tmp2 = Op.getValue(1); 3875 SDValue Tmp3 = Op.getOperand(2); 3876 SDValue Chain = Tmp1.getOperand(0); 3877 3878 Register SPReg = Info->getStackPtrOffsetReg(); 3879 3880 // Chain the dynamic stack allocation so that it doesn't modify the stack 3881 // pointer when other instructions are using the stack. 3882 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3883 3884 SDValue Size = Tmp2.getOperand(1); 3885 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3886 Chain = SP.getValue(1); 3887 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3888 const TargetFrameLowering *TFL = Subtarget->getFrameLowering(); 3889 unsigned Opc = 3890 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3891 ISD::ADD : ISD::SUB; 3892 3893 SDValue ScaledSize = DAG.getNode( 3894 ISD::SHL, dl, VT, Size, 3895 DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32)); 3896 3897 Align StackAlign = TFL->getStackAlign(); 3898 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3899 if (Alignment && *Alignment > StackAlign) { 3900 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3901 DAG.getConstant(-(uint64_t)Alignment->value() 3902 << Subtarget->getWavefrontSizeLog2(), 3903 dl, VT)); 3904 } 3905 3906 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3907 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 3908 3909 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3910 } 3911 3912 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3913 SelectionDAG &DAG) const { 3914 // We only handle constant sizes here to allow non-entry block, static sized 3915 // allocas. A truly dynamic value is more difficult to support because we 3916 // don't know if the size value is uniform or not. If the size isn't uniform, 3917 // we would need to do a wave reduction to get the maximum size to know how 3918 // much to increment the uniform stack pointer. 3919 SDValue Size = Op.getOperand(1); 3920 if (isa<ConstantSDNode>(Size)) 3921 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3922 3923 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3924 } 3925 3926 SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { 3927 if (Op.getValueType() != MVT::i32) 3928 return Op; // Defer to cannot select error. 3929 3930 Register SP = getStackPointerRegisterToSaveRestore(); 3931 SDLoc SL(Op); 3932 3933 SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32); 3934 3935 // Convert from wave uniform to swizzled vector address. This should protect 3936 // from any edge cases where the stacksave result isn't directly used with 3937 // stackrestore. 3938 SDValue VectorAddress = 3939 DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP); 3940 return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL); 3941 } 3942 3943 SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op, 3944 SelectionDAG &DAG) const { 3945 SDLoc SL(Op); 3946 assert(Op.getValueType() == MVT::i32); 3947 3948 uint32_t BothRoundHwReg = 3949 AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_MODE, 0, 4); 3950 SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32); 3951 3952 SDValue IntrinID = 3953 DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32); 3954 SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(), 3955 Op.getOperand(0), IntrinID, GetRoundBothImm); 3956 3957 // There are two rounding modes, one for f32 and one for f64/f16. We only 3958 // report in the standard value range if both are the same. 3959 // 3960 // The raw values also differ from the expected FLT_ROUNDS values. Nearest 3961 // ties away from zero is not supported, and the other values are rotated by 3962 // 1. 3963 // 3964 // If the two rounding modes are not the same, report a target defined value. 3965 3966 // Mode register rounding mode fields: 3967 // 3968 // [1:0] Single-precision round mode. 3969 // [3:2] Double/Half-precision round mode. 3970 // 3971 // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero. 3972 // 3973 // Hardware Spec 3974 // Toward-0 3 0 3975 // Nearest Even 0 1 3976 // +Inf 1 2 3977 // -Inf 2 3 3978 // NearestAway0 N/A 4 3979 // 3980 // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit 3981 // table we can index by the raw hardware mode. 3982 // 3983 // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf 3984 3985 SDValue BitTable = 3986 DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64); 3987 3988 SDValue Two = DAG.getConstant(2, SL, MVT::i32); 3989 SDValue RoundModeTimesNumBits = 3990 DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two); 3991 3992 // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we 3993 // knew only one mode was demanded. 3994 SDValue TableValue = 3995 DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits); 3996 SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue); 3997 3998 SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32); 3999 SDValue TableEntry = 4000 DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask); 4001 4002 // There's a gap in the 4-bit encoded table and actual enum values, so offset 4003 // if it's an extended value. 4004 SDValue Four = DAG.getConstant(4, SL, MVT::i32); 4005 SDValue IsStandardValue = 4006 DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT); 4007 SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four); 4008 SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue, 4009 TableEntry, EnumOffset); 4010 4011 return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL); 4012 } 4013 4014 SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { 4015 if (Op->isDivergent()) 4016 return SDValue(); 4017 4018 switch (cast<MemSDNode>(Op)->getAddressSpace()) { 4019 case AMDGPUAS::FLAT_ADDRESS: 4020 case AMDGPUAS::GLOBAL_ADDRESS: 4021 case AMDGPUAS::CONSTANT_ADDRESS: 4022 case AMDGPUAS::CONSTANT_ADDRESS_32BIT: 4023 break; 4024 default: 4025 return SDValue(); 4026 } 4027 4028 return Op; 4029 } 4030 4031 // Work around DAG legality rules only based on the result type. 4032 SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 4033 bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND; 4034 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 4035 EVT SrcVT = Src.getValueType(); 4036 4037 if (SrcVT.getScalarType() != MVT::bf16) 4038 return Op; 4039 4040 SDLoc SL(Op); 4041 SDValue BitCast = 4042 DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src); 4043 4044 EVT DstVT = Op.getValueType(); 4045 if (IsStrict) 4046 llvm_unreachable("Need STRICT_BF16_TO_FP"); 4047 4048 return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast); 4049 } 4050 4051 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 4052 const MachineFunction &MF) const { 4053 Register Reg = StringSwitch<Register>(RegName) 4054 .Case("m0", AMDGPU::M0) 4055 .Case("exec", AMDGPU::EXEC) 4056 .Case("exec_lo", AMDGPU::EXEC_LO) 4057 .Case("exec_hi", AMDGPU::EXEC_HI) 4058 .Case("flat_scratch", AMDGPU::FLAT_SCR) 4059 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 4060 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 4061 .Default(Register()); 4062 4063 if (Reg == AMDGPU::NoRegister) { 4064 report_fatal_error(Twine("invalid register name \"" 4065 + StringRef(RegName) + "\".")); 4066 4067 } 4068 4069 if (!Subtarget->hasFlatScrRegister() && 4070 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 4071 report_fatal_error(Twine("invalid register \"" 4072 + StringRef(RegName) + "\" for subtarget.")); 4073 } 4074 4075 switch (Reg) { 4076 case AMDGPU::M0: 4077 case AMDGPU::EXEC_LO: 4078 case AMDGPU::EXEC_HI: 4079 case AMDGPU::FLAT_SCR_LO: 4080 case AMDGPU::FLAT_SCR_HI: 4081 if (VT.getSizeInBits() == 32) 4082 return Reg; 4083 break; 4084 case AMDGPU::EXEC: 4085 case AMDGPU::FLAT_SCR: 4086 if (VT.getSizeInBits() == 64) 4087 return Reg; 4088 break; 4089 default: 4090 llvm_unreachable("missing register type checking"); 4091 } 4092 4093 report_fatal_error(Twine("invalid type for register \"" 4094 + StringRef(RegName) + "\".")); 4095 } 4096 4097 // If kill is not the last instruction, split the block so kill is always a 4098 // proper terminator. 4099 MachineBasicBlock * 4100 SITargetLowering::splitKillBlock(MachineInstr &MI, 4101 MachineBasicBlock *BB) const { 4102 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 4103 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4104 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 4105 return SplitBB; 4106 } 4107 4108 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 4109 // \p MI will be the only instruction in the loop body block. Otherwise, it will 4110 // be the first instruction in the remainder block. 4111 // 4112 /// \returns { LoopBody, Remainder } 4113 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 4114 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 4115 MachineFunction *MF = MBB.getParent(); 4116 MachineBasicBlock::iterator I(&MI); 4117 4118 // To insert the loop we need to split the block. Move everything after this 4119 // point to a new block, and insert a new empty block between the two. 4120 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 4121 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 4122 MachineFunction::iterator MBBI(MBB); 4123 ++MBBI; 4124 4125 MF->insert(MBBI, LoopBB); 4126 MF->insert(MBBI, RemainderBB); 4127 4128 LoopBB->addSuccessor(LoopBB); 4129 LoopBB->addSuccessor(RemainderBB); 4130 4131 // Move the rest of the block into a new block. 4132 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 4133 4134 if (InstInLoop) { 4135 auto Next = std::next(I); 4136 4137 // Move instruction to loop body. 4138 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 4139 4140 // Move the rest of the block. 4141 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 4142 } else { 4143 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 4144 } 4145 4146 MBB.addSuccessor(LoopBB); 4147 4148 return std::pair(LoopBB, RemainderBB); 4149 } 4150 4151 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 4152 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 4153 MachineBasicBlock *MBB = MI.getParent(); 4154 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4155 auto I = MI.getIterator(); 4156 auto E = std::next(I); 4157 4158 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 4159 .addImm(0); 4160 4161 MIBundleBuilder Bundler(*MBB, I, E); 4162 finalizeBundle(*MBB, Bundler.begin()); 4163 } 4164 4165 MachineBasicBlock * 4166 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 4167 MachineBasicBlock *BB) const { 4168 const DebugLoc &DL = MI.getDebugLoc(); 4169 4170 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4171 4172 MachineBasicBlock *LoopBB; 4173 MachineBasicBlock *RemainderBB; 4174 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4175 4176 // Apparently kill flags are only valid if the def is in the same block? 4177 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 4178 Src->setIsKill(false); 4179 4180 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 4181 4182 MachineBasicBlock::iterator I = LoopBB->end(); 4183 4184 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 4185 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 4186 4187 // Clear TRAP_STS.MEM_VIOL 4188 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 4189 .addImm(0) 4190 .addImm(EncodedReg); 4191 4192 bundleInstWithWaitcnt(MI); 4193 4194 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 4195 4196 // Load and check TRAP_STS.MEM_VIOL 4197 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 4198 .addImm(EncodedReg); 4199 4200 // FIXME: Do we need to use an isel pseudo that may clobber scc? 4201 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4202 .addReg(Reg, RegState::Kill) 4203 .addImm(0); 4204 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4205 .addMBB(LoopBB); 4206 4207 return RemainderBB; 4208 } 4209 4210 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 4211 // wavefront. If the value is uniform and just happens to be in a VGPR, this 4212 // will only do one iteration. In the worst case, this will loop 64 times. 4213 // 4214 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 4215 static MachineBasicBlock::iterator 4216 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 4217 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 4218 const DebugLoc &DL, const MachineOperand &Idx, 4219 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 4220 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 4221 Register &SGPRIdxReg) { 4222 4223 MachineFunction *MF = OrigBB.getParent(); 4224 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4225 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4226 MachineBasicBlock::iterator I = LoopBB.begin(); 4227 4228 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4229 Register PhiExec = MRI.createVirtualRegister(BoolRC); 4230 Register NewExec = MRI.createVirtualRegister(BoolRC); 4231 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 4232 Register CondReg = MRI.createVirtualRegister(BoolRC); 4233 4234 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 4235 .addReg(InitReg) 4236 .addMBB(&OrigBB) 4237 .addReg(ResultReg) 4238 .addMBB(&LoopBB); 4239 4240 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 4241 .addReg(InitSaveExecReg) 4242 .addMBB(&OrigBB) 4243 .addReg(NewExec) 4244 .addMBB(&LoopBB); 4245 4246 // Read the next variant <- also loop target. 4247 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 4248 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 4249 4250 // Compare the just read M0 value to all possible Idx values. 4251 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 4252 .addReg(CurrentIdxReg) 4253 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 4254 4255 // Update EXEC, save the original EXEC value to VCC. 4256 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 4257 : AMDGPU::S_AND_SAVEEXEC_B64), 4258 NewExec) 4259 .addReg(CondReg, RegState::Kill); 4260 4261 MRI.setSimpleHint(NewExec, CondReg); 4262 4263 if (UseGPRIdxMode) { 4264 if (Offset == 0) { 4265 SGPRIdxReg = CurrentIdxReg; 4266 } else { 4267 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 4268 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 4269 .addReg(CurrentIdxReg, RegState::Kill) 4270 .addImm(Offset); 4271 } 4272 } else { 4273 // Move index from VCC into M0 4274 if (Offset == 0) { 4275 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4276 .addReg(CurrentIdxReg, RegState::Kill); 4277 } else { 4278 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 4279 .addReg(CurrentIdxReg, RegState::Kill) 4280 .addImm(Offset); 4281 } 4282 } 4283 4284 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 4285 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4286 MachineInstr *InsertPt = 4287 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 4288 : AMDGPU::S_XOR_B64_term), Exec) 4289 .addReg(Exec) 4290 .addReg(NewExec); 4291 4292 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 4293 // s_cbranch_scc0? 4294 4295 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 4296 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 4297 .addMBB(&LoopBB); 4298 4299 return InsertPt->getIterator(); 4300 } 4301 4302 // This has slightly sub-optimal regalloc when the source vector is killed by 4303 // the read. The register allocator does not understand that the kill is 4304 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 4305 // subregister from it, using 1 more VGPR than necessary. This was saved when 4306 // this was expanded after register allocation. 4307 static MachineBasicBlock::iterator 4308 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 4309 unsigned InitResultReg, unsigned PhiReg, int Offset, 4310 bool UseGPRIdxMode, Register &SGPRIdxReg) { 4311 MachineFunction *MF = MBB.getParent(); 4312 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4313 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4314 MachineRegisterInfo &MRI = MF->getRegInfo(); 4315 const DebugLoc &DL = MI.getDebugLoc(); 4316 MachineBasicBlock::iterator I(&MI); 4317 4318 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4319 Register DstReg = MI.getOperand(0).getReg(); 4320 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 4321 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 4322 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4323 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 4324 4325 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 4326 4327 // Save the EXEC mask 4328 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 4329 .addReg(Exec); 4330 4331 MachineBasicBlock *LoopBB; 4332 MachineBasicBlock *RemainderBB; 4333 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 4334 4335 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4336 4337 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 4338 InitResultReg, DstReg, PhiReg, TmpExec, 4339 Offset, UseGPRIdxMode, SGPRIdxReg); 4340 4341 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 4342 MachineFunction::iterator MBBI(LoopBB); 4343 ++MBBI; 4344 MF->insert(MBBI, LandingPad); 4345 LoopBB->removeSuccessor(RemainderBB); 4346 LandingPad->addSuccessor(RemainderBB); 4347 LoopBB->addSuccessor(LandingPad); 4348 MachineBasicBlock::iterator First = LandingPad->begin(); 4349 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 4350 .addReg(SaveExec); 4351 4352 return InsPt; 4353 } 4354 4355 // Returns subreg index, offset 4356 static std::pair<unsigned, int> 4357 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 4358 const TargetRegisterClass *SuperRC, 4359 unsigned VecReg, 4360 int Offset) { 4361 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 4362 4363 // Skip out of bounds offsets, or else we would end up using an undefined 4364 // register. 4365 if (Offset >= NumElts || Offset < 0) 4366 return std::pair(AMDGPU::sub0, Offset); 4367 4368 return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 4369 } 4370 4371 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 4372 MachineRegisterInfo &MRI, MachineInstr &MI, 4373 int Offset) { 4374 MachineBasicBlock *MBB = MI.getParent(); 4375 const DebugLoc &DL = MI.getDebugLoc(); 4376 MachineBasicBlock::iterator I(&MI); 4377 4378 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4379 4380 assert(Idx->getReg() != AMDGPU::NoRegister); 4381 4382 if (Offset == 0) { 4383 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 4384 } else { 4385 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 4386 .add(*Idx) 4387 .addImm(Offset); 4388 } 4389 } 4390 4391 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 4392 MachineRegisterInfo &MRI, MachineInstr &MI, 4393 int Offset) { 4394 MachineBasicBlock *MBB = MI.getParent(); 4395 const DebugLoc &DL = MI.getDebugLoc(); 4396 MachineBasicBlock::iterator I(&MI); 4397 4398 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4399 4400 if (Offset == 0) 4401 return Idx->getReg(); 4402 4403 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 4404 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 4405 .add(*Idx) 4406 .addImm(Offset); 4407 return Tmp; 4408 } 4409 4410 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 4411 MachineBasicBlock &MBB, 4412 const GCNSubtarget &ST) { 4413 const SIInstrInfo *TII = ST.getInstrInfo(); 4414 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 4415 MachineFunction *MF = MBB.getParent(); 4416 MachineRegisterInfo &MRI = MF->getRegInfo(); 4417 4418 Register Dst = MI.getOperand(0).getReg(); 4419 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4420 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 4421 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 4422 4423 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 4424 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 4425 4426 unsigned SubReg; 4427 std::tie(SubReg, Offset) 4428 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 4429 4430 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 4431 4432 // Check for a SGPR index. 4433 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 4434 MachineBasicBlock::iterator I(&MI); 4435 const DebugLoc &DL = MI.getDebugLoc(); 4436 4437 if (UseGPRIdxMode) { 4438 // TODO: Look at the uses to avoid the copy. This may require rescheduling 4439 // to avoid interfering with other uses, so probably requires a new 4440 // optimization pass. 4441 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 4442 4443 const MCInstrDesc &GPRIDXDesc = 4444 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 4445 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 4446 .addReg(SrcReg) 4447 .addReg(Idx) 4448 .addImm(SubReg); 4449 } else { 4450 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 4451 4452 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 4453 .addReg(SrcReg, 0, SubReg) 4454 .addReg(SrcReg, RegState::Implicit); 4455 } 4456 4457 MI.eraseFromParent(); 4458 4459 return &MBB; 4460 } 4461 4462 // Control flow needs to be inserted if indexing with a VGPR. 4463 const DebugLoc &DL = MI.getDebugLoc(); 4464 MachineBasicBlock::iterator I(&MI); 4465 4466 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4467 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4468 4469 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 4470 4471 Register SGPRIdxReg; 4472 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 4473 UseGPRIdxMode, SGPRIdxReg); 4474 4475 MachineBasicBlock *LoopBB = InsPt->getParent(); 4476 4477 if (UseGPRIdxMode) { 4478 const MCInstrDesc &GPRIDXDesc = 4479 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 4480 4481 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 4482 .addReg(SrcReg) 4483 .addReg(SGPRIdxReg) 4484 .addImm(SubReg); 4485 } else { 4486 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 4487 .addReg(SrcReg, 0, SubReg) 4488 .addReg(SrcReg, RegState::Implicit); 4489 } 4490 4491 MI.eraseFromParent(); 4492 4493 return LoopBB; 4494 } 4495 4496 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 4497 MachineBasicBlock &MBB, 4498 const GCNSubtarget &ST) { 4499 const SIInstrInfo *TII = ST.getInstrInfo(); 4500 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 4501 MachineFunction *MF = MBB.getParent(); 4502 MachineRegisterInfo &MRI = MF->getRegInfo(); 4503 4504 Register Dst = MI.getOperand(0).getReg(); 4505 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 4506 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4507 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 4508 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 4509 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 4510 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 4511 4512 // This can be an immediate, but will be folded later. 4513 assert(Val->getReg()); 4514 4515 unsigned SubReg; 4516 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 4517 SrcVec->getReg(), 4518 Offset); 4519 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 4520 4521 if (Idx->getReg() == AMDGPU::NoRegister) { 4522 MachineBasicBlock::iterator I(&MI); 4523 const DebugLoc &DL = MI.getDebugLoc(); 4524 4525 assert(Offset == 0); 4526 4527 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 4528 .add(*SrcVec) 4529 .add(*Val) 4530 .addImm(SubReg); 4531 4532 MI.eraseFromParent(); 4533 return &MBB; 4534 } 4535 4536 // Check for a SGPR index. 4537 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 4538 MachineBasicBlock::iterator I(&MI); 4539 const DebugLoc &DL = MI.getDebugLoc(); 4540 4541 if (UseGPRIdxMode) { 4542 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 4543 4544 const MCInstrDesc &GPRIDXDesc = 4545 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4546 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 4547 .addReg(SrcVec->getReg()) 4548 .add(*Val) 4549 .addReg(Idx) 4550 .addImm(SubReg); 4551 } else { 4552 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 4553 4554 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4555 TRI.getRegSizeInBits(*VecRC), 32, false); 4556 BuildMI(MBB, I, DL, MovRelDesc, Dst) 4557 .addReg(SrcVec->getReg()) 4558 .add(*Val) 4559 .addImm(SubReg); 4560 } 4561 MI.eraseFromParent(); 4562 return &MBB; 4563 } 4564 4565 // Control flow needs to be inserted if indexing with a VGPR. 4566 if (Val->isReg()) 4567 MRI.clearKillFlags(Val->getReg()); 4568 4569 const DebugLoc &DL = MI.getDebugLoc(); 4570 4571 Register PhiReg = MRI.createVirtualRegister(VecRC); 4572 4573 Register SGPRIdxReg; 4574 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 4575 UseGPRIdxMode, SGPRIdxReg); 4576 MachineBasicBlock *LoopBB = InsPt->getParent(); 4577 4578 if (UseGPRIdxMode) { 4579 const MCInstrDesc &GPRIDXDesc = 4580 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4581 4582 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 4583 .addReg(PhiReg) 4584 .add(*Val) 4585 .addReg(SGPRIdxReg) 4586 .addImm(AMDGPU::sub0); 4587 } else { 4588 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4589 TRI.getRegSizeInBits(*VecRC), 32, false); 4590 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 4591 .addReg(PhiReg) 4592 .add(*Val) 4593 .addImm(AMDGPU::sub0); 4594 } 4595 4596 MI.eraseFromParent(); 4597 return LoopBB; 4598 } 4599 4600 static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI, 4601 MachineBasicBlock &BB, 4602 const GCNSubtarget &ST, 4603 unsigned Opc) { 4604 MachineRegisterInfo &MRI = BB.getParent()->getRegInfo(); 4605 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4606 const DebugLoc &DL = MI.getDebugLoc(); 4607 const SIInstrInfo *TII = ST.getInstrInfo(); 4608 4609 // Reduction operations depend on whether the input operand is SGPR or VGPR. 4610 Register SrcReg = MI.getOperand(1).getReg(); 4611 bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg)); 4612 Register DstReg = MI.getOperand(0).getReg(); 4613 MachineBasicBlock *RetBB = nullptr; 4614 if (isSGPR) { 4615 // These operations with a uniform value i.e. SGPR are idempotent. 4616 // Reduced value will be same as given sgpr. 4617 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg); 4618 RetBB = &BB; 4619 } else { 4620 // TODO: Implement DPP Strategy and switch based on immediate strategy 4621 // operand. For now, for all the cases (default, Iterative and DPP we use 4622 // iterative approach by default.) 4623 4624 // To reduce the VGPR using iterative approach, we need to iterate 4625 // over all the active lanes. Lowering consists of ComputeLoop, 4626 // which iterate over only active lanes. We use copy of EXEC register 4627 // as induction variable and every active lane modifies it using bitset0 4628 // so that we will get the next active lane for next iteration. 4629 MachineBasicBlock::iterator I = BB.end(); 4630 Register SrcReg = MI.getOperand(1).getReg(); 4631 4632 // Create Control flow for loop 4633 // Split MI's Machine Basic block into For loop 4634 auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true); 4635 4636 // Create virtual registers required for lowering. 4637 const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass(); 4638 const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg); 4639 Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass); 4640 Register InitalValReg = MRI.createVirtualRegister(DstRegClass); 4641 4642 Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass); 4643 Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); 4644 Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); 4645 4646 Register FF1Reg = MRI.createVirtualRegister(DstRegClass); 4647 Register LaneValueReg = MRI.createVirtualRegister(DstRegClass); 4648 4649 bool IsWave32 = ST.isWave32(); 4650 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 4651 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4652 4653 // Create initail values of induction variable from Exec, Accumulator and 4654 // insert branch instr to newly created ComputeBlockk 4655 uint32_t InitalValue = 4656 (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0; 4657 auto TmpSReg = 4658 BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg); 4659 BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg) 4660 .addImm(InitalValue); 4661 BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop); 4662 4663 // Start constructing ComputeLoop 4664 I = ComputeLoop->end(); 4665 auto Accumulator = 4666 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg) 4667 .addReg(InitalValReg) 4668 .addMBB(&BB); 4669 auto ActiveBits = 4670 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg) 4671 .addReg(TmpSReg->getOperand(0).getReg()) 4672 .addMBB(&BB); 4673 4674 // Perform the computations 4675 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64; 4676 auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg) 4677 .addReg(ActiveBits->getOperand(0).getReg()); 4678 auto LaneValue = BuildMI(*ComputeLoop, I, DL, 4679 TII->get(AMDGPU::V_READLANE_B32), LaneValueReg) 4680 .addReg(SrcReg) 4681 .addReg(FF1->getOperand(0).getReg()); 4682 auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg) 4683 .addReg(Accumulator->getOperand(0).getReg()) 4684 .addReg(LaneValue->getOperand(0).getReg()); 4685 4686 // Manipulate the iterator to get the next active lane 4687 unsigned BITSETOpc = 4688 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64; 4689 auto NewActiveBits = 4690 BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg) 4691 .addReg(FF1->getOperand(0).getReg()) 4692 .addReg(ActiveBits->getOperand(0).getReg()); 4693 4694 // Add phi nodes 4695 Accumulator.addReg(NewAccumulator->getOperand(0).getReg()) 4696 .addMBB(ComputeLoop); 4697 ActiveBits.addReg(NewActiveBits->getOperand(0).getReg()) 4698 .addMBB(ComputeLoop); 4699 4700 // Creating branching 4701 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64; 4702 BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc)) 4703 .addReg(NewActiveBits->getOperand(0).getReg()) 4704 .addImm(0); 4705 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4706 .addMBB(ComputeLoop); 4707 4708 RetBB = ComputeEnd; 4709 } 4710 MI.eraseFromParent(); 4711 return RetBB; 4712 } 4713 4714 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 4715 MachineInstr &MI, MachineBasicBlock *BB) const { 4716 4717 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4718 MachineFunction *MF = BB->getParent(); 4719 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 4720 4721 switch (MI.getOpcode()) { 4722 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32: 4723 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32); 4724 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32: 4725 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32); 4726 case AMDGPU::S_UADDO_PSEUDO: 4727 case AMDGPU::S_USUBO_PSEUDO: { 4728 const DebugLoc &DL = MI.getDebugLoc(); 4729 MachineOperand &Dest0 = MI.getOperand(0); 4730 MachineOperand &Dest1 = MI.getOperand(1); 4731 MachineOperand &Src0 = MI.getOperand(2); 4732 MachineOperand &Src1 = MI.getOperand(3); 4733 4734 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 4735 ? AMDGPU::S_ADD_I32 4736 : AMDGPU::S_SUB_I32; 4737 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 4738 4739 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 4740 .addImm(1) 4741 .addImm(0); 4742 4743 MI.eraseFromParent(); 4744 return BB; 4745 } 4746 case AMDGPU::S_ADD_U64_PSEUDO: 4747 case AMDGPU::S_SUB_U64_PSEUDO: { 4748 // For targets older than GFX12, we emit a sequence of 32-bit operations. 4749 // For GFX12, we emit s_add_u64 and s_sub_u64. 4750 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4751 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4752 const DebugLoc &DL = MI.getDebugLoc(); 4753 MachineOperand &Dest = MI.getOperand(0); 4754 MachineOperand &Src0 = MI.getOperand(1); 4755 MachineOperand &Src1 = MI.getOperand(2); 4756 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4757 if (Subtarget->hasScalarAddSub64()) { 4758 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64; 4759 BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg()) 4760 .addReg(Src0.getReg()) 4761 .addReg(Src1.getReg()); 4762 } else { 4763 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4764 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4765 4766 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4767 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4768 4769 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4770 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4771 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4772 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4773 4774 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4775 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4776 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4777 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4778 4779 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4780 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4781 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4782 .add(Src0Sub0) 4783 .add(Src1Sub0); 4784 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4785 .add(Src0Sub1) 4786 .add(Src1Sub1); 4787 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4788 .addReg(DestSub0) 4789 .addImm(AMDGPU::sub0) 4790 .addReg(DestSub1) 4791 .addImm(AMDGPU::sub1); 4792 } 4793 MI.eraseFromParent(); 4794 return BB; 4795 } 4796 case AMDGPU::V_ADD_U64_PSEUDO: 4797 case AMDGPU::V_SUB_U64_PSEUDO: { 4798 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4799 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4800 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4801 const DebugLoc &DL = MI.getDebugLoc(); 4802 4803 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4804 4805 MachineOperand &Dest = MI.getOperand(0); 4806 MachineOperand &Src0 = MI.getOperand(1); 4807 MachineOperand &Src1 = MI.getOperand(2); 4808 4809 if (IsAdd && ST.hasLshlAddB64()) { 4810 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), 4811 Dest.getReg()) 4812 .add(Src0) 4813 .addImm(0) 4814 .add(Src1); 4815 TII->legalizeOperands(*Add); 4816 MI.eraseFromParent(); 4817 return BB; 4818 } 4819 4820 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4821 4822 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4823 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4824 4825 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4826 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4827 4828 const TargetRegisterClass *Src0RC = Src0.isReg() 4829 ? MRI.getRegClass(Src0.getReg()) 4830 : &AMDGPU::VReg_64RegClass; 4831 const TargetRegisterClass *Src1RC = Src1.isReg() 4832 ? MRI.getRegClass(Src1.getReg()) 4833 : &AMDGPU::VReg_64RegClass; 4834 4835 const TargetRegisterClass *Src0SubRC = 4836 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); 4837 const TargetRegisterClass *Src1SubRC = 4838 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); 4839 4840 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4841 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4842 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4843 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4844 4845 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4846 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4847 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4848 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4849 4850 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4851 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4852 .addReg(CarryReg, RegState::Define) 4853 .add(SrcReg0Sub0) 4854 .add(SrcReg1Sub0) 4855 .addImm(0); // clamp bit 4856 4857 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4858 MachineInstr *HiHalf = 4859 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4860 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4861 .add(SrcReg0Sub1) 4862 .add(SrcReg1Sub1) 4863 .addReg(CarryReg, RegState::Kill) 4864 .addImm(0); // clamp bit 4865 4866 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4867 .addReg(DestSub0) 4868 .addImm(AMDGPU::sub0) 4869 .addReg(DestSub1) 4870 .addImm(AMDGPU::sub1); 4871 TII->legalizeOperands(*LoHalf); 4872 TII->legalizeOperands(*HiHalf); 4873 MI.eraseFromParent(); 4874 return BB; 4875 } 4876 case AMDGPU::S_ADD_CO_PSEUDO: 4877 case AMDGPU::S_SUB_CO_PSEUDO: { 4878 // This pseudo has a chance to be selected 4879 // only from uniform add/subcarry node. All the VGPR operands 4880 // therefore assumed to be splat vectors. 4881 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4882 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4883 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4884 MachineBasicBlock::iterator MII = MI; 4885 const DebugLoc &DL = MI.getDebugLoc(); 4886 MachineOperand &Dest = MI.getOperand(0); 4887 MachineOperand &CarryDest = MI.getOperand(1); 4888 MachineOperand &Src0 = MI.getOperand(2); 4889 MachineOperand &Src1 = MI.getOperand(3); 4890 MachineOperand &Src2 = MI.getOperand(4); 4891 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4892 ? AMDGPU::S_ADDC_U32 4893 : AMDGPU::S_SUBB_U32; 4894 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4895 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4896 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4897 .addReg(Src0.getReg()); 4898 Src0.setReg(RegOp0); 4899 } 4900 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4901 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4902 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4903 .addReg(Src1.getReg()); 4904 Src1.setReg(RegOp1); 4905 } 4906 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4907 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4908 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4909 .addReg(Src2.getReg()); 4910 Src2.setReg(RegOp2); 4911 } 4912 4913 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4914 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4915 assert(WaveSize == 64 || WaveSize == 32); 4916 4917 if (WaveSize == 64) { 4918 if (ST.hasScalarCompareEq64()) { 4919 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4920 .addReg(Src2.getReg()) 4921 .addImm(0); 4922 } else { 4923 const TargetRegisterClass *SubRC = 4924 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); 4925 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4926 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4927 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4928 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4929 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4930 4931 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4932 .add(Src2Sub0) 4933 .add(Src2Sub1); 4934 4935 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4936 .addReg(Src2_32, RegState::Kill) 4937 .addImm(0); 4938 } 4939 } else { 4940 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4941 .addReg(Src2.getReg()) 4942 .addImm(0); 4943 } 4944 4945 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4946 4947 unsigned SelOpc = 4948 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4949 4950 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4951 .addImm(-1) 4952 .addImm(0); 4953 4954 MI.eraseFromParent(); 4955 return BB; 4956 } 4957 case AMDGPU::SI_INIT_M0: { 4958 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4959 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4960 .add(MI.getOperand(0)); 4961 MI.eraseFromParent(); 4962 return BB; 4963 } 4964 case AMDGPU::GET_GROUPSTATICSIZE: { 4965 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4966 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4967 DebugLoc DL = MI.getDebugLoc(); 4968 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4969 .add(MI.getOperand(0)) 4970 .addImm(MFI->getLDSSize()); 4971 MI.eraseFromParent(); 4972 return BB; 4973 } 4974 case AMDGPU::GET_SHADERCYCLESHILO: { 4975 assert(MF->getSubtarget<GCNSubtarget>().hasShaderCyclesHiLoRegisters()); 4976 MachineRegisterInfo &MRI = MF->getRegInfo(); 4977 const DebugLoc &DL = MI.getDebugLoc(); 4978 // The algorithm is: 4979 // 4980 // hi1 = getreg(SHADER_CYCLES_HI) 4981 // lo1 = getreg(SHADER_CYCLES_LO) 4982 // hi2 = getreg(SHADER_CYCLES_HI) 4983 // 4984 // If hi1 == hi2 then there was no overflow and the result is hi2:lo1. 4985 // Otherwise there was overflow and the result is hi2:0. In both cases the 4986 // result should represent the actual time at some point during the sequence 4987 // of three getregs. 4988 Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4989 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1) 4990 .addImm(AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES_HI, 4991 0, 32)); 4992 Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4993 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1) 4994 .addImm( 4995 AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES, 0, 32)); 4996 Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4997 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2) 4998 .addImm(AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES_HI, 4999 0, 32)); 5000 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) 5001 .addReg(RegHi1) 5002 .addReg(RegHi2); 5003 Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 5004 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo) 5005 .addReg(RegLo1) 5006 .addImm(0); 5007 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE)) 5008 .add(MI.getOperand(0)) 5009 .addReg(RegLo) 5010 .addImm(AMDGPU::sub0) 5011 .addReg(RegHi2) 5012 .addImm(AMDGPU::sub1); 5013 MI.eraseFromParent(); 5014 return BB; 5015 } 5016 case AMDGPU::SI_INDIRECT_SRC_V1: 5017 case AMDGPU::SI_INDIRECT_SRC_V2: 5018 case AMDGPU::SI_INDIRECT_SRC_V4: 5019 case AMDGPU::SI_INDIRECT_SRC_V8: 5020 case AMDGPU::SI_INDIRECT_SRC_V9: 5021 case AMDGPU::SI_INDIRECT_SRC_V10: 5022 case AMDGPU::SI_INDIRECT_SRC_V11: 5023 case AMDGPU::SI_INDIRECT_SRC_V12: 5024 case AMDGPU::SI_INDIRECT_SRC_V16: 5025 case AMDGPU::SI_INDIRECT_SRC_V32: 5026 return emitIndirectSrc(MI, *BB, *getSubtarget()); 5027 case AMDGPU::SI_INDIRECT_DST_V1: 5028 case AMDGPU::SI_INDIRECT_DST_V2: 5029 case AMDGPU::SI_INDIRECT_DST_V4: 5030 case AMDGPU::SI_INDIRECT_DST_V8: 5031 case AMDGPU::SI_INDIRECT_DST_V9: 5032 case AMDGPU::SI_INDIRECT_DST_V10: 5033 case AMDGPU::SI_INDIRECT_DST_V11: 5034 case AMDGPU::SI_INDIRECT_DST_V12: 5035 case AMDGPU::SI_INDIRECT_DST_V16: 5036 case AMDGPU::SI_INDIRECT_DST_V32: 5037 return emitIndirectDst(MI, *BB, *getSubtarget()); 5038 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 5039 case AMDGPU::SI_KILL_I1_PSEUDO: 5040 return splitKillBlock(MI, BB); 5041 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 5042 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5043 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 5044 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5045 5046 Register Dst = MI.getOperand(0).getReg(); 5047 const MachineOperand &Src0 = MI.getOperand(1); 5048 const MachineOperand &Src1 = MI.getOperand(2); 5049 const DebugLoc &DL = MI.getDebugLoc(); 5050 Register SrcCond = MI.getOperand(3).getReg(); 5051 5052 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5053 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5054 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5055 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 5056 5057 const TargetRegisterClass *Src0RC = Src0.isReg() 5058 ? MRI.getRegClass(Src0.getReg()) 5059 : &AMDGPU::VReg_64RegClass; 5060 const TargetRegisterClass *Src1RC = Src1.isReg() 5061 ? MRI.getRegClass(Src1.getReg()) 5062 : &AMDGPU::VReg_64RegClass; 5063 5064 const TargetRegisterClass *Src0SubRC = 5065 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); 5066 const TargetRegisterClass *Src1SubRC = 5067 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); 5068 5069 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 5070 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 5071 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 5072 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 5073 5074 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 5075 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 5076 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 5077 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 5078 5079 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 5080 .addReg(SrcCond); 5081 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 5082 .addImm(0) 5083 .add(Src0Sub0) 5084 .addImm(0) 5085 .add(Src1Sub0) 5086 .addReg(SrcCondCopy); 5087 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 5088 .addImm(0) 5089 .add(Src0Sub1) 5090 .addImm(0) 5091 .add(Src1Sub1) 5092 .addReg(SrcCondCopy); 5093 5094 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 5095 .addReg(DstLo) 5096 .addImm(AMDGPU::sub0) 5097 .addReg(DstHi) 5098 .addImm(AMDGPU::sub1); 5099 MI.eraseFromParent(); 5100 return BB; 5101 } 5102 case AMDGPU::SI_BR_UNDEF: { 5103 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 5104 const DebugLoc &DL = MI.getDebugLoc(); 5105 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 5106 .add(MI.getOperand(0)); 5107 Br->getOperand(1).setIsUndef(); // read undef SCC 5108 MI.eraseFromParent(); 5109 return BB; 5110 } 5111 case AMDGPU::ADJCALLSTACKUP: 5112 case AMDGPU::ADJCALLSTACKDOWN: { 5113 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 5114 MachineInstrBuilder MIB(*MF, &MI); 5115 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 5116 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 5117 return BB; 5118 } 5119 case AMDGPU::SI_CALL_ISEL: { 5120 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 5121 const DebugLoc &DL = MI.getDebugLoc(); 5122 5123 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 5124 5125 MachineInstrBuilder MIB; 5126 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 5127 5128 for (const MachineOperand &MO : MI.operands()) 5129 MIB.add(MO); 5130 5131 MIB.cloneMemRefs(MI); 5132 MI.eraseFromParent(); 5133 return BB; 5134 } 5135 case AMDGPU::V_ADD_CO_U32_e32: 5136 case AMDGPU::V_SUB_CO_U32_e32: 5137 case AMDGPU::V_SUBREV_CO_U32_e32: { 5138 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 5139 const DebugLoc &DL = MI.getDebugLoc(); 5140 unsigned Opc = MI.getOpcode(); 5141 5142 bool NeedClampOperand = false; 5143 if (TII->pseudoToMCOpcode(Opc) == -1) { 5144 Opc = AMDGPU::getVOPe64(Opc); 5145 NeedClampOperand = true; 5146 } 5147 5148 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 5149 if (TII->isVOP3(*I)) { 5150 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 5151 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5152 I.addReg(TRI->getVCC(), RegState::Define); 5153 } 5154 I.add(MI.getOperand(1)) 5155 .add(MI.getOperand(2)); 5156 if (NeedClampOperand) 5157 I.addImm(0); // clamp bit for e64 encoding 5158 5159 TII->legalizeOperands(*I); 5160 5161 MI.eraseFromParent(); 5162 return BB; 5163 } 5164 case AMDGPU::V_ADDC_U32_e32: 5165 case AMDGPU::V_SUBB_U32_e32: 5166 case AMDGPU::V_SUBBREV_U32_e32: 5167 // These instructions have an implicit use of vcc which counts towards the 5168 // constant bus limit. 5169 TII->legalizeOperands(MI); 5170 return BB; 5171 case AMDGPU::DS_GWS_INIT: 5172 case AMDGPU::DS_GWS_SEMA_BR: 5173 case AMDGPU::DS_GWS_BARRIER: 5174 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); 5175 [[fallthrough]]; 5176 case AMDGPU::DS_GWS_SEMA_V: 5177 case AMDGPU::DS_GWS_SEMA_P: 5178 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 5179 // A s_waitcnt 0 is required to be the instruction immediately following. 5180 if (getSubtarget()->hasGWSAutoReplay()) { 5181 bundleInstWithWaitcnt(MI); 5182 return BB; 5183 } 5184 5185 return emitGWSMemViolTestLoop(MI, BB); 5186 case AMDGPU::S_SETREG_B32: { 5187 // Try to optimize cases that only set the denormal mode or rounding mode. 5188 // 5189 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 5190 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 5191 // instead. 5192 // 5193 // FIXME: This could be predicates on the immediate, but tablegen doesn't 5194 // allow you to have a no side effect instruction in the output of a 5195 // sideeffecting pattern. 5196 unsigned ID, Offset, Width; 5197 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 5198 if (ID != AMDGPU::Hwreg::ID_MODE) 5199 return BB; 5200 5201 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 5202 const unsigned SetMask = WidthMask << Offset; 5203 5204 if (getSubtarget()->hasDenormModeInst()) { 5205 unsigned SetDenormOp = 0; 5206 unsigned SetRoundOp = 0; 5207 5208 // The dedicated instructions can only set the whole denorm or round mode 5209 // at once, not a subset of bits in either. 5210 if (SetMask == 5211 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 5212 // If this fully sets both the round and denorm mode, emit the two 5213 // dedicated instructions for these. 5214 SetRoundOp = AMDGPU::S_ROUND_MODE; 5215 SetDenormOp = AMDGPU::S_DENORM_MODE; 5216 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 5217 SetRoundOp = AMDGPU::S_ROUND_MODE; 5218 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 5219 SetDenormOp = AMDGPU::S_DENORM_MODE; 5220 } 5221 5222 if (SetRoundOp || SetDenormOp) { 5223 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5224 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 5225 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 5226 unsigned ImmVal = Def->getOperand(1).getImm(); 5227 if (SetRoundOp) { 5228 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 5229 .addImm(ImmVal & 0xf); 5230 5231 // If we also have the denorm mode, get just the denorm mode bits. 5232 ImmVal >>= 4; 5233 } 5234 5235 if (SetDenormOp) { 5236 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 5237 .addImm(ImmVal & 0xf); 5238 } 5239 5240 MI.eraseFromParent(); 5241 return BB; 5242 } 5243 } 5244 } 5245 5246 // If only FP bits are touched, used the no side effects pseudo. 5247 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 5248 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 5249 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 5250 5251 return BB; 5252 } 5253 case AMDGPU::S_INVERSE_BALLOT_U32: 5254 case AMDGPU::S_INVERSE_BALLOT_U64: { 5255 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5256 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 5257 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5258 const DebugLoc &DL = MI.getDebugLoc(); 5259 const Register DstReg = MI.getOperand(0).getReg(); 5260 Register MaskReg = MI.getOperand(1).getReg(); 5261 5262 const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg); 5263 5264 if (IsVALU) { 5265 MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI); 5266 } 5267 5268 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg); 5269 MI.eraseFromParent(); 5270 return BB; 5271 } 5272 case AMDGPU::ENDPGM_TRAP: { 5273 const DebugLoc &DL = MI.getDebugLoc(); 5274 if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) { 5275 MI.setDesc(TII->get(AMDGPU::S_ENDPGM)); 5276 MI.addOperand(MachineOperand::CreateImm(0)); 5277 return BB; 5278 } 5279 5280 // We need a block split to make the real endpgm a terminator. We also don't 5281 // want to break phis in successor blocks, so we can't just delete to the 5282 // end of the block. 5283 5284 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 5285 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 5286 MF->push_back(TrapBB); 5287 BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM)) 5288 .addImm(0); 5289 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 5290 .addMBB(TrapBB); 5291 5292 BB->addSuccessor(TrapBB); 5293 MI.eraseFromParent(); 5294 return SplitBB; 5295 } 5296 default: 5297 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 5298 } 5299 } 5300 5301 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { 5302 switch (Op.getValue(0).getSimpleValueType().SimpleTy) { 5303 case MVT::f32: 5304 return Subtarget->hasAtomicFaddRtnInsts(); 5305 case MVT::v2f16: 5306 case MVT::f64: 5307 return Subtarget->hasGFX90AInsts(); 5308 default: 5309 return false; 5310 } 5311 } 5312 5313 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 5314 // This currently forces unfolding various combinations of fsub into fma with 5315 // free fneg'd operands. As long as we have fast FMA (controlled by 5316 // isFMAFasterThanFMulAndFAdd), we should perform these. 5317 5318 // When fma is quarter rate, for f64 where add / sub are at best half rate, 5319 // most of these combines appear to be cycle neutral but save on instruction 5320 // count / code size. 5321 return true; 5322 } 5323 5324 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 5325 5326 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 5327 EVT VT) const { 5328 if (!VT.isVector()) { 5329 return MVT::i1; 5330 } 5331 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 5332 } 5333 5334 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 5335 // TODO: Should i16 be used always if legal? For now it would force VALU 5336 // shifts. 5337 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 5338 } 5339 5340 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 5341 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 5342 ? Ty.changeElementSize(16) 5343 : Ty.changeElementSize(32); 5344 } 5345 5346 // Answering this is somewhat tricky and depends on the specific device which 5347 // have different rates for fma or all f64 operations. 5348 // 5349 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 5350 // regardless of which device (although the number of cycles differs between 5351 // devices), so it is always profitable for f64. 5352 // 5353 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 5354 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 5355 // which we can always do even without fused FP ops since it returns the same 5356 // result as the separate operations and since it is always full 5357 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 5358 // however does not support denormals, so we do report fma as faster if we have 5359 // a fast fma device and require denormals. 5360 // 5361 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 5362 EVT VT) const { 5363 VT = VT.getScalarType(); 5364 5365 switch (VT.getSimpleVT().SimpleTy) { 5366 case MVT::f32: { 5367 // If mad is not available this depends only on if f32 fma is full rate. 5368 if (!Subtarget->hasMadMacF32Insts()) 5369 return Subtarget->hasFastFMAF32(); 5370 5371 // Otherwise f32 mad is always full rate and returns the same result as 5372 // the separate operations so should be preferred over fma. 5373 // However does not support denormals. 5374 if (!denormalModeIsFlushAllF32(MF)) 5375 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 5376 5377 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 5378 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 5379 } 5380 case MVT::f64: 5381 return true; 5382 case MVT::f16: 5383 return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF); 5384 default: 5385 break; 5386 } 5387 5388 return false; 5389 } 5390 5391 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 5392 LLT Ty) const { 5393 switch (Ty.getScalarSizeInBits()) { 5394 case 16: 5395 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 5396 case 32: 5397 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 5398 case 64: 5399 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 5400 default: 5401 break; 5402 } 5403 5404 return false; 5405 } 5406 5407 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 5408 if (!Ty.isScalar()) 5409 return false; 5410 5411 if (Ty.getScalarSizeInBits() == 16) 5412 return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF()); 5413 if (Ty.getScalarSizeInBits() == 32) 5414 return Subtarget->hasMadMacF32Insts() && 5415 denormalModeIsFlushAllF32(*MI.getMF()); 5416 5417 return false; 5418 } 5419 5420 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 5421 const SDNode *N) const { 5422 // TODO: Check future ftz flag 5423 // v_mad_f32/v_mac_f32 do not support denormals. 