xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/IntrinsicsAMDGPU.h"
35 #include "llvm/IR/IntrinsicsR600.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "si-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 static cl::opt<bool> DisableLoopAlignment(
46   "amdgpu-disable-loop-alignment",
47   cl::desc("Do not align and prefetch loops"),
48   cl::init(false));
49 
50 static cl::opt<bool> UseDivergentRegisterIndexing(
51   "amdgpu-use-divergent-register-indexing",
52   cl::Hidden,
53   cl::desc("Use indirect register addressing for divergent indexes"),
54   cl::init(false));
55 
56 static bool hasFP32Denormals(const MachineFunction &MF) {
57   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
58   return Info->getMode().allFP32Denormals();
59 }
60 
61 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
62   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
63   return Info->getMode().allFP64FP16Denormals();
64 }
65 
66 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
67   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
68   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
69     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
70       return AMDGPU::SGPR0 + Reg;
71     }
72   }
73   llvm_unreachable("Cannot allocate sgpr");
74 }
75 
76 SITargetLowering::SITargetLowering(const TargetMachine &TM,
77                                    const GCNSubtarget &STI)
78     : AMDGPUTargetLowering(TM, STI),
79       Subtarget(&STI) {
80   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
81   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
82 
83   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
84   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
85 
86   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
87 
88   const SIRegisterInfo *TRI = STI.getRegisterInfo();
89   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
90 
91   addRegisterClass(MVT::f64, V64RegClass);
92   addRegisterClass(MVT::v2f32, V64RegClass);
93 
94   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
95   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
96 
97   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
98   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
99 
100   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
101   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
102 
103   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
104   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
105 
106   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
107   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
108 
109   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
110   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
111 
112   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
113   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
114 
115   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
116   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
117 
118   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
119   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
120 
121   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
122   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
123 
124   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
125   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
126 
127   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
128   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
129 
130   if (Subtarget->has16BitInsts()) {
131     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
132     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
133 
134     // Unless there are also VOP3P operations, not operations are really legal.
135     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
136     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
137     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
138     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
139     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
140     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
141     addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
142     addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
143   }
144 
145   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
146   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
147 
148   computeRegisterProperties(Subtarget->getRegisterInfo());
149 
150   // The boolean content concept here is too inflexible. Compares only ever
151   // really produce a 1-bit result. Any copy/extend from these will turn into a
152   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
153   // it's what most targets use.
154   setBooleanContents(ZeroOrOneBooleanContent);
155   setBooleanVectorContents(ZeroOrOneBooleanContent);
156 
157   // We need to custom lower vector stores from local memory
158   setOperationAction(ISD::LOAD,
159                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
160                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1,
161                       MVT::v32i32},
162                      Custom);
163 
164   setOperationAction(ISD::STORE,
165                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
166                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1,
167                       MVT::v32i32},
168                      Custom);
169 
170   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
171   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
172   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
173   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
174   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
175   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
177   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
178   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
179   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
180   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
181   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
182   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
183   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
184   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
185   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
186 
187   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
188   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
189   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
190   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
191   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
192   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
193   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
194 
195   setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
196 
197   setOperationAction(ISD::SELECT, MVT::i1, Promote);
198   setOperationAction(ISD::SELECT, MVT::i64, Custom);
199   setOperationAction(ISD::SELECT, MVT::f64, Promote);
200   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
201 
202   setOperationAction(ISD::SELECT_CC,
203                      {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
204 
205   setOperationAction(ISD::SETCC, MVT::i1, Promote);
206   setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
207   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
208 
209   setOperationAction(ISD::TRUNCATE,
210                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
211                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32},
212                      Expand);
213   setOperationAction(ISD::FP_ROUND,
214                      {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
215                       MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32},
216                      Expand);
217 
218   setOperationAction(ISD::SIGN_EXTEND_INREG,
219                      {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
220                       MVT::v3i16, MVT::v4i16, MVT::Other},
221                      Custom);
222 
223   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
224   setOperationAction(ISD::BR_CC,
225                      {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
226 
227   setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
228 
229   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal);
230 
231   setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
232                      Expand);
233 
234 #if 0
235   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal);
236 #endif
237 
238   // We only support LOAD/STORE and vector manipulation ops for vectors
239   // with > 4 elements.
240   for (MVT VT :
241        {MVT::v8i32,  MVT::v8f32,  MVT::v16i32, MVT::v16f32, MVT::v2i64,
242         MVT::v2f64,  MVT::v4i16,  MVT::v4f16,  MVT::v3i64,  MVT::v3f64,
243         MVT::v6i32,  MVT::v6f32,  MVT::v4i64,  MVT::v4f64,  MVT::v8i64,
244         MVT::v8f64,  MVT::v8i16,  MVT::v8f16,  MVT::v16i16, MVT::v16f16,
245         MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32}) {
246     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
247       switch (Op) {
248       case ISD::LOAD:
249       case ISD::STORE:
250       case ISD::BUILD_VECTOR:
251       case ISD::BITCAST:
252       case ISD::UNDEF:
253       case ISD::EXTRACT_VECTOR_ELT:
254       case ISD::INSERT_VECTOR_ELT:
255       case ISD::EXTRACT_SUBVECTOR:
256       case ISD::SCALAR_TO_VECTOR:
257         break;
258       case ISD::INSERT_SUBVECTOR:
259       case ISD::CONCAT_VECTORS:
260         setOperationAction(Op, VT, Custom);
261         break;
262       default:
263         setOperationAction(Op, VT, Expand);
264         break;
265       }
266     }
267   }
268 
269   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
270 
271   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
272   // is expanded to avoid having two separate loops in case the index is a VGPR.
273 
274   // Most operations are naturally 32-bit vector operations. We only support
275   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
276   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
277     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
278     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
279 
280     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
281     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
282 
283     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
284     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
285 
286     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
287     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
288   }
289 
290   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
291     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
292     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
293 
294     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
295     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
296 
297     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
298     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
299 
300     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
301     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
302   }
303 
304   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
305     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
306     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
307 
308     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
309     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
310 
311     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
312     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
313 
314     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
315     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
316   }
317 
318   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
319     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
320     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
321 
322     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
323     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
324 
325     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
326     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
327 
328     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
329     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
330   }
331 
332   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
333     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
334     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
335 
336     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
337     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
338 
339     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
340     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
341 
342     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
343     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
344   }
345 
346   setOperationAction(ISD::VECTOR_SHUFFLE,
347                      {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
348                      Expand);
349 
350   setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom);
351 
352   // Avoid stack access for these.
353   // TODO: Generalize to more vector types.
354   setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
355                      {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
356                       MVT::v4i16, MVT::v4f16},
357                      Custom);
358 
359   // Deal with vec3 vector operations when widened to vec4.
360   setOperationAction(ISD::INSERT_SUBVECTOR,
361                      {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
362 
363   // Deal with vec5/6/7 vector operations when widened to vec8.
364   setOperationAction(ISD::INSERT_SUBVECTOR,
365                      {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
366                       MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32},
367                      Custom);
368 
369   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
370   // and output demarshalling
371   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
372 
373   // We can't return success/failure, only the old value,
374   // let LLVM add the comparison
375   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
376                      Expand);
377 
378   if (Subtarget->hasFlatAddressSpace())
379     setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
380 
381   setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
382 
383   // FIXME: This should be narrowed to i32, but that only happens if i64 is
384   // illegal.
385   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
386   setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
387 
388   // On SI this is s_memtime and s_memrealtime on VI.
389   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
390   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
391 
392   if (Subtarget->has16BitInsts()) {
393     setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
394     setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
395   }
396 
397   if (Subtarget->hasMadMacF32Insts())
398     setOperationAction(ISD::FMAD, MVT::f32, Legal);
399 
400   if (!Subtarget->hasBFI())
401     // fcopysign can be done in a single instruction with BFI.
402     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
403 
404   if (!Subtarget->hasBCNT(32))
405     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
406 
407   if (!Subtarget->hasBCNT(64))
408     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
409 
410   if (Subtarget->hasFFBH())
411     setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
412 
413   if (Subtarget->hasFFBL())
414     setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
415 
416   // We only really have 32-bit BFE instructions (and 16-bit on VI).
417   //
418   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
419   // effort to match them now. We want this to be false for i64 cases when the
420   // extraction isn't restricted to the upper or lower half. Ideally we would
421   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
422   // span the midpoint are probably relatively rare, so don't worry about them
423   // for now.
424   if (Subtarget->hasBFE())
425     setHasExtractBitsInsn(true);
426 
427   // Clamp modifier on add/sub
428   if (Subtarget->hasIntClamp())
429     setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
430 
431   if (Subtarget->hasAddNoCarry())
432     setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
433                        Legal);
434 
435   setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
436                      Custom);
437 
438   // These are really only legal for ieee_mode functions. We should be avoiding
439   // them for functions that don't have ieee_mode enabled, so just say they are
440   // legal.
441   setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
442                      {MVT::f32, MVT::f64}, Legal);
443 
444   if (Subtarget->haveRoundOpsF64())
445     setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal);
446   else
447     setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR},
448                        MVT::f64, Custom);
449 
450   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
451 
452   setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
453   setOperationAction(ISD::FDIV, MVT::f64, Custom);
454 
455   if (Subtarget->has16BitInsts()) {
456     setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
457                         ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
458                        MVT::i16, Legal);
459 
460     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
461 
462     setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
463                        MVT::i16, Expand);
464 
465     setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
466                         ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
467                         ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
468                         ISD::CTPOP},
469                        MVT::i16, Promote);
470 
471     setOperationAction(ISD::LOAD, MVT::i16, Custom);
472 
473     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
474 
475     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
476     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
477     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
478     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
479 
480     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
481 
482     // F16 - Constant Actions.
483     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
484 
485     // F16 - Load/Store Actions.
486     setOperationAction(ISD::LOAD, MVT::f16, Promote);
487     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
488     setOperationAction(ISD::STORE, MVT::f16, Promote);
489     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
490 
491     // F16 - VOP1 Actions.
492     setOperationAction(
493         {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
494         MVT::f16, Custom);
495 
496     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
497 
498     setOperationAction(
499         {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP},
500         MVT::f16, Promote);
501 
502     // F16 - VOP2 Actions.
503     setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand);
504 
505     setOperationAction(ISD::FDIV, MVT::f16, Custom);
506 
507     // F16 - VOP3 Actions.
508     setOperationAction(ISD::FMA, MVT::f16, Legal);
509     if (STI.hasMadF16())
510       setOperationAction(ISD::FMAD, MVT::f16, Legal);
511 
512     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
513                    MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
514       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
515         switch (Op) {
516         case ISD::LOAD:
517         case ISD::STORE:
518         case ISD::BUILD_VECTOR:
519         case ISD::BITCAST:
520         case ISD::UNDEF:
521         case ISD::EXTRACT_VECTOR_ELT:
522         case ISD::INSERT_VECTOR_ELT:
523         case ISD::INSERT_SUBVECTOR:
524         case ISD::EXTRACT_SUBVECTOR:
525         case ISD::SCALAR_TO_VECTOR:
526           break;
527         case ISD::CONCAT_VECTORS:
528           setOperationAction(Op, VT, Custom);
529           break;
530         default:
531           setOperationAction(Op, VT, Expand);
532           break;
533         }
534       }
535     }
536 
537     // v_perm_b32 can handle either of these.
538     setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
539     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
540 
541     // XXX - Do these do anything? Vector constants turn into build_vector.
542     setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
543 
544     setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal);
545 
546     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
547     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
548     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
549     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
550 
551     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
552     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
553     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
554     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
555 
556     setOperationAction(ISD::AND, MVT::v2i16, Promote);
557     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
558     setOperationAction(ISD::OR, MVT::v2i16, Promote);
559     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
560     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
561     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
562 
563     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
564     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
565     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
566     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
567 
568     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
569     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
570     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
571     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
572 
573     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
574     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
575     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
576     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
577 
578     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
579     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
580     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
581     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
582 
583     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
584     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
585     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
586     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
587 
588     setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
589     AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
590     setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
591     AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
592 
593     setOperationAction(ISD::STORE, MVT::v16i16, Promote);
594     AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
595     setOperationAction(ISD::STORE, MVT::v16f16, Promote);
596     AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
597 
598     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
599                        MVT::v2i32, Expand);
600     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
601 
602     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
603                        MVT::v4i32, Expand);
604 
605     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
606                        MVT::v8i32, Expand);
607 
608     if (!Subtarget->hasVOP3PInsts())
609       setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom);
610 
611     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
612     // This isn't really legal, but this avoids the legalizer unrolling it (and
613     // allows matching fneg (fabs x) patterns)
614     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
615 
616     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
617     setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
618 
619     setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
620                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom);
621 
622     setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
623                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand);
624 
625     for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
626       setOperationAction(
627           {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
628           Vec16, Custom);
629       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
630     }
631   }
632 
633   if (Subtarget->hasVOP3PInsts()) {
634     setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
635                         ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
636                         ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
637                        MVT::v2i16, Legal);
638 
639     setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
640                         ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
641                        MVT::v2f16, Legal);
642 
643     setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16},
644                        Custom);
645 
646     setOperationAction(ISD::VECTOR_SHUFFLE,
647                        {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
648                         MVT::v16f16, MVT::v16i16},
649                        Custom);
650 
651     for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16})
652       // Split vector operations.
653       setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
654                           ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
655                           ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
656                           ISD::SSUBSAT},
657                          VT, Custom);
658 
659     for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16})
660       // Split vector operations.
661       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
662                          VT, Custom);
663 
664     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
665                        Custom);
666 
667     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
668     setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom);
669 
670     if (Subtarget->hasPackedFP32Ops()) {
671       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
672                          MVT::v2f32, Legal);
673       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
674                          {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
675                          Custom);
676     }
677   }
678 
679   setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
680 
681   if (Subtarget->has16BitInsts()) {
682     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
683     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
684     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
685     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
686   } else {
687     // Legalization hack.
688     setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
689 
690     setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
691   }
692 
693   setOperationAction(ISD::SELECT,
694                      {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
695                       MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16},
696                      Custom);
697 
698   setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
699 
700   if (Subtarget->hasMad64_32())
701     setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
702 
703   setOperationAction(ISD::INTRINSIC_WO_CHAIN,
704                      {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
705                       MVT::v2i16, MVT::v2f16},
706                      Custom);
707 
708   setOperationAction(ISD::INTRINSIC_W_CHAIN,
709                      {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
710                       MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
711                       MVT::i16, MVT::i8},
712                      Custom);
713 
714   setOperationAction(ISD::INTRINSIC_VOID,
715                      {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
716                       MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
717                       MVT::i8},
718                      Custom);
719 
720   setTargetDAGCombine({ISD::ADD,
721                        ISD::ADDCARRY,
722                        ISD::SUB,
723                        ISD::SUBCARRY,
724                        ISD::FADD,
725                        ISD::FSUB,
726                        ISD::FMINNUM,
727                        ISD::FMAXNUM,
728                        ISD::FMINNUM_IEEE,
729                        ISD::FMAXNUM_IEEE,
730                        ISD::FMA,
731                        ISD::SMIN,
732                        ISD::SMAX,
733                        ISD::UMIN,
734                        ISD::UMAX,
735                        ISD::SETCC,
736                        ISD::AND,
737                        ISD::OR,
738                        ISD::XOR,
739                        ISD::SINT_TO_FP,
740                        ISD::UINT_TO_FP,
741                        ISD::FCANONICALIZE,
742                        ISD::SCALAR_TO_VECTOR,
743                        ISD::ZERO_EXTEND,
744                        ISD::SIGN_EXTEND_INREG,
745                        ISD::EXTRACT_VECTOR_ELT,
746                        ISD::INSERT_VECTOR_ELT});
747 
748   // All memory operations. Some folding on the pointer operand is done to help
749   // matching the constant offsets in the addressing modes.
750   setTargetDAGCombine({ISD::LOAD,
751                        ISD::STORE,
752                        ISD::ATOMIC_LOAD,
753                        ISD::ATOMIC_STORE,
754                        ISD::ATOMIC_CMP_SWAP,
755                        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
756                        ISD::ATOMIC_SWAP,
757                        ISD::ATOMIC_LOAD_ADD,
758                        ISD::ATOMIC_LOAD_SUB,
759                        ISD::ATOMIC_LOAD_AND,
760                        ISD::ATOMIC_LOAD_OR,
761                        ISD::ATOMIC_LOAD_XOR,
762                        ISD::ATOMIC_LOAD_NAND,
763                        ISD::ATOMIC_LOAD_MIN,
764                        ISD::ATOMIC_LOAD_MAX,
765                        ISD::ATOMIC_LOAD_UMIN,
766                        ISD::ATOMIC_LOAD_UMAX,
767                        ISD::ATOMIC_LOAD_FADD,
768                        ISD::INTRINSIC_VOID,
769                        ISD::INTRINSIC_W_CHAIN});
770 
771   // FIXME: In other contexts we pretend this is a per-function property.
772   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
773 
774   setSchedulingPreference(Sched::RegPressure);
775 }
776 
777 const GCNSubtarget *SITargetLowering::getSubtarget() const {
778   return Subtarget;
779 }
780 
781 //===----------------------------------------------------------------------===//
782 // TargetLowering queries
783 //===----------------------------------------------------------------------===//
784 
785 // v_mad_mix* support a conversion from f16 to f32.
786 //
787 // There is only one special case when denormals are enabled we don't currently,
788 // where this is OK to use.
789 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
790                                        EVT DestVT, EVT SrcVT) const {
791   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
792           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
793     DestVT.getScalarType() == MVT::f32 &&
794     SrcVT.getScalarType() == MVT::f16 &&
795     // TODO: This probably only requires no input flushing?
796     !hasFP32Denormals(DAG.getMachineFunction());
797 }
798 
799 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
800                                        LLT DestTy, LLT SrcTy) const {
801   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
802           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
803          DestTy.getScalarSizeInBits() == 32 &&
804          SrcTy.getScalarSizeInBits() == 16 &&
805          // TODO: This probably only requires no input flushing?
806          !hasFP32Denormals(*MI.getMF());
807 }
808 
809 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
810   // SI has some legal vector types, but no legal vector operations. Say no
811   // shuffles are legal in order to prefer scalarizing some vector operations.
812   return false;
813 }
814 
815 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
816                                                     CallingConv::ID CC,
817                                                     EVT VT) const {
818   if (CC == CallingConv::AMDGPU_KERNEL)
819     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
820 
821   if (VT.isVector()) {
822     EVT ScalarVT = VT.getScalarType();
823     unsigned Size = ScalarVT.getSizeInBits();
824     if (Size == 16) {
825       if (Subtarget->has16BitInsts())
826         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
827       return VT.isInteger() ? MVT::i32 : MVT::f32;
828     }
829 
830     if (Size < 16)
831       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
832     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
833   }
834 
835   if (VT.getSizeInBits() > 32)
836     return MVT::i32;
837 
838   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
839 }
840 
841 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
842                                                          CallingConv::ID CC,
843                                                          EVT VT) const {
844   if (CC == CallingConv::AMDGPU_KERNEL)
845     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
846 
847   if (VT.isVector()) {
848     unsigned NumElts = VT.getVectorNumElements();
849     EVT ScalarVT = VT.getScalarType();
850     unsigned Size = ScalarVT.getSizeInBits();
851 
852     // FIXME: Should probably promote 8-bit vectors to i16.
853     if (Size == 16 && Subtarget->has16BitInsts())
854       return (NumElts + 1) / 2;
855 
856     if (Size <= 32)
857       return NumElts;
858 
859     if (Size > 32)
860       return NumElts * ((Size + 31) / 32);
861   } else if (VT.getSizeInBits() > 32)
862     return (VT.getSizeInBits() + 31) / 32;
863 
864   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
865 }
866 
867 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
868   LLVMContext &Context, CallingConv::ID CC,
869   EVT VT, EVT &IntermediateVT,
870   unsigned &NumIntermediates, MVT &RegisterVT) const {
871   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
872     unsigned NumElts = VT.getVectorNumElements();
873     EVT ScalarVT = VT.getScalarType();
874     unsigned Size = ScalarVT.getSizeInBits();
875     // FIXME: We should fix the ABI to be the same on targets without 16-bit
876     // support, but unless we can properly handle 3-vectors, it will be still be
877     // inconsistent.
878     if (Size == 16 && Subtarget->has16BitInsts()) {
879       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
880       IntermediateVT = RegisterVT;
881       NumIntermediates = (NumElts + 1) / 2;
882       return NumIntermediates;
883     }
884 
885     if (Size == 32) {
886       RegisterVT = ScalarVT.getSimpleVT();
887       IntermediateVT = RegisterVT;
888       NumIntermediates = NumElts;
889       return NumIntermediates;
890     }
891 
892     if (Size < 16 && Subtarget->has16BitInsts()) {
893       // FIXME: Should probably form v2i16 pieces
894       RegisterVT = MVT::i16;
895       IntermediateVT = ScalarVT;
896       NumIntermediates = NumElts;
897       return NumIntermediates;
898     }
899 
900 
901     if (Size != 16 && Size <= 32) {
902       RegisterVT = MVT::i32;
903       IntermediateVT = ScalarVT;
904       NumIntermediates = NumElts;
905       return NumIntermediates;
906     }
907 
908     if (Size > 32) {
909       RegisterVT = MVT::i32;
910       IntermediateVT = RegisterVT;
911       NumIntermediates = NumElts * ((Size + 31) / 32);
912       return NumIntermediates;
913     }
914   }
915 
916   return TargetLowering::getVectorTypeBreakdownForCallingConv(
917     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
918 }
919 
920 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
921   assert(DMaskLanes != 0);
922 
923   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
924     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
925     return EVT::getVectorVT(Ty->getContext(),
926                             EVT::getEVT(VT->getElementType()),
927                             NumElts);
928   }
929 
930   return EVT::getEVT(Ty);
931 }
932 
933 // Peek through TFE struct returns to only use the data size.
934 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
935   auto *ST = dyn_cast<StructType>(Ty);
936   if (!ST)
937     return memVTFromImageData(Ty, DMaskLanes);
938 
939   // Some intrinsics return an aggregate type - special case to work out the
940   // correct memVT.
941   //
942   // Only limited forms of aggregate type currently expected.
943   if (ST->getNumContainedTypes() != 2 ||
944       !ST->getContainedType(1)->isIntegerTy(32))
945     return EVT();
946   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
947 }
948 
949 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
950                                           const CallInst &CI,
951                                           MachineFunction &MF,
952                                           unsigned IntrID) const {
953   Info.flags = MachineMemOperand::MONone;
954   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
955     Info.flags |= MachineMemOperand::MOInvariant;
956 
957   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
958           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
959     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
960                                                   (Intrinsic::ID)IntrID);
961     if (Attr.hasFnAttr(Attribute::ReadNone))
962       return false;
963 
964     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
965 
966     const GCNTargetMachine &TM =
967         static_cast<const GCNTargetMachine &>(getTargetMachine());
968 
969     if (RsrcIntr->IsImage) {
970       Info.ptrVal = MFI->getImagePSV(TM);
971       Info.align.reset();
972     } else {
973       Info.ptrVal = MFI->getBufferPSV(TM);
974     }
975 
976     Info.flags |= MachineMemOperand::MODereferenceable;
977     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
978       unsigned DMaskLanes = 4;
979 
980       if (RsrcIntr->IsImage) {
981         const AMDGPU::ImageDimIntrinsicInfo *Intr
982           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
983         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
984           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
985 
986         if (!BaseOpcode->Gather4) {
987           // If this isn't a gather, we may have excess loaded elements in the
988           // IR type. Check the dmask for the real number of elements loaded.
989           unsigned DMask
990             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
991           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
992         }
993 
994         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
995       } else
996         Info.memVT = EVT::getEVT(CI.getType());
997 
998       // FIXME: What does alignment mean for an image?
999       Info.opc = ISD::INTRINSIC_W_CHAIN;
1000       Info.flags |= MachineMemOperand::MOLoad;
1001     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1002       Info.opc = ISD::INTRINSIC_VOID;
1003 
1004       Type *DataTy = CI.getArgOperand(0)->getType();
1005       if (RsrcIntr->IsImage) {
1006         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1007         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1008         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1009       } else
1010         Info.memVT = EVT::getEVT(DataTy);
1011 
1012       Info.flags |= MachineMemOperand::MOStore;
1013     } else {
1014       // Atomic
1015       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1016                                             ISD::INTRINSIC_W_CHAIN;
1017       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1018       Info.flags |= MachineMemOperand::MOLoad |
1019                     MachineMemOperand::MOStore |
1020                     MachineMemOperand::MODereferenceable;
1021 
1022       // XXX - Should this be volatile without known ordering?
1023       Info.flags |= MachineMemOperand::MOVolatile;
1024 
1025       switch (IntrID) {
1026       default:
1027         break;
1028       case Intrinsic::amdgcn_raw_buffer_load_lds:
1029       case Intrinsic::amdgcn_struct_buffer_load_lds: {
1030         unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1031         Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1032         return true;
1033       }
1034       }
1035     }
1036     return true;
1037   }
1038 
1039   switch (IntrID) {
1040   case Intrinsic::amdgcn_atomic_inc:
1041   case Intrinsic::amdgcn_atomic_dec:
1042   case Intrinsic::amdgcn_ds_ordered_add:
1043   case Intrinsic::amdgcn_ds_ordered_swap:
1044   case Intrinsic::amdgcn_ds_fadd:
1045   case Intrinsic::amdgcn_ds_fmin:
1046   case Intrinsic::amdgcn_ds_fmax: {
1047     Info.opc = ISD::INTRINSIC_W_CHAIN;
1048     Info.memVT = MVT::getVT(CI.getType());
1049     Info.ptrVal = CI.getOperand(0);
1050     Info.align.reset();
1051     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1052 
1053     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1054     if (!Vol->isZero())
1055       Info.flags |= MachineMemOperand::MOVolatile;
1056 
1057     return true;
1058   }
1059   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1060     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1061 
1062     const GCNTargetMachine &TM =
1063         static_cast<const GCNTargetMachine &>(getTargetMachine());
1064 
1065     Info.opc = ISD::INTRINSIC_W_CHAIN;
1066     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1067     Info.ptrVal = MFI->getBufferPSV(TM);
1068     Info.align.reset();
1069     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1070 
1071     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1072     if (!Vol || !Vol->isZero())
1073       Info.flags |= MachineMemOperand::MOVolatile;
1074 
1075     return true;
1076   }
1077   case Intrinsic::amdgcn_ds_append:
1078   case Intrinsic::amdgcn_ds_consume: {
1079     Info.opc = ISD::INTRINSIC_W_CHAIN;
1080     Info.memVT = MVT::getVT(CI.getType());
1081     Info.ptrVal = CI.getOperand(0);
1082     Info.align.reset();
1083     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1084 
1085     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1086     if (!Vol->isZero())
1087       Info.flags |= MachineMemOperand::MOVolatile;
1088 
1089     return true;
1090   }
1091   case Intrinsic::amdgcn_global_atomic_csub: {
1092     Info.opc = ISD::INTRINSIC_W_CHAIN;
1093     Info.memVT = MVT::getVT(CI.getType());
1094     Info.ptrVal = CI.getOperand(0);
1095     Info.align.reset();
1096     Info.flags |= MachineMemOperand::MOLoad |
1097                   MachineMemOperand::MOStore |
1098                   MachineMemOperand::MOVolatile;
1099     return true;
1100   }
1101   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1102     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1103     Info.opc = ISD::INTRINSIC_W_CHAIN;
1104     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1105 
1106     const GCNTargetMachine &TM =
1107         static_cast<const GCNTargetMachine &>(getTargetMachine());
1108 
1109     Info.ptrVal = MFI->getImagePSV(TM);
1110     Info.align.reset();
1111     Info.flags |= MachineMemOperand::MOLoad |
1112                   MachineMemOperand::MODereferenceable;
1113     return true;
1114   }
1115   case Intrinsic::amdgcn_global_atomic_fadd:
1116   case Intrinsic::amdgcn_global_atomic_fmin:
1117   case Intrinsic::amdgcn_global_atomic_fmax:
1118   case Intrinsic::amdgcn_flat_atomic_fadd:
1119   case Intrinsic::amdgcn_flat_atomic_fmin:
1120   case Intrinsic::amdgcn_flat_atomic_fmax:
1121   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1122   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1123     Info.opc = ISD::INTRINSIC_W_CHAIN;
1124     Info.memVT = MVT::getVT(CI.getType());
1125     Info.ptrVal = CI.getOperand(0);
1126     Info.align.reset();
1127     Info.flags |= MachineMemOperand::MOLoad |
1128                   MachineMemOperand::MOStore |
1129                   MachineMemOperand::MODereferenceable |
1130                   MachineMemOperand::MOVolatile;
1131     return true;
1132   }
1133   case Intrinsic::amdgcn_ds_gws_init:
1134   case Intrinsic::amdgcn_ds_gws_barrier:
1135   case Intrinsic::amdgcn_ds_gws_sema_v:
1136   case Intrinsic::amdgcn_ds_gws_sema_br:
1137   case Intrinsic::amdgcn_ds_gws_sema_p:
1138   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1139     Info.opc = ISD::INTRINSIC_VOID;
1140 
1141     const GCNTargetMachine &TM =
1142         static_cast<const GCNTargetMachine &>(getTargetMachine());
1143 
1144     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1145     Info.ptrVal = MFI->getGWSPSV(TM);
1146 
1147     // This is an abstract access, but we need to specify a type and size.
1148     Info.memVT = MVT::i32;
1149     Info.size = 4;
1150     Info.align = Align(4);
1151 
1152     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1153       Info.flags |= MachineMemOperand::MOLoad;
1154     else
1155       Info.flags |= MachineMemOperand::MOStore;
1156     return true;
1157   }
1158   case Intrinsic::amdgcn_global_load_lds: {
1159     Info.opc = ISD::INTRINSIC_VOID;
1160     unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1161     Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1162     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1163                   MachineMemOperand::MOVolatile;
1164     return true;
1165   }
1166   default:
1167     return false;
1168   }
1169 }
1170 
1171 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1172                                             SmallVectorImpl<Value*> &Ops,
1173                                             Type *&AccessTy) const {
1174   switch (II->getIntrinsicID()) {
1175   case Intrinsic::amdgcn_atomic_inc:
1176   case Intrinsic::amdgcn_atomic_dec:
1177   case Intrinsic::amdgcn_ds_ordered_add:
1178   case Intrinsic::amdgcn_ds_ordered_swap:
1179   case Intrinsic::amdgcn_ds_append:
1180   case Intrinsic::amdgcn_ds_consume:
1181   case Intrinsic::amdgcn_ds_fadd:
1182   case Intrinsic::amdgcn_ds_fmin:
1183   case Intrinsic::amdgcn_ds_fmax:
1184   case Intrinsic::amdgcn_global_atomic_fadd:
1185   case Intrinsic::amdgcn_flat_atomic_fadd:
1186   case Intrinsic::amdgcn_flat_atomic_fmin:
1187   case Intrinsic::amdgcn_flat_atomic_fmax:
1188   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1189   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1190   case Intrinsic::amdgcn_global_atomic_csub: {
1191     Value *Ptr = II->getArgOperand(0);
1192     AccessTy = II->getType();
1193     Ops.push_back(Ptr);
1194     return true;
1195   }
1196   default:
1197     return false;
1198   }
1199 }
1200 
1201 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1202   if (!Subtarget->hasFlatInstOffsets()) {
1203     // Flat instructions do not have offsets, and only have the register
1204     // address.
1205     return AM.BaseOffs == 0 && AM.Scale == 0;
1206   }
1207 
1208   return AM.Scale == 0 &&
1209          (AM.BaseOffs == 0 ||
1210           Subtarget->getInstrInfo()->isLegalFLATOffset(
1211               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1212 }
1213 
1214 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1215   if (Subtarget->hasFlatGlobalInsts())
1216     return AM.Scale == 0 &&
1217            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1218                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1219                                     SIInstrFlags::FlatGlobal));
1220 
1221   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1222       // Assume the we will use FLAT for all global memory accesses
1223       // on VI.
1224       // FIXME: This assumption is currently wrong.  On VI we still use
1225       // MUBUF instructions for the r + i addressing mode.  As currently
1226       // implemented, the MUBUF instructions only work on buffer < 4GB.
1227       // It may be possible to support > 4GB buffers with MUBUF instructions,
1228       // by setting the stride value in the resource descriptor which would
1229       // increase the size limit to (stride * 4GB).  However, this is risky,
1230       // because it has never been validated.
1231     return isLegalFlatAddressingMode(AM);
1232   }
1233 
1234   return isLegalMUBUFAddressingMode(AM);
1235 }
1236 
1237 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1238   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1239   // additionally can do r + r + i with addr64. 32-bit has more addressing
1240   // mode options. Depending on the resource constant, it can also do
1241   // (i64 r0) + (i32 r1) * (i14 i).
1242   //
1243   // Private arrays end up using a scratch buffer most of the time, so also
1244   // assume those use MUBUF instructions. Scratch loads / stores are currently
1245   // implemented as mubuf instructions with offen bit set, so slightly
1246   // different than the normal addr64.
1247   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1248     return false;
1249 
1250   // FIXME: Since we can split immediate into soffset and immediate offset,
1251   // would it make sense to allow any immediate?
1252 
1253   switch (AM.Scale) {
1254   case 0: // r + i or just i, depending on HasBaseReg.
1255     return true;
1256   case 1:
1257     return true; // We have r + r or r + i.
1258   case 2:
1259     if (AM.HasBaseReg) {
1260       // Reject 2 * r + r.
1261       return false;
1262     }
1263 
1264     // Allow 2 * r as r + r
1265     // Or  2 * r + i is allowed as r + r + i.
1266     return true;
1267   default: // Don't allow n * r
1268     return false;
1269   }
1270 }
1271 
1272 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1273                                              const AddrMode &AM, Type *Ty,
1274                                              unsigned AS, Instruction *I) const {
1275   // No global is ever allowed as a base.
1276   if (AM.BaseGV)
1277     return false;
1278 
1279   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1280     return isLegalGlobalAddressingMode(AM);
1281 
1282   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1283       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1284       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1285     // If the offset isn't a multiple of 4, it probably isn't going to be
1286     // correctly aligned.
1287     // FIXME: Can we get the real alignment here?
1288     if (AM.BaseOffs % 4 != 0)
1289       return isLegalMUBUFAddressingMode(AM);
1290 
1291     // There are no SMRD extloads, so if we have to do a small type access we
1292     // will use a MUBUF load.
1293     // FIXME?: We also need to do this if unaligned, but we don't know the
1294     // alignment here.
1295     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1296       return isLegalGlobalAddressingMode(AM);
1297 
1298     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1299       // SMRD instructions have an 8-bit, dword offset on SI.
1300       if (!isUInt<8>(AM.BaseOffs / 4))
1301         return false;
1302     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1303       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1304       // in 8-bits, it can use a smaller encoding.
1305       if (!isUInt<32>(AM.BaseOffs / 4))
1306         return false;
1307     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1308       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1309       if (!isUInt<20>(AM.BaseOffs))
1310         return false;
1311     } else
1312       llvm_unreachable("unhandled generation");
1313 
1314     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1315       return true;
1316 
1317     if (AM.Scale == 1 && AM.HasBaseReg)
1318       return true;
1319 
1320     return false;
1321 
1322   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1323     return isLegalMUBUFAddressingMode(AM);
1324   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1325              AS == AMDGPUAS::REGION_ADDRESS) {
1326     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1327     // field.
1328     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1329     // an 8-bit dword offset but we don't know the alignment here.
1330     if (!isUInt<16>(AM.BaseOffs))
1331       return false;
1332 
1333     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1334       return true;
1335 
1336     if (AM.Scale == 1 && AM.HasBaseReg)
1337       return true;
1338 
1339     return false;
1340   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1341              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1342     // For an unknown address space, this usually means that this is for some
1343     // reason being used for pure arithmetic, and not based on some addressing
1344     // computation. We don't have instructions that compute pointers with any
1345     // addressing modes, so treat them as having no offset like flat
1346     // instructions.
1347     return isLegalFlatAddressingMode(AM);
1348   }
1349 
1350   // Assume a user alias of global for unknown address spaces.
1351   return isLegalGlobalAddressingMode(AM);
1352 }
1353 
1354 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1355                                         const MachineFunction &MF) const {
1356   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1357     return (MemVT.getSizeInBits() <= 4 * 32);
1358   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1359     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1360     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1361   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1362     return (MemVT.getSizeInBits() <= 2 * 32);
1363   }
1364   return true;
1365 }
1366 
1367 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1368     unsigned Size, unsigned AddrSpace, Align Alignment,
1369     MachineMemOperand::Flags Flags, bool *IsFast) const {
1370   if (IsFast)
1371     *IsFast = false;
1372 
1373   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1374       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1375     // Check if alignment requirements for ds_read/write instructions are
1376     // disabled.
1377     if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1378       return false;
1379 
1380     Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
1381     if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1382         Alignment < RequiredAlignment)
1383       return false;
1384 
1385     // Either, the alignment requirements are "enabled", or there is an
1386     // unaligned LDS access related hardware bug though alignment requirements
1387     // are "disabled". In either case, we need to check for proper alignment
1388     // requirements.
1389     //
1390     switch (Size) {
1391     case 64:
1392       // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1393       // address is negative, then the instruction is incorrectly treated as
1394       // out-of-bounds even if base + offsets is in bounds. Split vectorized
1395       // loads here to avoid emitting ds_read2_b32. We may re-combine the
1396       // load later in the SILoadStoreOptimizer.
1397       if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1398         return false;
1399 
1400       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1401       // can do a 4 byte aligned, 8 byte access in a single operation using
1402       // ds_read2/write2_b32 with adjacent offsets.
1403       RequiredAlignment = Align(4);
1404 
1405       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1406         // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1407         // ds_write2_b32 depending on the alignment. In either case with either
1408         // alignment there is no faster way of doing this.
1409         if (IsFast)
1410           *IsFast = true;
1411         return true;
1412       }
1413 
1414       break;
1415     case 96:
1416       if (!Subtarget->hasDS96AndDS128())
1417         return false;
1418 
1419       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1420       // gfx8 and older.
1421 
1422       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1423         // Naturally aligned access is fastest. However, also report it is Fast
1424         // if memory is aligned less than DWORD. A narrow load or store will be
1425         // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1426         // be more of them, so overall we will pay less penalty issuing a single
1427         // instruction.
1428         if (IsFast)
1429           *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4);
1430         return true;
1431       }
1432 
1433       break;
1434     case 128:
1435       if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1436         return false;
1437 
1438       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1439       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1440       // single operation using ds_read2/write2_b64.
1441       RequiredAlignment = Align(8);
1442 
1443       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1444         // Naturally aligned access is fastest. However, also report it is Fast
1445         // if memory is aligned less than DWORD. A narrow load or store will be
1446         // be equally slow as a single ds_read_b128/ds_write_b128, but there
1447         // will be more of them, so overall we will pay less penalty issuing a
1448         // single instruction.
1449         if (IsFast)
1450           *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4);
1451         return true;
1452       }
1453 
1454       break;
1455     default:
1456       if (Size > 32)
1457         return false;
1458 
1459       break;
1460     }
1461 
1462     if (IsFast)
1463       *IsFast = Alignment >= RequiredAlignment;
1464 
1465     return Alignment >= RequiredAlignment ||
1466            Subtarget->hasUnalignedDSAccessEnabled();
1467   }
1468 
1469   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1470     bool AlignedBy4 = Alignment >= Align(4);
1471     if (IsFast)
1472       *IsFast = AlignedBy4;
1473 
1474     return AlignedBy4 ||
1475            Subtarget->enableFlatScratch() ||
1476            Subtarget->hasUnalignedScratchAccess();
1477   }
1478 
1479   // FIXME: We have to be conservative here and assume that flat operations
1480   // will access scratch.  If we had access to the IR function, then we
1481   // could determine if any private memory was used in the function.
1482   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1483       !Subtarget->hasUnalignedScratchAccess()) {
1484     bool AlignedBy4 = Alignment >= Align(4);
1485     if (IsFast)
1486       *IsFast = AlignedBy4;
1487 
1488     return AlignedBy4;
1489   }
1490 
1491   if (Subtarget->hasUnalignedBufferAccessEnabled()) {
1492     // If we have a uniform constant load, it still requires using a slow
1493     // buffer instruction if unaligned.
1494     if (IsFast) {
1495       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1496       // 2-byte alignment is worse than 1 unless doing a 2-byte access.
1497       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1498                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1499         Alignment >= Align(4) : Alignment != Align(2);
1500     }
1501 
1502     return true;
1503   }
1504 
1505   // Smaller than dword value must be aligned.
1506   if (Size < 32)
1507     return false;
1508 
1509   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1510   // byte-address are ignored, thus forcing Dword alignment.
1511   // This applies to private, global, and constant memory.
1512   if (IsFast)
1513     *IsFast = true;
1514 
1515   return Size >= 32 && Alignment >= Align(4);
1516 }
1517 
1518 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1519     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1520     bool *IsFast) const {
1521   bool Allow = allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1522                                                   Alignment, Flags, IsFast);
1523 
1524   if (Allow && IsFast && Subtarget->hasUnalignedDSAccessEnabled() &&
1525       (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1526        AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1527     // Lie it is fast if +unaligned-access-mode is passed so that DS accesses
1528     // get vectorized. We could use ds_read2_b*/ds_write2_b* instructions on a
1529     // misaligned data which is faster than a pair of ds_read_b*/ds_write_b*
1530     // which would be equally misaligned.
1531     // This is only used by the common passes, selection always calls the
1532     // allowsMisalignedMemoryAccessesImpl version.
1533     *IsFast = true;
1534   }
1535 
1536   return Allow;
1537 }
1538 
1539 EVT SITargetLowering::getOptimalMemOpType(
1540     const MemOp &Op, const AttributeList &FuncAttributes) const {
1541   // FIXME: Should account for address space here.
1542 
1543   // The default fallback uses the private pointer size as a guess for a type to
1544   // use. Make sure we switch these to 64-bit accesses.
1545 
1546   if (Op.size() >= 16 &&
1547       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1548     return MVT::v4i32;
1549 
1550   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1551     return MVT::v2i32;
1552 
1553   // Use the default.
1554   return MVT::Other;
1555 }
1556 
1557 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1558   const MemSDNode *MemNode = cast<MemSDNode>(N);
1559   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1560 }
1561 
1562 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1563   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1564          AS == AMDGPUAS::PRIVATE_ADDRESS;
1565 }
1566 
1567 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1568                                            unsigned DestAS) const {
1569   // Flat -> private/local is a simple truncate.
1570   // Flat -> global is no-op
1571   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1572     return true;
1573 
1574   const GCNTargetMachine &TM =
1575       static_cast<const GCNTargetMachine &>(getTargetMachine());
1576   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1577 }
1578 
1579 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1580   const MemSDNode *MemNode = cast<MemSDNode>(N);
1581 
1582   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1583 }
1584 
1585 TargetLoweringBase::LegalizeTypeAction
1586 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1587   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1588       VT.getScalarType().bitsLE(MVT::i16))
1589     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1590   return TargetLoweringBase::getPreferredVectorAction(VT);
1591 }
1592 
1593 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1594                                                          Type *Ty) const {
1595   // FIXME: Could be smarter if called for vector constants.
1596   return true;
1597 }
1598 
1599 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1600                                                unsigned Index) const {
1601   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1602     return false;
1603 
1604   // TODO: Add more cases that are cheap.
1605   return Index == 0;
1606 }
1607 
1608 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1609   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1610     switch (Op) {
1611     case ISD::LOAD:
1612     case ISD::STORE:
1613 
1614     // These operations are done with 32-bit instructions anyway.
1615     case ISD::AND:
1616     case ISD::OR:
1617     case ISD::XOR:
1618     case ISD::SELECT:
1619       // TODO: Extensions?
1620       return true;
1621     default:
1622       return false;
1623     }
1624   }
1625 
1626   // SimplifySetCC uses this function to determine whether or not it should
1627   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1628   if (VT == MVT::i1 && Op == ISD::SETCC)
1629     return false;
1630 
1631   return TargetLowering::isTypeDesirableForOp(Op, VT);
1632 }
1633 
1634 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1635                                                    const SDLoc &SL,
1636                                                    SDValue Chain,
1637                                                    uint64_t Offset) const {
1638   const DataLayout &DL = DAG.getDataLayout();
1639   MachineFunction &MF = DAG.getMachineFunction();
1640   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1641 
1642   const ArgDescriptor *InputPtrReg;
1643   const TargetRegisterClass *RC;
1644   LLT ArgTy;
1645   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1646 
1647   std::tie(InputPtrReg, RC, ArgTy) =
1648       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1649 
1650   // We may not have the kernarg segment argument if we have no kernel
1651   // arguments.
1652   if (!InputPtrReg)
1653     return DAG.getConstant(0, SL, PtrVT);
1654 
1655   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1656   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1657     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1658 
1659   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1660 }
1661 
1662 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1663                                             const SDLoc &SL) const {
1664   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1665                                                FIRST_IMPLICIT);
1666   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1667 }
1668 
1669 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
1670                                          const SDLoc &SL) const {
1671 
1672   Function &F = DAG.getMachineFunction().getFunction();
1673   Optional<uint32_t> KnownSize =
1674       AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
1675   if (KnownSize.has_value())
1676     return DAG.getConstant(KnownSize.value(), SL, MVT::i32);
1677   return SDValue();
1678 }
1679 
1680 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1681                                          const SDLoc &SL, SDValue Val,
1682                                          bool Signed,
1683                                          const ISD::InputArg *Arg) const {
1684   // First, if it is a widened vector, narrow it.
1685   if (VT.isVector() &&
1686       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1687     EVT NarrowedVT =
1688         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1689                          VT.getVectorNumElements());
1690     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1691                       DAG.getConstant(0, SL, MVT::i32));
1692   }
1693 
1694   // Then convert the vector elements or scalar value.
1695   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1696       VT.bitsLT(MemVT)) {
1697     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1698     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1699   }
1700 
1701   if (MemVT.isFloatingPoint())
1702     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1703   else if (Signed)
1704     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1705   else
1706     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1707 
1708   return Val;
1709 }
1710 
1711 SDValue SITargetLowering::lowerKernargMemParameter(
1712     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1713     uint64_t Offset, Align Alignment, bool Signed,
1714     const ISD::InputArg *Arg) const {
1715   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1716 
1717   // Try to avoid using an extload by loading earlier than the argument address,
1718   // and extracting the relevant bits. The load should hopefully be merged with
1719   // the previous argument.
1720   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1721     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1722     int64_t AlignDownOffset = alignDown(Offset, 4);
1723     int64_t OffsetDiff = Offset - AlignDownOffset;
1724 
1725     EVT IntVT = MemVT.changeTypeToInteger();
1726 
1727     // TODO: If we passed in the base kernel offset we could have a better
1728     // alignment than 4, but we don't really need it.
1729     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1730     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1731                                MachineMemOperand::MODereferenceable |
1732                                    MachineMemOperand::MOInvariant);
1733 
1734     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1735     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1736 
1737     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1738     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1739     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1740 
1741 
1742     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1743   }
1744 
1745   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1746   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1747                              MachineMemOperand::MODereferenceable |
1748                                  MachineMemOperand::MOInvariant);
1749 
1750   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1751   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1752 }
1753 
1754 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1755                                               const SDLoc &SL, SDValue Chain,
1756                                               const ISD::InputArg &Arg) const {
1757   MachineFunction &MF = DAG.getMachineFunction();
1758   MachineFrameInfo &MFI = MF.getFrameInfo();
1759 
1760   if (Arg.Flags.isByVal()) {
1761     unsigned Size = Arg.Flags.getByValSize();
1762     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1763     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1764   }
1765 
1766   unsigned ArgOffset = VA.getLocMemOffset();
1767   unsigned ArgSize = VA.getValVT().getStoreSize();
1768 
1769   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1770 
1771   // Create load nodes to retrieve arguments from the stack.
1772   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1773   SDValue ArgValue;
1774 
1775   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1776   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1777   MVT MemVT = VA.getValVT();
1778 
1779   switch (VA.getLocInfo()) {
1780   default:
1781     break;
1782   case CCValAssign::BCvt:
1783     MemVT = VA.getLocVT();
1784     break;
1785   case CCValAssign::SExt:
1786     ExtType = ISD::SEXTLOAD;
1787     break;
1788   case CCValAssign::ZExt:
1789     ExtType = ISD::ZEXTLOAD;
1790     break;
1791   case CCValAssign::AExt:
1792     ExtType = ISD::EXTLOAD;
1793     break;
1794   }
1795 
1796   ArgValue = DAG.getExtLoad(
1797     ExtType, SL, VA.getLocVT(), Chain, FIN,
1798     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1799     MemVT);
1800   return ArgValue;
1801 }
1802 
1803 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1804   const SIMachineFunctionInfo &MFI,
1805   EVT VT,
1806   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1807   const ArgDescriptor *Reg;
1808   const TargetRegisterClass *RC;
1809   LLT Ty;
1810 
1811   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1812   if (!Reg) {
1813     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1814       // It's possible for a kernarg intrinsic call to appear in a kernel with
1815       // no allocated segment, in which case we do not add the user sgpr
1816       // argument, so just return null.
1817       return DAG.getConstant(0, SDLoc(), VT);
1818     }
1819 
1820     // It's undefined behavior if a function marked with the amdgpu-no-*
1821     // attributes uses the corresponding intrinsic.
1822     return DAG.getUNDEF(VT);
1823   }
1824 
1825   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1826 }
1827 
1828 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1829                                CallingConv::ID CallConv,
1830                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1831                                FunctionType *FType,
1832                                SIMachineFunctionInfo *Info) {
1833   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1834     const ISD::InputArg *Arg = &Ins[I];
1835 
1836     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1837            "vector type argument should have been split");
1838 
1839     // First check if it's a PS input addr.
1840     if (CallConv == CallingConv::AMDGPU_PS &&
1841         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1842       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1843 
1844       // Inconveniently only the first part of the split is marked as isSplit,
1845       // so skip to the end. We only want to increment PSInputNum once for the
1846       // entire split argument.
1847       if (Arg->Flags.isSplit()) {
1848         while (!Arg->Flags.isSplitEnd()) {
1849           assert((!Arg->VT.isVector() ||
1850                   Arg->VT.getScalarSizeInBits() == 16) &&
1851                  "unexpected vector split in ps argument type");
1852           if (!SkipArg)
1853             Splits.push_back(*Arg);
1854           Arg = &Ins[++I];
1855         }
1856       }
1857 
1858       if (SkipArg) {
1859         // We can safely skip PS inputs.
1860         Skipped.set(Arg->getOrigArgIndex());
1861         ++PSInputNum;
1862         continue;
1863       }
1864 
1865       Info->markPSInputAllocated(PSInputNum);
1866       if (Arg->Used)
1867         Info->markPSInputEnabled(PSInputNum);
1868 
1869       ++PSInputNum;
1870     }
1871 
1872     Splits.push_back(*Arg);
1873   }
1874 }
1875 
1876 // Allocate special inputs passed in VGPRs.
1877 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1878                                                       MachineFunction &MF,
1879                                                       const SIRegisterInfo &TRI,
1880                                                       SIMachineFunctionInfo &Info) const {
1881   const LLT S32 = LLT::scalar(32);
1882   MachineRegisterInfo &MRI = MF.getRegInfo();
1883 
1884   if (Info.hasWorkItemIDX()) {
1885     Register Reg = AMDGPU::VGPR0;
1886     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1887 
1888     CCInfo.AllocateReg(Reg);
1889     unsigned Mask = (Subtarget->hasPackedTID() &&
1890                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1891     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1892   }
1893 
1894   if (Info.hasWorkItemIDY()) {
1895     assert(Info.hasWorkItemIDX());
1896     if (Subtarget->hasPackedTID()) {
1897       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1898                                                         0x3ff << 10));
1899     } else {
1900       unsigned Reg = AMDGPU::VGPR1;
1901       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1902 
1903       CCInfo.AllocateReg(Reg);
1904       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1905     }
1906   }
1907 
1908   if (Info.hasWorkItemIDZ()) {
1909     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1910     if (Subtarget->hasPackedTID()) {
1911       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1912                                                         0x3ff << 20));
1913     } else {
1914       unsigned Reg = AMDGPU::VGPR2;
1915       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1916 
1917       CCInfo.AllocateReg(Reg);
1918       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1919     }
1920   }
1921 }
1922 
1923 // Try to allocate a VGPR at the end of the argument list, or if no argument
1924 // VGPRs are left allocating a stack slot.
1925 // If \p Mask is is given it indicates bitfield position in the register.
1926 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1927 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1928                                          ArgDescriptor Arg = ArgDescriptor()) {
1929   if (Arg.isSet())
1930     return ArgDescriptor::createArg(Arg, Mask);
1931 
1932   ArrayRef<MCPhysReg> ArgVGPRs
1933     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1934   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1935   if (RegIdx == ArgVGPRs.size()) {
1936     // Spill to stack required.
1937     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1938 
1939     return ArgDescriptor::createStack(Offset, Mask);
1940   }
1941 
1942   unsigned Reg = ArgVGPRs[RegIdx];
1943   Reg = CCInfo.AllocateReg(Reg);
1944   assert(Reg != AMDGPU::NoRegister);
1945 
1946   MachineFunction &MF = CCInfo.getMachineFunction();
1947   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1948   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1949   return ArgDescriptor::createRegister(Reg, Mask);
1950 }
1951 
1952 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1953                                              const TargetRegisterClass *RC,
1954                                              unsigned NumArgRegs) {
1955   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1956   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1957   if (RegIdx == ArgSGPRs.size())
1958     report_fatal_error("ran out of SGPRs for arguments");
1959 
1960   unsigned Reg = ArgSGPRs[RegIdx];
1961   Reg = CCInfo.AllocateReg(Reg);
1962   assert(Reg != AMDGPU::NoRegister);
1963 
1964   MachineFunction &MF = CCInfo.getMachineFunction();
1965   MF.addLiveIn(Reg, RC);
1966   return ArgDescriptor::createRegister(Reg);
1967 }
1968 
1969 // If this has a fixed position, we still should allocate the register in the
1970 // CCInfo state. Technically we could get away with this for values passed
1971 // outside of the normal argument range.
1972 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1973                                        const TargetRegisterClass *RC,
1974                                        MCRegister Reg) {
1975   Reg = CCInfo.AllocateReg(Reg);
1976   assert(Reg != AMDGPU::NoRegister);
1977   MachineFunction &MF = CCInfo.getMachineFunction();
1978   MF.addLiveIn(Reg, RC);
1979 }
1980 
1981 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1982   if (Arg) {
1983     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1984                                Arg.getRegister());
1985   } else
1986     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1987 }
1988 
1989 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1990   if (Arg) {
1991     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1992                                Arg.getRegister());
1993   } else
1994     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1995 }
1996 
1997 /// Allocate implicit function VGPR arguments at the end of allocated user
1998 /// arguments.
1999 void SITargetLowering::allocateSpecialInputVGPRs(
2000   CCState &CCInfo, MachineFunction &MF,
2001   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2002   const unsigned Mask = 0x3ff;
2003   ArgDescriptor Arg;
2004 
2005   if (Info.hasWorkItemIDX()) {
2006     Arg = allocateVGPR32Input(CCInfo, Mask);
2007     Info.setWorkItemIDX(Arg);
2008   }
2009 
2010   if (Info.hasWorkItemIDY()) {
2011     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2012     Info.setWorkItemIDY(Arg);
2013   }
2014 
2015   if (Info.hasWorkItemIDZ())
2016     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2017 }
2018 
2019 /// Allocate implicit function VGPR arguments in fixed registers.
2020 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2021   CCState &CCInfo, MachineFunction &MF,
2022   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2023   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2024   if (!Reg)
2025     report_fatal_error("failed to allocated VGPR for implicit arguments");
2026 
2027   const unsigned Mask = 0x3ff;
2028   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2029   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2030   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2031 }
2032 
2033 void SITargetLowering::allocateSpecialInputSGPRs(
2034   CCState &CCInfo,
2035   MachineFunction &MF,
2036   const SIRegisterInfo &TRI,
2037   SIMachineFunctionInfo &Info) const {
2038   auto &ArgInfo = Info.getArgInfo();
2039 
2040   // TODO: Unify handling with private memory pointers.
2041   if (Info.hasDispatchPtr())
2042     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2043 
2044   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5)
2045     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2046 
2047   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2048   // constant offset from the kernarg segment.
2049   if (Info.hasImplicitArgPtr())
2050     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2051 
2052   if (Info.hasDispatchID())
2053     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2054 
2055   // flat_scratch_init is not applicable for non-kernel functions.
2056 
2057   if (Info.hasWorkGroupIDX())
2058     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2059 
2060   if (Info.hasWorkGroupIDY())
2061     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2062 
2063   if (Info.hasWorkGroupIDZ())
2064     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2065 
2066   if (Info.hasLDSKernelId())
2067     allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
2068 }
2069 
2070 // Allocate special inputs passed in user SGPRs.
2071 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2072                                             MachineFunction &MF,
2073                                             const SIRegisterInfo &TRI,
2074                                             SIMachineFunctionInfo &Info) const {
2075   if (Info.hasImplicitBufferPtr()) {
2076     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2077     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2078     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2079   }
2080 
2081   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2082   if (Info.hasPrivateSegmentBuffer()) {
2083     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2084     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2085     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2086   }
2087 
2088   if (Info.hasDispatchPtr()) {
2089     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2090     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2091     CCInfo.AllocateReg(DispatchPtrReg);
2092   }
2093 
2094   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
2095     Register QueuePtrReg = Info.addQueuePtr(TRI);
2096     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2097     CCInfo.AllocateReg(QueuePtrReg);
2098   }
2099 
2100   if (Info.hasKernargSegmentPtr()) {
2101     MachineRegisterInfo &MRI = MF.getRegInfo();
2102     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2103     CCInfo.AllocateReg(InputPtrReg);
2104 
2105     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2106     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2107   }
2108 
2109   if (Info.hasDispatchID()) {
2110     Register DispatchIDReg = Info.addDispatchID(TRI);
2111     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2112     CCInfo.AllocateReg(DispatchIDReg);
2113   }
2114 
2115   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2116     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2117     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2118     CCInfo.AllocateReg(FlatScratchInitReg);
2119   }
2120 
2121   if (Info.hasLDSKernelId()) {
2122     Register Reg = Info.addLDSKernelId();
2123     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2124     CCInfo.AllocateReg(Reg);
2125   }
2126 
2127   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2128   // these from the dispatch pointer.
2129 }
2130 
2131 // Allocate special input registers that are initialized per-wave.
2132 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2133                                            MachineFunction &MF,
2134                                            SIMachineFunctionInfo &Info,
2135                                            CallingConv::ID CallConv,
2136                                            bool IsShader) const {
2137   if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
2138     // Note: user SGPRs are handled by the front-end for graphics shaders
2139     // Pad up the used user SGPRs with dead inputs.
2140     unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2141 
2142     // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2143     // rely on it to reach 16 since if we end up having no stack usage, it will
2144     // not really be added.
2145     unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
2146                                       Info.hasWorkGroupIDY() +
2147                                       Info.hasWorkGroupIDZ() +
2148                                       Info.hasWorkGroupInfo();
2149     for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2150       Register Reg = Info.addReservedUserSGPR();
2151       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2152       CCInfo.AllocateReg(Reg);
2153     }
2154   }
2155 
2156   if (Info.hasWorkGroupIDX()) {
2157     Register Reg = Info.addWorkGroupIDX();
2158     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2159     CCInfo.AllocateReg(Reg);
2160   }
2161 
2162   if (Info.hasWorkGroupIDY()) {
2163     Register Reg = Info.addWorkGroupIDY();
2164     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2165     CCInfo.AllocateReg(Reg);
2166   }
2167 
2168   if (Info.hasWorkGroupIDZ()) {
2169     Register Reg = Info.addWorkGroupIDZ();
2170     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2171     CCInfo.AllocateReg(Reg);
2172   }
2173 
2174   if (Info.hasWorkGroupInfo()) {
2175     Register Reg = Info.addWorkGroupInfo();
2176     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2177     CCInfo.AllocateReg(Reg);
2178   }
2179 
2180   if (Info.hasPrivateSegmentWaveByteOffset()) {
2181     // Scratch wave offset passed in system SGPR.
2182     unsigned PrivateSegmentWaveByteOffsetReg;
2183 
2184     if (IsShader) {
2185       PrivateSegmentWaveByteOffsetReg =
2186         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2187 
2188       // This is true if the scratch wave byte offset doesn't have a fixed
2189       // location.
2190       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2191         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2192         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2193       }
2194     } else
2195       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2196 
2197     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2198     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2199   }
2200 
2201   assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
2202          Info.getNumPreloadedSGPRs() >= 16);
2203 }
2204 
2205 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2206                                      MachineFunction &MF,
2207                                      const SIRegisterInfo &TRI,
2208                                      SIMachineFunctionInfo &Info) {
2209   // Now that we've figured out where the scratch register inputs are, see if
2210   // should reserve the arguments and use them directly.
2211   MachineFrameInfo &MFI = MF.getFrameInfo();
2212   bool HasStackObjects = MFI.hasStackObjects();
2213   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2214 
2215   // Record that we know we have non-spill stack objects so we don't need to
2216   // check all stack objects later.
2217   if (HasStackObjects)
2218     Info.setHasNonSpillStackObjects(true);
2219 
2220   // Everything live out of a block is spilled with fast regalloc, so it's
2221   // almost certain that spilling will be required.
2222   if (TM.getOptLevel() == CodeGenOpt::None)
2223     HasStackObjects = true;
2224 
2225   // For now assume stack access is needed in any callee functions, so we need
2226   // the scratch registers to pass in.
2227   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2228 
2229   if (!ST.enableFlatScratch()) {
2230     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2231       // If we have stack objects, we unquestionably need the private buffer
2232       // resource. For the Code Object V2 ABI, this will be the first 4 user
2233       // SGPR inputs. We can reserve those and use them directly.
2234 
2235       Register PrivateSegmentBufferReg =
2236           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2237       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2238     } else {
2239       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2240       // We tentatively reserve the last registers (skipping the last registers
2241       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2242       // we'll replace these with the ones immediately after those which were
2243       // really allocated. In the prologue copies will be inserted from the
2244       // argument to these reserved registers.
2245 
2246       // Without HSA, relocations are used for the scratch pointer and the
2247       // buffer resource setup is always inserted in the prologue. Scratch wave
2248       // offset is still in an input SGPR.
2249       Info.setScratchRSrcReg(ReservedBufferReg);
2250     }
2251   }
2252 
2253   MachineRegisterInfo &MRI = MF.getRegInfo();
2254 
2255   // For entry functions we have to set up the stack pointer if we use it,
2256   // whereas non-entry functions get this "for free". This means there is no
2257   // intrinsic advantage to using S32 over S34 in cases where we do not have
2258   // calls but do need a frame pointer (i.e. if we are requested to have one
2259   // because frame pointer elimination is disabled). To keep things simple we
2260   // only ever use S32 as the call ABI stack pointer, and so using it does not
2261   // imply we need a separate frame pointer.
2262   //
2263   // Try to use s32 as the SP, but move it if it would interfere with input
2264   // arguments. This won't work with calls though.
2265   //
2266   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2267   // registers.
2268   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2269     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2270   } else {
2271     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2272 
2273     if (MFI.hasCalls())
2274       report_fatal_error("call in graphics shader with too many input SGPRs");
2275 
2276     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2277       if (!MRI.isLiveIn(Reg)) {
2278         Info.setStackPtrOffsetReg(Reg);
2279         break;
2280       }
2281     }
2282 
2283     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2284       report_fatal_error("failed to find register for SP");
2285   }
2286 
2287   // hasFP should be accurate for entry functions even before the frame is
2288   // finalized, because it does not rely on the known stack size, only
2289   // properties like whether variable sized objects are present.
2290   if (ST.getFrameLowering()->hasFP(MF)) {
2291     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2292   }
2293 }
2294 
2295 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2296   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2297   return !Info->isEntryFunction();
2298 }
2299 
2300 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2301 
2302 }
2303 
2304 void SITargetLowering::insertCopiesSplitCSR(
2305   MachineBasicBlock *Entry,
2306   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2307   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2308 
2309   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2310   if (!IStart)
2311     return;
2312 
2313   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2314   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2315   MachineBasicBlock::iterator MBBI = Entry->begin();
2316   for (const MCPhysReg *I = IStart; *I; ++I) {
2317     const TargetRegisterClass *RC = nullptr;
2318     if (AMDGPU::SReg_64RegClass.contains(*I))
2319       RC = &AMDGPU::SGPR_64RegClass;
2320     else if (AMDGPU::SReg_32RegClass.contains(*I))
2321       RC = &AMDGPU::SGPR_32RegClass;
2322     else
2323       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2324 
2325     Register NewVR = MRI->createVirtualRegister(RC);
2326     // Create copy from CSR to a virtual register.
2327     Entry->addLiveIn(*I);
2328     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2329       .addReg(*I);
2330 
2331     // Insert the copy-back instructions right before the terminator.
2332     for (auto *Exit : Exits)
2333       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2334               TII->get(TargetOpcode::COPY), *I)
2335         .addReg(NewVR);
2336   }
2337 }
2338 
2339 SDValue SITargetLowering::LowerFormalArguments(
2340     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2341     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2342     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2343   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2344 
2345   MachineFunction &MF = DAG.getMachineFunction();
2346   const Function &Fn = MF.getFunction();
2347   FunctionType *FType = MF.getFunction().getFunctionType();
2348   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2349 
2350   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2351     DiagnosticInfoUnsupported NoGraphicsHSA(
2352         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2353     DAG.getContext()->diagnose(NoGraphicsHSA);
2354     return DAG.getEntryNode();
2355   }
2356 
2357   Info->allocateModuleLDSGlobal(Fn);
2358 
2359   SmallVector<ISD::InputArg, 16> Splits;
2360   SmallVector<CCValAssign, 16> ArgLocs;
2361   BitVector Skipped(Ins.size());
2362   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2363                  *DAG.getContext());
2364 
2365   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2366   bool IsKernel = AMDGPU::isKernel(CallConv);
2367   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2368 
2369   if (IsGraphics) {
2370     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2371            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2372            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2373            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2374            !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
2375            !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
2376   }
2377 
2378   if (CallConv == CallingConv::AMDGPU_PS) {
2379     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2380 
2381     // At least one interpolation mode must be enabled or else the GPU will
2382     // hang.
2383     //
2384     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2385     // set PSInputAddr, the user wants to enable some bits after the compilation
2386     // based on run-time states. Since we can't know what the final PSInputEna
2387     // will look like, so we shouldn't do anything here and the user should take
2388     // responsibility for the correct programming.
2389     //
2390     // Otherwise, the following restrictions apply:
2391     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2392     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2393     //   enabled too.
2394     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2395         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2396       CCInfo.AllocateReg(AMDGPU::VGPR0);
2397       CCInfo.AllocateReg(AMDGPU::VGPR1);
2398       Info->markPSInputAllocated(0);
2399       Info->markPSInputEnabled(0);
2400     }
2401     if (Subtarget->isAmdPalOS()) {
2402       // For isAmdPalOS, the user does not enable some bits after compilation
2403       // based on run-time states; the register values being generated here are
2404       // the final ones set in hardware. Therefore we need to apply the
2405       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2406       // a bit is set in PSInputAddr but not PSInputEnable is where the
2407       // frontend set up an input arg for a particular interpolation mode, but
2408       // nothing uses that input arg. Really we should have an earlier pass
2409       // that removes such an arg.)
2410       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2411       if ((PsInputBits & 0x7F) == 0 ||
2412           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2413         Info->markPSInputEnabled(
2414             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2415     }
2416   } else if (IsKernel) {
2417     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2418   } else {
2419     Splits.append(Ins.begin(), Ins.end());
2420   }
2421 
2422   if (IsEntryFunc) {
2423     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2424     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2425   } else if (!IsGraphics) {
2426     // For the fixed ABI, pass workitem IDs in the last argument register.
2427     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2428   }
2429 
2430   if (IsKernel) {
2431     analyzeFormalArgumentsCompute(CCInfo, Ins);
2432   } else {
2433     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2434     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2435   }
2436 
2437   SmallVector<SDValue, 16> Chains;
2438 
2439   // FIXME: This is the minimum kernel argument alignment. We should improve
2440   // this to the maximum alignment of the arguments.
2441   //
2442   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2443   // kern arg offset.
2444   const Align KernelArgBaseAlign = Align(16);
2445 
2446   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2447     const ISD::InputArg &Arg = Ins[i];
2448     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2449       InVals.push_back(DAG.getUNDEF(Arg.VT));
2450       continue;
2451     }
2452 
2453     CCValAssign &VA = ArgLocs[ArgIdx++];
2454     MVT VT = VA.getLocVT();
2455 
2456     if (IsEntryFunc && VA.isMemLoc()) {
2457       VT = Ins[i].VT;
2458       EVT MemVT = VA.getLocVT();
2459 
2460       const uint64_t Offset = VA.getLocMemOffset();
2461       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2462 
2463       if (Arg.Flags.isByRef()) {
2464         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2465 
2466         const GCNTargetMachine &TM =
2467             static_cast<const GCNTargetMachine &>(getTargetMachine());
2468         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2469                                     Arg.Flags.getPointerAddrSpace())) {
2470           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2471                                      Arg.Flags.getPointerAddrSpace());
2472         }
2473 
2474         InVals.push_back(Ptr);
2475         continue;
2476       }
2477 
2478       SDValue Arg = lowerKernargMemParameter(
2479         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2480       Chains.push_back(Arg.getValue(1));
2481 
2482       auto *ParamTy =
2483         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2484       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2485           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2486                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2487         // On SI local pointers are just offsets into LDS, so they are always
2488         // less than 16-bits.  On CI and newer they could potentially be
2489         // real pointers, so we can't guarantee their size.
2490         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2491                           DAG.getValueType(MVT::i16));
2492       }
2493 
2494       InVals.push_back(Arg);
2495       continue;
2496     } else if (!IsEntryFunc && VA.isMemLoc()) {
2497       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2498       InVals.push_back(Val);
2499       if (!Arg.Flags.isByVal())
2500         Chains.push_back(Val.getValue(1));
2501       continue;
2502     }
2503 
2504     assert(VA.isRegLoc() && "Parameter must be in a register!");
2505 
2506     Register Reg = VA.getLocReg();
2507     const TargetRegisterClass *RC = nullptr;
2508     if (AMDGPU::VGPR_32RegClass.contains(Reg))
2509       RC = &AMDGPU::VGPR_32RegClass;
2510     else if (AMDGPU::SGPR_32RegClass.contains(Reg))
2511       RC = &AMDGPU::SGPR_32RegClass;
2512     else
2513       llvm_unreachable("Unexpected register class in LowerFormalArguments!");
2514     EVT ValVT = VA.getValVT();
2515 
2516     Reg = MF.addLiveIn(Reg, RC);
2517     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2518 
2519     if (Arg.Flags.isSRet()) {
2520       // The return object should be reasonably addressable.
2521 
2522       // FIXME: This helps when the return is a real sret. If it is a
2523       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2524       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2525       unsigned NumBits
2526         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2527       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2528         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2529     }
2530 
2531     // If this is an 8 or 16-bit value, it is really passed promoted
2532     // to 32 bits. Insert an assert[sz]ext to capture this, then
2533     // truncate to the right size.
2534     switch (VA.getLocInfo()) {
2535     case CCValAssign::Full:
2536       break;
2537     case CCValAssign::BCvt:
2538       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2539       break;
2540     case CCValAssign::SExt:
2541       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2542                         DAG.getValueType(ValVT));
2543       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2544       break;
2545     case CCValAssign::ZExt:
2546       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2547                         DAG.getValueType(ValVT));
2548       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2549       break;
2550     case CCValAssign::AExt:
2551       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2552       break;
2553     default:
2554       llvm_unreachable("Unknown loc info!");
2555     }
2556 
2557     InVals.push_back(Val);
2558   }
2559 
2560   // Start adding system SGPRs.
2561   if (IsEntryFunc) {
2562     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2563   } else {
2564     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2565     if (!IsGraphics)
2566       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2567   }
2568 
2569   auto &ArgUsageInfo =
2570     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2571   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2572 
2573   unsigned StackArgSize = CCInfo.getNextStackOffset();
2574   Info->setBytesInStackArgArea(StackArgSize);
2575 
2576   return Chains.empty() ? Chain :
2577     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2578 }
2579 
2580 // TODO: If return values can't fit in registers, we should return as many as
2581 // possible in registers before passing on stack.
2582 bool SITargetLowering::CanLowerReturn(
2583   CallingConv::ID CallConv,
2584   MachineFunction &MF, bool IsVarArg,
2585   const SmallVectorImpl<ISD::OutputArg> &Outs,
2586   LLVMContext &Context) const {
2587   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2588   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2589   // for shaders. Vector types should be explicitly handled by CC.
2590   if (AMDGPU::isEntryFunctionCC(CallConv))
2591     return true;
2592 
2593   SmallVector<CCValAssign, 16> RVLocs;
2594   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2595   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2596 }
2597 
2598 SDValue
2599 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2600                               bool isVarArg,
2601                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2602                               const SmallVectorImpl<SDValue> &OutVals,
2603                               const SDLoc &DL, SelectionDAG &DAG) const {
2604   MachineFunction &MF = DAG.getMachineFunction();
2605   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2606 
2607   if (AMDGPU::isKernel(CallConv)) {
2608     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2609                                              OutVals, DL, DAG);
2610   }
2611 
2612   bool IsShader = AMDGPU::isShader(CallConv);
2613 
2614   Info->setIfReturnsVoid(Outs.empty());
2615   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2616 
2617   // CCValAssign - represent the assignment of the return value to a location.
2618   SmallVector<CCValAssign, 48> RVLocs;
2619   SmallVector<ISD::OutputArg, 48> Splits;
2620 
2621   // CCState - Info about the registers and stack slots.
2622   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2623                  *DAG.getContext());
2624 
2625   // Analyze outgoing return values.
2626   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2627 
2628   SDValue Flag;
2629   SmallVector<SDValue, 48> RetOps;
2630   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2631 
2632   // Copy the result values into the output registers.
2633   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2634        ++I, ++RealRVLocIdx) {
2635     CCValAssign &VA = RVLocs[I];
2636     assert(VA.isRegLoc() && "Can only return in registers!");
2637     // TODO: Partially return in registers if return values don't fit.
2638     SDValue Arg = OutVals[RealRVLocIdx];
2639 
2640     // Copied from other backends.
2641     switch (VA.getLocInfo()) {
2642     case CCValAssign::Full:
2643       break;
2644     case CCValAssign::BCvt:
2645       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2646       break;
2647     case CCValAssign::SExt:
2648       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2649       break;
2650     case CCValAssign::ZExt:
2651       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2652       break;
2653     case CCValAssign::AExt:
2654       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2655       break;
2656     default:
2657       llvm_unreachable("Unknown loc info!");
2658     }
2659 
2660     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2661     Flag = Chain.getValue(1);
2662     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2663   }
2664 
2665   // FIXME: Does sret work properly?
2666   if (!Info->isEntryFunction()) {
2667     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2668     const MCPhysReg *I =
2669       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2670     if (I) {
2671       for (; *I; ++I) {
2672         if (AMDGPU::SReg_64RegClass.contains(*I))
2673           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2674         else if (AMDGPU::SReg_32RegClass.contains(*I))
2675           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2676         else
2677           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2678       }
2679     }
2680   }
2681 
2682   // Update chain and glue.
2683   RetOps[0] = Chain;
2684   if (Flag.getNode())
2685     RetOps.push_back(Flag);
2686 
2687   unsigned Opc = AMDGPUISD::ENDPGM;
2688   if (!IsWaveEnd)
2689     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2690   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2691 }
2692 
2693 SDValue SITargetLowering::LowerCallResult(
2694     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2695     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2696     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2697     SDValue ThisVal) const {
2698   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2699 
2700   // Assign locations to each value returned by this call.
2701   SmallVector<CCValAssign, 16> RVLocs;
2702   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2703                  *DAG.getContext());
2704   CCInfo.AnalyzeCallResult(Ins, RetCC);
2705 
2706   // Copy all of the result registers out of their specified physreg.
2707   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2708     CCValAssign VA = RVLocs[i];
2709     SDValue Val;
2710 
2711     if (VA.isRegLoc()) {
2712       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2713       Chain = Val.getValue(1);
2714       InFlag = Val.getValue(2);
2715     } else if (VA.isMemLoc()) {
2716       report_fatal_error("TODO: return values in memory");
2717     } else
2718       llvm_unreachable("unknown argument location type");
2719 
2720     switch (VA.getLocInfo()) {
2721     case CCValAssign::Full:
2722       break;
2723     case CCValAssign::BCvt:
2724       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2725       break;
2726     case CCValAssign::ZExt:
2727       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2728                         DAG.getValueType(VA.getValVT()));
2729       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2730       break;
2731     case CCValAssign::SExt:
2732       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2733                         DAG.getValueType(VA.getValVT()));
2734       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2735       break;
2736     case CCValAssign::AExt:
2737       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2738       break;
2739     default:
2740       llvm_unreachable("Unknown loc info!");
2741     }
2742 
2743     InVals.push_back(Val);
2744   }
2745 
2746   return Chain;
2747 }
2748 
2749 // Add code to pass special inputs required depending on used features separate
2750 // from the explicit user arguments present in the IR.
2751 void SITargetLowering::passSpecialInputs(
2752     CallLoweringInfo &CLI,
2753     CCState &CCInfo,
2754     const SIMachineFunctionInfo &Info,
2755     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2756     SmallVectorImpl<SDValue> &MemOpChains,
2757     SDValue Chain) const {
2758   // If we don't have a call site, this was a call inserted by
2759   // legalization. These can never use special inputs.
2760   if (!CLI.CB)
2761     return;
2762 
2763   SelectionDAG &DAG = CLI.DAG;
2764   const SDLoc &DL = CLI.DL;
2765   const Function &F = DAG.getMachineFunction().getFunction();
2766 
2767   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2768   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2769 
2770   const AMDGPUFunctionArgInfo *CalleeArgInfo
2771     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2772   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2773     auto &ArgUsageInfo =
2774       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2775     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2776   }
2777 
2778   // TODO: Unify with private memory register handling. This is complicated by
2779   // the fact that at least in kernels, the input argument is not necessarily
2780   // in the same location as the input.
2781   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2782                              StringLiteral> ImplicitAttrs[] = {
2783     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2784     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2785     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2786     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2787     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2788     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2789     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"},
2790     {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"},
2791   };
2792 
2793   for (auto Attr : ImplicitAttrs) {
2794     const ArgDescriptor *OutgoingArg;
2795     const TargetRegisterClass *ArgRC;
2796     LLT ArgTy;
2797 
2798     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2799 
2800     // If the callee does not use the attribute value, skip copying the value.
2801     if (CLI.CB->hasFnAttr(Attr.second))
2802       continue;
2803 
2804     std::tie(OutgoingArg, ArgRC, ArgTy) =
2805         CalleeArgInfo->getPreloadedValue(InputID);
2806     if (!OutgoingArg)
2807       continue;
2808 
2809     const ArgDescriptor *IncomingArg;
2810     const TargetRegisterClass *IncomingArgRC;
2811     LLT Ty;
2812     std::tie(IncomingArg, IncomingArgRC, Ty) =
2813         CallerArgInfo.getPreloadedValue(InputID);
2814     assert(IncomingArgRC == ArgRC);
2815 
2816     // All special arguments are ints for now.
2817     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2818     SDValue InputReg;
2819 
2820     if (IncomingArg) {
2821       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2822     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2823       // The implicit arg ptr is special because it doesn't have a corresponding
2824       // input for kernels, and is computed from the kernarg segment pointer.
2825       InputReg = getImplicitArgPtr(DAG, DL);
2826     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
2827       Optional<uint32_t> Id = AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
2828       if (Id.has_value()) {
2829         InputReg = DAG.getConstant(Id.value(), DL, ArgVT);
2830       } else {
2831         InputReg = DAG.getUNDEF(ArgVT);
2832       }
2833     } else {
2834       // We may have proven the input wasn't needed, although the ABI is
2835       // requiring it. We just need to allocate the register appropriately.
2836       InputReg = DAG.getUNDEF(ArgVT);
2837     }
2838 
2839     if (OutgoingArg->isRegister()) {
2840       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2841       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2842         report_fatal_error("failed to allocate implicit input argument");
2843     } else {
2844       unsigned SpecialArgOffset =
2845           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2846       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2847                                               SpecialArgOffset);
2848       MemOpChains.push_back(ArgStore);
2849     }
2850   }
2851 
2852   // Pack workitem IDs into a single register or pass it as is if already
2853   // packed.
2854   const ArgDescriptor *OutgoingArg;
2855   const TargetRegisterClass *ArgRC;
2856   LLT Ty;
2857 
2858   std::tie(OutgoingArg, ArgRC, Ty) =
2859       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2860   if (!OutgoingArg)
2861     std::tie(OutgoingArg, ArgRC, Ty) =
2862         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2863   if (!OutgoingArg)
2864     std::tie(OutgoingArg, ArgRC, Ty) =
2865         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2866   if (!OutgoingArg)
2867     return;
2868 
2869   const ArgDescriptor *IncomingArgX = std::get<0>(
2870       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2871   const ArgDescriptor *IncomingArgY = std::get<0>(
2872       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2873   const ArgDescriptor *IncomingArgZ = std::get<0>(
2874       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2875 
2876   SDValue InputReg;
2877   SDLoc SL;
2878 
2879   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2880   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2881   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2882 
2883   // If incoming ids are not packed we need to pack them.
2884   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2885       NeedWorkItemIDX) {
2886     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2887       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2888     } else {
2889       InputReg = DAG.getConstant(0, DL, MVT::i32);
2890     }
2891   }
2892 
2893   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2894       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2895     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2896     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2897                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2898     InputReg = InputReg.getNode() ?
2899                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2900   }
2901 
2902   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2903       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2904     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2905     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2906                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2907     InputReg = InputReg.getNode() ?
2908                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2909   }
2910 
2911   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2912     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2913       // We're in a situation where the outgoing function requires the workitem
2914       // ID, but the calling function does not have it (e.g a graphics function
2915       // calling a C calling convention function). This is illegal, but we need
2916       // to produce something.
2917       InputReg = DAG.getUNDEF(MVT::i32);
2918     } else {
2919       // Workitem ids are already packed, any of present incoming arguments
2920       // will carry all required fields.
2921       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2922         IncomingArgX ? *IncomingArgX :
2923         IncomingArgY ? *IncomingArgY :
2924         *IncomingArgZ, ~0u);
2925       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2926     }
2927   }
2928 
2929   if (OutgoingArg->isRegister()) {
2930     if (InputReg)
2931       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2932 
2933     CCInfo.AllocateReg(OutgoingArg->getRegister());
2934   } else {
2935     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2936     if (InputReg) {
2937       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2938                                               SpecialArgOffset);
2939       MemOpChains.push_back(ArgStore);
2940     }
2941   }
2942 }
2943 
2944 static bool canGuaranteeTCO(CallingConv::ID CC) {
2945   return CC == CallingConv::Fast;
2946 }
2947 
2948 /// Return true if we might ever do TCO for calls with this calling convention.