5424 EVT VT = N->getValueType(0); 5425 if (VT == MVT::f32) 5426 return Subtarget->hasMadMacF32Insts() && 5427 denormalModeIsFlushAllF32(DAG.getMachineFunction()); 5428 if (VT == MVT::f16) { 5429 return Subtarget->hasMadF16() && 5430 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); 5431 } 5432 5433 return false; 5434 } 5435 5436 //===----------------------------------------------------------------------===// 5437 // Custom DAG Lowering Operations 5438 //===----------------------------------------------------------------------===// 5439 5440 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 5441 // wider vector type is legal. 5442 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 5443 SelectionDAG &DAG) const { 5444 unsigned Opc = Op.getOpcode(); 5445 EVT VT = Op.getValueType(); 5446 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 5447 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 5448 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 5449 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); 5450 5451 SDValue Lo, Hi; 5452 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5453 5454 SDLoc SL(Op); 5455 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 5456 Op->getFlags()); 5457 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 5458 Op->getFlags()); 5459 5460 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 5461 } 5462 5463 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 5464 // wider vector type is legal. 5465 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 5466 SelectionDAG &DAG) const { 5467 unsigned Opc = Op.getOpcode(); 5468 EVT VT = Op.getValueType(); 5469 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 5470 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 5471 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 5472 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); 5473 5474 SDValue Lo0, Hi0; 5475 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 5476 SDValue Lo1, Hi1; 5477 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 5478 5479 SDLoc SL(Op); 5480 5481 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 5482 Op->getFlags()); 5483 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 5484 Op->getFlags()); 5485 5486 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 5487 } 5488 5489 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 5490 SelectionDAG &DAG) const { 5491 unsigned Opc = Op.getOpcode(); 5492 EVT VT = Op.getValueType(); 5493 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 5494 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || 5495 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 5496 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 || 5497 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 || 5498 VT == MVT::v32bf16); 5499 5500 SDValue Lo0, Hi0; 5501 SDValue Op0 = Op.getOperand(0); 5502 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 5503 ? DAG.SplitVectorOperand(Op.getNode(), 0) 5504 : std::pair(Op0, Op0); 5505 SDValue Lo1, Hi1; 5506 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 5507 SDValue Lo2, Hi2; 5508 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 5509 5510 SDLoc SL(Op); 5511 auto ResVT = DAG.GetSplitDestVTs(VT); 5512 5513 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 5514 Op->getFlags()); 5515 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 5516 Op->getFlags()); 5517 5518 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 5519 } 5520 5521 5522 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5523 switch (Op.getOpcode()) { 5524 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 5525 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 5526 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5527 case ISD::LOAD: { 5528 SDValue Result = LowerLOAD(Op, DAG); 5529 assert((!Result.getNode() || 5530 Result.getNode()->getNumValues() == 2) && 5531 "Load should return a value and a chain"); 5532 return Result; 5533 } 5534 case ISD::FSQRT: { 5535 EVT VT = Op.getValueType(); 5536 if (VT == MVT::f32) 5537 return lowerFSQRTF32(Op, DAG); 5538 if (VT == MVT::f64) 5539 return lowerFSQRTF64(Op, DAG); 5540 return SDValue(); 5541 } 5542 case ISD::FSIN: 5543 case ISD::FCOS: 5544 return LowerTrig(Op, DAG); 5545 case ISD::SELECT: return LowerSELECT(Op, DAG); 5546 case ISD::FDIV: return LowerFDIV(Op, DAG); 5547 case ISD::FFREXP: return LowerFFREXP(Op, DAG); 5548 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 5549 case ISD::STORE: return LowerSTORE(Op, DAG); 5550 case ISD::GlobalAddress: { 5551 MachineFunction &MF = DAG.getMachineFunction(); 5552 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 5553 return LowerGlobalAddress(MFI, Op, DAG); 5554 } 5555 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5556 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 5557 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 5558 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 5559 case ISD::INSERT_SUBVECTOR: 5560 return lowerINSERT_SUBVECTOR(Op, DAG); 5561 case ISD::INSERT_VECTOR_ELT: 5562 return lowerINSERT_VECTOR_ELT(Op, DAG); 5563 case ISD::EXTRACT_VECTOR_ELT: 5564 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5565 case ISD::VECTOR_SHUFFLE: 5566 return lowerVECTOR_SHUFFLE(Op, DAG); 5567 case ISD::SCALAR_TO_VECTOR: 5568 return lowerSCALAR_TO_VECTOR(Op, DAG); 5569 case ISD::BUILD_VECTOR: 5570 return lowerBUILD_VECTOR(Op, DAG); 5571 case ISD::FP_ROUND: 5572 case ISD::STRICT_FP_ROUND: 5573 return lowerFP_ROUND(Op, DAG); 5574 case ISD::FPTRUNC_ROUND: { 5575 unsigned Opc; 5576 SDLoc DL(Op); 5577 5578 if (Op.getOperand(0)->getValueType(0) != MVT::f32) 5579 return SDValue(); 5580 5581 // Get the rounding mode from the last operand 5582 int RoundMode = Op.getConstantOperandVal(1); 5583 if (RoundMode == (int)RoundingMode::TowardPositive) 5584 Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; 5585 else if (RoundMode == (int)RoundingMode::TowardNegative) 5586 Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; 5587 else 5588 return SDValue(); 5589 5590 return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); 5591 } 5592 case ISD::TRAP: 5593 return lowerTRAP(Op, DAG); 5594 case ISD::DEBUGTRAP: 5595 return lowerDEBUGTRAP(Op, DAG); 5596 case ISD::FABS: 5597 case ISD::FNEG: 5598 case ISD::FCANONICALIZE: 5599 case ISD::BSWAP: 5600 return splitUnaryVectorOp(Op, DAG); 5601 case ISD::FMINNUM: 5602 case ISD::FMAXNUM: 5603 return lowerFMINNUM_FMAXNUM(Op, DAG); 5604 case ISD::FLDEXP: 5605 case ISD::STRICT_FLDEXP: 5606 return lowerFLDEXP(Op, DAG); 5607 case ISD::FMA: 5608 return splitTernaryVectorOp(Op, DAG); 5609 case ISD::FP_TO_SINT: 5610 case ISD::FP_TO_UINT: 5611 return LowerFP_TO_INT(Op, DAG); 5612 case ISD::SHL: 5613 case ISD::SRA: 5614 case ISD::SRL: 5615 case ISD::ADD: 5616 case ISD::SUB: 5617 case ISD::SMIN: 5618 case ISD::SMAX: 5619 case ISD::UMIN: 5620 case ISD::UMAX: 5621 case ISD::FADD: 5622 case ISD::FMUL: 5623 case ISD::FMINNUM_IEEE: 5624 case ISD::FMAXNUM_IEEE: 5625 case ISD::UADDSAT: 5626 case ISD::USUBSAT: 5627 case ISD::SADDSAT: 5628 case ISD::SSUBSAT: 5629 return splitBinaryVectorOp(Op, DAG); 5630 case ISD::MUL: 5631 return lowerMUL(Op, DAG); 5632 case ISD::SMULO: 5633 case ISD::UMULO: 5634 return lowerXMULO(Op, DAG); 5635 case ISD::SMUL_LOHI: 5636 case ISD::UMUL_LOHI: 5637 return lowerXMUL_LOHI(Op, DAG); 5638 case ISD::DYNAMIC_STACKALLOC: 5639 return LowerDYNAMIC_STACKALLOC(Op, DAG); 5640 case ISD::STACKSAVE: 5641 return LowerSTACKSAVE(Op, DAG); 5642 case ISD::GET_ROUNDING: 5643 return lowerGET_ROUNDING(Op, DAG); 5644 case ISD::PREFETCH: 5645 return lowerPREFETCH(Op, DAG); 5646 case ISD::FP_EXTEND: 5647 case ISD::STRICT_FP_EXTEND: 5648 return lowerFP_EXTEND(Op, DAG); 5649 } 5650 return SDValue(); 5651 } 5652 5653 // Used for D16: Casts the result of an instruction into the right vector, 5654 // packs values if loads return unpacked values. 5655 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 5656 const SDLoc &DL, 5657 SelectionDAG &DAG, bool Unpacked) { 5658 if (!LoadVT.isVector()) 5659 return Result; 5660 5661 // Cast back to the original packed type or to a larger type that is a 5662 // multiple of 32 bit for D16. Widening the return type is a required for 5663 // legalization. 5664 EVT FittingLoadVT = LoadVT; 5665 if ((LoadVT.getVectorNumElements() % 2) == 1) { 5666 FittingLoadVT = 5667 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 5668 LoadVT.getVectorNumElements() + 1); 5669 } 5670 5671 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 5672 // Truncate to v2i16/v4i16. 5673 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 5674 5675 // Workaround legalizer not scalarizing truncate after vector op 5676 // legalization but not creating intermediate vector trunc. 5677 SmallVector<SDValue, 4> Elts; 5678 DAG.ExtractVectorElements(Result, Elts); 5679 for (SDValue &Elt : Elts) 5680 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 5681 5682 // Pad illegal v1i16/v3fi6 to v4i16 5683 if ((LoadVT.getVectorNumElements() % 2) == 1) 5684 Elts.push_back(DAG.getUNDEF(MVT::i16)); 5685 5686 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 5687 5688 // Bitcast to original type (v2f16/v4f16). 5689 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 5690 } 5691 5692 // Cast back to the original packed type. 5693 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 5694 } 5695 5696 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 5697 MemSDNode *M, 5698 SelectionDAG &DAG, 5699 ArrayRef<SDValue> Ops, 5700 bool IsIntrinsic) const { 5701 SDLoc DL(M); 5702 5703 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 5704 EVT LoadVT = M->getValueType(0); 5705 5706 EVT EquivLoadVT = LoadVT; 5707 if (LoadVT.isVector()) { 5708 if (Unpacked) { 5709 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 5710 LoadVT.getVectorNumElements()); 5711 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 5712 // Widen v3f16 to legal type 5713 EquivLoadVT = 5714 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 5715 LoadVT.getVectorNumElements() + 1); 5716 } 5717 } 5718 5719 // Change from v4f16/v2f16 to EquivLoadVT. 5720 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 5721 5722 SDValue Load 5723 = DAG.getMemIntrinsicNode( 5724 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 5725 VTList, Ops, M->getMemoryVT(), 5726 M->getMemOperand()); 5727 5728 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 5729 5730 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 5731 } 5732 5733 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 5734 SelectionDAG &DAG, 5735 ArrayRef<SDValue> Ops) const { 5736 SDLoc DL(M); 5737 EVT LoadVT = M->getValueType(0); 5738 EVT EltType = LoadVT.getScalarType(); 5739 EVT IntVT = LoadVT.changeTypeToInteger(); 5740 5741 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 5742 5743 assert(M->getNumValues() == 2 || M->getNumValues() == 3); 5744 bool IsTFE = M->getNumValues() == 3; 5745 5746 unsigned Opc; 5747 if (IsFormat) { 5748 Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE 5749 : AMDGPUISD::BUFFER_LOAD_FORMAT; 5750 } else { 5751 // TODO: Support non-format TFE loads. 5752 if (IsTFE) 5753 return SDValue(); 5754 Opc = AMDGPUISD::BUFFER_LOAD; 5755 } 5756 5757 if (IsD16) { 5758 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 5759 } 5760 5761 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 5762 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 5763 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand()); 5764 5765 if (isTypeLegal(LoadVT)) { 5766 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 5767 M->getMemOperand(), DAG); 5768 } 5769 5770 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 5771 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 5772 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 5773 M->getMemOperand(), DAG); 5774 return DAG.getMergeValues( 5775 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 5776 DL); 5777 } 5778 5779 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 5780 SDNode *N, SelectionDAG &DAG) { 5781 EVT VT = N->getValueType(0); 5782 unsigned CondCode = N->getConstantOperandVal(3); 5783 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 5784 return DAG.getUNDEF(VT); 5785 5786 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 5787 5788 SDValue LHS = N->getOperand(1); 5789 SDValue RHS = N->getOperand(2); 5790 5791 SDLoc DL(N); 5792 5793 EVT CmpVT = LHS.getValueType(); 5794 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 5795 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 5796 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5797 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 5798 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 5799 } 5800 5801 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 5802 5803 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 5804 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 5805 5806 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 5807 DAG.getCondCode(CCOpcode)); 5808 if (VT.bitsEq(CCVT)) 5809 return SetCC; 5810 return DAG.getZExtOrTrunc(SetCC, DL, VT); 5811 } 5812 5813 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 5814 SDNode *N, SelectionDAG &DAG) { 5815 EVT VT = N->getValueType(0); 5816 5817 unsigned CondCode = N->getConstantOperandVal(3); 5818 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 5819 return DAG.getUNDEF(VT); 5820 5821 SDValue Src0 = N->getOperand(1); 5822 SDValue Src1 = N->getOperand(2); 5823 EVT CmpVT = Src0.getValueType(); 5824 SDLoc SL(N); 5825 5826 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 5827 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 5828 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 5829 } 5830 5831 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 5832 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 5833 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 5834 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 5835 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 5836 Src1, DAG.getCondCode(CCOpcode)); 5837 if (VT.bitsEq(CCVT)) 5838 return SetCC; 5839 return DAG.getZExtOrTrunc(SetCC, SL, VT); 5840 } 5841 5842 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 5843 SelectionDAG &DAG) { 5844 EVT VT = N->getValueType(0); 5845 SDValue Src = N->getOperand(1); 5846 SDLoc SL(N); 5847 5848 if (Src.getOpcode() == ISD::SETCC) { 5849 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 5850 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 5851 Src.getOperand(1), Src.getOperand(2)); 5852 } 5853 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 5854 // (ballot 0) -> 0 5855 if (Arg->isZero()) 5856 return DAG.getConstant(0, SL, VT); 5857 5858 // (ballot 1) -> EXEC/EXEC_LO 5859 if (Arg->isOne()) { 5860 Register Exec; 5861 if (VT.getScalarSizeInBits() == 32) 5862 Exec = AMDGPU::EXEC_LO; 5863 else if (VT.getScalarSizeInBits() == 64) 5864 Exec = AMDGPU::EXEC; 5865 else 5866 return SDValue(); 5867 5868 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 5869 } 5870 } 5871 5872 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 5873 // ISD::SETNE) 5874 return DAG.getNode( 5875 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 5876 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 5877 } 5878 5879 void SITargetLowering::ReplaceNodeResults(SDNode *N, 5880 SmallVectorImpl<SDValue> &Results, 5881 SelectionDAG &DAG) const { 5882 switch (N->getOpcode()) { 5883 case ISD::INSERT_VECTOR_ELT: { 5884 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 5885 Results.push_back(Res); 5886 return; 5887 } 5888 case ISD::EXTRACT_VECTOR_ELT: { 5889 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 5890 Results.push_back(Res); 5891 return; 5892 } 5893 case ISD::INTRINSIC_WO_CHAIN: { 5894 unsigned IID = N->getConstantOperandVal(0); 5895 switch (IID) { 5896 case Intrinsic::amdgcn_make_buffer_rsrc: 5897 Results.push_back(lowerPointerAsRsrcIntrin(N, DAG)); 5898 return; 5899 case Intrinsic::amdgcn_cvt_pkrtz: { 5900 SDValue Src0 = N->getOperand(1); 5901 SDValue Src1 = N->getOperand(2); 5902 SDLoc SL(N); 5903 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 5904 Src0, Src1); 5905 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 5906 return; 5907 } 5908 case Intrinsic::amdgcn_cvt_pknorm_i16: 5909 case Intrinsic::amdgcn_cvt_pknorm_u16: 5910 case Intrinsic::amdgcn_cvt_pk_i16: 5911 case Intrinsic::amdgcn_cvt_pk_u16: { 5912 SDValue Src0 = N->getOperand(1); 5913 SDValue Src1 = N->getOperand(2); 5914 SDLoc SL(N); 5915 unsigned Opcode; 5916 5917 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5918 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5919 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5920 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5921 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5922 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5923 else 5924 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5925 5926 EVT VT = N->getValueType(0); 5927 if (isTypeLegal(VT)) 5928 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5929 else { 5930 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5931 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5932 } 5933 return; 5934 } 5935 case Intrinsic::amdgcn_s_buffer_load: { 5936 // Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate 5937 // s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG 5938 // combiner tries to merge the s_buffer_load_u8 with a sext instruction 5939 // (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with 5940 // s_buffer_load_i8. 5941 if (!Subtarget->hasScalarSubwordLoads()) 5942 return; 5943 SDValue Op = SDValue(N, 0); 5944 SDValue Rsrc = Op.getOperand(1); 5945 SDValue Offset = Op.getOperand(2); 5946 SDValue CachePolicy = Op.getOperand(3); 5947 EVT VT = Op.getValueType(); 5948 assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n"); 5949 SDLoc DL(Op); 5950 MachineFunction &MF = DAG.getMachineFunction(); 5951 const DataLayout &DataLayout = DAG.getDataLayout(); 5952 Align Alignment = 5953 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 5954 MachineMemOperand *MMO = MF.getMachineMemOperand( 5955 MachinePointerInfo(), 5956 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 5957 MachineMemOperand::MOInvariant, 5958 VT.getStoreSize(), Alignment); 5959 SDValue LoadVal; 5960 if (!Offset->isDivergent()) { 5961 SDValue Ops[] = {Rsrc, // source register 5962 Offset, CachePolicy}; 5963 SDValue BufferLoad = 5964 DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_UBYTE, DL, 5965 DAG.getVTList(MVT::i32), Ops, VT, MMO); 5966 LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); 5967 } else { 5968 SDValue Ops[] = { 5969 DAG.getEntryNode(), // Chain 5970 Rsrc, // rsrc 5971 DAG.getConstant(0, DL, MVT::i32), // vindex 5972 {}, // voffset 5973 {}, // soffset 5974 {}, // offset 5975 CachePolicy, // cachepolicy 5976 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 5977 }; 5978 setBufferOffsets(Offset, DAG, &Ops[3], Align(4)); 5979 LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO); 5980 } 5981 Results.push_back(LoadVal); 5982 return; 5983 } 5984 } 5985 break; 5986 } 5987 case ISD::INTRINSIC_W_CHAIN: { 5988 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5989 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5990 // FIXME: Hacky 5991 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5992 Results.push_back(Res.getOperand(I)); 5993 } 5994 } else { 5995 Results.push_back(Res); 5996 Results.push_back(Res.getValue(1)); 5997 } 5998 return; 5999 } 6000 6001 break; 6002 } 6003 case ISD::SELECT: { 6004 SDLoc SL(N); 6005 EVT VT = N->getValueType(0); 6006 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 6007 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 6008 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 6009 6010 EVT SelectVT = NewVT; 6011 if (NewVT.bitsLT(MVT::i32)) { 6012 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 6013 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 6014 SelectVT = MVT::i32; 6015 } 6016 6017 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 6018 N->getOperand(0), LHS, RHS); 6019 6020 if (NewVT != SelectVT) 6021 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 6022 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 6023 return; 6024 } 6025 case ISD::FNEG: { 6026 if (N->getValueType(0) != MVT::v2f16) 6027 break; 6028 6029 SDLoc SL(N); 6030 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 6031 6032 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 6033 BC, 6034 DAG.getConstant(0x80008000, SL, MVT::i32)); 6035 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 6036 return; 6037 } 6038 case ISD::FABS: { 6039 if (N->getValueType(0) != MVT::v2f16) 6040 break; 6041 6042 SDLoc SL(N); 6043 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 6044 6045 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 6046 BC, 6047 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 6048 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 6049 return; 6050 } 6051 case ISD::FSQRT: { 6052 if (N->getValueType(0) != MVT::f16) 6053 break; 6054 Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG)); 6055 break; 6056 } 6057 default: 6058 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); 6059 break; 6060 } 6061 } 6062 6063 /// Helper function for LowerBRCOND 6064 static SDNode *findUser(SDValue Value, unsigned Opcode) { 6065 6066 SDNode *Parent = Value.getNode(); 6067 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 6068 I != E; ++I) { 6069 6070 if (I.getUse().get() != Value) 6071 continue; 6072 6073 if (I->getOpcode() == Opcode) 6074 return *I; 6075 } 6076 return nullptr; 6077 } 6078 6079 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 6080 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 6081 switch (Intr->getConstantOperandVal(1)) { 6082 case Intrinsic::amdgcn_if: 6083 return AMDGPUISD::IF; 6084 case Intrinsic::amdgcn_else: 6085 return AMDGPUISD::ELSE; 6086 case Intrinsic::amdgcn_loop: 6087 return AMDGPUISD::LOOP; 6088 case Intrinsic::amdgcn_end_cf: 6089 llvm_unreachable("should not occur"); 6090 default: 6091 return 0; 6092 } 6093 } 6094 6095 // break, if_break, else_break are all only used as inputs to loop, not 6096 // directly as branch conditions. 6097 return 0; 6098 } 6099 6100 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 6101 const Triple &TT = getTargetMachine().getTargetTriple(); 6102 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 6103 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 6104 AMDGPU::shouldEmitConstantsToTextSection(TT); 6105 } 6106 6107 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 6108 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) 6109 return false; 6110 6111 // FIXME: Either avoid relying on address space here or change the default 6112 // address space for functions to avoid the explicit check. 6113 return (GV->getValueType()->isFunctionTy() || 6114 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 6115 !shouldEmitFixup(GV) && 6116 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 6117 } 6118 6119 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 6120 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 6121 } 6122 6123 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 6124 if (!GV->hasExternalLinkage()) 6125 return true; 6126 6127 const auto OS = getTargetMachine().getTargetTriple().getOS(); 6128 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 6129 } 6130 6131 /// This transforms the control flow intrinsics to get the branch destination as 6132 /// last parameter, also switches branch target with BR if the need arise 6133 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 6134 SelectionDAG &DAG) const { 6135 SDLoc DL(BRCOND); 6136 6137 SDNode *Intr = BRCOND.getOperand(1).getNode(); 6138 SDValue Target = BRCOND.getOperand(2); 6139 SDNode *BR = nullptr; 6140 SDNode *SetCC = nullptr; 6141 6142 if (Intr->getOpcode() == ISD::SETCC) { 6143 // As long as we negate the condition everything is fine 6144 SetCC = Intr; 6145 Intr = SetCC->getOperand(0).getNode(); 6146 6147 } else { 6148 // Get the target from BR if we don't negate the condition 6149 BR = findUser(BRCOND, ISD::BR); 6150 assert(BR && "brcond missing unconditional branch user"); 6151 Target = BR->getOperand(1); 6152 } 6153 6154 unsigned CFNode = isCFIntrinsic(Intr); 6155 if (CFNode == 0) { 6156 // This is a uniform branch so we don't need to legalize. 6157 return BRCOND; 6158 } 6159 6160 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 6161 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 6162 6163 assert(!SetCC || 6164 (SetCC->getConstantOperandVal(1) == 1 && 6165 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 6166 ISD::SETNE)); 6167 6168 // operands of the new intrinsic call 6169 SmallVector<SDValue, 4> Ops; 6170 if (HaveChain) 6171 Ops.push_back(BRCOND.getOperand(0)); 6172 6173 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 6174 Ops.push_back(Target); 6175 6176 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 6177 6178 // build the new intrinsic call 6179 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 6180 6181 if (!HaveChain) { 6182 SDValue Ops[] = { 6183 SDValue(Result, 0), 6184 BRCOND.getOperand(0) 6185 }; 6186 6187 Result = DAG.getMergeValues(Ops, DL).getNode(); 6188 } 6189 6190 if (BR) { 6191 // Give the branch instruction our target 6192 SDValue Ops[] = { 6193 BR->getOperand(0), 6194 BRCOND.getOperand(2) 6195 }; 6196 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 6197 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 6198 } 6199 6200 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 6201 6202 // Copy the intrinsic results to registers 6203 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 6204 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 6205 if (!CopyToReg) 6206 continue; 6207 6208 Chain = DAG.getCopyToReg( 6209 Chain, DL, 6210 CopyToReg->getOperand(1), 6211 SDValue(Result, i - 1), 6212 SDValue()); 6213 6214 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 6215 } 6216 6217 // Remove the old intrinsic from the chain 6218 DAG.ReplaceAllUsesOfValueWith( 6219 SDValue(Intr, Intr->getNumValues() - 1), 6220 Intr->getOperand(0)); 6221 6222 return Chain; 6223 } 6224 6225 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 6226 SelectionDAG &DAG) const { 6227 MVT VT = Op.getSimpleValueType(); 6228 SDLoc DL(Op); 6229 // Checking the depth 6230 if (Op.getConstantOperandVal(0) != 0) 6231 return DAG.getConstant(0, DL, VT); 6232 6233 MachineFunction &MF = DAG.getMachineFunction(); 6234 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6235 // Check for kernel and shader functions 6236 if (Info->isEntryFunction()) 6237 return DAG.getConstant(0, DL, VT); 6238 6239 MachineFrameInfo &MFI = MF.getFrameInfo(); 6240 // There is a call to @llvm.returnaddress in this function 6241 MFI.setReturnAddressIsTaken(true); 6242 6243 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 6244 // Get the return address reg and mark it as an implicit live-in 6245 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 6246 6247 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 6248 } 6249 6250 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 6251 SDValue Op, 6252 const SDLoc &DL, 6253 EVT VT) const { 6254 return Op.getValueType().bitsLE(VT) ? 6255 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 6256 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 6257 DAG.getTargetConstant(0, DL, MVT::i32)); 6258 } 6259 6260 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 6261 assert(Op.getValueType() == MVT::f16 && 6262 "Do not know how to custom lower FP_ROUND for non-f16 type"); 6263 6264 SDValue Src = Op.getOperand(0); 6265 EVT SrcVT = Src.getValueType(); 6266 if (SrcVT != MVT::f64) 6267 return Op; 6268 6269 // TODO: Handle strictfp 6270 if (Op.getOpcode() != ISD::FP_ROUND) 6271 return Op; 6272 6273 SDLoc DL(Op); 6274 6275 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 6276 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 6277 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 6278 } 6279 6280 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 6281 SelectionDAG &DAG) const { 6282 EVT VT = Op.getValueType(); 6283 const MachineFunction &MF = DAG.getMachineFunction(); 6284 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6285 bool IsIEEEMode = Info->getMode().IEEE; 6286 6287 // FIXME: Assert during selection that this is only selected for 6288 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 6289 // mode functions, but this happens to be OK since it's only done in cases 6290 // where there is known no sNaN. 6291 if (IsIEEEMode) 6292 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 6293 6294 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 || 6295 VT == MVT::v16f16) 6296 return splitBinaryVectorOp(Op, DAG); 6297 return Op; 6298 } 6299 6300 SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const { 6301 bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP; 6302 EVT VT = Op.getValueType(); 6303 assert(VT == MVT::f16); 6304 6305 SDValue Exp = Op.getOperand(IsStrict ? 2 : 1); 6306 EVT ExpVT = Exp.getValueType(); 6307 if (ExpVT == MVT::i16) 6308 return Op; 6309 6310 SDLoc DL(Op); 6311 6312 // Correct the exponent type for f16 to i16. 6313 // Clamp the range of the exponent to the instruction's range. 6314 6315 // TODO: This should be a generic narrowing legalization, and can easily be 6316 // for GlobalISel. 6317 6318 SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT); 6319 SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp); 6320 6321 SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT); 6322 SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp); 6323 6324 SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp); 6325 6326 if (IsStrict) { 6327 return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other}, 6328 {Op.getOperand(0), Op.getOperand(1), TruncExp}); 6329 } 6330 6331 return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp); 6332 } 6333 6334 // Custom lowering for vector multiplications and s_mul_u64. 6335 SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const { 6336 EVT VT = Op.getValueType(); 6337 6338 // Split vector operands. 6339 if (VT.isVector()) 6340 return splitBinaryVectorOp(Op, DAG); 6341 6342 assert(VT == MVT::i64 && "The following code is a special for s_mul_u64"); 6343 6344 // There are four ways to lower s_mul_u64: 6345 // 6346 // 1. If all the operands are uniform, then we lower it as it is. 6347 // 6348 // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit 6349 // multiplications because there is not a vector equivalent of s_mul_u64. 6350 // 6351 // 3. If the cost model decides that it is more efficient to use vector 6352 // registers, then we have to split s_mul_u64 in 32-bit multiplications. 6353 // This happens in splitScalarSMULU64() in SIInstrInfo.cpp . 6354 // 6355 // 4. If the cost model decides to use vector registers and both of the 6356 // operands are zero-extended/sign-extended from 32-bits, then we split the 6357 // s_mul_u64 in two 32-bit multiplications. The problem is that it is not 6358 // possible to check if the operands are zero-extended or sign-extended in 6359 // SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with 6360 // s_mul_u64_u32_pseudo if both operands are zero-extended and we replace 6361 // s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended. 6362 // If the cost model decides that we have to use vector registers, then 6363 // splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/ 6364 // s_mul_i64_i32_pseudo in two vector multiplications. If the cost model 6365 // decides that we should use scalar registers, then s_mul_u64_u32_pseudo/ 6366 // s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in 6367 // SIInstrInfo.cpp . 6368 6369 if (Op->isDivergent()) 6370 return SDValue(); 6371 6372 SDValue Op0 = Op.getOperand(0); 6373 SDValue Op1 = Op.getOperand(1); 6374 // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64 6375 // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to 6376 // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo. 6377 KnownBits Op0KnownBits = DAG.computeKnownBits(Op0); 6378 unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros(); 6379 KnownBits Op1KnownBits = DAG.computeKnownBits(Op1); 6380 unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros(); 6381 SDLoc SL(Op); 6382 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32) 6383 return SDValue( 6384 DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0); 6385 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0); 6386 unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1); 6387 if (Op0SignBits >= 33 && Op1SignBits >= 33) 6388 return SDValue( 6389 DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0); 6390 // If all the operands are uniform, then we lower s_mul_u64 as it is. 6391 return Op; 6392 } 6393 6394 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 6395 EVT VT = Op.getValueType(); 6396 SDLoc SL(Op); 6397 SDValue LHS = Op.getOperand(0); 6398 SDValue RHS = Op.getOperand(1); 6399 bool isSigned = Op.getOpcode() == ISD::SMULO; 6400 6401 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 6402 const APInt &C = RHSC->getAPIntValue(); 6403 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 6404 if (C.isPowerOf2()) { 6405 // smulo(x, signed_min) is same as umulo(x, signed_min). 6406 bool UseArithShift = isSigned && !C.isMinSignedValue(); 6407 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 6408 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 6409 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 6410 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 6411 SL, VT, Result, ShiftAmt), 6412 LHS, ISD::SETNE); 6413 return DAG.getMergeValues({ Result, Overflow }, SL); 6414 } 6415 } 6416 6417 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 6418 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 6419 SL, VT, LHS, RHS); 6420 6421 SDValue Sign = isSigned 6422 ? DAG.getNode(ISD::SRA, SL, VT, Result, 6423 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 6424 : DAG.getConstant(0, SL, VT); 6425 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 6426 6427 return DAG.getMergeValues({ Result, Overflow }, SL); 6428 } 6429 6430 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 6431 if (Op->isDivergent()) { 6432 // Select to V_MAD_[IU]64_[IU]32. 6433 return Op; 6434 } 6435 if (Subtarget->hasSMulHi()) { 6436 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 6437 return SDValue(); 6438 } 6439 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 6440 // calculate the high part, so we might as well do the whole thing with 6441 // V_MAD_[IU]64_[IU]32. 6442 return Op; 6443 } 6444 6445 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 6446 if (!Subtarget->isTrapHandlerEnabled() || 6447 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 6448 return lowerTrapEndpgm(Op, DAG); 6449 6450 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : 6451 lowerTrapHsaQueuePtr(Op, DAG); 6452 } 6453 6454 SDValue SITargetLowering::lowerTrapEndpgm( 6455 SDValue Op, SelectionDAG &DAG) const { 6456 SDLoc SL(Op); 6457 SDValue Chain = Op.getOperand(0); 6458 return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain); 6459 } 6460 6461 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, 6462 const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { 6463 MachineFunction &MF = DAG.getMachineFunction(); 6464 uint64_t Offset = getImplicitParameterOffset(MF, Param); 6465 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); 6466 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 6467 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, 6468 MachineMemOperand::MODereferenceable | 6469 MachineMemOperand::MOInvariant); 6470 } 6471 6472 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 6473 SDValue Op, SelectionDAG &DAG) const { 6474 SDLoc SL(Op); 6475 SDValue Chain = Op.getOperand(0); 6476 6477 SDValue QueuePtr; 6478 // For code object version 5, QueuePtr is passed through implicit kernarg. 6479 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 6480 if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { 6481 QueuePtr = 6482 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); 6483 } else { 6484 MachineFunction &MF = DAG.getMachineFunction(); 6485 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6486 Register UserSGPR = Info->getQueuePtrUserSGPR(); 6487 6488 if (UserSGPR == AMDGPU::NoRegister) { 6489 // We probably are in a function incorrectly marked with 6490 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the 6491 // trap, so just use a null pointer. 6492 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 6493 } else { 6494 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, 6495 MVT::i64); 6496 } 6497 } 6498 6499 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 6500 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 6501 QueuePtr, SDValue()); 6502 6503 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 6504 SDValue Ops[] = { 6505 ToReg, 6506 DAG.getTargetConstant(TrapID, SL, MVT::i16), 6507 SGPR01, 6508 ToReg.getValue(1) 6509 }; 6510 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 6511 } 6512 6513 SDValue SITargetLowering::lowerTrapHsa( 6514 SDValue Op, SelectionDAG &DAG) const { 6515 SDLoc SL(Op); 6516 SDValue Chain = Op.getOperand(0); 6517 6518 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 6519 SDValue Ops[] = { 6520 Chain, 6521 DAG.getTargetConstant(TrapID, SL, MVT::i16) 6522 }; 6523 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 6524 } 6525 6526 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 6527 SDLoc SL(Op); 6528 SDValue Chain = Op.getOperand(0); 6529 MachineFunction &MF = DAG.getMachineFunction(); 6530 6531 if (!Subtarget->isTrapHandlerEnabled() || 6532 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 6533 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 6534 "debugtrap handler not supported", 6535 Op.getDebugLoc(), 6536 DS_Warning); 6537 LLVMContext &Ctx = MF.getFunction().getContext(); 6538 Ctx.diagnose(NoTrap); 6539 return Chain; 6540 } 6541 6542 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 6543 SDValue Ops[] = { 6544 Chain, 6545 DAG.getTargetConstant(TrapID, SL, MVT::i16) 6546 }; 6547 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 6548 } 6549 6550 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 6551 SelectionDAG &DAG) const { 6552 if (Subtarget->hasApertureRegs()) { 6553 const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) 6554 ? AMDGPU::SRC_SHARED_BASE 6555 : AMDGPU::SRC_PRIVATE_BASE; 6556 // Note: this feature (register) is broken. When used as a 32-bit operand, 6557 // it returns a wrong value (all zeroes?). The real value is in the upper 32 6558 // bits. 6559 // 6560 // To work around the issue, directly emit a 64 bit mov from this register 6561 // then extract the high bits. Note that this shouldn't even result in a 6562 // shift being emitted and simply become a pair of registers (e.g.): 6563 // s_mov_b64 s[6:7], src_shared_base 6564 // v_mov_b32_e32 v1, s7 6565 // 6566 // FIXME: It would be more natural to emit a CopyFromReg here, but then copy 6567 // coalescing would kick in and it would think it's okay to use the "HI" 6568 // subregister directly (instead of extracting the HI 32 bits) which is an 6569 // artificial (unusable) register. 6570 // Register TableGen definitions would need an overhaul to get rid of the 6571 // artificial "HI" aperture registers and prevent this kind of issue from 6572 // happening. 6573 SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, 6574 DAG.getRegister(ApertureRegNo, MVT::i64)); 6575 return DAG.getNode( 6576 ISD::TRUNCATE, DL, MVT::i32, 6577 DAG.getNode(ISD::SRL, DL, MVT::i64, 6578 {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); 6579 } 6580 6581 // For code object version 5, private_base and shared_base are passed through 6582 // implicit kernargs. 6583 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 6584 if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { 6585 ImplicitParameter Param = 6586 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; 6587 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); 6588 } 6589 6590 MachineFunction &MF = DAG.getMachineFunction(); 6591 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6592 Register UserSGPR = Info->getQueuePtrUserSGPR(); 6593 if (UserSGPR == AMDGPU::NoRegister) { 6594 // We probably are in a function incorrectly marked with 6595 // amdgpu-no-queue-ptr. This is undefined. 6596 return DAG.getUNDEF(MVT::i32); 6597 } 6598 6599 SDValue QueuePtr = CreateLiveInRegister( 6600 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 6601 6602 // Offset into amd_queue_t for group_segment_aperture_base_hi / 6603 // private_segment_aperture_base_hi. 6604 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 6605 6606 SDValue Ptr = 6607 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset)); 6608 6609 // TODO: Use custom target PseudoSourceValue. 6610 // TODO: We should use the value from the IR intrinsic call, but it might not 6611 // be available and how do we get it? 6612 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 6613 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 6614 commonAlignment(Align(64), StructOffset), 6615 MachineMemOperand::MODereferenceable | 6616 MachineMemOperand::MOInvariant); 6617 } 6618 6619 /// Return true if the value is a known valid address, such that a null check is 6620 /// not necessary. 6621 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 6622 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 6623 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 6624 isa<BasicBlockSDNode>(Val)) 6625 return true; 6626 6627 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 6628 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 6629 6630 // TODO: Search through arithmetic, handle arguments and loads 6631 // marked nonnull. 6632 return false; 6633 } 6634 6635 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 6636 SelectionDAG &DAG) const { 6637 SDLoc SL(Op); 6638 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 6639 6640 SDValue Src = ASC->getOperand(0); 6641 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 6642 unsigned SrcAS = ASC->getSrcAddressSpace(); 6643 6644 const AMDGPUTargetMachine &TM = 6645 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 6646 6647 // flat -> local/private 6648 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 6649 unsigned DestAS = ASC->getDestAddressSpace(); 6650 6651 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 6652 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 6653 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 6654 6655 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 6656 return Ptr; 6657 6658 unsigned NullVal = TM.getNullPointerValue(DestAS); 6659 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 6660 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 6661 6662 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 6663 SegmentNullPtr); 6664 } 6665 } 6666 6667 // local/private -> flat 6668 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 6669 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 6670 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 6671 6672 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 6673 SDValue CvtPtr = 6674 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 6675 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 6676 6677 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 6678 return CvtPtr; 6679 6680 unsigned NullVal = TM.getNullPointerValue(SrcAS); 6681 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 6682 6683 SDValue NonNull 6684 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 6685 6686 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 6687 FlatNullPtr); 6688 } 6689 } 6690 6691 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 6692 Op.getValueType() == MVT::i64) { 6693 const SIMachineFunctionInfo *Info = 6694 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); 6695 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); 6696 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); 6697 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 6698 } 6699 6700 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 6701 Src.getValueType() == MVT::i64) 6702 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 6703 6704 // global <-> flat are no-ops and never emitted. 6705 6706 const MachineFunction &MF = DAG.getMachineFunction(); 6707 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 6708 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 6709 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 6710 6711 return DAG.getUNDEF(ASC->getValueType(0)); 6712 } 6713 6714 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 6715 // the small vector and inserting them into the big vector. That is better than 6716 // the default expansion of doing it via a stack slot. Even though the use of 6717 // the stack slot would be optimized away afterwards, the stack slot itself 6718 // remains. 6719 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 6720 SelectionDAG &DAG) const { 6721 SDValue Vec = Op.getOperand(0); 6722 SDValue Ins = Op.getOperand(1); 6723 SDValue Idx = Op.getOperand(2); 6724 EVT VecVT = Vec.getValueType(); 6725 EVT InsVT = Ins.getValueType(); 6726 EVT EltVT = VecVT.getVectorElementType(); 6727 unsigned InsNumElts = InsVT.getVectorNumElements(); 6728 unsigned IdxVal = Idx->getAsZExtVal(); 6729 SDLoc SL(Op); 6730 6731 if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) { 6732 // Insert 32-bit registers at a time. 6733 assert(InsNumElts % 2 == 0 && "expect legal vector types"); 6734 6735 unsigned VecNumElts = VecVT.getVectorNumElements(); 6736 EVT NewVecVT = 6737 EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2); 6738 EVT NewInsVT = InsNumElts == 2 ? MVT::i32 6739 : EVT::getVectorVT(*DAG.getContext(), 6740 MVT::i32, InsNumElts / 2); 6741 6742 Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec); 6743 Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins); 6744 6745 for (unsigned I = 0; I != InsNumElts / 2; ++I) { 6746 SDValue Elt; 6747 if (InsNumElts == 2) { 6748 Elt = Ins; 6749 } else { 6750 Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins, 6751 DAG.getConstant(I, SL, MVT::i32)); 6752 } 6753 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt, 6754 DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32)); 6755 } 6756 6757 return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec); 6758 } 6759 6760 for (unsigned I = 0; I != InsNumElts; ++I) { 6761 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 6762 DAG.getConstant(I, SL, MVT::i32)); 6763 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 6764 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 6765 } 6766 return Vec; 6767 } 6768 6769 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 6770 SelectionDAG &DAG) const { 6771 SDValue Vec = Op.getOperand(0); 6772 SDValue InsVal = Op.getOperand(1); 6773 SDValue Idx = Op.getOperand(2); 6774 EVT VecVT = Vec.getValueType(); 6775 EVT EltVT = VecVT.getVectorElementType(); 6776 unsigned VecSize = VecVT.getSizeInBits(); 6777 unsigned EltSize = EltVT.getSizeInBits(); 6778 SDLoc SL(Op); 6779 6780 // Specially handle the case of v4i16 with static indexing. 6781 unsigned NumElts = VecVT.getVectorNumElements(); 6782 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 6783 if (NumElts == 4 && EltSize == 16 && KIdx) { 6784 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 6785 6786 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 6787 DAG.getConstant(0, SL, MVT::i32)); 6788 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 6789 DAG.getConstant(1, SL, MVT::i32)); 6790 6791 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 6792 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 6793 6794 unsigned Idx = KIdx->getZExtValue(); 6795 bool InsertLo = Idx < 2; 6796 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 6797 InsertLo ? LoVec : HiVec, 6798 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 6799 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 6800 6801 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 6802 6803 SDValue Concat = InsertLo ? 6804 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 6805 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 6806 6807 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 6808 } 6809 6810 // Static indexing does not lower to stack access, and hence there is no need 6811 // for special custom lowering to avoid stack access. 6812 if (isa<ConstantSDNode>(Idx)) 6813 return SDValue(); 6814 6815 // Avoid stack access for dynamic indexing by custom lowering to 6816 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 6817 6818 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); 6819 6820 MVT IntVT = MVT::getIntegerVT(VecSize); 6821 6822 // Convert vector index to bit-index and get the required bit mask. 6823 assert(isPowerOf2_32(EltSize)); 6824 const auto EltMask = maskTrailingOnes<uint64_t>(EltSize); 6825 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 6826 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 6827 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 6828 DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); 6829 6830 // 1. Create a congruent vector with the target value in each element. 6831 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 6832 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 6833 6834 // 2. Mask off all other indicies except the required index within (1). 6835 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 6836 6837 // 3. Mask off the required index within the target vector. 6838 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 6839 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 6840 DAG.getNOT(SL, BFM, IntVT), BCVec); 6841 6842 // 4. Get (2) and (3) ORed into the target vector. 6843 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 6844 6845 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 6846 } 6847 6848 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 6849 SelectionDAG &DAG) const { 6850 SDLoc SL(Op); 6851 6852 EVT ResultVT = Op.getValueType(); 6853 SDValue Vec = Op.getOperand(0); 6854 SDValue Idx = Op.getOperand(1); 6855 EVT VecVT = Vec.getValueType(); 6856 unsigned VecSize = VecVT.getSizeInBits(); 6857 EVT EltVT = VecVT.getVectorElementType(); 6858 6859 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 6860 6861 // Make sure we do any optimizations that will make it easier to fold 6862 // source modifiers before obscuring it with bit operations. 6863 6864 // XXX - Why doesn't this get called when vector_shuffle is expanded? 6865 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 6866 return Combined; 6867 6868 if (VecSize == 128 || VecSize == 256 || VecSize == 512) { 6869 SDValue Lo, Hi; 6870 EVT LoVT, HiVT; 6871 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 6872 6873 if (VecSize == 128) { 6874 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 6875 Lo = DAG.getBitcast(LoVT, 6876 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6877 DAG.getConstant(0, SL, MVT::i32))); 6878 Hi = DAG.getBitcast(HiVT, 6879 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6880 DAG.getConstant(1, SL, MVT::i32))); 6881 } else if (VecSize == 256) { 6882 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); 6883 SDValue Parts[4]; 6884 for (unsigned P = 0; P < 4; ++P) { 6885 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6886 DAG.getConstant(P, SL, MVT::i32)); 6887 } 6888 6889 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 6890 Parts[0], Parts[1])); 6891 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 6892 Parts[2], Parts[3])); 6893 } else { 6894 assert(VecSize == 512); 6895 6896 SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec); 6897 SDValue Parts[8]; 6898 for (unsigned P = 0; P < 8; ++P) { 6899 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6900 DAG.getConstant(P, SL, MVT::i32)); 6901 } 6902 6903 Lo = DAG.getBitcast(LoVT, 6904 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, 6905 Parts[0], Parts[1], Parts[2], Parts[3])); 6906 Hi = DAG.getBitcast(HiVT, 6907 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, 6908 Parts[4], Parts[5],Parts[6], Parts[7])); 6909 } 6910 6911 EVT IdxVT = Idx.getValueType(); 6912 unsigned NElem = VecVT.getVectorNumElements(); 6913 assert(isPowerOf2_32(NElem)); 6914 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 6915 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 6916 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 6917 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 6918 } 6919 6920 assert(VecSize <= 64); 6921 6922 MVT IntVT = MVT::getIntegerVT(VecSize); 6923 6924 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. 6925 SDValue VecBC = peekThroughBitcasts(Vec); 6926 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { 6927 SDValue Src = VecBC.getOperand(0); 6928 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); 6929 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); 6930 } 6931 6932 unsigned EltSize = EltVT.getSizeInBits(); 6933 assert(isPowerOf2_32(EltSize)); 6934 6935 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 6936 6937 // Convert vector index to bit-index (* EltSize) 6938 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 6939 6940 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 6941 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 6942 6943 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) { 6944 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 6945 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 6946 } 6947 6948 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 6949 } 6950 6951 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 6952 assert(Elt % 2 == 0); 6953 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 6954 } 6955 6956 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 6957 SelectionDAG &DAG) const { 6958 SDLoc SL(Op); 6959 EVT ResultVT = Op.getValueType(); 6960 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 6961 6962 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 6963 EVT EltVT = PackVT.getVectorElementType(); 6964 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 6965 6966 // vector_shuffle <0,1,6,7> lhs, rhs 6967 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 6968 // 6969 // vector_shuffle <6,7,2,3> lhs, rhs 6970 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 6971 // 6972 // vector_shuffle <6,7,0,1> lhs, rhs 6973 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 6974 6975 // Avoid scalarizing when both halves are reading from consecutive elements. 6976 SmallVector<SDValue, 4> Pieces; 6977 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 6978 if (elementPairIsContiguous(SVN->getMask(), I)) { 6979 const int Idx = SVN->getMaskElt(I); 6980 int VecIdx = Idx < SrcNumElts ? 0 : 1; 6981 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 6982 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 6983 PackVT, SVN->getOperand(VecIdx), 6984 DAG.getConstant(EltIdx, SL, MVT::i32)); 6985 Pieces.push_back(SubVec); 6986 } else { 6987 const int Idx0 = SVN->getMaskElt(I); 6988 const int Idx1 = SVN->getMaskElt(I + 1); 6989 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 6990 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 6991 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 6992 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 6993 6994 SDValue Vec0 = SVN->getOperand(VecIdx0); 6995 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 6996 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 6997 6998 SDValue Vec1 = SVN->getOperand(VecIdx1); 6999 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7000 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 7001 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 7002 } 7003 } 7004 7005 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 7006 } 7007 7008 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 7009 SelectionDAG &DAG) const { 7010 SDValue SVal = Op.getOperand(0); 7011 EVT ResultVT = Op.getValueType(); 7012 EVT SValVT = SVal.getValueType(); 7013 SDValue UndefVal = DAG.getUNDEF(SValVT); 7014 SDLoc SL(Op); 7015 7016 SmallVector<SDValue, 8> VElts; 7017 VElts.push_back(SVal); 7018 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) 7019 VElts.push_back(UndefVal); 7020 7021 return DAG.getBuildVector(ResultVT, SL, VElts); 7022 } 7023 7024 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 7025 SelectionDAG &DAG) const { 7026 SDLoc SL(Op); 7027 EVT VT = Op.getValueType(); 7028 7029 if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 7030 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 7031 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 7032 VT.getVectorNumElements() / 2); 7033 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 7034 7035 // Turn into pair of packed build_vectors. 7036 // TODO: Special case for constants that can be materialized with s_mov_b64. 7037 SmallVector<SDValue, 4> LoOps, HiOps; 7038 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 7039 LoOps.push_back(Op.getOperand(I)); 7040 HiOps.push_back(Op.getOperand(I + E)); 7041 } 7042 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 7043 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 7044 7045 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 7046 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 7047 7048 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 7049 { CastLo, CastHi }); 7050 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 7051 } 7052 7053 if (VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v16bf16) { 7054 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 7055 VT.getVectorNumElements() / 4); 7056 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 7057 7058 SmallVector<SDValue, 4> Parts[4]; 7059 for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { 7060 for (unsigned P = 0; P < 4; ++P) 7061 Parts[P].push_back(Op.getOperand(I + P * E)); 7062 } 7063 SDValue Casts[4]; 7064 for (unsigned P = 0; P < 4; ++P) { 7065 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 7066 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 7067 } 7068 7069 SDValue Blend = 7070 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); 7071 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 7072 } 7073 7074 if (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v32bf16) { 7075 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 7076 VT.getVectorNumElements() / 8); 7077 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 7078 7079 SmallVector<SDValue, 8> Parts[8]; 7080 for (unsigned I = 0, E = VT.getVectorNumElements() / 8; I != E; ++I) { 7081 for (unsigned P = 0; P < 8; ++P) 7082 Parts[P].push_back(Op.getOperand(I + P * E)); 7083 } 7084 SDValue Casts[8]; 7085 for (unsigned P = 0; P < 8; ++P) { 7086 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 7087 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 7088 } 7089 7090 SDValue Blend = 7091 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 8), SL, Casts); 7092 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 7093 } 7094 7095 assert(VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16); 7096 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 7097 7098 SDValue Lo = Op.getOperand(0); 7099 SDValue Hi = Op.getOperand(1); 7100 7101 // Avoid adding defined bits with the zero_extend. 7102 if (Hi.isUndef()) { 7103 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 7104 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 7105 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 7106 } 7107 7108 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 7109 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 7110 7111 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 7112 DAG.getConstant(16, SL, MVT::i32)); 7113 if (Lo.isUndef()) 7114 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 7115 7116 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 7117 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 7118 7119 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 7120 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 7121 } 7122 7123 bool 7124 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 7125 // We can fold offsets for anything that doesn't require a GOT relocation. 7126 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 7127 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 7128 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 7129 !shouldEmitGOTReloc(GA->getGlobal()); 7130 } 7131 7132 static SDValue 7133 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 7134 const SDLoc &DL, int64_t Offset, EVT PtrVT, 7135 unsigned GAFlags = SIInstrInfo::MO_NONE) { 7136 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 7137 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 7138 // lowered to the following code sequence: 7139 // 7140 // For constant address space: 7141 // s_getpc_b64 s[0:1] 7142 // s_add_u32 s0, s0, $symbol 7143 // s_addc_u32 s1, s1, 0 7144 // 7145 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 7146 // a fixup or relocation is emitted to replace $symbol with a literal 7147 // constant, which is a pc-relative offset from the encoding of the $symbol 7148 // operand to the global variable. 7149 // 7150 // For global address space: 7151 // s_getpc_b64 s[0:1] 7152 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 7153 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 7154 // 7155 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 7156 // fixups or relocations are emitted to replace $symbol@*@lo and 7157 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 7158 // which is a 64-bit pc-relative offset from the encoding of the $symbol 7159 // operand to the global variable. 7160 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags); 7161 SDValue PtrHi; 7162 if (GAFlags == SIInstrInfo::MO_NONE) 7163 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 7164 else 7165 PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1); 7166 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 7167 } 7168 7169 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 7170 SDValue Op, 7171 SelectionDAG &DAG) const { 7172 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 7173 SDLoc DL(GSD); 7174 EVT PtrVT = Op.getValueType(); 7175 7176 const GlobalValue *GV = GSD->getGlobal(); 7177 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 7178 shouldUseLDSConstAddress(GV)) || 7179 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 7180 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 7181 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 7182 GV->hasExternalLinkage()) { 7183 Type *Ty = GV->getValueType(); 7184 // HIP uses an unsized array `extern __shared__ T s[]` or similar 7185 // zero-sized type in other languages to declare the dynamic shared 7186 // memory which size is not known at the compile time. They will be 7187 // allocated by the runtime and placed directly after the static 7188 // allocated ones. They all share the same offset. 7189 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 7190 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 7191 // Adjust alignment for that dynamic shared memory array. 7192 Function &F = DAG.getMachineFunction().getFunction(); 7193 MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV)); 7194 MFI->setUsesDynamicLDS(true); 7195 return SDValue( 7196 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 7197 } 7198 } 7199 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 7200 } 7201 7202 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7203 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 7204 SIInstrInfo::MO_ABS32_LO); 7205 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 7206 } 7207 7208 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) { 7209 SDValue AddrLo = DAG.getTargetGlobalAddress( 7210 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO); 7211 AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0}; 7212 7213 SDValue AddrHi = DAG.getTargetGlobalAddress( 7214 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI); 7215 AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0}; 7216 7217 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi); 7218 } 7219 7220 if (shouldEmitFixup(GV)) 7221 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 7222 7223 if (shouldEmitPCReloc(GV)) 7224 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 7225 SIInstrInfo::MO_REL32); 7226 7227 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 7228 SIInstrInfo::MO_GOTPCREL32); 7229 7230 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 7231 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 7232 const DataLayout &DataLayout = DAG.getDataLayout(); 7233 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 7234 MachinePointerInfo PtrInfo 7235 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 7236 7237 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 7238 MachineMemOperand::MODereferenceable | 7239 MachineMemOperand::MOInvariant); 7240 } 7241 7242 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 7243 const SDLoc &DL, SDValue V) const { 7244 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 7245 // the destination register. 7246 // 7247 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 7248 // so we will end up with redundant moves to m0. 7249 // 7250 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 7251 7252 // A Null SDValue creates a glue result. 7253 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 7254 V, Chain); 7255 return SDValue(M0, 0); 7256 } 7257 7258 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 7259 SDValue Op, 7260 MVT VT, 7261 unsigned Offset) const { 7262 SDLoc SL(Op); 7263 SDValue Param = lowerKernargMemParameter( 7264 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 7265 // The local size values will have the hi 16-bits as zero. 7266 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 7267 DAG.getValueType(VT)); 7268 } 7269 7270 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 7271 EVT VT) { 7272 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 7273 "non-hsa intrinsic with hsa target", 7274 DL.getDebugLoc()); 7275 DAG.getContext()->diagnose(BadIntrin); 7276 return DAG.getUNDEF(VT); 7277 } 7278 7279 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 7280 EVT VT) { 7281 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 7282 "intrinsic not supported on subtarget", 7283 DL.getDebugLoc()); 7284 DAG.getContext()->diagnose(BadIntrin); 7285 return DAG.getUNDEF(VT); 7286 } 7287 7288 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 7289 ArrayRef<SDValue> Elts) { 7290 assert(!Elts.empty()); 7291 MVT Type; 7292 unsigned NumElts = Elts.size(); 7293 7294 if (NumElts <= 12) { 7295 Type = MVT::getVectorVT(MVT::f32, NumElts); 7296 } else { 7297 assert(Elts.size() <= 16); 7298 Type = MVT::v16f32; 7299 NumElts = 16; 7300 } 7301 7302 SmallVector<SDValue, 16> VecElts(NumElts); 7303 for (unsigned i = 0; i < Elts.size(); ++i) { 7304 SDValue Elt = Elts[i]; 7305 if (Elt.getValueType() != MVT::f32) 7306 Elt = DAG.getBitcast(MVT::f32, Elt); 7307 VecElts[i] = Elt; 7308 } 7309 for (unsigned i = Elts.size(); i < NumElts; ++i) 7310 VecElts[i] = DAG.getUNDEF(MVT::f32); 7311 7312 if (NumElts == 1) 7313 return VecElts[0]; 7314 return DAG.getBuildVector(Type, DL, VecElts); 7315 } 7316 7317 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 7318 SDValue Src, int ExtraElts) { 7319 EVT SrcVT = Src.getValueType(); 7320 7321 SmallVector<SDValue, 8> Elts; 7322 7323 if (SrcVT.isVector()) 7324 DAG.ExtractVectorElements(Src, Elts); 7325 else 7326 Elts.push_back(Src); 7327 7328 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 7329 while (ExtraElts--) 7330 Elts.push_back(Undef); 7331 7332 return DAG.getBuildVector(CastVT, DL, Elts); 7333 } 7334 7335 // Re-construct the required return value for a image load intrinsic. 7336 // This is more complicated due to the optional use TexFailCtrl which means the required 7337 // return type is an aggregate 7338 static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, 7339 ArrayRef<EVT> ResultTypes, bool IsTexFail, 7340 bool Unpacked, bool IsD16, int DMaskPop, 7341 int NumVDataDwords, bool IsAtomicPacked16Bit, 7342 const SDLoc &DL) { 7343 // Determine the required return type. This is the same regardless of IsTexFail flag 7344 EVT ReqRetVT = ResultTypes[0]; 7345 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 7346 int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit) 7347 ? (ReqRetNumElts + 1) / 2 7348 : ReqRetNumElts; 7349 7350 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 7351 DMaskPop : (DMaskPop + 1) / 2; 7352 7353 MVT DataDwordVT = NumDataDwords == 1 ? 7354 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 7355 7356 MVT MaskPopVT = MaskPopDwords == 1 ? 7357 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 7358 7359 SDValue Data(Result, 0); 7360 SDValue TexFail; 7361 7362 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 7363 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 7364 if (MaskPopVT.isVector()) { 7365 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 7366 SDValue(Result, 0), ZeroIdx); 7367 } else { 7368 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 7369 SDValue(Result, 0), ZeroIdx); 7370 } 7371 } 7372 7373 if (DataDwordVT.isVector() && !IsAtomicPacked16Bit) 7374 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 7375 NumDataDwords - MaskPopDwords); 7376 7377 if (IsD16) 7378 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 7379 7380 EVT LegalReqRetVT = ReqRetVT; 7381 if (!ReqRetVT.isVector()) { 7382 if (!Data.getValueType().isInteger()) 7383 Data = DAG.getNode(ISD::BITCAST, DL, 7384 Data.getValueType().changeTypeToInteger(), Data); 7385 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 7386 } else { 7387 // We need to widen the return vector to a legal type 7388 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 7389 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 7390 LegalReqRetVT = 7391 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 7392 ReqRetVT.getVectorNumElements() + 1); 7393 } 7394 } 7395 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 7396 7397 if (IsTexFail) { 7398 TexFail = 7399 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 7400 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 7401 7402 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 7403 } 7404 7405 if (Result->getNumValues() == 1) 7406 return Data; 7407 7408 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 7409 } 7410 7411 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 7412 SDValue *LWE, bool &IsTexFail) { 7413 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 7414 7415 uint64_t Value = TexFailCtrlConst->getZExtValue(); 7416 if (Value) { 7417 IsTexFail = true; 7418 } 7419 7420 SDLoc DL(TexFailCtrlConst); 7421 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 7422 Value &= ~(uint64_t)0x1; 7423 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 7424 Value &= ~(uint64_t)0x2; 7425 7426 return Value == 0; 7427 } 7428 7429 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 7430 MVT PackVectorVT, 7431 SmallVectorImpl<SDValue> &PackedAddrs, 7432 unsigned DimIdx, unsigned EndIdx, 7433 unsigned NumGradients) { 7434 SDLoc DL(Op); 7435 for (unsigned I = DimIdx; I < EndIdx; I++) { 7436 SDValue Addr = Op.getOperand(I); 7437 7438 // Gradients are packed with undef for each coordinate. 7439 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 7440 // 1D: undef,dx/dh; undef,dx/dv 7441 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 7442 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 7443 if (((I + 1) >= EndIdx) || 7444 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 7445 I == DimIdx + NumGradients - 1))) { 7446 if (Addr.getValueType() != MVT::i16) 7447 Addr = DAG.getBitcast(MVT::i16, Addr); 7448 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 7449 } else { 7450 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 7451 I++; 7452 } 7453 Addr = DAG.getBitcast(MVT::f32, Addr); 7454 PackedAddrs.push_back(Addr); 7455 } 7456 } 7457 7458 SDValue SITargetLowering::lowerImage(SDValue Op, 7459 const AMDGPU::ImageDimIntrinsicInfo *Intr, 7460 SelectionDAG &DAG, bool WithChain) const { 7461 SDLoc DL(Op); 7462 MachineFunction &MF = DAG.getMachineFunction(); 7463 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 7464 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 7465 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 7466 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 7467 unsigned IntrOpcode = Intr->BaseOpcode; 7468 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 7469 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 7470 bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); 7471 7472 SmallVector<EVT, 3> ResultTypes(Op->values()); 7473 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 7474 bool IsD16 = false; 7475 bool IsG16 = false; 7476 bool IsA16 = false; 7477 SDValue VData; 7478 int NumVDataDwords; 7479 bool AdjustRetType = false; 7480 bool IsAtomicPacked16Bit = false; 7481 7482 // Offset of intrinsic arguments 7483 const unsigned ArgOffset = WithChain ? 2 : 1; 7484 7485 unsigned DMask; 7486 unsigned DMaskLanes = 0; 7487 7488 if (BaseOpcode->Atomic) { 7489 VData = Op.getOperand(2); 7490 7491 IsAtomicPacked16Bit = 7492 (Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 || 7493 Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16); 7494 7495 bool Is64Bit = VData.getValueSizeInBits() == 64; 7496 if (BaseOpcode->AtomicX2) { 7497 SDValue VData2 = Op.getOperand(3); 7498 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 7499 {VData, VData2}); 7500 if (Is64Bit) 7501 VData = DAG.getBitcast(MVT::v4i32, VData); 7502 7503 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 7504 DMask = Is64Bit ? 0xf : 0x3; 7505 NumVDataDwords = Is64Bit ? 4 : 2; 7506 } else { 7507 DMask = Is64Bit ? 0x3 : 0x1; 7508 NumVDataDwords = Is64Bit ? 2 : 1; 7509 } 7510 } else { 7511 DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex); 7512 DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); 7513 7514 if (BaseOpcode->Store) { 7515 VData = Op.getOperand(2); 7516 7517 MVT StoreVT = VData.getSimpleValueType(); 7518 if (StoreVT.getScalarType() == MVT::f16) { 7519 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 7520 return Op; // D16 is unsupported for this instruction 7521 7522 IsD16 = true; 7523 VData = handleD16VData(VData, DAG, true); 7524 } 7525 7526 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 7527 } else { 7528 // Work out the num dwords based on the dmask popcount and underlying type 7529 // and whether packing is supported. 7530 MVT LoadVT = ResultTypes[0].getSimpleVT(); 7531 if (LoadVT.getScalarType() == MVT::f16) { 7532 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 7533 return Op; // D16 is unsupported for this instruction 7534 7535 IsD16 = true; 7536 } 7537 7538 // Confirm that the return type is large enough for the dmask specified 7539 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 7540 (!LoadVT.isVector() && DMaskLanes > 1)) 7541 return Op; 7542 7543 // The sq block of gfx8 and gfx9 do not estimate register use correctly 7544 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 7545 // instructions. 7546 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 7547 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 7548 NumVDataDwords = (DMaskLanes + 1) / 2; 7549 else 7550 NumVDataDwords = DMaskLanes; 7551 7552 AdjustRetType = true; 7553 } 7554 } 7555 7556 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 7557 SmallVector<SDValue, 4> VAddrs; 7558 7559 // Check for 16 bit addresses or derivatives and pack if true. 7560 MVT VAddrVT = 7561 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 7562 MVT VAddrScalarVT = VAddrVT.getScalarType(); 7563 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 7564 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 7565 7566 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 7567 VAddrScalarVT = VAddrVT.getScalarType(); 7568 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 7569 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 7570 7571 // Push back extra arguments. 7572 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 7573 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 7574 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 7575 // Special handling of bias when A16 is on. Bias is of type half but 7576 // occupies full 32-bit. 7577 SDValue Bias = DAG.getBuildVector( 7578 MVT::v2f16, DL, 7579 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 7580 VAddrs.push_back(Bias); 7581 } else { 7582 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 7583 "Bias needs to be converted to 16 bit in A16 mode"); 7584 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 7585 } 7586 } 7587 7588 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 7589 // 16 bit gradients are supported, but are tied to the A16 control 7590 // so both gradients and addresses must be 16 bit 7591 LLVM_DEBUG( 7592 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 7593 "require 16 bit args for both gradients and addresses"); 7594 return Op; 7595 } 7596 7597 if (IsA16) { 7598 if (!ST->hasA16()) { 7599 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 7600 "support 16 bit addresses\n"); 7601 return Op; 7602 } 7603 } 7604 7605 // We've dealt with incorrect input so we know that if IsA16, IsG16 7606 // are set then we have to compress/pack operands (either address, 7607 // gradient or both) 7608 // In the case where a16 and gradients are tied (no G16 support) then we 7609 // have already verified that both IsA16 and IsG16 are true 7610 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 7611 // Activate g16 7612 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 7613 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 7614 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 7615 } 7616 7617 // Add gradients (packed or unpacked) 7618 if (IsG16) { 7619 // Pack the gradients 7620 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 7621 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 7622 ArgOffset + Intr->GradientStart, 7623 ArgOffset + Intr->CoordStart, Intr->NumGradients); 7624 } else { 7625 for (unsigned I = ArgOffset + Intr->GradientStart; 7626 I < ArgOffset + Intr->CoordStart; I++) 7627 VAddrs.push_back(Op.getOperand(I)); 7628 } 7629 7630 // Add addresses (packed or unpacked) 7631 if (IsA16) { 7632 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 7633 ArgOffset + Intr->CoordStart, VAddrEnd, 7634 0 /* No gradients */); 7635 } else { 7636 // Add uncompressed address 7637 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 7638 VAddrs.push_back(Op.getOperand(I)); 7639 } 7640 7641 // If the register allocator cannot place the address registers contiguously 7642 // without introducing moves, then using the non-sequential address encoding 7643 // is always preferable, since it saves VALU instructions and is usually a 7644 // wash in terms of code size or even better. 7645 // 7646 // However, we currently have no way of hinting to the register allocator that 7647 // MIMG addresses should be placed contiguously when it is possible to do so, 7648 // so force non-NSA for the common 2-address case as a heuristic. 7649 // 7650 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 7651 // allocation when possible. 7652 // 7653 // Partial NSA is allowed on GFX11+ where the final register is a contiguous 7654 // set of the remaining addresses. 7655 const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler); 7656 const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding(); 7657 const bool UseNSA = ST->hasNSAEncoding() && 7658 VAddrs.size() >= ST->getNSAThreshold(MF) && 7659 (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding); 7660 const bool UsePartialNSA = 7661 UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize; 7662 7663 SDValue VAddr; 7664 if (UsePartialNSA) { 7665 VAddr = getBuildDwordsVector(DAG, DL, 7666 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1)); 7667 } 7668 else if (!UseNSA) { 7669 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 7670 } 7671 7672 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 7673 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 7674 SDValue Unorm; 7675 if (!BaseOpcode->Sampler) { 7676 Unorm = True; 7677 } else { 7678 auto UnormConst = 7679 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 7680 7681 Unorm = UnormConst->getZExtValue() ? True : False; 7682 } 7683 7684 SDValue TFE; 7685 SDValue LWE; 7686 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 7687 bool IsTexFail = false; 7688 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 7689 return Op; 7690 7691 if (IsTexFail) { 7692 if (!DMaskLanes) { 7693 // Expecting to get an error flag since TFC is on - and dmask is 0 7694 // Force dmask to be at least 1 otherwise the instruction will fail 7695 DMask = 0x1; 7696 DMaskLanes = 1; 7697 NumVDataDwords = 1; 7698 } 7699 NumVDataDwords += 1; 7700 AdjustRetType = true; 7701 } 7702 7703 // Has something earlier tagged that the return type needs adjusting 7704 // This happens if the instruction is a load or has set TexFailCtrl flags 7705 if (AdjustRetType) { 7706 // NumVDataDwords reflects the true number of dwords required in the return type 7707 if (DMaskLanes == 0 && !BaseOpcode->Store) { 7708 // This is a no-op load. This can be eliminated 7709 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 7710 if (isa<MemSDNode>(Op)) 7711 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 7712 return Undef; 7713 } 7714 7715 EVT NewVT = NumVDataDwords > 1 ? 7716 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 7717 : MVT::i32; 7718 7719 ResultTypes[0] = NewVT; 7720 if (ResultTypes.size() == 3) { 7721 // Original result was aggregate type used for TexFailCtrl results 7722 // The actual instruction returns as a vector type which has now been 7723 // created. Remove the aggregate result. 7724 ResultTypes.erase(&ResultTypes[1]); 7725 } 7726 } 7727 7728 unsigned CPol = cast<ConstantSDNode>( 7729 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 7730 if (BaseOpcode->Atomic) 7731 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 7732 if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) | 7733 AMDGPU::CPol::VOLATILE)) 7734 return Op; 7735 7736 SmallVector<SDValue, 26> Ops; 7737 if (BaseOpcode->Store || BaseOpcode->Atomic) 7738 Ops.push_back(VData); // vdata 7739 if (UsePartialNSA) { 7740 append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1)); 7741 Ops.push_back(VAddr); 7742 } 7743 else if (UseNSA) 7744 append_range(Ops, VAddrs); 7745 else 7746 Ops.push_back(VAddr); 7747 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 7748 if (BaseOpcode->Sampler) 7749 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 7750 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 7751 if (IsGFX10Plus) 7752 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 7753 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) 7754 Ops.push_back(Unorm); 7755 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 7756 Ops.push_back(IsA16 && // r128, a16 for gfx9 7757 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 7758 if (IsGFX10Plus) 7759 Ops.push_back(IsA16 ? True : False); 7760 if (!Subtarget->hasGFX90AInsts()) { 7761 Ops.push_back(TFE); //tfe 7762 } else if (TFE->getAsZExtVal()) { 7763 report_fatal_error("TFE is not supported on this GPU"); 7764 } 7765 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) 7766 Ops.push_back(LWE); // lwe 7767 if (!IsGFX10Plus) 7768 Ops.push_back(DimInfo->DA ? True : False); 7769 if (BaseOpcode->HasD16) 7770 Ops.push_back(IsD16 ? True : False); 7771 if (isa<MemSDNode>(Op)) 7772 Ops.push_back(Op.getOperand(0)); // chain 7773 7774 int NumVAddrDwords = 7775 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 7776 int Opcode = -1; 7777 7778 if (IsGFX12Plus) { 7779 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12, 7780 NumVDataDwords, NumVAddrDwords); 7781 } else if (IsGFX11Plus) { 7782 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 7783 UseNSA ? AMDGPU::MIMGEncGfx11NSA 7784 : AMDGPU::MIMGEncGfx11Default, 7785 NumVDataDwords, NumVAddrDwords); 7786 } else if (IsGFX10Plus) { 7787 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 7788 UseNSA ? AMDGPU::MIMGEncGfx10NSA 7789 : AMDGPU::MIMGEncGfx10Default, 7790 NumVDataDwords, NumVAddrDwords); 7791 } else { 7792 if (Subtarget->hasGFX90AInsts()) { 7793 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 7794 NumVDataDwords, NumVAddrDwords); 7795 if (Opcode == -1) 7796 report_fatal_error( 7797 "requested image instruction is not supported on this GPU"); 7798 } 7799 if (Opcode == -1 && 7800 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7801 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 7802 NumVDataDwords, NumVAddrDwords); 7803 if (Opcode == -1) 7804 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 7805 NumVDataDwords, NumVAddrDwords); 7806 } 7807 if (Opcode == -1) 7808 return Op; 7809 7810 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 7811 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 7812 MachineMemOperand *MemRef = MemOp->getMemOperand(); 7813 DAG.setNodeMemRefs(NewNode, {MemRef}); 7814 } 7815 7816 if (BaseOpcode->AtomicX2) { 7817 SmallVector<SDValue, 1> Elt; 7818 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 7819 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 7820 } 7821 if (BaseOpcode->Store) 7822 return SDValue(NewNode, 0); 7823 return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail, 7824 Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes, 7825 NumVDataDwords, IsAtomicPacked16Bit, DL); 7826 } 7827 7828 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 7829 SDValue Offset, SDValue CachePolicy, 7830 SelectionDAG &DAG) const { 7831 MachineFunction &MF = DAG.getMachineFunction(); 7832 7833 const DataLayout &DataLayout = DAG.getDataLayout(); 7834 Align Alignment = 7835 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 7836 7837 MachineMemOperand *MMO = MF.getMachineMemOperand( 7838 MachinePointerInfo(), 7839 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 7840 MachineMemOperand::MOInvariant, 7841 VT.getStoreSize(), Alignment); 7842 7843 if (!Offset->isDivergent()) { 7844 SDValue Ops[] = {Rsrc, Offset, CachePolicy}; 7845 7846 // Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the 7847 // s_buffer_load_u16 instruction is emitted for both signed and unsigned 7848 // loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext 7849 // and generates s_buffer_load_i16 (performSignExtendInRegCombine). 7850 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) { 7851 SDValue BufferLoad = 7852 DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_USHORT, DL, 7853 DAG.getVTList(MVT::i32), Ops, VT, MMO); 7854 return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); 7855 } 7856 7857 // Widen vec3 load to vec4. 7858 if (VT.isVector() && VT.getVectorNumElements() == 3 && 7859 !Subtarget->hasScalarDwordx3Loads()) { 7860 EVT WidenedVT = 7861 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 7862 auto WidenedOp = DAG.getMemIntrinsicNode( 7863 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 7864 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 7865 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 7866 DAG.getVectorIdxConstant(0, DL)); 7867 return Subvector; 7868 } 7869 7870 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 7871 DAG.getVTList(VT), Ops, VT, MMO); 7872 } 7873 7874 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 7875 // assume that the buffer is unswizzled. 7876 SDValue Ops[] = { 7877 DAG.getEntryNode(), // Chain 7878 Rsrc, // rsrc 7879 DAG.getConstant(0, DL, MVT::i32), // vindex 7880 {}, // voffset 7881 {}, // soffset 7882 {}, // offset 7883 CachePolicy, // cachepolicy 7884 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7885 }; 7886 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) { 7887 setBufferOffsets(Offset, DAG, &Ops[3], Align(4)); 7888 return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO); 7889 } 7890 7891 SmallVector<SDValue, 4> Loads; 7892 unsigned NumLoads = 1; 7893 MVT LoadVT = VT.getSimpleVT(); 7894 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 7895 assert((LoadVT.getScalarType() == MVT::i32 || 7896 LoadVT.getScalarType() == MVT::f32)); 7897 7898 if (NumElts == 8 || NumElts == 16) { 7899 NumLoads = NumElts / 4; 7900 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 7901 } 7902 7903 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 7904 7905 // Use the alignment to ensure that the required offsets will fit into the 7906 // immediate offsets. 7907 setBufferOffsets(Offset, DAG, &Ops[3], 7908 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 7909 7910 uint64_t InstOffset = Ops[5]->getAsZExtVal(); 7911 for (unsigned i = 0; i < NumLoads; ++i) { 7912 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 7913 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 7914 LoadVT, MMO, DAG)); 7915 } 7916 7917 if (NumElts == 8 || NumElts == 16) 7918 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 7919 7920 return Loads[0]; 7921 } 7922 7923 SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const { 7924 // With architected SGPRs, waveIDinGroup is in TTMP8[29:25]. 7925 if (!Subtarget->hasArchitectedSGPRs()) 7926 return {}; 7927 SDLoc SL(Op); 7928 MVT VT = MVT::i32; 7929 SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT); 7930 return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8, 7931 DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT)); 7932 } 7933 7934 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, 7935 unsigned Dim, 7936 const ArgDescriptor &Arg) const { 7937 SDLoc SL(Op); 7938 MachineFunction &MF = DAG.getMachineFunction(); 7939 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); 7940 if (MaxID == 0) 7941 return DAG.getConstant(0, SL, MVT::i32); 7942 7943 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 7944 SDLoc(DAG.getEntryNode()), Arg); 7945 7946 // Don't bother inserting AssertZext for packed IDs since we're emitting the 7947 // masking operations anyway. 7948 // 7949 // TODO: We could assert the top bit is 0 for the source copy. 7950 if (Arg.isMasked()) 7951 return Val; 7952 7953 // Preserve the known bits after expansion to a copy. 7954 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); 7955 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, 7956 DAG.getValueType(SmallVT)); 7957 } 7958 7959 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7960 SelectionDAG &DAG) const { 7961 MachineFunction &MF = DAG.getMachineFunction(); 7962 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 7963 7964 EVT VT = Op.getValueType(); 7965 SDLoc DL(Op); 7966 unsigned IntrinsicID = Op.getConstantOperandVal(0); 7967 7968 // TODO: Should this propagate fast-math-flags? 7969 7970 switch (IntrinsicID) { 7971 case Intrinsic::amdgcn_implicit_buffer_ptr: { 7972 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 7973 return emitNonHSAIntrinsicError(DAG, DL, VT); 7974 return getPreloadedValue(DAG, *MFI, VT, 7975 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 7976 } 7977 case Intrinsic::amdgcn_dispatch_ptr: 7978 case Intrinsic::amdgcn_queue_ptr: { 7979 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 7980 DiagnosticInfoUnsupported BadIntrin( 7981 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 7982 DL.getDebugLoc()); 7983 DAG.getContext()->diagnose(BadIntrin); 7984 return DAG.getUNDEF(VT); 7985 } 7986 7987 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 7988 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 7989 return getPreloadedValue(DAG, *MFI, VT, RegID); 7990 } 7991 case Intrinsic::amdgcn_implicitarg_ptr: { 7992 if (MFI->isEntryFunction()) 7993 return getImplicitArgPtr(DAG, DL); 7994 return getPreloadedValue(DAG, *MFI, VT, 7995 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 7996 } 7997 case Intrinsic::amdgcn_kernarg_segment_ptr: { 7998 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 7999 // This only makes sense to call in a kernel, so just lower to null. 8000 return DAG.getConstant(0, DL, VT); 8001 } 8002 8003 return getPreloadedValue(DAG, *MFI, VT, 8004 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 8005 } 8006 case Intrinsic::amdgcn_dispatch_id: { 8007 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 8008 } 8009 case Intrinsic::amdgcn_rcp: 8010 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 8011 case Intrinsic::amdgcn_rsq: 8012 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 8013 case Intrinsic::amdgcn_rsq_legacy: 8014 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 8015 return emitRemovedIntrinsicError(DAG, DL, VT); 8016 return SDValue(); 8017 case Intrinsic::amdgcn_rcp_legacy: 8018 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 8019 return emitRemovedIntrinsicError(DAG, DL, VT); 8020 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 8021 case Intrinsic::amdgcn_rsq_clamp: { 8022 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 8023 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 8024 8025 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 8026 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 8027 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 8028 8029 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 8030 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 8031 DAG.getConstantFP(Max, DL, VT)); 8032 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 8033 DAG.getConstantFP(Min, DL, VT)); 8034 } 8035 case Intrinsic::r600_read_ngroups_x: 8036 if (Subtarget->isAmdHsaOS()) 8037 return emitNonHSAIntrinsicError(DAG, DL, VT); 8038 8039 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8040 SI::KernelInputOffsets::NGROUPS_X, Align(4), 8041 false); 8042 case Intrinsic::r600_read_ngroups_y: 8043 if (Subtarget->isAmdHsaOS()) 8044 return emitNonHSAIntrinsicError(DAG, DL, VT); 8045 8046 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8047 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 8048 false); 8049 case Intrinsic::r600_read_ngroups_z: 8050 if (Subtarget->isAmdHsaOS()) 8051 return emitNonHSAIntrinsicError(DAG, DL, VT); 8052 8053 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8054 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 8055 false); 8056 case Intrinsic::r600_read_global_size_x: 8057 if (Subtarget->isAmdHsaOS()) 8058 return emitNonHSAIntrinsicError(DAG, DL, VT); 8059 8060 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8061 SI::KernelInputOffsets::GLOBAL_SIZE_X, 8062 Align(4), false); 8063 case Intrinsic::r600_read_global_size_y: 8064 if (Subtarget->isAmdHsaOS()) 8065 return emitNonHSAIntrinsicError(DAG, DL, VT); 8066 8067 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8068 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 8069 Align(4), false); 8070 case Intrinsic::r600_read_global_size_z: 8071 if (Subtarget->isAmdHsaOS()) 8072 return emitNonHSAIntrinsicError(DAG, DL, VT); 8073 8074 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8075 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 8076 Align(4), false); 8077 case Intrinsic::r600_read_local_size_x: 8078 if (Subtarget->isAmdHsaOS()) 8079 return emitNonHSAIntrinsicError(DAG, DL, VT); 8080 8081 return lowerImplicitZextParam(DAG, Op, MVT::i16, 8082 SI::KernelInputOffsets::LOCAL_SIZE_X); 8083 case Intrinsic::r600_read_local_size_y: 8084 if (Subtarget->isAmdHsaOS()) 8085 return emitNonHSAIntrinsicError(DAG, DL, VT); 8086 8087 return lowerImplicitZextParam(DAG, Op, MVT::i16, 8088 SI::KernelInputOffsets::LOCAL_SIZE_Y); 8089 case Intrinsic::r600_read_local_size_z: 8090 if (Subtarget->isAmdHsaOS()) 8091 return emitNonHSAIntrinsicError(DAG, DL, VT); 8092 8093 return lowerImplicitZextParam(DAG, Op, MVT::i16, 8094 SI::KernelInputOffsets::LOCAL_SIZE_Z); 8095 case Intrinsic::amdgcn_workgroup_id_x: 8096 return getPreloadedValue(DAG, *MFI, VT, 8097 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 8098 case Intrinsic::amdgcn_workgroup_id_y: 8099 return getPreloadedValue(DAG, *MFI, VT, 8100 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 8101 case Intrinsic::amdgcn_workgroup_id_z: 8102 return getPreloadedValue(DAG, *MFI, VT, 8103 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 8104 case Intrinsic::amdgcn_wave_id: 8105 return lowerWaveID(DAG, Op); 8106 case Intrinsic::amdgcn_lds_kernel_id: { 8107 if (MFI->isEntryFunction()) 8108 return getLDSKernelId(DAG, DL); 8109 return getPreloadedValue(DAG, *MFI, VT, 8110 AMDGPUFunctionArgInfo::LDS_KERNEL_ID); 8111 } 8112 case Intrinsic::amdgcn_workitem_id_x: 8113 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); 8114 case Intrinsic::amdgcn_workitem_id_y: 8115 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); 8116 case Intrinsic::amdgcn_workitem_id_z: 8117 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); 8118 case Intrinsic::amdgcn_wavefrontsize: 8119 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 8120 SDLoc(Op), MVT::i32); 8121 case Intrinsic::amdgcn_s_buffer_load: { 8122 unsigned CPol = Op.getConstantOperandVal(3); 8123 // s_buffer_load, because of how it's optimized, can't be volatile 8124 // so reject ones with the volatile bit set. 8125 if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12) 8126 ? AMDGPU::CPol::ALL 8127 : AMDGPU::CPol::ALL_pregfx12)) 8128 return Op; 8129 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 8130 DAG); 8131 } 8132 case Intrinsic::amdgcn_fdiv_fast: 8133 return lowerFDIV_FAST(Op, DAG); 8134 case Intrinsic::amdgcn_sin: 8135 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 8136 8137 case Intrinsic::amdgcn_cos: 8138 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 8139 8140 case Intrinsic::amdgcn_mul_u24: 8141 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 8142 case Intrinsic::amdgcn_mul_i24: 8143 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 8144 8145 case Intrinsic::amdgcn_log_clamp: { 8146 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 8147 return SDValue(); 8148 8149 return emitRemovedIntrinsicError(DAG, DL, VT); 8150 } 8151 case Intrinsic::amdgcn_fract: 8152 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 8153 8154 case Intrinsic::amdgcn_class: 8155 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 8156 Op.getOperand(1), Op.getOperand(2)); 8157 case Intrinsic::amdgcn_div_fmas: 8158 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 8159 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 8160 Op.getOperand(4)); 8161 8162 case Intrinsic::amdgcn_div_fixup: 8163 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 8164 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8165 8166 case Intrinsic::amdgcn_div_scale: { 8167 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 8168 8169 // Translate to the operands expected by the machine instruction. The 8170 // first parameter must be the same as the first instruction. 8171 SDValue Numerator = Op.getOperand(1); 8172 SDValue Denominator = Op.getOperand(2); 8173 8174 // Note this order is opposite of the machine instruction's operations, 8175 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 8176 // intrinsic has the numerator as the first operand to match a normal 8177 // division operation. 8178 8179 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 8180 8181 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 8182 Denominator, Numerator); 8183 } 8184 case Intrinsic::amdgcn_icmp: { 8185 // There is a Pat that handles this variant, so return it as-is. 8186 if (Op.getOperand(1).getValueType() == MVT::i1 && 8187 Op.getConstantOperandVal(2) == 0 && 8188 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 8189 return Op; 8190 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 8191 } 8192 case Intrinsic::amdgcn_fcmp: { 8193 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 8194 } 8195 case Intrinsic::amdgcn_ballot: 8196 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 8197 case Intrinsic::amdgcn_fmed3: 8198 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 8199 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8200 case Intrinsic::amdgcn_fdot2: 8201 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 8202 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 8203 Op.getOperand(4)); 8204 case Intrinsic::amdgcn_fmul_legacy: 8205 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 8206 Op.getOperand(1), Op.getOperand(2)); 8207 case Intrinsic::amdgcn_sffbh: 8208 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 8209 case Intrinsic::amdgcn_sbfe: 8210 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 8211 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8212 case Intrinsic::amdgcn_ubfe: 8213 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 8214 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8215 case Intrinsic::amdgcn_cvt_pkrtz: 8216 case Intrinsic::amdgcn_cvt_pknorm_i16: 8217 case Intrinsic::amdgcn_cvt_pknorm_u16: 8218 case Intrinsic::amdgcn_cvt_pk_i16: 8219 case Intrinsic::amdgcn_cvt_pk_u16: { 8220 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 8221 EVT VT = Op.getValueType(); 8222 unsigned Opcode; 8223 8224 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 8225 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 8226 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 8227 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 8228 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 8229 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 8230 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 8231 Opcode = AMDGPUISD::CVT_PK_I16_I32; 8232 else 8233 Opcode = AMDGPUISD::CVT_PK_U16_U32; 8234 8235 if (isTypeLegal(VT)) 8236 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 8237 8238 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 8239 Op.getOperand(1), Op.getOperand(2)); 8240 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 8241 } 8242 case Intrinsic::amdgcn_fmad_ftz: 8243 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 8244 Op.getOperand(2), Op.getOperand(3)); 8245 8246 case Intrinsic::amdgcn_if_break: 8247 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 8248 Op->getOperand(1), Op->getOperand(2)), 0); 8249 8250 case Intrinsic::amdgcn_groupstaticsize: { 8251 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 8252 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 8253 return Op; 8254 8255 const Module *M = MF.getFunction().getParent(); 8256 const GlobalValue *GV = 8257 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 8258 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 8259 SIInstrInfo::MO_ABS32_LO); 8260 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 8261 } 8262 case Intrinsic::amdgcn_is_shared: 8263 case Intrinsic::amdgcn_is_private: { 8264 SDLoc SL(Op); 8265 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 8266 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 8267 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 8268 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 8269 Op.getOperand(1)); 8270 8271 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 8272 DAG.getConstant(1, SL, MVT::i32)); 8273 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 8274 } 8275 case Intrinsic::amdgcn_perm: 8276 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 8277 Op.getOperand(2), Op.getOperand(3)); 8278 case Intrinsic::amdgcn_reloc_constant: { 8279 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 8280 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 8281 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 8282 auto RelocSymbol = cast<GlobalVariable>( 8283 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 8284 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 8285 SIInstrInfo::MO_ABS32_LO); 8286 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 8287 } 8288 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16: 8289 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16: 8290 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16: 8291 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16: 8292 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8: 8293 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8: 8294 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8: 8295 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: { 8296 if (Op.getOperand(4).getValueType() == MVT::i32) 8297 return SDValue(); 8298 8299 SDLoc SL(Op); 8300 auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32); 8301 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(), 8302 Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), 8303 Op.getOperand(3), IndexKeyi32); 8304 } 8305 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4: 8306 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8: 8307 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: { 8308 if (Op.getOperand(6).getValueType() == MVT::i32) 8309 return SDValue(); 8310 8311 SDLoc SL(Op); 8312 auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32); 8313 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(), 8314 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), 8315 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5), 8316 IndexKeyi32, Op.getOperand(7)}); 8317 } 8318 default: 8319 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8320 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8321 return lowerImage(Op, ImageDimIntr, DAG, false); 8322 8323 return Op; 8324 } 8325 } 8326 8327 // On targets not supporting constant in soffset field, turn zero to 8328 // SGPR_NULL to avoid generating an extra s_mov with zero. 8329 static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, 8330 const GCNSubtarget *Subtarget) { 8331 if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset)) 8332 return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32); 8333 return SOffset; 8334 } 8335 8336 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 8337 SelectionDAG &DAG, 8338 unsigned NewOpcode) const { 8339 SDLoc DL(Op); 8340 8341 SDValue VData = Op.getOperand(2); 8342 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8343 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8344 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8345 SDValue Ops[] = { 8346 Op.getOperand(0), // Chain 8347 VData, // vdata 8348 Rsrc, // rsrc 8349 DAG.getConstant(0, DL, MVT::i32), // vindex 8350 Offsets.first, // voffset 8351 SOffset, // soffset 8352 Offsets.second, // offset 8353 Op.getOperand(6), // cachepolicy 8354 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8355 }; 8356 8357 auto *M = cast<MemSDNode>(Op); 8358 8359 EVT MemVT = VData.getValueType(); 8360 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 8361 M->getMemOperand()); 8362 } 8363 8364 // Return a value to use for the idxen operand by examining the vindex operand. 8365 static unsigned getIdxEn(SDValue VIndex) { 8366 // No need to set idxen if vindex is known to be zero. 8367 return isNullConstant(VIndex) ? 