2949 static bool mayTailCallThisCC(CallingConv::ID CC) {
2950   switch (CC) {
2951   case CallingConv::C:
2952   case CallingConv::AMDGPU_Gfx:
2953     return true;
2954   default:
2955     return canGuaranteeTCO(CC);
2956   }
2957 }
2958 
2959 bool SITargetLowering::isEligibleForTailCallOptimization(
2960     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2961     const SmallVectorImpl<ISD::OutputArg> &Outs,
2962     const SmallVectorImpl<SDValue> &OutVals,
2963     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2964   if (!mayTailCallThisCC(CalleeCC))
2965     return false;
2966 
2967   // For a divergent call target, we need to do a waterfall loop over the
2968   // possible callees which precludes us from using a simple jump.
2969   if (Callee->isDivergent())
2970     return false;
2971 
2972   MachineFunction &MF = DAG.getMachineFunction();
2973   const Function &CallerF = MF.getFunction();
2974   CallingConv::ID CallerCC = CallerF.getCallingConv();
2975   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2976   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2977 
2978   // Kernels aren't callable, and don't have a live in return address so it
2979   // doesn't make sense to do a tail call with entry functions.
2980   if (!CallerPreserved)
2981     return false;
2982 
2983   bool CCMatch = CallerCC == CalleeCC;
2984 
2985   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2986     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2987       return true;
2988     return false;
2989   }
2990 
2991   // TODO: Can we handle var args?
2992   if (IsVarArg)
2993     return false;
2994 
2995   for (const Argument &Arg : CallerF.args()) {
2996     if (Arg.hasByValAttr())
2997       return false;
2998   }
2999 
3000   LLVMContext &Ctx = *DAG.getContext();
3001 
3002   // Check that the call results are passed in the same way.
3003   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3004                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3005                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3006     return false;
3007 
3008   // The callee has to preserve all registers the caller needs to preserve.
3009   if (!CCMatch) {
3010     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3011     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3012       return false;
3013   }
3014 
3015   // Nothing more to check if the callee is taking no arguments.
3016   if (Outs.empty())
3017     return true;
3018 
3019   SmallVector<CCValAssign, 16> ArgLocs;
3020   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3021 
3022   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3023 
3024   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3025   // If the stack arguments for this call do not fit into our own save area then
3026   // the call cannot be made tail.
3027   // TODO: Is this really necessary?
3028   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3029     return false;
3030 
3031   const MachineRegisterInfo &MRI = MF.getRegInfo();
3032   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3033 }
3034 
3035 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3036   if (!CI->isTailCall())
3037     return false;
3038 
3039   const Function *ParentFn = CI->getParent()->getParent();
3040   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3041     return false;
3042   return true;
3043 }
3044 
3045 // The wave scratch offset register is used as the global base pointer.
3046 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3047                                     SmallVectorImpl<SDValue> &InVals) const {
3048   SelectionDAG &DAG = CLI.DAG;
3049   const SDLoc &DL = CLI.DL;
3050   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3051   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3052   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3053   SDValue Chain = CLI.Chain;
3054   SDValue Callee = CLI.Callee;
3055   bool &IsTailCall = CLI.IsTailCall;
3056   CallingConv::ID CallConv = CLI.CallConv;
3057   bool IsVarArg = CLI.IsVarArg;
3058   bool IsSibCall = false;
3059   bool IsThisReturn = false;
3060   MachineFunction &MF = DAG.getMachineFunction();
3061 
3062   if (Callee.isUndef() || isNullConstant(Callee)) {
3063     if (!CLI.IsTailCall) {
3064       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3065         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3066     }
3067 
3068     return Chain;
3069   }
3070 
3071   if (IsVarArg) {
3072     return lowerUnhandledCall(CLI, InVals,
3073                               "unsupported call to variadic function ");
3074   }
3075 
3076   if (!CLI.CB)
3077     report_fatal_error("unsupported libcall legalization");
3078 
3079   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3080     return lowerUnhandledCall(CLI, InVals,
3081                               "unsupported required tail call to function ");
3082   }
3083 
3084   if (AMDGPU::isShader(CallConv)) {
3085     // Note the issue is with the CC of the called function, not of the call
3086     // itself.
3087     return lowerUnhandledCall(CLI, InVals,
3088                               "unsupported call to a shader function ");
3089   }
3090 
3091   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3092       CallConv != CallingConv::AMDGPU_Gfx) {
3093     // Only allow calls with specific calling conventions.
3094     return lowerUnhandledCall(CLI, InVals,
3095                               "unsupported calling convention for call from "
3096                               "graphics shader of function ");
3097   }
3098 
3099   if (IsTailCall) {
3100     IsTailCall = isEligibleForTailCallOptimization(
3101       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3102     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3103       report_fatal_error("failed to perform tail call elimination on a call "
3104                          "site marked musttail");
3105     }
3106 
3107     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3108 
3109     // A sibling call is one where we're under the usual C ABI and not planning
3110     // to change that but can still do a tail call:
3111     if (!TailCallOpt && IsTailCall)
3112       IsSibCall = true;
3113 
3114     if (IsTailCall)
3115       ++NumTailCalls;
3116   }
3117 
3118   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3119   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3120   SmallVector<SDValue, 8> MemOpChains;
3121 
3122   // Analyze operands of the call, assigning locations to each operand.
3123   SmallVector<CCValAssign, 16> ArgLocs;
3124   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3125   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3126 
3127   if (CallConv != CallingConv::AMDGPU_Gfx) {
3128     // With a fixed ABI, allocate fixed registers before user arguments.
3129     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3130   }
3131 
3132   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3133 
3134   // Get a count of how many bytes are to be pushed on the stack.
3135   unsigned NumBytes = CCInfo.getNextStackOffset();
3136 
3137   if (IsSibCall) {
3138     // Since we're not changing the ABI to make this a tail call, the memory
3139     // operands are already available in the caller's incoming argument space.
3140     NumBytes = 0;
3141   }
3142 
3143   // FPDiff is the byte offset of the call's argument area from the callee's.
3144   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3145   // by this amount for a tail call. In a sibling call it must be 0 because the
3146   // caller will deallocate the entire stack and the callee still expects its
3147   // arguments to begin at SP+0. Completely unused for non-tail calls.
3148   int32_t FPDiff = 0;
3149   MachineFrameInfo &MFI = MF.getFrameInfo();
3150 
3151   // Adjust the stack pointer for the new arguments...
3152   // These operations are automatically eliminated by the prolog/epilog pass
3153   if (!IsSibCall) {
3154     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3155 
3156     if (!Subtarget->enableFlatScratch()) {
3157       SmallVector<SDValue, 4> CopyFromChains;
3158 
3159       // In the HSA case, this should be an identity copy.
3160       SDValue ScratchRSrcReg
3161         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3162       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3163       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3164       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3165     }
3166   }
3167 
3168   MVT PtrVT = MVT::i32;
3169 
3170   // Walk the register/memloc assignments, inserting copies/loads.
3171   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3172     CCValAssign &VA = ArgLocs[i];
3173     SDValue Arg = OutVals[i];
3174 
3175     // Promote the value if needed.
3176     switch (VA.getLocInfo()) {
3177     case CCValAssign::Full:
3178       break;
3179     case CCValAssign::BCvt:
3180       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3181       break;
3182     case CCValAssign::ZExt:
3183       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3184       break;
3185     case CCValAssign::SExt:
3186       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3187       break;
3188     case CCValAssign::AExt:
3189       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3190       break;
3191     case CCValAssign::FPExt:
3192       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3193       break;
3194     default:
3195       llvm_unreachable("Unknown loc info!");
3196     }
3197 
3198     if (VA.isRegLoc()) {
3199       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3200     } else {
3201       assert(VA.isMemLoc());
3202 
3203       SDValue DstAddr;
3204       MachinePointerInfo DstInfo;
3205 
3206       unsigned LocMemOffset = VA.getLocMemOffset();
3207       int32_t Offset = LocMemOffset;
3208 
3209       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3210       MaybeAlign Alignment;
3211 
3212       if (IsTailCall) {
3213         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3214         unsigned OpSize = Flags.isByVal() ?
3215           Flags.getByValSize() : VA.getValVT().getStoreSize();
3216 
3217         // FIXME: We can have better than the minimum byval required alignment.
3218         Alignment =
3219             Flags.isByVal()
3220                 ? Flags.getNonZeroByValAlign()
3221                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3222 
3223         Offset = Offset + FPDiff;
3224         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3225 
3226         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3227         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3228 
3229         // Make sure any stack arguments overlapping with where we're storing
3230         // are loaded before this eventual operation. Otherwise they'll be
3231         // clobbered.
3232 
3233         // FIXME: Why is this really necessary? This seems to just result in a
3234         // lot of code to copy the stack and write them back to the same
3235         // locations, which are supposed to be immutable?
3236         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3237       } else {
3238         // Stores to the argument stack area are relative to the stack pointer.
3239         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3240                                         MVT::i32);
3241         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3242         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3243         Alignment =
3244             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3245       }
3246 
3247       if (Outs[i].Flags.isByVal()) {
3248         SDValue SizeNode =
3249             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3250         SDValue Cpy =
3251             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3252                           Outs[i].Flags.getNonZeroByValAlign(),
3253                           /*isVol = */ false, /*AlwaysInline = */ true,
3254                           /*isTailCall = */ false, DstInfo,
3255                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3256 
3257         MemOpChains.push_back(Cpy);
3258       } else {
3259         SDValue Store =
3260             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3261         MemOpChains.push_back(Store);
3262       }
3263     }
3264   }
3265 
3266   if (!MemOpChains.empty())
3267     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3268 
3269   // Build a sequence of copy-to-reg nodes chained together with token chain
3270   // and flag operands which copy the outgoing args into the appropriate regs.
3271   SDValue InFlag;
3272   for (auto &RegToPass : RegsToPass) {
3273     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3274                              RegToPass.second, InFlag);
3275     InFlag = Chain.getValue(1);
3276   }
3277 
3278 
3279   // We don't usually want to end the call-sequence here because we would tidy
3280   // the frame up *after* the call, however in the ABI-changing tail-call case
3281   // we've carefully laid out the parameters so that when sp is reset they'll be
3282   // in the correct location.
3283   if (IsTailCall && !IsSibCall) {
3284     Chain = DAG.getCALLSEQ_END(Chain,
3285                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3286                                DAG.getTargetConstant(0, DL, MVT::i32),
3287                                InFlag, DL);
3288     InFlag = Chain.getValue(1);
3289   }
3290 
3291   std::vector<SDValue> Ops;
3292   Ops.push_back(Chain);
3293   Ops.push_back(Callee);
3294   // Add a redundant copy of the callee global which will not be legalized, as
3295   // we need direct access to the callee later.
3296   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3297     const GlobalValue *GV = GSD->getGlobal();
3298     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3299   } else {
3300     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3301   }
3302 
3303   if (IsTailCall) {
3304     // Each tail call may have to adjust the stack by a different amount, so
3305     // this information must travel along with the operation for eventual
3306     // consumption by emitEpilogue.
3307     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3308   }
3309 
3310   // Add argument registers to the end of the list so that they are known live
3311   // into the call.
3312   for (auto &RegToPass : RegsToPass) {
3313     Ops.push_back(DAG.getRegister(RegToPass.first,
3314                                   RegToPass.second.getValueType()));
3315   }
3316 
3317   // Add a register mask operand representing the call-preserved registers.
3318 
3319   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3320   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3321   assert(Mask && "Missing call preserved mask for calling convention");
3322   Ops.push_back(DAG.getRegisterMask(Mask));
3323 
3324   if (InFlag.getNode())
3325     Ops.push_back(InFlag);
3326 
3327   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3328 
3329   // If we're doing a tall call, use a TC_RETURN here rather than an
3330   // actual call instruction.
3331   if (IsTailCall) {
3332     MFI.setHasTailCall();
3333     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3334   }
3335 
3336   // Returns a chain and a flag for retval copy to use.
3337   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3338   Chain = Call.getValue(0);
3339   InFlag = Call.getValue(1);
3340 
3341   uint64_t CalleePopBytes = NumBytes;
3342   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3343                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3344                              InFlag, DL);
3345   if (!Ins.empty())
3346     InFlag = Chain.getValue(1);
3347 
3348   // Handle result values, copying them out of physregs into vregs that we
3349   // return.
3350   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3351                          InVals, IsThisReturn,
3352                          IsThisReturn ? OutVals[0] : SDValue());
3353 }
3354 
3355 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3356 // except for applying the wave size scale to the increment amount.
3357 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3358     SDValue Op, SelectionDAG &DAG) const {
3359   const MachineFunction &MF = DAG.getMachineFunction();
3360   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3361 
3362   SDLoc dl(Op);
3363   EVT VT = Op.getValueType();
3364   SDValue Tmp1 = Op;
3365   SDValue Tmp2 = Op.getValue(1);
3366   SDValue Tmp3 = Op.getOperand(2);
3367   SDValue Chain = Tmp1.getOperand(0);
3368 
3369   Register SPReg = Info->getStackPtrOffsetReg();
3370 
3371   // Chain the dynamic stack allocation so that it doesn't modify the stack
3372   // pointer when other instructions are using the stack.
3373   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3374 
3375   SDValue Size  = Tmp2.getOperand(1);
3376   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3377   Chain = SP.getValue(1);
3378   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3379   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3380   const TargetFrameLowering *TFL = ST.getFrameLowering();
3381   unsigned Opc =
3382     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3383     ISD::ADD : ISD::SUB;
3384 
3385   SDValue ScaledSize = DAG.getNode(
3386       ISD::SHL, dl, VT, Size,
3387       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3388 
3389   Align StackAlign = TFL->getStackAlign();
3390   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3391   if (Alignment && *Alignment > StackAlign) {
3392     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3393                        DAG.getConstant(-(uint64_t)Alignment->value()
3394                                            << ST.getWavefrontSizeLog2(),
3395                                        dl, VT));
3396   }
3397 
3398   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3399   Tmp2 = DAG.getCALLSEQ_END(
3400       Chain, DAG.getIntPtrConstant(0, dl, true),
3401       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3402 
3403   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3404 }
3405 
3406 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3407                                                   SelectionDAG &DAG) const {
3408   // We only handle constant sizes here to allow non-entry block, static sized
3409   // allocas. A truly dynamic value is more difficult to support because we
3410   // don't know if the size value is uniform or not. If the size isn't uniform,
3411   // we would need to do a wave reduction to get the maximum size to know how
3412   // much to increment the uniform stack pointer.
3413   SDValue Size = Op.getOperand(1);
3414   if (isa<ConstantSDNode>(Size))
3415       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3416 
3417   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3418 }
3419 
3420 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3421                                              const MachineFunction &MF) const {
3422   Register Reg = StringSwitch<Register>(RegName)
3423     .Case("m0", AMDGPU::M0)
3424     .Case("exec", AMDGPU::EXEC)
3425     .Case("exec_lo", AMDGPU::EXEC_LO)
3426     .Case("exec_hi", AMDGPU::EXEC_HI)
3427     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3428     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3429     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3430     .Default(Register());
3431 
3432   if (Reg == AMDGPU::NoRegister) {
3433     report_fatal_error(Twine("invalid register name \""
3434                              + StringRef(RegName)  + "\"."));
3435 
3436   }
3437 
3438   if (!Subtarget->hasFlatScrRegister() &&
3439        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3440     report_fatal_error(Twine("invalid register \""
3441                              + StringRef(RegName)  + "\" for subtarget."));
3442   }
3443 
3444   switch (Reg) {
3445   case AMDGPU::M0:
3446   case AMDGPU::EXEC_LO:
3447   case AMDGPU::EXEC_HI:
3448   case AMDGPU::FLAT_SCR_LO:
3449   case AMDGPU::FLAT_SCR_HI:
3450     if (VT.getSizeInBits() == 32)
3451       return Reg;
3452     break;
3453   case AMDGPU::EXEC:
3454   case AMDGPU::FLAT_SCR:
3455     if (VT.getSizeInBits() == 64)
3456       return Reg;
3457     break;
3458   default:
3459     llvm_unreachable("missing register type checking");
3460   }
3461 
3462   report_fatal_error(Twine("invalid type for register \""
3463                            + StringRef(RegName) + "\"."));
3464 }
3465 
3466 // If kill is not the last instruction, split the block so kill is always a
3467 // proper terminator.
3468 MachineBasicBlock *
3469 SITargetLowering::splitKillBlock(MachineInstr &MI,
3470                                  MachineBasicBlock *BB) const {
3471   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3472   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3473   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3474   return SplitBB;
3475 }
3476 
3477 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3478 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3479 // be the first instruction in the remainder block.
3480 //
3481 /// \returns { LoopBody, Remainder }
3482 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3483 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3484   MachineFunction *MF = MBB.getParent();
3485   MachineBasicBlock::iterator I(&MI);
3486 
3487   // To insert the loop we need to split the block. Move everything after this
3488   // point to a new block, and insert a new empty block between the two.
3489   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3490   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3491   MachineFunction::iterator MBBI(MBB);
3492   ++MBBI;
3493 
3494   MF->insert(MBBI, LoopBB);
3495   MF->insert(MBBI, RemainderBB);
3496 
3497   LoopBB->addSuccessor(LoopBB);
3498   LoopBB->addSuccessor(RemainderBB);
3499 
3500   // Move the rest of the block into a new block.
3501   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3502 
3503   if (InstInLoop) {
3504     auto Next = std::next(I);
3505 
3506     // Move instruction to loop body.
3507     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3508 
3509     // Move the rest of the block.
3510     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3511   } else {
3512     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3513   }
3514 
3515   MBB.addSuccessor(LoopBB);
3516 
3517   return std::make_pair(LoopBB, RemainderBB);
3518 }
3519 
3520 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3521 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3522   MachineBasicBlock *MBB = MI.getParent();
3523   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3524   auto I = MI.getIterator();
3525   auto E = std::next(I);
3526 
3527   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3528     .addImm(0);
3529 
3530   MIBundleBuilder Bundler(*MBB, I, E);
3531   finalizeBundle(*MBB, Bundler.begin());
3532 }
3533 
3534 MachineBasicBlock *
3535 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3536                                          MachineBasicBlock *BB) const {
3537   const DebugLoc &DL = MI.getDebugLoc();
3538 
3539   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3540 
3541   MachineBasicBlock *LoopBB;
3542   MachineBasicBlock *RemainderBB;
3543   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3544 
3545   // Apparently kill flags are only valid if the def is in the same block?
3546   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3547     Src->setIsKill(false);
3548 
3549   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3550 
3551   MachineBasicBlock::iterator I = LoopBB->end();
3552 
3553   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3554     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3555 
3556   // Clear TRAP_STS.MEM_VIOL
3557   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3558     .addImm(0)
3559     .addImm(EncodedReg);
3560 
3561   bundleInstWithWaitcnt(MI);
3562 
3563   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3564 
3565   // Load and check TRAP_STS.MEM_VIOL
3566   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3567     .addImm(EncodedReg);
3568 
3569   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3570   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3571     .addReg(Reg, RegState::Kill)
3572     .addImm(0);
3573   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3574     .addMBB(LoopBB);
3575 
3576   return RemainderBB;
3577 }
3578 
3579 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3580 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3581 // will only do one iteration. In the worst case, this will loop 64 times.
3582 //
3583 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3584 static MachineBasicBlock::iterator
3585 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3586                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3587                        const DebugLoc &DL, const MachineOperand &Idx,
3588                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3589                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3590                        Register &SGPRIdxReg) {
3591 
3592   MachineFunction *MF = OrigBB.getParent();
3593   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3594   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3595   MachineBasicBlock::iterator I = LoopBB.begin();
3596 
3597   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3598   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3599   Register NewExec = MRI.createVirtualRegister(BoolRC);
3600   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3601   Register CondReg = MRI.createVirtualRegister(BoolRC);
3602 
3603   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3604     .addReg(InitReg)
3605     .addMBB(&OrigBB)
3606     .addReg(ResultReg)
3607     .addMBB(&LoopBB);
3608 
3609   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3610     .addReg(InitSaveExecReg)
3611     .addMBB(&OrigBB)
3612     .addReg(NewExec)
3613     .addMBB(&LoopBB);
3614 
3615   // Read the next variant <- also loop target.
3616   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3617       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3618 
3619   // Compare the just read M0 value to all possible Idx values.
3620   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3621       .addReg(CurrentIdxReg)
3622       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3623 
3624   // Update EXEC, save the original EXEC value to VCC.
3625   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3626                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3627           NewExec)
3628     .addReg(CondReg, RegState::Kill);
3629 
3630   MRI.setSimpleHint(NewExec, CondReg);
3631 
3632   if (UseGPRIdxMode) {
3633     if (Offset == 0) {
3634       SGPRIdxReg = CurrentIdxReg;
3635     } else {
3636       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3637       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3638           .addReg(CurrentIdxReg, RegState::Kill)
3639           .addImm(Offset);
3640     }
3641   } else {
3642     // Move index from VCC into M0
3643     if (Offset == 0) {
3644       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3645         .addReg(CurrentIdxReg, RegState::Kill);
3646     } else {
3647       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3648         .addReg(CurrentIdxReg, RegState::Kill)
3649         .addImm(Offset);
3650     }
3651   }
3652 
3653   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3654   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3655   MachineInstr *InsertPt =
3656     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3657                                                   : AMDGPU::S_XOR_B64_term), Exec)
3658       .addReg(Exec)
3659       .addReg(NewExec);
3660 
3661   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3662   // s_cbranch_scc0?
3663 
3664   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3665   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3666     .addMBB(&LoopBB);
3667 
3668   return InsertPt->getIterator();
3669 }
3670 
3671 // This has slightly sub-optimal regalloc when the source vector is killed by
3672 // the read. The register allocator does not understand that the kill is
3673 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3674 // subregister from it, using 1 more VGPR than necessary. This was saved when
3675 // this was expanded after register allocation.
3676 static MachineBasicBlock::iterator
3677 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3678                unsigned InitResultReg, unsigned PhiReg, int Offset,
3679                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3680   MachineFunction *MF = MBB.getParent();
3681   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3682   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3683   MachineRegisterInfo &MRI = MF->getRegInfo();
3684   const DebugLoc &DL = MI.getDebugLoc();
3685   MachineBasicBlock::iterator I(&MI);
3686 
3687   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3688   Register DstReg = MI.getOperand(0).getReg();
3689   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3690   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3691   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3692   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3693 
3694   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3695 
3696   // Save the EXEC mask
3697   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3698     .addReg(Exec);
3699 
3700   MachineBasicBlock *LoopBB;
3701   MachineBasicBlock *RemainderBB;
3702   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3703 
3704   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3705 
3706   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3707                                       InitResultReg, DstReg, PhiReg, TmpExec,
3708                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3709 
3710   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3711   MachineFunction::iterator MBBI(LoopBB);
3712   ++MBBI;
3713   MF->insert(MBBI, LandingPad);
3714   LoopBB->removeSuccessor(RemainderBB);
3715   LandingPad->addSuccessor(RemainderBB);
3716   LoopBB->addSuccessor(LandingPad);
3717   MachineBasicBlock::iterator First = LandingPad->begin();
3718   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3719     .addReg(SaveExec);
3720 
3721   return InsPt;
3722 }
3723 
3724 // Returns subreg index, offset
3725 static std::pair<unsigned, int>
3726 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3727                             const TargetRegisterClass *SuperRC,
3728                             unsigned VecReg,
3729                             int Offset) {
3730   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3731 
3732   // Skip out of bounds offsets, or else we would end up using an undefined
3733   // register.
3734   if (Offset >= NumElts || Offset < 0)
3735     return std::make_pair(AMDGPU::sub0, Offset);
3736 
3737   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3738 }
3739 
3740 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3741                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3742                                  int Offset) {
3743   MachineBasicBlock *MBB = MI.getParent();
3744   const DebugLoc &DL = MI.getDebugLoc();
3745   MachineBasicBlock::iterator I(&MI);
3746 
3747   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3748 
3749   assert(Idx->getReg() != AMDGPU::NoRegister);
3750 
3751   if (Offset == 0) {
3752     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3753   } else {
3754     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3755         .add(*Idx)
3756         .addImm(Offset);
3757   }
3758 }
3759 
3760 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3761                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3762                                    int Offset) {
3763   MachineBasicBlock *MBB = MI.getParent();
3764   const DebugLoc &DL = MI.getDebugLoc();
3765   MachineBasicBlock::iterator I(&MI);
3766 
3767   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3768 
3769   if (Offset == 0)
3770     return Idx->getReg();
3771 
3772   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3773   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3774       .add(*Idx)
3775       .addImm(Offset);
3776   return Tmp;
3777 }
3778 
3779 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3780                                           MachineBasicBlock &MBB,
3781                                           const GCNSubtarget &ST) {
3782   const SIInstrInfo *TII = ST.getInstrInfo();
3783   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3784   MachineFunction *MF = MBB.getParent();
3785   MachineRegisterInfo &MRI = MF->getRegInfo();
3786 
3787   Register Dst = MI.getOperand(0).getReg();
3788   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3789   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3790   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3791 
3792   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3793   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3794 
3795   unsigned SubReg;
3796   std::tie(SubReg, Offset)
3797     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3798 
3799   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3800 
3801   // Check for a SGPR index.
3802   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3803     MachineBasicBlock::iterator I(&MI);
3804     const DebugLoc &DL = MI.getDebugLoc();
3805 
3806     if (UseGPRIdxMode) {
3807       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3808       // to avoid interfering with other uses, so probably requires a new
3809       // optimization pass.
3810       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3811 
3812       const MCInstrDesc &GPRIDXDesc =
3813           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3814       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3815           .addReg(SrcReg)
3816           .addReg(Idx)
3817           .addImm(SubReg);
3818     } else {
3819       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3820 
3821       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3822         .addReg(SrcReg, 0, SubReg)
3823         .addReg(SrcReg, RegState::Implicit);
3824     }
3825 
3826     MI.eraseFromParent();
3827 
3828     return &MBB;
3829   }
3830 
3831   // Control flow needs to be inserted if indexing with a VGPR.
3832   const DebugLoc &DL = MI.getDebugLoc();
3833   MachineBasicBlock::iterator I(&MI);
3834 
3835   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3836   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3837 
3838   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3839 
3840   Register SGPRIdxReg;
3841   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3842                               UseGPRIdxMode, SGPRIdxReg);
3843 
3844   MachineBasicBlock *LoopBB = InsPt->getParent();
3845 
3846   if (UseGPRIdxMode) {
3847     const MCInstrDesc &GPRIDXDesc =
3848         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3849 
3850     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3851         .addReg(SrcReg)
3852         .addReg(SGPRIdxReg)
3853         .addImm(SubReg);
3854   } else {
3855     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3856       .addReg(SrcReg, 0, SubReg)
3857       .addReg(SrcReg, RegState::Implicit);
3858   }
3859 
3860   MI.eraseFromParent();
3861 
3862   return LoopBB;
3863 }
3864 
3865 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3866                                           MachineBasicBlock &MBB,
3867                                           const GCNSubtarget &ST) {
3868   const SIInstrInfo *TII = ST.getInstrInfo();
3869   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3870   MachineFunction *MF = MBB.getParent();
3871   MachineRegisterInfo &MRI = MF->getRegInfo();
3872 
3873   Register Dst = MI.getOperand(0).getReg();
3874   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3875   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3876   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3877   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3878   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3879   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3880 
3881   // This can be an immediate, but will be folded later.
3882   assert(Val->getReg());
3883 
3884   unsigned SubReg;
3885   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3886                                                          SrcVec->getReg(),
3887                                                          Offset);
3888   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3889 
3890   if (Idx->getReg() == AMDGPU::NoRegister) {
3891     MachineBasicBlock::iterator I(&MI);
3892     const DebugLoc &DL = MI.getDebugLoc();
3893 
3894     assert(Offset == 0);
3895 
3896     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3897         .add(*SrcVec)
3898         .add(*Val)
3899         .addImm(SubReg);
3900 
3901     MI.eraseFromParent();
3902     return &MBB;
3903   }
3904 
3905   // Check for a SGPR index.
3906   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3907     MachineBasicBlock::iterator I(&MI);
3908     const DebugLoc &DL = MI.getDebugLoc();
3909 
3910     if (UseGPRIdxMode) {
3911       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3912 
3913       const MCInstrDesc &GPRIDXDesc =
3914           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3915       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3916           .addReg(SrcVec->getReg())
3917           .add(*Val)
3918           .addReg(Idx)
3919           .addImm(SubReg);
3920     } else {
3921       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3922 
3923       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3924           TRI.getRegSizeInBits(*VecRC), 32, false);
3925       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3926           .addReg(SrcVec->getReg())
3927           .add(*Val)
3928           .addImm(SubReg);
3929     }
3930     MI.eraseFromParent();
3931     return &MBB;
3932   }
3933 
3934   // Control flow needs to be inserted if indexing with a VGPR.
3935   if (Val->isReg())
3936     MRI.clearKillFlags(Val->getReg());
3937 
3938   const DebugLoc &DL = MI.getDebugLoc();
3939 
3940   Register PhiReg = MRI.createVirtualRegister(VecRC);
3941 
3942   Register SGPRIdxReg;
3943   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3944                               UseGPRIdxMode, SGPRIdxReg);
3945   MachineBasicBlock *LoopBB = InsPt->getParent();
3946 
3947   if (UseGPRIdxMode) {
3948     const MCInstrDesc &GPRIDXDesc =
3949         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3950 
3951     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3952         .addReg(PhiReg)
3953         .add(*Val)
3954         .addReg(SGPRIdxReg)
3955         .addImm(AMDGPU::sub0);
3956   } else {
3957     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3958         TRI.getRegSizeInBits(*VecRC), 32, false);
3959     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3960         .addReg(PhiReg)
3961         .add(*Val)
3962         .addImm(AMDGPU::sub0);
3963   }
3964 
3965   MI.eraseFromParent();
3966   return LoopBB;
3967 }
3968 
3969 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3970   MachineInstr &MI, MachineBasicBlock *BB) const {
3971 
3972   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3973   MachineFunction *MF = BB->getParent();
3974   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3975 
3976   switch (MI.getOpcode()) {
3977   case AMDGPU::S_UADDO_PSEUDO:
3978   case AMDGPU::S_USUBO_PSEUDO: {
3979     const DebugLoc &DL = MI.getDebugLoc();
3980     MachineOperand &Dest0 = MI.getOperand(0);
3981     MachineOperand &Dest1 = MI.getOperand(1);
3982     MachineOperand &Src0 = MI.getOperand(2);
3983     MachineOperand &Src1 = MI.getOperand(3);
3984 
3985     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3986                        ? AMDGPU::S_ADD_I32
3987                        : AMDGPU::S_SUB_I32;
3988     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3989 
3990     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3991         .addImm(1)
3992         .addImm(0);
3993 
3994     MI.eraseFromParent();
3995     return BB;
3996   }
3997   case AMDGPU::S_ADD_U64_PSEUDO:
3998   case AMDGPU::S_SUB_U64_PSEUDO: {
3999     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4000     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4001     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4002     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4003     const DebugLoc &DL = MI.getDebugLoc();
4004 
4005     MachineOperand &Dest = MI.getOperand(0);
4006     MachineOperand &Src0 = MI.getOperand(1);
4007     MachineOperand &Src1 = MI.getOperand(2);
4008 
4009     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4010     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4011 
4012     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4013         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4014     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4015         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4016 
4017     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4018         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4019     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4020         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4021 
4022     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4023 
4024     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4025     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4026     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4027     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4028     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4029         .addReg(DestSub0)
4030         .addImm(AMDGPU::sub0)
4031         .addReg(DestSub1)
4032         .addImm(AMDGPU::sub1);
4033     MI.eraseFromParent();
4034     return BB;
4035   }
4036   case AMDGPU::V_ADD_U64_PSEUDO:
4037   case AMDGPU::V_SUB_U64_PSEUDO: {
4038     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4039     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4040     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4041     const DebugLoc &DL = MI.getDebugLoc();
4042 
4043     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4044 
4045     MachineOperand &Dest = MI.getOperand(0);
4046     MachineOperand &Src0 = MI.getOperand(1);
4047     MachineOperand &Src1 = MI.getOperand(2);
4048 
4049     if (IsAdd && ST.hasLshlAddB64()) {
4050       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4051                          Dest.getReg())
4052                      .add(Src0)
4053                      .addImm(0)
4054                      .add(Src1);
4055       TII->legalizeOperands(*Add);
4056       MI.eraseFromParent();
4057       return BB;
4058     }
4059 
4060     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4061 
4062     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4063     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4064 
4065     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4066     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4067 
4068     const TargetRegisterClass *Src0RC = Src0.isReg()
4069                                             ? MRI.getRegClass(Src0.getReg())
4070                                             : &AMDGPU::VReg_64RegClass;
4071     const TargetRegisterClass *Src1RC = Src1.isReg()
4072                                             ? MRI.getRegClass(Src1.getReg())
4073                                             : &AMDGPU::VReg_64RegClass;
4074 
4075     const TargetRegisterClass *Src0SubRC =
4076         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4077     const TargetRegisterClass *Src1SubRC =
4078         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4079 
4080     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4081         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4082     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4083         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4084 
4085     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4086         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4087     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4088         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4089 
4090     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4091     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4092                                .addReg(CarryReg, RegState::Define)
4093                                .add(SrcReg0Sub0)
4094                                .add(SrcReg1Sub0)
4095                                .addImm(0); // clamp bit
4096 
4097     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4098     MachineInstr *HiHalf =
4099         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4100             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4101             .add(SrcReg0Sub1)
4102             .add(SrcReg1Sub1)
4103             .addReg(CarryReg, RegState::Kill)
4104             .addImm(0); // clamp bit
4105 
4106     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4107         .addReg(DestSub0)
4108         .addImm(AMDGPU::sub0)
4109         .addReg(DestSub1)
4110         .addImm(AMDGPU::sub1);
4111     TII->legalizeOperands(*LoHalf);
4112     TII->legalizeOperands(*HiHalf);
4113     MI.eraseFromParent();
4114     return BB;
4115   }
4116   case AMDGPU::S_ADD_CO_PSEUDO:
4117   case AMDGPU::S_SUB_CO_PSEUDO: {
4118     // This pseudo has a chance to be selected
4119     // only from uniform add/subcarry node. All the VGPR operands
4120     // therefore assumed to be splat vectors.
4121     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4122     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4123     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4124     MachineBasicBlock::iterator MII = MI;
4125     const DebugLoc &DL = MI.getDebugLoc();
4126     MachineOperand &Dest = MI.getOperand(0);
4127     MachineOperand &CarryDest = MI.getOperand(1);
4128     MachineOperand &Src0 = MI.getOperand(2);
4129     MachineOperand &Src1 = MI.getOperand(3);
4130     MachineOperand &Src2 = MI.getOperand(4);
4131     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4132                        ? AMDGPU::S_ADDC_U32
4133                        : AMDGPU::S_SUBB_U32;
4134     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4135       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4136       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4137           .addReg(Src0.getReg());
4138       Src0.setReg(RegOp0);
4139     }
4140     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4141       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4142       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4143           .addReg(Src1.getReg());
4144       Src1.setReg(RegOp1);
4145     }
4146     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4147     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4148       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4149           .addReg(Src2.getReg());
4150       Src2.setReg(RegOp2);
4151     }
4152 
4153     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4154     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4155     assert(WaveSize == 64 || WaveSize == 32);
4156 
4157     if (WaveSize == 64) {
4158       if (ST.hasScalarCompareEq64()) {
4159         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4160             .addReg(Src2.getReg())
4161             .addImm(0);
4162       } else {
4163         const TargetRegisterClass *SubRC =
4164             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4165         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4166             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4167         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4168             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4169         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4170 
4171         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4172             .add(Src2Sub0)
4173             .add(Src2Sub1);
4174 
4175         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4176             .addReg(Src2_32, RegState::Kill)
4177             .addImm(0);
4178       }
4179     } else {
4180       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4181           .addReg(Src2.getReg())
4182           .addImm(0);
4183     }
4184 
4185     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4186 
4187     unsigned SelOpc =
4188         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4189 
4190     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4191         .addImm(-1)
4192         .addImm(0);
4193 
4194     MI.eraseFromParent();
4195     return BB;
4196   }
4197   case AMDGPU::SI_INIT_M0: {
4198     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4199             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4200         .add(MI.getOperand(0));
4201     MI.eraseFromParent();
4202     return BB;
4203   }
4204   case AMDGPU::GET_GROUPSTATICSIZE: {
4205     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4206            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4207     DebugLoc DL = MI.getDebugLoc();
4208     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4209         .add(MI.getOperand(0))
4210         .addImm(MFI->getLDSSize());
4211     MI.eraseFromParent();
4212     return BB;
4213   }
4214   case AMDGPU::SI_INDIRECT_SRC_V1:
4215   case AMDGPU::SI_INDIRECT_SRC_V2:
4216   case AMDGPU::SI_INDIRECT_SRC_V4:
4217   case AMDGPU::SI_INDIRECT_SRC_V8:
4218   case AMDGPU::SI_INDIRECT_SRC_V16:
4219   case AMDGPU::SI_INDIRECT_SRC_V32:
4220     return emitIndirectSrc(MI, *BB, *getSubtarget());
4221   case AMDGPU::SI_INDIRECT_DST_V1:
4222   case AMDGPU::SI_INDIRECT_DST_V2:
4223   case AMDGPU::SI_INDIRECT_DST_V4:
4224   case AMDGPU::SI_INDIRECT_DST_V8:
4225   case AMDGPU::SI_INDIRECT_DST_V16:
4226   case AMDGPU::SI_INDIRECT_DST_V32:
4227     return emitIndirectDst(MI, *BB, *getSubtarget());
4228   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4229   case AMDGPU::SI_KILL_I1_PSEUDO:
4230     return splitKillBlock(MI, BB);
4231   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4232     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4233     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4234     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4235 
4236     Register Dst = MI.getOperand(0).getReg();
4237     Register Src0 = MI.getOperand(1).getReg();
4238     Register Src1 = MI.getOperand(2).getReg();
4239     const DebugLoc &DL = MI.getDebugLoc();
4240     Register SrcCond = MI.getOperand(3).getReg();
4241 
4242     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4243     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4244     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4245     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4246 
4247     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4248       .addReg(SrcCond);
4249     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4250       .addImm(0)
4251       .addReg(Src0, 0, AMDGPU::sub0)
4252       .addImm(0)
4253       .addReg(Src1, 0, AMDGPU::sub0)
4254       .addReg(SrcCondCopy);
4255     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4256       .addImm(0)
4257       .addReg(Src0, 0, AMDGPU::sub1)
4258       .addImm(0)
4259       .addReg(Src1, 0, AMDGPU::sub1)
4260       .addReg(SrcCondCopy);
4261 
4262     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4263       .addReg(DstLo)
4264       .addImm(AMDGPU::sub0)
4265       .addReg(DstHi)
4266       .addImm(AMDGPU::sub1);
4267     MI.eraseFromParent();
4268     return BB;
4269   }
4270   case AMDGPU::SI_BR_UNDEF: {
4271     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4272     const DebugLoc &DL = MI.getDebugLoc();
4273     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4274                            .add(MI.getOperand(0));
4275     Br->getOperand(1).setIsUndef(true); // read undef SCC
4276     MI.eraseFromParent();
4277     return BB;
4278   }
4279   case AMDGPU::ADJCALLSTACKUP:
4280   case AMDGPU::ADJCALLSTACKDOWN: {
4281     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4282     MachineInstrBuilder MIB(*MF, &MI);
4283     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4284        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4285     return BB;
4286   }
4287   case AMDGPU::SI_CALL_ISEL: {
4288     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4289     const DebugLoc &DL = MI.getDebugLoc();
4290 
4291     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4292 
4293     MachineInstrBuilder MIB;
4294     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4295 
4296     for (const MachineOperand &MO : MI.operands())
4297       MIB.add(MO);
4298 
4299     MIB.cloneMemRefs(MI);
4300     MI.eraseFromParent();
4301     return BB;
4302   }
4303   case AMDGPU::V_ADD_CO_U32_e32:
4304   case AMDGPU::V_SUB_CO_U32_e32:
4305   case AMDGPU::V_SUBREV_CO_U32_e32: {
4306     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4307     const DebugLoc &DL = MI.getDebugLoc();
4308     unsigned Opc = MI.getOpcode();
4309 
4310     bool NeedClampOperand = false;
4311     if (TII->pseudoToMCOpcode(Opc) == -1) {
4312       Opc = AMDGPU::getVOPe64(Opc);
4313       NeedClampOperand = true;
4314     }
4315 
4316     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4317     if (TII->isVOP3(*I)) {
4318       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4319       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4320       I.addReg(TRI->getVCC(), RegState::Define);
4321     }
4322     I.add(MI.getOperand(1))
4323      .add(MI.getOperand(2));
4324     if (NeedClampOperand)
4325       I.addImm(0); // clamp bit for e64 encoding
4326 
4327     TII->legalizeOperands(*I);
4328 
4329     MI.eraseFromParent();
4330     return BB;
4331   }
4332   case AMDGPU::V_ADDC_U32_e32:
4333   case AMDGPU::V_SUBB_U32_e32:
4334   case AMDGPU::V_SUBBREV_U32_e32:
4335     // These instructions have an implicit use of vcc which counts towards the
4336     // constant bus limit.
4337     TII->legalizeOperands(MI);
4338     return BB;
4339   case AMDGPU::DS_GWS_INIT:
4340   case AMDGPU::DS_GWS_SEMA_BR:
4341   case AMDGPU::DS_GWS_BARRIER:
4342     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
4343     LLVM_FALLTHROUGH;
4344   case AMDGPU::DS_GWS_SEMA_V:
4345   case AMDGPU::DS_GWS_SEMA_P:
4346   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4347     // A s_waitcnt 0 is required to be the instruction immediately following.
4348     if (getSubtarget()->hasGWSAutoReplay()) {
4349       bundleInstWithWaitcnt(MI);
4350       return BB;
4351     }
4352 
4353     return emitGWSMemViolTestLoop(MI, BB);
4354   case AMDGPU::S_SETREG_B32: {
4355     // Try to optimize cases that only set the denormal mode or rounding mode.
4356     //
4357     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4358     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4359     // instead.
4360     //
4361     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4362     // allow you to have a no side effect instruction in the output of a
4363     // sideeffecting pattern.
4364     unsigned ID, Offset, Width;
4365     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4366     if (ID != AMDGPU::Hwreg::ID_MODE)
4367       return BB;
4368 
4369     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4370     const unsigned SetMask = WidthMask << Offset;
4371 
4372     if (getSubtarget()->hasDenormModeInst()) {
4373       unsigned SetDenormOp = 0;
4374       unsigned SetRoundOp = 0;
4375 
4376       // The dedicated instructions can only set the whole denorm or round mode
4377       // at once, not a subset of bits in either.
4378       if (SetMask ==
4379           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4380         // If this fully sets both the round and denorm mode, emit the two
4381         // dedicated instructions for these.
4382         SetRoundOp = AMDGPU::S_ROUND_MODE;
4383         SetDenormOp = AMDGPU::S_DENORM_MODE;
4384       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4385         SetRoundOp = AMDGPU::S_ROUND_MODE;
4386       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4387         SetDenormOp = AMDGPU::S_DENORM_MODE;
4388       }
4389 
4390       if (SetRoundOp || SetDenormOp) {
4391         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4392         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4393         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4394           unsigned ImmVal = Def->getOperand(1).getImm();
4395           if (SetRoundOp) {
4396             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4397                 .addImm(ImmVal & 0xf);
4398 
4399             // If we also have the denorm mode, get just the denorm mode bits.
4400             ImmVal >>= 4;
4401           }
4402 
4403           if (SetDenormOp) {
4404             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4405                 .addImm(ImmVal & 0xf);
4406           }
4407 
4408           MI.eraseFromParent();
4409           return BB;
4410         }
4411       }
4412     }
4413 
4414     // If only FP bits are touched, used the no side effects pseudo.
4415     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4416                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4417       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4418 
4419     return BB;
4420   }
4421   default:
4422     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4423   }
4424 }
4425 
4426 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4427   return isTypeLegal(VT.getScalarType());
4428 }
4429 
4430 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const {
4431   switch (Op.getValue(0).getSimpleValueType().SimpleTy) {
4432   case MVT::f32:
4433     return Subtarget->hasAtomicFaddRtnInsts();
4434   case MVT::v2f16:
4435   case MVT::f64:
4436     return Subtarget->hasGFX90AInsts();
4437   default:
4438     return false;
4439   }
4440 }
4441 
4442 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4443   // This currently forces unfolding various combinations of fsub into fma with
4444   // free fneg'd operands. As long as we have fast FMA (controlled by
4445   // isFMAFasterThanFMulAndFAdd), we should perform these.
4446 
4447   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4448   // most of these combines appear to be cycle neutral but save on instruction
4449   // count / code size.
4450   return true;
4451 }
4452 
4453 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4454 
4455 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4456                                          EVT VT) const {
4457   if (!VT.isVector()) {
4458     return MVT::i1;
4459   }
4460   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4461 }
4462 
4463 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4464   // TODO: Should i16 be used always if legal? For now it would force VALU
4465   // shifts.
4466   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4467 }
4468 
4469 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4470   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4471              ? Ty.changeElementSize(16)
4472              : Ty.changeElementSize(32);
4473 }
4474 
4475 // Answering this is somewhat tricky and depends on the specific device which
4476 // have different rates for fma or all f64 operations.
4477 //
4478 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4479 // regardless of which device (although the number of cycles differs between
4480 // devices), so it is always profitable for f64.
4481 //
4482 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4483 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4484 // which we can always do even without fused FP ops since it returns the same
4485 // result as the separate operations and since it is always full
4486 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4487 // however does not support denormals, so we do report fma as faster if we have
4488 // a fast fma device and require denormals.
4489 //
4490 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4491                                                   EVT VT) const {
4492   VT = VT.getScalarType();
4493 
4494   switch (VT.getSimpleVT().SimpleTy) {
4495   case MVT::f32: {
4496     // If mad is not available this depends only on if f32 fma is full rate.
4497     if (!Subtarget->hasMadMacF32Insts())
4498       return Subtarget->hasFastFMAF32();
4499 
4500     // Otherwise f32 mad is always full rate and returns the same result as
4501     // the separate operations so should be preferred over fma.
4502     // However does not support denormals.
4503     if (hasFP32Denormals(MF))
4504       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4505 
4506     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4507     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4508   }
4509   case MVT::f64:
4510     return true;
4511   case MVT::f16:
4512     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4513   default:
4514     break;
4515   }
4516 
4517   return false;
4518 }
4519 
4520 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4521                                                   LLT Ty) const {
4522   switch (Ty.getScalarSizeInBits()) {
4523   case 16:
4524     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4525   case 32:
4526     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4527   case 64:
4528     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4529   default:
4530     break;
4531   }
4532 
4533   return false;
4534 }
4535 
4536 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4537   if (!Ty.isScalar())
4538     return false;
4539 
4540   if (Ty.getScalarSizeInBits() == 16)
4541     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4542   if (Ty.getScalarSizeInBits() == 32)
4543     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4544 
4545   return false;
4546 }
4547 
4548 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4549                                    const SDNode *N) const {
4550   // TODO: Check future ftz flag
4551   // v_mad_f32/v_mac_f32 do not support denormals.
4552   EVT VT = N->getValueType(0);
4553   if (VT == MVT::f32)
4554     return Subtarget->hasMadMacF32Insts() &&
4555            !hasFP32Denormals(DAG.getMachineFunction());
4556   if (VT == MVT::f16) {
4557     return Subtarget->hasMadF16() &&
4558            !hasFP64FP16Denormals(DAG.getMachineFunction());
4559   }
4560 
4561   return false;
4562 }
4563 
4564 //===----------------------------------------------------------------------===//
4565 // Custom DAG Lowering Operations
4566 //===----------------------------------------------------------------------===//
4567 
4568 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4569 // wider vector type is legal.
4570 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4571                                              SelectionDAG &DAG) const {
4572   unsigned Opc = Op.getOpcode();
4573   EVT VT = Op.getValueType();
4574   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4575 
4576   SDValue Lo, Hi;
4577   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4578 
4579   SDLoc SL(Op);
4580   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4581                              Op->getFlags());
4582   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4583                              Op->getFlags());
4584 
4585   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4586 }
4587 
4588 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4589 // wider vector type is legal.
4590 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4591                                               SelectionDAG &DAG) const {
4592   unsigned Opc = Op.getOpcode();
4593   EVT VT = Op.getValueType();
4594   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4595          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
4596          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4597          VT == MVT::v32f32);
4598 
4599   SDValue Lo0, Hi0;
4600   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4601   SDValue Lo1, Hi1;
4602   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4603 
4604   SDLoc SL(Op);
4605 
4606   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4607                              Op->getFlags());
4608   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4609                              Op->getFlags());
4610 
4611   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4612 }
4613 
4614 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4615                                               SelectionDAG &DAG) const {
4616   unsigned Opc = Op.getOpcode();
4617   EVT VT = Op.getValueType();
4618   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4619          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
4620          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4621          VT == MVT::v32f32);
4622 
4623   SDValue Lo0, Hi0;
4624   SDValue Op0 = Op.getOperand(0);
4625   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4626                          ? DAG.SplitVectorOperand(Op.getNode(), 0)
4627                          : std::make_pair(Op0, Op0);
4628   SDValue Lo1, Hi1;
4629   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4630   SDValue Lo2, Hi2;
4631   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4632 
4633   SDLoc SL(Op);
4634   auto ResVT = DAG.GetSplitDestVTs(VT);
4635 
4636   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4637                              Op->getFlags());
4638   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4639                              Op->getFlags());
4640 
4641   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4642 }
4643 
4644 
4645 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4646   switch (Op.getOpcode()) {
4647   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4648   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4649   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4650   case ISD::LOAD: {
4651     SDValue Result = LowerLOAD(Op, DAG);
4652     assert((!Result.getNode() ||
4653             Result.getNode()->getNumValues() == 2) &&
4654            "Load should return a value and a chain");
4655     return Result;
4656   }
4657 
4658   case ISD::FSIN:
4659   case ISD::FCOS:
4660     return LowerTrig(Op, DAG);
4661   case ISD::SELECT: return LowerSELECT(Op, DAG);
4662   case ISD::FDIV: return LowerFDIV(Op, DAG);
4663   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4664   case ISD::STORE: return LowerSTORE(Op, DAG);
4665   case ISD::GlobalAddress: {
4666     MachineFunction &MF = DAG.getMachineFunction();
4667     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4668     return LowerGlobalAddress(MFI, Op, DAG);
4669   }
4670   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4671   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4672   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4673   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4674   case ISD::INSERT_SUBVECTOR:
4675     return lowerINSERT_SUBVECTOR(Op, DAG);
4676   case ISD::INSERT_VECTOR_ELT:
4677     return lowerINSERT_VECTOR_ELT(Op, DAG);
4678   case ISD::EXTRACT_VECTOR_ELT:
4679     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4680   case ISD::VECTOR_SHUFFLE:
4681     return lowerVECTOR_SHUFFLE(Op, DAG);
4682   case ISD::SCALAR_TO_VECTOR:
4683     return lowerSCALAR_TO_VECTOR(Op, DAG);
4684   case ISD::BUILD_VECTOR:
4685     return lowerBUILD_VECTOR(Op, DAG);
4686   case ISD::FP_ROUND:
4687     return lowerFP_ROUND(Op, DAG);
4688   case ISD::FPTRUNC_ROUND: {
4689     unsigned Opc;
4690     SDLoc DL(Op);
4691 
4692     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4693       return SDValue();
4694 
4695     // Get the rounding mode from the last operand
4696     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4697     if (RoundMode == (int)RoundingMode::TowardPositive)
4698       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4699     else if (RoundMode == (int)RoundingMode::TowardNegative)
4700       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4701     else
4702       return SDValue();
4703 
4704     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4705   }
4706   case ISD::TRAP:
4707     return lowerTRAP(Op, DAG);
4708   case ISD::DEBUGTRAP:
4709     return lowerDEBUGTRAP(Op, DAG);
4710   case ISD::FABS:
4711   case ISD::FNEG:
4712   case ISD::FCANONICALIZE:
4713   case ISD::BSWAP:
4714     return splitUnaryVectorOp(Op, DAG);
4715   case ISD::FMINNUM:
4716   case ISD::FMAXNUM:
4717     return lowerFMINNUM_FMAXNUM(Op, DAG);
4718   case ISD::FMA:
4719     return splitTernaryVectorOp(Op, DAG);
4720   case ISD::FP_TO_SINT:
4721   case ISD::FP_TO_UINT:
4722     return LowerFP_TO_INT(Op, DAG);
4723   case ISD::SHL:
4724   case ISD::SRA:
4725   case ISD::SRL:
4726   case ISD::ADD:
4727   case ISD::SUB:
4728   case ISD::MUL:
4729   case ISD::SMIN:
4730   case ISD::SMAX:
4731   case ISD::UMIN:
4732   case ISD::UMAX:
4733   case ISD::FADD:
4734   case ISD::FMUL:
4735   case ISD::FMINNUM_IEEE:
4736   case ISD::FMAXNUM_IEEE:
4737   case ISD::UADDSAT:
4738   case ISD::USUBSAT:
4739   case ISD::SADDSAT:
4740   case ISD::SSUBSAT:
4741     return splitBinaryVectorOp(Op, DAG);
4742   case ISD::SMULO:
4743   case ISD::UMULO:
4744     return lowerXMULO(Op, DAG);
4745   case ISD::SMUL_LOHI:
4746   case ISD::UMUL_LOHI:
4747     return lowerXMUL_LOHI(Op, DAG);
4748   case ISD::DYNAMIC_STACKALLOC:
4749     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4750   }
4751   return SDValue();
4752 }
4753 
4754 // Used for D16: Casts the result of an instruction into the right vector,
4755 // packs values if loads return unpacked values.
4756 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4757                                        const SDLoc &DL,
4758                                        SelectionDAG &DAG, bool Unpacked) {
4759   if (!LoadVT.isVector())
4760     return Result;
4761 
4762   // Cast back to the original packed type or to a larger type that is a
4763   // multiple of 32 bit for D16. Widening the return type is a required for
4764   // legalization.
4765   EVT FittingLoadVT = LoadVT;
4766   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4767     FittingLoadVT =
4768         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4769                          LoadVT.getVectorNumElements() + 1);
4770   }
4771 
4772   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4773     // Truncate to v2i16/v4i16.
4774     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4775 
4776     // Workaround legalizer not scalarizing truncate after vector op
4777     // legalization but not creating intermediate vector trunc.
4778     SmallVector<SDValue, 4> Elts;
4779     DAG.ExtractVectorElements(Result, Elts);
4780     for (SDValue &Elt : Elts)
4781       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4782 
4783     // Pad illegal v1i16/v3fi6 to v4i16
4784     if ((LoadVT.getVectorNumElements() % 2) == 1)
4785       Elts.push_back(DAG.getUNDEF(MVT::i16));
4786 
4787     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4788 
4789     // Bitcast to original type (v2f16/v4f16).
4790     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4791   }
4792 
4793   // Cast back to the original packed type.
4794   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4795 }
4796 
4797 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4798                                               MemSDNode *M,
4799                                               SelectionDAG &DAG,
4800                                               ArrayRef<SDValue> Ops,
4801                                               bool IsIntrinsic) const {
4802   SDLoc DL(M);
4803 
4804   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4805   EVT LoadVT = M->getValueType(0);
4806 
4807   EVT EquivLoadVT = LoadVT;
4808   if (LoadVT.isVector()) {
4809     if (Unpacked) {
4810       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4811                                      LoadVT.getVectorNumElements());
4812     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4813       // Widen v3f16 to legal type
4814       EquivLoadVT =
4815           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4816                            LoadVT.getVectorNumElements() + 1);
4817     }
4818   }
4819 
4820   // Change from v4f16/v2f16 to EquivLoadVT.
4821   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4822 
4823   SDValue Load
4824     = DAG.getMemIntrinsicNode(
4825       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4826       VTList, Ops, M->getMemoryVT(),
4827       M->getMemOperand());
4828 
4829   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4830 
4831   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4832 }
4833 
4834 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4835                                              SelectionDAG &DAG,
4836                                              ArrayRef<SDValue> Ops) const {
4837   SDLoc DL(M);
4838   EVT LoadVT = M->getValueType(0);
4839   EVT EltType = LoadVT.getScalarType();
4840   EVT IntVT = LoadVT.changeTypeToInteger();
4841 
4842   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4843 
4844   unsigned Opc =
4845       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4846 
4847   if (IsD16) {
4848     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4849   }
4850 
4851   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4852   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4853     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4854 
4855   if (isTypeLegal(LoadVT)) {
4856     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4857                                M->getMemOperand(), DAG);
4858   }
4859 
4860   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4861   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4862   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4863                                         M->getMemOperand(), DAG);
4864   return DAG.getMergeValues(
4865       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4866       DL);
4867 }
4868 
4869 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4870                                   SDNode *N, SelectionDAG &DAG) {
4871   EVT VT = N->getValueType(0);
4872   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4873   unsigned CondCode = CD->getZExtValue();
4874   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4875     return DAG.getUNDEF(VT);
4876 
4877   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4878 
4879   SDValue LHS = N->getOperand(1);
4880   SDValue RHS = N->getOperand(2);
4881 
4882   SDLoc DL(N);
4883 
4884   EVT CmpVT = LHS.getValueType();
4885   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4886     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4887       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4888     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4889     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4890   }
4891 
4892   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4893 
4894   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4895   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4896 
4897   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4898                               DAG.getCondCode(CCOpcode));
4899   if (VT.bitsEq(CCVT))
4900     return SetCC;
4901   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4902 }
4903 
4904 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4905                                   SDNode *N, SelectionDAG &DAG) {
4906   EVT VT = N->getValueType(0);
4907   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4908 
4909   unsigned CondCode = CD->getZExtValue();
4910   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4911     return DAG.getUNDEF(VT);
4912 
4913   SDValue Src0 = N->getOperand(1);
4914   SDValue Src1 = N->getOperand(2);
4915   EVT CmpVT = Src0.getValueType();
4916   SDLoc SL(N);
4917 
4918   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4919     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4920     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4921   }
4922 
4923   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4924   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4925   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4926   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4927   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4928                               Src1, DAG.getCondCode(CCOpcode));
4929   if (VT.bitsEq(CCVT))
4930     return SetCC;
4931   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4932 }
4933 
4934 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4935                                     SelectionDAG &DAG) {
4936   EVT VT = N->getValueType(0);
4937   SDValue Src = N->getOperand(1);
4938   SDLoc SL(N);
4939 
4940   if (Src.getOpcode() == ISD::SETCC) {
4941     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4942     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4943                        Src.getOperand(1), Src.getOperand(2));
4944   }
4945   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4946     // (ballot 0) -> 0
4947     if (Arg->isZero())
4948       return DAG.getConstant(0, SL, VT);
4949 
4950     // (ballot 1) -> EXEC/EXEC_LO
4951     if (Arg->isOne()) {
4952       Register Exec;
4953       if (VT.getScalarSizeInBits() == 32)
4954         Exec = AMDGPU::EXEC_LO;
4955       else if (VT.getScalarSizeInBits() == 64)
4956         Exec = AMDGPU::EXEC;
4957       else
4958         return SDValue();
4959 
4960       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4961     }
4962   }
4963 
4964   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4965   // ISD::SETNE)
4966   return DAG.getNode(
4967       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4968       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4969 }
4970 
4971 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4972                                           SmallVectorImpl<SDValue> &Results,
4973                                           SelectionDAG &DAG) const {
4974   switch (N->getOpcode()) {
4975   case ISD::INSERT_VECTOR_ELT: {
4976     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4977       Results.push_back(Res);
4978     return;
4979   }
4980   case ISD::EXTRACT_VECTOR_ELT: {
4981     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4982       Results.push_back(Res);
4983     return;
4984   }
4985   case ISD::INTRINSIC_WO_CHAIN: {
4986     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4987     switch (IID) {
4988     case Intrinsic::amdgcn_cvt_pkrtz: {
4989       SDValue Src0 = N->getOperand(1);
4990       SDValue Src1 = N->getOperand(2);
4991       SDLoc SL(N);
4992       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4993                                 Src0, Src1);
4994       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4995       return;
4996     }
4997     case Intrinsic::amdgcn_cvt_pknorm_i16:
4998     case Intrinsic::amdgcn_cvt_pknorm_u16:
4999     case Intrinsic::amdgcn_cvt_pk_i16:
5000     case Intrinsic::amdgcn_cvt_pk_u16: {
5001       SDValue Src0 = N->getOperand(1);
5002       SDValue Src1 = N->getOperand(2);
5003       SDLoc SL(N);
5004       unsigned Opcode;
5005 
5006       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5007         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5008       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5009         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5010       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5011         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5012       else
5013         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5014 
5015       EVT VT = N->getValueType(0);
5016       if (isTypeLegal(VT))
5017         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5018       else {
5019         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5020         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5021       }
5022       return;
5023     }
5024     }
5025     break;
5026   }
5027   case ISD::INTRINSIC_W_CHAIN: {
5028     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5029       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5030         // FIXME: Hacky
5031         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5032           Results.push_back(Res.getOperand(I));
5033         }
5034       } else {
5035         Results.push_back(Res);
5036         Results.push_back(Res.getValue(1));
5037       }
5038       return;
5039     }
5040 
5041     break;
5042   }
5043   case ISD::SELECT: {
5044     SDLoc SL(N);
5045     EVT VT = N->getValueType(0);
5046     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5047     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5048     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5049 
5050     EVT SelectVT = NewVT;
5051     if (NewVT.bitsLT(MVT::i32)) {
5052       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5053       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5054       SelectVT = MVT::i32;
5055     }
5056 
5057     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5058                                     N->getOperand(0), LHS, RHS);
5059 
5060     if (NewVT != SelectVT)
5061       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5062     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5063     return;
5064   }
5065   case ISD::FNEG: {
5066     if (N->getValueType(0) != MVT::v2f16)
5067       break;
5068 
5069     SDLoc SL(N);
5070     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5071 
5072     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5073                              BC,
5074                              DAG.getConstant(0x80008000, SL, MVT::i32));
5075     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5076     return;
5077   }
5078   case ISD::FABS: {
5079     if (N->getValueType(0) != MVT::v2f16)
5080       break;
5081 
5082     SDLoc SL(N);
5083     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5084 
5085     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5086                              BC,
5087                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5088     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5089     return;
5090   }
5091   default:
5092     break;
5093   }
5094 }
5095 
5096 /// Helper function for LowerBRCOND
5097 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5098 
5099   SDNode *Parent = Value.getNode();
5100   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5101        I != E; ++I) {
5102 
5103     if (I.getUse().get() != Value)
5104       continue;
5105 
5106     if (I->getOpcode() == Opcode)
5107       return *I;
5108   }
5109   return nullptr;
5110 }
5111 
5112 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5113   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5114     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5115     case Intrinsic::amdgcn_if:
5116       return AMDGPUISD::IF;
5117     case Intrinsic::amdgcn_else:
5118       return AMDGPUISD::ELSE;
5119     case Intrinsic::amdgcn_loop:
5120       return AMDGPUISD::LOOP;
5121     case Intrinsic::amdgcn_end_cf:
5122       llvm_unreachable("should not occur");
5123     default:
5124       return 0;
5125     }
5126   }
5127 
5128   // break, if_break, else_break are all only used as inputs to loop, not
5129   // directly as branch conditions.
5130   return 0;
5131 }
5132 
5133 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5134   const Triple &TT = getTargetMachine().getTargetTriple();
5135   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5136           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5137          AMDGPU::shouldEmitConstantsToTextSection(TT);
5138 }
5139 
5140 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5141   // FIXME: Either avoid relying on address space here or change the default
5142   // address space for functions to avoid the explicit check.
5143   return (GV->getValueType()->isFunctionTy() ||
5144           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5145          !shouldEmitFixup(GV) &&
5146          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5147 }
5148 
5149 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5150   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5151 }
5152 
5153 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5154   if (!GV->hasExternalLinkage())
5155     return true;
5156 
5157   const auto OS = getTargetMachine().getTargetTriple().getOS();
5158   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5159 }
5160 
5161 /// This transforms the control flow intrinsics to get the branch destination as
5162 /// last parameter, also switches branch target with BR if the need arise
5163 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5164                                       SelectionDAG &DAG) const {
5165   SDLoc DL(BRCOND);
5166 
5167   SDNode *Intr = BRCOND.getOperand(1).getNode();
5168   SDValue Target = BRCOND.getOperand(2);
5169   SDNode *BR = nullptr;
5170   SDNode *SetCC = nullptr;
5171 
5172   if (Intr->getOpcode() == ISD::SETCC) {
5173     // As long as we negate the condition everything is fine
5174     SetCC = Intr;
5175     Intr = SetCC->getOperand(0).getNode();
5176 
5177   } else {
5178     // Get the target from BR if we don't negate the condition
5179     BR = findUser(BRCOND, ISD::BR);
5180     assert(BR && "brcond missing unconditional branch user");
5181     Target = BR->getOperand(1);
5182   }
5183 
5184   unsigned CFNode = isCFIntrinsic(Intr);
5185   if (CFNode == 0) {
5186     // This is a uniform branch so we don't need to legalize.
5187     return BRCOND;
5188   }
5189 
5190   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5191                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5192 
5193   assert(!SetCC ||
5194         (SetCC->getConstantOperandVal(1) == 1 &&
5195          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5196                                                              ISD::SETNE));
5197 
5198   // operands of the new intrinsic call
5199   SmallVector<SDValue, 4> Ops;
5200   if (HaveChain)
5201     Ops.push_back(BRCOND.getOperand(0));
5202 
5203   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5204   Ops.push_back(Target);
5205 
5206   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5207 
5208   // build the new intrinsic call
5209   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5210 
5211   if (!HaveChain) {
5212     SDValue Ops[] =  {
5213       SDValue(Result, 0),
5214       BRCOND.getOperand(0)
5215     };
5216 
5217     Result = DAG.getMergeValues(Ops, DL).getNode();
5218   }
5219 
5220   if (BR) {
5221     // Give the branch instruction our target
5222     SDValue Ops[] = {
5223       BR->getOperand(0),
5224       BRCOND.getOperand(2)
5225     };
5226     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5227     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5228   }
5229 
5230   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5231 
5232   // Copy the intrinsic results to registers
5233   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5234     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5235     if (!CopyToReg)
5236       continue;
5237 
5238     Chain = DAG.getCopyToReg(
5239       Chain, DL,
5240       CopyToReg->getOperand(1),
5241       SDValue(Result, i - 1),
5242       SDValue());
5243 
5244     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5245   }
5246 
5247   // Remove the old intrinsic from the chain
5248   DAG.ReplaceAllUsesOfValueWith(
5249     SDValue(Intr, Intr->getNumValues() - 1),
5250     Intr->getOperand(0));
5251 
5252   return Chain;
5253 }
5254 
5255 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5256                                           SelectionDAG &DAG) const {
5257   MVT VT = Op.getSimpleValueType();
5258   SDLoc DL(Op);
5259   // Checking the depth
5260   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5261     return DAG.getConstant(0, DL, VT);
5262 
5263   MachineFunction &MF = DAG.getMachineFunction();
5264   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5265   // Check for kernel and shader functions
5266   if (Info->isEntryFunction())
5267     return DAG.getConstant(0, DL, VT);
5268 
5269   MachineFrameInfo &MFI = MF.getFrameInfo();
5270   // There is a call to @llvm.returnaddress in this function
5271   MFI.setReturnAddressIsTaken(true);
5272 
5273   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5274   // Get the return address reg and mark it as an implicit live-in
5275   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5276 
5277   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5278 }
5279 
5280 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5281                                             SDValue Op,
5282                                             const SDLoc &DL,
5283                                             EVT VT) const {
5284   return Op.getValueType().bitsLE(VT) ?
5285       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5286     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5287                 DAG.getTargetConstant(0, DL, MVT::i32));
5288 }
5289 
5290 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5291   assert(Op.getValueType() == MVT::f16 &&
5292          "Do not know how to custom lower FP_ROUND for non-f16 type");
5293 
5294   SDValue Src = Op.getOperand(0);
5295   EVT SrcVT = Src.getValueType();
5296   if (SrcVT != MVT::f64)
5297     return Op;
5298 
5299   SDLoc DL(Op);
5300 
5301   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5302   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5303   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5304 }
5305 
5306 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5307                                                SelectionDAG &DAG) const {
5308   EVT VT = Op.getValueType();
5309   const MachineFunction &MF = DAG.getMachineFunction();
5310   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5311   bool IsIEEEMode = Info->getMode().IEEE;
5312 
5313   // FIXME: Assert during selection that this is only selected for
5314   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5315   // mode functions, but this happens to be OK since it's only done in cases
5316   // where there is known no sNaN.
5317   if (IsIEEEMode)
5318     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5319 
5320   if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16)
5321     return splitBinaryVectorOp(Op, DAG);
5322   return Op;
5323 }
5324 
5325 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5326   EVT VT = Op.getValueType();
5327   SDLoc SL(Op);
5328   SDValue LHS = Op.getOperand(0);
5329   SDValue RHS = Op.getOperand(1);
5330   bool isSigned = Op.getOpcode() == ISD::SMULO;
5331 
5332   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5333     const APInt &C = RHSC->getAPIntValue();
5334     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5335     if (C.isPowerOf2()) {
5336       // smulo(x, signed_min) is same as umulo(x, signed_min).
5337       bool UseArithShift = isSigned && !C.isMinSignedValue();
5338       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5339       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5340       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5341           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5342                       SL, VT, Result, ShiftAmt),
5343           LHS, ISD::SETNE);
5344       return DAG.getMergeValues({ Result, Overflow }, SL);
5345     }
5346   }
5347 
5348   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5349   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5350                             SL, VT, LHS, RHS);
5351 
5352   SDValue Sign = isSigned
5353     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5354                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5355     : DAG.getConstant(0, SL, VT);
5356   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5357 
5358   return DAG.getMergeValues({ Result, Overflow }, SL);
5359 }
5360 
5361 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5362   if (Op->isDivergent()) {
5363     // Select to V_MAD_[IU]64_[IU]32.
5364     return Op;
5365   }
5366   if (Subtarget->hasSMulHi()) {
5367     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5368     return SDValue();
5369   }
5370   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5371   // calculate the high part, so we might as well do the whole thing with
5372   // V_MAD_[IU]64_[IU]32.
5373   return Op;
5374 }
5375 
5376 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5377   if (!Subtarget->isTrapHandlerEnabled() ||
5378       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5379     return lowerTrapEndpgm(Op, DAG);
5380 
5381   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5382     switch (*HsaAbiVer) {
5383     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5384     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5385       return lowerTrapHsaQueuePtr(Op, DAG);
5386     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5387     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
5388       return Subtarget->supportsGetDoorbellID() ?
5389           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5390     }
5391   }
5392 
5393   llvm_unreachable("Unknown trap handler");
5394 }
5395 
5396 SDValue SITargetLowering::lowerTrapEndpgm(
5397     SDValue Op, SelectionDAG &DAG) const {
5398   SDLoc SL(Op);
5399   SDValue Chain = Op.getOperand(0);
5400   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5401 }
5402 
5403 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
5404     const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
5405   MachineFunction &MF = DAG.getMachineFunction();
5406   uint64_t Offset = getImplicitParameterOffset(MF, Param);
5407   SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
5408   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5409   return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
5410                      MachineMemOperand::MODereferenceable |
5411                          MachineMemOperand::MOInvariant);
5412 }
5413 
5414 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5415     SDValue Op, SelectionDAG &DAG) const {
5416   SDLoc SL(Op);
5417   SDValue Chain = Op.getOperand(0);
5418 
5419   SDValue QueuePtr;
5420   // For code object version 5, QueuePtr is passed through implicit kernarg.
5421   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5422     QueuePtr =
5423         loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
5424   } else {
5425     MachineFunction &MF = DAG.getMachineFunction();
5426     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5427     Register UserSGPR = Info->getQueuePtrUserSGPR();
5428 
5429     if (UserSGPR == AMDGPU::NoRegister) {
5430       // We probably are in a function incorrectly marked with
5431       // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
5432       // trap, so just use a null pointer.
5433       QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5434     } else {
5435       QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
5436                                       MVT::i64);
5437     }
5438   }
5439 
5440   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5441   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5442                                    QueuePtr, SDValue());
5443 
5444   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5445   SDValue Ops[] = {
5446     ToReg,
5447     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5448     SGPR01,
5449     ToReg.getValue(1)
5450   };
5451   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5452 }
5453 
5454 SDValue SITargetLowering::lowerTrapHsa(
5455     SDValue Op, SelectionDAG &DAG) const {
5456   SDLoc SL(Op);
5457   SDValue Chain = Op.getOperand(0);
5458 
5459   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5460   SDValue Ops[] = {
5461     Chain,
5462     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5463   };
5464   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5465 }
5466 
5467 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5468   SDLoc SL(Op);
5469   SDValue Chain = Op.getOperand(0);
5470   MachineFunction &MF = DAG.getMachineFunction();
5471 
5472   if (!Subtarget->isTrapHandlerEnabled() ||
5473       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5474     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5475                                      "debugtrap handler not supported",
5476                                      Op.getDebugLoc(),
5477                                      DS_Warning);
5478     LLVMContext &Ctx = MF.getFunction().getContext();
5479     Ctx.diagnose(NoTrap);
5480     return Chain;
5481   }
5482 
5483   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5484   SDValue Ops[] = {
5485     Chain,
5486     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5487   };
5488   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5489 }
5490 
5491 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5492                                              SelectionDAG &DAG) const {
5493   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5494   if (Subtarget->hasApertureRegs()) {
5495     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5496         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5497         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5498     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5499         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5500         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5501     unsigned Encoding =
5502         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5503         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5504         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5505 
5506     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5507     SDValue ApertureReg = SDValue(
5508         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5509     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5510     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5511   }
5512 
5513   // For code object version 5, private_base and shared_base are passed through
5514   // implicit kernargs.
5515   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5516     ImplicitParameter Param =
5517         (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
5518     return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
5519   }
5520 
5521   MachineFunction &MF = DAG.getMachineFunction();
5522   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5523   Register UserSGPR = Info->getQueuePtrUserSGPR();
5524   if (UserSGPR == AMDGPU::NoRegister) {
5525     // We probably are in a function incorrectly marked with
5526     // amdgpu-no-queue-ptr. This is undefined.
5527     return DAG.getUNDEF(MVT::i32);
5528   }
5529 
5530   SDValue QueuePtr = CreateLiveInRegister(
5531     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5532 
5533   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5534   // private_segment_aperture_base_hi.
5535   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5536 
5537   SDValue Ptr =
5538       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5539 
5540   // TODO: Use custom target PseudoSourceValue.
5541   // TODO: We should use the value from the IR intrinsic call, but it might not
5542   // be available and how do we get it?
5543   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5544   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5545                      commonAlignment(Align(64), StructOffset),
5546                      MachineMemOperand::MODereferenceable |
5547                          MachineMemOperand::MOInvariant);
5548 }
5549 
5550 /// Return true if the value is a known valid address, such that a null check is
5551 /// not necessary.
5552 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5553                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5554   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5555       isa<BasicBlockSDNode>(Val))
5556     return true;
5557 
5558   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5559     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5560 
5561   // TODO: Search through arithmetic, handle arguments and loads
5562   // marked nonnull.
5563   return false;
5564 }
5565 
5566 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5567                                              SelectionDAG &DAG) const {
5568   SDLoc SL(Op);
5569   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5570 
5571   SDValue Src = ASC->getOperand(0);
5572   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5573   unsigned SrcAS = ASC->getSrcAddressSpace();
5574 
5575   const AMDGPUTargetMachine &TM =
5576     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5577 
5578   // flat -> local/private
5579   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5580     unsigned DestAS = ASC->getDestAddressSpace();
5581 
5582     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5583         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5584       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5585 
5586       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5587         return Ptr;
5588 
5589       unsigned NullVal = TM.getNullPointerValue(DestAS);
5590       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5591       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5592 
5593       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5594                          SegmentNullPtr);
5595     }
5596   }
5597 
5598   // local/private -> flat
5599   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5600     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5601         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5602 
5603       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5604       SDValue CvtPtr =
5605           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5606       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5607 
5608       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5609         return CvtPtr;
5610 
5611       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5612       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5613 
5614       SDValue NonNull
5615         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5616 
5617       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5618                          FlatNullPtr);
5619     }
5620   }
5621 
5622   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5623       Op.getValueType() == MVT::i64) {
5624     const SIMachineFunctionInfo *Info =
5625         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5626     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5627     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5628     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5629   }
5630 
5631   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5632       Src.getValueType() == MVT::i64)
5633     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5634 
5635   // global <-> flat are no-ops and never emitted.
5636 
5637   const MachineFunction &MF = DAG.getMachineFunction();
5638   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5639     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5640   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5641 
5642   return DAG.getUNDEF(ASC->getValueType(0));
5643 }
5644 
5645 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5646 // the small vector and inserting them into the big vector. That is better than
5647 // the default expansion of doing it via a stack slot. Even though the use of
5648 // the stack slot would be optimized away afterwards, the stack slot itself
5649 // remains.
5650 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5651                                                 SelectionDAG &DAG) const {
5652   SDValue Vec = Op.getOperand(0);
5653   SDValue Ins = Op.getOperand(1);
5654   SDValue Idx = Op.getOperand(2);
5655   EVT VecVT = Vec.getValueType();
5656   EVT InsVT = Ins.getValueType();
5657   EVT EltVT = VecVT.getVectorElementType();
5658   unsigned InsNumElts = InsVT.getVectorNumElements();
5659   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5660   SDLoc SL(Op);
5661 
5662   for (unsigned I = 0; I != InsNumElts; ++I) {
5663     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5664                               DAG.getConstant(I, SL, MVT::i32));
5665     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5666                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5667   }
5668   return Vec;
5669 }
5670 
5671 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5672                                                  SelectionDAG &DAG) const {
5673   SDValue Vec = Op.getOperand(0);
5674   SDValue InsVal = Op.getOperand(1);
5675   SDValue Idx = Op.getOperand(2);
5676   EVT VecVT = Vec.getValueType();
5677   EVT EltVT = VecVT.getVectorElementType();
5678   unsigned VecSize = VecVT.getSizeInBits();
5679   unsigned EltSize = EltVT.getSizeInBits();
5680   SDLoc SL(Op);
5681 
5682   // Specially handle the case of v4i16 with static indexing.
5683   unsigned NumElts = VecVT.getVectorNumElements();
5684   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5685   if (NumElts == 4 && EltSize == 16 && KIdx) {
5686     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5687 
5688     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5689                                  DAG.getConstant(0, SL, MVT::i32));
5690     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5691                                  DAG.getConstant(1, SL, MVT::i32));
5692 
5693     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5694     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5695 
5696     unsigned Idx = KIdx->getZExtValue();
5697     bool InsertLo = Idx < 2;
5698     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5699       InsertLo ? LoVec : HiVec,
5700       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5701       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5702 
5703     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5704 
5705     SDValue Concat = InsertLo ?
5706       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5707       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5708 
5709     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5710   }
5711 
5712   // Static indexing does not lower to stack access, and hence there is no need
5713   // for special custom lowering to avoid stack access.
5714   if (isa<ConstantSDNode>(Idx))
5715     return SDValue();
5716 
5717   // Avoid stack access for dynamic indexing by custom lowering to
5718   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5719 
5720   assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
5721 
5722   MVT IntVT = MVT::getIntegerVT(VecSize);
5723 
5724   // Convert vector index to bit-index and get the required bit mask.
5725   assert(isPowerOf2_32(EltSize));
5726   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5727   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5728   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5729                             DAG.getConstant(0xffff, SL, IntVT),
5730                             ScaledIdx);
5731 
5732   // 1. Create a congruent vector with the target value in each element.
5733   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5734                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5735 
5736   // 2. Mask off all other indicies except the required index within (1).
5737   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5738 
5739   // 3. Mask off the required index within the target vector.
5740   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5741   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5742                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5743 
5744   // 4. Get (2) and (3) ORed into the target vector.
5745   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5746 
5747   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5748 }
5749 
5750 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5751                                                   SelectionDAG &DAG) const {
5752   SDLoc SL(Op);
5753 
5754   EVT ResultVT = Op.getValueType();
5755   SDValue Vec = Op.getOperand(0);
5756   SDValue Idx = Op.getOperand(1);
5757   EVT VecVT = Vec.getValueType();
5758   unsigned VecSize = VecVT.getSizeInBits();
5759   EVT EltVT = VecVT.getVectorElementType();
5760 
5761   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5762 
5763   // Make sure we do any optimizations that will make it easier to fold
5764   // source modifiers before obscuring it with bit operations.
5765 
5766   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5767   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5768     return Combined;
5769 
5770   if (VecSize == 128 || VecSize == 256) {
5771     SDValue Lo, Hi;
5772     EVT LoVT, HiVT;
5773     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5774 
5775     if (VecSize == 128) {
5776       SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
5777       Lo = DAG.getBitcast(LoVT,
5778                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5779                                       DAG.getConstant(0, SL, MVT::i32)));
5780       Hi = DAG.getBitcast(HiVT,
5781                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5782                                       DAG.getConstant(1, SL, MVT::i32)));
5783     } else {
5784       assert(VecSize == 256);
5785 
5786       SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
5787       SDValue Parts[4];
5788       for (unsigned P = 0; P < 4; ++P) {
5789         Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5790                                DAG.getConstant(P, SL, MVT::i32));
5791       }
5792 
5793       Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
5794                                             Parts[0], Parts[1]));
5795       Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
5796                                             Parts[2], Parts[3]));
5797     }
5798 
5799     EVT IdxVT = Idx.getValueType();
5800     unsigned NElem = VecVT.getVectorNumElements();
5801     assert(isPowerOf2_32(NElem));
5802     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
5803     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
5804     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
5805     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
5806   }
5807 
5808   assert(VecSize <= 64);
5809 
5810   MVT IntVT = MVT::getIntegerVT(VecSize);
5811 
5812   // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
5813   SDValue VecBC = peekThroughBitcasts(Vec);
5814   if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5815     SDValue Src = VecBC.getOperand(0);
5816     Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
5817     Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
5818   }
5819 
5820   unsigned EltSize = EltVT.getSizeInBits();
5821   assert(isPowerOf2_32(EltSize));
5822 
5823   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5824 
5825   // Convert vector index to bit-index (* EltSize)
5826   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5827 
5828   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5829   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5830 
5831   if (ResultVT == MVT::f16) {
5832     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5833     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5834   }
5835 
5836   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5837 }
5838 
5839 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5840   assert(Elt % 2 == 0);
5841   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5842 }
5843 
5844 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5845                                               SelectionDAG &DAG) const {
5846   SDLoc SL(Op);
5847   EVT ResultVT = Op.getValueType();
5848   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5849 
5850   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5851   EVT EltVT = PackVT.getVectorElementType();
5852   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5853 
5854   // vector_shuffle <0,1,6,7> lhs, rhs
5855   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5856   //
5857   // vector_shuffle <6,7,2,3> lhs, rhs
5858   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5859   //
5860   // vector_shuffle <6,7,0,1> lhs, rhs
5861   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5862 
5863   // Avoid scalarizing when both halves are reading from consecutive elements.