0 : 1; 8368 } 8369 8370 SDValue 8371 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 8372 unsigned NewOpcode) const { 8373 SDLoc DL(Op); 8374 8375 SDValue VData = Op.getOperand(2); 8376 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8377 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8378 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 8379 SDValue Ops[] = { 8380 Op.getOperand(0), // Chain 8381 VData, // vdata 8382 Rsrc, // rsrc 8383 Op.getOperand(4), // vindex 8384 Offsets.first, // voffset 8385 SOffset, // soffset 8386 Offsets.second, // offset 8387 Op.getOperand(7), // cachepolicy 8388 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8389 }; 8390 8391 auto *M = cast<MemSDNode>(Op); 8392 8393 EVT MemVT = VData.getValueType(); 8394 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 8395 M->getMemOperand()); 8396 } 8397 8398 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 8399 SelectionDAG &DAG) const { 8400 unsigned IntrID = Op.getConstantOperandVal(1); 8401 SDLoc DL(Op); 8402 8403 switch (IntrID) { 8404 case Intrinsic::amdgcn_ds_ordered_add: 8405 case Intrinsic::amdgcn_ds_ordered_swap: { 8406 MemSDNode *M = cast<MemSDNode>(Op); 8407 SDValue Chain = M->getOperand(0); 8408 SDValue M0 = M->getOperand(2); 8409 SDValue Value = M->getOperand(3); 8410 unsigned IndexOperand = M->getConstantOperandVal(7); 8411 unsigned WaveRelease = M->getConstantOperandVal(8); 8412 unsigned WaveDone = M->getConstantOperandVal(9); 8413 8414 unsigned OrderedCountIndex = IndexOperand & 0x3f; 8415 IndexOperand &= ~0x3f; 8416 unsigned CountDw = 0; 8417 8418 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 8419 CountDw = (IndexOperand >> 24) & 0xf; 8420 IndexOperand &= ~(0xf << 24); 8421 8422 if (CountDw < 1 || CountDw > 4) { 8423 report_fatal_error( 8424 "ds_ordered_count: dword count must be between 1 and 4"); 8425 } 8426 } 8427 8428 if (IndexOperand) 8429 report_fatal_error("ds_ordered_count: bad index operand"); 8430 8431 if (WaveDone && !WaveRelease) 8432 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 8433 8434 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 8435 unsigned ShaderType = 8436 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 8437 unsigned Offset0 = OrderedCountIndex << 2; 8438 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); 8439 8440 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 8441 Offset1 |= (CountDw - 1) << 6; 8442 8443 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) 8444 Offset1 |= ShaderType << 2; 8445 8446 unsigned Offset = Offset0 | (Offset1 << 8); 8447 8448 SDValue Ops[] = { 8449 Chain, 8450 Value, 8451 DAG.getTargetConstant(Offset, DL, MVT::i16), 8452 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 8453 }; 8454 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 8455 M->getVTList(), Ops, M->getMemoryVT(), 8456 M->getMemOperand()); 8457 } 8458 case Intrinsic::amdgcn_ds_fadd: { 8459 MemSDNode *M = cast<MemSDNode>(Op); 8460 unsigned Opc; 8461 switch (IntrID) { 8462 case Intrinsic::amdgcn_ds_fadd: 8463 Opc = ISD::ATOMIC_LOAD_FADD; 8464 break; 8465 } 8466 8467 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 8468 M->getOperand(0), M->getOperand(2), M->getOperand(3), 8469 M->getMemOperand()); 8470 } 8471 case Intrinsic::amdgcn_ds_fmin: 8472 case Intrinsic::amdgcn_ds_fmax: { 8473 MemSDNode *M = cast<MemSDNode>(Op); 8474 unsigned Opc; 8475 switch (IntrID) { 8476 case Intrinsic::amdgcn_ds_fmin: 8477 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 8478 break; 8479 case Intrinsic::amdgcn_ds_fmax: 8480 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 8481 break; 8482 default: 8483 llvm_unreachable("Unknown intrinsic!"); 8484 } 8485 SDValue Ops[] = { 8486 M->getOperand(0), // Chain 8487 M->getOperand(2), // Ptr 8488 M->getOperand(3) // Value 8489 }; 8490 8491 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 8492 M->getMemoryVT(), M->getMemOperand()); 8493 } 8494 case Intrinsic::amdgcn_buffer_load: 8495 case Intrinsic::amdgcn_buffer_load_format: { 8496 unsigned Glc = Op.getConstantOperandVal(5); 8497 unsigned Slc = Op.getConstantOperandVal(6); 8498 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 8499 SDValue Ops[] = { 8500 Op.getOperand(0), // Chain 8501 Op.getOperand(2), // rsrc 8502 Op.getOperand(3), // vindex 8503 SDValue(), // voffset -- will be set by setBufferOffsets 8504 SDValue(), // soffset -- will be set by setBufferOffsets 8505 SDValue(), // offset -- will be set by setBufferOffsets 8506 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8507 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8508 }; 8509 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 8510 8511 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 8512 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 8513 8514 EVT VT = Op.getValueType(); 8515 EVT IntVT = VT.changeTypeToInteger(); 8516 auto *M = cast<MemSDNode>(Op); 8517 EVT LoadVT = Op.getValueType(); 8518 8519 if (LoadVT.getScalarType() == MVT::f16) 8520 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 8521 M, DAG, Ops); 8522 8523 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 8524 if (LoadVT.getScalarType() == MVT::i8 || LoadVT.getScalarType() == MVT::i16) 8525 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, 8526 M->getMemOperand()); 8527 8528 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 8529 M->getMemOperand(), DAG); 8530 } 8531 case Intrinsic::amdgcn_raw_buffer_load: 8532 case Intrinsic::amdgcn_raw_ptr_buffer_load: 8533 case Intrinsic::amdgcn_raw_buffer_load_format: 8534 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: { 8535 const bool IsFormat = 8536 IntrID == Intrinsic::amdgcn_raw_buffer_load_format || 8537 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format; 8538 8539 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8540 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 8541 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); 8542 SDValue Ops[] = { 8543 Op.getOperand(0), // Chain 8544 Rsrc, // rsrc 8545 DAG.getConstant(0, DL, MVT::i32), // vindex 8546 Offsets.first, // voffset 8547 SOffset, // soffset 8548 Offsets.second, // offset 8549 Op.getOperand(5), // cachepolicy, swizzled buffer 8550 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8551 }; 8552 8553 auto *M = cast<MemSDNode>(Op); 8554 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 8555 } 8556 case Intrinsic::amdgcn_struct_buffer_load: 8557 case Intrinsic::amdgcn_struct_ptr_buffer_load: 8558 case Intrinsic::amdgcn_struct_buffer_load_format: 8559 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: { 8560 const bool IsFormat = 8561 IntrID == Intrinsic::amdgcn_struct_buffer_load_format || 8562 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format; 8563 8564 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8565 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8566 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8567 SDValue Ops[] = { 8568 Op.getOperand(0), // Chain 8569 Rsrc, // rsrc 8570 Op.getOperand(3), // vindex 8571 Offsets.first, // voffset 8572 SOffset, // soffset 8573 Offsets.second, // offset 8574 Op.getOperand(6), // cachepolicy, swizzled buffer 8575 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8576 }; 8577 8578 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 8579 } 8580 case Intrinsic::amdgcn_tbuffer_load: { 8581 MemSDNode *M = cast<MemSDNode>(Op); 8582 EVT LoadVT = Op.getValueType(); 8583 8584 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8585 unsigned Dfmt = Op.getConstantOperandVal(7); 8586 unsigned Nfmt = Op.getConstantOperandVal(8); 8587 unsigned Glc = Op.getConstantOperandVal(9); 8588 unsigned Slc = Op.getConstantOperandVal(10); 8589 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 8590 SDValue Ops[] = { 8591 Op.getOperand(0), // Chain 8592 Op.getOperand(2), // rsrc 8593 Op.getOperand(3), // vindex 8594 Op.getOperand(4), // voffset 8595 SOffset, // soffset 8596 Op.getOperand(6), // offset 8597 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 8598 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8599 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 8600 }; 8601 8602 if (LoadVT.getScalarType() == MVT::f16) 8603 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 8604 M, DAG, Ops); 8605 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 8606 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 8607 DAG); 8608 } 8609 case Intrinsic::amdgcn_raw_tbuffer_load: 8610 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: { 8611 MemSDNode *M = cast<MemSDNode>(Op); 8612 EVT LoadVT = Op.getValueType(); 8613 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8614 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 8615 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); 8616 8617 SDValue Ops[] = { 8618 Op.getOperand(0), // Chain 8619 Rsrc, // rsrc 8620 DAG.getConstant(0, DL, MVT::i32), // vindex 8621 Offsets.first, // voffset 8622 SOffset, // soffset 8623 Offsets.second, // offset 8624 Op.getOperand(5), // format 8625 Op.getOperand(6), // cachepolicy, swizzled buffer 8626 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8627 }; 8628 8629 if (LoadVT.getScalarType() == MVT::f16) 8630 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 8631 M, DAG, Ops); 8632 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 8633 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 8634 DAG); 8635 } 8636 case Intrinsic::amdgcn_struct_tbuffer_load: 8637 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: { 8638 MemSDNode *M = cast<MemSDNode>(Op); 8639 EVT LoadVT = Op.getValueType(); 8640 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8641 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8642 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8643 8644 SDValue Ops[] = { 8645 Op.getOperand(0), // Chain 8646 Rsrc, // rsrc 8647 Op.getOperand(3), // vindex 8648 Offsets.first, // voffset 8649 SOffset, // soffset 8650 Offsets.second, // offset 8651 Op.getOperand(6), // format 8652 Op.getOperand(7), // cachepolicy, swizzled buffer 8653 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8654 }; 8655 8656 if (LoadVT.getScalarType() == MVT::f16) 8657 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 8658 M, DAG, Ops); 8659 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 8660 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 8661 DAG); 8662 } 8663 case Intrinsic::amdgcn_buffer_atomic_swap: 8664 case Intrinsic::amdgcn_buffer_atomic_add: 8665 case Intrinsic::amdgcn_buffer_atomic_sub: 8666 case Intrinsic::amdgcn_buffer_atomic_csub: 8667 case Intrinsic::amdgcn_buffer_atomic_smin: 8668 case Intrinsic::amdgcn_buffer_atomic_umin: 8669 case Intrinsic::amdgcn_buffer_atomic_smax: 8670 case Intrinsic::amdgcn_buffer_atomic_umax: 8671 case Intrinsic::amdgcn_buffer_atomic_and: 8672 case Intrinsic::amdgcn_buffer_atomic_or: 8673 case Intrinsic::amdgcn_buffer_atomic_xor: 8674 case Intrinsic::amdgcn_buffer_atomic_fadd: { 8675 unsigned Slc = Op.getConstantOperandVal(6); 8676 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8677 SDValue Ops[] = { 8678 Op.getOperand(0), // Chain 8679 Op.getOperand(2), // vdata 8680 Op.getOperand(3), // rsrc 8681 Op.getOperand(4), // vindex 8682 SDValue(), // voffset -- will be set by setBufferOffsets 8683 SDValue(), // soffset -- will be set by setBufferOffsets 8684 SDValue(), // offset -- will be set by setBufferOffsets 8685 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 8686 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8687 }; 8688 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 8689 8690 EVT VT = Op.getValueType(); 8691 8692 auto *M = cast<MemSDNode>(Op); 8693 unsigned Opcode = 0; 8694 8695 switch (IntrID) { 8696 case Intrinsic::amdgcn_buffer_atomic_swap: 8697 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 8698 break; 8699 case Intrinsic::amdgcn_buffer_atomic_add: 8700 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 8701 break; 8702 case Intrinsic::amdgcn_buffer_atomic_sub: 8703 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 8704 break; 8705 case Intrinsic::amdgcn_buffer_atomic_csub: 8706 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 8707 break; 8708 case Intrinsic::amdgcn_buffer_atomic_smin: 8709 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 8710 break; 8711 case Intrinsic::amdgcn_buffer_atomic_umin: 8712 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 8713 break; 8714 case Intrinsic::amdgcn_buffer_atomic_smax: 8715 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 8716 break; 8717 case Intrinsic::amdgcn_buffer_atomic_umax: 8718 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 8719 break; 8720 case Intrinsic::amdgcn_buffer_atomic_and: 8721 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 8722 break; 8723 case Intrinsic::amdgcn_buffer_atomic_or: 8724 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 8725 break; 8726 case Intrinsic::amdgcn_buffer_atomic_xor: 8727 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 8728 break; 8729 case Intrinsic::amdgcn_buffer_atomic_fadd: 8730 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 8731 break; 8732 default: 8733 llvm_unreachable("unhandled atomic opcode"); 8734 } 8735 8736 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 8737 M->getMemOperand()); 8738 } 8739 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 8740 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd: 8741 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 8742 case Intrinsic::amdgcn_raw_buffer_atomic_fadd_v2bf16: 8743 return lowerRawBufferAtomicIntrin(Op, DAG, 8744 AMDGPUISD::BUFFER_ATOMIC_FADD_BF16); 8745 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 8746 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd: 8747 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 8748 case Intrinsic::amdgcn_struct_buffer_atomic_fadd_v2bf16: 8749 return lowerStructBufferAtomicIntrin(Op, DAG, 8750 AMDGPUISD::BUFFER_ATOMIC_FADD_BF16); 8751 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 8752 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin: 8753 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 8754 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 8755 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin: 8756 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 8757 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 8758 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax: 8759 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 8760 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 8761 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax: 8762 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 8763 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 8764 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap: 8765 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 8766 case Intrinsic::amdgcn_raw_buffer_atomic_add: 8767 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add: 8768 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 8769 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 8770 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub: 8771 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 8772 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 8773 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin: 8774 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 8775 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 8776 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin: 8777 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 8778 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 8779 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax: 8780 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 8781 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 8782 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax: 8783 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 8784 case Intrinsic::amdgcn_raw_buffer_atomic_and: 8785 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and: 8786 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 8787 case Intrinsic::amdgcn_raw_buffer_atomic_or: 8788 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or: 8789 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 8790 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 8791 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor: 8792 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 8793 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 8794 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc: 8795 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 8796 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 8797 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec: 8798 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 8799 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32: 8800 return lowerRawBufferAtomicIntrin(Op, DAG, 8801 AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32); 8802 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 8803 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap: 8804 return lowerStructBufferAtomicIntrin(Op, DAG, 8805 AMDGPUISD::BUFFER_ATOMIC_SWAP); 8806 case Intrinsic::amdgcn_struct_buffer_atomic_add: 8807 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add: 8808 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 8809 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 8810 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub: 8811 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 8812 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 8813 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin: 8814 return lowerStructBufferAtomicIntrin(Op, DAG, 8815 AMDGPUISD::BUFFER_ATOMIC_SMIN); 8816 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 8817 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin: 8818 return lowerStructBufferAtomicIntrin(Op, DAG, 8819 AMDGPUISD::BUFFER_ATOMIC_UMIN); 8820 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 8821 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax: 8822 return lowerStructBufferAtomicIntrin(Op, DAG, 8823 AMDGPUISD::BUFFER_ATOMIC_SMAX); 8824 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 8825 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax: 8826 return lowerStructBufferAtomicIntrin(Op, DAG, 8827 AMDGPUISD::BUFFER_ATOMIC_UMAX); 8828 case Intrinsic::amdgcn_struct_buffer_atomic_and: 8829 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and: 8830 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 8831 case Intrinsic::amdgcn_struct_buffer_atomic_or: 8832 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or: 8833 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 8834 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 8835 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor: 8836 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 8837 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 8838 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc: 8839 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 8840 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 8841 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec: 8842 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 8843 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32: 8844 return lowerStructBufferAtomicIntrin(Op, DAG, 8845 AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32); 8846 8847 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 8848 unsigned Slc = Op.getConstantOperandVal(7); 8849 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 8850 SDValue Ops[] = { 8851 Op.getOperand(0), // Chain 8852 Op.getOperand(2), // src 8853 Op.getOperand(3), // cmp 8854 Op.getOperand(4), // rsrc 8855 Op.getOperand(5), // vindex 8856 SDValue(), // voffset -- will be set by setBufferOffsets 8857 SDValue(), // soffset -- will be set by setBufferOffsets 8858 SDValue(), // offset -- will be set by setBufferOffsets 8859 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 8860 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8861 }; 8862 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 8863 8864 EVT VT = Op.getValueType(); 8865 auto *M = cast<MemSDNode>(Op); 8866 8867 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8868 Op->getVTList(), Ops, VT, M->getMemOperand()); 8869 } 8870 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 8871 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: { 8872 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG); 8873 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8874 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 8875 SDValue Ops[] = { 8876 Op.getOperand(0), // Chain 8877 Op.getOperand(2), // src 8878 Op.getOperand(3), // cmp 8879 Rsrc, // rsrc 8880 DAG.getConstant(0, DL, MVT::i32), // vindex 8881 Offsets.first, // voffset 8882 SOffset, // soffset 8883 Offsets.second, // offset 8884 Op.getOperand(7), // cachepolicy 8885 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8886 }; 8887 EVT VT = Op.getValueType(); 8888 auto *M = cast<MemSDNode>(Op); 8889 8890 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8891 Op->getVTList(), Ops, VT, M->getMemOperand()); 8892 } 8893 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 8894 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: { 8895 SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG); 8896 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 8897 auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget); 8898 SDValue Ops[] = { 8899 Op.getOperand(0), // Chain 8900 Op.getOperand(2), // src 8901 Op.getOperand(3), // cmp 8902 Rsrc, // rsrc 8903 Op.getOperand(5), // vindex 8904 Offsets.first, // voffset 8905 SOffset, // soffset 8906 Offsets.second, // offset 8907 Op.getOperand(8), // cachepolicy 8908 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8909 }; 8910 EVT VT = Op.getValueType(); 8911 auto *M = cast<MemSDNode>(Op); 8912 8913 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8914 Op->getVTList(), Ops, VT, M->getMemOperand()); 8915 } 8916 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 8917 MemSDNode *M = cast<MemSDNode>(Op); 8918 SDValue NodePtr = M->getOperand(2); 8919 SDValue RayExtent = M->getOperand(3); 8920 SDValue RayOrigin = M->getOperand(4); 8921 SDValue RayDir = M->getOperand(5); 8922 SDValue RayInvDir = M->getOperand(6); 8923 SDValue TDescr = M->getOperand(7); 8924 8925 assert(NodePtr.getValueType() == MVT::i32 || 8926 NodePtr.getValueType() == MVT::i64); 8927 assert(RayDir.getValueType() == MVT::v3f16 || 8928 RayDir.getValueType() == MVT::v3f32); 8929 8930 if (!Subtarget->hasGFX10_AEncoding()) { 8931 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 8932 return SDValue(); 8933 } 8934 8935 const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget); 8936 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 8937 const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); 8938 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 8939 const bool Is64 = NodePtr.getValueType() == MVT::i64; 8940 const unsigned NumVDataDwords = 4; 8941 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 8942 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; 8943 const bool UseNSA = (Subtarget->hasNSAEncoding() && 8944 NumVAddrs <= Subtarget->getNSAMaxSize()) || 8945 IsGFX12Plus; 8946 const unsigned BaseOpcodes[2][2] = { 8947 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 8948 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 8949 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 8950 int Opcode; 8951 if (UseNSA) { 8952 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 8953 IsGFX12Plus ? AMDGPU::MIMGEncGfx12 8954 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA 8955 : AMDGPU::MIMGEncGfx10NSA, 8956 NumVDataDwords, NumVAddrDwords); 8957 } else { 8958 assert(!IsGFX12Plus); 8959 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 8960 IsGFX11 ? AMDGPU::MIMGEncGfx11Default 8961 : AMDGPU::MIMGEncGfx10Default, 8962 NumVDataDwords, NumVAddrDwords); 8963 } 8964 assert(Opcode != -1); 8965 8966 SmallVector<SDValue, 16> Ops; 8967 8968 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 8969 SmallVector<SDValue, 3> Lanes; 8970 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 8971 if (Lanes[0].getValueSizeInBits() == 32) { 8972 for (unsigned I = 0; I < 3; ++I) 8973 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 8974 } else { 8975 if (IsAligned) { 8976 Ops.push_back( 8977 DAG.getBitcast(MVT::i32, 8978 DAG.getBuildVector(MVT::v2f16, DL, 8979 { Lanes[0], Lanes[1] }))); 8980 Ops.push_back(Lanes[2]); 8981 } else { 8982 SDValue Elt0 = Ops.pop_back_val(); 8983 Ops.push_back( 8984 DAG.getBitcast(MVT::i32, 8985 DAG.getBuildVector(MVT::v2f16, DL, 8986 { Elt0, Lanes[0] }))); 8987 Ops.push_back( 8988 DAG.getBitcast(MVT::i32, 8989 DAG.getBuildVector(MVT::v2f16, DL, 8990 { Lanes[1], Lanes[2] }))); 8991 } 8992 } 8993 }; 8994 8995 if (UseNSA && IsGFX11Plus) { 8996 Ops.push_back(NodePtr); 8997 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 8998 Ops.push_back(RayOrigin); 8999 if (IsA16) { 9000 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; 9001 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); 9002 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); 9003 for (unsigned I = 0; I < 3; ++I) { 9004 MergedLanes.push_back(DAG.getBitcast( 9005 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, 9006 {DirLanes[I], InvDirLanes[I]}))); 9007 } 9008 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); 9009 } else { 9010 Ops.push_back(RayDir); 9011 Ops.push_back(RayInvDir); 9012 } 9013 } else { 9014 if (Is64) 9015 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 9016 2); 9017 else 9018 Ops.push_back(NodePtr); 9019 9020 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 9021 packLanes(RayOrigin, true); 9022 packLanes(RayDir, true); 9023 packLanes(RayInvDir, false); 9024 } 9025 9026 if (!UseNSA) { 9027 // Build a single vector containing all the operands so far prepared. 9028 if (NumVAddrDwords > 12) { 9029 SDValue Undef = DAG.getUNDEF(MVT::i32); 9030 Ops.append(16 - Ops.size(), Undef); 9031 } 9032 assert(Ops.size() >= 8 && Ops.size() <= 12); 9033 SDValue MergedOps = DAG.getBuildVector( 9034 MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); 9035 Ops.clear(); 9036 Ops.push_back(MergedOps); 9037 } 9038 9039 Ops.push_back(TDescr); 9040 Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1)); 9041 Ops.push_back(M->getChain()); 9042 9043 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 9044 MachineMemOperand *MemRef = M->getMemOperand(); 9045 DAG.setNodeMemRefs(NewNode, {MemRef}); 9046 return SDValue(NewNode, 0); 9047 } 9048 case Intrinsic::amdgcn_global_atomic_fmin: 9049 case Intrinsic::amdgcn_global_atomic_fmax: 9050 case Intrinsic::amdgcn_global_atomic_fmin_num: 9051 case Intrinsic::amdgcn_global_atomic_fmax_num: 9052 case Intrinsic::amdgcn_flat_atomic_fmin: 9053 case Intrinsic::amdgcn_flat_atomic_fmax: 9054 case Intrinsic::amdgcn_flat_atomic_fmin_num: 9055 case Intrinsic::amdgcn_flat_atomic_fmax_num: { 9056 MemSDNode *M = cast<MemSDNode>(Op); 9057 SDValue Ops[] = { 9058 M->getOperand(0), // Chain 9059 M->getOperand(2), // Ptr 9060 M->getOperand(3) // Value 9061 }; 9062 unsigned Opcode = 0; 9063 switch (IntrID) { 9064 case Intrinsic::amdgcn_global_atomic_fmin: 9065 case Intrinsic::amdgcn_global_atomic_fmin_num: 9066 case Intrinsic::amdgcn_flat_atomic_fmin: 9067 case Intrinsic::amdgcn_flat_atomic_fmin_num: { 9068 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 9069 break; 9070 } 9071 case Intrinsic::amdgcn_global_atomic_fmax: 9072 case Intrinsic::amdgcn_global_atomic_fmax_num: 9073 case Intrinsic::amdgcn_flat_atomic_fmax: 9074 case Intrinsic::amdgcn_flat_atomic_fmax_num: { 9075 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 9076 break; 9077 } 9078 default: 9079 llvm_unreachable("unhandled atomic opcode"); 9080 } 9081 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 9082 M->getVTList(), Ops, M->getMemoryVT(), 9083 M->getMemOperand()); 9084 } 9085 case Intrinsic::amdgcn_s_get_barrier_state: { 9086 SDValue Chain = Op->getOperand(0); 9087 SmallVector<SDValue, 2> Ops; 9088 unsigned Opc; 9089 bool IsInlinableBarID = false; 9090 int64_t BarID; 9091 9092 if (isa<ConstantSDNode>(Op->getOperand(2))) { 9093 BarID = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 9094 IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarID); 9095 } 9096 9097 if (IsInlinableBarID) { 9098 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM; 9099 SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32); 9100 Ops.push_back(K); 9101 } else { 9102 Opc = AMDGPU::S_GET_BARRIER_STATE_M0; 9103 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(2)); 9104 Ops.push_back(M0Val.getValue(0)); 9105 } 9106 9107 auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 9108 return SDValue(NewMI, 0); 9109 } 9110 default: 9111 9112 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 9113 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 9114 return lowerImage(Op, ImageDimIntr, DAG, true); 9115 9116 return SDValue(); 9117 } 9118 } 9119 9120 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 9121 // dwordx4 if on SI and handle TFE loads. 9122 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 9123 SDVTList VTList, 9124 ArrayRef<SDValue> Ops, EVT MemVT, 9125 MachineMemOperand *MMO, 9126 SelectionDAG &DAG) const { 9127 LLVMContext &C = *DAG.getContext(); 9128 MachineFunction &MF = DAG.getMachineFunction(); 9129 EVT VT = VTList.VTs[0]; 9130 9131 assert(VTList.NumVTs == 2 || VTList.NumVTs == 3); 9132 bool IsTFE = VTList.NumVTs == 3; 9133 if (IsTFE) { 9134 unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); 9135 unsigned NumOpDWords = NumValueDWords + 1; 9136 EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); 9137 SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); 9138 MachineMemOperand *OpDWordsMMO = 9139 MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); 9140 SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, 9141 OpDWordsVT, OpDWordsMMO, DAG); 9142 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, 9143 DAG.getVectorIdxConstant(NumValueDWords, DL)); 9144 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 9145 SDValue ValueDWords = 9146 NumValueDWords == 1 9147 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) 9148 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 9149 EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, 9150 ZeroIdx); 9151 SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); 9152 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); 9153 } 9154 9155 if (!Subtarget->hasDwordx3LoadStores() && 9156 (VT == MVT::v3i32 || VT == MVT::v3f32)) { 9157 EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); 9158 EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); 9159 MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); 9160 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 9161 SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 9162 WidenedMemVT, WidenedMMO); 9163 SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, 9164 DAG.getVectorIdxConstant(0, DL)); 9165 return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); 9166 } 9167 9168 return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); 9169 } 9170 9171 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 9172 bool ImageStore) const { 9173 EVT StoreVT = VData.getValueType(); 9174 9175 // No change for f16 and legal vector D16 types. 9176 if (!StoreVT.isVector()) 9177 return VData; 9178 9179 SDLoc DL(VData); 9180 unsigned NumElements = StoreVT.getVectorNumElements(); 9181 9182 if (Subtarget->hasUnpackedD16VMem()) { 9183 // We need to unpack the packed data to store. 9184 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 9185 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 9186 9187 EVT EquivStoreVT = 9188 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 9189 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 9190 return DAG.UnrollVectorOp(ZExt.getNode()); 9191 } 9192 9193 // The sq block of gfx8.1 does not estimate register use correctly for d16 9194 // image store instructions. The data operand is computed as if it were not a 9195 // d16 image instruction. 9196 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 9197 // Bitcast to i16 9198 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 9199 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 9200 9201 // Decompose into scalars 9202 SmallVector<SDValue, 4> Elts; 9203 DAG.ExtractVectorElements(IntVData, Elts); 9204 9205 // Group pairs of i16 into v2i16 and bitcast to i32 9206 SmallVector<SDValue, 4> PackedElts; 9207 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 9208 SDValue Pair = 9209 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 9210 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 9211 PackedElts.push_back(IntPair); 9212 } 9213 if ((NumElements % 2) == 1) { 9214 // Handle v3i16 9215 unsigned I = Elts.size() / 2; 9216 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 9217 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 9218 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 9219 PackedElts.push_back(IntPair); 9220 } 9221 9222 // Pad using UNDEF 9223 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 9224 9225 // Build final vector 9226 EVT VecVT = 9227 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 9228 return DAG.getBuildVector(VecVT, DL, PackedElts); 9229 } 9230 9231 if (NumElements == 3) { 9232 EVT IntStoreVT = 9233 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 9234 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 9235 9236 EVT WidenedStoreVT = EVT::getVectorVT( 9237 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 9238 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 9239 WidenedStoreVT.getStoreSizeInBits()); 9240 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 9241 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 9242 } 9243 9244 assert(isTypeLegal(StoreVT)); 9245 return VData; 9246 } 9247 9248 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9249 SelectionDAG &DAG) const { 9250 SDLoc DL(Op); 9251 SDValue Chain = Op.getOperand(0); 9252 unsigned IntrinsicID = Op.getConstantOperandVal(1); 9253 MachineFunction &MF = DAG.getMachineFunction(); 9254 9255 switch (IntrinsicID) { 9256 case Intrinsic::amdgcn_exp_compr: { 9257 if (!Subtarget->hasCompressedExport()) { 9258 DiagnosticInfoUnsupported BadIntrin( 9259 DAG.getMachineFunction().getFunction(), 9260 "intrinsic not supported on subtarget", DL.getDebugLoc()); 9261 DAG.getContext()->diagnose(BadIntrin); 9262 } 9263 SDValue Src0 = Op.getOperand(4); 9264 SDValue Src1 = Op.getOperand(5); 9265 // Hack around illegal type on SI by directly selecting it. 9266 if (isTypeLegal(Src0.getValueType())) 9267 return SDValue(); 9268 9269 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 9270 SDValue Undef = DAG.getUNDEF(MVT::f32); 9271 const SDValue Ops[] = { 9272 Op.getOperand(2), // tgt 9273 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 9274 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 9275 Undef, // src2 9276 Undef, // src3 9277 Op.getOperand(7), // vm 9278 DAG.getTargetConstant(1, DL, MVT::i1), // compr 9279 Op.getOperand(3), // en 9280 Op.getOperand(0) // Chain 9281 }; 9282 9283 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 9284 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 9285 } 9286 case Intrinsic::amdgcn_s_barrier: { 9287 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 9288 if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) { 9289 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 9290 if (WGSize <= ST.getWavefrontSize()) 9291 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 9292 Op.getOperand(0)), 0); 9293 } 9294 9295 // On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait 9296 if (ST.hasSplitBarriers()) { 9297 SDValue K = 9298 DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32); 9299 SDValue BarSignal = 9300 SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL, 9301 MVT::Other, K, Op.getOperand(0)), 9302 0); 9303 SDValue BarWait = 9304 SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K, 9305 BarSignal.getValue(0)), 9306 0); 9307 return BarWait; 9308 } 9309 9310 return SDValue(); 9311 }; 9312 case Intrinsic::amdgcn_tbuffer_store: { 9313 SDValue VData = Op.getOperand(2); 9314 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9315 if (IsD16) 9316 VData = handleD16VData(VData, DAG); 9317 unsigned Dfmt = Op.getConstantOperandVal(8); 9318 unsigned Nfmt = Op.getConstantOperandVal(9); 9319 unsigned Glc = Op.getConstantOperandVal(10); 9320 unsigned Slc = Op.getConstantOperandVal(11); 9321 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 9322 SDValue Ops[] = { 9323 Chain, 9324 VData, // vdata 9325 Op.getOperand(3), // rsrc 9326 Op.getOperand(4), // vindex 9327 Op.getOperand(5), // voffset 9328 Op.getOperand(6), // soffset 9329 Op.getOperand(7), // offset 9330 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 9331 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 9332 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 9333 }; 9334 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 9335 AMDGPUISD::TBUFFER_STORE_FORMAT; 9336 MemSDNode *M = cast<MemSDNode>(Op); 9337 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9338 M->getMemoryVT(), M->getMemOperand()); 9339 } 9340 9341 case Intrinsic::amdgcn_struct_tbuffer_store: 9342 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: { 9343 SDValue VData = Op.getOperand(2); 9344 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9345 if (IsD16) 9346 VData = handleD16VData(VData, DAG); 9347 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9348 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 9349 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 9350 SDValue Ops[] = { 9351 Chain, 9352 VData, // vdata 9353 Rsrc, // rsrc 9354 Op.getOperand(4), // vindex 9355 Offsets.first, // voffset 9356 SOffset, // soffset 9357 Offsets.second, // offset 9358 Op.getOperand(7), // format 9359 Op.getOperand(8), // cachepolicy, swizzled buffer 9360 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 9361 }; 9362 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 9363 AMDGPUISD::TBUFFER_STORE_FORMAT; 9364 MemSDNode *M = cast<MemSDNode>(Op); 9365 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9366 M->getMemoryVT(), M->getMemOperand()); 9367 } 9368 9369 case Intrinsic::amdgcn_raw_tbuffer_store: 9370 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: { 9371 SDValue VData = Op.getOperand(2); 9372 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9373 if (IsD16) 9374 VData = handleD16VData(VData, DAG); 9375 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9376 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 9377 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 9378 SDValue Ops[] = { 9379 Chain, 9380 VData, // vdata 9381 Rsrc, // rsrc 9382 DAG.getConstant(0, DL, MVT::i32), // vindex 9383 Offsets.first, // voffset 9384 SOffset, // soffset 9385 Offsets.second, // offset 9386 Op.getOperand(6), // format 9387 Op.getOperand(7), // cachepolicy, swizzled buffer 9388 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 9389 }; 9390 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 9391 AMDGPUISD::TBUFFER_STORE_FORMAT; 9392 MemSDNode *M = cast<MemSDNode>(Op); 9393 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9394 M->getMemoryVT(), M->getMemOperand()); 9395 } 9396 9397 case Intrinsic::amdgcn_buffer_store: 9398 case Intrinsic::amdgcn_buffer_store_format: { 9399 SDValue VData = Op.getOperand(2); 9400 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9401 if (IsD16) 9402 VData = handleD16VData(VData, DAG); 9403 unsigned Glc = Op.getConstantOperandVal(6); 9404 unsigned Slc = Op.getConstantOperandVal(7); 9405 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 9406 SDValue Ops[] = { 9407 Chain, 9408 VData, 9409 Op.getOperand(3), // rsrc 9410 Op.getOperand(4), // vindex 9411 SDValue(), // voffset -- will be set by setBufferOffsets 9412 SDValue(), // soffset -- will be set by setBufferOffsets 9413 SDValue(), // offset -- will be set by setBufferOffsets 9414 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 9415 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 9416 }; 9417 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 9418 9419 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 9420 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 9421 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 9422 MemSDNode *M = cast<MemSDNode>(Op); 9423 9424 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 9425 EVT VDataType = VData.getValueType().getScalarType(); 9426 if (VDataType == MVT::i8 || VDataType == MVT::i16) 9427 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 9428 9429 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9430 M->getMemoryVT(), M->getMemOperand()); 9431 } 9432 9433 case Intrinsic::amdgcn_raw_buffer_store: 9434 case Intrinsic::amdgcn_raw_ptr_buffer_store: 9435 case Intrinsic::amdgcn_raw_buffer_store_format: 9436 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: { 9437 const bool IsFormat = 9438 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format || 9439 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format; 9440 9441 SDValue VData = Op.getOperand(2); 9442 EVT VDataVT = VData.getValueType(); 9443 EVT EltType = VDataVT.getScalarType(); 9444 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 9445 if (IsD16) { 9446 VData = handleD16VData(VData, DAG); 9447 VDataVT = VData.getValueType(); 9448 } 9449 9450 if (!isTypeLegal(VDataVT)) { 9451 VData = 9452 DAG.getNode(ISD::BITCAST, DL, 9453 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 9454 } 9455 9456 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9457 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 9458 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 9459 SDValue Ops[] = { 9460 Chain, 9461 VData, 9462 Rsrc, 9463 DAG.getConstant(0, DL, MVT::i32), // vindex 9464 Offsets.first, // voffset 9465 SOffset, // soffset 9466 Offsets.second, // offset 9467 Op.getOperand(6), // cachepolicy, swizzled buffer 9468 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 9469 }; 9470 unsigned Opc = 9471 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 9472 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 9473 MemSDNode *M = cast<MemSDNode>(Op); 9474 9475 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 9476 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 9477 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 9478 9479 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9480 M->getMemoryVT(), M->getMemOperand()); 9481 } 9482 9483 case Intrinsic::amdgcn_struct_buffer_store: 9484 case Intrinsic::amdgcn_struct_ptr_buffer_store: 9485 case Intrinsic::amdgcn_struct_buffer_store_format: 9486 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: { 9487 const bool IsFormat = 9488 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format || 9489 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format; 9490 9491 SDValue VData = Op.getOperand(2); 9492 EVT VDataVT = VData.getValueType(); 9493 EVT EltType = VDataVT.getScalarType(); 9494 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 9495 9496 if (IsD16) { 9497 VData = handleD16VData(VData, DAG); 9498 VDataVT = VData.getValueType(); 9499 } 9500 9501 if (!isTypeLegal(VDataVT)) { 9502 VData = 9503 DAG.getNode(ISD::BITCAST, DL, 9504 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 9505 } 9506 9507 auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9508 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 9509 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 9510 SDValue Ops[] = { 9511 Chain, 9512 VData, 9513 Rsrc, 9514 Op.getOperand(4), // vindex 9515 Offsets.first, // voffset 9516 SOffset, // soffset 9517 Offsets.second, // offset 9518 Op.getOperand(7), // cachepolicy, swizzled buffer 9519 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 9520 }; 9521 unsigned Opc = 9522 !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 9523 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 9524 MemSDNode *M = cast<MemSDNode>(Op); 9525 9526 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 9527 EVT VDataType = VData.getValueType().getScalarType(); 9528 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 9529 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 9530 9531 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9532 M->getMemoryVT(), M->getMemOperand()); 9533 } 9534 case Intrinsic::amdgcn_raw_buffer_load_lds: 9535 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: 9536 case Intrinsic::amdgcn_struct_buffer_load_lds: 9537 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { 9538 assert(!AMDGPU::isGFX12Plus(*Subtarget)); 9539 unsigned Opc; 9540 bool HasVIndex = 9541 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds || 9542 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds; 9543 unsigned OpOffset = HasVIndex ? 1 : 0; 9544 SDValue VOffset = Op.getOperand(5 + OpOffset); 9545 bool HasVOffset = !isNullConstant(VOffset); 9546 unsigned Size = Op->getConstantOperandVal(4); 9547 9548 switch (Size) { 9549 default: 9550 return SDValue(); 9551 case 1: 9552 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN 9553 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN 9554 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN 9555 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; 9556 break; 9557 case 2: 9558 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN 9559 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN 9560 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN 9561 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; 9562 break; 9563 case 4: 9564 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN 9565 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN 9566 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN 9567 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; 9568 break; 9569 } 9570 9571 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 9572 9573 SmallVector<SDValue, 8> Ops; 9574 9575 if (HasVIndex && HasVOffset) 9576 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, 9577 { Op.getOperand(5), // VIndex 9578 VOffset })); 9579 else if (HasVIndex) 9580 Ops.push_back(Op.getOperand(5)); 9581 else if (HasVOffset) 9582 Ops.push_back(VOffset); 9583 9584 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 9585 Ops.push_back(Rsrc); 9586 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset 9587 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset 9588 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); 9589 Ops.push_back( 9590 DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol 9591 Ops.push_back(DAG.getTargetConstant( 9592 Aux & AMDGPU::CPol::SWZ_pregfx12 ? 1 : 0, DL, MVT::i8)); // swz 9593 Ops.push_back(M0Val.getValue(0)); // Chain 9594 Ops.push_back(M0Val.getValue(1)); // Glue 9595 9596 auto *M = cast<MemSDNode>(Op); 9597 MachineMemOperand *LoadMMO = M->getMemOperand(); 9598 // Don't set the offset value here because the pointer points to the base of 9599 // the buffer. 9600 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 9601 9602 MachinePointerInfo StorePtrI = LoadPtrI; 9603 LoadPtrI.V = PoisonValue::get( 9604 PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); 9605 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 9606 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 9607 9608 auto F = LoadMMO->getFlags() & 9609 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 9610 LoadMMO = 9611 MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, 9612 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); 9613 9614 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 9615 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), 9616 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); 9617 9618 auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); 9619 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 9620 9621 return SDValue(Load, 0); 9622 } 9623 case Intrinsic::amdgcn_global_load_lds: { 9624 unsigned Opc; 9625 unsigned Size = Op->getConstantOperandVal(4); 9626 switch (Size) { 9627 default: 9628 return SDValue(); 9629 case 1: 9630 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; 9631 break; 9632 case 2: 9633 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; 9634 break; 9635 case 4: 9636 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; 9637 break; 9638 } 9639 9640 auto *M = cast<MemSDNode>(Op); 9641 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 9642 9643 SmallVector<SDValue, 6> Ops; 9644 9645 SDValue Addr = Op.getOperand(2); // Global ptr 9646 SDValue VOffset; 9647 // Try to split SAddr and VOffset. Global and LDS pointers share the same 9648 // immediate offset, so we cannot use a regular SelectGlobalSAddr(). 9649 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { 9650 SDValue LHS = Addr.getOperand(0); 9651 SDValue RHS = Addr.getOperand(1); 9652 9653 if (LHS->isDivergent()) 9654 std::swap(LHS, RHS); 9655 9656 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && 9657 RHS.getOperand(0).getValueType() == MVT::i32) { 9658 // add (i64 sgpr), (zero_extend (i32 vgpr)) 9659 Addr = LHS; 9660 VOffset = RHS.getOperand(0); 9661 } 9662 } 9663 9664 Ops.push_back(Addr); 9665 if (!Addr->isDivergent()) { 9666 Opc = AMDGPU::getGlobalSaddrOp(Opc); 9667 if (!VOffset) 9668 VOffset = SDValue( 9669 DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, 9670 DAG.getTargetConstant(0, DL, MVT::i32)), 0); 9671 Ops.push_back(VOffset); 9672 } 9673 9674 Ops.push_back(Op.getOperand(5)); // Offset 9675 Ops.push_back(Op.getOperand(6)); // CPol 9676 Ops.push_back(M0Val.getValue(0)); // Chain 9677 Ops.push_back(M0Val.getValue(1)); // Glue 9678 9679 MachineMemOperand *LoadMMO = M->getMemOperand(); 9680 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 9681 LoadPtrI.Offset = Op->getConstantOperandVal(5); 9682 MachinePointerInfo StorePtrI = LoadPtrI; 9683 LoadPtrI.V = PoisonValue::get( 9684 PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); 9685 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 9686 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 9687 auto F = LoadMMO->getFlags() & 9688 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 9689 LoadMMO = 9690 MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, 9691 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); 9692 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 9693 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4), 9694 LoadMMO->getAAInfo()); 9695 9696 auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 9697 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 9698 9699 return SDValue(Load, 0); 9700 } 9701 case Intrinsic::amdgcn_end_cf: 9702 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 9703 Op->getOperand(2), Chain), 0); 9704 case Intrinsic::amdgcn_s_barrier_init: 9705 case Intrinsic::amdgcn_s_barrier_join: 9706 case Intrinsic::amdgcn_s_wakeup_barrier: { 9707 SDValue Chain = Op->getOperand(0); 9708 SmallVector<SDValue, 2> Ops; 9709 SDValue BarOp = Op->getOperand(2); 9710 unsigned Opc; 9711 bool IsInlinableBarID = false; 9712 int64_t BarVal; 9713 9714 if (isa<ConstantSDNode>(BarOp)) { 9715 BarVal = cast<ConstantSDNode>(BarOp)->getSExtValue(); 9716 IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarVal); 9717 } 9718 9719 if (IsInlinableBarID) { 9720 switch (IntrinsicID) { 9721 default: 9722 return SDValue(); 9723 case Intrinsic::amdgcn_s_barrier_init: 9724 Opc = AMDGPU::S_BARRIER_INIT_IMM; 9725 break; 9726 case Intrinsic::amdgcn_s_barrier_join: 9727 Opc = AMDGPU::S_BARRIER_JOIN_IMM; 9728 break; 9729 case Intrinsic::amdgcn_s_wakeup_barrier: 9730 Opc = AMDGPU::S_WAKEUP_BARRIER_IMM; 9731 break; 9732 } 9733 9734 SDValue K = DAG.getTargetConstant(BarVal, DL, MVT::i32); 9735 Ops.push_back(K); 9736 } else { 9737 switch (IntrinsicID) { 9738 default: 9739 return SDValue(); 9740 case Intrinsic::amdgcn_s_barrier_init: 9741 Opc = AMDGPU::S_BARRIER_INIT_M0; 9742 break; 9743 case Intrinsic::amdgcn_s_barrier_join: 9744 Opc = AMDGPU::S_BARRIER_JOIN_M0; 9745 break; 9746 case Intrinsic::amdgcn_s_wakeup_barrier: 9747 Opc = AMDGPU::S_WAKEUP_BARRIER_M0; 9748 break; 9749 } 9750 } 9751 9752 if (IntrinsicID == Intrinsic::amdgcn_s_barrier_init) { 9753 SDValue M0Val; 9754 // Member count will be read from M0[16:22] 9755 M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, Op.getOperand(3), 9756 DAG.getShiftAmountConstant(16, MVT::i32, DL)); 9757 9758 if (!IsInlinableBarID) { 9759 // If reference to barrier id is not an inline constant then it must be 9760 // referenced with M0[4:0]. Perform an OR with the member count to 9761 // include it in M0. 9762 M0Val = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, 9763 Op.getOperand(2), M0Val), 9764 0); 9765 } 9766 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0)); 9767 } else if (!IsInlinableBarID) { 9768 Ops.push_back(copyToM0(DAG, Chain, DL, BarOp).getValue(0)); 9769 } 9770 9771 auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 9772 return SDValue(NewMI, 0); 9773 } 9774 default: { 9775 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 9776 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 9777 return lowerImage(Op, ImageDimIntr, DAG, true); 9778 9779 return Op; 9780 } 9781 } 9782 } 9783 9784 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 9785 // offset (the offset that is included in bounds checking and swizzling, to be 9786 // split between the instruction's voffset and immoffset fields) and soffset 9787 // (the offset that is excluded from bounds checking and swizzling, to go in 9788 // the instruction's soffset field). This function takes the first kind of 9789 // offset and figures out how to split it between voffset and immoffset. 9790 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 9791 SDValue Offset, SelectionDAG &DAG) const { 9792 SDLoc DL(Offset); 9793 const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); 9794 SDValue N0 = Offset; 9795 ConstantSDNode *C1 = nullptr; 9796 9797 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 9798 N0 = SDValue(); 9799 else if (DAG.isBaseWithConstantOffset(N0)) { 9800 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 9801 N0 = N0.getOperand(0); 9802 } 9803 9804 if (C1) { 9805 unsigned ImmOffset = C1->getZExtValue(); 9806 // If the immediate value is too big for the immoffset field, put only bits 9807 // that would normally fit in the immoffset field. The remaining value that 9808 // is copied/added for the voffset field is a large power of 2, and it 9809 // stands more chance of being CSEd with the copy/add for another similar 9810 // load/store. 9811 // However, do not do that rounding down if that is a negative 9812 // number, as it appears to be illegal to have a negative offset in the 9813 // vgpr, even if adding the immediate offset makes it positive. 9814 unsigned Overflow = ImmOffset & ~MaxImm; 9815 ImmOffset -= Overflow; 9816 if ((int32_t)Overflow < 0) { 9817 Overflow += ImmOffset; 9818 ImmOffset = 0; 9819 } 9820 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 9821 if (Overflow) { 9822 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 9823 if (!N0) 9824 N0 = OverflowVal; 9825 else { 9826 SDValue Ops[] = { N0, OverflowVal }; 9827 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 9828 } 9829 } 9830 } 9831 if (!N0) 9832 N0 = DAG.getConstant(0, DL, MVT::i32); 9833 if (!C1) 9834 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 9835 return {N0, SDValue(C1, 0)}; 9836 } 9837 9838 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 9839 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 9840 // pointed to by Offsets. 9841 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 9842 SelectionDAG &DAG, SDValue *Offsets, 9843 Align Alignment) const { 9844 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9845 SDLoc DL(CombinedOffset); 9846 if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 9847 uint32_t Imm = C->getZExtValue(); 9848 uint32_t SOffset, ImmOffset; 9849 if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) { 9850 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 9851 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 9852 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 9853 return; 9854 } 9855 } 9856 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 9857 SDValue N0 = CombinedOffset.getOperand(0); 9858 SDValue N1 = CombinedOffset.getOperand(1); 9859 uint32_t SOffset, ImmOffset; 9860 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 9861 if (Offset >= 0 && 9862 TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) { 9863 Offsets[0] = N0; 9864 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 9865 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 9866 return; 9867 } 9868 } 9869 9870 SDValue SOffsetZero = Subtarget->hasRestrictedSOffset() 9871 ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32) 9872 : DAG.getConstant(0, DL, MVT::i32); 9873 9874 Offsets[0] = CombinedOffset; 9875 Offsets[1] = SOffsetZero; 9876 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 9877 } 9878 9879 SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer, 9880 SelectionDAG &DAG) const { 9881 if (!MaybePointer.getValueType().isScalarInteger()) 9882 return MaybePointer; 9883 9884 SDLoc DL(MaybePointer); 9885 9886 SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer); 9887 return Rsrc; 9888 } 9889 9890 // Wrap a global or flat pointer into a buffer intrinsic using the flags 9891 // specified in the intrinsic. 9892 SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op, 9893 SelectionDAG &DAG) const { 9894 SDLoc Loc(Op); 9895 9896 SDValue Pointer = Op->getOperand(1); 9897 SDValue Stride = Op->getOperand(2); 9898 SDValue NumRecords = Op->getOperand(3); 9899 SDValue Flags = Op->getOperand(4); 9900 9901 auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32); 9902 SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32); 9903 SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask); 9904 std::optional<uint32_t> ConstStride = std::nullopt; 9905 if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride)) 9906 ConstStride = ConstNode->getZExtValue(); 9907 9908 SDValue NewHighHalf = Masked; 9909 if (!ConstStride || *ConstStride != 0) { 9910 SDValue ShiftedStride; 9911 if (ConstStride) { 9912 ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32); 9913 } else { 9914 SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32); 9915 ShiftedStride = 9916 DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride, 9917 DAG.getShiftAmountConstant(16, MVT::i32, Loc)); 9918 } 9919 NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride); 9920 } 9921 9922 SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf, 9923 NewHighHalf, NumRecords, Flags); 9924 SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc); 9925 return RsrcPtr; 9926 } 9927 9928 // Handle 8 bit and 16 bit buffer loads 9929 SDValue 9930 SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, EVT LoadVT, 9931 SDLoc DL, ArrayRef<SDValue> Ops, 9932 MachineMemOperand *MMO) const { 9933 EVT IntVT = LoadVT.changeTypeToInteger(); 9934 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 9935 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 9936 9937 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 9938 SDValue BufferLoad = 9939 DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO); 9940 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 9941 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 9942 9943 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 9944 } 9945 9946 // Handle 8 bit and 16 bit buffer stores 9947 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 9948 EVT VDataType, SDLoc DL, 9949 SDValue Ops[], 9950 MemSDNode *M) const { 9951 if (VDataType == MVT::f16) 9952 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 9953 9954 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 9955 Ops[1] = BufferStoreExt; 9956 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 9957 AMDGPUISD::BUFFER_STORE_SHORT; 9958 ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9); 9959 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 9960 M->getMemOperand()); 9961 } 9962 9963 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 9964 ISD::LoadExtType ExtType, SDValue Op, 9965 const SDLoc &SL, EVT VT) { 9966 if (VT.bitsLT(Op.getValueType())) 9967 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 9968 9969 switch (ExtType) { 9970 case ISD::SEXTLOAD: 9971 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 9972 case ISD::ZEXTLOAD: 9973 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 9974 case ISD::EXTLOAD: 9975 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 9976 case ISD::NON_EXTLOAD: 9977 return Op; 9978 } 9979 9980 llvm_unreachable("invalid ext type"); 9981 } 9982 9983 // Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads. 9984 // TODO: Skip this on GFX12 which does have scalar sub-dword loads. 