5864   SmallVector<SDValue, 4> Pieces;
5865   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5866     if (elementPairIsContiguous(SVN->getMask(), I)) {
5867       const int Idx = SVN->getMaskElt(I);
5868       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5869       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5870       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5871                                     PackVT, SVN->getOperand(VecIdx),
5872                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5873       Pieces.push_back(SubVec);
5874     } else {
5875       const int Idx0 = SVN->getMaskElt(I);
5876       const int Idx1 = SVN->getMaskElt(I + 1);
5877       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5878       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5879       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5880       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5881 
5882       SDValue Vec0 = SVN->getOperand(VecIdx0);
5883       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5884                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5885 
5886       SDValue Vec1 = SVN->getOperand(VecIdx1);
5887       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5888                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5889       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5890     }
5891   }
5892 
5893   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5894 }
5895 
5896 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5897                                                 SelectionDAG &DAG) const {
5898   SDValue SVal = Op.getOperand(0);
5899   EVT ResultVT = Op.getValueType();
5900   EVT SValVT = SVal.getValueType();
5901   SDValue UndefVal = DAG.getUNDEF(SValVT);
5902   SDLoc SL(Op);
5903 
5904   SmallVector<SDValue, 8> VElts;
5905   VElts.push_back(SVal);
5906   for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
5907     VElts.push_back(UndefVal);
5908 
5909   return DAG.getBuildVector(ResultVT, SL, VElts);
5910 }
5911 
5912 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5913                                             SelectionDAG &DAG) const {
5914   SDLoc SL(Op);
5915   EVT VT = Op.getValueType();
5916 
5917   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5918       VT == MVT::v8i16 || VT == MVT::v8f16) {
5919     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5920                                   VT.getVectorNumElements() / 2);
5921     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
5922 
5923     // Turn into pair of packed build_vectors.
5924     // TODO: Special case for constants that can be materialized with s_mov_b64.
5925     SmallVector<SDValue, 4> LoOps, HiOps;
5926     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
5927       LoOps.push_back(Op.getOperand(I));
5928       HiOps.push_back(Op.getOperand(I + E));
5929     }
5930     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
5931     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
5932 
5933     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
5934     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
5935 
5936     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
5937                                        { CastLo, CastHi });
5938     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5939   }
5940 
5941   if (VT == MVT::v16i16 || VT == MVT::v16f16) {
5942     EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5943                                      VT.getVectorNumElements() / 4);
5944     MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
5945 
5946     SmallVector<SDValue, 4> Parts[4];
5947     for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) {
5948       for (unsigned P = 0; P < 4; ++P)
5949         Parts[P].push_back(Op.getOperand(I + P * E));
5950     }
5951     SDValue Casts[4];
5952     for (unsigned P = 0; P < 4; ++P) {
5953       SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
5954       Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
5955     }
5956 
5957     SDValue Blend =
5958         DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts);
5959     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5960   }
5961 
5962   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5963   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5964 
5965   SDValue Lo = Op.getOperand(0);
5966   SDValue Hi = Op.getOperand(1);
5967 
5968   // Avoid adding defined bits with the zero_extend.
5969   if (Hi.isUndef()) {
5970     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5971     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5972     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5973   }
5974 
5975   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5976   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5977 
5978   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5979                               DAG.getConstant(16, SL, MVT::i32));
5980   if (Lo.isUndef())
5981     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5982 
5983   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5984   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5985 
5986   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5987   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5988 }
5989 
5990 bool
5991 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5992   // We can fold offsets for anything that doesn't require a GOT relocation.
5993   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5994           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5995           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5996          !shouldEmitGOTReloc(GA->getGlobal());
5997 }
5998 
5999 static SDValue
6000 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
6001                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
6002                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
6003   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
6004   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
6005   // lowered to the following code sequence:
6006   //
6007   // For constant address space:
6008   //   s_getpc_b64 s[0:1]
6009   //   s_add_u32 s0, s0, $symbol
6010   //   s_addc_u32 s1, s1, 0
6011   //
6012   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
6013   //   a fixup or relocation is emitted to replace $symbol with a literal
6014   //   constant, which is a pc-relative offset from the encoding of the $symbol
6015   //   operand to the global variable.
6016   //
6017   // For global address space:
6018   //   s_getpc_b64 s[0:1]
6019   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
6020   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
6021   //
6022   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
6023   //   fixups or relocations are emitted to replace $symbol@*@lo and
6024   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
6025   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
6026   //   operand to the global variable.
6027   //
6028   // What we want here is an offset from the value returned by s_getpc
6029   // (which is the address of the s_add_u32 instruction) to the global
6030   // variable, but since the encoding of $symbol starts 4 bytes after the start
6031   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
6032   // small. This requires us to add 4 to the global variable offset in order to
6033   // compute the correct address. Similarly for the s_addc_u32 instruction, the
6034   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
6035   // instruction.
6036   SDValue PtrLo =
6037       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
6038   SDValue PtrHi;
6039   if (GAFlags == SIInstrInfo::MO_NONE) {
6040     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
6041   } else {
6042     PtrHi =
6043         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
6044   }
6045   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
6046 }
6047 
6048 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
6049                                              SDValue Op,
6050                                              SelectionDAG &DAG) const {
6051   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
6052   SDLoc DL(GSD);
6053   EVT PtrVT = Op.getValueType();
6054 
6055   const GlobalValue *GV = GSD->getGlobal();
6056   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6057        shouldUseLDSConstAddress(GV)) ||
6058       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
6059       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
6060     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6061         GV->hasExternalLinkage()) {
6062       Type *Ty = GV->getValueType();
6063       // HIP uses an unsized array `extern __shared__ T s[]` or similar
6064       // zero-sized type in other languages to declare the dynamic shared
6065       // memory which size is not known at the compile time. They will be
6066       // allocated by the runtime and placed directly after the static
6067       // allocated ones. They all share the same offset.
6068       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
6069         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
6070         // Adjust alignment for that dynamic shared memory array.
6071         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
6072         return SDValue(
6073             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
6074       }
6075     }
6076     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
6077   }
6078 
6079   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
6080     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
6081                                             SIInstrInfo::MO_ABS32_LO);
6082     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
6083   }
6084 
6085   if (shouldEmitFixup(GV))
6086     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6087   else if (shouldEmitPCReloc(GV))
6088     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6089                                    SIInstrInfo::MO_REL32);
6090 
6091   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6092                                             SIInstrInfo::MO_GOTPCREL32);
6093 
6094   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6095   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6096   const DataLayout &DataLayout = DAG.getDataLayout();
6097   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6098   MachinePointerInfo PtrInfo
6099     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6100 
6101   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6102                      MachineMemOperand::MODereferenceable |
6103                          MachineMemOperand::MOInvariant);
6104 }
6105 
6106 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6107                                    const SDLoc &DL, SDValue V) const {
6108   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6109   // the destination register.
6110   //
6111   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6112   // so we will end up with redundant moves to m0.
6113   //
6114   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6115 
6116   // A Null SDValue creates a glue result.
6117   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6118                                   V, Chain);
6119   return SDValue(M0, 0);
6120 }
6121 
6122 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6123                                                  SDValue Op,
6124                                                  MVT VT,
6125                                                  unsigned Offset) const {
6126   SDLoc SL(Op);
6127   SDValue Param = lowerKernargMemParameter(
6128       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6129   // The local size values will have the hi 16-bits as zero.
6130   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6131                      DAG.getValueType(VT));
6132 }
6133 
6134 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6135                                         EVT VT) {
6136   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6137                                       "non-hsa intrinsic with hsa target",
6138                                       DL.getDebugLoc());
6139   DAG.getContext()->diagnose(BadIntrin);
6140   return DAG.getUNDEF(VT);
6141 }
6142 
6143 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6144                                          EVT VT) {
6145   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6146                                       "intrinsic not supported on subtarget",
6147                                       DL.getDebugLoc());
6148   DAG.getContext()->diagnose(BadIntrin);
6149   return DAG.getUNDEF(VT);
6150 }
6151 
6152 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6153                                     ArrayRef<SDValue> Elts) {
6154   assert(!Elts.empty());
6155   MVT Type;
6156   unsigned NumElts = Elts.size();
6157 
6158   if (NumElts <= 8) {
6159     Type = MVT::getVectorVT(MVT::f32, NumElts);
6160   } else {
6161     assert(Elts.size() <= 16);
6162     Type = MVT::v16f32;
6163     NumElts = 16;
6164   }
6165 
6166   SmallVector<SDValue, 16> VecElts(NumElts);
6167   for (unsigned i = 0; i < Elts.size(); ++i) {
6168     SDValue Elt = Elts[i];
6169     if (Elt.getValueType() != MVT::f32)
6170       Elt = DAG.getBitcast(MVT::f32, Elt);
6171     VecElts[i] = Elt;
6172   }
6173   for (unsigned i = Elts.size(); i < NumElts; ++i)
6174     VecElts[i] = DAG.getUNDEF(MVT::f32);
6175 
6176   if (NumElts == 1)
6177     return VecElts[0];
6178   return DAG.getBuildVector(Type, DL, VecElts);
6179 }
6180 
6181 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6182                               SDValue Src, int ExtraElts) {
6183   EVT SrcVT = Src.getValueType();
6184 
6185   SmallVector<SDValue, 8> Elts;
6186 
6187   if (SrcVT.isVector())
6188     DAG.ExtractVectorElements(Src, Elts);
6189   else
6190     Elts.push_back(Src);
6191 
6192   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6193   while (ExtraElts--)
6194     Elts.push_back(Undef);
6195 
6196   return DAG.getBuildVector(CastVT, DL, Elts);
6197 }
6198 
6199 // Re-construct the required return value for a image load intrinsic.
6200 // This is more complicated due to the optional use TexFailCtrl which means the required
6201 // return type is an aggregate
6202 static SDValue constructRetValue(SelectionDAG &DAG,
6203                                  MachineSDNode *Result,
6204                                  ArrayRef<EVT> ResultTypes,
6205                                  bool IsTexFail, bool Unpacked, bool IsD16,
6206                                  int DMaskPop, int NumVDataDwords,
6207                                  const SDLoc &DL) {
6208   // Determine the required return type. This is the same regardless of IsTexFail flag
6209   EVT ReqRetVT = ResultTypes[0];
6210   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6211   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6212     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6213 
6214   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6215     DMaskPop : (DMaskPop + 1) / 2;
6216 
6217   MVT DataDwordVT = NumDataDwords == 1 ?
6218     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6219 
6220   MVT MaskPopVT = MaskPopDwords == 1 ?
6221     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6222 
6223   SDValue Data(Result, 0);
6224   SDValue TexFail;
6225 
6226   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6227     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6228     if (MaskPopVT.isVector()) {
6229       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6230                          SDValue(Result, 0), ZeroIdx);
6231     } else {
6232       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6233                          SDValue(Result, 0), ZeroIdx);
6234     }
6235   }
6236 
6237   if (DataDwordVT.isVector())
6238     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6239                           NumDataDwords - MaskPopDwords);
6240 
6241   if (IsD16)
6242     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6243 
6244   EVT LegalReqRetVT = ReqRetVT;
6245   if (!ReqRetVT.isVector()) {
6246     if (!Data.getValueType().isInteger())
6247       Data = DAG.getNode(ISD::BITCAST, DL,
6248                          Data.getValueType().changeTypeToInteger(), Data);
6249     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6250   } else {
6251     // We need to widen the return vector to a legal type
6252     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6253         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6254       LegalReqRetVT =
6255           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6256                            ReqRetVT.getVectorNumElements() + 1);
6257     }
6258   }
6259   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6260 
6261   if (IsTexFail) {
6262     TexFail =
6263         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6264                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6265 
6266     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6267   }
6268 
6269   if (Result->getNumValues() == 1)
6270     return Data;
6271 
6272   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6273 }
6274 
6275 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6276                          SDValue *LWE, bool &IsTexFail) {
6277   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6278 
6279   uint64_t Value = TexFailCtrlConst->getZExtValue();
6280   if (Value) {
6281     IsTexFail = true;
6282   }
6283 
6284   SDLoc DL(TexFailCtrlConst);
6285   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6286   Value &= ~(uint64_t)0x1;
6287   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6288   Value &= ~(uint64_t)0x2;
6289 
6290   return Value == 0;
6291 }
6292 
6293 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6294                                       MVT PackVectorVT,
6295                                       SmallVectorImpl<SDValue> &PackedAddrs,
6296                                       unsigned DimIdx, unsigned EndIdx,
6297                                       unsigned NumGradients) {
6298   SDLoc DL(Op);
6299   for (unsigned I = DimIdx; I < EndIdx; I++) {
6300     SDValue Addr = Op.getOperand(I);
6301 
6302     // Gradients are packed with undef for each coordinate.
6303     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6304     // 1D: undef,dx/dh; undef,dx/dv
6305     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6306     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6307     if (((I + 1) >= EndIdx) ||
6308         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6309                                          I == DimIdx + NumGradients - 1))) {
6310       if (Addr.getValueType() != MVT::i16)
6311         Addr = DAG.getBitcast(MVT::i16, Addr);
6312       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6313     } else {
6314       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6315       I++;
6316     }
6317     Addr = DAG.getBitcast(MVT::f32, Addr);
6318     PackedAddrs.push_back(Addr);
6319   }
6320 }
6321 
6322 SDValue SITargetLowering::lowerImage(SDValue Op,
6323                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6324                                      SelectionDAG &DAG, bool WithChain) const {
6325   SDLoc DL(Op);
6326   MachineFunction &MF = DAG.getMachineFunction();
6327   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6328   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6329       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6330   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6331   unsigned IntrOpcode = Intr->BaseOpcode;
6332   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6333   bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
6334 
6335   SmallVector<EVT, 3> ResultTypes(Op->values());
6336   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6337   bool IsD16 = false;
6338   bool IsG16 = false;
6339   bool IsA16 = false;
6340   SDValue VData;
6341   int NumVDataDwords;
6342   bool AdjustRetType = false;
6343 
6344   // Offset of intrinsic arguments
6345   const unsigned ArgOffset = WithChain ? 2 : 1;
6346 
6347   unsigned DMask;
6348   unsigned DMaskLanes = 0;
6349 
6350   if (BaseOpcode->Atomic) {
6351     VData = Op.getOperand(2);
6352 
6353     bool Is64Bit = VData.getValueType() == MVT::i64;
6354     if (BaseOpcode->AtomicX2) {
6355       SDValue VData2 = Op.getOperand(3);
6356       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6357                                  {VData, VData2});
6358       if (Is64Bit)
6359         VData = DAG.getBitcast(MVT::v4i32, VData);
6360 
6361       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6362       DMask = Is64Bit ? 0xf : 0x3;
6363       NumVDataDwords = Is64Bit ? 4 : 2;
6364     } else {
6365       DMask = Is64Bit ? 0x3 : 0x1;
6366       NumVDataDwords = Is64Bit ? 2 : 1;
6367     }
6368   } else {
6369     auto *DMaskConst =
6370         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6371     DMask = DMaskConst->getZExtValue();
6372     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6373 
6374     if (BaseOpcode->Store) {
6375       VData = Op.getOperand(2);
6376 
6377       MVT StoreVT = VData.getSimpleValueType();
6378       if (StoreVT.getScalarType() == MVT::f16) {
6379         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6380           return Op; // D16 is unsupported for this instruction
6381 
6382         IsD16 = true;
6383         VData = handleD16VData(VData, DAG, true);
6384       }
6385 
6386       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6387     } else {
6388       // Work out the num dwords based on the dmask popcount and underlying type
6389       // and whether packing is supported.
6390       MVT LoadVT = ResultTypes[0].getSimpleVT();
6391       if (LoadVT.getScalarType() == MVT::f16) {
6392         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6393           return Op; // D16 is unsupported for this instruction
6394 
6395         IsD16 = true;
6396       }
6397 
6398       // Confirm that the return type is large enough for the dmask specified
6399       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6400           (!LoadVT.isVector() && DMaskLanes > 1))
6401           return Op;
6402 
6403       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6404       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6405       // instructions.
6406       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6407           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6408         NumVDataDwords = (DMaskLanes + 1) / 2;
6409       else
6410         NumVDataDwords = DMaskLanes;
6411 
6412       AdjustRetType = true;
6413     }
6414   }
6415 
6416   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6417   SmallVector<SDValue, 4> VAddrs;
6418 
6419   // Check for 16 bit addresses or derivatives and pack if true.
6420   MVT VAddrVT =
6421       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6422   MVT VAddrScalarVT = VAddrVT.getScalarType();
6423   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6424   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6425 
6426   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6427   VAddrScalarVT = VAddrVT.getScalarType();
6428   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6429   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6430 
6431   // Push back extra arguments.
6432   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6433     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6434       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6435       // Special handling of bias when A16 is on. Bias is of type half but
6436       // occupies full 32-bit.
6437       SDValue Bias = DAG.getBuildVector(
6438           MVT::v2f16, DL,
6439           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6440       VAddrs.push_back(Bias);
6441     } else {
6442       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6443              "Bias needs to be converted to 16 bit in A16 mode");
6444       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6445     }
6446   }
6447 
6448   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6449     // 16 bit gradients are supported, but are tied to the A16 control
6450     // so both gradients and addresses must be 16 bit
6451     LLVM_DEBUG(
6452         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6453                   "require 16 bit args for both gradients and addresses");
6454     return Op;
6455   }
6456 
6457   if (IsA16) {
6458     if (!ST->hasA16()) {
6459       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6460                            "support 16 bit addresses\n");
6461       return Op;
6462     }
6463   }
6464 
6465   // We've dealt with incorrect input so we know that if IsA16, IsG16
6466   // are set then we have to compress/pack operands (either address,
6467   // gradient or both)
6468   // In the case where a16 and gradients are tied (no G16 support) then we
6469   // have already verified that both IsA16 and IsG16 are true
6470   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6471     // Activate g16
6472     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6473         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6474     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6475   }
6476 
6477   // Add gradients (packed or unpacked)
6478   if (IsG16) {
6479     // Pack the gradients
6480     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6481     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6482                               ArgOffset + Intr->GradientStart,
6483                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6484   } else {
6485     for (unsigned I = ArgOffset + Intr->GradientStart;
6486          I < ArgOffset + Intr->CoordStart; I++)
6487       VAddrs.push_back(Op.getOperand(I));
6488   }
6489 
6490   // Add addresses (packed or unpacked)
6491   if (IsA16) {
6492     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6493                               ArgOffset + Intr->CoordStart, VAddrEnd,
6494                               0 /* No gradients */);
6495   } else {
6496     // Add uncompressed address
6497     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6498       VAddrs.push_back(Op.getOperand(I));
6499   }
6500 
6501   // If the register allocator cannot place the address registers contiguously
6502   // without introducing moves, then using the non-sequential address encoding
6503   // is always preferable, since it saves VALU instructions and is usually a
6504   // wash in terms of code size or even better.
6505   //
6506   // However, we currently have no way of hinting to the register allocator that
6507   // MIMG addresses should be placed contiguously when it is possible to do so,
6508   // so force non-NSA for the common 2-address case as a heuristic.
6509   //
6510   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6511   // allocation when possible.
6512   //
6513   // TODO: we can actually allow partial NSA where the final register is a
6514   // contiguous set of the remaining addresses.
6515   // This could help where there are more addresses than supported.
6516   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6517                 VAddrs.size() >= 3 &&
6518                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6519   SDValue VAddr;
6520   if (!UseNSA)
6521     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6522 
6523   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6524   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6525   SDValue Unorm;
6526   if (!BaseOpcode->Sampler) {
6527     Unorm = True;
6528   } else {
6529     auto UnormConst =
6530         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6531 
6532     Unorm = UnormConst->getZExtValue() ? True : False;
6533   }
6534 
6535   SDValue TFE;
6536   SDValue LWE;
6537   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6538   bool IsTexFail = false;
6539   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6540     return Op;
6541 
6542   if (IsTexFail) {
6543     if (!DMaskLanes) {
6544       // Expecting to get an error flag since TFC is on - and dmask is 0
6545       // Force dmask to be at least 1 otherwise the instruction will fail
6546       DMask = 0x1;
6547       DMaskLanes = 1;
6548       NumVDataDwords = 1;
6549     }
6550     NumVDataDwords += 1;
6551     AdjustRetType = true;
6552   }
6553 
6554   // Has something earlier tagged that the return type needs adjusting
6555   // This happens if the instruction is a load or has set TexFailCtrl flags
6556   if (AdjustRetType) {
6557     // NumVDataDwords reflects the true number of dwords required in the return type
6558     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6559       // This is a no-op load. This can be eliminated
6560       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6561       if (isa<MemSDNode>(Op))
6562         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6563       return Undef;
6564     }
6565 
6566     EVT NewVT = NumVDataDwords > 1 ?
6567                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6568                 : MVT::i32;
6569 
6570     ResultTypes[0] = NewVT;
6571     if (ResultTypes.size() == 3) {
6572       // Original result was aggregate type used for TexFailCtrl results
6573       // The actual instruction returns as a vector type which has now been
6574       // created. Remove the aggregate result.
6575       ResultTypes.erase(&ResultTypes[1]);
6576     }
6577   }
6578 
6579   unsigned CPol = cast<ConstantSDNode>(
6580       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6581   if (BaseOpcode->Atomic)
6582     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6583   if (CPol & ~AMDGPU::CPol::ALL)
6584     return Op;
6585 
6586   SmallVector<SDValue, 26> Ops;
6587   if (BaseOpcode->Store || BaseOpcode->Atomic)
6588     Ops.push_back(VData); // vdata
6589   if (UseNSA)
6590     append_range(Ops, VAddrs);
6591   else
6592     Ops.push_back(VAddr);
6593   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6594   if (BaseOpcode->Sampler)
6595     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6596   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6597   if (IsGFX10Plus)
6598     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6599   Ops.push_back(Unorm);
6600   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6601   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6602                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6603   if (IsGFX10Plus)
6604     Ops.push_back(IsA16 ? True : False);
6605   if (!Subtarget->hasGFX90AInsts()) {
6606     Ops.push_back(TFE); //tfe
6607   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6608     report_fatal_error("TFE is not supported on this GPU");
6609   }
6610   Ops.push_back(LWE); // lwe
6611   if (!IsGFX10Plus)
6612     Ops.push_back(DimInfo->DA ? True : False);
6613   if (BaseOpcode->HasD16)
6614     Ops.push_back(IsD16 ? True : False);
6615   if (isa<MemSDNode>(Op))
6616     Ops.push_back(Op.getOperand(0)); // chain
6617 
6618   int NumVAddrDwords =
6619       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6620   int Opcode = -1;
6621 
6622   if (IsGFX11Plus) {
6623     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6624                                    UseNSA ? AMDGPU::MIMGEncGfx11NSA
6625                                           : AMDGPU::MIMGEncGfx11Default,
6626                                    NumVDataDwords, NumVAddrDwords);
6627   } else if (IsGFX10Plus) {
6628     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6629                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6630                                           : AMDGPU::MIMGEncGfx10Default,
6631                                    NumVDataDwords, NumVAddrDwords);
6632   } else {
6633     if (Subtarget->hasGFX90AInsts()) {
6634       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6635                                      NumVDataDwords, NumVAddrDwords);
6636       if (Opcode == -1)
6637         report_fatal_error(
6638             "requested image instruction is not supported on this GPU");
6639     }
6640     if (Opcode == -1 &&
6641         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6642       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6643                                      NumVDataDwords, NumVAddrDwords);
6644     if (Opcode == -1)
6645       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6646                                      NumVDataDwords, NumVAddrDwords);
6647   }
6648   assert(Opcode != -1);
6649 
6650   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6651   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6652     MachineMemOperand *MemRef = MemOp->getMemOperand();
6653     DAG.setNodeMemRefs(NewNode, {MemRef});
6654   }
6655 
6656   if (BaseOpcode->AtomicX2) {
6657     SmallVector<SDValue, 1> Elt;
6658     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6659     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6660   }
6661   if (BaseOpcode->Store)
6662     return SDValue(NewNode, 0);
6663   return constructRetValue(DAG, NewNode,
6664                            OrigResultTypes, IsTexFail,
6665                            Subtarget->hasUnpackedD16VMem(), IsD16,
6666                            DMaskLanes, NumVDataDwords, DL);
6667 }
6668 
6669 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6670                                        SDValue Offset, SDValue CachePolicy,
6671                                        SelectionDAG &DAG) const {
6672   MachineFunction &MF = DAG.getMachineFunction();
6673 
6674   const DataLayout &DataLayout = DAG.getDataLayout();
6675   Align Alignment =
6676       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6677 
6678   MachineMemOperand *MMO = MF.getMachineMemOperand(
6679       MachinePointerInfo(),
6680       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6681           MachineMemOperand::MOInvariant,
6682       VT.getStoreSize(), Alignment);
6683 
6684   if (!Offset->isDivergent()) {
6685     SDValue Ops[] = {
6686         Rsrc,
6687         Offset, // Offset
6688         CachePolicy
6689     };
6690 
6691     // Widen vec3 load to vec4.
6692     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6693       EVT WidenedVT =
6694           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6695       auto WidenedOp = DAG.getMemIntrinsicNode(
6696           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6697           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6698       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6699                                    DAG.getVectorIdxConstant(0, DL));
6700       return Subvector;
6701     }
6702 
6703     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6704                                    DAG.getVTList(VT), Ops, VT, MMO);
6705   }
6706 
6707   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6708   // assume that the buffer is unswizzled.
6709   SmallVector<SDValue, 4> Loads;
6710   unsigned NumLoads = 1;
6711   MVT LoadVT = VT.getSimpleVT();
6712   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6713   assert((LoadVT.getScalarType() == MVT::i32 ||
6714           LoadVT.getScalarType() == MVT::f32));
6715 
6716   if (NumElts == 8 || NumElts == 16) {
6717     NumLoads = NumElts / 4;
6718     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6719   }
6720 
6721   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6722   SDValue Ops[] = {
6723       DAG.getEntryNode(),                               // Chain
6724       Rsrc,                                             // rsrc
6725       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6726       {},                                               // voffset
6727       {},                                               // soffset
6728       {},                                               // offset
6729       CachePolicy,                                      // cachepolicy
6730       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6731   };
6732 
6733   // Use the alignment to ensure that the required offsets will fit into the
6734   // immediate offsets.
6735   setBufferOffsets(Offset, DAG, &Ops[3],
6736                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6737 
6738   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6739   for (unsigned i = 0; i < NumLoads; ++i) {
6740     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6741     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6742                                         LoadVT, MMO, DAG));
6743   }
6744 
6745   if (NumElts == 8 || NumElts == 16)
6746     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6747 
6748   return Loads[0];
6749 }
6750 
6751 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
6752                                           unsigned Dim,
6753                                           const ArgDescriptor &Arg) const {
6754   SDLoc SL(Op);
6755   MachineFunction &MF = DAG.getMachineFunction();
6756   unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
6757   if (MaxID == 0)
6758     return DAG.getConstant(0, SL, MVT::i32);
6759 
6760   SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6761                                SDLoc(DAG.getEntryNode()), Arg);
6762 
6763   // Don't bother inserting AssertZext for packed IDs since we're emitting the
6764   // masking operations anyway.
6765   //
6766   // TODO: We could assert the top bit is 0 for the source copy.
6767   if (Arg.isMasked())
6768     return Val;
6769 
6770   // Preserve the known bits after expansion to a copy.
6771   EVT SmallVT =
6772       EVT::getIntegerVT(*DAG.getContext(), 32 - countLeadingZeros(MaxID));
6773   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
6774                      DAG.getValueType(SmallVT));
6775 }
6776 
6777 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6778                                                   SelectionDAG &DAG) const {
6779   MachineFunction &MF = DAG.getMachineFunction();
6780   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6781 
6782   EVT VT = Op.getValueType();
6783   SDLoc DL(Op);
6784   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6785 
6786   // TODO: Should this propagate fast-math-flags?
6787 
6788   switch (IntrinsicID) {
6789   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6790     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6791       return emitNonHSAIntrinsicError(DAG, DL, VT);
6792     return getPreloadedValue(DAG, *MFI, VT,
6793                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6794   }
6795   case Intrinsic::amdgcn_dispatch_ptr:
6796   case Intrinsic::amdgcn_queue_ptr: {
6797     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6798       DiagnosticInfoUnsupported BadIntrin(
6799           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6800           DL.getDebugLoc());
6801       DAG.getContext()->diagnose(BadIntrin);
6802       return DAG.getUNDEF(VT);
6803     }
6804 
6805     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6806       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6807     return getPreloadedValue(DAG, *MFI, VT, RegID);
6808   }
6809   case Intrinsic::amdgcn_implicitarg_ptr: {
6810     if (MFI->isEntryFunction())
6811       return getImplicitArgPtr(DAG, DL);
6812     return getPreloadedValue(DAG, *MFI, VT,
6813                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6814   }
6815   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6816     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6817       // This only makes sense to call in a kernel, so just lower to null.
6818       return DAG.getConstant(0, DL, VT);
6819     }
6820 
6821     return getPreloadedValue(DAG, *MFI, VT,
6822                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6823   }
6824   case Intrinsic::amdgcn_dispatch_id: {
6825     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6826   }
6827   case Intrinsic::amdgcn_rcp:
6828     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6829   case Intrinsic::amdgcn_rsq:
6830     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6831   case Intrinsic::amdgcn_rsq_legacy:
6832     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6833       return emitRemovedIntrinsicError(DAG, DL, VT);
6834     return SDValue();
6835   case Intrinsic::amdgcn_rcp_legacy:
6836     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6837       return emitRemovedIntrinsicError(DAG, DL, VT);
6838     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6839   case Intrinsic::amdgcn_rsq_clamp: {
6840     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6841       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6842 
6843     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6844     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6845     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6846 
6847     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6848     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6849                               DAG.getConstantFP(Max, DL, VT));
6850     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6851                        DAG.getConstantFP(Min, DL, VT));
6852   }
6853   case Intrinsic::r600_read_ngroups_x:
6854     if (Subtarget->isAmdHsaOS())
6855       return emitNonHSAIntrinsicError(DAG, DL, VT);
6856 
6857     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6858                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6859                                     false);
6860   case Intrinsic::r600_read_ngroups_y:
6861     if (Subtarget->isAmdHsaOS())
6862       return emitNonHSAIntrinsicError(DAG, DL, VT);
6863 
6864     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6865                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6866                                     false);
6867   case Intrinsic::r600_read_ngroups_z:
6868     if (Subtarget->isAmdHsaOS())
6869       return emitNonHSAIntrinsicError(DAG, DL, VT);
6870 
6871     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6872                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6873                                     false);
6874   case Intrinsic::r600_read_global_size_x:
6875     if (Subtarget->isAmdHsaOS())
6876       return emitNonHSAIntrinsicError(DAG, DL, VT);
6877 
6878     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6879                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6880                                     Align(4), false);
6881   case Intrinsic::r600_read_global_size_y:
6882     if (Subtarget->isAmdHsaOS())
6883       return emitNonHSAIntrinsicError(DAG, DL, VT);
6884 
6885     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6886                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6887                                     Align(4), false);
6888   case Intrinsic::r600_read_global_size_z:
6889     if (Subtarget->isAmdHsaOS())
6890       return emitNonHSAIntrinsicError(DAG, DL, VT);
6891 
6892     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6893                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6894                                     Align(4), false);
6895   case Intrinsic::r600_read_local_size_x:
6896     if (Subtarget->isAmdHsaOS())
6897       return emitNonHSAIntrinsicError(DAG, DL, VT);
6898 
6899     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6900                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6901   case Intrinsic::r600_read_local_size_y:
6902     if (Subtarget->isAmdHsaOS())
6903       return emitNonHSAIntrinsicError(DAG, DL, VT);
6904 
6905     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6906                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6907   case Intrinsic::r600_read_local_size_z:
6908     if (Subtarget->isAmdHsaOS())
6909       return emitNonHSAIntrinsicError(DAG, DL, VT);
6910 
6911     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6912                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6913   case Intrinsic::amdgcn_workgroup_id_x:
6914     return getPreloadedValue(DAG, *MFI, VT,
6915                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6916   case Intrinsic::amdgcn_workgroup_id_y:
6917     return getPreloadedValue(DAG, *MFI, VT,
6918                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6919   case Intrinsic::amdgcn_workgroup_id_z:
6920     return getPreloadedValue(DAG, *MFI, VT,
6921                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6922   case Intrinsic::amdgcn_lds_kernel_id: {
6923     if (MFI->isEntryFunction())
6924       return getLDSKernelId(DAG, DL);
6925     return getPreloadedValue(DAG, *MFI, VT,
6926                              AMDGPUFunctionArgInfo::LDS_KERNEL_ID);
6927   }
6928   case Intrinsic::amdgcn_workitem_id_x:
6929     return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
6930   case Intrinsic::amdgcn_workitem_id_y:
6931     return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
6932   case Intrinsic::amdgcn_workitem_id_z:
6933     return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
6934   case Intrinsic::amdgcn_wavefrontsize:
6935     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6936                            SDLoc(Op), MVT::i32);
6937   case Intrinsic::amdgcn_s_buffer_load: {
6938     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6939     if (CPol & ~AMDGPU::CPol::ALL)
6940       return Op;
6941     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6942                         DAG);
6943   }
6944   case Intrinsic::amdgcn_fdiv_fast:
6945     return lowerFDIV_FAST(Op, DAG);
6946   case Intrinsic::amdgcn_sin:
6947     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6948 
6949   case Intrinsic::amdgcn_cos:
6950     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6951 
6952   case Intrinsic::amdgcn_mul_u24:
6953     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6954   case Intrinsic::amdgcn_mul_i24:
6955     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6956 
6957   case Intrinsic::amdgcn_log_clamp: {
6958     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6959       return SDValue();
6960 
6961     return emitRemovedIntrinsicError(DAG, DL, VT);
6962   }
6963   case Intrinsic::amdgcn_ldexp:
6964     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6965                        Op.getOperand(1), Op.getOperand(2));
6966 
6967   case Intrinsic::amdgcn_fract:
6968     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6969 
6970   case Intrinsic::amdgcn_class:
6971     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6972                        Op.getOperand(1), Op.getOperand(2));
6973   case Intrinsic::amdgcn_div_fmas:
6974     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6975                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6976                        Op.getOperand(4));
6977 
6978   case Intrinsic::amdgcn_div_fixup:
6979     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6980                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6981 
6982   case Intrinsic::amdgcn_div_scale: {
6983     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6984 
6985     // Translate to the operands expected by the machine instruction. The
6986     // first parameter must be the same as the first instruction.
6987     SDValue Numerator = Op.getOperand(1);
6988     SDValue Denominator = Op.getOperand(2);
6989 
6990     // Note this order is opposite of the machine instruction's operations,
6991     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6992     // intrinsic has the numerator as the first operand to match a normal
6993     // division operation.
6994 
6995     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6996 
6997     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6998                        Denominator, Numerator);
6999   }
7000   case Intrinsic::amdgcn_icmp: {
7001     // There is a Pat that handles this variant, so return it as-is.
7002     if (Op.getOperand(1).getValueType() == MVT::i1 &&
7003         Op.getConstantOperandVal(2) == 0 &&
7004         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
7005       return Op;
7006     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
7007   }
7008   case Intrinsic::amdgcn_fcmp: {
7009     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
7010   }
7011   case Intrinsic::amdgcn_ballot:
7012     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
7013   case Intrinsic::amdgcn_fmed3:
7014     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
7015                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7016   case Intrinsic::amdgcn_fdot2:
7017     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
7018                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7019                        Op.getOperand(4));
7020   case Intrinsic::amdgcn_fmul_legacy:
7021     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
7022                        Op.getOperand(1), Op.getOperand(2));
7023   case Intrinsic::amdgcn_sffbh:
7024     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
7025   case Intrinsic::amdgcn_sbfe:
7026     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
7027                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7028   case Intrinsic::amdgcn_ubfe:
7029     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
7030                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7031   case Intrinsic::amdgcn_cvt_pkrtz:
7032   case Intrinsic::amdgcn_cvt_pknorm_i16:
7033   case Intrinsic::amdgcn_cvt_pknorm_u16:
7034   case Intrinsic::amdgcn_cvt_pk_i16:
7035   case Intrinsic::amdgcn_cvt_pk_u16: {
7036     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
7037     EVT VT = Op.getValueType();
7038     unsigned Opcode;
7039 
7040     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
7041       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
7042     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
7043       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
7044     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
7045       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
7046     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
7047       Opcode = AMDGPUISD::CVT_PK_I16_I32;
7048     else
7049       Opcode = AMDGPUISD::CVT_PK_U16_U32;
7050 
7051     if (isTypeLegal(VT))
7052       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
7053 
7054     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
7055                                Op.getOperand(1), Op.getOperand(2));
7056     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
7057   }
7058   case Intrinsic::amdgcn_fmad_ftz:
7059     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
7060                        Op.getOperand(2), Op.getOperand(3));
7061 
7062   case Intrinsic::amdgcn_if_break:
7063     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
7064                                       Op->getOperand(1), Op->getOperand(2)), 0);
7065 
7066   case Intrinsic::amdgcn_groupstaticsize: {
7067     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
7068     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
7069       return Op;
7070 
7071     const Module *M = MF.getFunction().getParent();
7072     const GlobalValue *GV =
7073         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
7074     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
7075                                             SIInstrInfo::MO_ABS32_LO);
7076     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7077   }
7078   case Intrinsic::amdgcn_is_shared:
7079   case Intrinsic::amdgcn_is_private: {
7080     SDLoc SL(Op);
7081     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
7082       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
7083     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
7084     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
7085                                  Op.getOperand(1));
7086 
7087     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
7088                                 DAG.getConstant(1, SL, MVT::i32));
7089     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
7090   }
7091   case Intrinsic::amdgcn_perm:
7092     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7093                        Op.getOperand(2), Op.getOperand(3));
7094   case Intrinsic::amdgcn_reloc_constant: {
7095     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7096     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7097     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7098     auto RelocSymbol = cast<GlobalVariable>(
7099         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7100     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7101                                             SIInstrInfo::MO_ABS32_LO);
7102     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7103   }
7104   default:
7105     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7106             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7107       return lowerImage(Op, ImageDimIntr, DAG, false);
7108 
7109     return Op;
7110   }
7111 }
7112 
7113 /// Update \p MMO based on the offset inputs to an intrinsic.
7114 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
7115                             SDValue SOffset, SDValue Offset,
7116                             SDValue VIndex = SDValue()) {
7117   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
7118       !isa<ConstantSDNode>(Offset)) {
7119     // The combined offset is not known to be constant, so we cannot represent
7120     // it in the MMO. Give up.
7121     MMO->setValue((Value *)nullptr);
7122     return;
7123   }
7124 
7125   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
7126                  !cast<ConstantSDNode>(VIndex)->isZero())) {
7127     // The strided index component of the address is not known to be zero, so we
7128     // cannot represent it in the MMO. Give up.
7129     MMO->setValue((Value *)nullptr);
7130     return;
7131   }
7132 
7133   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
7134                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
7135                  cast<ConstantSDNode>(Offset)->getSExtValue());
7136 }
7137 
7138 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7139                                                      SelectionDAG &DAG,
7140                                                      unsigned NewOpcode) const {
7141   SDLoc DL(Op);
7142 
7143   SDValue VData = Op.getOperand(2);
7144   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7145   SDValue Ops[] = {
7146     Op.getOperand(0), // Chain
7147     VData,            // vdata
7148     Op.getOperand(3), // rsrc
7149     DAG.getConstant(0, DL, MVT::i32), // vindex
7150     Offsets.first,    // voffset
7151     Op.getOperand(5), // soffset
7152     Offsets.second,   // offset
7153     Op.getOperand(6), // cachepolicy
7154     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7155   };
7156 
7157   auto *M = cast<MemSDNode>(Op);
7158   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7159 
7160   EVT MemVT = VData.getValueType();
7161   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7162                                  M->getMemOperand());
7163 }
7164 
7165 // Return a value to use for the idxen operand by examining the vindex operand.
7166 static unsigned getIdxEn(SDValue VIndex) {
7167   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7168     // No need to set idxen if vindex is known to be zero.