9985 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 9986 SelectionDAG &DAG = DCI.DAG; 9987 if (Ld->getAlign() < Align(4) || Ld->isDivergent()) 9988 return SDValue(); 9989 9990 // FIXME: Constant loads should all be marked invariant. 9991 unsigned AS = Ld->getAddressSpace(); 9992 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 9993 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 9994 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 9995 return SDValue(); 9996 9997 // Don't do this early, since it may interfere with adjacent load merging for 9998 // illegal types. We can avoid losing alignment information for exotic types 9999 // pre-legalize. 10000 EVT MemVT = Ld->getMemoryVT(); 10001 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 10002 MemVT.getSizeInBits() >= 32) 10003 return SDValue(); 10004 10005 SDLoc SL(Ld); 10006 10007 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 10008 "unexpected vector extload"); 10009 10010 // TODO: Drop only high part of range. 10011 SDValue Ptr = Ld->getBasePtr(); 10012 SDValue NewLoad = DAG.getLoad( 10013 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, 10014 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), 10015 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), 10016 nullptr); // Drop ranges 10017 10018 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 10019 if (MemVT.isFloatingPoint()) { 10020 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 10021 "unexpected fp extload"); 10022 TruncVT = MemVT.changeTypeToInteger(); 10023 } 10024 10025 SDValue Cvt = NewLoad; 10026 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 10027 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 10028 DAG.getValueType(TruncVT)); 10029 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 10030 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 10031 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 10032 } else { 10033 assert(Ld->getExtensionType() == ISD::EXTLOAD); 10034 } 10035 10036 EVT VT = Ld->getValueType(0); 10037 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10038 10039 DCI.AddToWorklist(Cvt.getNode()); 10040 10041 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 10042 // the appropriate extension from the 32-bit load. 10043 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 10044 DCI.AddToWorklist(Cvt.getNode()); 10045 10046 // Handle conversion back to floating point if necessary. 10047 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 10048 10049 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 10050 } 10051 10052 static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, 10053 const SIMachineFunctionInfo &Info) { 10054 // TODO: Should check if the address can definitely not access stack. 10055 if (Info.isEntryFunction()) 10056 return Info.getUserSGPRInfo().hasFlatScratchInit(); 10057 return true; 10058 } 10059 10060 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 10061 SDLoc DL(Op); 10062 LoadSDNode *Load = cast<LoadSDNode>(Op); 10063 ISD::LoadExtType ExtType = Load->getExtensionType(); 10064 EVT MemVT = Load->getMemoryVT(); 10065 10066 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 10067 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 10068 return SDValue(); 10069 10070 // FIXME: Copied from PPC 10071 // First, load into 32 bits, then truncate to 1 bit. 10072 10073 SDValue Chain = Load->getChain(); 10074 SDValue BasePtr = Load->getBasePtr(); 10075 MachineMemOperand *MMO = Load->getMemOperand(); 10076 10077 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 10078 10079 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 10080 BasePtr, RealMemVT, MMO); 10081 10082 if (!MemVT.isVector()) { 10083 SDValue Ops[] = { 10084 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 10085 NewLD.getValue(1) 10086 }; 10087 10088 return DAG.getMergeValues(Ops, DL); 10089 } 10090 10091 SmallVector<SDValue, 3> Elts; 10092 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 10093 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 10094 DAG.getConstant(I, DL, MVT::i32)); 10095 10096 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 10097 } 10098 10099 SDValue Ops[] = { 10100 DAG.getBuildVector(MemVT, DL, Elts), 10101 NewLD.getValue(1) 10102 }; 10103 10104 return DAG.getMergeValues(Ops, DL); 10105 } 10106 10107 if (!MemVT.isVector()) 10108 return SDValue(); 10109 10110 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 10111 "Custom lowering for non-i32 vectors hasn't been implemented."); 10112 10113 Align Alignment = Load->getAlign(); 10114 unsigned AS = Load->getAddressSpace(); 10115 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && 10116 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 10117 return SplitVectorLoad(Op, DAG); 10118 } 10119 10120 MachineFunction &MF = DAG.getMachineFunction(); 10121 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 10122 // If there is a possibility that flat instruction access scratch memory 10123 // then we need to use the same legalization rules we use for private. 10124 if (AS == AMDGPUAS::FLAT_ADDRESS && 10125 !Subtarget->hasMultiDwordFlatScratchAddressing()) 10126 AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ? 10127 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 10128 10129 unsigned NumElements = MemVT.getVectorNumElements(); 10130 10131 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 10132 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 10133 if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { 10134 if (MemVT.isPow2VectorType() || 10135 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) 10136 return SDValue(); 10137 return WidenOrSplitVectorLoad(Op, DAG); 10138 } 10139 // Non-uniform loads will be selected to MUBUF instructions, so they 10140 // have the same legalization requirements as global and private 10141 // loads. 10142 // 10143 } 10144 10145 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 10146 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 10147 AS == AMDGPUAS::GLOBAL_ADDRESS) { 10148 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 10149 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 10150 Alignment >= Align(4) && NumElements < 32) { 10151 if (MemVT.isPow2VectorType() || 10152 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) 10153 return SDValue(); 10154 return WidenOrSplitVectorLoad(Op, DAG); 10155 } 10156 // Non-uniform loads will be selected to MUBUF instructions, so they 10157 // have the same legalization requirements as global and private 10158 // loads. 10159 // 10160 } 10161 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 10162 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 10163 AS == AMDGPUAS::GLOBAL_ADDRESS || 10164 AS == AMDGPUAS::FLAT_ADDRESS) { 10165 if (NumElements > 4) 10166 return SplitVectorLoad(Op, DAG); 10167 // v3 loads not supported on SI. 10168 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 10169 return WidenOrSplitVectorLoad(Op, DAG); 10170 10171 // v3 and v4 loads are supported for private and global memory. 10172 return SDValue(); 10173 } 10174 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 10175 // Depending on the setting of the private_element_size field in the 10176 // resource descriptor, we can only make private accesses up to a certain 10177 // size. 10178 switch (Subtarget->getMaxPrivateElementSize()) { 10179 case 4: { 10180 SDValue Ops[2]; 10181 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 10182 return DAG.getMergeValues(Ops, DL); 10183 } 10184 case 8: 10185 if (NumElements > 2) 10186 return SplitVectorLoad(Op, DAG); 10187 return SDValue(); 10188 case 16: 10189 // Same as global/flat 10190 if (NumElements > 4) 10191 return SplitVectorLoad(Op, DAG); 10192 // v3 loads not supported on SI. 10193 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 10194 return WidenOrSplitVectorLoad(Op, DAG); 10195 10196 return SDValue(); 10197 default: 10198 llvm_unreachable("unsupported private_element_size"); 10199 } 10200 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 10201 unsigned Fast = 0; 10202 auto Flags = Load->getMemOperand()->getFlags(); 10203 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 10204 Load->getAlign(), Flags, &Fast) && 10205 Fast > 1) 10206 return SDValue(); 10207 10208 if (MemVT.isVector()) 10209 return SplitVectorLoad(Op, DAG); 10210 } 10211 10212 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 10213 MemVT, *Load->getMemOperand())) { 10214 SDValue Ops[2]; 10215 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 10216 return DAG.getMergeValues(Ops, DL); 10217 } 10218 10219 return SDValue(); 10220 } 10221 10222 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 10223 EVT VT = Op.getValueType(); 10224 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 || 10225 VT.getSizeInBits() == 512) 10226 return splitTernaryVectorOp(Op, DAG); 10227 10228 assert(VT.getSizeInBits() == 64); 10229 10230 SDLoc DL(Op); 10231 SDValue Cond = Op.getOperand(0); 10232 10233 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 10234 SDValue One = DAG.getConstant(1, DL, MVT::i32); 10235 10236 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 10237 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 10238 10239 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 10240 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 10241 10242 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 10243 10244 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 10245 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 10246 10247 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 10248 10249 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 10250 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 10251 } 10252 10253 // Catch division cases where we can use shortcuts with rcp and rsq 10254 // instructions. 10255 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 10256 SelectionDAG &DAG) const { 10257 SDLoc SL(Op); 10258 SDValue LHS = Op.getOperand(0); 10259 SDValue RHS = Op.getOperand(1); 10260 EVT VT = Op.getValueType(); 10261 const SDNodeFlags Flags = Op->getFlags(); 10262 10263 bool AllowInaccurateRcp = Flags.hasApproximateFuncs() || 10264 DAG.getTarget().Options.UnsafeFPMath; 10265 10266 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 10267 // Without !fpmath accuracy information, we can't do more because we don't 10268 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 10269 // f16 is always accurate enough 10270 if (!AllowInaccurateRcp && VT != MVT::f16) 10271 return SDValue(); 10272 10273 if (CLHS->isExactlyValue(1.0)) { 10274 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 10275 // the CI documentation has a worst case error of 1 ulp. 10276 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 10277 // use it as long as we aren't trying to use denormals. 10278 // 10279 // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp. 10280 10281 // 1.0 / sqrt(x) -> rsq(x) 10282 10283 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 10284 // error seems really high at 2^29 ULP. 10285 // 1.0 / x -> rcp(x) 10286 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 10287 } 10288 10289 // Same as for 1.0, but expand the sign out of the constant. 10290 if (CLHS->isExactlyValue(-1.0)) { 10291 // -1.0 / x -> rcp (fneg x) 10292 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10293 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 10294 } 10295 } 10296 10297 // For f16 require afn or arcp. 10298 // For f32 require afn. 10299 if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal())) 10300 return SDValue(); 10301 10302 // Turn into multiply by the reciprocal. 10303 // x / y -> x * (1.0 / y) 10304 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 10305 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 10306 } 10307 10308 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 10309 SelectionDAG &DAG) const { 10310 SDLoc SL(Op); 10311 SDValue X = Op.getOperand(0); 10312 SDValue Y = Op.getOperand(1); 10313 EVT VT = Op.getValueType(); 10314 const SDNodeFlags Flags = Op->getFlags(); 10315 10316 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 10317 DAG.getTarget().Options.UnsafeFPMath; 10318 if (!AllowInaccurateDiv) 10319 return SDValue(); 10320 10321 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 10322 SDValue One = DAG.getConstantFP(1.0, SL, VT); 10323 10324 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 10325 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 10326 10327 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 10328 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 10329 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 10330 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 10331 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 10332 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 10333 } 10334 10335 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 10336 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 10337 SDNodeFlags Flags) { 10338 if (GlueChain->getNumValues() <= 1) { 10339 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 10340 } 10341 10342 assert(GlueChain->getNumValues() == 3); 10343 10344 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 10345 switch (Opcode) { 10346 default: llvm_unreachable("no chain equivalent for opcode"); 10347 case ISD::FMUL: 10348 Opcode = AMDGPUISD::FMUL_W_CHAIN; 10349 break; 10350 } 10351 10352 return DAG.getNode(Opcode, SL, VTList, 10353 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 10354 Flags); 10355 } 10356 10357 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 10358 EVT VT, SDValue A, SDValue B, SDValue C, 10359 SDValue GlueChain, SDNodeFlags Flags) { 10360 if (GlueChain->getNumValues() <= 1) { 10361 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 10362 } 10363 10364 assert(GlueChain->getNumValues() == 3); 10365 10366 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 10367 switch (Opcode) { 10368 default: llvm_unreachable("no chain equivalent for opcode"); 10369 case ISD::FMA: 10370 Opcode = AMDGPUISD::FMA_W_CHAIN; 10371 break; 10372 } 10373 10374 return DAG.getNode(Opcode, SL, VTList, 10375 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 10376 Flags); 10377 } 10378 10379 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 10380 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 10381 return FastLowered; 10382 10383 SDLoc SL(Op); 10384 SDValue Src0 = Op.getOperand(0); 10385 SDValue Src1 = Op.getOperand(1); 10386 10387 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 10388 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 10389 10390 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 10391 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 10392 10393 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 10394 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 10395 10396 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 10397 } 10398 10399 // Faster 2.5 ULP division that does not support denormals. 10400 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 10401 SDNodeFlags Flags = Op->getFlags(); 10402 SDLoc SL(Op); 10403 SDValue LHS = Op.getOperand(1); 10404 SDValue RHS = Op.getOperand(2); 10405 10406 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags); 10407 10408 const APFloat K0Val(0x1p+96f); 10409 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 10410 10411 const APFloat K1Val(0x1p-32f); 10412 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 10413 10414 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 10415 10416 EVT SetCCVT = 10417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 10418 10419 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 10420 10421 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags); 10422 10423 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags); 10424 10425 // rcp does not support denormals. 10426 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags); 10427 10428 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags); 10429 10430 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags); 10431 } 10432 10433 // Returns immediate value for setting the F32 denorm mode when using the 10434 // S_DENORM_MODE instruction. 10435 static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, 10436 const SIMachineFunctionInfo *Info, 10437 const GCNSubtarget *ST) { 10438 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 10439 uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue(); 10440 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2); 10441 return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32); 10442 } 10443 10444 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 10445 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 10446 return FastLowered; 10447 10448 // The selection matcher assumes anything with a chain selecting to a 10449 // mayRaiseFPException machine instruction. Since we're introducing a chain 10450 // here, we need to explicitly report nofpexcept for the regular fdiv 10451 // lowering. 10452 SDNodeFlags Flags = Op->getFlags(); 10453 Flags.setNoFPExcept(true); 10454 10455 SDLoc SL(Op); 10456 SDValue LHS = Op.getOperand(0); 10457 SDValue RHS = Op.getOperand(1); 10458 10459 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 10460 10461 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 10462 10463 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 10464 {RHS, RHS, LHS}, Flags); 10465 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 10466 {LHS, RHS, LHS}, Flags); 10467 10468 // Denominator is scaled to not be denormal, so using rcp is ok. 10469 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 10470 DenominatorScaled, Flags); 10471 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 10472 DenominatorScaled, Flags); 10473 10474 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 10475 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 10476 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 10477 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 10478 10479 const MachineFunction &MF = DAG.getMachineFunction(); 10480 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10481 const DenormalMode DenormMode = Info->getMode().FP32Denormals; 10482 10483 const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE(); 10484 const bool HasDynamicDenormals = 10485 (DenormMode.Input == DenormalMode::Dynamic) || 10486 (DenormMode.Output == DenormalMode::Dynamic); 10487 10488 SDValue SavedDenormMode; 10489 10490 if (!PreservesDenormals) { 10491 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 10492 // lowering. The chain dependence is insufficient, and we need glue. We do 10493 // not need the glue variants in a strictfp function. 10494 10495 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 10496 10497 SDValue Glue = DAG.getEntryNode(); 10498 if (HasDynamicDenormals) { 10499 SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL, 10500 DAG.getVTList(MVT::i32, MVT::Glue), 10501 {BitField, Glue}); 10502 SavedDenormMode = SDValue(GetReg, 0); 10503 10504 Glue = DAG.getMergeValues( 10505 {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL); 10506 } 10507 10508 SDNode *EnableDenorm; 10509 if (Subtarget->hasDenormModeInst()) { 10510 const SDValue EnableDenormValue = 10511 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget); 10512 10513 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue, 10514 EnableDenormValue) 10515 .getNode(); 10516 } else { 10517 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 10518 SL, MVT::i32); 10519 EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 10520 {EnableDenormValue, BitField, Glue}); 10521 } 10522 10523 SDValue Ops[3] = { 10524 NegDivScale0, 10525 SDValue(EnableDenorm, 0), 10526 SDValue(EnableDenorm, 1) 10527 }; 10528 10529 NegDivScale0 = DAG.getMergeValues(Ops, SL); 10530 } 10531 10532 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 10533 ApproxRcp, One, NegDivScale0, Flags); 10534 10535 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 10536 ApproxRcp, Fma0, Flags); 10537 10538 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 10539 Fma1, Fma1, Flags); 10540 10541 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 10542 NumeratorScaled, Mul, Flags); 10543 10544 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 10545 Fma2, Fma1, Mul, Fma2, Flags); 10546 10547 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 10548 NumeratorScaled, Fma3, Flags); 10549 10550 if (!PreservesDenormals) { 10551 SDNode *DisableDenorm; 10552 if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) { 10553 const SDValue DisableDenormValue = getSPDenormModeValue( 10554 FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget); 10555 10556 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 10557 Fma4.getValue(1), DisableDenormValue, 10558 Fma4.getValue(2)).getNode(); 10559 } else { 10560 assert(HasDynamicDenormals == (bool)SavedDenormMode); 10561 const SDValue DisableDenormValue = 10562 HasDynamicDenormals 10563 ? SavedDenormMode 10564 : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 10565 10566 DisableDenorm = DAG.getMachineNode( 10567 AMDGPU::S_SETREG_B32, SL, MVT::Other, 10568 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 10569 } 10570 10571 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 10572 SDValue(DisableDenorm, 0), DAG.getRoot()); 10573 DAG.setRoot(OutputChain); 10574 } 10575 10576 SDValue Scale = NumeratorScaled.getValue(1); 10577 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 10578 {Fma4, Fma1, Fma3, Scale}, Flags); 10579 10580 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 10581 } 10582 10583 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 10584 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 10585 return FastLowered; 10586 10587 SDLoc SL(Op); 10588 SDValue X = Op.getOperand(0); 10589 SDValue Y = Op.getOperand(1); 10590 10591 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 10592 10593 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 10594 10595 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 10596 10597 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 10598 10599 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 10600 10601 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 10602 10603 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 10604 10605 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 10606 10607 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 10608 10609 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 10610 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 10611 10612 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 10613 NegDivScale0, Mul, DivScale1); 10614 10615 SDValue Scale; 10616 10617 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 10618 // Workaround a hardware bug on SI where the condition output from div_scale 10619 // is not usable. 10620 10621 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 10622 10623 // Figure out if the scale to use for div_fmas. 10624 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 10625 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 10626 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 10627 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 10628 10629 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 10630 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 10631 10632 SDValue Scale0Hi 10633 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 10634 SDValue Scale1Hi 10635 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 10636 10637 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 10638 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 10639 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 10640 } else { 10641 Scale = DivScale1.getValue(1); 10642 } 10643 10644 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 10645 Fma4, Fma3, Mul, Scale); 10646 10647 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 10648 } 10649 10650 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 10651 EVT VT = Op.getValueType(); 10652 10653 if (VT == MVT::f32) 10654 return LowerFDIV32(Op, DAG); 10655 10656 if (VT == MVT::f64) 10657 return LowerFDIV64(Op, DAG); 10658 10659 if (VT == MVT::f16) 10660 return LowerFDIV16(Op, DAG); 10661 10662 llvm_unreachable("Unexpected type for fdiv"); 10663 } 10664 10665 SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const { 10666 SDLoc dl(Op); 10667 SDValue Val = Op.getOperand(0); 10668 EVT VT = Val.getValueType(); 10669 EVT ResultExpVT = Op->getValueType(1); 10670 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32; 10671 10672 SDValue Mant = DAG.getNode( 10673 ISD::INTRINSIC_WO_CHAIN, dl, VT, 10674 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val); 10675 10676 SDValue Exp = DAG.getNode( 10677 ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT, 10678 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val); 10679 10680 if (Subtarget->hasFractBug()) { 10681 SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val); 10682 SDValue Inf = DAG.getConstantFP( 10683 APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT); 10684 10685 SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT); 10686 SDValue Zero = DAG.getConstant(0, dl, InstrExpVT); 10687 Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero); 10688 Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val); 10689 } 10690 10691 SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT); 10692 return DAG.getMergeValues({Mant, CastExp}, dl); 10693 } 10694 10695 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 10696 SDLoc DL(Op); 10697 StoreSDNode *Store = cast<StoreSDNode>(Op); 10698 EVT VT = Store->getMemoryVT(); 10699 10700 if (VT == MVT::i1) { 10701 return DAG.getTruncStore(Store->getChain(), DL, 10702 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 10703 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 10704 } 10705 10706 assert(VT.isVector() && 10707 Store->getValue().getValueType().getScalarType() == MVT::i32); 10708 10709 unsigned AS = Store->getAddressSpace(); 10710 if (Subtarget->hasLDSMisalignedBug() && 10711 AS == AMDGPUAS::FLAT_ADDRESS && 10712 Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 10713 return SplitVectorStore(Op, DAG); 10714 } 10715 10716 MachineFunction &MF = DAG.getMachineFunction(); 10717 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 10718 // If there is a possibility that flat instruction access scratch memory 10719 // then we need to use the same legalization rules we use for private. 10720 if (AS == AMDGPUAS::FLAT_ADDRESS && 10721 !Subtarget->hasMultiDwordFlatScratchAddressing()) 10722 AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ? 10723 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 10724 10725 unsigned NumElements = VT.getVectorNumElements(); 10726 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 10727 AS == AMDGPUAS::FLAT_ADDRESS) { 10728 if (NumElements > 4) 10729 return SplitVectorStore(Op, DAG); 10730 // v3 stores not supported on SI. 10731 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 10732 return SplitVectorStore(Op, DAG); 10733 10734 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 10735 VT, *Store->getMemOperand())) 10736 return expandUnalignedStore(Store, DAG); 10737 10738 return SDValue(); 10739 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 10740 switch (Subtarget->getMaxPrivateElementSize()) { 10741 case 4: 10742 return scalarizeVectorStore(Store, DAG); 10743 case 8: 10744 if (NumElements > 2) 10745 return SplitVectorStore(Op, DAG); 10746 return SDValue(); 10747 case 16: 10748 if (NumElements > 4 || 10749 (NumElements == 3 && !Subtarget->enableFlatScratch())) 10750 return SplitVectorStore(Op, DAG); 10751 return SDValue(); 10752 default: 10753 llvm_unreachable("unsupported private_element_size"); 10754 } 10755 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 10756 unsigned Fast = 0; 10757 auto Flags = Store->getMemOperand()->getFlags(); 10758 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 10759 Store->getAlign(), Flags, &Fast) && 10760 Fast > 1) 10761 return SDValue(); 10762 10763 if (VT.isVector()) 10764 return SplitVectorStore(Op, DAG); 10765 10766 return expandUnalignedStore(Store, DAG); 10767 } 10768 10769 // Probably an invalid store. If so we'll end up emitting a selection error. 10770 return SDValue(); 10771 } 10772 10773 // Avoid the full correct expansion for f32 sqrt when promoting from f16. 10774 SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const { 10775 SDLoc SL(Op); 10776 assert(!Subtarget->has16BitInsts()); 10777 SDNodeFlags Flags = Op->getFlags(); 10778 SDValue Ext = 10779 DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags); 10780 10781 SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32); 10782 SDValue Sqrt = 10783 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags); 10784 10785 return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt, 10786 DAG.getTargetConstant(0, SL, MVT::i32), Flags); 10787 } 10788 10789 SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const { 10790 SDLoc DL(Op); 10791 SDNodeFlags Flags = Op->getFlags(); 10792 MVT VT = Op.getValueType().getSimpleVT(); 10793 const SDValue X = Op.getOperand(0); 10794 10795 if (allowApproxFunc(DAG, Flags)) { 10796 // Instruction is 1ulp but ignores denormals. 10797 return DAG.getNode( 10798 ISD::INTRINSIC_WO_CHAIN, DL, VT, 10799 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags); 10800 } 10801 10802 SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT); 10803 SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT); 10804 10805 SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT); 10806 10807 SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags); 10808 10809 SDValue SqrtX = 10810 DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags); 10811 10812 SDValue SqrtS; 10813 if (needsDenormHandlingF32(DAG, X, Flags)) { 10814 SDValue SqrtID = 10815 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32); 10816 SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags); 10817 10818 SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS); 10819 SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, 10820 DAG.getConstant(-1, DL, MVT::i32)); 10821 SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt); 10822 10823 SDValue NegSqrtSNextDown = 10824 DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags); 10825 10826 SDValue SqrtVP = 10827 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags); 10828 10829 SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, 10830 DAG.getConstant(1, DL, MVT::i32)); 10831 SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt); 10832 10833 SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags); 10834 SDValue SqrtVS = 10835 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags); 10836 10837 SDValue Zero = DAG.getConstantFP(0.0f, DL, VT); 10838 SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE); 10839 10840 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS, 10841 Flags); 10842 10843 SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT); 10844 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS, 10845 Flags); 10846 } else { 10847 SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags); 10848 10849 SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags); 10850 10851 SDValue Half = DAG.getConstantFP(0.5f, DL, VT); 10852 SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags); 10853 SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags); 10854 10855 SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags); 10856 SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags); 10857 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags); 10858 10859 SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags); 10860 SDValue SqrtD = 10861 DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags); 10862 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags); 10863 } 10864 10865 SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT); 10866 10867 SDValue ScaledDown = 10868 DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags); 10869 10870 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags); 10871 SDValue IsZeroOrInf = 10872 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, 10873 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); 10874 10875 return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags); 10876 } 10877 10878 SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const { 10879 // For double type, the SQRT and RSQ instructions don't have required 10880 // precision, we apply Goldschmidt's algorithm to improve the result: 10881 // 10882 // y0 = rsq(x) 10883 // g0 = x * y0 10884 // h0 = 0.5 * y0 10885 // 10886 // r0 = 0.5 - h0 * g0 10887 // g1 = g0 * r0 + g0 10888 // h1 = h0 * r0 + h0 10889 // 10890 // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1 10891 // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1 10892 // h2 = h1 * r1 + h1 10893 // 10894 // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2 10895 // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2 10896 // 10897 // sqrt(x) = g3 10898 10899 SDNodeFlags Flags = Op->getFlags(); 10900 10901 SDLoc DL(Op); 10902 10903 SDValue X = Op.getOperand(0); 10904 SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64); 10905 10906 SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT); 10907 10908 SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32); 10909 10910 // Scale up input if it is too small. 10911 SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32); 10912 SDValue ScaleUp = 10913 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt); 10914 SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags); 10915 10916 SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX); 10917 10918 SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY); 10919 10920 SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64); 10921 SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half); 10922 10923 SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0); 10924 SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half); 10925 10926 SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0); 10927 10928 SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0); 10929 10930 SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1); 10931 SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX); 10932 10933 SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1); 10934 10935 SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2); 10936 SDValue SqrtD1 = 10937 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX); 10938 10939 SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2); 10940 10941 SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32); 10942 SDValue ScaleDown = 10943 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt); 10944 SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags); 10945 10946 // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check 10947 // with finite only or nsz because rsq(+/-0) = +/-inf 10948 10949 // TODO: Check for DAZ and expand to subnormals 10950 SDValue IsZeroOrInf = 10951 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, 10952 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); 10953 10954 // If x is +INF, +0, or -0, use its original value 10955 return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet, 10956 Flags); 10957 } 10958 10959 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 10960 SDLoc DL(Op); 10961 EVT VT = Op.getValueType(); 10962 SDValue Arg = Op.getOperand(0); 10963 SDValue TrigVal; 10964 10965 // Propagate fast-math flags so that the multiply we introduce can be folded 10966 // if Arg is already the result of a multiply by constant. 10967 auto Flags = Op->getFlags(); 10968 10969 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 10970 10971 if (Subtarget->hasTrigReducedRange()) { 10972 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 10973 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 10974 } else { 10975 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 10976 } 10977 10978 switch (Op.getOpcode()) { 10979 case ISD::FCOS: 10980 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 10981 case ISD::FSIN: 10982 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 10983 default: 10984 llvm_unreachable("Wrong trig opcode"); 10985 } 10986 } 10987 10988 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 10989 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 10990 assert(AtomicNode->isCompareAndSwap()); 10991 unsigned AS = AtomicNode->getAddressSpace(); 10992 10993 // No custom lowering required for local address space 10994 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 10995 return Op; 10996 10997 // Non-local address space requires custom lowering for atomic compare 10998 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 10999 SDLoc DL(Op); 11000 SDValue ChainIn = Op.getOperand(0); 11001 SDValue Addr = Op.getOperand(1); 11002 SDValue Old = Op.getOperand(2); 11003 SDValue New = Op.getOperand(3); 11004 EVT VT = Op.getValueType(); 11005 MVT SimpleVT = VT.getSimpleVT(); 11006 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 11007 11008 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 11009 SDValue Ops[] = { ChainIn, Addr, NewOld }; 11010 11011 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 11012 Ops, VT, AtomicNode->getMemOperand()); 11013 } 11014 11015 //===----------------------------------------------------------------------===// 11016 // Custom DAG optimizations 11017 //===----------------------------------------------------------------------===// 11018 11019 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 11020 DAGCombinerInfo &DCI) const { 11021 EVT VT = N->getValueType(0); 11022 EVT ScalarVT = VT.getScalarType(); 11023 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 11024 return SDValue(); 11025 11026 SelectionDAG &DAG = DCI.DAG; 11027 SDLoc DL(N); 11028 11029 SDValue Src = N->getOperand(0); 11030 EVT SrcVT = Src.getValueType(); 11031 11032 // TODO: We could try to match extracting the higher bytes, which would be 11033 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 11034 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 11035 // about in practice. 11036 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 11037 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 11038 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 11039 DCI.AddToWorklist(Cvt.getNode()); 11040 11041 // For the f16 case, fold to a cast to f32 and then cast back to f16. 11042 if (ScalarVT != MVT::f32) { 11043 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 11044 DAG.getTargetConstant(0, DL, MVT::i32)); 11045 } 11046 return Cvt; 11047 } 11048 } 11049 11050 return SDValue(); 11051 } 11052 11053 SDValue SITargetLowering::performFCopySignCombine(SDNode *N, 11054 DAGCombinerInfo &DCI) const { 11055 SDValue MagnitudeOp = N->getOperand(0); 11056 SDValue SignOp = N->getOperand(1); 11057 SelectionDAG &DAG = DCI.DAG; 11058 SDLoc DL(N); 11059 11060 // f64 fcopysign is really an f32 copysign on the high bits, so replace the 11061 // lower half with a copy. 11062 // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y) 11063 if (MagnitudeOp.getValueType() == MVT::f64) { 11064 SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp); 11065 SDValue MagLo = 11066 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, 11067 DAG.getConstant(0, DL, MVT::i32)); 11068 SDValue MagHi = 11069 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, 11070 DAG.getConstant(1, DL, MVT::i32)); 11071 11072 SDValue HiOp = 11073 DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp); 11074 11075 SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp); 11076 11077 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector); 11078 } 11079 11080 if (SignOp.getValueType() != MVT::f64) 11081 return SDValue(); 11082 11083 // Reduce width of sign operand, we only need the highest bit. 11084 // 11085 // fcopysign f64:x, f64:y -> 11086 // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1) 11087 // TODO: In some cases it might make sense to go all the way to f16. 11088 SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp); 11089 SDValue SignAsF32 = 11090 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector, 11091 DAG.getConstant(1, DL, MVT::i32)); 11092 11093 return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0), 11094 SignAsF32); 11095 } 11096 11097 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 11098 // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no 11099 // bits 11100 11101 // This is a variant of 11102 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 11103 // 11104 // The normal DAG combiner will do this, but only if the add has one use since 11105 // that would increase the number of instructions. 11106 // 11107 // This prevents us from seeing a constant offset that can be folded into a 11108 // memory instruction's addressing mode. If we know the resulting add offset of 11109 // a pointer can be folded into an addressing offset, we can replace the pointer 11110 // operand with the add of new constant offset. This eliminates one of the uses, 11111 // and may allow the remaining use to also be simplified. 11112 // 11113 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 11114 unsigned AddrSpace, 11115 EVT MemVT, 11116 DAGCombinerInfo &DCI) const { 11117 SDValue N0 = N->getOperand(0); 11118 SDValue N1 = N->getOperand(1); 11119 11120 // We only do this to handle cases where it's profitable when there are 11121 // multiple uses of the add, so defer to the standard combine. 11122 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 11123 N0->hasOneUse()) 11124 return SDValue(); 11125 11126 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 11127 if (!CN1) 11128 return SDValue(); 11129 11130 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 11131 if (!CAdd) 11132 return SDValue(); 11133 11134 SelectionDAG &DAG = DCI.DAG; 11135 11136 if (N0->getOpcode() == ISD::OR && 11137 !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) 11138 return SDValue(); 11139 11140 // If the resulting offset is too large, we can't fold it into the 11141 // addressing mode offset. 11142 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 11143 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 11144 11145 AddrMode AM; 11146 AM.HasBaseReg = true; 11147 AM.BaseOffs = Offset.getSExtValue(); 11148 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 11149 return SDValue(); 11150 11151 SDLoc SL(N); 11152 EVT VT = N->getValueType(0); 11153 11154 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 11155 SDValue COffset = DAG.getConstant(Offset, SL, VT); 11156 11157 SDNodeFlags Flags; 11158 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 11159 (N0.getOpcode() == ISD::OR || 11160 N0->getFlags().hasNoUnsignedWrap())); 11161 11162 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 11163 } 11164 11165 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 11166 /// by the chain and intrinsic ID. Theoretically we would also need to check the 11167 /// specific intrinsic, but they all place the pointer operand first. 11168 static unsigned getBasePtrIndex(const MemSDNode *N) { 11169 switch (N->getOpcode()) { 11170 case ISD::STORE: 11171 case ISD::INTRINSIC_W_CHAIN: 11172 case ISD::INTRINSIC_VOID: 11173 return 2; 11174 default: 11175 return 1; 11176 } 11177 } 11178 11179 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 11180 DAGCombinerInfo &DCI) const { 11181 SelectionDAG &DAG = DCI.DAG; 11182 SDLoc SL(N); 11183 11184 unsigned PtrIdx = getBasePtrIndex(N); 11185 SDValue Ptr = N->getOperand(PtrIdx); 11186 11187 // TODO: We could also do this for multiplies. 11188 if (Ptr.getOpcode() == ISD::SHL) { 11189 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 11190 N->getMemoryVT(), DCI); 11191 if (NewPtr) { 11192 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 11193 11194 NewOps[PtrIdx] = NewPtr; 11195 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 11196 } 11197 } 11198 11199 return SDValue(); 11200 } 11201 11202 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 11203 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 11204 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 11205 (Opc == ISD::XOR && Val == 0); 11206 } 11207 11208 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 11209 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 11210 // integer combine opportunities since most 64-bit operations are decomposed 11211 // this way. TODO: We won't want this for SALU especially if it is an inline 11212 // immediate. 11213 SDValue SITargetLowering::splitBinaryBitConstantOp( 11214 DAGCombinerInfo &DCI, 11215 const SDLoc &SL, 11216 unsigned Opc, SDValue LHS, 11217 const ConstantSDNode *CRHS) const { 11218 uint64_t Val = CRHS->getZExtValue(); 11219 uint32_t ValLo = Lo_32(Val); 11220 uint32_t ValHi = Hi_32(Val); 11221 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11222 11223 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 11224 bitOpWithConstantIsReducible(Opc, ValHi)) || 11225 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 11226 // If we need to materialize a 64-bit immediate, it will be split up later 11227 // anyway. Avoid creating the harder to understand 64-bit immediate 11228 // materialization. 11229 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 11230 } 11231 11232 return SDValue(); 11233 } 11234 11235 bool llvm::isBoolSGPR(SDValue V) { 11236 if (V.getValueType() != MVT::i1) 11237 return false; 11238 switch (V.getOpcode()) { 11239 default: 11240 break; 11241 case ISD::SETCC: 11242 case AMDGPUISD::FP_CLASS: 11243 return true; 11244 case ISD::AND: 11245 case ISD::OR: 11246 case ISD::XOR: 11247 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 11248 } 11249 return false; 11250 } 11251 11252 // If a constant has all zeroes or all ones within each byte return it. 11253 // Otherwise return 0. 11254 static uint32_t getConstantPermuteMask(uint32_t C) { 11255 // 0xff for any zero byte in the mask 11256 uint32_t ZeroByteMask = 0; 11257 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 11258 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 11259 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 11260 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 11261 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 11262 if ((NonZeroByteMask & C) != NonZeroByteMask) 11263 return 0; // Partial bytes selected. 11264 return C; 11265 } 11266 11267 // Check if a node selects whole bytes from its operand 0 starting at a byte 11268 // boundary while masking the rest. Returns select mask as in the v_perm_b32 11269 // or -1 if not succeeded. 11270 // Note byte select encoding: 11271 // value 0-3 selects corresponding source byte; 11272 // value 0xc selects zero; 11273 // value 0xff selects 0xff. 11274 static uint32_t getPermuteMask(SDValue V) { 11275 assert(V.getValueSizeInBits() == 32); 11276 11277 if (V.getNumOperands() != 2) 11278 return ~0; 11279 11280 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 11281 if (!N1) 11282 return ~0; 11283 11284 uint32_t C = N1->getZExtValue(); 11285 11286 switch (V.getOpcode()) { 11287 default: 11288 break; 11289 case ISD::AND: 11290 if (uint32_t ConstMask = getConstantPermuteMask(C)) 11291 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 11292 break; 11293 11294 case ISD::OR: 11295 if (uint32_t ConstMask = getConstantPermuteMask(C)) 11296 return (0x03020100 & ~ConstMask) | ConstMask; 11297 break; 11298 11299 case ISD::SHL: 11300 if (C % 8) 11301 return ~0; 11302 11303 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 11304 11305 case ISD::SRL: 11306 if (C % 8) 11307 return ~0; 11308 11309 return uint32_t(0x0c0c0c0c03020100ull >> C); 11310 } 11311 11312 return ~0; 11313 } 11314 11315 SDValue SITargetLowering::performAndCombine(SDNode *N, 11316 DAGCombinerInfo &DCI) const { 11317 if (DCI.isBeforeLegalize()) 11318 return SDValue(); 11319 11320 SelectionDAG &DAG = DCI.DAG; 11321 EVT VT = N->getValueType(0); 11322 SDValue LHS = N->getOperand(0); 11323 SDValue RHS = N->getOperand(1); 11324 11325 11326 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 11327 if (VT == MVT::i64 && CRHS) { 11328 if (SDValue Split 11329 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 11330 return Split; 11331 } 11332 11333 if (CRHS && VT == MVT::i32) { 11334 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 11335 // nb = number of trailing zeroes in mask 11336 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 11337 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 11338 uint64_t Mask = CRHS->getZExtValue(); 11339 unsigned Bits = llvm::popcount(Mask); 11340 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 11341 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 11342 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 11343 unsigned Shift = CShift->getZExtValue(); 11344 unsigned NB = CRHS->getAPIntValue().countr_zero(); 11345 unsigned Offset = NB + Shift; 11346 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 11347 SDLoc SL(N); 11348 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 11349 LHS->getOperand(0), 11350 DAG.getConstant(Offset, SL, MVT::i32), 11351 DAG.getConstant(Bits, SL, MVT::i32)); 11352 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 11353 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 11354 DAG.getValueType(NarrowVT)); 11355 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 11356 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 11357 return Shl; 11358 } 11359 } 11360 } 11361 11362 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 11363 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 11364 isa<ConstantSDNode>(LHS.getOperand(2))) { 11365 uint32_t Sel = getConstantPermuteMask(Mask); 11366 if (!Sel) 11367 return SDValue(); 11368 11369 // Select 0xc for all zero bytes 11370 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 11371 SDLoc DL(N); 11372 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 11373 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 11374 } 11375 } 11376 11377 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 11378 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 11379 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 11380 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 11381 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 11382 11383 SDValue X = LHS.getOperand(0); 11384 SDValue Y = RHS.getOperand(0); 11385 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || 11386 !isTypeLegal(X.getValueType())) 11387 return SDValue(); 11388 11389 if (LCC == ISD::SETO) { 11390 if (X != LHS.getOperand(1)) 11391 return SDValue(); 11392 11393 if (RCC == ISD::SETUNE) { 11394 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 11395 if (!C1 || !C1->isInfinity() || C1->isNegative()) 11396 return SDValue(); 11397 11398 const uint32_t Mask = SIInstrFlags::N_NORMAL | 11399 SIInstrFlags::N_SUBNORMAL | 11400 SIInstrFlags::N_ZERO | 11401 SIInstrFlags::P_ZERO | 11402 SIInstrFlags::P_SUBNORMAL | 11403 SIInstrFlags::P_NORMAL; 11404 11405 static_assert(((~(SIInstrFlags::S_NAN | 11406 SIInstrFlags::Q_NAN | 11407 SIInstrFlags::N_INFINITY | 11408 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 11409 "mask not equal"); 11410 11411 SDLoc DL(N); 11412 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 11413 X, DAG.getConstant(Mask, DL, MVT::i32)); 11414 } 11415 } 11416 } 11417 11418 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 11419 std::swap(LHS, RHS); 11420 11421 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 11422 RHS.hasOneUse()) { 11423 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 11424 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 11425 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 11426 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 11427 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 11428 (RHS.getOperand(0) == LHS.getOperand(0) && 11429 LHS.getOperand(0) == LHS.getOperand(1))) { 11430 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 11431 unsigned NewMask = LCC == ISD::SETO ? 11432 Mask->getZExtValue() & ~OrdMask : 11433 Mask->getZExtValue() & OrdMask; 11434 11435 SDLoc DL(N); 11436 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 11437 DAG.getConstant(NewMask, DL, MVT::i32)); 11438 } 11439 } 11440 11441 if (VT == MVT::i32 && 11442 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 11443 // and x, (sext cc from i1) => select cc, x, 0 11444 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 11445 std::swap(LHS, RHS); 11446 if (isBoolSGPR(RHS.getOperand(0))) 11447 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 11448 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 11449 } 11450 11451 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 11452 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11453 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 11454 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 11455 uint32_t LHSMask = getPermuteMask(LHS); 11456 uint32_t RHSMask = getPermuteMask(RHS); 11457 if (LHSMask != ~0u && RHSMask != ~0u) { 11458 // Canonicalize the expression in an attempt to have fewer unique masks 11459 // and therefore fewer registers used to hold the masks. 11460 if (LHSMask > RHSMask) { 11461 std::swap(LHSMask, RHSMask); 11462 std::swap(LHS, RHS); 11463 } 11464 11465 // Select 0xc for each lane used from source operand. Zero has 0xc mask 11466 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 11467 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 11468 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 11469 11470 // Check of we need to combine values from two sources within a byte. 11471 if (!