7169     return VIndexC->getZExtValue() != 0;
7170   return 1;
7171 }
7172 
7173 SDValue
7174 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7175                                                 unsigned NewOpcode) const {
7176   SDLoc DL(Op);
7177 
7178   SDValue VData = Op.getOperand(2);
7179   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7180   SDValue Ops[] = {
7181     Op.getOperand(0), // Chain
7182     VData,            // vdata
7183     Op.getOperand(3), // rsrc
7184     Op.getOperand(4), // vindex
7185     Offsets.first,    // voffset
7186     Op.getOperand(6), // soffset
7187     Offsets.second,   // offset
7188     Op.getOperand(7), // cachepolicy
7189     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7190   };
7191 
7192   auto *M = cast<MemSDNode>(Op);
7193   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7194 
7195   EVT MemVT = VData.getValueType();
7196   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7197                                  M->getMemOperand());
7198 }
7199 
7200 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7201                                                  SelectionDAG &DAG) const {
7202   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7203   SDLoc DL(Op);
7204 
7205   switch (IntrID) {
7206   case Intrinsic::amdgcn_ds_ordered_add:
7207   case Intrinsic::amdgcn_ds_ordered_swap: {
7208     MemSDNode *M = cast<MemSDNode>(Op);
7209     SDValue Chain = M->getOperand(0);
7210     SDValue M0 = M->getOperand(2);
7211     SDValue Value = M->getOperand(3);
7212     unsigned IndexOperand = M->getConstantOperandVal(7);
7213     unsigned WaveRelease = M->getConstantOperandVal(8);
7214     unsigned WaveDone = M->getConstantOperandVal(9);
7215 
7216     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7217     IndexOperand &= ~0x3f;
7218     unsigned CountDw = 0;
7219 
7220     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7221       CountDw = (IndexOperand >> 24) & 0xf;
7222       IndexOperand &= ~(0xf << 24);
7223 
7224       if (CountDw < 1 || CountDw > 4) {
7225         report_fatal_error(
7226             "ds_ordered_count: dword count must be between 1 and 4");
7227       }
7228     }
7229 
7230     if (IndexOperand)
7231       report_fatal_error("ds_ordered_count: bad index operand");
7232 
7233     if (WaveDone && !WaveRelease)
7234       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7235 
7236     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7237     unsigned ShaderType =
7238         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7239     unsigned Offset0 = OrderedCountIndex << 2;
7240     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
7241 
7242     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7243       Offset1 |= (CountDw - 1) << 6;
7244 
7245     if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
7246       Offset1 |= ShaderType << 2;
7247 
7248     unsigned Offset = Offset0 | (Offset1 << 8);
7249 
7250     SDValue Ops[] = {
7251       Chain,
7252       Value,
7253       DAG.getTargetConstant(Offset, DL, MVT::i16),
7254       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7255     };
7256     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7257                                    M->getVTList(), Ops, M->getMemoryVT(),
7258                                    M->getMemOperand());
7259   }
7260   case Intrinsic::amdgcn_ds_fadd: {
7261     MemSDNode *M = cast<MemSDNode>(Op);
7262     unsigned Opc;
7263     switch (IntrID) {
7264     case Intrinsic::amdgcn_ds_fadd:
7265       Opc = ISD::ATOMIC_LOAD_FADD;
7266       break;
7267     }
7268 
7269     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7270                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7271                          M->getMemOperand());
7272   }
7273   case Intrinsic::amdgcn_atomic_inc:
7274   case Intrinsic::amdgcn_atomic_dec:
7275   case Intrinsic::amdgcn_ds_fmin:
7276   case Intrinsic::amdgcn_ds_fmax: {
7277     MemSDNode *M = cast<MemSDNode>(Op);
7278     unsigned Opc;
7279     switch (IntrID) {
7280     case Intrinsic::amdgcn_atomic_inc:
7281       Opc = AMDGPUISD::ATOMIC_INC;
7282       break;
7283     case Intrinsic::amdgcn_atomic_dec:
7284       Opc = AMDGPUISD::ATOMIC_DEC;
7285       break;
7286     case Intrinsic::amdgcn_ds_fmin:
7287       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7288       break;
7289     case Intrinsic::amdgcn_ds_fmax:
7290       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7291       break;
7292     default:
7293       llvm_unreachable("Unknown intrinsic!");
7294     }
7295     SDValue Ops[] = {
7296       M->getOperand(0), // Chain
7297       M->getOperand(2), // Ptr
7298       M->getOperand(3)  // Value
7299     };
7300 
7301     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7302                                    M->getMemoryVT(), M->getMemOperand());
7303   }
7304   case Intrinsic::amdgcn_buffer_load:
7305   case Intrinsic::amdgcn_buffer_load_format: {
7306     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7307     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7308     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7309     SDValue Ops[] = {
7310       Op.getOperand(0), // Chain
7311       Op.getOperand(2), // rsrc
7312       Op.getOperand(3), // vindex
7313       SDValue(),        // voffset -- will be set by setBufferOffsets
7314       SDValue(),        // soffset -- will be set by setBufferOffsets
7315       SDValue(),        // offset -- will be set by setBufferOffsets
7316       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7317       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7318     };
7319     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7320 
7321     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7322         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7323 
7324     EVT VT = Op.getValueType();
7325     EVT IntVT = VT.changeTypeToInteger();
7326     auto *M = cast<MemSDNode>(Op);
7327     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7328     EVT LoadVT = Op.getValueType();
7329 
7330     if (LoadVT.getScalarType() == MVT::f16)
7331       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7332                                  M, DAG, Ops);
7333 
7334     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7335     if (LoadVT.getScalarType() == MVT::i8 ||
7336         LoadVT.getScalarType() == MVT::i16)
7337       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7338 
7339     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7340                                M->getMemOperand(), DAG);
7341   }
7342   case Intrinsic::amdgcn_raw_buffer_load:
7343   case Intrinsic::amdgcn_raw_buffer_load_format: {
7344     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7345 
7346     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7347     SDValue Ops[] = {
7348       Op.getOperand(0), // Chain
7349       Op.getOperand(2), // rsrc
7350       DAG.getConstant(0, DL, MVT::i32), // vindex
7351       Offsets.first,    // voffset
7352       Op.getOperand(4), // soffset
7353       Offsets.second,   // offset
7354       Op.getOperand(5), // cachepolicy, swizzled buffer
7355       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7356     };
7357 
7358     auto *M = cast<MemSDNode>(Op);
7359     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7360     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7361   }
7362   case Intrinsic::amdgcn_struct_buffer_load:
7363   case Intrinsic::amdgcn_struct_buffer_load_format: {
7364     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7365 
7366     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7367     SDValue Ops[] = {
7368       Op.getOperand(0), // Chain
7369       Op.getOperand(2), // rsrc
7370       Op.getOperand(3), // vindex
7371       Offsets.first,    // voffset
7372       Op.getOperand(5), // soffset
7373       Offsets.second,   // offset
7374       Op.getOperand(6), // cachepolicy, swizzled buffer
7375       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7376     };
7377 
7378     auto *M = cast<MemSDNode>(Op);
7379     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7380     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7381   }
7382   case Intrinsic::amdgcn_tbuffer_load: {
7383     MemSDNode *M = cast<MemSDNode>(Op);
7384     EVT LoadVT = Op.getValueType();
7385 
7386     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7387     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7388     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7389     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7390     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7391     SDValue Ops[] = {
7392       Op.getOperand(0),  // Chain
7393       Op.getOperand(2),  // rsrc
7394       Op.getOperand(3),  // vindex
7395       Op.getOperand(4),  // voffset
7396       Op.getOperand(5),  // soffset
7397       Op.getOperand(6),  // offset
7398       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7399       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7400       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7401     };
7402 
7403     if (LoadVT.getScalarType() == MVT::f16)
7404       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7405                                  M, DAG, Ops);
7406     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7407                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7408                                DAG);
7409   }
7410   case Intrinsic::amdgcn_raw_tbuffer_load: {
7411     MemSDNode *M = cast<MemSDNode>(Op);
7412     EVT LoadVT = Op.getValueType();
7413     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7414 
7415     SDValue Ops[] = {
7416       Op.getOperand(0),  // Chain
7417       Op.getOperand(2),  // rsrc
7418       DAG.getConstant(0, DL, MVT::i32), // vindex
7419       Offsets.first,     // voffset
7420       Op.getOperand(4),  // soffset
7421       Offsets.second,    // offset
7422       Op.getOperand(5),  // format
7423       Op.getOperand(6),  // cachepolicy, swizzled buffer
7424       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7425     };
7426 
7427     if (LoadVT.getScalarType() == MVT::f16)
7428       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7429                                  M, DAG, Ops);
7430     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7431                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7432                                DAG);
7433   }
7434   case Intrinsic::amdgcn_struct_tbuffer_load: {
7435     MemSDNode *M = cast<MemSDNode>(Op);
7436     EVT LoadVT = Op.getValueType();
7437     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7438 
7439     SDValue Ops[] = {
7440       Op.getOperand(0),  // Chain
7441       Op.getOperand(2),  // rsrc
7442       Op.getOperand(3),  // vindex
7443       Offsets.first,     // voffset
7444       Op.getOperand(5),  // soffset
7445       Offsets.second,    // offset
7446       Op.getOperand(6),  // format
7447       Op.getOperand(7),  // cachepolicy, swizzled buffer
7448       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7449     };
7450 
7451     if (LoadVT.getScalarType() == MVT::f16)
7452       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7453                                  M, DAG, Ops);
7454     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7455                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7456                                DAG);
7457   }
7458   case Intrinsic::amdgcn_buffer_atomic_swap:
7459   case Intrinsic::amdgcn_buffer_atomic_add:
7460   case Intrinsic::amdgcn_buffer_atomic_sub:
7461   case Intrinsic::amdgcn_buffer_atomic_csub:
7462   case Intrinsic::amdgcn_buffer_atomic_smin:
7463   case Intrinsic::amdgcn_buffer_atomic_umin:
7464   case Intrinsic::amdgcn_buffer_atomic_smax:
7465   case Intrinsic::amdgcn_buffer_atomic_umax:
7466   case Intrinsic::amdgcn_buffer_atomic_and:
7467   case Intrinsic::amdgcn_buffer_atomic_or:
7468   case Intrinsic::amdgcn_buffer_atomic_xor:
7469   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7470     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7471     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7472     SDValue Ops[] = {
7473       Op.getOperand(0), // Chain
7474       Op.getOperand(2), // vdata
7475       Op.getOperand(3), // rsrc
7476       Op.getOperand(4), // vindex
7477       SDValue(),        // voffset -- will be set by setBufferOffsets
7478       SDValue(),        // soffset -- will be set by setBufferOffsets
7479       SDValue(),        // offset -- will be set by setBufferOffsets
7480       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7481       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7482     };
7483     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7484 
7485     EVT VT = Op.getValueType();
7486 
7487     auto *M = cast<MemSDNode>(Op);
7488     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7489     unsigned Opcode = 0;
7490 
7491     switch (IntrID) {
7492     case Intrinsic::amdgcn_buffer_atomic_swap:
7493       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7494       break;
7495     case Intrinsic::amdgcn_buffer_atomic_add:
7496       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7497       break;
7498     case Intrinsic::amdgcn_buffer_atomic_sub:
7499       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7500       break;
7501     case Intrinsic::amdgcn_buffer_atomic_csub:
7502       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7503       break;
7504     case Intrinsic::amdgcn_buffer_atomic_smin:
7505       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7506       break;
7507     case Intrinsic::amdgcn_buffer_atomic_umin:
7508       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7509       break;
7510     case Intrinsic::amdgcn_buffer_atomic_smax:
7511       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7512       break;
7513     case Intrinsic::amdgcn_buffer_atomic_umax:
7514       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7515       break;
7516     case Intrinsic::amdgcn_buffer_atomic_and:
7517       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7518       break;
7519     case Intrinsic::amdgcn_buffer_atomic_or:
7520       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7521       break;
7522     case Intrinsic::amdgcn_buffer_atomic_xor:
7523       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7524       break;
7525     case Intrinsic::amdgcn_buffer_atomic_fadd:
7526       if (!Op.getValue(0).use_empty() && !hasAtomicFaddRtnForTy(Op)) {
7527         DiagnosticInfoUnsupported
7528           NoFpRet(DAG.getMachineFunction().getFunction(),
7529                   "return versions of fp atomics not supported",
7530                   DL.getDebugLoc(), DS_Error);
7531         DAG.getContext()->diagnose(NoFpRet);
7532         return SDValue();
7533       }
7534       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7535       break;
7536     default:
7537       llvm_unreachable("unhandled atomic opcode");
7538     }
7539 
7540     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7541                                    M->getMemOperand());
7542   }
7543   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7544     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7545   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7546     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7547   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7548     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7549   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7550     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7551   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7552     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7553   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7554     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7555   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7556     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7557   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7558     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7559   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7560     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7561   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7562     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7563   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7564     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7565   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7566     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7567   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7568     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7569   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7570     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7571   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7572     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7573   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7574     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7575   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7576     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7577   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7578     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7579   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7580     return lowerStructBufferAtomicIntrin(Op, DAG,
7581                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7582   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7583     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7584   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7585     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7586   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7587     return lowerStructBufferAtomicIntrin(Op, DAG,
7588                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7589   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7590     return lowerStructBufferAtomicIntrin(Op, DAG,
7591                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7592   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7593     return lowerStructBufferAtomicIntrin(Op, DAG,
7594                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7595   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7596     return lowerStructBufferAtomicIntrin(Op, DAG,
7597                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7598   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7599     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7600   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7601     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7602   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7603     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7604   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7605     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7606   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7607     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7608 
7609   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7610     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7611     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7612     SDValue Ops[] = {
7613       Op.getOperand(0), // Chain
7614       Op.getOperand(2), // src
7615       Op.getOperand(3), // cmp
7616       Op.getOperand(4), // rsrc
7617       Op.getOperand(5), // vindex
7618       SDValue(),        // voffset -- will be set by setBufferOffsets
7619       SDValue(),        // soffset -- will be set by setBufferOffsets
7620       SDValue(),        // offset -- will be set by setBufferOffsets
7621       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7622       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7623     };
7624     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7625 
7626     EVT VT = Op.getValueType();
7627     auto *M = cast<MemSDNode>(Op);
7628     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7629 
7630     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7631                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7632   }
7633   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7634     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7635     SDValue Ops[] = {
7636       Op.getOperand(0), // Chain
7637       Op.getOperand(2), // src
7638       Op.getOperand(3), // cmp
7639       Op.getOperand(4), // rsrc
7640       DAG.getConstant(0, DL, MVT::i32), // vindex
7641       Offsets.first,    // voffset
7642       Op.getOperand(6), // soffset
7643       Offsets.second,   // offset
7644       Op.getOperand(7), // cachepolicy
7645       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7646     };
7647     EVT VT = Op.getValueType();
7648     auto *M = cast<MemSDNode>(Op);
7649     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7650 
7651     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7652                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7653   }
7654   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7655     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7656     SDValue Ops[] = {
7657       Op.getOperand(0), // Chain
7658       Op.getOperand(2), // src
7659       Op.getOperand(3), // cmp
7660       Op.getOperand(4), // rsrc
7661       Op.getOperand(5), // vindex
7662       Offsets.first,    // voffset
7663       Op.getOperand(7), // soffset
7664       Offsets.second,   // offset
7665       Op.getOperand(8), // cachepolicy
7666       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7667     };
7668     EVT VT = Op.getValueType();
7669     auto *M = cast<MemSDNode>(Op);
7670     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7671 
7672     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7673                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7674   }
7675   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7676     MemSDNode *M = cast<MemSDNode>(Op);
7677     SDValue NodePtr = M->getOperand(2);
7678     SDValue RayExtent = M->getOperand(3);
7679     SDValue RayOrigin = M->getOperand(4);
7680     SDValue RayDir = M->getOperand(5);
7681     SDValue RayInvDir = M->getOperand(6);
7682     SDValue TDescr = M->getOperand(7);
7683 
7684     assert(NodePtr.getValueType() == MVT::i32 ||
7685            NodePtr.getValueType() == MVT::i64);
7686     assert(RayDir.getValueType() == MVT::v3f16 ||
7687            RayDir.getValueType() == MVT::v3f32);
7688 
7689     if (!Subtarget->hasGFX10_AEncoding()) {
7690       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7691       return SDValue();
7692     }
7693 
7694     const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
7695     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7696     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7697     const unsigned NumVDataDwords = 4;
7698     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7699     const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7700     const bool UseNSA =
7701         Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize();
7702     const unsigned BaseOpcodes[2][2] = {
7703         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7704         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7705          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7706     int Opcode;
7707     if (UseNSA) {
7708       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7709                                      IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA
7710                                                  : AMDGPU::MIMGEncGfx10NSA,
7711                                      NumVDataDwords, NumVAddrDwords);
7712     } else {
7713       Opcode =
7714           AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7715                                 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default
7716                                             : AMDGPU::MIMGEncGfx10Default,
7717                                 NumVDataDwords, PowerOf2Ceil(NumVAddrDwords));
7718     }
7719     assert(Opcode != -1);
7720 
7721     SmallVector<SDValue, 16> Ops;
7722 
7723     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7724       SmallVector<SDValue, 3> Lanes;
7725       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7726       if (Lanes[0].getValueSizeInBits() == 32) {
7727         for (unsigned I = 0; I < 3; ++I)
7728           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7729       } else {
7730         if (IsAligned) {
7731           Ops.push_back(
7732             DAG.getBitcast(MVT::i32,
7733                            DAG.getBuildVector(MVT::v2f16, DL,
7734                                               { Lanes[0], Lanes[1] })));
7735           Ops.push_back(Lanes[2]);
7736         } else {
7737           SDValue Elt0 = Ops.pop_back_val();
7738           Ops.push_back(
7739             DAG.getBitcast(MVT::i32,
7740                            DAG.getBuildVector(MVT::v2f16, DL,
7741                                               { Elt0, Lanes[0] })));
7742           Ops.push_back(
7743             DAG.getBitcast(MVT::i32,
7744                            DAG.getBuildVector(MVT::v2f16, DL,
7745                                               { Lanes[1], Lanes[2] })));
7746         }
7747       }
7748     };
7749 
7750     if (UseNSA && IsGFX11Plus) {
7751       Ops.push_back(NodePtr);
7752       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7753       Ops.push_back(RayOrigin);
7754       if (IsA16) {
7755         SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
7756         DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
7757         DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
7758         for (unsigned I = 0; I < 3; ++I) {
7759           MergedLanes.push_back(DAG.getBitcast(
7760               MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
7761                                            {DirLanes[I], InvDirLanes[I]})));
7762         }
7763         Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
7764       } else {
7765         Ops.push_back(RayDir);
7766         Ops.push_back(RayInvDir);
7767       }
7768     } else {
7769       if (Is64)
7770         DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
7771                                   2);
7772       else
7773         Ops.push_back(NodePtr);
7774 
7775       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7776       packLanes(RayOrigin, true);
7777       packLanes(RayDir, true);
7778       packLanes(RayInvDir, false);
7779     }
7780 
7781     if (!UseNSA) {
7782       // Build a single vector containing all the operands so far prepared.
7783       if (NumVAddrDwords > 8) {
7784         SDValue Undef = DAG.getUNDEF(MVT::i32);
7785         Ops.append(16 - Ops.size(), Undef);
7786       }
7787       assert(Ops.size() == 8 || Ops.size() == 16);
7788       SDValue MergedOps = DAG.getBuildVector(
7789           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7790       Ops.clear();
7791       Ops.push_back(MergedOps);
7792     }
7793 
7794     Ops.push_back(TDescr);
7795     if (IsA16)
7796       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7797     Ops.push_back(M->getChain());
7798 
7799     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7800     MachineMemOperand *MemRef = M->getMemOperand();
7801     DAG.setNodeMemRefs(NewNode, {MemRef});
7802     return SDValue(NewNode, 0);
7803   }
7804   case Intrinsic::amdgcn_global_atomic_fadd:
7805     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7806       DiagnosticInfoUnsupported
7807         NoFpRet(DAG.getMachineFunction().getFunction(),
7808                 "return versions of fp atomics not supported",
7809                 DL.getDebugLoc(), DS_Error);
7810       DAG.getContext()->diagnose(NoFpRet);
7811       return SDValue();
7812     }
7813     LLVM_FALLTHROUGH;
7814   case Intrinsic::amdgcn_global_atomic_fmin:
7815   case Intrinsic::amdgcn_global_atomic_fmax:
7816   case Intrinsic::amdgcn_flat_atomic_fadd:
7817   case Intrinsic::amdgcn_flat_atomic_fmin:
7818   case Intrinsic::amdgcn_flat_atomic_fmax: {
7819     MemSDNode *M = cast<MemSDNode>(Op);
7820     SDValue Ops[] = {
7821       M->getOperand(0), // Chain
7822       M->getOperand(2), // Ptr
7823       M->getOperand(3)  // Value
7824     };
7825     unsigned Opcode = 0;
7826     switch (IntrID) {
7827     case Intrinsic::amdgcn_global_atomic_fadd:
7828     case Intrinsic::amdgcn_flat_atomic_fadd: {
7829       EVT VT = Op.getOperand(3).getValueType();
7830       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7831                            DAG.getVTList(VT, MVT::Other), Ops,
7832                            M->getMemOperand());
7833     }
7834     case Intrinsic::amdgcn_global_atomic_fmin:
7835     case Intrinsic::amdgcn_flat_atomic_fmin: {
7836       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7837       break;
7838     }
7839     case Intrinsic::amdgcn_global_atomic_fmax:
7840     case Intrinsic::amdgcn_flat_atomic_fmax: {
7841       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7842       break;
7843     }
7844     default:
7845       llvm_unreachable("unhandled atomic opcode");
7846     }
7847     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7848                                    M->getVTList(), Ops, M->getMemoryVT(),
7849                                    M->getMemOperand());
7850   }
7851   default:
7852 
7853     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7854             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7855       return lowerImage(Op, ImageDimIntr, DAG, true);
7856 
7857     return SDValue();
7858   }
7859 }
7860 
7861 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7862 // dwordx4 if on SI.
7863 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7864                                               SDVTList VTList,
7865                                               ArrayRef<SDValue> Ops, EVT MemVT,
7866                                               MachineMemOperand *MMO,
7867                                               SelectionDAG &DAG) const {
7868   EVT VT = VTList.VTs[0];
7869   EVT WidenedVT = VT;
7870   EVT WidenedMemVT = MemVT;
7871   if (!Subtarget->hasDwordx3LoadStores() &&
7872       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7873     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7874                                  WidenedVT.getVectorElementType(), 4);
7875     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7876                                     WidenedMemVT.getVectorElementType(), 4);
7877     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7878   }
7879 
7880   assert(VTList.NumVTs == 2);
7881   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7882 
7883   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7884                                        WidenedMemVT, MMO);
7885   if (WidenedVT != VT) {
7886     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7887                                DAG.getVectorIdxConstant(0, DL));
7888     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7889   }
7890   return NewOp;
7891 }
7892 
7893 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7894                                          bool ImageStore) const {
7895   EVT StoreVT = VData.getValueType();
7896 
7897   // No change for f16 and legal vector D16 types.
7898   if (!StoreVT.isVector())
7899     return VData;
7900 
7901   SDLoc DL(VData);
7902   unsigned NumElements = StoreVT.getVectorNumElements();
7903 
7904   if (Subtarget->hasUnpackedD16VMem()) {
7905     // We need to unpack the packed data to store.
7906     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7907     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7908 
7909     EVT EquivStoreVT =
7910         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7911     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7912     return DAG.UnrollVectorOp(ZExt.getNode());
7913   }
7914 
7915   // The sq block of gfx8.1 does not estimate register use correctly for d16
7916   // image store instructions. The data operand is computed as if it were not a
7917   // d16 image instruction.
7918   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7919     // Bitcast to i16
7920     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7921     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7922 
7923     // Decompose into scalars
7924     SmallVector<SDValue, 4> Elts;
7925     DAG.ExtractVectorElements(IntVData, Elts);
7926 
7927     // Group pairs of i16 into v2i16 and bitcast to i32
7928     SmallVector<SDValue, 4> PackedElts;
7929     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7930       SDValue Pair =
7931           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7932       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7933       PackedElts.push_back(IntPair);
7934     }
7935     if ((NumElements % 2) == 1) {
7936       // Handle v3i16
7937       unsigned I = Elts.size() / 2;
7938       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7939                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7940       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7941       PackedElts.push_back(IntPair);
7942     }
7943 
7944     // Pad using UNDEF
7945     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7946 
7947     // Build final vector
7948     EVT VecVT =
7949         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7950     return DAG.getBuildVector(VecVT, DL, PackedElts);
7951   }
7952 
7953   if (NumElements == 3) {
7954     EVT IntStoreVT =
7955         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7956     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7957 
7958     EVT WidenedStoreVT = EVT::getVectorVT(
7959         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7960     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7961                                          WidenedStoreVT.getStoreSizeInBits());
7962     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7963     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7964   }
7965 
7966   assert(isTypeLegal(StoreVT));
7967   return VData;
7968 }
7969 
7970 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7971                                               SelectionDAG &DAG) const {
7972   SDLoc DL(Op);
7973   SDValue Chain = Op.getOperand(0);
7974   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7975   MachineFunction &MF = DAG.getMachineFunction();
7976 
7977   switch (IntrinsicID) {
7978   case Intrinsic::amdgcn_exp_compr: {
7979     if (!Subtarget->hasCompressedExport()) {
7980       DiagnosticInfoUnsupported BadIntrin(
7981           DAG.getMachineFunction().getFunction(),
7982           "intrinsic not supported on subtarget", DL.getDebugLoc());
7983       DAG.getContext()->diagnose(BadIntrin);
7984     }
7985     SDValue Src0 = Op.getOperand(4);
7986     SDValue Src1 = Op.getOperand(5);
7987     // Hack around illegal type on SI by directly selecting it.
7988     if (isTypeLegal(Src0.getValueType()))
7989       return SDValue();
7990 
7991     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7992     SDValue Undef = DAG.getUNDEF(MVT::f32);
7993     const SDValue Ops[] = {
7994       Op.getOperand(2), // tgt
7995       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7996       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7997       Undef, // src2
7998       Undef, // src3
7999       Op.getOperand(7), // vm
8000       DAG.getTargetConstant(1, DL, MVT::i1), // compr
8001       Op.getOperand(3), // en
8002       Op.getOperand(0) // Chain
8003     };
8004 
8005     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
8006     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
8007   }
8008   case Intrinsic::amdgcn_s_barrier: {
8009     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
8010       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
8011       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
8012       if (WGSize <= ST.getWavefrontSize())
8013         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
8014                                           Op.getOperand(0)), 0);
8015     }
8016     return SDValue();
8017   };
8018   case Intrinsic::amdgcn_tbuffer_store: {
8019     SDValue VData = Op.getOperand(2);
8020     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8021     if (IsD16)
8022       VData = handleD16VData(VData, DAG);
8023     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
8024     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
8025     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
8026     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
8027     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8028     SDValue Ops[] = {
8029       Chain,
8030       VData,             // vdata
8031       Op.getOperand(3),  // rsrc
8032       Op.getOperand(4),  // vindex
8033       Op.getOperand(5),  // voffset
8034       Op.getOperand(6),  // soffset
8035       Op.getOperand(7),  // offset
8036       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
8037       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8038       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8039     };
8040     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8041                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8042     MemSDNode *M = cast<MemSDNode>(Op);
8043     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8044                                    M->getMemoryVT(), M->getMemOperand());
8045   }
8046 
8047   case Intrinsic::amdgcn_struct_tbuffer_store: {
8048     SDValue VData = Op.getOperand(2);
8049     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8050     if (IsD16)
8051       VData = handleD16VData(VData, DAG);
8052     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8053     SDValue Ops[] = {
8054       Chain,
8055       VData,             // vdata
8056       Op.getOperand(3),  // rsrc
8057       Op.getOperand(4),  // vindex
8058       Offsets.first,     // voffset
8059       Op.getOperand(6),  // soffset
8060       Offsets.second,    // offset
8061       Op.getOperand(7),  // format
8062       Op.getOperand(8),  // cachepolicy, swizzled buffer
8063       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8064     };
8065     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8066                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8067     MemSDNode *M = cast<MemSDNode>(Op);
8068     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8069                                    M->getMemoryVT(), M->getMemOperand());
8070   }
8071 
8072   case Intrinsic::amdgcn_raw_tbuffer_store: {
8073     SDValue VData = Op.getOperand(2);
8074     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8075     if (IsD16)
8076       VData = handleD16VData(VData, DAG);
8077     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8078     SDValue Ops[] = {
8079       Chain,
8080       VData,             // vdata
8081       Op.getOperand(3),  // rsrc
8082       DAG.getConstant(0, DL, MVT::i32), // vindex
8083       Offsets.first,     // voffset
8084       Op.getOperand(5),  // soffset
8085       Offsets.second,    // offset
8086       Op.getOperand(6),  // format
8087       Op.getOperand(7),  // cachepolicy, swizzled buffer
8088       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8089     };
8090     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8091                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8092     MemSDNode *M = cast<MemSDNode>(Op);
8093     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8094                                    M->getMemoryVT(), M->getMemOperand());
8095   }
8096 
8097   case Intrinsic::amdgcn_buffer_store:
8098   case Intrinsic::amdgcn_buffer_store_format: {
8099     SDValue VData = Op.getOperand(2);
8100     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8101     if (IsD16)
8102       VData = handleD16VData(VData, DAG);
8103     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
8104     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
8105     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8106     SDValue Ops[] = {
8107       Chain,
8108       VData,
8109       Op.getOperand(3), // rsrc
8110       Op.getOperand(4), // vindex
8111       SDValue(), // voffset -- will be set by setBufferOffsets
8112       SDValue(), // soffset -- will be set by setBufferOffsets
8113       SDValue(), // offset -- will be set by setBufferOffsets
8114       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8115       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8116     };
8117     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8118 
8119     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8120                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8121     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8122     MemSDNode *M = cast<MemSDNode>(Op);
8123     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8124 
8125     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8126     EVT VDataType = VData.getValueType().getScalarType();
8127     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8128       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8129 
8130     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8131                                    M->getMemoryVT(), M->getMemOperand());
8132   }
8133 
8134   case Intrinsic::amdgcn_raw_buffer_store:
8135   case Intrinsic::amdgcn_raw_buffer_store_format: {
8136     const bool IsFormat =
8137         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
8138 
8139     SDValue VData = Op.getOperand(2);
8140     EVT VDataVT = VData.getValueType();
8141     EVT EltType = VDataVT.getScalarType();
8142     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8143     if (IsD16) {
8144       VData = handleD16VData(VData, DAG);
8145       VDataVT = VData.getValueType();
8146     }
8147 
8148     if (!isTypeLegal(VDataVT)) {
8149       VData =
8150           DAG.getNode(ISD::BITCAST, DL,
8151                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8152     }
8153 
8154     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8155     SDValue Ops[] = {
8156       Chain,
8157       VData,
8158       Op.getOperand(3), // rsrc
8159       DAG.getConstant(0, DL, MVT::i32), // vindex
8160       Offsets.first,    // voffset
8161       Op.getOperand(5), // soffset
8162       Offsets.second,   // offset
8163       Op.getOperand(6), // cachepolicy, swizzled buffer
8164       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8165     };
8166     unsigned Opc =
8167         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8168     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8169     MemSDNode *M = cast<MemSDNode>(Op);
8170     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
8171 
8172     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8173     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8174       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8175 
8176     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8177                                    M->getMemoryVT(), M->getMemOperand());
8178   }
8179 
8180   case Intrinsic::amdgcn_struct_buffer_store:
8181   case Intrinsic::amdgcn_struct_buffer_store_format: {
8182     const bool IsFormat =
8183         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8184 
8185     SDValue VData = Op.getOperand(2);
8186     EVT VDataVT = VData.getValueType();
8187     EVT EltType = VDataVT.getScalarType();
8188     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8189 
8190     if (IsD16) {
8191       VData = handleD16VData(VData, DAG);
8192       VDataVT = VData.getValueType();
8193     }
8194 
8195     if (!isTypeLegal(VDataVT)) {
8196       VData =
8197           DAG.getNode(ISD::BITCAST, DL,
8198                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8199     }
8200 
8201     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8202     SDValue Ops[] = {
8203       Chain,
8204       VData,
8205       Op.getOperand(3), // rsrc
8206       Op.getOperand(4), // vindex
8207       Offsets.first,    // voffset
8208       Op.getOperand(6), // soffset
8209       Offsets.second,   // offset
8210       Op.getOperand(7), // cachepolicy, swizzled buffer
8211       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8212     };
8213     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8214                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8215     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8216     MemSDNode *M = cast<MemSDNode>(Op);
8217     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8218 
8219     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8220     EVT VDataType = VData.getValueType().getScalarType();
8221     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8222       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8223 
8224     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8225                                    M->getMemoryVT(), M->getMemOperand());
8226   }
8227   case Intrinsic::amdgcn_raw_buffer_load_lds:
8228   case Intrinsic::amdgcn_struct_buffer_load_lds: {
8229     unsigned Opc;
8230     bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds;
8231     unsigned OpOffset = HasVIndex ? 1 : 0;
8232     SDValue VOffset = Op.getOperand(5 + OpOffset);
8233     auto CVOffset = dyn_cast<ConstantSDNode>(VOffset);
8234     bool HasVOffset = !CVOffset || !CVOffset->isZero();
8235     unsigned Size = Op->getConstantOperandVal(4);
8236 
8237     switch (Size) {
8238     default:
8239       return SDValue();
8240     case 1:
8241       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
8242                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
8243                       : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
8244                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
8245       break;
8246     case 2:
8247       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
8248                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
8249                       : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
8250                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
8251       break;
8252     case 4:
8253       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
8254                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
8255                       : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
8256                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
8257       break;
8258     }
8259 
8260     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8261 
8262     SmallVector<SDValue, 8> Ops;
8263 
8264     if (HasVIndex && HasVOffset)
8265       Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
8266                                        { Op.getOperand(5), // VIndex
8267                                          VOffset }));
8268     else if (HasVIndex)
8269       Ops.push_back(Op.getOperand(5));
8270     else if (HasVOffset)
8271       Ops.push_back(VOffset);
8272 
8273     Ops.push_back(Op.getOperand(2));           // rsrc
8274     Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
8275     Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
8276     unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
8277     Ops.push_back(
8278       DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
8279     Ops.push_back(
8280       DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8));          // swz
8281     Ops.push_back(M0Val.getValue(0)); // Chain
8282     Ops.push_back(M0Val.getValue(1)); // Glue
8283 
8284     auto *M = cast<MemSDNode>(Op);
8285     MachineMemOperand *LoadMMO = M->getMemOperand();
8286     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8287     LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset);
8288     MachinePointerInfo StorePtrI = LoadPtrI;
8289     StorePtrI.V = nullptr;
8290     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8291 
8292     auto F = LoadMMO->getFlags() &
8293              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8294     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8295                                       Size, LoadMMO->getBaseAlign());
8296 
8297     MachineMemOperand *StoreMMO =
8298         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8299                                 sizeof(int32_t), LoadMMO->getBaseAlign());
8300 
8301     auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
8302     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8303 
8304     return SDValue(Load, 0);
8305   }
8306   case Intrinsic::amdgcn_global_load_lds: {
8307     unsigned Opc;
8308     unsigned Size = Op->getConstantOperandVal(4);
8309     switch (Size) {
8310     default:
8311       return SDValue();
8312     case 1:
8313       Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
8314       break;
8315     case 2:
8316       Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
8317       break;
8318     case 4:
8319       Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
8320       break;
8321     }
8322 
8323     auto *M = cast<MemSDNode>(Op);
8324     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8325 
8326     SmallVector<SDValue, 6> Ops;
8327 
8328     SDValue Addr = Op.getOperand(2); // Global ptr
8329     SDValue VOffset;
8330     // Try to split SAddr and VOffset. Global and LDS pointers share the same
8331     // immediate offset, so we cannot use a regular SelectGlobalSAddr().
8332     if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
8333       SDValue LHS = Addr.getOperand(0);
8334       SDValue RHS = Addr.getOperand(1);
8335 
8336       if (LHS->isDivergent())
8337         std::swap(LHS, RHS);
8338 
8339       if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
8340           RHS.getOperand(0).getValueType() == MVT::i32) {
8341         // add (i64 sgpr), (zero_extend (i32 vgpr))
8342         Addr = LHS;
8343         VOffset = RHS.getOperand(0);
8344       }
8345     }
8346 
8347     Ops.push_back(Addr);
8348     if (!Addr->isDivergent()) {
8349       Opc = AMDGPU::getGlobalSaddrOp(Opc);
8350       if (!VOffset)
8351         VOffset = SDValue(
8352             DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
8353                                DAG.getTargetConstant(0, DL, MVT::i32)), 0);
8354       Ops.push_back(VOffset);
8355     }
8356 
8357     Ops.push_back(Op.getOperand(5));  // Offset
8358     Ops.push_back(Op.getOperand(6));  // CPol
8359     Ops.push_back(M0Val.getValue(0)); // Chain
8360     Ops.push_back(M0Val.getValue(1)); // Glue
8361 
8362     MachineMemOperand *LoadMMO = M->getMemOperand();
8363     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8364     LoadPtrI.Offset = Op->getConstantOperandVal(5);
8365     MachinePointerInfo StorePtrI = LoadPtrI;
8366     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
8367     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8368     auto F = LoadMMO->getFlags() &
8369              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8370     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8371                                       Size, LoadMMO->getBaseAlign());
8372     MachineMemOperand *StoreMMO =
8373         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8374                                 sizeof(int32_t), Align(4));
8375 
8376     auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
8377     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8378 
8379     return SDValue(Load, 0);
8380   }
8381   case Intrinsic::amdgcn_end_cf:
8382     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8383                                       Op->getOperand(2), Chain), 0);
8384 
8385   default: {
8386     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8387             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8388       return lowerImage(Op, ImageDimIntr, DAG, true);
8389 
8390     return Op;
8391   }
8392   }
8393 }
8394 
8395 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8396 // offset (the offset that is included in bounds checking and swizzling, to be
8397 // split between the instruction's voffset and immoffset fields) and soffset
8398 // (the offset that is excluded from bounds checking and swizzling, to go in
8399 // the instruction's soffset field).  This function takes the first kind of
8400 // offset and figures out how to split it between voffset and immoffset.
8401 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8402     SDValue Offset, SelectionDAG &DAG) const {
8403   SDLoc DL(Offset);
8404   const unsigned MaxImm = 4095;
8405   SDValue N0 = Offset;
8406   ConstantSDNode *C1 = nullptr;
8407 
8408   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8409     N0 = SDValue();
8410   else if (DAG.isBaseWithConstantOffset(N0)) {
8411     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8412     N0 = N0.getOperand(0);
8413   }
8414 
8415   if (C1) {
8416     unsigned ImmOffset = C1->getZExtValue();
8417     // If the immediate value is too big for the immoffset field, put the value
8418     // and -4096 into the immoffset field so that the value that is copied/added
8419     // for the voffset field is a multiple of 4096, and it stands more chance
8420     // of being CSEd with the copy/add for another similar load/store.
8421     // However, do not do that rounding down to a multiple of 4096 if that is a
8422     // negative number, as it appears to be illegal to have a negative offset
8423     // in the vgpr, even if adding the immediate offset makes it positive.
8424     unsigned Overflow = ImmOffset & ~MaxImm;
8425     ImmOffset -= Overflow;
8426     if ((int32_t)Overflow < 0) {
8427       Overflow += ImmOffset;
8428       ImmOffset = 0;
8429     }
8430     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8431     if (Overflow) {
8432       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8433       if (!N0)
8434         N0 = OverflowVal;
8435       else {
8436         SDValue Ops[] = { N0, OverflowVal };
8437         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8438       }
8439     }
8440   }
8441   if (!N0)
8442     N0 = DAG.getConstant(0, DL, MVT::i32);
8443   if (!C1)
8444     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8445   return {N0, SDValue(C1, 0)};
8446 }
8447 
8448 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8449 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8450 // pointed to by Offsets.
8451 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8452                                         SelectionDAG &DAG, SDValue *Offsets,
8453                                         Align Alignment) const {
8454   SDLoc DL(CombinedOffset);
8455   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8456     uint32_t Imm = C->getZExtValue();
8457     uint32_t SOffset, ImmOffset;
8458     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8459                                  Alignment)) {
8460       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8461       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8462       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8463       return;
8464     }
8465   }
8466   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8467     SDValue N0 = CombinedOffset.getOperand(0);
8468     SDValue N1 = CombinedOffset.getOperand(1);
8469     uint32_t SOffset, ImmOffset;
8470     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8471     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8472                                                 Subtarget, Alignment)) {
8473       Offsets[0] = N0;
8474       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8475       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8476       return;
8477     }
8478   }
8479   Offsets[0] = CombinedOffset;
8480   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8481   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8482 }
8483 
8484 // Handle 8 bit and 16 bit buffer loads
8485 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8486                                                      EVT LoadVT, SDLoc DL,
8487                                                      ArrayRef<SDValue> Ops,
8488                                                      MemSDNode *M) const {
8489   EVT IntVT = LoadVT.changeTypeToInteger();
8490   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8491          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8492 
8493   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8494   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8495                                                Ops, IntVT,
8496                                                M->getMemOperand());
8497   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8498   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8499 
8500   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8501 }
8502 
8503 // Handle 8 bit and 16 bit buffer stores
8504 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8505                                                       EVT VDataType, SDLoc DL,
8506                                                       SDValue Ops[],
8507                                                       MemSDNode *M) const {
8508   if (VDataType == MVT::f16)
8509     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8510 
8511   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8512   Ops[1] = BufferStoreExt;
8513   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8514                                  AMDGPUISD::BUFFER_STORE_SHORT;
8515   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8516   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8517                                      M->getMemOperand());
8518 }
8519 
8520 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8521                                  ISD::LoadExtType ExtType, SDValue Op,
8522                                  const SDLoc &SL, EVT VT) {
8523   if (VT.bitsLT(Op.getValueType()))
8524     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8525 
8526   switch (ExtType) {
8527   case ISD::SEXTLOAD:
8528     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8529   case ISD::ZEXTLOAD:
8530     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8531   case ISD::EXTLOAD:
8532     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8533   case ISD::NON_EXTLOAD:
8534     return Op;
8535   }
8536 
8537   llvm_unreachable("invalid ext type");
8538 }
8539 
8540 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8541   SelectionDAG &DAG = DCI.DAG;
8542   if (Ld->getAlign() < Align(4) || Ld->isDivergent())
8543     return SDValue();
8544 
8545   // FIXME: Constant loads should all be marked invariant.
8546   unsigned AS = Ld->getAddressSpace();
8547   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8548       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8549       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8550     return SDValue();
8551 
8552   // Don't do this early, since it may interfere with adjacent load merging for
8553   // illegal types. We can avoid losing alignment information for exotic types
8554   // pre-legalize.
8555   EVT MemVT = Ld->getMemoryVT();
8556   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8557       MemVT.getSizeInBits() >= 32)
8558     return SDValue();
8559 
8560   SDLoc SL(Ld);
8561 
8562   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8563          "unexpected vector extload");
8564 
8565   // TODO: Drop only high part of range.
8566   SDValue Ptr = Ld->getBasePtr();
8567   SDValue NewLoad = DAG.getLoad(
8568       ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
8569       Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
8570       Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
8571       nullptr); // Drop ranges
8572 
8573   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8574   if (MemVT.isFloatingPoint()) {
8575     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8576            "unexpected fp extload");
8577     TruncVT = MemVT.changeTypeToInteger();
8578   }
8579 
8580   SDValue Cvt = NewLoad;
8581   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8582     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8583                       DAG.getValueType(TruncVT));
8584   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8585              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8586     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8587   } else {
8588     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8589   }
8590 
8591   EVT VT = Ld->getValueType(0);
8592   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8593 
8594   DCI.AddToWorklist(Cvt.getNode());
8595 
8596   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8597   // the appropriate extension from the 32-bit load.
8598   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8599   DCI.AddToWorklist(Cvt.getNode());
8600 
8601   // Handle conversion back to floating point if necessary.
8602   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8603 
8604   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8605 }
8606 
8607 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8608   SDLoc DL(Op);
8609   LoadSDNode *Load = cast<LoadSDNode>(Op);
8610   ISD::LoadExtType ExtType = Load->getExtensionType();
8611   EVT MemVT = Load->getMemoryVT();
8612 
8613   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8614     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8615       return SDValue();
8616 
8617     // FIXME: Copied from PPC
8618     // First, load into 32 bits, then truncate to 1 bit.
8619 
8620     SDValue Chain = Load->getChain();
8621     SDValue BasePtr = Load->getBasePtr();
8622     MachineMemOperand *MMO = Load->getMemOperand();
8623 
8624     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8625 
8626     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8627                                    BasePtr, RealMemVT, MMO);
8628 
8629     if (!MemVT.isVector()) {
8630       SDValue Ops[] = {
8631         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8632         NewLD.getValue(1)
8633       };
8634 
8635       return DAG.getMergeValues(Ops, DL);
8636     }
8637 
8638     SmallVector<SDValue, 3> Elts;
8639     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8640       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8641                                 DAG.getConstant(I, DL, MVT::i32));
8642 
8643       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8644     }
8645 
8646     SDValue Ops[] = {
8647       DAG.getBuildVector(MemVT, DL, Elts),
8648       NewLD.getValue(1)
8649     };
8650 
8651     return DAG.getMergeValues(Ops, DL);
8652   }
8653 
8654   if (!MemVT.isVector())
8655     return SDValue();
8656 
8657   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8658          "Custom lowering for non-i32 vectors hasn't been implemented.");
8659 
8660   Align Alignment = Load->getAlign();
8661   unsigned AS = Load->getAddressSpace();
8662   if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
8663       Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8664     return SplitVectorLoad(Op, DAG);
8665   }
8666 
8667   MachineFunction &MF = DAG.getMachineFunction();
8668   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8669   // If there is a possibility that flat instruction access scratch memory
8670   // then we need to use the same legalization rules we use for private.
8671   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8672       !Subtarget->hasMultiDwordFlatScratchAddressing())
8673     AS = MFI->hasFlatScratchInit() ?
8674          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8675 
8676   unsigned NumElements = MemVT.getVectorNumElements();
8677 
8678   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8679       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8680     if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
8681       if (MemVT.isPow2VectorType())
8682         return SDValue();
8683       return WidenOrSplitVectorLoad(Op, DAG);
8684     }
8685     // Non-uniform loads will be selected to MUBUF instructions, so they
8686     // have the same legalization requirements as global and private
8687     // loads.
8688     //
8689   }
8690 
8691   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8692       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8693       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8694     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8695         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8696         Alignment >= Align(4) && NumElements < 32) {
8697       if (MemVT.isPow2VectorType())
8698         return SDValue();
8699       return WidenOrSplitVectorLoad(Op, DAG);
8700     }
8701     // Non-uniform loads will be selected to MUBUF instructions, so they
8702     // have the same legalization requirements as global and private
8703     // loads.
8704     //
8705   }
8706   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8707       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8708       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8709       AS == AMDGPUAS::FLAT_ADDRESS) {
8710     if (NumElements > 4)
8711       return SplitVectorLoad(Op, DAG);
8712     // v3 loads not supported on SI.
8713     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8714       return WidenOrSplitVectorLoad(Op, DAG);
8715 
8716     // v3 and v4 loads are supported for private and global memory.
8717     return SDValue();
8718   }
8719   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8720     // Depending on the setting of the private_element_size field in the
8721     // resource descriptor, we can only make private accesses up to a certain
8722     // size.
8723     switch (Subtarget->getMaxPrivateElementSize()) {
8724     case 4: {
8725       SDValue Ops[2];
8726       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8727       return DAG.getMergeValues(Ops, DL);
8728     }
8729     case 8:
8730       if (NumElements > 2)
8731         return SplitVectorLoad(Op, DAG);
8732       return SDValue();
8733     case 16:
8734       // Same as global/flat
8735       if (NumElements > 4)
8736         return SplitVectorLoad(Op, DAG);
8737       // v3 loads not supported on SI.
8738       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8739         return WidenOrSplitVectorLoad(Op, DAG);
8740 
8741       return SDValue();
8742     default:
8743       llvm_unreachable("unsupported private_element_size");
8744     }
8745   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8746     bool Fast = false;
8747     auto Flags = Load->getMemOperand()->getFlags();
8748     if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8749                                            Load->getAlign(), Flags, &Fast) &&
8750         Fast)
8751       return SDValue();
8752 
8753     if (MemVT.isVector())
8754       return SplitVectorLoad(Op, DAG);
8755   }
8756 
8757   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8758                                       MemVT, *Load->getMemOperand())) {
8759     SDValue Ops[2];
8760     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8761     return DAG.getMergeValues(Ops, DL);
8762   }
8763 
8764   return SDValue();
8765 }
8766 
8767 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8768   EVT VT = Op.getValueType();
8769   if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
8770     return splitTernaryVectorOp(Op, DAG);
8771 
8772   assert(VT.getSizeInBits() == 64);
8773 
8774   SDLoc DL(Op);
8775   SDValue Cond = Op.getOperand(0);
8776 
8777   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8778   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8779 
8780   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8781   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8782 
8783   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8784   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8785 
8786   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8787 
8788   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8789   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8790 
8791   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8792 
8793   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8794   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8795 }
8796 
8797 // Catch division cases where we can use shortcuts with rcp and rsq
8798 // instructions.
8799 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8800                                               SelectionDAG &DAG) const {
8801   SDLoc SL(Op);
8802   SDValue LHS = Op.getOperand(0);
8803   SDValue RHS = Op.getOperand(1);
8804   EVT VT = Op.getValueType();
8805   const SDNodeFlags Flags = Op->getFlags();
8806 
8807   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8808 
8809   // Without !fpmath accuracy information, we can't do more because we don't
8810   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8811   if (!AllowInaccurateRcp)
8812     return SDValue();
8813 
8814   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8815     if (CLHS->isExactlyValue(1.0)) {
8816       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8817       // the CI documentation has a worst case error of 1 ulp.
8818       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8819       // use it as long as we aren't trying to use denormals.
8820       //
8821       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8822 
8823       // 1.0 / sqrt(x) -> rsq(x)
8824 
8825       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8826       // error seems really high at 2^29 ULP.
8827       if (RHS.getOpcode() == ISD::FSQRT)
8828         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8829 
8830       // 1.0 / x -> rcp(x)
8831       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8832     }
8833 
8834     // Same as for 1.0, but expand the sign out of the constant.
8835     if (CLHS->isExactlyValue(-1.0)) {
8836       // -1.0 / x -> rcp (fneg x)
8837       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8838       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8839     }
8840   }
8841 
8842   // Turn into multiply by the reciprocal.
8843   // x / y -> x * (1.0 / y)
8844   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8845   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8846 }
8847 
8848 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8849                                                 SelectionDAG &DAG) const {
8850   SDLoc SL(Op);
8851   SDValue X = Op.getOperand(0);
8852   SDValue Y = Op.getOperand(1);
8853   EVT VT = Op.getValueType();
8854   const SDNodeFlags Flags = Op->getFlags();
8855 
8856   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8857                             DAG.getTarget().Options.UnsafeFPMath;
8858   if (!AllowInaccurateDiv)
8859     return SDValue();
8860 
8861   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8862   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8863 
8864   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8865   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8866 
8867   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8868   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8869   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8870   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8871   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8872   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8873 }
8874 
8875 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8876                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8877                           SDNodeFlags Flags) {
8878   if (GlueChain->getNumValues() <= 1) {
8879     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8880   }
8881 
8882   assert(GlueChain->getNumValues() == 3);
8883 
8884   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8885   switch (Opcode) {
8886   default: llvm_unreachable("no chain equivalent for opcode");
8887   case ISD::FMUL:
8888     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8889     break;
8890   }
8891 
8892   return DAG.getNode(Opcode, SL, VTList,
8893                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8894                      Flags);
8895 }
8896 
8897 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8898                            EVT VT, SDValue A, SDValue B, SDValue C,
8899                            SDValue GlueChain, SDNodeFlags Flags) {
8900   if (GlueChain->getNumValues() <= 1) {
8901     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8902   }
8903 
8904   assert(GlueChain->getNumValues() == 3);
8905 
8906   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8907   switch (Opcode) {
8908   default: llvm_unreachable("no chain equivalent for opcode");
8909   case ISD::FMA:
8910     Opcode = AMDGPUISD::FMA_W_CHAIN;
8911     break;
8912   }
8913 
8914   return DAG.getNode(Opcode, SL, VTList,
8915                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8916                      Flags);
8917 }
8918 
8919 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8920   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8921     return FastLowered;
8922 
8923   SDLoc SL(Op);
8924   SDValue Src0 = Op.getOperand(0);
8925   SDValue Src1 = Op.getOperand(1);
8926 
8927   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8928   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8929 
8930   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8931   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8932 
8933   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8934   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8935 
8936   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8937 }
8938 
8939 // Faster 2.5 ULP division that does not support denormals.
8940 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8941   SDLoc SL(Op);
8942   SDValue LHS = Op.getOperand(1);
8943   SDValue RHS = Op.getOperand(2);
8944 
8945   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8946 
8947   const APFloat K0Val(BitsToFloat(0x6f800000));
8948   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8949 
8950   const APFloat K1Val(BitsToFloat(0x2f800000));
8951   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8952 
8953   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8954 
8955   EVT SetCCVT =
8956     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8957 
8958   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8959 
8960   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8961 
8962   // TODO: Should this propagate fast-math-flags?
8963   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8964 
8965   // rcp does not support denormals.
8966   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8967 
8968   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8969 
8970   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8971 }
8972 
8973 // Returns immediate value for setting the F32 denorm mode when using the
8974 // S_DENORM_MODE instruction.
8975 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8976                                     const SDLoc &SL, const GCNSubtarget *ST) {
8977   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8978   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8979                                 ? FP_DENORM_FLUSH_NONE
8980                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8981 
8982   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8983   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8984 }
8985 
8986 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8987   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8988     return FastLowered;
8989 
8990   // The selection matcher assumes anything with a chain selecting to a
8991   // mayRaiseFPException machine instruction. Since we're introducing a chain
8992   // here, we need to explicitly report nofpexcept for the regular fdiv
8993   // lowering.
8994   SDNodeFlags Flags = Op->getFlags();
8995   Flags.setNoFPExcept(true);
8996 
8997   SDLoc SL(Op);
8998   SDValue LHS = Op.getOperand(0);
8999   SDValue RHS = Op.getOperand(1);
9000 
9001   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
9002 
9003   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
9004 
9005   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
9006                                           {RHS, RHS, LHS}, Flags);
9007   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
9008                                         {LHS, RHS, LHS}, Flags);
9009 
9010   // Denominator is scaled to not be denormal, so using rcp is ok.
9011   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
9012                                   DenominatorScaled, Flags);
9013   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
9014                                      DenominatorScaled, Flags);
9015 
9016   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
9017                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
9018                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
9019   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
9020 
9021   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
9022 
9023   if (!HasFP32Denormals) {
9024     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
9025     // lowering. The chain dependence is insufficient, and we need glue. We do
9026     // not need the glue variants in a strictfp function.
9027 
9028     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
9029 
9030     SDNode *EnableDenorm;
9031     if (Subtarget->hasDenormModeInst()) {
9032       const SDValue EnableDenormValue =
9033           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
9034 
9035       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
9036                                  DAG.getEntryNode(), EnableDenormValue).getNode();
9037     } else {
9038       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
9039                                                         SL, MVT::i32);
9040       EnableDenorm =
9041           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
9042                              {EnableDenormValue, BitField, DAG.getEntryNode()});
9043     }
9044 
9045     SDValue Ops[3] = {
9046       NegDivScale0,
9047       SDValue(EnableDenorm, 0),
9048       SDValue(EnableDenorm, 1)
9049     };
9050 
9051     NegDivScale0 = DAG.getMergeValues(Ops, SL);
9052   }
9053 
9054   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
9055                              ApproxRcp, One, NegDivScale0, Flags);
9056 
9057   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
9058                              ApproxRcp, Fma0, Flags);
9059 
9060   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
9061                            Fma1, Fma1, Flags);
9062 
9063   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
9064                              NumeratorScaled, Mul, Flags);
9065 
9066   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
9067                              Fma2, Fma1, Mul, Fma2, Flags);
9068 
9069   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
9070                              NumeratorScaled, Fma3, Flags);
9071 
9072   if (!HasFP32Denormals) {
9073     SDNode *DisableDenorm;
9074     if (Subtarget->hasDenormModeInst()) {
9075       const SDValue DisableDenormValue =
9076           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
9077 
9078       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
9079                                   Fma4.getValue(1), DisableDenormValue,
9080                                   Fma4.getValue(2)).getNode();
9081     } else {
9082       const SDValue DisableDenormValue =
9083           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
9084 
9085       DisableDenorm = DAG.getMachineNode(
9086           AMDGPU::S_SETREG_B32, SL, MVT::Other,
9087           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
9088     }
9089 
9090     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
9091                                       SDValue(DisableDenorm, 0), DAG.getRoot());
9092     DAG.setRoot(OutputChain);
9093   }
9094 
9095   SDValue Scale = NumeratorScaled.getValue(1);
9096   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
9097                              {Fma4, Fma1, Fma3, Scale}, Flags);
9098 
9099   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
9100 }
9101 
9102 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
9103   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
9104     return FastLowered;
9105 
9106   SDLoc SL(Op);
9107   SDValue X = Op.getOperand(0);
9108   SDValue Y = Op.getOperand(1);
9109 
9110   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
9111 
9112   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
9113 
9114   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
9115 
9116   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
9117 
9118   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
9119 
9120   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
9121 
9122   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
9123 
9124   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
9125 
9126   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
9127 
9128   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
9129   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
9130 
9131   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
9132                              NegDivScale0, Mul, DivScale1);
9133 
9134   SDValue Scale;
9135 
9136   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
9137     // Workaround a hardware bug on SI where the condition output from div_scale
9138     // is not usable.
9139 
9140     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
9141 
9142     // Figure out if the scale to use for div_fmas.
9143     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
9144     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
9145     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
9146     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
9147 
9148     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
9149     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
9150 
9151     SDValue Scale0Hi
9152       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
9153     SDValue Scale1Hi
9154       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
9155 
9156     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
9157     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
9158     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
9159   } else {
9160     Scale = DivScale1.getValue(1);
9161   }
9162 
9163   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
9164                              Fma4, Fma3, Mul, Scale);
9165 
9166   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
9167 }
9168 
9169 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
9170   EVT VT = Op.getValueType();
9171 
9172   if (VT == MVT::f32)
9173     return LowerFDIV32(Op, DAG);
9174 
9175   if (VT == MVT::f64)
9176     return LowerFDIV64(Op, DAG);
9177 
9178   if (VT == MVT::f16)
9179     return LowerFDIV16(Op, DAG);
9180 
9181   llvm_unreachable("Unexpected type for fdiv");
9182 }
9183 
9184 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
9185   SDLoc DL(Op);
9186   StoreSDNode *Store = cast<StoreSDNode>(Op);
9187   EVT VT = Store->getMemoryVT();
9188 
9189   if (VT == MVT::i1) {
9190     return DAG.getTruncStore(Store->getChain(), DL,
9191        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
9192        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
9193   }
9194 
9195   assert(VT.isVector() &&
9196          Store->getValue().getValueType().getScalarType() == MVT::i32);
9197 
9198   unsigned AS = Store->getAddressSpace();
9199   if (Subtarget->hasLDSMisalignedBug() &&
9200       AS == AMDGPUAS::FLAT_ADDRESS &&
9201       Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
9202     return SplitVectorStore(Op, DAG);
9203   }
9204 
9205   MachineFunction &MF = DAG.getMachineFunction();
9206   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
9207   // If there is a possibility that flat instruction access scratch memory
9208   // then we need to use the same legalization rules we use for private.
9209   if (AS == AMDGPUAS::FLAT_ADDRESS &&
9210       !Subtarget->hasMultiDwordFlatScratchAddressing())
9211     AS = MFI->hasFlatScratchInit() ?
9212          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
9213 
9214   unsigned NumElements = VT.getVectorNumElements();
9215   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
9216       AS == AMDGPUAS::FLAT_ADDRESS) {
9217     if (NumElements > 4)
9218       return SplitVectorStore(Op, DAG);
9219     // v3 stores not supported on SI.
9220     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9221       return SplitVectorStore(Op, DAG);
9222 
9223     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9224                                         VT, *Store->getMemOperand()))
9225       return expandUnalignedStore(Store, DAG);
9226 
9227     return SDValue();
9228   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9229     switch (Subtarget->getMaxPrivateElementSize()) {
9230     case 4:
9231       return scalarizeVectorStore(Store, DAG);
9232     case 8:
9233       if (NumElements > 2)
9234         return SplitVectorStore(Op, DAG);
9235       return SDValue();
9236     case 16:
9237       if (NumElements > 4 ||
9238           (NumElements == 3 && !Subtarget->enableFlatScratch()))
9239         return SplitVectorStore(Op, DAG);
9240       return SDValue();
9241     default:
9242       llvm_unreachable("unsupported private_element_size");
9243     }
9244   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9245     bool Fast = false;
9246     auto Flags = Store->getMemOperand()->getFlags();
9247     if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
9248                                            Store->getAlign(), Flags, &Fast) &&
9249         Fast)
9250       return SDValue();
9251 
9252     if (VT.isVector())
9253       return SplitVectorStore(Op, DAG);
9254 
9255     return expandUnalignedStore(Store, DAG);
9256   }
9257 
9258   // Probably an invalid store. If so we'll end up emitting a selection error.
9259   return SDValue();
9260 }
9261 
9262 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9263   SDLoc DL(Op);
9264   EVT VT = Op.getValueType();
9265   SDValue Arg = Op.getOperand(0);
9266   SDValue TrigVal;
9267 
9268   // Propagate fast-math flags so that the multiply we introduce can be folded
9269   // if Arg is already the result of a multiply by constant.
9270   auto Flags = Op->getFlags();
9271 
9272   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9273 
9274   if (Subtarget->hasTrigReducedRange()) {
9275     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9276     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9277   } else {
9278     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9279   }
9280 
9281   switch (Op.getOpcode()) {
9282   case ISD::FCOS:
9283     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9284   case ISD::FSIN:
9285     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9286   default:
9287     llvm_unreachable("Wrong trig opcode");
9288   }
9289 }
9290 
9291 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9292   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9293   assert(AtomicNode->isCompareAndSwap());
9294   unsigned AS = AtomicNode->getAddressSpace();
9295 
9296   // No custom lowering required for local address space
9297   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9298     return Op;
9299 
9300   // Non-local address space requires custom lowering for atomic compare
9301   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9302   SDLoc DL(Op);
9303   SDValue ChainIn = Op.getOperand(0);
9304   SDValue Addr = Op.getOperand(1);
9305   SDValue Old = Op.getOperand(2);
9306   SDValue New = Op.getOperand(3);
9307   EVT VT = Op.getValueType();
9308   MVT SimpleVT = VT.getSimpleVT();
9309   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9310 
9311   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9312   SDValue Ops[] = { ChainIn, Addr, NewOld };
9313 
9314   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9315                                  Ops, VT, AtomicNode->getMemOperand());
9316 }
9317 
9318 //===----------------------------------------------------------------------===//
9319 // Custom DAG optimizations
9320 //===----------------------------------------------------------------------===//
9321 
9322 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9323                                                      DAGCombinerInfo &DCI) const {
9324   EVT VT = N->getValueType(0);
9325   EVT ScalarVT = VT.getScalarType();
9326   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9327     return SDValue();
9328 
9329   SelectionDAG &DAG = DCI.DAG;
9330   SDLoc DL(N);
9331 
9332   SDValue Src = N->getOperand(0);
9333   EVT SrcVT = Src.getValueType();
9334 
9335   // TODO: We could try to match extracting the higher bytes, which would be
9336   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9337   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9338   // about in practice.
9339   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9340     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9341       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9342       DCI.AddToWorklist(Cvt.getNode());
9343 
9344       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9345       if (ScalarVT != MVT::f32) {
9346         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9347                           DAG.getTargetConstant(0, DL, MVT::i32));
9348       }
9349       return Cvt;
9350     }
9351   }
9352 
9353   return SDValue();
9354 }
9355 
9356 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9357 
9358 // This is a variant of
9359 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9360 //
9361 // The normal DAG combiner will do this, but only if the add has one use since
9362 // that would increase the number of instructions.
9363 //
9364 // This prevents us from seeing a constant offset that can be folded into a
9365 // memory instruction's addressing mode. If we know the resulting add offset of
9366 // a pointer can be folded into an addressing offset, we can replace the pointer
9367 // operand with the add of new constant offset. This eliminates one of the uses,
9368 // and may allow the remaining use to also be simplified.
9369 //
9370 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9371                                                unsigned AddrSpace,
9372                                                EVT MemVT,
9373                                                DAGCombinerInfo &DCI) const {
9374   SDValue N0 = N->getOperand(0);
9375   SDValue N1 = N->getOperand(1);
9376 
9377   // We only do this to handle cases where it's profitable when there are
9378   // multiple uses of the add, so defer to the standard combine.
9379   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9380       N0->hasOneUse())
9381     return SDValue();
9382 
9383   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9384   if (!CN1)
9385     return SDValue();
9386 
9387   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9388   if (!CAdd)
9389     return SDValue();
9390 
9391   // If the resulting offset is too large, we can't fold it into the addressing
9392   // mode offset.
9393   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9394   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9395 
9396   AddrMode AM;
9397   AM.HasBaseReg = true;
9398   AM.BaseOffs = Offset.getSExtValue();
9399   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9400     return SDValue();
9401 
9402   SelectionDAG &DAG = DCI.DAG;
9403   SDLoc SL(N);
9404   EVT VT = N->getValueType(0);
9405 
9406   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9407   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9408 
9409   SDNodeFlags Flags;
9410   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9411                           (N0.getOpcode() == ISD::OR ||
9412                            N0->getFlags().hasNoUnsignedWrap()));
9413 
9414   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9415 }
9416 
9417 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9418 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9419 /// specific intrinsic, but they all place the pointer operand first.
9420 static unsigned getBasePtrIndex(const MemSDNode *N) {
9421   switch (N->getOpcode()) {
9422   case ISD::STORE:
9423   case ISD::INTRINSIC_W_CHAIN:
9424   case ISD::INTRINSIC_VOID:
9425     return 2;
9426   default:
9427     return 1;
9428   }
9429 }
9430 
9431 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9432                                                   DAGCombinerInfo &DCI) const {
9433   SelectionDAG &DAG = DCI.DAG;
9434   SDLoc SL(N);
9435 
9436   unsigned PtrIdx = getBasePtrIndex(N);
9437   SDValue Ptr = N->getOperand(PtrIdx);
9438 
9439   // TODO: We could also do this for multiplies.
9440   if (Ptr.getOpcode() == ISD::SHL) {
9441     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9442                                           N->getMemoryVT(), DCI);
9443     if (NewPtr) {
9444       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9445 
9446       NewOps[PtrIdx] = NewPtr;
9447       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9448     }
9449   }
9450 
9451   return SDValue();
9452 }
9453 
9454 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9455   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9456          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9457          (Opc == ISD::XOR && Val == 0);
9458 }
9459 
9460 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9461 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9462 // integer combine opportunities since most 64-bit operations are decomposed
9463 // this way.  TODO: We won't want this for SALU especially if it is an inline
9464 // immediate.
9465 SDValue SITargetLowering::splitBinaryBitConstantOp(
9466   DAGCombinerInfo &DCI,
9467   const SDLoc &SL,
9468   unsigned Opc, SDValue LHS,
9469   const ConstantSDNode *CRHS) const {
9470   uint64_t Val = CRHS->getZExtValue();
9471   uint32_t ValLo = Lo_32(Val);
9472   uint32_t ValHi = Hi_32(Val);
9473   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9474 
9475     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9476          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9477         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9478     // If we need to materialize a 64-bit immediate, it will be split up later
9479     // anyway. Avoid creating the harder to understand 64-bit immediate
9480     // materialization.
9481     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9482   }
9483 
9484   return SDValue();
9485 }
9486 
9487 // Returns true if argument is a boolean value which is not serialized into
9488 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9489 static bool isBoolSGPR(SDValue V) {
9490   if (V.getValueType() != MVT::i1)
9491     return false;
9492   switch (V.getOpcode()) {
9493   default:
9494     break;
9495   case ISD::SETCC:
9496   case AMDGPUISD::FP_CLASS:
9497     return true;
9498   case ISD::AND:
9499   case ISD::OR:
9500   case ISD::XOR:
9501     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9502   }
9503   return false;
9504 }
9505 
9506 // If a constant has all zeroes or all ones within each byte return it.
9507 // Otherwise return 0.
9508 static uint32_t getConstantPermuteMask(uint32_t C) {
9509   // 0xff for any zero byte in the mask
9510   uint32_t ZeroByteMask = 0;
9511   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9512   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9513   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9514   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9515   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9516   if ((NonZeroByteMask & C) != NonZeroByteMask)
9517     return 0; // Partial bytes selected.
9518   return C;
9519 }
9520 
9521 // Check if a node selects whole bytes from its operand 0 starting at a byte
9522 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9523 // or -1 if not succeeded.
9524 // Note byte select encoding:
9525 // value 0-3 selects corresponding source byte;
9526 // value 0xc selects zero;
9527 // value 0xff selects 0xff.
9528 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9529   assert(V.getValueSizeInBits() == 32);
9530 
9531   if (V.getNumOperands() != 2)
9532     return ~0;
9533 
9534   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9535   if (!N1)
9536     return ~0;
9537 
9538   uint32_t C = N1->getZExtValue();
9539 
9540   switch (V.getOpcode()) {
9541   default:
9542     break;
9543   case ISD::AND:
9544     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9545       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9546     }
9547     break;
9548 
9549   case ISD::OR:
9550     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9551       return (0x03020100 & ~ConstMask) | ConstMask;
9552     }
9553     break;
9554 
9555   case ISD::SHL:
9556     if (C % 8)
9557       return ~0;
9558 
9559     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9560 
9561   case ISD::SRL:
9562     if (C % 8)
9563       return ~0;
9564 
9565     return uint32_t(0x0c0c0c0c03020100ull >> C);
9566   }
9567 
9568   return ~0;
9569 }
9570 
9571 SDValue SITargetLowering::performAndCombine(SDNode *N,
9572                                             DAGCombinerInfo &DCI) const {
9573   if (DCI.isBeforeLegalize())
9574     return SDValue();
9575 
9576   SelectionDAG &DAG = DCI.DAG;
9577   EVT VT = N->getValueType(0);
9578   SDValue LHS = N->getOperand(0);
9579   SDValue RHS = N->getOperand(1);
9580 
9581 
9582   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9583   if (VT == MVT::i64 && CRHS) {
9584     if (SDValue Split
9585         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9586       return Split;
9587   }
9588 
9589   if (CRHS && VT == MVT::i32) {
9590     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9591     // nb = number of trailing zeroes in mask
9592     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9593     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9594     uint64_t Mask = CRHS->getZExtValue();
9595     unsigned Bits = countPopulation(Mask);
9596     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9597         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9598       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9599         unsigned Shift = CShift->getZExtValue();
9600         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9601         unsigned Offset = NB + Shift;
9602         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9603           SDLoc SL(N);
9604           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9605                                     LHS->getOperand(0),
9606                                     DAG.getConstant(Offset, SL, MVT::i32),
9607                                     DAG.getConstant(Bits, SL, MVT::i32));
9608           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9609           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9610                                     DAG.getValueType(NarrowVT));
9611           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9612                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9613           return Shl;
9614         }
9615       }
9616     }
9617 
9618     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9619     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9620         isa<ConstantSDNode>(LHS.getOperand(2))) {
9621       uint32_t Sel = getConstantPermuteMask(Mask);
9622       if (!Sel)
9623         return SDValue();
9624 
9625       // Select 0xc for all zero bytes
9626       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9627       SDLoc DL(N);
9628       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9629                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9630     }
9631   }
9632 
9633   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9634   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9635   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9636     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9637     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9638 
9639     SDValue X = LHS.getOperand(0);
9640     SDValue Y = RHS.getOperand(0);
9641     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9642       return SDValue();
9643 
9644     if (LCC == ISD::SETO) {
9645       if (X != LHS.getOperand(1))
9646         return SDValue();
9647 
9648       if (RCC == ISD::SETUNE) {
9649         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9650         if (!C1 || !C1->isInfinity() || C1->isNegative())
9651           return SDValue();
9652 
9653         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9654                               SIInstrFlags::N_SUBNORMAL |
9655                               SIInstrFlags::N_ZERO |
9656                               SIInstrFlags::P_ZERO |
9657                               SIInstrFlags::P_SUBNORMAL |
9658                               SIInstrFlags::P_NORMAL;
9659 
9660         static_assert(((~(SIInstrFlags::S_NAN |
9661                           SIInstrFlags::Q_NAN |
9662                           SIInstrFlags::N_INFINITY |
9663                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9664                       "mask not equal");
9665 
9666         SDLoc DL(N);
9667         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9668                            X, DAG.getConstant(Mask, DL, MVT::i32));
9669       }
9670     }
9671   }
9672 
9673   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9674     std::swap(LHS, RHS);
9675 
9676   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9677       RHS.hasOneUse()) {
9678     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9679     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9680     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9681     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9682     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9683         (RHS.getOperand(0) == LHS.getOperand(0) &&
9684          LHS.getOperand(0) == LHS.getOperand(1))) {
9685       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9686       unsigned NewMask = LCC == ISD::SETO ?
9687         Mask->getZExtValue() & ~OrdMask :
9688         Mask->getZExtValue() & OrdMask;
9689 
9690       SDLoc DL(N);
9691       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9692                          DAG.getConstant(NewMask, DL, MVT::i32));
9693     }
9694   }
9695 
9696   if (VT == MVT::i32 &&
9697       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9698     // and x, (sext cc from i1) => select cc, x, 0
9699     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9700       std::swap(LHS, RHS);
9701     if (isBoolSGPR(RHS.getOperand(0)))
9702       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9703                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9704   }
9705 
9706   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9707   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9708   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9709       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9710     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9711     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9712     if (LHSMask != ~0u && RHSMask != ~0u) {
9713       // Canonicalize the expression in an attempt to have fewer unique masks
9714       // and therefore fewer registers used to hold the masks.
9715       if (LHSMask > RHSMask) {
9716         std::swap(LHSMask, RHSMask);
9717         std::swap(LHS, RHS);
9718       }
9719 
9720       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9721       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9722       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9723       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9724 
9725       // Check of we need to combine values from two sources within a byte.
9726       if (!(LHSUsedLanes & RHSUsedLanes) &&
9727           // If we select high and lower word keep it for SDWA.
9728           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9729           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9730         // Each byte in each mask is either selector mask 0-3, or has higher
9731         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9732         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9733         // mask which is not 0xff wins. By anding both masks we have a correct
9734         // result except that 0x0c shall be corrected to give 0x0c only.
9735         uint32_t Mask = LHSMask & RHSMask;
9736         for (unsigned I = 0; I < 32; I += 8) {
9737           uint32_t ByteSel = 0xff << I;
9738           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9739             Mask &= (0x0c << I) & 0xffffffff;
9740         }
9741 
9742         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9743         // or 0x0c.
9744         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9745         SDLoc DL(N);
9746 
9747         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9748                            LHS.getOperand(0), RHS.getOperand(0),
9749                            DAG.getConstant(Sel, DL, MVT::i32));
9750       }
9751     }
9752   }
9753 
9754   return SDValue();
9755 }
9756 
9757 SDValue SITargetLowering::performOrCombine(SDNode *N,
9758                                            DAGCombinerInfo &DCI) const {
9759   SelectionDAG &DAG = DCI.DAG;
9760   SDValue LHS = N->getOperand(0);
9761   SDValue RHS = N->getOperand(1);
9762 
9763   EVT VT = N->getValueType(0);
9764   if (VT == MVT::i1) {
9765     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9766     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9767         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9768       SDValue Src = LHS.getOperand(0);
9769       if (Src != RHS.getOperand(0))
9770         return SDValue();
9771 
9772       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9773       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9774       if (!CLHS || !CRHS)
9775         return SDValue();
9776 
9777       // Only 10 bits are used.
9778       static const uint32_t MaxMask = 0x3ff;
9779 
9780       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9781       SDLoc DL(N);
9782       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9783                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9784     }
9785 
9786     return SDValue();
9787   }
9788 
9789   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9790   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9791       LHS.getOpcode() == AMDGPUISD::PERM &&
9792       isa<ConstantSDNode>(LHS.getOperand(2))) {
9793     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9794     if (!Sel)
9795       return SDValue();
9796 
9797     Sel |= LHS.getConstantOperandVal(2);
9798     SDLoc DL(N);
9799     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9800                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9801   }
9802 
9803   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9804   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9805   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9806       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9807     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9808     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9809     if (LHSMask != ~0u && RHSMask != ~0u) {
9810       // Canonicalize the expression in an attempt to have fewer unique masks
9811       // and therefore fewer registers used to hold the masks.
9812       if (LHSMask > RHSMask) {
9813         std::swap(LHSMask, RHSMask);
9814         std::swap(LHS, RHS);
9815       }
9816 
9817       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9818       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9819       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9820       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9821 
9822       // Check of we need to combine values from two sources within a byte.
9823       if (!(LHSUsedLanes & RHSUsedLanes) &&
9824           // If we select high and lower word keep it for SDWA.
9825           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9826           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9827         // Kill zero bytes selected by other mask. Zero value is 0xc.
9828         LHSMask &= ~RHSUsedLanes;
9829         RHSMask &= ~LHSUsedLanes;
9830         // Add 4 to each active LHS lane
9831         LHSMask |= LHSUsedLanes & 0x04040404;
9832         // Combine masks
9833         uint32_t Sel = LHSMask | RHSMask;
9834         SDLoc DL(N);
9835 
9836         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9837                            LHS.getOperand(0), RHS.getOperand(0),
9838                            DAG.getConstant(Sel, DL, MVT::i32));
9839       }
9840     }
9841   }
9842 
9843   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9844     return SDValue();
9845 
9846   // TODO: This could be a generic combine with a predicate for extracting the
9847   // high half of an integer being free.
9848 
9849   // (or i64:x, (zero_extend i32:y)) ->
9850   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9851   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9852       RHS.getOpcode() != ISD::ZERO_EXTEND)
9853     std::swap(LHS, RHS);
9854 
9855   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9856     SDValue ExtSrc = RHS.getOperand(0);
9857     EVT SrcVT = ExtSrc.getValueType();
9858     if (SrcVT == MVT::i32) {
9859       SDLoc SL(N);
9860       SDValue LowLHS, HiBits;
9861       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9862       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9863 
9864       DCI.AddToWorklist(LowOr.getNode());
9865       DCI.AddToWorklist(HiBits.getNode());
9866 
9867       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9868                                 LowOr, HiBits);
9869       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9870     }
9871   }
9872 
9873   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9874   if (CRHS) {
9875     if (SDValue Split
9876           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9877                                      N->getOperand(0), CRHS))
9878       return Split;
9879   }
9880 
9881   return SDValue();
9882 }
9883 
9884 SDValue SITargetLowering::performXorCombine(SDNode *N,
9885                                             DAGCombinerInfo &DCI) const {
9886   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
9887     return RV;
9888 
9889   EVT VT = N->getValueType(0);
9890   if (VT != MVT::i64)
9891     return SDValue();
9892 
9893   SDValue LHS = N->getOperand(0);
9894   SDValue RHS = N->getOperand(1);
9895 
9896   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9897   if (CRHS) {
9898     if (SDValue Split
9899           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9900       return Split;
9901   }
9902 
9903   return SDValue();
9904 }
9905 
9906 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9907                                                    DAGCombinerInfo &DCI) const {
9908   if (!Subtarget->has16BitInsts() ||
9909       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9910     return SDValue();
9911 
9912   EVT VT = N->getValueType(0);
9913   if (VT != MVT::i32)
9914     return SDValue();
9915 
9916   SDValue Src = N->getOperand(0);
9917   if (Src.getValueType() != MVT::i16)
9918     return SDValue();
9919 
9920   return SDValue();
9921 }
9922 
9923 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9924                                                         DAGCombinerInfo &DCI)
9925                                                         const {
9926   SDValue Src = N->getOperand(0);
9927   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9928 
9929   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9930       VTSign->getVT() == MVT::i8) ||
9931       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9932       VTSign->getVT() == MVT::i16)) &&
9933       Src.hasOneUse()) {
9934     auto *M = cast<MemSDNode>(Src);
9935     SDValue Ops[] = {
9936       Src.getOperand(0), // Chain
9937       Src.getOperand(1), // rsrc
9938       Src.getOperand(2), // vindex
9939       Src.getOperand(3), // voffset
9940       Src.getOperand(4), // soffset
9941       Src.getOperand(5), // offset
9942       Src.getOperand(6),
9943       Src.getOperand(7)
9944     };
9945     // replace with BUFFER_LOAD_BYTE/SHORT
9946     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9947                                          Src.getOperand(0).getValueType());
9948     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9949                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9950     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9951                                                           ResList,
9952                                                           Ops, M->getMemoryVT(),
9953                                                           M->getMemOperand());
9954     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9955                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9956   }
9957   return SDValue();
9958 }
9959 
9960 SDValue SITargetLowering::performClassCombine(SDNode *N,
9961                                               DAGCombinerInfo &DCI) const {
9962   SelectionDAG &DAG = DCI.DAG;
9963   SDValue Mask = N->getOperand(1);
9964 
9965   // fp_class x, 0 -> false
9966   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9967     if (CMask->isZero())
9968       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9969   }
9970 
9971   if (N->getOperand(0).isUndef())
9972     return DAG.getUNDEF(MVT::i1);
9973 
9974   return SDValue();
9975 }
9976 
9977 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9978                                             DAGCombinerInfo &DCI) const {
9979   EVT VT = N->getValueType(0);
9980   SDValue N0 = N->getOperand(0);
9981 
9982   if (N0.isUndef())
9983     return N0;
9984 
9985   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9986                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9987     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9988                            N->getFlags());
9989   }
9990 
9991   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9992     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9993                            N0.getOperand(0), N->getFlags());
9994   }
9995 
9996   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9997 }
9998 
9999 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
10000                                        unsigned MaxDepth) const {
10001   unsigned Opcode = Op.getOpcode();
10002   if (Opcode == ISD::FCANONICALIZE)
10003     return true;
10004 
10005   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10006     auto F = CFP->getValueAPF();
10007     if (F.isNaN() && F.isSignaling())
10008       return false;
10009     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
10010   }
10011 
10012   // If source is a result of another standard FP operation it is already in
10013   // canonical form.
10014   if (MaxDepth == 0)
10015     return false;
10016 
10017   switch (Opcode) {
10018   // These will flush denorms if required.
10019   case ISD::FADD:
10020   case ISD::FSUB:
10021   case ISD::FMUL:
10022   case ISD::FCEIL:
10023   case ISD::FFLOOR:
10024   case ISD::FMA:
10025   case ISD::FMAD:
10026   case ISD::FSQRT:
10027   case ISD::FDIV:
10028   case ISD::FREM:
10029   case ISD::FP_ROUND:
10030   case ISD::FP_EXTEND:
10031   case AMDGPUISD::FMUL_LEGACY:
10032   case AMDGPUISD::FMAD_FTZ:
10033   case AMDGPUISD::RCP:
10034   case AMDGPUISD::RSQ:
10035   case AMDGPUISD::RSQ_CLAMP:
10036   case AMDGPUISD::RCP_LEGACY:
10037   case AMDGPUISD::RCP_IFLAG:
10038   case AMDGPUISD::DIV_SCALE:
10039   case AMDGPUISD::DIV_FMAS:
10040   case AMDGPUISD::DIV_FIXUP:
10041   case AMDGPUISD::FRACT:
10042   case AMDGPUISD::LDEXP:
10043   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10044   case AMDGPUISD::CVT_F32_UBYTE0:
10045   case AMDGPUISD::CVT_F32_UBYTE1:
10046   case AMDGPUISD::CVT_F32_UBYTE2:
10047   case AMDGPUISD::CVT_F32_UBYTE3:
10048     return true;
10049 
10050   // It can/will be lowered or combined as a bit operation.
10051   // Need to check their input recursively to handle.
10052   case ISD::FNEG:
10053   case ISD::FABS:
10054   case ISD::FCOPYSIGN:
10055     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10056 
10057   case ISD::FSIN:
10058   case ISD::FCOS:
10059   case ISD::FSINCOS:
10060     return Op.getValueType().getScalarType() != MVT::f16;
10061 
10062   case ISD::FMINNUM:
10063   case ISD::FMAXNUM:
10064   case ISD::FMINNUM_IEEE:
10065   case ISD::FMAXNUM_IEEE:
10066   case AMDGPUISD::CLAMP:
10067   case AMDGPUISD::FMED3:
10068   case AMDGPUISD::FMAX3:
10069   case AMDGPUISD::FMIN3: {
10070     // FIXME: Shouldn't treat the generic operations different based these.