(LHSUsedLanes & RHSUsedLanes) && 11472 // If we select high and lower word keep it for SDWA. 11473 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 11474 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 11475 // Each byte in each mask is either selector mask 0-3, or has higher 11476 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 11477 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 11478 // mask which is not 0xff wins. By anding both masks we have a correct 11479 // result except that 0x0c shall be corrected to give 0x0c only. 11480 uint32_t Mask = LHSMask & RHSMask; 11481 for (unsigned I = 0; I < 32; I += 8) { 11482 uint32_t ByteSel = 0xff << I; 11483 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 11484 Mask &= (0x0c << I) & 0xffffffff; 11485 } 11486 11487 // Add 4 to each active LHS lane. It will not affect any existing 0xff 11488 // or 0x0c. 11489 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 11490 SDLoc DL(N); 11491 11492 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 11493 LHS.getOperand(0), RHS.getOperand(0), 11494 DAG.getConstant(Sel, DL, MVT::i32)); 11495 } 11496 } 11497 } 11498 11499 return SDValue(); 11500 } 11501 11502 // A key component of v_perm is a mapping between byte position of the src 11503 // operands, and the byte position of the dest. To provide such, we need: 1. the 11504 // node that provides x byte of the dest of the OR, and 2. the byte of the node 11505 // used to provide that x byte. calculateByteProvider finds which node provides 11506 // a certain byte of the dest of the OR, and calculateSrcByte takes that node, 11507 // and finds an ultimate src and byte position For example: The supported 11508 // LoadCombine pattern for vector loads is as follows 11509 // t1 11510 // or 11511 // / \ 11512 // t2 t3 11513 // zext shl 11514 // | | \ 11515 // t4 t5 16 11516 // or anyext 11517 // / \ | 11518 // t6 t7 t8 11519 // srl shl or 11520 // / | / \ / \ 11521 // t9 t10 t11 t12 t13 t14 11522 // trunc* 8 trunc* 8 and and 11523 // | | / | | \ 11524 // t15 t16 t17 t18 t19 t20 11525 // trunc* 255 srl -256 11526 // | / \ 11527 // t15 t15 16 11528 // 11529 // *In this example, the truncs are from i32->i16 11530 // 11531 // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3 11532 // respectively. calculateSrcByte would find (given node) -> ultimate src & 11533 // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3. 11534 // After finding the mapping, we can combine the tree into vperm t15, t16, 11535 // 0x05000407 11536 11537 // Find the source and byte position from a node. 11538 // \p DestByte is the byte position of the dest of the or that the src 11539 // ultimately provides. \p SrcIndex is the byte of the src that maps to this 11540 // dest of the or byte. \p Depth tracks how many recursive iterations we have 11541 // performed. 11542 static const std::optional<ByteProvider<SDValue>> 11543 calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0, 11544 unsigned Depth = 0) { 11545 // We may need to recursively traverse a series of SRLs 11546 if (Depth >= 6) 11547 return std::nullopt; 11548 11549 auto ValueSize = Op.getValueSizeInBits(); 11550 if (ValueSize != 8 && ValueSize != 16 && ValueSize != 32) 11551 return std::nullopt; 11552 11553 switch (Op->getOpcode()) { 11554 case ISD::TRUNCATE: { 11555 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 11556 } 11557 11558 case ISD::SIGN_EXTEND: 11559 case ISD::ZERO_EXTEND: 11560 case ISD::SIGN_EXTEND_INREG: { 11561 SDValue NarrowOp = Op->getOperand(0); 11562 auto NarrowVT = NarrowOp.getValueType(); 11563 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) { 11564 auto *VTSign = cast<VTSDNode>(Op->getOperand(1)); 11565 NarrowVT = VTSign->getVT(); 11566 } 11567 if (!NarrowVT.isByteSized()) 11568 return std::nullopt; 11569 uint64_t NarrowByteWidth = NarrowVT.getStoreSize(); 11570 11571 if (SrcIndex >= NarrowByteWidth) 11572 return std::nullopt; 11573 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 11574 } 11575 11576 case ISD::SRA: 11577 case ISD::SRL: { 11578 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11579 if (!ShiftOp) 11580 return std::nullopt; 11581 11582 uint64_t BitShift = ShiftOp->getZExtValue(); 11583 11584 if (BitShift % 8 != 0) 11585 return std::nullopt; 11586 11587 SrcIndex += BitShift / 8; 11588 11589 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 11590 } 11591 11592 default: { 11593 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex); 11594 } 11595 } 11596 llvm_unreachable("fully handled switch"); 11597 } 11598 11599 // For a byte position in the result of an Or, traverse the tree and find the 11600 // node (and the byte of the node) which ultimately provides this {Or, 11601 // BytePosition}. \p Op is the operand we are currently examining. \p Index is 11602 // the byte position of the Op that corresponds with the originally requested 11603 // byte of the Or \p Depth tracks how many recursive iterations we have 11604 // performed. \p StartingIndex is the originally requested byte of the Or 11605 static const std::optional<ByteProvider<SDValue>> 11606 calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth, 11607 unsigned StartingIndex = 0) { 11608 // Finding Src tree of RHS of or typically requires at least 1 additional 11609 // depth 11610 if (Depth > 6) 11611 return std::nullopt; 11612 11613 unsigned BitWidth = Op.getScalarValueSizeInBits(); 11614 if (BitWidth % 8 != 0) 11615 return std::nullopt; 11616 if (Index > BitWidth / 8 - 1) 11617 return std::nullopt; 11618 11619 switch (Op.getOpcode()) { 11620 case ISD::OR: { 11621 auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1, 11622 StartingIndex); 11623 if (!RHS) 11624 return std::nullopt; 11625 auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1, 11626 StartingIndex); 11627 if (!LHS) 11628 return std::nullopt; 11629 // A well formed Or will have two ByteProviders for each byte, one of which 11630 // is constant zero 11631 if (!LHS->isConstantZero() && !RHS->isConstantZero()) 11632 return std::nullopt; 11633 if (!LHS || LHS->isConstantZero()) 11634 return RHS; 11635 if (!RHS || RHS->isConstantZero()) 11636 return LHS; 11637 return std::nullopt; 11638 } 11639 11640 case ISD::AND: { 11641 auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11642 if (!BitMaskOp) 11643 return std::nullopt; 11644 11645 uint32_t BitMask = BitMaskOp->getZExtValue(); 11646 // Bits we expect for our StartingIndex 11647 uint32_t IndexMask = 0xFF << (Index * 8); 11648 11649 if ((IndexMask & BitMask) != IndexMask) { 11650 // If the result of the and partially provides the byte, then it 11651 // is not well formatted 11652 if (IndexMask & BitMask) 11653 return std::nullopt; 11654 return ByteProvider<SDValue>::getConstantZero(); 11655 } 11656 11657 return calculateSrcByte(Op->getOperand(0), StartingIndex, Index); 11658 } 11659 11660 case ISD::FSHR: { 11661 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 11662 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2)); 11663 if (!ShiftOp || Op.getValueType().isVector()) 11664 return std::nullopt; 11665 11666 uint64_t BitsProvided = Op.getValueSizeInBits(); 11667 if (BitsProvided % 8 != 0) 11668 return std::nullopt; 11669 11670 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided); 11671 if (BitShift % 8) 11672 return std::nullopt; 11673 11674 uint64_t ConcatSizeInBytes = BitsProvided / 4; 11675 uint64_t ByteShift = BitShift / 8; 11676 11677 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes; 11678 uint64_t BytesProvided = BitsProvided / 8; 11679 SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1); 11680 NewIndex %= BytesProvided; 11681 return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex); 11682 } 11683 11684 case ISD::SRA: 11685 case ISD::SRL: { 11686 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11687 if (!ShiftOp) 11688 return std::nullopt; 11689 11690 uint64_t BitShift = ShiftOp->getZExtValue(); 11691 if (BitShift % 8) 11692 return std::nullopt; 11693 11694 auto BitsProvided = Op.getScalarValueSizeInBits(); 11695 if (BitsProvided % 8 != 0) 11696 return std::nullopt; 11697 11698 uint64_t BytesProvided = BitsProvided / 8; 11699 uint64_t ByteShift = BitShift / 8; 11700 // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes. 11701 // If the byte we are trying to provide (as tracked by index) falls in this 11702 // range, then the SRL provides the byte. The byte of interest of the src of 11703 // the SRL is Index + ByteShift 11704 return BytesProvided - ByteShift > Index 11705 ? calculateSrcByte(Op->getOperand(0), StartingIndex, 11706 Index + ByteShift) 11707 : ByteProvider<SDValue>::getConstantZero(); 11708 } 11709 11710 case ISD::SHL: { 11711 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11712 if (!ShiftOp) 11713 return std::nullopt; 11714 11715 uint64_t BitShift = ShiftOp->getZExtValue(); 11716 if (BitShift % 8 != 0) 11717 return std::nullopt; 11718 uint64_t ByteShift = BitShift / 8; 11719 11720 // If we are shifting by an amount greater than (or equal to) 11721 // the index we are trying to provide, then it provides 0s. If not, 11722 // then this bytes are not definitively 0s, and the corresponding byte 11723 // of interest is Index - ByteShift of the src 11724 return Index < ByteShift 11725 ? ByteProvider<SDValue>::getConstantZero() 11726 : calculateByteProvider(Op.getOperand(0), Index - ByteShift, 11727 Depth + 1, StartingIndex); 11728 } 11729 case ISD::ANY_EXTEND: 11730 case ISD::SIGN_EXTEND: 11731 case ISD::ZERO_EXTEND: 11732 case ISD::SIGN_EXTEND_INREG: 11733 case ISD::AssertZext: 11734 case ISD::AssertSext: { 11735 SDValue NarrowOp = Op->getOperand(0); 11736 unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits(); 11737 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG || 11738 Op->getOpcode() == ISD::AssertZext || 11739 Op->getOpcode() == ISD::AssertSext) { 11740 auto *VTSign = cast<VTSDNode>(Op->getOperand(1)); 11741 NarrowBitWidth = VTSign->getVT().getSizeInBits(); 11742 } 11743 if (NarrowBitWidth % 8 != 0) 11744 return std::nullopt; 11745 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 11746 11747 if (Index >= NarrowByteWidth) 11748 return Op.getOpcode() == ISD::ZERO_EXTEND 11749 ? std::optional<ByteProvider<SDValue>>( 11750 ByteProvider<SDValue>::getConstantZero()) 11751 : std::nullopt; 11752 return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex); 11753 } 11754 11755 case ISD::TRUNCATE: { 11756 uint64_t NarrowByteWidth = BitWidth / 8; 11757 11758 if (NarrowByteWidth >= Index) { 11759 return calculateByteProvider(Op.getOperand(0), Index, Depth + 1, 11760 StartingIndex); 11761 } 11762 11763 return std::nullopt; 11764 } 11765 11766 case ISD::CopyFromReg: { 11767 if (BitWidth / 8 > Index) 11768 return calculateSrcByte(Op, StartingIndex, Index); 11769 11770 return std::nullopt; 11771 } 11772 11773 case ISD::LOAD: { 11774 auto L = cast<LoadSDNode>(Op.getNode()); 11775 11776 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 11777 if (NarrowBitWidth % 8 != 0) 11778 return std::nullopt; 11779 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 11780 11781 // If the width of the load does not reach byte we are trying to provide for 11782 // and it is not a ZEXTLOAD, then the load does not provide for the byte in 11783 // question 11784 if (Index >= NarrowByteWidth) { 11785 return L->getExtensionType() == ISD::ZEXTLOAD 11786 ? std::optional<ByteProvider<SDValue>>( 11787 ByteProvider<SDValue>::getConstantZero()) 11788 : std::nullopt; 11789 } 11790 11791 if (NarrowByteWidth > Index) { 11792 return calculateSrcByte(Op, StartingIndex, Index); 11793 } 11794 11795 return std::nullopt; 11796 } 11797 11798 case ISD::BSWAP: 11799 return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1, 11800 Depth + 1, StartingIndex); 11801 11802 case ISD::EXTRACT_VECTOR_ELT: { 11803 auto IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11804 if (!IdxOp) 11805 return std::nullopt; 11806 auto VecIdx = IdxOp->getZExtValue(); 11807 auto ScalarSize = Op.getScalarValueSizeInBits(); 11808 if (ScalarSize != 32) { 11809 if ((VecIdx + 1) * ScalarSize > 32) 11810 return std::nullopt; 11811 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index; 11812 } 11813 11814 return calculateSrcByte(ScalarSize == 32 ? Op : Op.getOperand(0), 11815 StartingIndex, Index); 11816 } 11817 11818 case AMDGPUISD::PERM: { 11819 auto PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2)); 11820 if (!PermMask) 11821 return std::nullopt; 11822 11823 auto IdxMask = 11824 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8); 11825 if (IdxMask > 0x07 && IdxMask != 0x0c) 11826 return std::nullopt; 11827 11828 auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1); 11829 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask; 11830 11831 return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex) 11832 : ByteProvider<SDValue>( 11833 ByteProvider<SDValue>::getConstantZero()); 11834 } 11835 11836 default: { 11837 return std::nullopt; 11838 } 11839 } 11840 11841 llvm_unreachable("fully handled switch"); 11842 } 11843 11844 // Returns true if the Operand is a scalar and is 16 bits 11845 static bool isExtendedFrom16Bits(SDValue &Operand) { 11846 11847 switch (Operand.getOpcode()) { 11848 case ISD::ANY_EXTEND: 11849 case ISD::SIGN_EXTEND: 11850 case ISD::ZERO_EXTEND: { 11851 auto OpVT = Operand.getOperand(0).getValueType(); 11852 return !OpVT.isVector() && OpVT.getSizeInBits() == 16; 11853 } 11854 case ISD::LOAD: { 11855 LoadSDNode *L = cast<LoadSDNode>(Operand.getNode()); 11856 auto ExtType = cast<LoadSDNode>(L)->getExtensionType(); 11857 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD || 11858 ExtType == ISD::EXTLOAD) { 11859 auto MemVT = L->getMemoryVT(); 11860 return !MemVT.isVector() && MemVT.getSizeInBits() == 16; 11861 } 11862 return L->getMemoryVT().getSizeInBits() == 16; 11863 } 11864 default: 11865 return false; 11866 } 11867 } 11868 11869 // Returns true if the mask matches consecutive bytes, and the first byte 11870 // begins at a power of 2 byte offset from 0th byte 11871 static bool addresses16Bits(int Mask) { 11872 int Low8 = Mask & 0xff; 11873 int Hi8 = (Mask & 0xff00) >> 8; 11874 11875 assert(Low8 < 8 && Hi8 < 8); 11876 // Are the bytes contiguous in the order of increasing addresses. 11877 bool IsConsecutive = (Hi8 - Low8 == 1); 11878 // Is the first byte at location that is aligned for 16 bit instructions. 11879 // A counter example is taking 2 consecutive bytes starting at the 8th bit. 11880 // In this case, we still need code to extract the 16 bit operand, so it 11881 // is better to use i8 v_perm 11882 bool Is16Aligned = !(Low8 % 2); 11883 11884 return IsConsecutive && Is16Aligned; 11885 } 11886 11887 // Do not lower into v_perm if the operands are actually 16 bit 11888 // and the selected bits (based on PermMask) correspond with two 11889 // easily addressable 16 bit operands. 11890 static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, 11891 SDValue &OtherOp) { 11892 int Low16 = PermMask & 0xffff; 11893 int Hi16 = (PermMask & 0xffff0000) >> 16; 11894 11895 assert(Op.getValueType().isByteSized()); 11896 assert(OtherOp.getValueType().isByteSized()); 11897 11898 auto TempOp = peekThroughBitcasts(Op); 11899 auto TempOtherOp = peekThroughBitcasts(OtherOp); 11900 11901 auto OpIs16Bit = 11902 TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp); 11903 if (!OpIs16Bit) 11904 return true; 11905 11906 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 || 11907 isExtendedFrom16Bits(TempOtherOp); 11908 if (!OtherOpIs16Bit) 11909 return true; 11910 11911 // Do we cleanly address both 11912 return !addresses16Bits(Low16) || !addresses16Bits(Hi16); 11913 } 11914 11915 static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 11916 SelectionDAG &DAG = DCI.DAG; 11917 EVT VT = N->getValueType(0); 11918 11919 if (VT != MVT::i32) 11920 return SDValue(); 11921 11922 // VT is known to be MVT::i32, so we need to provide 4 bytes. 11923 SmallVector<ByteProvider<SDValue>, 8> PermNodes; 11924 for (int i = 0; i < 4; i++) { 11925 // Find the ByteProvider that provides the ith byte of the result of OR 11926 std::optional<ByteProvider<SDValue>> P = 11927 calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i); 11928 // TODO support constantZero 11929 if (!P || P->isConstantZero()) 11930 return SDValue(); 11931 11932 PermNodes.push_back(*P); 11933 } 11934 if (PermNodes.size() != 4) 11935 return SDValue(); 11936 11937 int FirstSrc = 0; 11938 std::optional<int> SecondSrc; 11939 uint64_t PermMask = 0x00000000; 11940 for (size_t i = 0; i < PermNodes.size(); i++) { 11941 auto PermOp = PermNodes[i]; 11942 // Since the mask is applied to Src1:Src2, Src1 bytes must be offset 11943 // by sizeof(Src2) = 4 11944 int SrcByteAdjust = 4; 11945 11946 if (!PermOp.hasSameSrc(PermNodes[FirstSrc])) { 11947 if (SecondSrc.has_value()) 11948 if (!PermOp.hasSameSrc(PermNodes[*SecondSrc])) 11949 return SDValue(); 11950 11951 // Set the index of the second distinct Src node 11952 SecondSrc = i; 11953 assert(!(PermNodes[*SecondSrc].Src->getValueSizeInBits() % 8)); 11954 SrcByteAdjust = 0; 11955 } 11956 assert(PermOp.SrcOffset + SrcByteAdjust < 8); 11957 assert(!DAG.getDataLayout().isBigEndian()); 11958 PermMask |= (PermOp.SrcOffset + SrcByteAdjust) << (i * 8); 11959 } 11960 11961 SDValue Op = *PermNodes[FirstSrc].Src; 11962 SDValue OtherOp = SecondSrc.has_value() ? *PermNodes[*SecondSrc].Src 11963 : *PermNodes[FirstSrc].Src; 11964 11965 // Check that we haven't just recreated the same FSHR node. 11966 if (N->getOpcode() == ISD::FSHR && 11967 (N->getOperand(0) == Op || N->getOperand(0) == OtherOp) && 11968 (N->getOperand(1) == Op || N->getOperand(1) == OtherOp)) 11969 return SDValue(); 11970 11971 // Check that we are not just extracting the bytes in order from an op 11972 if (Op == OtherOp && Op.getValueSizeInBits() == 32) { 11973 int Low16 = PermMask & 0xffff; 11974 int Hi16 = (PermMask & 0xffff0000) >> 16; 11975 11976 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100); 11977 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302); 11978 11979 // The perm op would really just produce Op. So combine into Op 11980 if (WellFormedLow && WellFormedHi) 11981 return DAG.getBitcast(MVT::getIntegerVT(32), Op); 11982 } 11983 11984 if (hasNon16BitAccesses(PermMask, Op, OtherOp)) { 11985 SDLoc DL(N); 11986 assert(Op.getValueType().isByteSized() && 11987 OtherOp.getValueType().isByteSized()); 11988 11989 // If the ultimate src is less than 32 bits, then we will only be 11990 // using bytes 0: Op.getValueSizeInBytes() - 1 in the or. 11991 // CalculateByteProvider would not have returned Op as source if we 11992 // used a byte that is outside its ValueType. Thus, we are free to 11993 // ANY_EXTEND as the extended bits are dont-cares. 11994 Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32); 11995 OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32); 11996 11997 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp, 11998 DAG.getConstant(PermMask, DL, MVT::i32)); 11999 } 12000 12001 return SDValue(); 12002 } 12003 12004 SDValue SITargetLowering::performOrCombine(SDNode *N, 12005 DAGCombinerInfo &DCI) const { 12006 SelectionDAG &DAG = DCI.DAG; 12007 SDValue LHS = N->getOperand(0); 12008 SDValue RHS = N->getOperand(1); 12009 12010 EVT VT = N->getValueType(0); 12011 if (VT == MVT::i1) { 12012 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 12013 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 12014 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 12015 SDValue Src = LHS.getOperand(0); 12016 if (Src != RHS.getOperand(0)) 12017 return SDValue(); 12018 12019 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 12020 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 12021 if (!CLHS || !CRHS) 12022 return SDValue(); 12023 12024 // Only 10 bits are used. 12025 static const uint32_t MaxMask = 0x3ff; 12026 12027 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 12028 SDLoc DL(N); 12029 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 12030 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 12031 } 12032 12033 return SDValue(); 12034 } 12035 12036 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 12037 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 12038 LHS.getOpcode() == AMDGPUISD::PERM && 12039 isa<ConstantSDNode>(LHS.getOperand(2))) { 12040 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 12041 if (!Sel) 12042 return SDValue(); 12043 12044 Sel |= LHS.getConstantOperandVal(2); 12045 SDLoc DL(N); 12046 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 12047 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 12048 } 12049 12050 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 12051 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12052 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 12053 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 12054 12055 // If all the uses of an or need to extract the individual elements, do not 12056 // attempt to lower into v_perm 12057 auto usesCombinedOperand = [](SDNode *OrUse) { 12058 // If we have any non-vectorized use, then it is a candidate for v_perm 12059 if (OrUse->getOpcode() != ISD::BITCAST || 12060 !OrUse->getValueType(0).isVector()) 12061 return true; 12062 12063 // If we have any non-vectorized use, then it is a candidate for v_perm 12064 for (auto VUse : OrUse->uses()) { 12065 if (!VUse->getValueType(0).isVector()) 12066 return true; 12067 12068 // If the use of a vector is a store, then combining via a v_perm 12069 // is beneficial. 12070 // TODO -- whitelist more uses 12071 for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg}) 12072 if (VUse->getOpcode() == VectorwiseOp) 12073 return true; 12074 } 12075 return false; 12076 }; 12077 12078 if (!any_of(N->uses(), usesCombinedOperand)) 12079 return SDValue(); 12080 12081 uint32_t LHSMask = getPermuteMask(LHS); 12082 uint32_t RHSMask = getPermuteMask(RHS); 12083 12084 if (LHSMask != ~0u && RHSMask != ~0u) { 12085 // Canonicalize the expression in an attempt to have fewer unique masks 12086 // and therefore fewer registers used to hold the masks. 12087 if (LHSMask > RHSMask) { 12088 std::swap(LHSMask, RHSMask); 12089 std::swap(LHS, RHS); 12090 } 12091 12092 // Select 0xc for each lane used from source operand. Zero has 0xc mask 12093 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 12094 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 12095 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 12096 12097 // Check of we need to combine values from two sources within a byte. 12098 if (!(LHSUsedLanes & RHSUsedLanes) && 12099 // If we select high and lower word keep it for SDWA. 12100 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 12101 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 12102 // Kill zero bytes selected by other mask. Zero value is 0xc. 12103 LHSMask &= ~RHSUsedLanes; 12104 RHSMask &= ~LHSUsedLanes; 12105 // Add 4 to each active LHS lane 12106 LHSMask |= LHSUsedLanes & 0x04040404; 12107 // Combine masks 12108 uint32_t Sel = LHSMask | RHSMask; 12109 SDLoc DL(N); 12110 12111 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 12112 LHS.getOperand(0), RHS.getOperand(0), 12113 DAG.getConstant(Sel, DL, MVT::i32)); 12114 } 12115 } 12116 if (LHSMask == ~0u || RHSMask == ~0u) { 12117 if (SDValue Perm = matchPERM(N, DCI)) 12118 return Perm; 12119 } 12120 } 12121 12122 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 12123 return SDValue(); 12124 12125 // TODO: This could be a generic combine with a predicate for extracting the 12126 // high half of an integer being free. 12127 12128 // (or i64:x, (zero_extend i32:y)) -> 12129 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 12130 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 12131 RHS.getOpcode() != ISD::ZERO_EXTEND) 12132 std::swap(LHS, RHS); 12133 12134 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 12135 SDValue ExtSrc = RHS.getOperand(0); 12136 EVT SrcVT = ExtSrc.getValueType(); 12137 if (SrcVT == MVT::i32) { 12138 SDLoc SL(N); 12139 SDValue LowLHS, HiBits; 12140 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 12141 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 12142 12143 DCI.AddToWorklist(LowOr.getNode()); 12144 DCI.AddToWorklist(HiBits.getNode()); 12145 12146 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 12147 LowOr, HiBits); 12148 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 12149 } 12150 } 12151 12152 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12153 if (CRHS) { 12154 if (SDValue Split 12155 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 12156 N->getOperand(0), CRHS)) 12157 return Split; 12158 } 12159 12160 return SDValue(); 12161 } 12162 12163 SDValue SITargetLowering::performXorCombine(SDNode *N, 12164 DAGCombinerInfo &DCI) const { 12165 if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) 12166 return RV; 12167 12168 SDValue LHS = N->getOperand(0); 12169 SDValue RHS = N->getOperand(1); 12170 12171 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 12172 SelectionDAG &DAG = DCI.DAG; 12173 12174 EVT VT = N->getValueType(0); 12175 if (CRHS && VT == MVT::i64) { 12176 if (SDValue Split 12177 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 12178 return Split; 12179 } 12180 12181 // Make sure to apply the 64-bit constant splitting fold before trying to fold 12182 // fneg-like xors into 64-bit select. 12183 if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) { 12184 // This looks like an fneg, try to fold as a source modifier. 12185 if (CRHS && CRHS->getAPIntValue().isSignMask() && 12186 shouldFoldFNegIntoSrc(N, LHS)) { 12187 // xor (select c, a, b), 0x80000000 -> 12188 // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b))) 12189 SDLoc DL(N); 12190 SDValue CastLHS = 12191 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1)); 12192 SDValue CastRHS = 12193 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2)); 12194 SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS); 12195 SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS); 12196 SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32, 12197 LHS->getOperand(0), FNegLHS, FNegRHS); 12198 return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect); 12199 } 12200 } 12201 12202 return SDValue(); 12203 } 12204 12205 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 12206 DAGCombinerInfo &DCI) const { 12207 if (!Subtarget->has16BitInsts() || 12208 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 12209 return SDValue(); 12210 12211 EVT VT = N->getValueType(0); 12212 if (VT != MVT::i32) 12213 return SDValue(); 12214 12215 SDValue Src = N->getOperand(0); 12216 if (Src.getValueType() != MVT::i16) 12217 return SDValue(); 12218 12219 return SDValue(); 12220 } 12221 12222 SDValue 12223 SITargetLowering::performSignExtendInRegCombine(SDNode *N, 12224 DAGCombinerInfo &DCI) const { 12225 SDValue Src = N->getOperand(0); 12226 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 12227 12228 // Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them 12229 // with s_buffer_load_i8 and s_buffer_load_i16 respectively. 12230 if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE && 12231 VTSign->getVT() == MVT::i8) || 12232 (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT && 12233 VTSign->getVT() == MVT::i16))) { 12234 assert(Subtarget->hasScalarSubwordLoads() && 12235 "s_buffer_load_{u8, i8} are supported " 12236 "in GFX12 (or newer) architectures."); 12237 EVT VT = Src.getValueType(); 12238 unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE) 12239 ? AMDGPUISD::SBUFFER_LOAD_BYTE 12240 : AMDGPUISD::SBUFFER_LOAD_SHORT; 12241 SDLoc DL(N); 12242 SDVTList ResList = DCI.DAG.getVTList(MVT::i32); 12243 SDValue Ops[] = { 12244 Src.getOperand(0), // source register 12245 Src.getOperand(1), // offset 12246 Src.getOperand(2) // cachePolicy 12247 }; 12248 auto *M = cast<MemSDNode>(Src); 12249 SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode( 12250 Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand()); 12251 SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); 12252 return LoadVal; 12253 } else if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 12254 VTSign->getVT() == MVT::i8) || 12255 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 12256 VTSign->getVT() == MVT::i16)) && 12257 Src.hasOneUse()) { 12258 auto *M = cast<MemSDNode>(Src); 12259 SDValue Ops[] = { 12260 Src.getOperand(0), // Chain 12261 Src.getOperand(1), // rsrc 12262 Src.getOperand(2), // vindex 12263 Src.getOperand(3), // voffset 12264 Src.getOperand(4), // soffset 12265 Src.getOperand(5), // offset 12266 Src.getOperand(6), 12267 Src.getOperand(7) 12268 }; 12269 // replace with BUFFER_LOAD_BYTE/SHORT 12270 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 12271 Src.getOperand(0).getValueType()); 12272 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 12273 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 12274 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 12275 ResList, 12276 Ops, M->getMemoryVT(), 12277 M->getMemOperand()); 12278 return DCI.DAG.getMergeValues({BufferLoadSignExt, 12279 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 12280 } 12281 return SDValue(); 12282 } 12283 12284 SDValue SITargetLowering::performClassCombine(SDNode *N, 12285 DAGCombinerInfo &DCI) const { 12286 SelectionDAG &DAG = DCI.DAG; 12287 SDValue Mask = N->getOperand(1); 12288 12289 // fp_class x, 0 -> false 12290 if (isNullConstant(Mask)) 12291 return DAG.getConstant(0, SDLoc(N), MVT::i1); 12292 12293 if (N->getOperand(0).isUndef()) 12294 return DAG.getUNDEF(MVT::i1); 12295 12296 return SDValue(); 12297 } 12298 12299 SDValue SITargetLowering::performRcpCombine(SDNode *N, 12300 DAGCombinerInfo &DCI) const { 12301 EVT VT = N->getValueType(0); 12302 SDValue N0 = N->getOperand(0); 12303 12304 if (N0.isUndef()) { 12305 return DCI.DAG.getConstantFP( 12306 APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N), 12307 VT); 12308 } 12309 12310 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 12311 N0.getOpcode() == ISD::SINT_TO_FP)) { 12312 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 12313 N->getFlags()); 12314 } 12315 12316 // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here. 12317 if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) && 12318 N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) { 12319 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 12320 N0.getOperand(0), N->getFlags()); 12321 } 12322 12323 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 12324 } 12325 12326 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 12327 unsigned MaxDepth) const { 12328 unsigned Opcode = Op.getOpcode(); 12329 if (Opcode == ISD::FCANONICALIZE) 12330 return true; 12331 12332 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 12333 const auto &F = CFP->getValueAPF(); 12334 if (F.isNaN() && F.isSignaling()) 12335 return false; 12336 if (!F.isDenormal()) 12337 return true; 12338 12339 DenormalMode Mode = 12340 DAG.getMachineFunction().getDenormalMode(F.getSemantics()); 12341 return Mode == DenormalMode::getIEEE(); 12342 } 12343 12344 // If source is a result of another standard FP operation it is already in 12345 // canonical form. 12346 if (MaxDepth == 0) 12347 return false; 12348 12349 switch (Opcode) { 12350 // These will flush denorms if required. 12351 case ISD::FADD: 12352 case ISD::FSUB: 12353 case ISD::FMUL: 12354 case ISD::FCEIL: 12355 case ISD::FFLOOR: 12356 case ISD::FMA: 12357 case ISD::FMAD: 12358 case ISD::FSQRT: 12359 case ISD::FDIV: 12360 case ISD::FREM: 12361 case ISD::FP_ROUND: 12362 case ISD::FP_EXTEND: 12363 case ISD::FLDEXP: 12364 case AMDGPUISD::FMUL_LEGACY: 12365 case AMDGPUISD::FMAD_FTZ: 12366 case AMDGPUISD::RCP: 12367 case AMDGPUISD::RSQ: 12368 case AMDGPUISD::RSQ_CLAMP: 12369 case AMDGPUISD::RCP_LEGACY: 12370 case AMDGPUISD::RCP_IFLAG: 12371 case AMDGPUISD::LOG: 12372 case AMDGPUISD::EXP: 12373 case AMDGPUISD::DIV_SCALE: 12374 case AMDGPUISD::DIV_FMAS: 12375 case AMDGPUISD::DIV_FIXUP: 12376 case AMDGPUISD::FRACT: 12377 case AMDGPUISD::CVT_PKRTZ_F16_F32: 12378 case AMDGPUISD::CVT_F32_UBYTE0: 12379 case AMDGPUISD::CVT_F32_UBYTE1: 12380 case AMDGPUISD::CVT_F32_UBYTE2: 12381 case AMDGPUISD::CVT_F32_UBYTE3: 12382 return true; 12383 12384 // It can/will be lowered or combined as a bit operation. 12385 // Need to check their input recursively to handle. 12386 case ISD::FNEG: 12387 case ISD::FABS: 12388 case ISD::FCOPYSIGN: 12389 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 12390 12391 case ISD::FSIN: 12392 case ISD::FCOS: 12393 case ISD::FSINCOS: 12394 return Op.getValueType().getScalarType() != MVT::f16; 12395 12396 case ISD::FMINNUM: 12397 case ISD::FMAXNUM: 12398 case ISD::FMINNUM_IEEE: 12399 case ISD::FMAXNUM_IEEE: 12400 case ISD::FMINIMUM: 12401 case ISD::FMAXIMUM: 12402 case AMDGPUISD::CLAMP: 12403 case AMDGPUISD::FMED3: 12404 case AMDGPUISD::FMAX3: 12405 case AMDGPUISD::FMIN3: 12406 case AMDGPUISD::FMAXIMUM3: 12407 case AMDGPUISD::FMINIMUM3: { 12408 // FIXME: Shouldn't treat the generic operations different based these. 12409 // However, we aren't really required to flush the result from 12410 // minnum/maxnum.. 12411 12412 // snans will be quieted, so we only need to worry about denormals. 12413 if (Subtarget->supportsMinMaxDenormModes() || 12414 // FIXME: denormalsEnabledForType is broken for dynamic 12415 denormalsEnabledForType(DAG, Op.getValueType())) 12416 return true; 12417 12418 // Flushing may be required. 12419 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 12420 // targets need to check their input recursively. 12421 12422 // FIXME: Does this apply with clamp? It's implemented with max. 12423 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 12424 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 12425 return false; 12426 } 12427 12428 return true; 12429 } 12430 case ISD::SELECT: { 12431 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 12432 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 12433 } 12434 case ISD::BUILD_VECTOR: { 12435 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 12436 SDValue SrcOp = Op.getOperand(i); 12437 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 12438 return false; 12439 } 12440 12441 return true; 12442 } 12443 case ISD::EXTRACT_VECTOR_ELT: 12444 case ISD::EXTRACT_SUBVECTOR: { 12445 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 12446 } 12447 case ISD::INSERT_VECTOR_ELT: { 12448 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 12449 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 12450 } 12451 case ISD::UNDEF: 12452 // Could be anything. 12453 return false; 12454 12455 case ISD::BITCAST: 12456 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 12457 case ISD::TRUNCATE: { 12458 // Hack round the mess we make when legalizing extract_vector_elt 12459 if (Op.getValueType() == MVT::i16) { 12460 SDValue TruncSrc = Op.getOperand(0); 12461 if (TruncSrc.getValueType() == MVT::i32 && 12462 TruncSrc.getOpcode() == ISD::BITCAST && 12463 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 12464 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 12465 } 12466 } 12467 return false; 12468 } 12469 case ISD::INTRINSIC_WO_CHAIN: { 12470 unsigned IntrinsicID = Op.getConstantOperandVal(0); 12471 // TODO: Handle more intrinsics 12472 switch (IntrinsicID) { 12473 case Intrinsic::amdgcn_cvt_pkrtz: 12474 case Intrinsic::amdgcn_cubeid: 12475 case Intrinsic::amdgcn_frexp_mant: 12476 case Intrinsic::amdgcn_fdot2: 12477 case Intrinsic::amdgcn_rcp: 12478 case Intrinsic::amdgcn_rsq: 12479 case Intrinsic::amdgcn_rsq_clamp: 12480 case Intrinsic::amdgcn_rcp_legacy: 12481 case Intrinsic::amdgcn_rsq_legacy: 12482 case Intrinsic::amdgcn_trig_preop: 12483 case Intrinsic::amdgcn_log: 12484 case Intrinsic::amdgcn_exp2: 12485 return true; 12486 default: 12487 break; 12488 } 12489 12490 [[fallthrough]]; 12491 } 12492 default: 12493 // FIXME: denormalsEnabledForType is broken for dynamic 12494 return denormalsEnabledForType(DAG, Op.getValueType()) && 12495 DAG.isKnownNeverSNaN(Op); 12496 } 12497 12498 llvm_unreachable("invalid operation"); 12499 } 12500 12501 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 12502 unsigned MaxDepth) const { 12503 MachineRegisterInfo &MRI = MF.getRegInfo(); 12504 MachineInstr *MI = MRI.getVRegDef(Reg); 12505 unsigned Opcode = MI->getOpcode(); 12506 12507 if (Opcode == AMDGPU::G_FCANONICALIZE) 12508 return true; 12509 12510 std::optional<FPValueAndVReg> FCR; 12511 // Constant splat (can be padded with undef) or scalar constant. 12512 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 12513 if (FCR->Value.isSignaling()) 12514 return false; 12515 if (!FCR->Value.isDenormal()) 12516 return true; 12517 12518 DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics()); 12519 return Mode == DenormalMode::getIEEE(); 12520 } 12521 12522 if (MaxDepth == 0) 12523 return false; 12524 12525 switch (Opcode) { 12526 case AMDGPU::G_FADD: 12527 case AMDGPU::G_FSUB: 12528 case AMDGPU::G_FMUL: 12529 case AMDGPU::G_FCEIL: 12530 case AMDGPU::G_FFLOOR: 12531 case AMDGPU::G_FRINT: 12532 case AMDGPU::G_FNEARBYINT: 12533 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: 12534 case AMDGPU::G_INTRINSIC_TRUNC: 12535 case AMDGPU::G_INTRINSIC_ROUNDEVEN: 12536 case AMDGPU::G_FMA: 12537 case AMDGPU::G_FMAD: 12538 case AMDGPU::G_FSQRT: 12539 case AMDGPU::G_FDIV: 12540 case AMDGPU::G_FREM: 12541 case AMDGPU::G_FPOW: 12542 case AMDGPU::G_FPEXT: 12543 case AMDGPU::G_FLOG: 12544 case AMDGPU::G_FLOG2: 12545 case AMDGPU::G_FLOG10: 12546 case AMDGPU::G_FPTRUNC: 12547 case AMDGPU::G_AMDGPU_RCP_IFLAG: 12548 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: 12549 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: 12550 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: 12551 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: 12552 return true; 12553 case AMDGPU::G_FNEG: 12554 case AMDGPU::G_FABS: 12555 case AMDGPU::G_FCOPYSIGN: 12556 return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); 12557 case AMDGPU::G_FMINNUM: 12558 case AMDGPU::G_FMAXNUM: 12559 case AMDGPU::G_FMINNUM_IEEE: 12560 case AMDGPU::G_FMAXNUM_IEEE: 12561 case AMDGPU::G_FMINIMUM: 12562 case AMDGPU::G_FMAXIMUM: { 12563 if (Subtarget->supportsMinMaxDenormModes() || 12564 // FIXME: denormalsEnabledForType is broken for dynamic 12565 denormalsEnabledForType(MRI.getType(Reg), MF)) 12566 return true; 12567 12568 [[fallthrough]]; 12569 } 12570 case AMDGPU::G_BUILD_VECTOR: 12571 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 12572 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 12573 return false; 12574 return true; 12575 case AMDGPU::G_INTRINSIC: 12576 case AMDGPU::G_INTRINSIC_CONVERGENT: 12577 switch (cast<GIntrinsic>(MI)->getIntrinsicID()) { 12578 case Intrinsic::amdgcn_fmul_legacy: 12579 case Intrinsic::amdgcn_fmad_ftz: 12580 case Intrinsic::amdgcn_sqrt: 12581 case Intrinsic::amdgcn_fmed3: 12582 case Intrinsic::amdgcn_sin: 12583 case Intrinsic::amdgcn_cos: 12584 case Intrinsic::amdgcn_log: 12585 case Intrinsic::amdgcn_exp2: 12586 case Intrinsic::amdgcn_log_clamp: 12587 case Intrinsic::amdgcn_rcp: 12588 case Intrinsic::amdgcn_rcp_legacy: 12589 case Intrinsic::amdgcn_rsq: 12590 case Intrinsic::amdgcn_rsq_clamp: 12591 case Intrinsic::amdgcn_rsq_legacy: 12592 case Intrinsic::amdgcn_div_scale: 12593 case Intrinsic::amdgcn_div_fmas: 12594 case Intrinsic::amdgcn_div_fixup: 12595 case Intrinsic::amdgcn_fract: 12596 case Intrinsic::amdgcn_cvt_pkrtz: 12597 case Intrinsic::amdgcn_cubeid: 12598 case Intrinsic::amdgcn_cubema: 12599 case Intrinsic::amdgcn_cubesc: 12600 case Intrinsic::amdgcn_cubetc: 12601 case Intrinsic::amdgcn_frexp_mant: 12602 case Intrinsic::amdgcn_fdot2: 12603 case Intrinsic::amdgcn_trig_preop: 12604 return true; 12605 default: 12606 break; 12607 } 12608 12609 [[fallthrough]]; 12610 default: 12611 return false; 12612 } 12613 12614 llvm_unreachable("invalid operation"); 12615 } 12616 12617 // Constant fold canonicalize. 12618 SDValue SITargetLowering::getCanonicalConstantFP( 12619 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 12620 // Flush denormals to 0 if not enabled. 12621 if (C.isDenormal()) { 12622 DenormalMode Mode = 12623 DAG.getMachineFunction().getDenormalMode(C.getSemantics()); 12624 if (Mode == DenormalMode::getPreserveSign()) { 12625 return DAG.getConstantFP( 12626 APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT); 12627 } 12628 12629 if (Mode != DenormalMode::getIEEE()) 12630 return SDValue(); 12631 } 12632 12633 if (C.isNaN()) { 12634 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 12635 if (C.isSignaling()) { 12636 // Quiet a signaling NaN. 12637 // FIXME: Is this supposed to preserve payload bits? 12638 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 12639 } 12640 12641 // Make sure it is the canonical NaN bitpattern. 12642 // 12643 // TODO: Can we use -1 as the canonical NaN value since it's an inline 12644 // immediate? 12645 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 12646 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 12647 } 12648 12649 // Already canonical. 12650 return DAG.getConstantFP(C, SL, VT); 12651 } 12652 12653 static bool vectorEltWillFoldAway(SDValue Op) { 12654 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 12655 } 12656 12657 SDValue SITargetLowering::performFCanonicalizeCombine( 12658 SDNode *N, 12659 DAGCombinerInfo &DCI) const { 12660 SelectionDAG &DAG = DCI.DAG; 12661 SDValue N0 = N->getOperand(0); 12662 EVT VT = N->getValueType(0); 12663 12664 // fcanonicalize undef -> qnan 12665 if (N0.isUndef()) { 12666 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 12667 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 12668 } 12669 12670 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 12671 EVT VT = N->getValueType(0); 12672 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 12673 } 12674 12675 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 12676 // (fcanonicalize k) 12677 // 12678 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 12679 12680 // TODO: This could be better with wider vectors that will be split to v2f16, 12681 // and to consider uses since there aren't that many packed operations. 12682 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 12683 isTypeLegal(MVT::v2f16)) { 12684 SDLoc SL(N); 12685 SDValue NewElts[2]; 12686 SDValue Lo = N0.getOperand(0); 12687 SDValue Hi = N0.getOperand(1); 12688 EVT EltVT = Lo.getValueType(); 12689 12690 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 12691 for (unsigned I = 0; I != 2; ++I) { 12692 SDValue Op = N0.getOperand(I); 12693 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 12694 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 12695 CFP->getValueAPF()); 12696 } else if (Op.isUndef()) { 12697 // Handled below based on what the other operand is. 12698 NewElts[I] = Op; 12699 } else { 12700 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 12701 } 12702 } 12703 12704 // If one half is undef, and one is constant, prefer a splat vector rather 12705 // than the normal qNaN. If it's a register, prefer 0.0 since that's 12706 // cheaper to use and may be free with a packed operation. 12707 if (NewElts[0].isUndef()) { 12708 if (isa<ConstantFPSDNode>(NewElts[1])) 12709 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 12710 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 12711 } 12712 12713 if (NewElts[1].isUndef()) { 12714 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 12715 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 12716 } 12717 12718 return DAG.getBuildVector(VT, SL, NewElts); 12719 } 12720 } 12721 12722 unsigned SrcOpc = N0.getOpcode(); 12723 12724 // If it's free to do so, push canonicalizes further up the source, which may 12725 // find a canonical source. 12726 // 12727 // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for 12728 // sNaNs. 12729 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 12730 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 12731 if (CRHS && N0.hasOneUse()) { 12732 SDLoc SL(N); 12733 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 12734 N0.getOperand(0)); 12735 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 12736 DCI.AddToWorklist(Canon0.getNode()); 12737 12738 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 12739 } 12740 } 12741 12742 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 12743 } 12744 12745 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 12746 switch (Opc) { 12747 case ISD::FMAXNUM: 12748 case ISD::FMAXNUM_IEEE: 12749 return AMDGPUISD::FMAX3; 12750 case ISD::FMAXIMUM: 12751 return AMDGPUISD::FMAXIMUM3; 12752 case ISD::SMAX: 12753 return AMDGPUISD::SMAX3; 12754 case ISD::UMAX: 12755 return AMDGPUISD::UMAX3; 12756 case ISD::FMINNUM: 12757 case ISD::FMINNUM_IEEE: 12758 return AMDGPUISD::FMIN3; 12759 case ISD::FMINIMUM: 12760 return AMDGPUISD::FMINIMUM3; 12761 case ISD::SMIN: 12762 return AMDGPUISD::SMIN3; 12763 case ISD::UMIN: 12764 return AMDGPUISD::UMIN3; 12765 default: 12766 llvm_unreachable("Not a min/max opcode"); 12767 } 12768 } 12769 12770 SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG, 12771 const SDLoc &SL, SDValue Src, 12772 SDValue MinVal, 12773 SDValue MaxVal, 12774 bool Signed) const { 12775 12776 // med3 comes from 12777 // min(max(x, K0), K1), K0 < K1 12778 // max(min(x, K0), K1), K1 < K0 12779 // 12780 // "MinVal" and "MaxVal" respectively refer to the rhs of the 12781 // min/max op. 12782 ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal); 12783 ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal); 12784 12785 if (!MinK || !MaxK) 12786 return SDValue(); 12787 12788 if (Signed) { 12789 if (MaxK->getAPIntValue().sge(MinK->getAPIntValue())) 12790 return SDValue(); 12791 } else { 12792 if (MaxK->getAPIntValue().uge(MinK->getAPIntValue())) 12793 return SDValue(); 12794 } 12795 12796 EVT VT = MinK->getValueType(0); 12797 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 12798 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) 12799 return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal); 12800 12801 // Note: we could also extend to i32 and use i32 med3 if i16 med3 is 12802 // not available, but this is unlikely to be profitable as constants 12803 // will often need to be materialized & extended, especially on 12804 // pre-GFX10 where VOP3 instructions couldn't take literal operands. 12805 return SDValue(); 12806 } 12807 12808 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 12809 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 12810 return C; 12811 12812 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 12813 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 12814 return C; 12815 } 12816 12817 return nullptr; 12818 } 12819 12820 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 12821 const SDLoc &SL, 12822 SDValue Op0, 12823 SDValue Op1) const { 12824 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 12825 if (!K1) 12826 return SDValue(); 12827 12828 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 12829 if (!K0) 12830 return SDValue(); 12831 12832 // Ordered >= (although NaN inputs should have folded away by now). 12833 if (K0->getValueAPF() > K1->getValueAPF()) 12834 return SDValue(); 12835 12836 const MachineFunction &MF = DAG.getMachineFunction(); 12837 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12838 12839 // TODO: Check IEEE bit enabled? 12840 EVT VT = Op0.getValueType(); 12841 if (Info->getMode().DX10Clamp) { 12842 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 12843 // hardware fmed3 behavior converting to a min. 12844 // FIXME: Should this be allowing -0.0? 12845 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 12846 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 12847 } 12848 12849 // med3 for f16 is only available on gfx9+, and not available for v2f16. 12850 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 12851 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 12852 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 12853 // then give the other result, which is different from med3 with a NaN 12854 // input. 12855 SDValue Var = Op0.getOperand(0); 12856 if (!DAG.isKnownNeverSNaN(Var)) 12857 return SDValue(); 12858 12859 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12860 12861 if ((!K0->hasOneUse() || 12862 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 12863 (!K1->hasOneUse() || 12864 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 12865 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 12866 Var, SDValue(K0, 0), SDValue(K1, 0)); 12867 } 12868 } 12869 12870 return SDValue(); 12871 } 12872 12873 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 12874 DAGCombinerInfo &DCI) const { 12875 SelectionDAG &DAG = DCI.DAG; 12876 12877 EVT VT = N->getValueType(0); 12878 unsigned Opc = N->getOpcode(); 12879 SDValue Op0 = N->getOperand(0); 12880 SDValue Op1 = N->getOperand(1); 12881 12882 // Only do this if the inner op has one use since this will just increases 12883 // register pressure for no benefit. 12884 12885 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 12886 !VT.isVector() && 12887 (VT == MVT::i32 || VT == MVT::f32 || 12888 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 12889 // max(max(a, b), c) -> max3(a, b, c) 12890 // min(min(a, b), c) -> min3(a, b, c) 12891 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 12892 SDLoc DL(N); 12893 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 12894 DL, 12895 N->getValueType(0), 12896 Op0.getOperand(0), 12897 Op0.getOperand(1), 12898 Op1); 12899 } 12900 12901 // Try commuted. 12902 // max(a, max(b, c)) -> max3(a, b, c) 12903 // min(a, min(b, c)) -> min3(a, b, c) 12904 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 12905 SDLoc DL(N); 12906 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 12907 DL, 12908 N->getValueType(0), 12909 Op0, 12910 Op1.getOperand(0), 12911 Op1.getOperand(1)); 12912 } 12913 } 12914 12915 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 12916 // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0) 12917 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 12918 if (SDValue Med3 = performIntMed3ImmCombine( 12919 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true)) 12920 return Med3; 12921 } 12922 if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) { 12923 if (SDValue Med3 = performIntMed3ImmCombine( 12924 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true)) 12925 return Med3; 12926 } 12927 12928 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 12929 if (SDValue Med3 = performIntMed3ImmCombine( 12930 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false)) 12931 return Med3; 12932 } 12933 if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) { 12934 if (SDValue Med3 = performIntMed3ImmCombine( 12935 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false)) 12936 return Med3; 12937 } 12938 12939 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 12940 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 12941 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 12942 (Opc == AMDGPUISD::FMIN_LEGACY && 12943 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 12944 (VT == MVT::f32 || VT == MVT::f64 || 12945 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 12946 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 12947 Op0.hasOneUse()) { 12948 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 12949 return Res; 12950 } 12951 12952 return SDValue(); 12953 } 12954 12955 static bool isClampZeroToOne(SDValue A, SDValue B) { 12956 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 12957 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 12958 // FIXME: Should this be allowing -0.0? 12959 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 12960 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 12961 } 12962 } 12963 12964 return false; 12965 } 12966 12967 // FIXME: Should only worry about snans for version with chain. 12968 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 12969 DAGCombinerInfo &DCI) const { 12970 EVT VT = N->getValueType(0); 12971 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 12972 // NaNs. With a NaN input, the order of the operands may change the result. 12973 12974 SelectionDAG &DAG = DCI.DAG; 12975 SDLoc SL(N); 12976 12977 SDValue Src0 = N->getOperand(0); 12978 SDValue Src1 = N->getOperand(1); 12979 SDValue Src2 = N->getOperand(2); 12980 12981 if (isClampZeroToOne(Src0, Src1)) { 12982 // const_a, const_b, x -> clamp is safe in all cases including signaling 12983 // nans. 12984 // FIXME: Should this be allowing -0.0? 12985 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 12986 } 12987 12988 const MachineFunction &MF = DAG.getMachineFunction(); 12989 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12990 12991 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 12992 // handling no dx10-clamp? 12993 if (Info->getMode().DX10Clamp) { 12994 // If NaNs is clamped to 0, we are free to reorder the inputs. 12995 12996 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 12997 std::swap(Src0, Src1); 12998 12999 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 13000 std::swap(Src1, Src2); 13001 13002 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 13003 std::swap(Src0, Src1); 13004 13005 if (isClampZeroToOne(Src1, Src2)) 13006 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 13007 } 13008 13009 return SDValue(); 13010 } 13011 13012 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 13013 DAGCombinerInfo &DCI) const { 13014 SDValue Src0 = N->getOperand(0); 13015 SDValue Src1 = N->getOperand(1); 13016 if (Src0.isUndef() && Src1.isUndef()) 13017 return DCI.DAG.getUNDEF(N->getValueType(0)); 13018 return SDValue(); 13019 } 13020 13021 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 13022 // expanded into a set of cmp/select instructions. 13023 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 13024 unsigned NumElem, 13025 bool IsDivergentIdx, 13026 const GCNSubtarget *Subtarget) { 13027 if (UseDivergentRegisterIndexing) 13028 return false; 13029 13030 unsigned VecSize = EltSize * NumElem; 13031 13032 // Sub-dword vectors of size 2 dword or less have better implementation. 13033 if (VecSize <= 64 && EltSize < 32) 13034 return false; 13035 13036 // Always expand the rest of sub-dword instructions, otherwise it will be 13037 // lowered via memory. 13038 if (EltSize < 32) 13039 return true; 13040 13041 // Always do this if var-idx is divergent, otherwise it will become a loop. 13042 if (IsDivergentIdx) 13043 return true; 13044 13045 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 13046 unsigned NumInsts = NumElem /* Number of compares */ + 13047 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 13048 13049 // On some architectures (GFX9) movrel is not available and it's better 13050 // to expand. 13051 if (!Subtarget->hasMovrel()) 13052 return NumInsts <= 16; 13053 13054 // If movrel is available, use it instead of expanding for vector of 8 13055 // elements. 13056 return NumInsts <= 15; 13057 } 13058 13059 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { 13060 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 13061 if (isa<ConstantSDNode>(Idx)) 13062 return false; 13063 13064 SDValue Vec = N->getOperand(0); 13065 EVT VecVT = Vec.getValueType(); 13066 EVT EltVT = VecVT.getVectorElementType(); 13067 unsigned EltSize = EltVT.getSizeInBits(); 13068 unsigned NumElem = VecVT.getVectorNumElements(); 13069 13070 return SITargetLowering::shouldExpandVectorDynExt( 13071 EltSize, NumElem, Idx->isDivergent(), getSubtarget()); 13072 } 13073 13074 SDValue SITargetLowering::performExtractVectorEltCombine( 13075 SDNode *N, DAGCombinerInfo &DCI) const { 13076 SDValue Vec = N->getOperand(0); 13077 SelectionDAG &DAG = DCI.DAG; 13078 13079 EVT VecVT = Vec.getValueType(); 13080 EVT VecEltVT = VecVT.getVectorElementType(); 13081 EVT ResVT = N->getValueType(0); 13082 13083 unsigned VecSize = VecVT.getSizeInBits(); 13084 unsigned VecEltSize = VecEltVT.getSizeInBits(); 13085 13086 if ((Vec.getOpcode() == ISD::FNEG || 13087 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 13088 SDLoc SL(N); 13089 SDValue Idx = N->getOperand(1); 13090 SDValue Elt = 13091 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); 13092 return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); 13093 } 13094 13095 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 13096 // => 13097 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 13098 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 13099 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 13100 if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { 13101 SDLoc SL(N); 13102 SDValue Idx = N->getOperand(1); 13103 unsigned Opc = Vec.getOpcode(); 13104 13105 switch(Opc) { 13106 default: 13107 break; 13108 // TODO: Support other binary operations. 13109 case ISD::FADD: 13110 case ISD::FSUB: 13111 case ISD::FMUL: 13112 case ISD::ADD: 13113 case ISD::UMIN: 13114 case ISD::UMAX: 13115 case ISD::SMIN: 13116 case ISD::SMAX: 13117 case ISD::FMAXNUM: 13118 case ISD::FMINNUM: 13119 case ISD::FMAXNUM_IEEE: 13120 case ISD::FMINNUM_IEEE: 13121 case ISD::FMAXIMUM: 13122 case ISD::FMINIMUM: { 13123 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, 13124 Vec.getOperand(0), Idx); 13125 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, 13126 Vec.getOperand(1), Idx); 13127 13128 DCI.AddToWorklist(Elt0.getNode()); 13129 DCI.AddToWorklist(Elt1.getNode()); 13130 return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); 13131 } 13132 } 13133 } 13134 13135 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 13136 if (shouldExpandVectorDynExt(N)) { 13137 SDLoc SL(N); 13138 SDValue Idx = N->getOperand(1); 13139 SDValue V; 13140 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 13141 SDValue IC = DAG.getVectorIdxConstant(I, SL); 13142 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); 13143 if (I == 0) 13144 V = Elt; 13145 else 13146 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 13147 } 13148 return V; 13149 } 13150 13151 if (!DCI.isBeforeLegalize()) 13152 return SDValue(); 13153 13154 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 13155 // elements. This exposes more load reduction opportunities by replacing 13156 // multiple small extract_vector_elements with a single 32-bit extract. 13157 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13158 if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && 13159 VecSize > 32 && VecSize % 32 == 0 && Idx) { 13160 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 13161 13162 unsigned BitIndex = Idx->getZExtValue() * VecEltSize; 13163 unsigned EltIdx = BitIndex / 32; 13164 unsigned LeftoverBitIdx = BitIndex % 32; 13165 SDLoc SL(N); 13166 13167 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 13168 DCI.AddToWorklist(Cast.getNode()); 13169 13170 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 13171 DAG.getConstant(EltIdx, SL, MVT::i32)); 13172 DCI.AddToWorklist(Elt.getNode()); 13173 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 13174 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 13175 DCI.AddToWorklist(Srl.getNode()); 13176 13177 EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); 13178 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); 13179 DCI.AddToWorklist(Trunc.getNode()); 13180 13181 if (VecEltVT == ResVT) { 13182 return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); 13183 } 13184 13185 assert(ResVT.isScalarInteger()); 13186 return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); 13187 } 13188 13189 return SDValue(); 13190 } 13191 13192 SDValue 13193 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 13194 DAGCombinerInfo &DCI) const { 13195 SDValue Vec = N->getOperand(0); 13196 SDValue Idx = N->getOperand(2); 13197 EVT VecVT = Vec.getValueType(); 13198 EVT EltVT = VecVT.getVectorElementType(); 13199 13200 // INSERT_VECTOR_ELT (<n x e>, var-idx) 13201 // => BUILD_VECTOR n x select (e, const-idx) 13202 if (!shouldExpandVectorDynExt(N)) 13203 return SDValue(); 13204 13205 SelectionDAG &DAG = DCI.DAG; 13206 SDLoc SL(N); 13207 SDValue Ins = N->getOperand(1); 13208 EVT IdxVT = Idx.getValueType(); 13209 13210 SmallVector<SDValue, 16> Ops; 13211 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 13212 SDValue IC = DAG.getConstant(I, SL, IdxVT); 13213 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 13214 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 13215 Ops.push_back(V); 13216 } 13217 13218 return DAG.getBuildVector(VecVT, SL, Ops); 13219 } 13220 13221 /// Return the source of an fp_extend from f16 to f32, or a converted FP 13222 /// constant. 13223 static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) { 13224 if (Src.getOpcode() == ISD::FP_EXTEND && 13225 Src.getOperand(0).getValueType() == MVT::f16) { 13226 return Src.getOperand(0); 13227 } 13228 13229 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) { 13230 APFloat Val = CFP->getValueAPF(); 13231 bool LosesInfo = true; 13232 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 13233 if (!LosesInfo) 13234 return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16); 13235 } 13236 13237 return SDValue(); 13238 } 13239 13240 SDValue SITargetLowering::performFPRoundCombine(SDNode *N, 13241 DAGCombinerInfo &DCI) const { 13242 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() && 13243 "combine only useful on gfx8"); 13244 13245 SDValue TruncSrc = N->getOperand(0); 13246 EVT VT = N->getValueType(0); 13247 if (VT != MVT::f16) 13248 return SDValue(); 13249 13250 if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 || 13251 TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse()) 13252 return SDValue(); 13253 13254 SelectionDAG &DAG = DCI.DAG; 13255 SDLoc SL(N); 13256 13257 // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3, 13258 // and expanding it with min/max saves 1 instruction vs. casting to f32 and 13259 // casting back. 13260 13261 // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) => 13262 // fmin(fmax(a, b), fmax(fmin(a, b), c)) 13263 SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0)); 13264 if (!A) 13265 return SDValue(); 13266 13267 SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1)); 13268 if (!B) 13269 return SDValue(); 13270 13271 SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2)); 13272 if (!C) 13273 return SDValue(); 13274 13275 // This changes signaling nan behavior. If an input is a signaling nan, it 13276 // would have been quieted by the fpext originally. We don't care because 13277 // these are unconstrained ops. If we needed to insert quieting canonicalizes 13278 // we would be worse off than just doing the promotion. 13279 SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B); 13280 SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B); 13281 SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C); 13282 return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1); 13283 } 13284 13285 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 13286 const SDNode *N0, 13287 const SDNode *N1) const { 13288 EVT VT = N0->getValueType(0); 13289 13290 // Only do this if we are not trying to support denormals. v_mad_f32 does not 13291 // support denormals ever. 13292 if (((VT == MVT::f32 && 13293 denormalModeIsFlushAllF32(DAG.getMachineFunction())) || 13294 (VT == MVT::f16 && Subtarget->hasMadF16() && 13295 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) && 13296 isOperationLegal(ISD::FMAD, VT)) 13297 return ISD::FMAD; 13298 13299 const TargetOptions &Options = DAG.getTarget().Options; 13300 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13301 (N0->getFlags().hasAllowContract() && 13302 N1->getFlags().hasAllowContract())) && 13303 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 13304 return ISD::FMA; 13305 } 13306 13307 return 0; 13308 } 13309 13310 // For a reassociatable opcode perform: 13311 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 13312 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 13313 SelectionDAG &DAG) const { 13314 EVT VT = N->getValueType(0); 13315 if (VT != MVT::i32 && VT != MVT::i64) 13316 return SDValue(); 13317 13318 if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) 13319 return SDValue(); 13320 13321 unsigned Opc = N->getOpcode(); 13322 SDValue Op0 = N->getOperand(0); 13323 SDValue Op1 = N->getOperand(1); 13324 13325 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 13326 return SDValue(); 13327 13328 if (Op0->isDivergent()) 13329 std::swap(Op0, Op1); 13330 13331 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 13332 return SDValue(); 13333 13334 SDValue Op2 = Op1.getOperand(1); 13335 Op1 = Op1.getOperand(0); 13336 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 13337 return SDValue(); 13338 13339 if (Op1->isDivergent()) 13340 std::swap(Op1, Op2); 13341 13342 SDLoc SL(N); 13343 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 13344 return DAG.getNode(Opc, SL, VT, Add1, Op2); 13345 } 13346 13347 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 13348 EVT VT, 13349 SDValue N0, SDValue N1, SDValue N2, 13350 bool Signed) { 13351 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 13352 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 13353 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 13354 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 13355 } 13356 13357 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high 13358 // multiplies, if any. 13359 // 13360 // Full 64-bit multiplies that feed into an addition are lowered here instead 13361 // of using the generic expansion. The generic expansion ends up with 13362 // a tree of ADD nodes that prevents us from using the "add" part of the 13363 // MAD instruction. The expansion produced here results in a chain of ADDs 13364 // instead of a tree. 13365 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, 13366 DAGCombinerInfo &DCI) const { 13367 assert(N->getOpcode() == ISD::ADD); 13368 13369 SelectionDAG &DAG = DCI.DAG; 13370 EVT VT = N->getValueType(0); 13371 SDLoc SL(N); 13372 SDValue LHS = N->getOperand(0); 13373 SDValue RHS = N->getOperand(1); 13374 13375 if (VT.isVector()) 13376 return SDValue(); 13377 13378 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall 13379 // result in scalar registers for uniform values. 13380 if (!N->isDivergent() && Subtarget->hasSMulHi()) 13381 return SDValue(); 13382 13383 unsigned NumBits = VT.getScalarSizeInBits(); 13384 if (NumBits <= 32 || NumBits > 64) 13385 return SDValue(); 13386 13387 if (LHS.getOpcode() != ISD::MUL) { 13388 assert(RHS.getOpcode() == ISD::MUL); 13389 std::swap(LHS, RHS); 13390 } 13391 13392 // Avoid the fold if it would unduly increase the number of multiplies due to 13393 // multiple uses, except on hardware with full-rate multiply-add (which is 13394 // part of full-rate 64-bit ops). 13395 if (!Subtarget->hasFullRate64Ops()) { 13396 unsigned NumUsers = 0; 13397 for (SDNode *Use : LHS->uses()) { 13398 // There is a use that does not feed into addition, so the multiply can't 13399 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. 13400 if (Use->getOpcode() != ISD::ADD) 13401 return SDValue(); 13402 13403 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer 13404 // MUL + 3xADD + 3xADDC over 3xMAD. 13405 ++NumUsers; 13406 if (NumUsers >= 3) 13407 return SDValue(); 13408 } 13409 } 13410 13411 SDValue MulLHS = LHS.getOperand(0); 13412 SDValue MulRHS = LHS.getOperand(1); 13413 SDValue AddRHS = RHS; 13414 13415 // Always check whether operands are small unsigned values, since that 13416 // knowledge is useful in more cases. Check for small signed values only if 13417 // doing so can unlock a shorter code sequence. 13418 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; 13419 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; 13420 13421 bool MulSignedLo = false; 13422 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { 13423 MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && 13424 numBitsSigned(MulRHS, DAG) <= 32; 13425 } 13426 13427 // The operands and final result all have the same number of bits. If 13428 // operands need to be extended, they can be extended with garbage. The 13429 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is 13430 // truncated away in the end. 13431 if (VT != MVT::i64) { 13432 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); 13433 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); 13434 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); 13435 } 13436 13437 // The basic code generated is conceptually straightforward. Pseudo code: 13438 // 13439 // accum = mad_64_32 lhs.lo, rhs.lo, accum 13440 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi 13441 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi 13442 // 13443 // The second and third lines are optional, depending on whether the factors 13444 // are {sign,zero}-extended or not. 13445 // 13446 // The actual DAG is noisier than the pseudo code, but only due to 13447 // instructions that disassemble values into low and high parts, and 13448 // assemble the final result. 13449 SDValue One = DAG.getConstant(1, SL, MVT::i32); 13450 13451 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); 13452 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); 13453 SDValue Accum = 13454 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); 13455 13456 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { 13457 SDValue AccumLo, AccumHi; 13458 std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32); 13459 13460 if (!MulLHSUnsigned32) { 13461 auto MulLHSHi = 13462 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); 13463 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); 13464 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 13465 } 13466 13467 if (!MulRHSUnsigned32) { 13468 auto MulRHSHi = 13469 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); 13470 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); 13471 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 13472 } 13473 13474 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); 13475 Accum = DAG.getBitcast(MVT::i64, Accum); 13476 } 13477 13478 if (VT != MVT::i64) 13479 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); 13480 return Accum; 13481 } 13482 13483 // Collect the ultimate src of each of the mul node's operands, and confirm 13484 // each operand is 8 bytes. 13485 static std::optional<ByteProvider<SDValue>> 13486 handleMulOperand(const SDValue &MulOperand) { 13487 auto Byte0 = calculateByteProvider(MulOperand, 0, 0); 13488 if (!Byte0 || Byte0->isConstantZero()) { 13489 return std::nullopt; 13490 } 13491 auto Byte1 = calculateByteProvider(MulOperand, 1, 0); 13492 if (Byte1 && !Byte1->isConstantZero()) { 13493 return std::nullopt; 13494 } 13495 return Byte0; 13496 } 13497 13498 static unsigned addPermMasks(unsigned First, unsigned Second) { 13499 unsigned FirstCs = First & 0x0c0c0c0c; 13500 unsigned SecondCs = Second & 0x0c0c0c0c; 13501 unsigned FirstNoCs = First & ~0x0c0c0c0c; 13502 unsigned SecondNoCs = Second & ~0x0c0c0c0c; 13503 13504 assert((FirstCs & 0xFF) | (SecondCs & 0xFF)); 13505 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00)); 13506 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000)); 13507 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000)); 13508 13509 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs); 13510 } 13511 13512 static void placeSources(ByteProvider<SDValue> &Src0, 13513 ByteProvider<SDValue> &Src1, 13514 SmallVectorImpl<std::pair<SDValue, unsigned>> &Src0s, 13515 SmallVectorImpl<std::pair<SDValue, unsigned>> &Src1s, 13516 int Step) { 13517 13518 assert(Src0.Src.has_value() && Src1.Src.has_value()); 13519 // Src0s and Src1s are empty, just place arbitrarily. 13520 if (Step == 0) { 13521 Src0s.push_back({*Src0.Src, (Src0.SrcOffset << 24) + 0x0c0c0c}); 13522 Src1s.push_back({*Src1.Src, (Src1.SrcOffset << 24) + 0x0c0c0c}); 13523 return; 13524 } 13525 13526 for (int BPI = 0; BPI < 2; BPI++) { 13527 std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1}; 13528 if (BPI == 1) { 13529 BPP = {Src1, Src0}; 13530 } 13531 unsigned ZeroMask = 0x0c0c0c0c; 13532 unsigned FMask = 0xFF << (8 * (3 - Step)); 13533 13534 unsigned FirstMask = 13535 BPP.first.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask); 13536 unsigned SecondMask = 13537 BPP.second.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask); 13538 // Attempt to find Src vector which contains our SDValue, if so, add our 13539 // perm mask to the existing one. If we are unable to find a match for the 13540 // first SDValue, attempt to find match for the second. 13541 int FirstGroup = -1; 13542 for (int I = 0; I < 2; I++) { 13543 SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs = 13544 I == 0 ? Src0s : Src1s; 13545 auto MatchesFirst = [&BPP](std::pair<SDValue, unsigned> IterElt) { 13546 return IterElt.first == *BPP.first.Src; 13547 }; 13548 13549 auto Match = llvm::find_if(Srcs, MatchesFirst); 13550 if (Match != Srcs.end()) { 13551 Match->second = addPermMasks(FirstMask, Match->second); 13552 FirstGroup = I; 13553 break; 13554 } 13555 } 13556 if (FirstGroup != -1) { 13557 SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs = 13558 FirstGroup == 1 ? Src0s : Src1s; 13559 auto MatchesSecond = [&BPP](std::pair<SDValue, unsigned> IterElt) { 13560 return IterElt.first == *BPP.second.Src; 13561 }; 13562 auto Match = llvm::find_if(Srcs, MatchesSecond); 13563 if (Match != Srcs.end()) { 13564 Match->second = addPermMasks(SecondMask, Match->second); 13565 } else 13566 Srcs.push_back({*BPP.second.Src, SecondMask}); 13567 return; 13568 } 13569 } 13570 13571 // If we have made it here, then we could not find a match in Src0s or Src1s 13572 // for either Src0 or Src1, so just place them arbitrarily. 13573 13574 unsigned ZeroMask = 0x0c0c0c0c; 13575 unsigned FMask = 0xFF << (8 * (3 - Step)); 13576 13577 Src0s.push_back( 13578 {*Src0.Src, (Src0.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask))}); 13579 Src1s.push_back( 13580 {*Src1.Src, (Src1.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask))}); 13581 13582 return; 13583 } 13584 13585 static SDValue 13586 resolveSources(SelectionDAG &DAG, SDLoc SL, 13587 SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs, 13588 bool IsSigned, bool IsAny) { 13589 13590 // If we just have one source, just permute it accordingly. 13591 if (Srcs.size() == 1) { 13592 auto Elt = Srcs.begin(); 13593 auto EltVal = DAG.getBitcastedAnyExtOrTrunc(Elt->first, SL, MVT::i32); 13594 13595 // v_perm will produce the original value. 13596 if (Elt->second == 0x3020100) 13597 return EltVal; 13598 13599 return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltVal, EltVal, 13600 DAG.getConstant(Elt->second, SL, MVT::i32)); 13601 } 13602 13603 auto FirstElt = Srcs.begin(); 13604 auto SecondElt = std::next(FirstElt); 13605 13606 SmallVector<SDValue, 2> Perms; 13607 13608 // If we have multiple sources in the chain, combine them via perms (using 13609 // calculated perm mask) and Ors. 13610 while (true) { 13611 auto FirstMask = FirstElt->second; 13612 auto SecondMask = SecondElt->second; 13613 13614 unsigned FirstCs = FirstMask & 0x0c0c0c0c; 13615 unsigned FirstPlusFour = FirstMask | 0x04040404; 13616 // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any 13617 // original 0x0C. 13618 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs; 13619 13620 auto PermMask = addPermMasks(FirstMask, SecondMask); 13621 auto FirstVal = 13622 DAG.getBitcastedAnyExtOrTrunc(FirstElt->first, SL, MVT::i32); 13623 auto SecondVal = 13624 DAG.getBitcastedAnyExtOrTrunc(SecondElt->first, SL, MVT::i32); 13625 13626 Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal, 13627 SecondVal, 13628 DAG.getConstant(PermMask, SL, MVT::i32))); 13629 13630 FirstElt = std::next(SecondElt); 13631 if (FirstElt == Srcs.end()) 13632 break; 13633 13634 SecondElt = std::next(FirstElt); 13635 // If we only have a FirstElt, then just combine that into the cumulative 13636 // source node. 13637 if (SecondElt == Srcs.end()) { 13638 auto EltVal = 13639 DAG.getBitcastedAnyExtOrTrunc(FirstElt->first, SL, MVT::i32); 13640 13641 Perms.push_back( 13642 DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltVal, EltVal, 13643 DAG.getConstant(FirstElt->second, SL, MVT::i32))); 13644 break; 13645 } 13646 } 13647 13648 assert(Perms.size() == 1 || Perms.size() == 2); 13649 return Perms.size() == 2 13650 ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1]) 13651 : Perms[0]; 13652 } 13653 13654 static void fixMasks(SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs, 13655 unsigned ChainLength) { 13656 for (auto &[EntryVal, EntryMask] : Srcs) { 13657 EntryMask = EntryMask >> ((4 - ChainLength) * 8); 13658 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000; 13659 EntryMask += ZeroMask; 13660 } 13661 } 13662 13663 static bool isMul(const SDValue Op) { 13664 auto Opcode = Op.getOpcode(); 13665 13666 return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 || 13667 Opcode == AMDGPUISD::MUL_I24); 13668 } 13669 13670 static std::optional<bool> 13671 checkDot4MulSignedness(const SDValue &N, ByteProvider<SDValue> &Src0, 13672 ByteProvider<SDValue> &Src1, const SDValue &S0Op, 13673 const SDValue &S1Op, const SelectionDAG &DAG) { 13674 // If we both ops are i8s (pre legalize-dag), then the signedness semantics 13675 // of the dot4 is irrelevant. 13676 if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8) 13677 return false; 13678 13679 auto Known0 = DAG.computeKnownBits(S0Op, 0); 13680 bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0; 13681 bool S0IsSigned = Known0.countMinLeadingOnes() > 0; 13682 auto Known1 = DAG.computeKnownBits(S1Op, 0); 13683 bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0; 13684 bool S1IsSigned = Known1.countMinLeadingOnes() > 0; 13685 13686 assert(!(S0IsUnsigned && S0IsSigned)); 13687 assert(!(S1IsUnsigned && S1IsSigned)); 13688 13689 // There are 9 possible permutations of 13690 // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned} 13691 13692 // In two permutations, the sign bits are known to be the same for both Ops, 13693 // so simply return Signed / Unsigned corresponding to the MSB 13694 13695 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned)) 13696 return S0IsSigned; 13697 13698 // In another two permutations, the sign bits are known to be opposite. In 13699 // this case return std::nullopt to indicate a bad match. 13700 13701 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned)) 13702 return std::nullopt; 13703 13704 // In the remaining five permutations, we don't know the value of the sign 13705 // bit for at least one Op. Since we have a valid ByteProvider, we know that 13706 // the upper bits must be extension bits. Thus, the only ways for the sign 13707 // bit to be unknown is if it was sign extended from unknown value, or if it 13708 // was any extended. In either case, it is correct to use the signed 13709 // version of the signedness semantics of dot4 13710 13711 // In two of such permutations, we known the sign bit is set for 13712 // one op, and the other is unknown. It is okay to used signed version of 13713 // dot4. 13714 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) || 13715 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned)))) 13716 return true; 13717 13718 // In one such permutation, we don't know either of the sign bits. It is okay 13719 // to used the signed version of dot4. 13720 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned))) 13721 return true; 13722 13723 // In two of such permutations, we known the sign bit is unset for 13724 // one op, and the other is unknown. Return std::nullopt to indicate a 13725 // bad match. 13726 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) || 13727 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned)))) 13728 return std::nullopt; 13729 13730 llvm_unreachable("Fully covered condition"); 13731 } 13732 13733 SDValue SITargetLowering::performAddCombine(SDNode *N, 13734 DAGCombinerInfo &DCI) const { 13735 SelectionDAG &DAG = DCI.DAG; 13736 EVT VT = N->getValueType(0); 13737 SDLoc SL(N); 13738 SDValue LHS = N->getOperand(0); 13739 SDValue RHS = N->getOperand(1); 13740 13741 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { 13742 if (Subtarget->hasMad64_32()) { 13743 if (SDValue Folded = tryFoldToMad64_32(N, DCI)) 13744 return Folded; 13745 } 13746 } 13747 13748 if (SDValue V = reassociateScalarOps(N, DAG)) { 13749 return V; 13750 } 13751 13752 if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() && 13753 (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) { 13754 SDValue TempNode(N, 0); 13755 std::optional<bool> IsSigned; 13756 SmallVector<std::pair<SDValue, unsigned>, 4> Src0s; 13757 SmallVector<std::pair<SDValue, unsigned>, 4> Src1s; 13758 SmallVector<SDValue, 4> Src2s; 13759 13760 // Match the v_dot4 tree, while collecting src nodes. 13761 int ChainLength = 0; 13762 for (int I = 0; I < 4; I++) { 13763 auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1; 13764 if (MulIdx == -1) 13765 break; 13766 auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0)); 13767 if (!Src0) 13768 break; 13769 auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1)); 13770 if (!Src1) 13771 break; 13772 13773 auto IterIsSigned = checkDot4MulSignedness( 13774 TempNode->getOperand(MulIdx), *Src0, *Src1, 13775 TempNode->getOperand(MulIdx)->getOperand(0), 13776 TempNode->getOperand(MulIdx)->getOperand(1), DAG); 13777 if (!IterIsSigned) 13778 break; 13779 if (!IsSigned) 13780 IsSigned = *IterIsSigned; 13781 if (*IterIsSigned != *IsSigned) 13782 break; 13783 placeSources(*Src0, *Src1, Src0s, Src1s, I); 13784 auto AddIdx = 1 - MulIdx; 13785 // Allow the special case where add (add (mul24, 0), mul24) became -> 13786 // add (mul24, mul24). 13787 if (I == 2 && isMul(TempNode->getOperand(AddIdx))) { 13788 Src2s.push_back(TempNode->getOperand(AddIdx)); 13789 auto Src0 = 13790 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0)); 13791 if (!Src0) 13792 break; 13793 auto Src1 = 13794 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1)); 13795 if (!Src1) 13796 break; 13797 auto IterIsSigned = checkDot4MulSignedness( 13798 TempNode->getOperand(AddIdx), *Src0, *Src1, 13799 TempNode->getOperand(AddIdx)->getOperand(0), 13800 TempNode->getOperand(AddIdx)->getOperand(1), DAG); 13801 if (!IterIsSigned) 13802 break; 13803 assert(IsSigned); 13804 if (*IterIsSigned != *IsSigned) 13805 break; 13806 placeSources(*Src0, *Src1, Src0s, Src1s, I + 1); 13807 Src2s.push_back(DAG.getConstant(0, SL, MVT::i32)); 13808 ChainLength = I + 2; 13809 break; 13810 } 13811 13812 TempNode = TempNode->getOperand(AddIdx); 13813 Src2s.push_back(TempNode); 13814 ChainLength = I + 1; 13815 if (TempNode->getNumOperands() < 2) 13816 break; 13817 LHS = TempNode->getOperand(0); 13818 RHS = TempNode->getOperand(1); 13819 } 13820 13821 if (ChainLength < 2) 13822 return SDValue(); 13823 13824 // Masks were constructed with assumption that we would find a chain of 13825 // length 4. If not, then we need to 0 out the MSB bits (via perm mask of 13826 // 0x0c) so they do not affect dot calculation. 13827 if (ChainLength < 4) { 13828 fixMasks(Src0s, ChainLength); 13829 fixMasks(Src1s, ChainLength); 13830 } 13831 13832 SDValue Src0, Src1; 13833 13834 // If we are just using a single source for both, and have permuted the 13835 // bytes consistently, we can just use the sources without permuting 13836 // (commutation). 13837 bool UseOriginalSrc = false; 13838 if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 && 13839 Src0s.begin()->second == Src1s.begin()->second && 13840 Src0s.begin()->first.getValueSizeInBits() == 32 && 13841 Src1s.begin()->first.getValueSizeInBits() == 32) { 13842 SmallVector<unsigned, 4> SrcBytes; 13843 auto Src0Mask = Src0s.begin()->second; 13844 SrcBytes.push_back(Src0Mask & 0xFF000000); 13845 bool UniqueEntries = true; 13846 for (auto I = 1; I < 4; I++) { 13847 auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8)); 13848 13849 if (is_contained(SrcBytes, NextByte)) { 13850 UniqueEntries = false; 13851 break; 13852 } 13853 SrcBytes.push_back(NextByte); 13854 } 13855 13856 if (UniqueEntries) { 13857 UseOriginalSrc = true; 13858 // Must be 32 bits to enter above conditional. 13859 assert(Src0s.begin()->first.getValueSizeInBits() == 32); 13860 assert(Src1s.begin()->first.getValueSizeInBits() == 32); 13861 Src0 = DAG.getBitcast(MVT::getIntegerVT(32), Src0s.begin()->first); 13862 Src1 = DAG.getBitcast(MVT::getIntegerVT(32), Src1s.begin()->first); 13863 } 13864 } 13865 13866 if (!UseOriginalSrc) { 13867 Src0 = resolveSources(DAG, SL, Src0s, false, true); 13868 Src1 = resolveSources(DAG, SL, Src1s, false, true); 13869 } 13870 13871 assert(IsSigned); 13872 SDValue Src2 = 13873 DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32); 13874 13875 SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4 13876 : Intrinsic::amdgcn_udot4, 13877 SL, MVT::i64); 13878 13879 assert(!VT.isVector()); 13880 auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0, 13881 Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1)); 13882 13883 return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT); 13884 } 13885 13886 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 13887 return SDValue(); 13888 13889 // add x, zext (setcc) => uaddo_carry x, 0, setcc 13890 // add x, sext (setcc) => usubo_carry x, 0, setcc 13891 unsigned Opc = LHS.getOpcode(); 13892 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 13893 Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY) 13894 std::swap(RHS, LHS); 13895 13896 Opc = RHS.getOpcode(); 13897 switch (Opc) { 13898 default: break; 13899 case ISD::ZERO_EXTEND: 13900 case ISD::SIGN_EXTEND: 13901 case ISD::ANY_EXTEND: { 13902 auto Cond = RHS.getOperand(0); 13903 // If this won't be a real VOPC output, we would still need to insert an 13904 // extra instruction anyway. 13905 if (!isBoolSGPR(Cond)) 13906 break; 13907 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 13908 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 13909 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY; 13910 return DAG.getNode(Opc, SL, VTList, Args); 13911 } 13912 case ISD::UADDO_CARRY: { 13913 // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc 13914 if (!isNullConstant(RHS.getOperand(1))) 13915 break; 13916 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 13917 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args); 13918 } 13919 } 13920 return SDValue(); 13921 } 13922 13923 SDValue SITargetLowering::performSubCombine(SDNode *N, 13924 DAGCombinerInfo &DCI) const { 13925 SelectionDAG &DAG = DCI.DAG; 13926 EVT VT = N->getValueType(0); 13927 13928 if (VT != MVT::i32) 13929 return SDValue(); 13930 13931 SDLoc SL(N); 13932 SDValue LHS = N->getOperand(0); 13933 SDValue RHS = N->getOperand(1); 13934 13935 // sub x, zext (setcc) => usubo_carry x, 0, setcc 13936 // sub x, sext (setcc) => uaddo_carry x, 0, setcc 13937 unsigned Opc = RHS.getOpcode(); 13938 switch (Opc) { 13939 default: break; 13940 case ISD::ZERO_EXTEND: 13941 case ISD::SIGN_EXTEND: 13942 case ISD::ANY_EXTEND: { 13943 auto Cond = RHS.getOperand(0); 13944 // If this won't be a real VOPC output, we would still need to insert an 13945 // extra instruction anyway. 13946 if (!isBoolSGPR(Cond)) 13947 break; 13948 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 13949 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 13950 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 13951 return DAG.getNode(Opc, SL, VTList, Args); 13952 } 13953 } 13954 13955 if (LHS.getOpcode() == ISD::USUBO_CARRY) { 13956 // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc 13957 if (!isNullConstant(LHS.getOperand(1))) 13958 return SDValue(); 13959 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 13960 return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args); 13961 } 13962 return SDValue(); 13963 } 13964 13965 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 13966 DAGCombinerInfo &DCI) const { 13967 13968 if (N->getValueType(0) != MVT::i32) 13969 return SDValue(); 13970 13971 if (!isNullConstant(N->getOperand(1))) 13972 return SDValue(); 13973 13974 SelectionDAG &DAG = DCI.DAG; 13975 SDValue LHS = N->getOperand(0); 13976 13977 // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc 13978 // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc 13979 unsigned LHSOpc = LHS.getOpcode(); 13980 unsigned Opc = N->getOpcode(); 13981 if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) || 13982 (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) { 13983 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 13984 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 13985 } 13986 return SDValue(); 13987 } 13988 13989 SDValue SITargetLowering::performFAddCombine(SDNode *N, 13990 DAGCombinerInfo &DCI) const { 13991 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 13992 return SDValue(); 13993 13994 SelectionDAG &DAG = DCI.DAG; 13995 EVT VT = N->getValueType(0); 13996 13997 SDLoc SL(N); 13998 SDValue LHS = N->getOperand(0); 13999 SDValue RHS = N->getOperand(1); 14000 14001 // These should really be instruction patterns, but writing patterns with 14002 // source modifiers is a pain. 14003 14004 // fadd (fadd (a, a), b) -> mad 2.0, a, b 14005 if (LHS.getOpcode() == ISD::FADD) { 14006 SDValue A = LHS.getOperand(0); 14007 if (A == LHS.getOperand(1)) { 14008 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 14009 if (FusedOp != 0) { 14010 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 14011 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 14012 } 14013 } 14014 } 14015 14016 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 14017 if (RHS.getOpcode() == ISD::FADD) { 14018 SDValue A = RHS.getOperand(0); 14019 if (A == RHS.getOperand(1)) { 14020 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 14021 if (FusedOp != 0) { 14022 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 14023 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 14024 } 14025 } 14026 } 14027 14028 return SDValue(); 14029 } 14030 14031 SDValue SITargetLowering::performFSubCombine(SDNode *N, 14032 DAGCombinerInfo &DCI) const { 14033 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 14034 return SDValue(); 14035 14036 SelectionDAG &DAG = DCI.DAG; 14037 SDLoc SL(N); 14038 EVT VT = N->getValueType(0); 14039 assert(!VT.isVector()); 14040 14041 // Try to get the fneg to fold into the source modifier. This undoes generic 14042 // DAG combines and folds them into the mad. 14043 // 14044 // Only do this if we are not trying to support denormals. v_mad_f32 does 14045 // not support denormals ever. 14046 SDValue LHS = N->getOperand(0); 14047 SDValue RHS = N->getOperand(1); 14048 if (LHS.getOpcode() == ISD::FADD) { 14049 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 14050 SDValue A = LHS.getOperand(0); 14051 if (A == LHS.getOperand(1)) { 14052 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 14053 if (FusedOp != 0){ 14054 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 14055 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 14056 14057 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 14058 } 14059 } 14060 } 14061 14062 if (RHS.getOpcode() == ISD::FADD) { 14063 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 14064 14065 SDValue A = RHS.getOperand(0); 14066 if (A == RHS.getOperand(1)) { 14067 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 14068 if (FusedOp != 0){ 14069 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 14070 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 14071 } 14072 } 14073 } 14074 14075 return SDValue(); 14076 } 14077 14078 SDValue SITargetLowering::performFDivCombine(SDNode *N, 14079 DAGCombinerInfo &DCI) const { 14080 SelectionDAG &DAG = DCI.DAG; 14081 SDLoc SL(N); 14082 EVT VT = N->getValueType(0); 14083 if (VT != MVT::f16 || !Subtarget->has16BitInsts()) 14084 return SDValue(); 14085 14086 SDValue LHS = N->getOperand(0); 14087 SDValue RHS = N->getOperand(1); 14088 14089 SDNodeFlags Flags = N->getFlags(); 14090 SDNodeFlags RHSFlags = RHS->getFlags(); 14091 if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() || 14092 !RHS->hasOneUse()) 14093 return SDValue(); 14094 14095 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 14096 bool IsNegative = false; 14097 if (CLHS->isExactlyValue(1.0) || 14098 (IsNegative = CLHS->isExactlyValue(-1.0))) { 14099 // fdiv contract 1.0, (sqrt contract x) -> rsq for f16 14100 // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16 14101 if (RHS.getOpcode() == ISD::FSQRT) { 14102 // TODO: Or in RHS flags, somehow missing from SDNodeFlags 14103 SDValue Rsq = 14104 DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags); 14105 return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq; 14106 } 14107 } 14108 } 14109 14110 return SDValue(); 14111 } 14112 14113 SDValue SITargetLowering::performFMACombine(SDNode *N, 14114 DAGCombinerInfo &DCI) const { 14115 SelectionDAG &DAG = DCI.DAG; 14116 EVT VT = N->getValueType(0); 14117 SDLoc SL(N); 14118 14119 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 14120 return SDValue(); 14121 14122 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 14123 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 14124 SDValue Op1 = N->getOperand(0); 14125 SDValue Op2 = N->getOperand(1); 14126 SDValue FMA = N->getOperand(2); 14127 14128 if (FMA.getOpcode() != ISD::FMA || 14129 Op1.getOpcode() != ISD::FP_EXTEND || 14130 Op2.getOpcode() != ISD::FP_EXTEND) 14131 return SDValue(); 14132 14133 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 14134 // regardless of the denorm mode setting. Therefore, 14135 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. 14136 const TargetOptions &Options = DAG.getTarget().Options; 14137 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 14138 (N->getFlags().hasAllowContract() && 14139 FMA->getFlags().hasAllowContract())) { 14140 Op1 = Op1.getOperand(0); 14141 Op2 = Op2.getOperand(0); 14142 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14143 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14144 return SDValue(); 14145 14146 SDValue Vec1 = Op1.getOperand(0); 14147 SDValue Idx1 = Op1.getOperand(1); 14148 SDValue Vec2 = Op2.getOperand(0); 14149 14150 SDValue FMAOp1 = FMA.getOperand(0); 14151 SDValue FMAOp2 = FMA.getOperand(1); 14152 SDValue FMAAcc = FMA.getOperand(2); 14153 14154 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 14155 FMAOp2.getOpcode() != ISD::FP_EXTEND) 14156 return SDValue(); 14157 14158 FMAOp1 = FMAOp1.getOperand(0); 14159 FMAOp2 = FMAOp2.getOperand(0); 14160 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14161 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14162 return SDValue(); 14163 14164 SDValue Vec3 = FMAOp1.getOperand(0); 14165 SDValue Vec4 = FMAOp2.getOperand(0); 14166 SDValue Idx2 = FMAOp1.getOperand(1); 14167 14168 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 14169 // Idx1 and Idx2 cannot be the same. 14170 Idx1 == Idx2) 14171 return SDValue(); 14172 14173 if (Vec1 == Vec2 || Vec3 == Vec4) 14174 return SDValue(); 14175 14176 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 14177 return SDValue(); 14178 14179 if ((Vec1 == Vec3 && Vec2 == Vec4) || 14180 (Vec1 == Vec4 && Vec2 == Vec3)) { 14181 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 14182 DAG.getTargetConstant(0, SL, MVT::i1)); 14183 } 14184 } 14185 return SDValue(); 14186 } 14187 14188 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 14189 DAGCombinerInfo &DCI) const { 14190 SelectionDAG &DAG = DCI.DAG; 14191 SDLoc SL(N); 14192 14193 SDValue LHS = N->getOperand(0); 14194 SDValue RHS = N->getOperand(1); 14195 EVT VT = LHS.getValueType(); 14196 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 14197 14198 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 14199 if (!CRHS) { 14200 CRHS = dyn_cast<ConstantSDNode>(LHS); 14201 if (CRHS) { 14202 std::swap(LHS, RHS); 14203 CC = getSetCCSwappedOperands(CC); 14204 } 14205 } 14206 14207 if (CRHS) { 14208 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 14209 isBoolSGPR(LHS.getOperand(0))) { 14210 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 14211 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 14212 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 14213 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 14214 if ((CRHS->isAllOnes() && 14215 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 14216 (CRHS->isZero() && 14217 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 14218 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 14219 DAG.getConstant(-1, SL, MVT::i1)); 14220 if ((CRHS->isAllOnes() && 14221 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 14222 (CRHS->isZero() && 14223 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 14224 return LHS.getOperand(0); 14225 } 14226 14227 const APInt &CRHSVal = CRHS->getAPIntValue(); 14228 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 14229 LHS.getOpcode() == ISD::SELECT && 14230 isa<ConstantSDNode>(LHS.getOperand(1)) && 14231 isa<ConstantSDNode>(LHS.getOperand(2)) && 14232 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 14233 isBoolSGPR(LHS.getOperand(0))) { 14234 // Given CT != FT: 14235 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 14236 // setcc (select cc, CT, CF), CF, ne => cc 14237 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 14238 // setcc (select cc, CT, CF), CT, eq => cc 14239 const APInt &CT = LHS.getConstantOperandAPInt(1); 14240 const APInt &CF = LHS.getConstantOperandAPInt(2); 14241 14242 if ((CF == CRHSVal && CC == ISD::SETEQ) || 14243 (CT == CRHSVal && CC == ISD::SETNE)) 14244 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 14245 DAG.getConstant(-1, SL, MVT::i1)); 14246 if ((CF == CRHSVal && CC == ISD::SETNE) || 14247 (CT == CRHSVal && CC == ISD::SETEQ)) 14248 return LHS.getOperand(0); 14249 } 14250 } 14251 14252 if (VT != MVT::f32 && VT != MVT::f64 && 14253 (!Subtarget->has16BitInsts() || VT != MVT::f16)) 14254 return SDValue(); 14255 14256 // Match isinf/isfinite pattern 14257 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 14258 // (fcmp one (fabs x), inf) -> (fp_class x, 14259 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 14260 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 14261 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 14262 if (!CRHS) 14263 return SDValue(); 14264 14265 const APFloat &APF = CRHS->getValueAPF(); 14266 if (APF.isInfinity() && !APF.isNegative()) { 14267 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 14268 SIInstrFlags::N_INFINITY; 14269 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 14270 SIInstrFlags::P_ZERO | 14271 SIInstrFlags::N_NORMAL | 14272 SIInstrFlags::P_NORMAL | 14273 SIInstrFlags::N_SUBNORMAL | 14274 SIInstrFlags::P_SUBNORMAL; 14275 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 14276 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 14277 DAG.getConstant(Mask, SL, MVT::i32)); 14278 } 14279 } 14280 14281 return SDValue(); 14282 } 14283 14284 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 14285 DAGCombinerInfo &DCI) const { 14286 SelectionDAG &DAG = DCI.DAG; 14287 SDLoc SL(N); 14288 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 14289 14290 SDValue Src = N->getOperand(0); 14291 SDValue Shift = N->getOperand(0); 14292 14293 // TODO: Extend type shouldn't matter (assuming legal types). 14294 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 14295 Shift = Shift.getOperand(0); 14296 14297 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 14298 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 14299 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 14300 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 14301 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 14302 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 14303 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 14304 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 14305 SDLoc(Shift.getOperand(0)), MVT::i32); 14306 14307 unsigned ShiftOffset = 8 * Offset; 14308 if (Shift.getOpcode() == ISD::SHL) 14309 ShiftOffset -= C->getZExtValue(); 14310 else 14311 ShiftOffset += C->getZExtValue(); 14312 14313 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 14314 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 14315 MVT::f32, Shifted); 14316 } 14317 } 14318 } 14319 14320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 14321 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 14322 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 14323 // We simplified Src. If this node is not dead, visit it again so it is 14324 // folded properly. 14325 if (N->getOpcode() != ISD::DELETED_NODE) 14326 DCI.AddToWorklist(N); 14327 return SDValue(N, 0); 14328 } 14329 14330 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 14331 if (SDValue DemandedSrc = 14332 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 14333 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 14334 14335 return SDValue(); 14336 } 14337 14338 SDValue SITargetLowering::performClampCombine(SDNode *N, 14339 DAGCombinerInfo &DCI) const { 14340 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 14341 if (!CSrc) 14342 return SDValue(); 14343 14344 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 14345 const APFloat &F = CSrc->getValueAPF(); 14346 APFloat Zero = APFloat::getZero(F.getSemantics()); 14347 if (F < Zero || 14348 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 14349 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 14350 } 14351 14352 APFloat One(F.getSemantics(), "1.0"); 14353 if (F > One) 14354 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 14355 14356 return SDValue(CSrc, 0); 14357 } 14358 14359 14360 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 14361 DAGCombinerInfo &DCI) const { 14362 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) 14363 return SDValue(); 14364 switch (N->getOpcode()) { 14365 case ISD::ADD: 14366 return performAddCombine(N, DCI); 14367 case ISD::SUB: 14368 return performSubCombine(N, DCI); 14369 case ISD::UADDO_CARRY: 14370 case ISD::USUBO_CARRY: 14371 return performAddCarrySubCarryCombine(N, DCI); 14372 case ISD::FADD: 14373 return performFAddCombine(N, DCI); 14374 case ISD::FSUB: 14375 return performFSubCombine(N, DCI); 14376 case ISD::FDIV: 14377 return performFDivCombine(N, DCI); 14378 case ISD::SETCC: 14379 return performSetCCCombine(N, DCI); 14380 case ISD::FMAXNUM: 14381 case ISD::FMINNUM: 14382 case ISD::FMAXNUM_IEEE: 14383 case ISD::FMINNUM_IEEE: 14384 case ISD::FMAXIMUM: 14385 case ISD::FMINIMUM: 14386 case ISD::SMAX: 14387 case ISD::SMIN: 14388 case ISD::UMAX: 14389 case ISD::UMIN: 14390 case AMDGPUISD::FMIN_LEGACY: 14391 case AMDGPUISD::FMAX_LEGACY: 14392 return performMinMaxCombine(N, DCI); 14393 case ISD::FMA: 14394 return performFMACombine(N, DCI); 14395 case ISD::AND: 14396 return performAndCombine(N, DCI); 14397 case ISD::OR: 14398 return performOrCombine(N, DCI); 14399 case ISD::FSHR: { 14400 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14401 if (N->getValueType(0) == MVT::i32 && N->isDivergent() && 14402 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 14403 return matchPERM(N, DCI); 14404 } 14405 break; 14406 } 14407 case ISD::XOR: 14408 return performXorCombine(N, DCI); 14409 case ISD::ZERO_EXTEND: 14410 return performZeroExtendCombine(N, DCI); 14411 case ISD::SIGN_EXTEND_INREG: 14412 return performSignExtendInRegCombine(N , DCI); 14413 case AMDGPUISD::FP_CLASS: 14414 return performClassCombine(N, DCI); 14415 case ISD::FCANONICALIZE: 14416 return performFCanonicalizeCombine(N, DCI); 14417 case AMDGPUISD::RCP: 14418 return performRcpCombine(N, DCI); 14419 case ISD::FLDEXP: 14420 case AMDGPUISD::FRACT: 14421 case AMDGPUISD::RSQ: 14422 case AMDGPUISD::RCP_LEGACY: 14423 case AMDGPUISD::RCP_IFLAG: 14424 case AMDGPUISD::RSQ_CLAMP: { 14425 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 14426 SDValue Src = N->getOperand(0); 14427 if (Src.isUndef()) 14428 return Src; 14429 break; 14430 } 14431 case ISD::SINT_TO_FP: 14432 case ISD::UINT_TO_FP: 14433 return performUCharToFloatCombine(N, DCI); 14434 case ISD::FCOPYSIGN: 14435 return performFCopySignCombine(N, DCI); 14436 case AMDGPUISD::CVT_F32_UBYTE0: 14437 case AMDGPUISD::CVT_F32_UBYTE1: 14438 case AMDGPUISD::CVT_F32_UBYTE2: 14439 case AMDGPUISD::CVT_F32_UBYTE3: 14440 return performCvtF32UByteNCombine(N, DCI); 14441 case AMDGPUISD::FMED3: 14442 return performFMed3Combine(N, DCI); 14443 case AMDGPUISD::CVT_PKRTZ_F16_F32: 14444 return performCvtPkRTZCombine(N, DCI); 14445 case AMDGPUISD::CLAMP: 14446 return performClampCombine(N, DCI); 14447 case ISD::SCALAR_TO_VECTOR: { 14448 SelectionDAG &DAG = DCI.DAG; 14449 EVT VT = N->getValueType(0); 14450 14451 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 14452 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2f16) { 14453 SDLoc SL(N); 14454 SDValue Src = N->getOperand(0); 14455 EVT EltVT = Src.getValueType(); 14456 if (EltVT != MVT::i16) 14457 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 14458 14459 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 14460 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 14461 } 14462 14463 break; 14464 } 14465 case ISD::EXTRACT_VECTOR_ELT: 14466 return performExtractVectorEltCombine(N, DCI); 14467 case ISD::INSERT_VECTOR_ELT: 14468 return performInsertVectorEltCombine(N, DCI); 14469 case ISD::FP_ROUND: 14470 return performFPRoundCombine(N, DCI); 14471 case ISD::LOAD: { 14472 if (SDValue Widened = widenLoad(cast<LoadSDNode>(N), DCI)) 14473 return Widened; 14474 [[fallthrough]]; 14475 } 14476 default: { 14477 if (!DCI.isBeforeLegalize()) { 14478 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 14479 return performMemSDNodeCombine(MemNode, DCI); 14480 } 14481 14482 break; 14483 } 14484 } 14485 14486 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 14487 } 14488 14489 /// Helper function for adjustWritemask 14490 static unsigned SubIdx2Lane(unsigned Idx) { 14491 switch (Idx) { 14492 default: return ~0u; 14493 case AMDGPU::sub0: return 0; 14494 case AMDGPU::sub1: return 1; 14495 case AMDGPU::sub2: return 2; 14496 case AMDGPU::sub3: return 3; 14497 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 14498 } 14499 } 14500 14501 /// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions 14502 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 14503 SelectionDAG &DAG) const { 14504 unsigned Opcode = Node->getMachineOpcode(); 14505 14506 // Subtract 1 because the vdata output is not a MachineSDNode operand. 14507 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 14508 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 14509 return Node; // not implemented for D16 14510 14511 SDNode *Users[5] = { nullptr }; 14512 unsigned Lane = 0; 14513 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 14514 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 14515 unsigned NewDmask = 0; 14516 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 14517 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 14518 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 14519 (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx))) 14520 ? true 14521 : false; 14522 unsigned TFCLane = 0; 14523 bool HasChain = Node->getNumValues() > 1; 14524 14525 if (OldDmask == 0) { 14526 // These are folded out, but on the chance it happens don't assert. 14527 return Node; 14528 } 14529 14530 unsigned OldBitsSet = llvm::popcount(OldDmask); 14531 // Work out which is the TFE/LWE lane if that is enabled. 14532 if (UsesTFC) { 14533 TFCLane = OldBitsSet; 14534 } 14535 14536 // Try to figure out the used register components 14537 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 14538 I != E; ++I) { 14539 14540 // Don't look at users of the chain. 14541 if (I.getUse().getResNo() != 0) 14542 continue; 14543 14544 // Abort if we can't understand the usage 14545 if (!I->isMachineOpcode() || 14546 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 14547 return Node; 14548 14549 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 14550 // Note that subregs are packed, i.e. Lane==0 is the first bit set 14551 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 14552 // set, etc. 14553 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 14554 if (Lane == ~0u) 14555 return Node; 14556 14557 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 14558 if (UsesTFC && Lane == TFCLane) { 14559 Users[Lane] = *I; 14560 } else { 14561 // Set which texture component corresponds to the lane. 14562 unsigned Comp; 14563 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 14564 Comp = llvm::countr_zero(Dmask); 14565 Dmask &= ~(1 << Comp); 14566 } 14567 14568 // Abort if we have more than one user per component. 14569 if (Users[Lane]) 14570 return Node; 14571 14572 Users[Lane] = *I; 14573 NewDmask |= 1 << Comp; 14574 } 14575 } 14576 14577 // Don't allow 0 dmask, as hardware assumes one channel enabled. 14578 bool NoChannels = !NewDmask; 14579 if (NoChannels) { 14580 if (!UsesTFC) { 14581 // No uses of the result and not using TFC. Then do nothing. 14582 return Node; 14583 } 14584 // If the original dmask has one channel - then nothing to do 14585 if (OldBitsSet == 1) 14586 return Node; 14587 // Use an arbitrary dmask - required for the instruction to work 14588 NewDmask = 1; 14589 } 14590 // Abort if there's no change 14591 if (NewDmask == OldDmask) 14592 return Node; 14593 14594 unsigned BitsSet = llvm::popcount(NewDmask); 14595 14596 // Check for TFE or LWE - increase the number of channels by one to account 14597 // for the extra return value 14598 // This will need adjustment for D16 if this is also included in 14599 // adjustWriteMask (this function) but at present D16 are excluded. 14600 unsigned NewChannels = BitsSet + UsesTFC; 14601 14602 int NewOpcode = 14603 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 14604 assert(NewOpcode != -1 && 14605 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 14606 "failed to find equivalent MIMG op"); 14607 14608 // Adjust the writemask in the node 14609 SmallVector<SDValue, 12> Ops; 14610 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 14611 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 14612 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 14613 14614 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 14615 14616 MVT ResultVT = NewChannels == 1 ? 14617 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 14618 NewChannels == 5 ? 8 : NewChannels); 14619 SDVTList NewVTList = HasChain ? 14620 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 14621 14622 14623 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 14624 NewVTList, Ops); 14625 14626 if (HasChain) { 14627 // Update chain. 14628 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 14629 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 14630 } 14631 14632 if (NewChannels == 1) { 14633 assert(Node->hasNUsesOfValue(1, 0)); 14634 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 14635 SDLoc(Node), Users[Lane]->getValueType(0), 14636 SDValue(NewNode, 0)); 14637 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 14638 return nullptr; 14639 } 14640 14641 // Update the users of the node with the new indices 14642 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 14643 SDNode *User = Users[i]; 14644 if (!User) { 14645 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 14646 // Users[0] is still nullptr because channel 0 doesn't really have a use. 14647 if (i || !NoChannels) 14648 continue; 14649 } else { 14650 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 14651 SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 14652 if (NewUser != User) { 14653 DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0)); 14654 DAG.RemoveDeadNode(User); 14655 } 14656 } 14657 14658 switch (Idx) { 14659 default: break; 14660 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 14661 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 14662 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 14663 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 14664 } 14665 } 14666 14667 DAG.RemoveDeadNode(Node); 14668 return nullptr; 14669 } 14670 14671 static bool isFrameIndexOp(SDValue Op) { 14672 if (Op.getOpcode() == ISD::AssertZext) 14673 Op = Op.getOperand(0); 14674 14675 return isa<FrameIndexSDNode>(Op); 14676 } 14677 14678 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 14679 /// with frame index operands. 14680 /// LLVM assumes that inputs are to these instructions are registers. 14681 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 14682 SelectionDAG &DAG) const { 14683 if (Node->getOpcode() == ISD::CopyToReg) { 14684 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 14685 SDValue SrcVal = Node->getOperand(2); 14686 14687 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 14688 // to try understanding copies to physical registers. 14689 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 14690 SDLoc SL(Node); 14691 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 14692 SDValue VReg = DAG.getRegister( 14693 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 14694 14695 SDNode *Glued = Node->getGluedNode(); 14696 SDValue ToVReg 14697 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 14698 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 14699 SDValue ToResultReg 14700 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 14701 VReg, ToVReg.getValue(1)); 14702 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 14703 DAG.RemoveDeadNode(Node); 14704 return ToResultReg.getNode(); 14705 } 14706 } 14707 14708 SmallVector<SDValue, 8> Ops; 14709 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 14710 if (!isFrameIndexOp(Node->getOperand(i))) { 14711 Ops.push_back(Node->getOperand(i)); 14712 continue; 14713 } 14714 14715 SDLoc DL(Node); 14716 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 14717 Node->getOperand(i).getValueType(), 14718 Node->getOperand(i)), 0)); 14719 } 14720 14721 return DAG.UpdateNodeOperands(Node, Ops); 14722 } 14723 14724 /// Fold the instructions after selecting them. 14725 /// Returns null if users were already updated. 14726 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 14727 SelectionDAG &DAG) const { 14728 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14729 unsigned Opcode = Node->getMachineOpcode(); 14730 14731 if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() && 14732 !TII->isGather4(Opcode) && 14733 AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { 14734 return adjustWritemask(Node, DAG); 14735 } 14736 14737 if (Opcode == AMDGPU::INSERT_SUBREG || 14738 Opcode == AMDGPU::REG_SEQUENCE) { 14739 legalizeTargetIndependentNode(Node, DAG); 14740 return Node; 14741 } 14742 14743 switch (Opcode) { 14744 case AMDGPU::V_DIV_SCALE_F32_e64: 14745 case AMDGPU::V_DIV_SCALE_F64_e64: { 14746 // Satisfy the operand register constraint when one of the inputs is 14747 // undefined. Ordinarily each undef value will have its own implicit_def of 14748 // a vreg, so force these to use a single register. 14749 SDValue Src0 = Node->getOperand(1); 14750 SDValue Src1 = Node->getOperand(3); 14751 SDValue Src2 = Node->getOperand(5); 14752 14753 if ((Src0.isMachineOpcode() && 14754 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 14755 (Src0 == Src1 || Src0 == Src2)) 14756 break; 14757 14758 MVT VT = Src0.getValueType().getSimpleVT(); 14759 const TargetRegisterClass *RC = 14760 getRegClassFor(VT, Src0.getNode()->isDivergent()); 14761 14762 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 14763 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 14764 14765 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 14766 UndefReg, Src0, SDValue()); 14767 14768 // src0 must be the same register as src1 or src2, even if the value is 14769 // undefined, so make sure we don't violate this constraint. 14770 if (Src0.isMachineOpcode() && 14771 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 14772 if (Src1.isMachineOpcode() && 14773 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 14774 Src0 = Src1; 14775 else if (Src2.isMachineOpcode() && 14776 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 14777 Src0 = Src2; 14778 else { 14779 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 14780 Src0 = UndefReg; 14781 Src1 = UndefReg; 14782 } 14783 } else 14784 break; 14785 14786 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 14787 Ops[1] = Src0; 14788 Ops[3] = Src1; 14789 Ops[5] = Src2; 14790 Ops.push_back(ImpDef.getValue(1)); 14791 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 14792 } 14793 default: 14794 break; 14795 } 14796 14797 return Node; 14798 } 14799 14800 // Any MIMG instructions that use tfe or lwe require an initialization of the 14801 // result register that will be written in the case of a memory access failure. 14802 // The required code is also added to tie this init code to the result of the 14803 // img instruction. 14804 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 14805 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14806 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 14807 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 14808 MachineBasicBlock &MBB = *MI.getParent(); 14809 14810 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 14811 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 14812 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 14813 14814 if (!TFE && !LWE) // intersect_ray 14815 return; 14816 14817 unsigned TFEVal = TFE ? TFE->getImm() : 0; 14818 unsigned LWEVal = LWE ? LWE->getImm() : 0; 14819 unsigned D16Val = D16 ? D16->getImm() : 0; 14820 14821 if (!TFEVal && !LWEVal) 14822 return; 14823 14824 // At least one of TFE or LWE are non-zero 14825 // We have to insert a suitable initialization of the result value and 14826 // tie this to the dest of the image instruction. 14827 14828 const DebugLoc &DL = MI.getDebugLoc(); 14829 14830 int DstIdx = 14831 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 14832 14833 // Calculate which dword we have to initialize to 0. 14834 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 14835 14836 // check that dmask operand is found. 14837 assert(MO_Dmask && "Expected dmask operand in instruction"); 14838 14839 unsigned dmask = MO_Dmask->getImm(); 14840 // Determine the number of active lanes taking into account the 14841 // Gather4 special case 14842 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); 14843 14844 bool Packed = !Subtarget->hasUnpackedD16VMem(); 14845 14846 unsigned InitIdx = 14847 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 14848 14849 // Abandon attempt if the dst size isn't large enough 14850 // - this is in fact an error but this is picked up elsewhere and 14851 // reported correctly. 14852 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 14853 if (DstSize < InitIdx) 14854 return; 14855 14856 // Create a register for the initialization value. 14857 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 14858 unsigned NewDst = 0; // Final initialized value will be in here 14859 14860 // If PRTStrictNull feature is enabled (the default) then initialize 14861 // all the result registers to 0, otherwise just the error indication 14862 // register (VGPRn+1) 14863 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 14864 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 14865 14866 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 14867 for (; SizeLeft; SizeLeft--, CurrIdx++) { 14868 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 14869 // Initialize dword 14870 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 14871 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 14872 .addImm(0); 14873 // Insert into the super-reg 14874 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 14875 .addReg(PrevDst) 14876 .addReg(SubReg) 14877 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 14878 14879 PrevDst = NewDst; 14880 } 14881 14882 // Add as an implicit operand 14883 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 14884 14885 // Tie the just added implicit operand to the dst 14886 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 14887 } 14888 14889 /// Assign the register class depending on the number of 14890 /// bits set in the writemask 14891 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 14892 SDNode *Node) const { 14893 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14894 14895 MachineFunction *MF = MI.getParent()->getParent(); 14896 MachineRegisterInfo &MRI = MF->getRegInfo(); 14897 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 14898 14899 if (TII->isVOP3(MI.getOpcode())) { 14900 // Make sure constant bus requirements are respected. 14901 TII->legalizeOperandsVOP3(MRI, MI); 14902 14903 // Prefer VGPRs over AGPRs in mAI instructions where possible. 14904 // This saves a chain-copy of registers and better balance register 14905 // use between vgpr and agpr as agpr tuples tend to be big. 14906 if (!MI.getDesc().operands().empty()) { 14907 unsigned Opc = MI.getOpcode(); 14908 bool HasAGPRs = Info->mayNeedAGPRs(); 14909 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 14910 int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 14911 for (auto I : 14912 {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 14913 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) { 14914 if (I == -1) 14915 break; 14916 if ((I == Src2Idx) && (HasAGPRs)) 14917 break; 14918 MachineOperand &Op = MI.getOperand(I); 14919 if (!Op.isReg() || !Op.getReg().isVirtual()) 14920 continue; 14921 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 14922 if (!TRI->hasAGPRs(RC)) 14923 continue; 14924 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 14925 if (!Src || !Src->isCopy() || 14926 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 14927 continue; 14928 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 14929 // All uses of agpr64 and agpr32 can also accept vgpr except for 14930 // v_accvgpr_read, but we do not produce agpr reads during selection, 14931 // so no use checks are needed. 14932 MRI.setRegClass(Op.getReg(), NewRC); 14933 } 14934 14935 if (!HasAGPRs) 14936 return; 14937 14938 // Resolve the rest of AV operands to AGPRs. 14939 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { 14940 if (Src2->isReg() && Src2->getReg().isVirtual()) { 14941 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); 14942 if (TRI->isVectorSuperClass(RC)) { 14943 auto *NewRC = TRI->getEquivalentAGPRClass(RC); 14944 MRI.setRegClass(Src2->getReg(), NewRC); 14945 if (Src2->isTied()) 14946 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); 14947 } 14948 } 14949 } 14950 } 14951 14952 return; 14953 } 14954 14955 if (TII->isImage(MI)) { 14956 if (!MI.mayStore()) 14957 AddIMGInit(MI); 14958 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); 14959 } 14960 } 14961 14962 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 14963 uint64_t Val) { 14964 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 14965 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 14966 } 14967 14968 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 14969 const SDLoc &DL, 14970 SDValue Ptr) const { 14971 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14972 14973 // Build the half of the subregister with the constants before building the 14974 // full 128-bit register. If we are building multiple resource descriptors, 14975 // this will allow CSEing of the 2-component register. 14976 const SDValue Ops0[] = { 14977 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 14978 buildSMovImm32(DAG, DL, 0), 14979 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 14980 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 14981 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 14982 }; 14983 14984 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 14985 MVT::v2i32, Ops0), 0); 14986 14987 // Combine the constants and the pointer. 14988 const SDValue Ops1[] = { 14989 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 14990 Ptr, 14991 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 14992 SubRegHi, 14993 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 14994 }; 14995 14996 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 14997 } 14998 14999 /// Return a resource descriptor with the 'Add TID' bit enabled 15000 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 15001 /// of the resource descriptor) to create an offset, which is added to 15002 /// the resource pointer. 15003 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 15004 SDValue Ptr, uint32_t RsrcDword1, 15005 uint64_t RsrcDword2And3) const { 15006 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 15007 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 15008 if (RsrcDword1) { 15009 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 15010 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 15011 0); 15012 } 15013 15014 SDValue DataLo = buildSMovImm32(DAG, DL, 15015 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 15016 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 15017 15018 const SDValue Ops[] = { 15019 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 15020 PtrLo, 15021 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 15022 PtrHi, 15023 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 15024 DataLo, 15025 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 15026 DataHi, 15027 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 15028 }; 15029 15030 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 15031 } 15032 15033 //===----------------------------------------------------------------------===// 15034 // SI Inline Assembly Support 15035 //===----------------------------------------------------------------------===// 15036 15037 std::pair<unsigned, const TargetRegisterClass *> 15038 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 15039 StringRef Constraint, 15040 MVT VT) const { 15041 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 15042 15043 const TargetRegisterClass *RC = nullptr; 15044 if (Constraint.size() == 1) { 15045 const unsigned BitWidth = VT.getSizeInBits(); 15046 switch (Constraint[0]) { 15047 default: 15048 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15049 case 's': 15050 case 'r': 15051 switch (BitWidth) { 15052 case 16: 15053 RC = &AMDGPU::SReg_32RegClass; 15054 break; 15055 case 64: 15056 RC = &AMDGPU::SGPR_64RegClass; 15057 break; 15058 default: 15059 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 15060 if (!RC) 15061 return std::pair(0U, nullptr); 15062 break; 15063 } 15064 break; 15065 case 'v': 15066 switch (BitWidth) { 15067 case 16: 15068 RC = &AMDGPU::VGPR_32RegClass; 15069 break; 15070 default: 15071 RC = TRI->getVGPRClassForBitWidth(BitWidth); 15072 if (!RC) 15073 return std::pair(0U, nullptr); 15074 break; 15075 } 15076 break; 15077 case 'a': 15078 if (!Subtarget->hasMAIInsts()) 15079 break; 15080 switch (BitWidth) { 15081 case 16: 15082 RC = &AMDGPU::AGPR_32RegClass; 15083 break; 15084 default: 15085 RC = TRI->getAGPRClassForBitWidth(BitWidth); 15086 if (!RC) 15087 return std::pair(0U, nullptr); 15088 break; 15089 } 15090 break; 15091 } 15092 // We actually support i128, i16 and f16 as inline parameters 15093 // even if they are not reported as legal 15094 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 15095 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 15096 return std::pair(0U, RC); 15097 } 15098 15099 if (Constraint.starts_with("{") && Constraint.ends_with("}")) { 15100 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 15101 if (RegName.consume_front("v")) { 15102 RC = &AMDGPU::VGPR_32RegClass; 15103 } else if (RegName.consume_front("s")) { 15104 RC = &AMDGPU::SGPR_32RegClass; 15105 } else if (RegName.consume_front("a")) { 15106 RC = &AMDGPU::AGPR_32RegClass; 15107 } 15108 15109 if (RC) { 15110 uint32_t Idx; 15111 if (RegName.consume_front("[")) { 15112 uint32_t End; 15113 bool Failed = RegName.consumeInteger(10, Idx); 15114 Failed |= !RegName.consume_front(":"); 15115 Failed |= RegName.consumeInteger(10, End); 15116 Failed |= !RegName.consume_back("]"); 15117 if (!Failed) { 15118 uint32_t Width = (End - Idx + 1) * 32; 15119 MCRegister Reg = RC->getRegister(Idx); 15120 if (SIRegisterInfo::isVGPRClass(RC)) 15121 RC = TRI->getVGPRClassForBitWidth(Width); 15122 else if (SIRegisterInfo::isSGPRClass(RC)) 15123 RC = TRI->getSGPRClassForBitWidth(Width); 15124 else if (SIRegisterInfo::isAGPRClass(RC)) 15125 RC = TRI->getAGPRClassForBitWidth(Width); 15126 if (RC) { 15127 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 15128 return std::pair(Reg, RC); 15129 } 15130 } 15131 } else { 15132 bool Failed = RegName.getAsInteger(10, Idx); 15133 if (!Failed && Idx < RC->getNumRegs()) 15134 return std::pair(RC->getRegister(Idx), RC); 15135 } 15136 } 15137 } 15138 15139 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15140 if (Ret.first) 15141 Ret.second = TRI->getPhysRegBaseClass(Ret.first); 15142 15143 return Ret; 15144 } 15145 15146 static bool isImmConstraint(StringRef Constraint) { 15147 if (Constraint.size() == 1) { 15148 switch (Constraint[0]) { 15149 default: break; 15150 case 'I': 15151 case 'J': 15152 case 'A': 15153 case 'B': 15154 case 'C': 15155 return true; 15156 } 15157 } else if (Constraint == "DA" || 15158 Constraint == "DB") { 15159 return true; 15160 } 15161 return false; 15162 } 15163 15164 SITargetLowering::ConstraintType 15165 SITargetLowering::getConstraintType(StringRef Constraint) const { 15166 if (Constraint.size() == 1) { 15167 switch (Constraint[0]) { 15168 default: break; 15169 case 's': 15170 case 'v': 15171 case 'a': 15172 return C_RegisterClass; 15173 } 15174 } 15175 if (isImmConstraint(Constraint)) { 15176 return C_Other; 15177 } 15178 return TargetLowering::getConstraintType(Constraint); 15179 } 15180 15181 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 15182 if (!AMDGPU::isInlinableIntLiteral(Val)) { 15183 Val = Val & maskTrailingOnes<uint64_t>(Size); 15184 } 15185 return Val; 15186 } 15187 15188 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15189 StringRef Constraint, 15190 std::vector<SDValue> &Ops, 15191 SelectionDAG &DAG) const { 15192 if (isImmConstraint(Constraint)) { 15193 uint64_t Val; 15194 if (getAsmOperandConstVal(Op, Val) && 15195 checkAsmConstraintVal(Op, Constraint, Val)) { 15196 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 15197 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 15198 } 15199 } else { 15200 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15201 } 15202 } 15203 15204 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 15205 unsigned Size = Op.getScalarValueSizeInBits(); 15206 if (Size > 64) 15207 return false; 15208 15209 if (Size == 16 && !Subtarget->has16BitInsts()) 15210 return false; 15211 15212 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 15213 Val = C->getSExtValue(); 15214 return true; 15215 } 15216 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 15217 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 15218 return true; 15219 } 15220 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 15221 if (Size != 16 || Op.getNumOperands() != 2) 15222 return false; 15223 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 15224 return false; 15225 if (ConstantSDNode *C = V->getConstantSplatNode()) { 15226 Val = C->getSExtValue(); 15227 return true; 15228 } 15229 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 15230 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 15231 return true; 15232 } 15233 } 15234 15235 return false; 15236 } 15237 15238 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint, 15239 uint64_t Val) const { 15240 if (Constraint.size() == 1) { 15241 switch (Constraint[0]) { 15242 case 'I': 15243 return AMDGPU::isInlinableIntLiteral(Val); 15244 case 'J': 15245 return isInt<16>(Val); 15246 case 'A': 15247 return checkAsmConstraintValA(Op, Val); 15248 case 'B': 15249 return isInt<32>(Val); 15250 case 'C': 15251 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 15252 AMDGPU::isInlinableIntLiteral(Val); 15253 default: 15254 break; 15255 } 15256 } else if (Constraint.size() == 2) { 15257 if (Constraint == "DA") { 15258 int64_t HiBits = static_cast<int32_t>(Val >> 32); 15259 int64_t LoBits = static_cast<int32_t>(Val); 15260 return checkAsmConstraintValA(Op, HiBits, 32) && 15261 checkAsmConstraintValA(Op, LoBits, 32); 15262 } 15263 if (Constraint == "DB") { 15264 return true; 15265 } 15266 } 15267 llvm_unreachable("Invalid asm constraint"); 15268 } 15269 15270 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 15271 uint64_t Val, 15272 unsigned MaxSize) const { 15273 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 15274 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 15275 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 15276 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 15277 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 15278 return true; 15279 } 15280 return false; 15281 } 15282 15283 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 15284 switch (UnalignedClassID) { 15285 case AMDGPU::VReg_64RegClassID: 15286 return AMDGPU::VReg_64_Align2RegClassID; 15287 case AMDGPU::VReg_96RegClassID: 15288 return AMDGPU::VReg_96_Align2RegClassID; 15289 case AMDGPU::VReg_128RegClassID: 15290 return AMDGPU::VReg_128_Align2RegClassID; 15291 case AMDGPU::VReg_160RegClassID: 15292 return AMDGPU::VReg_160_Align2RegClassID; 15293 case AMDGPU::VReg_192RegClassID: 15294 return AMDGPU::VReg_192_Align2RegClassID; 15295 case AMDGPU::VReg_224RegClassID: 15296 return AMDGPU::VReg_224_Align2RegClassID; 15297 case AMDGPU::VReg_256RegClassID: 15298 return AMDGPU::VReg_256_Align2RegClassID; 15299 case AMDGPU::VReg_288RegClassID: 15300 return AMDGPU::VReg_288_Align2RegClassID; 15301 case AMDGPU::VReg_320RegClassID: 15302 return AMDGPU::VReg_320_Align2RegClassID; 15303 case AMDGPU::VReg_352RegClassID: 15304 return AMDGPU::VReg_352_Align2RegClassID; 15305 case AMDGPU::VReg_384RegClassID: 15306 return AMDGPU::VReg_384_Align2RegClassID; 15307 case AMDGPU::VReg_512RegClassID: 15308 return AMDGPU::VReg_512_Align2RegClassID; 15309 case AMDGPU::VReg_1024RegClassID: 15310 return AMDGPU::VReg_1024_Align2RegClassID; 15311 case AMDGPU::AReg_64RegClassID: 15312 return AMDGPU::AReg_64_Align2RegClassID; 15313 case AMDGPU::AReg_96RegClassID: 15314 return AMDGPU::AReg_96_Align2RegClassID; 15315 case AMDGPU::AReg_128RegClassID: 15316 return AMDGPU::AReg_128_Align2RegClassID; 15317 case AMDGPU::AReg_160RegClassID: 15318 return AMDGPU::AReg_160_Align2RegClassID; 15319 case AMDGPU::AReg_192RegClassID: 15320 return AMDGPU::AReg_192_Align2RegClassID; 15321 case AMDGPU::AReg_256RegClassID: 15322 return AMDGPU::AReg_256_Align2RegClassID; 15323 case AMDGPU::AReg_512RegClassID: 15324 return AMDGPU::AReg_512_Align2RegClassID; 15325 case AMDGPU::AReg_1024RegClassID: 15326 return AMDGPU::AReg_1024_Align2RegClassID; 15327 default: 15328 return -1; 15329 } 15330 } 15331 15332 // Figure out which registers should be reserved for stack access. Only after 15333 // the function is legalized do we know all of the non-spill stack objects or if 15334 // calls are present. 15335 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 15336 MachineRegisterInfo &MRI = MF.getRegInfo(); 15337 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 15338 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 15339 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 15340 const SIInstrInfo *TII = ST.getInstrInfo(); 15341 15342 if (Info->isEntryFunction()) { 15343 // Callable functions have fixed registers used for stack access. 15344 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 15345 } 15346 15347 // TODO: Move this logic to getReservedRegs() 15348 // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling. 15349 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF); 15350 Register SReg = ST.isWave32() 15351 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1) 15352 : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2, 15353 &AMDGPU::SGPR_64RegClass); 15354 Info->setSGPRForEXECCopy(SReg); 15355 15356 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 15357 Info->getStackPtrOffsetReg())); 15358 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 15359 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 15360 15361 // We need to worry about replacing the default register with itself in case 15362 // of MIR testcases missing the MFI. 15363 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 15364 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 15365 15366 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 15367 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 15368 15369 Info->limitOccupancy(MF); 15370 15371 if (ST.isWave32() && !MF.empty()) { 15372 for (auto &MBB : MF) { 15373 for (auto &MI : MBB) { 15374 TII->fixImplicitOperands(MI); 15375 } 15376 } 15377 } 15378 15379 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 15380 // classes if required. Ideally the register class constraints would differ 15381 // per-subtarget, but there's no easy way to achieve that right now. This is 15382 // not a problem for VGPRs because the correctly aligned VGPR class is implied 15383 // from using them as the register class for legal types. 15384 if (ST.needsAlignedVGPRs()) { 15385 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 15386 const Register Reg = Register::index2VirtReg(I); 15387 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 15388 if (!RC) 15389 continue; 15390 int NewClassID = getAlignedAGPRClassID(RC->getID()); 15391 if (NewClassID != -1) 15392 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 15393 } 15394 } 15395 15396 TargetLoweringBase::finalizeLowering(MF); 15397 } 15398 15399 void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15400 KnownBits &Known, 15401 const APInt &DemandedElts, 15402 const SelectionDAG &DAG, 15403 unsigned Depth) const { 15404 Known.resetAll(); 15405 unsigned Opc = Op.getOpcode(); 15406 switch (Opc) { 15407 case ISD::INTRINSIC_WO_CHAIN: { 15408 unsigned IID = Op.getConstantOperandVal(0); 15409 switch (IID) { 15410 case Intrinsic::amdgcn_mbcnt_lo: 15411 case Intrinsic::amdgcn_mbcnt_hi: { 15412 const GCNSubtarget &ST = 15413 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 15414 // These return at most the (wavefront size - 1) + src1 15415 // As long as src1 is an immediate we can calc known bits 15416 KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); 15417 unsigned Src1ValBits = Src1Known.countMaxActiveBits(); 15418 unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2()); 15419 // Cater for potential carry 15420 MaxActiveBits += Src1ValBits ? 1 : 0; 15421 unsigned Size = Op.getValueType().getSizeInBits(); 15422 if (MaxActiveBits < Size) 15423 Known.Zero.setHighBits(Size - MaxActiveBits); 15424 return; 15425 } 15426 } 15427 break; 15428 } 15429 } 15430 return AMDGPUTargetLowering::computeKnownBitsForTargetNode( 15431 Op, Known, DemandedElts, DAG, Depth); 15432 } 15433 15434 void SITargetLowering::computeKnownBitsForFrameIndex( 15435 const int FI, KnownBits &Known, const MachineFunction &MF) const { 15436 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 15437 15438 // Set the high bits to zero based on the maximum allowed scratch size per 15439 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 15440 // calculation won't overflow, so assume the sign bit is never set. 15441 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 15442 } 15443 15444 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 15445 KnownBits &Known, unsigned Dim) { 15446 unsigned MaxValue = 15447 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 15448 Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); 15449 } 15450 15451 void SITargetLowering::computeKnownBitsForTargetInstr( 15452 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 15453 const MachineRegisterInfo &MRI, unsigned Depth) const { 15454 const MachineInstr *MI = MRI.getVRegDef(R); 15455 switch (MI->getOpcode()) { 15456 case AMDGPU::G_INTRINSIC: 15457 case AMDGPU::G_INTRINSIC_CONVERGENT: { 15458 switch (cast<GIntrinsic>(MI)->getIntrinsicID()) { 15459 case Intrinsic::amdgcn_workitem_id_x: 15460 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 15461 break; 15462 case Intrinsic::amdgcn_workitem_id_y: 15463 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 15464 break; 15465 case Intrinsic::amdgcn_workitem_id_z: 15466 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 15467 break; 15468 case Intrinsic::amdgcn_mbcnt_lo: 15469 case Intrinsic::amdgcn_mbcnt_hi: { 15470 // These return at most the wavefront size - 1. 15471 unsigned Size = MRI.getType(R).getSizeInBits(); 15472 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 15473 break; 15474 } 15475 case Intrinsic::amdgcn_groupstaticsize: { 15476 // We can report everything over the maximum size as 0. We can't report 15477 // based on the actual size because we don't know if it's accurate or not 15478 // at any given point. 15479 Known.Zero.setHighBits( 15480 llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize())); 15481 break; 15482 } 15483 } 15484 break; 15485 } 15486 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 15487 Known.Zero.setHighBits(24); 15488 break; 15489 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 15490 Known.Zero.setHighBits(16); 15491 break; 15492 case AMDGPU::G_AMDGPU_SMED3: 15493 case AMDGPU::G_AMDGPU_UMED3: { 15494 auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); 15495 15496 KnownBits Known2; 15497 KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1); 15498 if (Known2.isUnknown()) 15499 break; 15500 15501 KnownBits Known1; 15502 KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1); 15503 if (Known1.isUnknown()) 15504 break; 15505 15506 KnownBits Known0; 15507 KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1); 15508 if (Known0.isUnknown()) 15509 break; 15510 15511 // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. 15512 Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; 15513 Known.One = Known0.One & Known1.One & Known2.One; 15514 break; 15515 } 15516 } 15517 } 15518 15519 Align SITargetLowering::computeKnownAlignForTargetInstr( 15520 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 15521 unsigned Depth) const { 15522 const MachineInstr *MI = MRI.getVRegDef(R); 15523 if (auto *GI = dyn_cast<GIntrinsic>(MI)) { 15524 // FIXME: Can this move to generic code? What about the case where the call 15525 // site specifies a lower alignment? 15526 Intrinsic::ID IID = GI->getIntrinsicID(); 15527 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 15528 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 15529 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 15530 return *RetAlign; 15531 } 15532 return Align(1); 15533 } 15534 15535 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15536 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 15537 const Align CacheLineAlign = Align(64); 15538 15539 // Pre-GFX10 target did not benefit from loop alignment 15540 if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || 15541 getSubtarget()->hasInstFwdPrefetchBug()) 15542 return PrefAlign; 15543 15544 // On GFX10 I$ is 4 x 64 bytes cache lines. 15545 // By default prefetcher keeps one cache line behind and reads two ahead. 15546 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 15547 // behind and one ahead. 15548 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 15549 // If loop fits 64 bytes it always spans no more than two cache lines and 15550 // does not need an alignment. 15551 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 15552 // Else if loop is less or equal 192 bytes we need two lines behind. 15553 15554 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 15555 const MachineBasicBlock *Header = ML->getHeader(); 15556 if (Header->getAlignment() != PrefAlign) 15557 return Header->getAlignment(); // Already processed. 15558 15559 unsigned LoopSize = 0; 15560 for (const MachineBasicBlock *MBB : ML->blocks()) { 15561 // If inner loop block is aligned assume in average half of the alignment 15562 // size to be added as nops. 15563 if (MBB != Header) 15564 LoopSize += MBB->getAlignment().value() / 2; 15565 15566 for (const MachineInstr &MI : *MBB) { 15567 LoopSize += TII->getInstSizeInBytes(MI); 15568 if (LoopSize > 192) 15569 return PrefAlign; 15570 } 15571 } 15572 15573 if (LoopSize <= 64) 15574 return PrefAlign; 15575 15576 if (LoopSize <= 128) 15577 return CacheLineAlign; 15578 15579 // If any of parent loops is surrounded by prefetch instructions do not 15580 // insert new for inner loop, which would reset parent's settings. 15581 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 15582 if (MachineBasicBlock *Exit = P->getExitBlock()) { 15583 auto I = Exit->getFirstNonDebugInstr(); 15584 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 15585 return CacheLineAlign; 15586 } 15587 } 15588 15589 MachineBasicBlock *Pre = ML->getLoopPreheader(); 15590 MachineBasicBlock *Exit = ML->getExitBlock(); 15591 15592 if (Pre && Exit) { 15593 auto PreTerm = Pre->getFirstTerminator(); 15594 if (PreTerm == Pre->begin() || 15595 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) 15596 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 15597 .addImm(1); // prefetch 2 lines behind PC 15598 15599 auto ExitHead = Exit->getFirstNonDebugInstr(); 15600 if (ExitHead == Exit->end() || 15601 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) 15602 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 15603 .addImm(2); // prefetch 1 line behind PC 15604 } 15605 15606 return CacheLineAlign; 15607 } 15608 15609 LLVM_ATTRIBUTE_UNUSED 15610 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 15611 assert(N->getOpcode() == ISD::CopyFromReg); 15612 do { 15613 // Follow the chain until we find an INLINEASM node. 15614 N = N->getOperand(0).getNode(); 15615 if (N->getOpcode() == ISD::INLINEASM || 15616 N->getOpcode() == ISD::INLINEASM_BR) 15617 return true; 15618 } while (N->getOpcode() == ISD::CopyFromReg); 15619 return false; 15620 } 15621 15622 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N, 15623 FunctionLoweringInfo *FLI, 15624 UniformityInfo *UA) const { 15625 switch (N->getOpcode()) { 15626 case ISD::CopyFromReg: { 15627 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 15628 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 15629 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 15630 Register Reg = R->getReg(); 15631 15632 // FIXME: Why does this need to consider isLiveIn? 15633 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 15634 return !TRI->isSGPRReg(MRI, Reg); 15635 15636 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 15637 return UA->isDivergent(V); 15638 15639 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 15640 return !TRI->isSGPRReg(MRI, Reg); 15641 } 15642 case ISD::LOAD: { 15643 const LoadSDNode *L = cast<LoadSDNode>(N); 15644 unsigned AS = L->getAddressSpace(); 15645 // A flat load may access private memory. 15646 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 15647 } 15648 case ISD::CALLSEQ_END: 15649 return true; 15650 case ISD::INTRINSIC_WO_CHAIN: 15651 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0)); 15652 case ISD::INTRINSIC_W_CHAIN: 15653 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1)); 15654 case AMDGPUISD::ATOMIC_CMP_SWAP: 15655 case AMDGPUISD::ATOMIC_LOAD_FMIN: 15656 case AMDGPUISD::ATOMIC_LOAD_FMAX: 15657 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 15658 case AMDGPUISD::BUFFER_ATOMIC_ADD: 15659 case AMDGPUISD::BUFFER_ATOMIC_SUB: 15660 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 15661 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 15662 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 15663 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 15664 case AMDGPUISD::BUFFER_ATOMIC_AND: 15665 case AMDGPUISD::BUFFER_ATOMIC_OR: 15666 case AMDGPUISD::BUFFER_ATOMIC_XOR: 15667 case AMDGPUISD::BUFFER_ATOMIC_INC: 15668 case AMDGPUISD::BUFFER_ATOMIC_DEC: 15669 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 15670 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 15671 case AMDGPUISD::BUFFER_ATOMIC_FADD: 15672 case AMDGPUISD::BUFFER_ATOMIC_FADD_BF16: 15673 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 15674 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 15675 // Target-specific read-modify-write atomics are sources of divergence. 15676 return true; 15677 default: 15678 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 15679 // Generic read-modify-write atomics are sources of divergence. 15680 return A->readMem() && A->writeMem(); 15681 } 15682 return false; 15683 } 15684 } 15685 15686 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 15687 EVT VT) const { 15688 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 15689 case MVT::f32: 15690 return !denormalModeIsFlushAllF32(DAG.getMachineFunction()); 15691 case MVT::f64: 15692 case MVT::f16: 15693 return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); 15694 default: 15695 return false; 15696 } 15697 } 15698 15699 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 15700 MachineFunction &MF) const { 15701 switch (Ty.getScalarSizeInBits()) { 15702 case 32: 15703 return !denormalModeIsFlushAllF32(MF); 15704 case 64: 15705 case 16: 15706 return !denormalModeIsFlushAllF64F16(MF); 15707 default: 15708 return false; 15709 } 15710 } 15711 15712 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 15713 const SelectionDAG &DAG, 15714 bool SNaN, 15715 unsigned Depth) const { 15716 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 15717 const MachineFunction &MF = DAG.getMachineFunction(); 15718 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 15719 15720 if (Info->getMode().DX10Clamp) 15721 return true; // Clamped to 0. 15722 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 15723 } 15724 15725 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 15726 SNaN, Depth); 15727 } 15728 15729 // Global FP atomic instructions have a hardcoded FP mode and do not support 15730 // FP32 denormals, and only support v2f16 denormals. 15731 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 15732 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 15733 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 15734 if (&Flt == &APFloat::IEEEsingle()) 15735 return DenormMode == DenormalMode::getPreserveSign(); 15736 return DenormMode == DenormalMode::getIEEE(); 15737 } 15738 15739 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 15740 // floating point atomic instructions. May generate more efficient code, 15741 // but may not respect rounding and denormal modes, and may give incorrect 15742 // results for certain memory destinations. 15743 bool unsafeFPAtomicsDisabled(Function *F) { 15744 return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() != 15745 "true"; 15746 } 15747 15748 TargetLowering::AtomicExpansionKind 15749 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 15750 unsigned AS = RMW->getPointerAddressSpace(); 15751 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 15752 return AtomicExpansionKind::NotAtomic; 15753 15754 auto SSID = RMW->getSyncScopeID(); 15755 15756 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 15757 OptimizationRemarkEmitter ORE(RMW->getFunction()); 15758 LLVMContext &Ctx = RMW->getFunction()->getContext(); 15759 SmallVector<StringRef> SSNs; 15760 Ctx.getSyncScopeNames(SSNs); 15761 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 15762 ? "system" 15763 : SSNs[RMW->getSyncScopeID()]; 15764 ORE.emit([&]() { 15765 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 15766 << "Hardware instruction generated for atomic " 15767 << RMW->getOperationName(RMW->getOperation()) 15768 << " operation at memory scope " << MemScope 15769 << " due to an unsafe request."; 15770 }); 15771 return Kind; 15772 }; 15773 15774 bool HasSystemScope = 15775 SSID == SyncScope::System || 15776 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); 15777 15778 switch (RMW->getOperation()) { 15779 case AtomicRMWInst::FAdd: { 15780 Type *Ty = RMW->getType(); 15781 15782 if (Ty->isHalfTy()) 15783 return AtomicExpansionKind::CmpXChg; 15784 15785 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 15786 return AtomicExpansionKind::CmpXChg; 15787 15788 if (AMDGPU::isFlatGlobalAddrSpace(AS) && 15789 Subtarget->hasAtomicFaddNoRtnInsts()) { 15790 if (Subtarget->hasGFX940Insts()) 15791 return AtomicExpansionKind::None; 15792 15793 if (unsafeFPAtomicsDisabled(RMW->getFunction())) 15794 return AtomicExpansionKind::CmpXChg; 15795 15796 // Always expand system scope fp atomics. 15797 if (HasSystemScope) 15798 return AtomicExpansionKind::CmpXChg; 15799 15800 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) { 15801 // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+. 15802 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) 15803 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15804 // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. 15805 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) 15806 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15807 } 15808 15809 // flat atomic fadd f32: gfx940, gfx11+. 15810 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && 15811 Subtarget->hasFlatAtomicFaddF32Inst()) 15812 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15813 15814 // global and flat atomic fadd f64: gfx90a, gfx940. 15815 if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts()) 15816 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15817 15818 // If it is in flat address space, and the type is float, we will try to 15819 // expand it, if the target supports global and lds atomic fadd. The 15820 // reason we need that is, in the expansion, we emit the check of address 15821 // space. If it is in global address space, we emit the global atomic 15822 // fadd; if it is in shared address space, we emit the LDS atomic fadd. 15823 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && 15824 Subtarget->hasLDSFPAtomicAdd()) { 15825 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) 15826 return AtomicExpansionKind::Expand; 15827 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) 15828 return AtomicExpansionKind::Expand; 15829 } 15830 15831 return AtomicExpansionKind::CmpXChg; 15832 } 15833 15834 // DS FP atomics do respect the denormal mode, but the rounding mode is 15835 // fixed to round-to-nearest-even. 15836 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 15837 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 15838 if (!Ty->isDoubleTy()) 15839 return AtomicExpansionKind::None; 15840 15841 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 15842 return AtomicExpansionKind::None; 15843 15844 return RMW->getFunction() 15845 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 15846 .getValueAsString() == "true" 15847 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 15848 : AtomicExpansionKind::CmpXChg; 15849 } 15850 15851 return AtomicExpansionKind::CmpXChg; 15852 } 15853 case AtomicRMWInst::FMin: 15854 case AtomicRMWInst::FMax: 15855 case AtomicRMWInst::Min: 15856 case AtomicRMWInst::Max: 15857 case AtomicRMWInst::UMin: 15858 case AtomicRMWInst::UMax: { 15859 if (AMDGPU::isFlatGlobalAddrSpace(AS)) { 15860 if (RMW->getType()->isFloatTy() && 15861 unsafeFPAtomicsDisabled(RMW->getFunction())) 15862 return AtomicExpansionKind::CmpXChg; 15863 15864 // Always expand system scope min/max atomics. 15865 if (HasSystemScope) 15866 return AtomicExpansionKind::CmpXChg; 15867 } 15868 break; 15869 } 15870 default: 15871 break; 15872 } 15873 15874 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 15875 } 15876 15877 TargetLowering::AtomicExpansionKind 15878 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 15879 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 15880 ? AtomicExpansionKind::NotAtomic 15881 : AtomicExpansionKind::None; 15882 } 15883 15884 TargetLowering::AtomicExpansionKind 15885 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 15886 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 15887 ? AtomicExpansionKind::NotAtomic 15888 : AtomicExpansionKind::None; 15889 } 15890 15891 TargetLowering::AtomicExpansionKind 15892 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { 15893 return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 15894 ? AtomicExpansionKind::NotAtomic 15895 : AtomicExpansionKind::None; 15896 } 15897 15898 const TargetRegisterClass * 15899 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 15900 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 15901 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 15902 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 15903 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 15904 : &AMDGPU::SReg_32RegClass; 15905 if (!TRI->isSGPRClass(RC) && !isDivergent) 15906 return TRI->getEquivalentSGPRClass(RC); 15907 else if (TRI->isSGPRClass(RC) && isDivergent) 15908 return TRI->getEquivalentVGPRClass(RC); 15909 15910 return RC; 15911 } 15912 15913 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 15914 // uniform values (as produced by the mask results of control flow intrinsics) 15915 // used outside of divergent blocks. The phi users need to also be treated as 15916 // always uniform. 15917 // 15918 // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis? 15919 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 15920 unsigned WaveSize) { 15921 // FIXME: We assume we never cast the mask results of a control flow 15922 // intrinsic. 15923 // Early exit if the type won't be consistent as a compile time hack. 15924 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 15925 if (!IT || IT->getBitWidth() != WaveSize) 15926 return false; 15927 15928 if (!isa<Instruction>(V)) 15929 return false; 15930 if (!Visited.insert(V).second) 15931 return false; 15932 bool Result = false; 15933 for (const auto *U : V->users()) { 15934 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 15935 if (V == U->getOperand(1)) { 15936 switch (Intrinsic->getIntrinsicID()) { 15937 default: 15938 Result = false; 15939 break; 15940 case Intrinsic::amdgcn_if_break: 15941 case Intrinsic::amdgcn_if: 15942 case Intrinsic::amdgcn_else: 15943 Result = true; 15944 break; 15945 } 15946 } 15947 if (V == U->getOperand(0)) { 15948 switch (Intrinsic->getIntrinsicID()) { 15949 default: 15950 Result = false; 15951 break; 15952 case Intrinsic::amdgcn_end_cf: 15953 case Intrinsic::amdgcn_loop: 15954 Result = true; 15955 break; 15956 } 15957 } 15958 } else { 15959 Result = hasCFUser(U, Visited, WaveSize); 15960 } 15961 if (Result) 15962 break; 15963 } 15964 return Result; 15965 } 15966 15967 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 15968 const Value *V) const { 15969 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 15970 if (CI->isInlineAsm()) { 15971 // FIXME: This cannot give a correct answer. This should only trigger in 15972 // the case where inline asm returns mixed SGPR and VGPR results, used 15973 // outside the defining block. We don't have a specific result to 15974 // consider, so this assumes if any value is SGPR, the overall register 15975 // also needs to be SGPR. 15976 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 15977 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 15978 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 15979 for (auto &TC : TargetConstraints) { 15980 if (TC.Type == InlineAsm::isOutput) { 15981 ComputeConstraintToUse(TC, SDValue()); 15982 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 15983 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 15984 if (RC && SIRI->isSGPRClass(RC)) 15985 return true; 15986 } 15987 } 15988 } 15989 } 15990 SmallPtrSet<const Value *, 16> Visited; 15991 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 15992 } 15993 15994 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { 15995 SDNode::use_iterator I = N->use_begin(), E = N->use_end(); 15996 for (; I != E; ++I) { 15997 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { 15998 if (getBasePtrIndex(M) == I.getOperandNo()) 15999 return true; 16000 } 16001 } 16002 return false; 16003 } 16004 16005 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, 16006 SDValue N1) const { 16007 if (!N0.hasOneUse()) 16008 return false; 16009 // Take care of the opportunity to keep N0 uniform 16010 if (N0->isDivergent() || !N1->isDivergent()) 16011 return true; 16012 // Check if we have a good chance to form the memory access pattern with the 16013 // base and offset 16014 return (DAG.isBaseWithConstantOffset(N0) && 16015 hasMemSDNodeUser(*N0->use_begin())); 16016 } 16017 16018 bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, 16019 Register N0, Register N1) const { 16020 return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks 16021 } 16022 16023 MachineMemOperand::Flags 16024 SITargetLowering::getTargetMMOFlags(const Instruction &I) const { 16025 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. 16026 if (I.getMetadata("amdgpu.noclobber")) 16027 return MONoClobber; 16028 return MachineMemOperand::MONone; 16029 } 16030 16031 bool SITargetLowering::checkForPhysRegDependency( 16032 SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, 16033 const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { 16034 if (User->getOpcode() != ISD::CopyToReg) 16035 return false; 16036 if (!Def->isMachineOpcode()) 16037 return false; 16038 MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def); 16039 if (!MDef) 16040 return false; 16041 16042 unsigned ResNo = User->getOperand(Op).getResNo(); 16043 if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) 16044 return false; 16045 const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); 16046 if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { 16047 PhysReg = AMDGPU::SCC; 16048 const TargetRegisterClass *RC = 16049 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); 16050 Cost = RC->getCopyCost(); 16051 return true; 16052 } 16053 return false; 16054 } 16055 16056 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { 16057 assert(Subtarget->hasAtomicFaddInsts() && 16058 "target should have atomic fadd instructions"); 16059 assert(AI->getType()->isFloatTy() && 16060 AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && 16061 "generic atomicrmw expansion only supports FP32 operand in flat " 16062 "address space"); 16063 assert(AI->getOperation() == AtomicRMWInst::FAdd && 16064 "only fadd is supported for now"); 16065 16066 // Given: atomicrmw fadd ptr %addr, float %val ordering 16067 // 16068 // With this expansion we produce the following code: 16069 // [...] 16070 // br label %atomicrmw.check.shared 16071 // 16072 // atomicrmw.check.shared: 16073 // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr) 16074 // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private 16075 // 16076 // atomicrmw.shared: 16077 // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3) 16078 // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared, 16079 // float %val ordering 16080 // br label %atomicrmw.phi 16081 // 16082 // atomicrmw.check.private: 16083 // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr) 16084 // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global 16085 // 16086 // atomicrmw.private: 16087 // %cast.private = addrspacecast ptr %addr to ptr addrspace(5) 16088 // %loaded.private = load float, ptr addrspace(5) %cast.private 16089 // %val.new = fadd float %loaded.private, %val 16090 // store float %val.new, ptr addrspace(5) %cast.private 16091 // br label %atomicrmw.phi 16092 // 16093 // atomicrmw.global: 16094 // %cast.global = addrspacecast ptr %addr to ptr addrspace(1) 16095 // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global, 16096 // float %val ordering 16097 // br label %atomicrmw.phi 16098 // 16099 // atomicrmw.phi: 16100 // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], 16101 // [ %loaded.private, %atomicrmw.private ], 16102 // [ %loaded.global, %atomicrmw.global ] 16103 // br label %atomicrmw.end 16104 // 16105 // atomicrmw.end: 16106 // [...] 16107 16108 IRBuilder<> Builder(AI); 16109 LLVMContext &Ctx = Builder.getContext(); 16110 16111 BasicBlock *BB = Builder.GetInsertBlock(); 16112 Function *F = BB->getParent(); 16113 BasicBlock *ExitBB = 16114 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 16115 BasicBlock *CheckSharedBB = 16116 BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB); 16117 BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); 16118 BasicBlock *CheckPrivateBB = 16119 BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); 16120 BasicBlock *PrivateBB = 16121 BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); 16122 BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); 16123 BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); 16124 16125 Value *Val = AI->getValOperand(); 16126 Type *ValTy = Val->getType(); 16127 Value *Addr = AI->getPointerOperand(); 16128 16129 auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr, 16130 Value *Val) -> Value * { 16131 AtomicRMWInst *OldVal = 16132 Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(), 16133 AI->getOrdering(), AI->getSyncScopeID()); 16134 SmallVector<std::pair<unsigned, MDNode *>> MDs; 16135 AI->getAllMetadata(MDs); 16136 for (auto &P : MDs) 16137 OldVal->setMetadata(P.first, P.second); 16138 return OldVal; 16139 }; 16140 16141 std::prev(BB->end())->eraseFromParent(); 16142 Builder.SetInsertPoint(BB); 16143 Builder.CreateBr(CheckSharedBB); 16144 16145 Builder.SetInsertPoint(CheckSharedBB); 16146 CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, 16147 {Addr}, nullptr, "is.shared"); 16148 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); 16149 16150 Builder.SetInsertPoint(SharedBB); 16151 Value *CastToLocal = Builder.CreateAddrSpaceCast( 16152 Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS)); 16153 Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val); 16154 Builder.CreateBr(PhiBB); 16155 16156 Builder.SetInsertPoint(CheckPrivateBB); 16157 CallInst *IsPrivate = Builder.CreateIntrinsic( 16158 Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private"); 16159 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); 16160 16161 Builder.SetInsertPoint(PrivateBB); 16162 Value *CastToPrivate = Builder.CreateAddrSpaceCast( 16163 Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS)); 16164 Value *LoadedPrivate = 16165 Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private"); 16166 Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new"); 16167 Builder.CreateStore(NewVal, CastToPrivate); 16168 Builder.CreateBr(PhiBB); 16169 16170 Builder.SetInsertPoint(GlobalBB); 16171 Value *CastToGlobal = Builder.CreateAddrSpaceCast( 16172 Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS)); 16173 Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val); 16174 Builder.CreateBr(PhiBB); 16175 16176 Builder.SetInsertPoint(PhiBB); 16177 PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi"); 16178 Loaded->addIncoming(LoadedShared, SharedBB); 16179 Loaded->addIncoming(LoadedPrivate, PrivateBB); 16180 Loaded->addIncoming(LoadedGlobal, GlobalBB); 16181 Builder.CreateBr(ExitBB); 16182 16183 AI->replaceAllUsesWith(Loaded); 16184 AI->eraseFromParent(); 16185 } 16186 16187 LoadInst * 16188 SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { 16189 IRBuilder<> Builder(AI); 16190 auto Order = AI->getOrdering(); 16191 16192 // The optimization removes store aspect of the atomicrmw. Therefore, cache 16193 // must be flushed if the atomic ordering had a release semantics. This is 16194 // not necessary a fence, a release fence just coincides to do that flush. 16195 // Avoid replacing of an atomicrmw with a release semantics. 16196 if (isReleaseOrStronger(Order)) 16197 return nullptr; 16198 16199 LoadInst *LI = Builder.CreateAlignedLoad( 16200 AI->getType(), AI->getPointerOperand(), AI->getAlign()); 16201 LI->setAtomic(Order, AI->getSyncScopeID()); 16202 LI->copyMetadata(*AI); 16203 LI->takeName(AI); 16204 AI->replaceAllUsesWith(LI); 16205 AI->eraseFromParent(); 16206 return LI; 16207 } 16208