10071     // However, we aren't really required to flush the result from
10072     // minnum/maxnum..
10073 
10074     // snans will be quieted, so we only need to worry about denormals.
10075     if (Subtarget->supportsMinMaxDenormModes() ||
10076         denormalsEnabledForType(DAG, Op.getValueType()))
10077       return true;
10078 
10079     // Flushing may be required.
10080     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
10081     // targets need to check their input recursively.
10082 
10083     // FIXME: Does this apply with clamp? It's implemented with max.
10084     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
10085       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
10086         return false;
10087     }
10088 
10089     return true;
10090   }
10091   case ISD::SELECT: {
10092     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
10093            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
10094   }
10095   case ISD::BUILD_VECTOR: {
10096     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
10097       SDValue SrcOp = Op.getOperand(i);
10098       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
10099         return false;
10100     }
10101 
10102     return true;
10103   }
10104   case ISD::EXTRACT_VECTOR_ELT:
10105   case ISD::EXTRACT_SUBVECTOR: {
10106     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10107   }
10108   case ISD::INSERT_VECTOR_ELT: {
10109     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
10110            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
10111   }
10112   case ISD::UNDEF:
10113     // Could be anything.
10114     return false;
10115 
10116   case ISD::BITCAST:
10117     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10118   case ISD::TRUNCATE: {
10119     // Hack round the mess we make when legalizing extract_vector_elt
10120     if (Op.getValueType() == MVT::i16) {
10121       SDValue TruncSrc = Op.getOperand(0);
10122       if (TruncSrc.getValueType() == MVT::i32 &&
10123           TruncSrc.getOpcode() == ISD::BITCAST &&
10124           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
10125         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
10126       }
10127     }
10128     return false;
10129   }
10130   case ISD::INTRINSIC_WO_CHAIN: {
10131     unsigned IntrinsicID
10132       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10133     // TODO: Handle more intrinsics
10134     switch (IntrinsicID) {
10135     case Intrinsic::amdgcn_cvt_pkrtz:
10136     case Intrinsic::amdgcn_cubeid:
10137     case Intrinsic::amdgcn_frexp_mant:
10138     case Intrinsic::amdgcn_fdot2:
10139     case Intrinsic::amdgcn_rcp:
10140     case Intrinsic::amdgcn_rsq:
10141     case Intrinsic::amdgcn_rsq_clamp:
10142     case Intrinsic::amdgcn_rcp_legacy:
10143     case Intrinsic::amdgcn_rsq_legacy:
10144     case Intrinsic::amdgcn_trig_preop:
10145       return true;
10146     default:
10147       break;
10148     }
10149 
10150     LLVM_FALLTHROUGH;
10151   }
10152   default:
10153     return denormalsEnabledForType(DAG, Op.getValueType()) &&
10154            DAG.isKnownNeverSNaN(Op);
10155   }
10156 
10157   llvm_unreachable("invalid operation");
10158 }
10159 
10160 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
10161                                        unsigned MaxDepth) const {
10162   MachineRegisterInfo &MRI = MF.getRegInfo();
10163   MachineInstr *MI = MRI.getVRegDef(Reg);
10164   unsigned Opcode = MI->getOpcode();
10165 
10166   if (Opcode == AMDGPU::G_FCANONICALIZE)
10167     return true;
10168 
10169   Optional<FPValueAndVReg> FCR;
10170   // Constant splat (can be padded with undef) or scalar constant.
10171   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
10172     if (FCR->Value.isSignaling())
10173       return false;
10174     return !FCR->Value.isDenormal() ||
10175            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
10176   }
10177 
10178   if (MaxDepth == 0)
10179     return false;
10180 
10181   switch (Opcode) {
10182   case AMDGPU::G_FMINNUM_IEEE:
10183   case AMDGPU::G_FMAXNUM_IEEE: {
10184     if (Subtarget->supportsMinMaxDenormModes() ||
10185         denormalsEnabledForType(MRI.getType(Reg), MF))
10186       return true;
10187     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
10188       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
10189         return false;
10190     return true;
10191   }
10192   default:
10193     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
10194            isKnownNeverSNaN(Reg, MRI);
10195   }
10196 
10197   llvm_unreachable("invalid operation");
10198 }
10199 
10200 // Constant fold canonicalize.
10201 SDValue SITargetLowering::getCanonicalConstantFP(
10202   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
10203   // Flush denormals to 0 if not enabled.
10204   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
10205     return DAG.getConstantFP(0.0, SL, VT);
10206 
10207   if (C.isNaN()) {
10208     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
10209     if (C.isSignaling()) {
10210       // Quiet a signaling NaN.
10211       // FIXME: Is this supposed to preserve payload bits?
10212       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10213     }
10214 
10215     // Make sure it is the canonical NaN bitpattern.
10216     //
10217     // TODO: Can we use -1 as the canonical NaN value since it's an inline
10218     // immediate?
10219     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
10220       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10221   }
10222 
10223   // Already canonical.
10224   return DAG.getConstantFP(C, SL, VT);
10225 }
10226 
10227 static bool vectorEltWillFoldAway(SDValue Op) {
10228   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
10229 }
10230 
10231 SDValue SITargetLowering::performFCanonicalizeCombine(
10232   SDNode *N,
10233   DAGCombinerInfo &DCI) const {
10234   SelectionDAG &DAG = DCI.DAG;
10235   SDValue N0 = N->getOperand(0);
10236   EVT VT = N->getValueType(0);
10237 
10238   // fcanonicalize undef -> qnan
10239   if (N0.isUndef()) {
10240     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
10241     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
10242   }
10243 
10244   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
10245     EVT VT = N->getValueType(0);
10246     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
10247   }
10248 
10249   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
10250   //                                                   (fcanonicalize k)
10251   //
10252   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
10253 
10254   // TODO: This could be better with wider vectors that will be split to v2f16,
10255   // and to consider uses since there aren't that many packed operations.
10256   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
10257       isTypeLegal(MVT::v2f16)) {
10258     SDLoc SL(N);
10259     SDValue NewElts[2];
10260     SDValue Lo = N0.getOperand(0);
10261     SDValue Hi = N0.getOperand(1);
10262     EVT EltVT = Lo.getValueType();
10263 
10264     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
10265       for (unsigned I = 0; I != 2; ++I) {
10266         SDValue Op = N0.getOperand(I);
10267         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10268           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
10269                                               CFP->getValueAPF());
10270         } else if (Op.isUndef()) {
10271           // Handled below based on what the other operand is.
10272           NewElts[I] = Op;
10273         } else {
10274           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
10275         }
10276       }
10277 
10278       // If one half is undef, and one is constant, prefer a splat vector rather
10279       // than the normal qNaN. If it's a register, prefer 0.0 since that's
10280       // cheaper to use and may be free with a packed operation.
10281       if (NewElts[0].isUndef()) {
10282         if (isa<ConstantFPSDNode>(NewElts[1]))
10283           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
10284             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
10285       }
10286 
10287       if (NewElts[1].isUndef()) {
10288         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
10289           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
10290       }
10291 
10292       return DAG.getBuildVector(VT, SL, NewElts);
10293     }
10294   }
10295 
10296   unsigned SrcOpc = N0.getOpcode();
10297 
10298   // If it's free to do so, push canonicalizes further up the source, which may
10299   // find a canonical source.
10300   //
10301   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
10302   // sNaNs.
10303   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
10304     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
10305     if (CRHS && N0.hasOneUse()) {
10306       SDLoc SL(N);
10307       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10308                                    N0.getOperand(0));
10309       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10310       DCI.AddToWorklist(Canon0.getNode());
10311 
10312       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10313     }
10314   }
10315 
10316   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10317 }
10318 
10319 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10320   switch (Opc) {
10321   case ISD::FMAXNUM:
10322   case ISD::FMAXNUM_IEEE:
10323     return AMDGPUISD::FMAX3;
10324   case ISD::SMAX:
10325     return AMDGPUISD::SMAX3;
10326   case ISD::UMAX:
10327     return AMDGPUISD::UMAX3;
10328   case ISD::FMINNUM:
10329   case ISD::FMINNUM_IEEE:
10330     return AMDGPUISD::FMIN3;
10331   case ISD::SMIN:
10332     return AMDGPUISD::SMIN3;
10333   case ISD::UMIN:
10334     return AMDGPUISD::UMIN3;
10335   default:
10336     llvm_unreachable("Not a min/max opcode");
10337   }
10338 }
10339 
10340 SDValue SITargetLowering::performIntMed3ImmCombine(
10341   SelectionDAG &DAG, const SDLoc &SL,
10342   SDValue Op0, SDValue Op1, bool Signed) const {
10343   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10344   if (!K1)
10345     return SDValue();
10346 
10347   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10348   if (!K0)
10349     return SDValue();
10350 
10351   if (Signed) {
10352     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10353       return SDValue();
10354   } else {
10355     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10356       return SDValue();
10357   }
10358 
10359   EVT VT = K0->getValueType(0);
10360   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10361   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10362     return DAG.getNode(Med3Opc, SL, VT,
10363                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10364   }
10365 
10366   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10367   if (VT == MVT::i16) {
10368     MVT NVT = MVT::i32;
10369     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10370 
10371     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10372     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10373     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10374 
10375     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10376     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10377   }
10378 
10379   return SDValue();
10380 }
10381 
10382 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10383   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10384     return C;
10385 
10386   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10387     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10388       return C;
10389   }
10390 
10391   return nullptr;
10392 }
10393 
10394 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10395                                                   const SDLoc &SL,
10396                                                   SDValue Op0,
10397                                                   SDValue Op1) const {
10398   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10399   if (!K1)
10400     return SDValue();
10401 
10402   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10403   if (!K0)
10404     return SDValue();
10405 
10406   // Ordered >= (although NaN inputs should have folded away by now).
10407   if (K0->getValueAPF() > K1->getValueAPF())
10408     return SDValue();
10409 
10410   const MachineFunction &MF = DAG.getMachineFunction();
10411   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10412 
10413   // TODO: Check IEEE bit enabled?
10414   EVT VT = Op0.getValueType();
10415   if (Info->getMode().DX10Clamp) {
10416     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10417     // hardware fmed3 behavior converting to a min.
10418     // FIXME: Should this be allowing -0.0?
10419     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10420       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10421   }
10422 
10423   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10424   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10425     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10426     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10427     // then give the other result, which is different from med3 with a NaN
10428     // input.
10429     SDValue Var = Op0.getOperand(0);
10430     if (!DAG.isKnownNeverSNaN(Var))
10431       return SDValue();
10432 
10433     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10434 
10435     if ((!K0->hasOneUse() ||
10436          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10437         (!K1->hasOneUse() ||
10438          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10439       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10440                          Var, SDValue(K0, 0), SDValue(K1, 0));
10441     }
10442   }
10443 
10444   return SDValue();
10445 }
10446 
10447 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10448                                                DAGCombinerInfo &DCI) const {
10449   SelectionDAG &DAG = DCI.DAG;
10450 
10451   EVT VT = N->getValueType(0);
10452   unsigned Opc = N->getOpcode();
10453   SDValue Op0 = N->getOperand(0);
10454   SDValue Op1 = N->getOperand(1);
10455 
10456   // Only do this if the inner op has one use since this will just increases
10457   // register pressure for no benefit.
10458 
10459   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10460       !VT.isVector() &&
10461       (VT == MVT::i32 || VT == MVT::f32 ||
10462        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10463     // max(max(a, b), c) -> max3(a, b, c)
10464     // min(min(a, b), c) -> min3(a, b, c)
10465     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10466       SDLoc DL(N);
10467       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10468                          DL,
10469                          N->getValueType(0),
10470                          Op0.getOperand(0),
10471                          Op0.getOperand(1),
10472                          Op1);
10473     }
10474 
10475     // Try commuted.
10476     // max(a, max(b, c)) -> max3(a, b, c)
10477     // min(a, min(b, c)) -> min3(a, b, c)
10478     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10479       SDLoc DL(N);
10480       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10481                          DL,
10482                          N->getValueType(0),
10483                          Op0,
10484                          Op1.getOperand(0),
10485                          Op1.getOperand(1));
10486     }
10487   }
10488 
10489   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10490   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10491     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10492       return Med3;
10493   }
10494 
10495   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10496     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10497       return Med3;
10498   }
10499 
10500   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10501   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10502        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10503        (Opc == AMDGPUISD::FMIN_LEGACY &&
10504         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10505       (VT == MVT::f32 || VT == MVT::f64 ||
10506        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10507        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10508       Op0.hasOneUse()) {
10509     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10510       return Res;
10511   }
10512 
10513   return SDValue();
10514 }
10515 
10516 static bool isClampZeroToOne(SDValue A, SDValue B) {
10517   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10518     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10519       // FIXME: Should this be allowing -0.0?
10520       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10521              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10522     }
10523   }
10524 
10525   return false;
10526 }
10527 
10528 // FIXME: Should only worry about snans for version with chain.
10529 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10530                                               DAGCombinerInfo &DCI) const {
10531   EVT VT = N->getValueType(0);
10532   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10533   // NaNs. With a NaN input, the order of the operands may change the result.
10534 
10535   SelectionDAG &DAG = DCI.DAG;
10536   SDLoc SL(N);
10537 
10538   SDValue Src0 = N->getOperand(0);
10539   SDValue Src1 = N->getOperand(1);
10540   SDValue Src2 = N->getOperand(2);
10541 
10542   if (isClampZeroToOne(Src0, Src1)) {
10543     // const_a, const_b, x -> clamp is safe in all cases including signaling
10544     // nans.
10545     // FIXME: Should this be allowing -0.0?
10546     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10547   }
10548 
10549   const MachineFunction &MF = DAG.getMachineFunction();
10550   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10551 
10552   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10553   // handling no dx10-clamp?
10554   if (Info->getMode().DX10Clamp) {
10555     // If NaNs is clamped to 0, we are free to reorder the inputs.
10556 
10557     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10558       std::swap(Src0, Src1);
10559 
10560     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10561       std::swap(Src1, Src2);
10562 
10563     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10564       std::swap(Src0, Src1);
10565 
10566     if (isClampZeroToOne(Src1, Src2))
10567       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10568   }
10569 
10570   return SDValue();
10571 }
10572 
10573 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10574                                                  DAGCombinerInfo &DCI) const {
10575   SDValue Src0 = N->getOperand(0);
10576   SDValue Src1 = N->getOperand(1);
10577   if (Src0.isUndef() && Src1.isUndef())
10578     return DCI.DAG.getUNDEF(N->getValueType(0));
10579   return SDValue();
10580 }
10581 
10582 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10583 // expanded into a set of cmp/select instructions.
10584 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10585                                                 unsigned NumElem,
10586                                                 bool IsDivergentIdx,
10587                                                 const GCNSubtarget *Subtarget) {
10588   if (UseDivergentRegisterIndexing)
10589     return false;
10590 
10591   unsigned VecSize = EltSize * NumElem;
10592 
10593   // Sub-dword vectors of size 2 dword or less have better implementation.
10594   if (VecSize <= 64 && EltSize < 32)
10595     return false;
10596 
10597   // Always expand the rest of sub-dword instructions, otherwise it will be
10598   // lowered via memory.
10599   if (EltSize < 32)
10600     return true;
10601 
10602   // Always do this if var-idx is divergent, otherwise it will become a loop.
10603   if (IsDivergentIdx)
10604     return true;
10605 
10606   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10607   unsigned NumInsts = NumElem /* Number of compares */ +
10608                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10609 
10610   // On some architectures (GFX9) movrel is not available and it's better
10611   // to expand.
10612   if (!Subtarget->hasMovrel())
10613     return NumInsts <= 16;
10614 
10615   // If movrel is available, use it instead of expanding for vector of 8
10616   // elements.
10617   return NumInsts <= 15;
10618 }
10619 
10620 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
10621   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10622   if (isa<ConstantSDNode>(Idx))
10623     return false;
10624 
10625   SDValue Vec = N->getOperand(0);
10626   EVT VecVT = Vec.getValueType();
10627   EVT EltVT = VecVT.getVectorElementType();
10628   unsigned EltSize = EltVT.getSizeInBits();
10629   unsigned NumElem = VecVT.getVectorNumElements();
10630 
10631   return SITargetLowering::shouldExpandVectorDynExt(
10632       EltSize, NumElem, Idx->isDivergent(), getSubtarget());
10633 }
10634 
10635 SDValue SITargetLowering::performExtractVectorEltCombine(
10636   SDNode *N, DAGCombinerInfo &DCI) const {
10637   SDValue Vec = N->getOperand(0);
10638   SelectionDAG &DAG = DCI.DAG;
10639 
10640   EVT VecVT = Vec.getValueType();
10641   EVT EltVT = VecVT.getVectorElementType();
10642 
10643   if ((Vec.getOpcode() == ISD::FNEG ||
10644        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10645     SDLoc SL(N);
10646     EVT EltVT = N->getValueType(0);
10647     SDValue Idx = N->getOperand(1);
10648     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10649                               Vec.getOperand(0), Idx);
10650     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10651   }
10652 
10653   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10654   //    =>
10655   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10656   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10657   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10658   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10659     SDLoc SL(N);
10660     EVT EltVT = N->getValueType(0);
10661     SDValue Idx = N->getOperand(1);
10662     unsigned Opc = Vec.getOpcode();
10663 
10664     switch(Opc) {
10665     default:
10666       break;
10667       // TODO: Support other binary operations.
10668     case ISD::FADD:
10669     case ISD::FSUB:
10670     case ISD::FMUL:
10671     case ISD::ADD:
10672     case ISD::UMIN:
10673     case ISD::UMAX:
10674     case ISD::SMIN:
10675     case ISD::SMAX:
10676     case ISD::FMAXNUM:
10677     case ISD::FMINNUM:
10678     case ISD::FMAXNUM_IEEE:
10679     case ISD::FMINNUM_IEEE: {
10680       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10681                                  Vec.getOperand(0), Idx);
10682       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10683                                  Vec.getOperand(1), Idx);
10684 
10685       DCI.AddToWorklist(Elt0.getNode());
10686       DCI.AddToWorklist(Elt1.getNode());
10687       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10688     }
10689     }
10690   }
10691 
10692   unsigned VecSize = VecVT.getSizeInBits();
10693   unsigned EltSize = EltVT.getSizeInBits();
10694 
10695   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10696   if (shouldExpandVectorDynExt(N)) {
10697     SDLoc SL(N);
10698     SDValue Idx = N->getOperand(1);
10699     SDValue V;
10700     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10701       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10702       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10703       if (I == 0)
10704         V = Elt;
10705       else
10706         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10707     }
10708     return V;
10709   }
10710 
10711   if (!DCI.isBeforeLegalize())
10712     return SDValue();
10713 
10714   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10715   // elements. This exposes more load reduction opportunities by replacing
10716   // multiple small extract_vector_elements with a single 32-bit extract.
10717   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10718   if (isa<MemSDNode>(Vec) &&
10719       EltSize <= 16 &&
10720       EltVT.isByteSized() &&
10721       VecSize > 32 &&
10722       VecSize % 32 == 0 &&
10723       Idx) {
10724     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10725 
10726     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10727     unsigned EltIdx = BitIndex / 32;
10728     unsigned LeftoverBitIdx = BitIndex % 32;
10729     SDLoc SL(N);
10730 
10731     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10732     DCI.AddToWorklist(Cast.getNode());
10733 
10734     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10735                               DAG.getConstant(EltIdx, SL, MVT::i32));
10736     DCI.AddToWorklist(Elt.getNode());
10737     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10738                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10739     DCI.AddToWorklist(Srl.getNode());
10740 
10741     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10742     DCI.AddToWorklist(Trunc.getNode());
10743     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10744   }
10745 
10746   return SDValue();
10747 }
10748 
10749 SDValue
10750 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10751                                                 DAGCombinerInfo &DCI) const {
10752   SDValue Vec = N->getOperand(0);
10753   SDValue Idx = N->getOperand(2);
10754   EVT VecVT = Vec.getValueType();
10755   EVT EltVT = VecVT.getVectorElementType();
10756 
10757   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10758   // => BUILD_VECTOR n x select (e, const-idx)
10759   if (!shouldExpandVectorDynExt(N))
10760     return SDValue();
10761 
10762   SelectionDAG &DAG = DCI.DAG;
10763   SDLoc SL(N);
10764   SDValue Ins = N->getOperand(1);
10765   EVT IdxVT = Idx.getValueType();
10766 
10767   SmallVector<SDValue, 16> Ops;
10768   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10769     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10770     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10771     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10772     Ops.push_back(V);
10773   }
10774 
10775   return DAG.getBuildVector(VecVT, SL, Ops);
10776 }
10777 
10778 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10779                                           const SDNode *N0,
10780                                           const SDNode *N1) const {
10781   EVT VT = N0->getValueType(0);
10782 
10783   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10784   // support denormals ever.
10785   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10786        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10787         getSubtarget()->hasMadF16())) &&
10788        isOperationLegal(ISD::FMAD, VT))
10789     return ISD::FMAD;
10790 
10791   const TargetOptions &Options = DAG.getTarget().Options;
10792   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10793        (N0->getFlags().hasAllowContract() &&
10794         N1->getFlags().hasAllowContract())) &&
10795       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10796     return ISD::FMA;
10797   }
10798 
10799   return 0;
10800 }
10801 
10802 // For a reassociatable opcode perform:
10803 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10804 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10805                                                SelectionDAG &DAG) const {
10806   EVT VT = N->getValueType(0);
10807   if (VT != MVT::i32 && VT != MVT::i64)
10808     return SDValue();
10809 
10810   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
10811     return SDValue();
10812 
10813   unsigned Opc = N->getOpcode();
10814   SDValue Op0 = N->getOperand(0);
10815   SDValue Op1 = N->getOperand(1);
10816 
10817   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10818     return SDValue();
10819 
10820   if (Op0->isDivergent())
10821     std::swap(Op0, Op1);
10822 
10823   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10824     return SDValue();
10825 
10826   SDValue Op2 = Op1.getOperand(1);
10827   Op1 = Op1.getOperand(0);
10828   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10829     return SDValue();
10830 
10831   if (Op1->isDivergent())
10832     std::swap(Op1, Op2);
10833 
10834   SDLoc SL(N);
10835   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10836   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10837 }
10838 
10839 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10840                            EVT VT,
10841                            SDValue N0, SDValue N1, SDValue N2,
10842                            bool Signed) {
10843   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10844   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10845   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10846   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10847 }
10848 
10849 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
10850 // multiplies, if any.
10851 //
10852 // Full 64-bit multiplies that feed into an addition are lowered here instead
10853 // of using the generic expansion. The generic expansion ends up with
10854 // a tree of ADD nodes that prevents us from using the "add" part of the
10855 // MAD instruction. The expansion produced here results in a chain of ADDs
10856 // instead of a tree.
10857 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
10858                                             DAGCombinerInfo &DCI) const {
10859   assert(N->getOpcode() == ISD::ADD);
10860 
10861   SelectionDAG &DAG = DCI.DAG;
10862   EVT VT = N->getValueType(0);
10863   SDLoc SL(N);
10864   SDValue LHS = N->getOperand(0);
10865   SDValue RHS = N->getOperand(1);
10866 
10867   if (VT.isVector())
10868     return SDValue();
10869 
10870   // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
10871   // result in scalar registers for uniform values.
10872   if (!N->isDivergent() && Subtarget->hasSMulHi())
10873     return SDValue();
10874 
10875   unsigned NumBits = VT.getScalarSizeInBits();
10876   if (NumBits <= 32 || NumBits > 64)
10877     return SDValue();
10878 
10879   if (LHS.getOpcode() != ISD::MUL) {
10880     assert(RHS.getOpcode() == ISD::MUL);
10881     std::swap(LHS, RHS);
10882   }
10883 
10884   // Avoid the fold if it would unduly increase the number of multiplies due to
10885   // multiple uses, except on hardware with full-rate multiply-add (which is
10886   // part of full-rate 64-bit ops).
10887   if (!Subtarget->hasFullRate64Ops()) {
10888     unsigned NumUsers = 0;
10889     for (SDNode *Use : LHS->uses()) {
10890       // There is a use that does not feed into addition, so the multiply can't
10891       // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
10892       if (Use->getOpcode() != ISD::ADD)
10893         return SDValue();
10894 
10895       // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
10896       // MUL + 3xADD + 3xADDC over 3xMAD.
10897       ++NumUsers;
10898       if (NumUsers >= 3)
10899         return SDValue();
10900     }
10901   }
10902 
10903   SDValue MulLHS = LHS.getOperand(0);
10904   SDValue MulRHS = LHS.getOperand(1);
10905   SDValue AddRHS = RHS;
10906 
10907   // Always check whether operands are small unsigned values, since that
10908   // knowledge is useful in more cases. Check for small signed values only if
10909   // doing so can unlock a shorter code sequence.
10910   bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
10911   bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
10912 
10913   bool MulSignedLo = false;
10914   if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
10915     MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
10916                   numBitsSigned(MulRHS, DAG) <= 32;
10917   }
10918 
10919   // The operands and final result all have the same number of bits. If
10920   // operands need to be extended, they can be extended with garbage. The
10921   // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
10922   // truncated away in the end.
10923   if (VT != MVT::i64) {
10924     MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
10925     MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
10926     AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
10927   }
10928 
10929   // The basic code generated is conceptually straightforward. Pseudo code:
10930   //
10931   //   accum = mad_64_32 lhs.lo, rhs.lo, accum
10932   //   accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
10933   //   accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
10934   //
10935   // The second and third lines are optional, depending on whether the factors
10936   // are {sign,zero}-extended or not.
10937   //
10938   // The actual DAG is noisier than the pseudo code, but only due to
10939   // instructions that disassemble values into low and high parts, and
10940   // assemble the final result.
10941   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
10942   SDValue One = DAG.getConstant(1, SL, MVT::i32);
10943 
10944   auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
10945   auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
10946   SDValue Accum =
10947       getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
10948 
10949   if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
10950     auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero);
10951     auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One);
10952 
10953     if (!MulLHSUnsigned32) {
10954       auto MulLHSHi =
10955           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
10956       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
10957       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
10958     }
10959 
10960     if (!MulRHSUnsigned32) {
10961       auto MulRHSHi =
10962           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
10963       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
10964       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
10965     }
10966 
10967     Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
10968     Accum = DAG.getBitcast(MVT::i64, Accum);
10969   }
10970 
10971   if (VT != MVT::i64)
10972     Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
10973   return Accum;
10974 }
10975 
10976 SDValue SITargetLowering::performAddCombine(SDNode *N,
10977                                             DAGCombinerInfo &DCI) const {
10978   SelectionDAG &DAG = DCI.DAG;
10979   EVT VT = N->getValueType(0);
10980   SDLoc SL(N);
10981   SDValue LHS = N->getOperand(0);
10982   SDValue RHS = N->getOperand(1);
10983 
10984   if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
10985     if (Subtarget->hasMad64_32()) {
10986       if (SDValue Folded = tryFoldToMad64_32(N, DCI))
10987         return Folded;
10988     }
10989 
10990     return SDValue();
10991   }
10992 
10993   if (SDValue V = reassociateScalarOps(N, DAG)) {
10994     return V;
10995   }
10996 
10997   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10998     return SDValue();
10999 
11000   // add x, zext (setcc) => addcarry x, 0, setcc
11001   // add x, sext (setcc) => subcarry x, 0, setcc
11002   unsigned Opc = LHS.getOpcode();
11003   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
11004       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
11005     std::swap(RHS, LHS);
11006 
11007   Opc = RHS.getOpcode();
11008   switch (Opc) {
11009   default: break;
11010   case ISD::ZERO_EXTEND:
11011   case ISD::SIGN_EXTEND:
11012   case ISD::ANY_EXTEND: {
11013     auto Cond = RHS.getOperand(0);
11014     // If this won't be a real VOPC output, we would still need to insert an
11015     // extra instruction anyway.
11016     if (!isBoolSGPR(Cond))
11017       break;
11018     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
11019     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
11020     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
11021     return DAG.getNode(Opc, SL, VTList, Args);
11022   }
11023   case ISD::ADDCARRY: {
11024     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
11025     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
11026     if (!C || C->getZExtValue() != 0) break;
11027     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
11028     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
11029   }
11030   }
11031   return SDValue();
11032 }
11033 
11034 SDValue SITargetLowering::performSubCombine(SDNode *N,
11035                                             DAGCombinerInfo &DCI) const {
11036   SelectionDAG &DAG = DCI.DAG;
11037   EVT VT = N->getValueType(0);
11038 
11039   if (VT != MVT::i32)
11040     return SDValue();
11041 
11042   SDLoc SL(N);
11043   SDValue LHS = N->getOperand(0);
11044   SDValue RHS = N->getOperand(1);
11045 
11046   // sub x, zext (setcc) => subcarry x, 0, setcc
11047   // sub x, sext (setcc) => addcarry x, 0, setcc
11048   unsigned Opc = RHS.getOpcode();
11049   switch (Opc) {
11050   default: break;
11051   case ISD::ZERO_EXTEND:
11052   case ISD::SIGN_EXTEND:
11053   case ISD::ANY_EXTEND: {
11054     auto Cond = RHS.getOperand(0);
11055     // If this won't be a real VOPC output, we would still need to insert an
11056     // extra instruction anyway.
11057     if (!isBoolSGPR(Cond))
11058       break;
11059     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
11060     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
11061     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
11062     return DAG.getNode(Opc, SL, VTList, Args);
11063   }
11064   }
11065 
11066   if (LHS.getOpcode() == ISD::SUBCARRY) {
11067     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
11068     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
11069     if (!C || !C->isZero())
11070       return SDValue();
11071     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
11072     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
11073   }
11074   return SDValue();
11075 }
11076 
11077 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
11078   DAGCombinerInfo &DCI) const {
11079 
11080   if (N->getValueType(0) != MVT::i32)
11081     return SDValue();
11082 
11083   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11084   if (!C || C->getZExtValue() != 0)
11085     return SDValue();
11086 
11087   SelectionDAG &DAG = DCI.DAG;
11088   SDValue LHS = N->getOperand(0);
11089 
11090   // addcarry (add x, y), 0, cc => addcarry x, y, cc
11091   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
11092   unsigned LHSOpc = LHS.getOpcode();
11093   unsigned Opc = N->getOpcode();
11094   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
11095       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
11096     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
11097     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
11098   }
11099   return SDValue();
11100 }
11101 
11102 SDValue SITargetLowering::performFAddCombine(SDNode *N,
11103                                              DAGCombinerInfo &DCI) const {
11104   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11105     return SDValue();
11106 
11107   SelectionDAG &DAG = DCI.DAG;
11108   EVT VT = N->getValueType(0);
11109 
11110   SDLoc SL(N);
11111   SDValue LHS = N->getOperand(0);
11112   SDValue RHS = N->getOperand(1);
11113 
11114   // These should really be instruction patterns, but writing patterns with
11115   // source modifiers is a pain.
11116 
11117   // fadd (fadd (a, a), b) -> mad 2.0, a, b
11118   if (LHS.getOpcode() == ISD::FADD) {
11119     SDValue A = LHS.getOperand(0);
11120     if (A == LHS.getOperand(1)) {
11121       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11122       if (FusedOp != 0) {
11123         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11124         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
11125       }
11126     }
11127   }
11128 
11129   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
11130   if (RHS.getOpcode() == ISD::FADD) {
11131     SDValue A = RHS.getOperand(0);
11132     if (A == RHS.getOperand(1)) {
11133       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11134       if (FusedOp != 0) {
11135         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11136         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
11137       }
11138     }
11139   }
11140 
11141   return SDValue();
11142 }
11143 
11144 SDValue SITargetLowering::performFSubCombine(SDNode *N,
11145                                              DAGCombinerInfo &DCI) const {
11146   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11147     return SDValue();
11148 
11149   SelectionDAG &DAG = DCI.DAG;
11150   SDLoc SL(N);
11151   EVT VT = N->getValueType(0);
11152   assert(!VT.isVector());
11153 
11154   // Try to get the fneg to fold into the source modifier. This undoes generic
11155   // DAG combines and folds them into the mad.
11156   //
11157   // Only do this if we are not trying to support denormals. v_mad_f32 does
11158   // not support denormals ever.
11159   SDValue LHS = N->getOperand(0);
11160   SDValue RHS = N->getOperand(1);
11161   if (LHS.getOpcode() == ISD::FADD) {
11162     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
11163     SDValue A = LHS.getOperand(0);
11164     if (A == LHS.getOperand(1)) {
11165       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11166       if (FusedOp != 0){
11167         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11168         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
11169 
11170         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
11171       }
11172     }
11173   }
11174 
11175   if (RHS.getOpcode() == ISD::FADD) {
11176     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
11177 
11178     SDValue A = RHS.getOperand(0);
11179     if (A == RHS.getOperand(1)) {
11180       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11181       if (FusedOp != 0){
11182         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
11183         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
11184       }
11185     }
11186   }
11187 
11188   return SDValue();
11189 }
11190 
11191 SDValue SITargetLowering::performFMACombine(SDNode *N,
11192                                             DAGCombinerInfo &DCI) const {
11193   SelectionDAG &DAG = DCI.DAG;
11194   EVT VT = N->getValueType(0);
11195   SDLoc SL(N);
11196 
11197   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
11198     return SDValue();
11199 
11200   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
11201   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
11202   SDValue Op1 = N->getOperand(0);
11203   SDValue Op2 = N->getOperand(1);
11204   SDValue FMA = N->getOperand(2);
11205 
11206   if (FMA.getOpcode() != ISD::FMA ||
11207       Op1.getOpcode() != ISD::FP_EXTEND ||
11208       Op2.getOpcode() != ISD::FP_EXTEND)
11209     return SDValue();
11210 
11211   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
11212   // regardless of the denorm mode setting. Therefore,
11213   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
11214   const TargetOptions &Options = DAG.getTarget().Options;
11215   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
11216       (N->getFlags().hasAllowContract() &&
11217        FMA->getFlags().hasAllowContract())) {
11218     Op1 = Op1.getOperand(0);
11219     Op2 = Op2.getOperand(0);
11220     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11221         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11222       return SDValue();
11223 
11224     SDValue Vec1 = Op1.getOperand(0);
11225     SDValue Idx1 = Op1.getOperand(1);
11226     SDValue Vec2 = Op2.getOperand(0);
11227 
11228     SDValue FMAOp1 = FMA.getOperand(0);
11229     SDValue FMAOp2 = FMA.getOperand(1);
11230     SDValue FMAAcc = FMA.getOperand(2);
11231 
11232     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
11233         FMAOp2.getOpcode() != ISD::FP_EXTEND)
11234       return SDValue();
11235 
11236     FMAOp1 = FMAOp1.getOperand(0);
11237     FMAOp2 = FMAOp2.getOperand(0);
11238     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11239         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11240       return SDValue();
11241 
11242     SDValue Vec3 = FMAOp1.getOperand(0);
11243     SDValue Vec4 = FMAOp2.getOperand(0);
11244     SDValue Idx2 = FMAOp1.getOperand(1);
11245 
11246     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
11247         // Idx1 and Idx2 cannot be the same.
11248         Idx1 == Idx2)
11249       return SDValue();
11250 
11251     if (Vec1 == Vec2 || Vec3 == Vec4)
11252       return SDValue();
11253 
11254     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
11255       return SDValue();
11256 
11257     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
11258         (Vec1 == Vec4 && Vec2 == Vec3)) {
11259       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
11260                          DAG.getTargetConstant(0, SL, MVT::i1));
11261     }
11262   }
11263   return SDValue();
11264 }
11265 
11266 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
11267                                               DAGCombinerInfo &DCI) const {
11268   SelectionDAG &DAG = DCI.DAG;
11269   SDLoc SL(N);
11270 
11271   SDValue LHS = N->getOperand(0);
11272   SDValue RHS = N->getOperand(1);
11273   EVT VT = LHS.getValueType();
11274   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11275 
11276   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
11277   if (!CRHS) {
11278     CRHS = dyn_cast<ConstantSDNode>(LHS);
11279     if (CRHS) {
11280       std::swap(LHS, RHS);
11281       CC = getSetCCSwappedOperands(CC);
11282     }
11283   }
11284 
11285   if (CRHS) {
11286     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
11287         isBoolSGPR(LHS.getOperand(0))) {
11288       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
11289       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
11290       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
11291       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
11292       if ((CRHS->isAllOnes() &&
11293            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
11294           (CRHS->isZero() &&
11295            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
11296         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11297                            DAG.getConstant(-1, SL, MVT::i1));
11298       if ((CRHS->isAllOnes() &&
11299            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
11300           (CRHS->isZero() &&
11301            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
11302         return LHS.getOperand(0);
11303     }
11304 
11305     const APInt &CRHSVal = CRHS->getAPIntValue();
11306     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11307         LHS.getOpcode() == ISD::SELECT &&
11308         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11309         isa<ConstantSDNode>(LHS.getOperand(2)) &&
11310         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
11311         isBoolSGPR(LHS.getOperand(0))) {
11312       // Given CT != FT:
11313       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
11314       // setcc (select cc, CT, CF), CF, ne => cc
11315       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
11316       // setcc (select cc, CT, CF), CT, eq => cc
11317       const APInt &CT = LHS.getConstantOperandAPInt(1);
11318       const APInt &CF = LHS.getConstantOperandAPInt(2);
11319 
11320       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
11321           (CT == CRHSVal && CC == ISD::SETNE))
11322         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11323                            DAG.getConstant(-1, SL, MVT::i1));
11324       if ((CF == CRHSVal && CC == ISD::SETNE) ||
11325           (CT == CRHSVal && CC == ISD::SETEQ))
11326         return LHS.getOperand(0);
11327     }
11328   }
11329 
11330   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
11331                                            VT != MVT::f16))
11332     return SDValue();
11333 
11334   // Match isinf/isfinite pattern
11335   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
11336   // (fcmp one (fabs x), inf) -> (fp_class x,
11337   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
11338   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
11339     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
11340     if (!CRHS)
11341       return SDValue();
11342 
11343     const APFloat &APF = CRHS->getValueAPF();
11344     if (APF.isInfinity() && !APF.isNegative()) {
11345       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
11346                                  SIInstrFlags::N_INFINITY;
11347       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
11348                                     SIInstrFlags::P_ZERO |
11349                                     SIInstrFlags::N_NORMAL |
11350                                     SIInstrFlags::P_NORMAL |
11351                                     SIInstrFlags::N_SUBNORMAL |
11352                                     SIInstrFlags::P_SUBNORMAL;
11353       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
11354       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
11355                          DAG.getConstant(Mask, SL, MVT::i32));
11356     }
11357   }
11358 
11359   return SDValue();
11360 }
11361 
11362 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
11363                                                      DAGCombinerInfo &DCI) const {
11364   SelectionDAG &DAG = DCI.DAG;
11365   SDLoc SL(N);
11366   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
11367 
11368   SDValue Src = N->getOperand(0);
11369   SDValue Shift = N->getOperand(0);
11370 
11371   // TODO: Extend type shouldn't matter (assuming legal types).
11372   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
11373     Shift = Shift.getOperand(0);
11374 
11375   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
11376     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
11377     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
11378     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
11379     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
11380     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
11381     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
11382       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
11383                                  SDLoc(Shift.getOperand(0)), MVT::i32);
11384 
11385       unsigned ShiftOffset = 8 * Offset;
11386       if (Shift.getOpcode() == ISD::SHL)
11387         ShiftOffset -= C->getZExtValue();
11388       else
11389         ShiftOffset += C->getZExtValue();
11390 
11391       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
11392         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
11393                            MVT::f32, Shifted);
11394       }
11395     }
11396   }
11397 
11398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11399   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
11400   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
11401     // We simplified Src. If this node is not dead, visit it again so it is
11402     // folded properly.
11403     if (N->getOpcode() != ISD::DELETED_NODE)
11404       DCI.AddToWorklist(N);
11405     return SDValue(N, 0);
11406   }
11407 
11408   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
11409   if (SDValue DemandedSrc =
11410           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
11411     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
11412 
11413   return SDValue();
11414 }
11415 
11416 SDValue SITargetLowering::performClampCombine(SDNode *N,
11417                                               DAGCombinerInfo &DCI) const {
11418   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11419   if (!CSrc)
11420     return SDValue();
11421 
11422   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11423   const APFloat &F = CSrc->getValueAPF();
11424   APFloat Zero = APFloat::getZero(F.getSemantics());
11425   if (F < Zero ||
11426       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11427     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11428   }
11429 
11430   APFloat One(F.getSemantics(), "1.0");
11431   if (F > One)
11432     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11433 
11434   return SDValue(CSrc, 0);
11435 }
11436 
11437 
11438 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11439                                             DAGCombinerInfo &DCI) const {
11440   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11441     return SDValue();
11442   switch (N->getOpcode()) {
11443   case ISD::ADD:
11444     return performAddCombine(N, DCI);
11445   case ISD::SUB:
11446     return performSubCombine(N, DCI);
11447   case ISD::ADDCARRY:
11448   case ISD::SUBCARRY:
11449     return performAddCarrySubCarryCombine(N, DCI);
11450   case ISD::FADD:
11451     return performFAddCombine(N, DCI);
11452   case ISD::FSUB:
11453     return performFSubCombine(N, DCI);
11454   case ISD::SETCC:
11455     return performSetCCCombine(N, DCI);
11456   case ISD::FMAXNUM:
11457   case ISD::FMINNUM:
11458   case ISD::FMAXNUM_IEEE:
11459   case ISD::FMINNUM_IEEE:
11460   case ISD::SMAX:
11461   case ISD::SMIN:
11462   case ISD::UMAX:
11463   case ISD::UMIN:
11464   case AMDGPUISD::FMIN_LEGACY:
11465   case AMDGPUISD::FMAX_LEGACY:
11466     return performMinMaxCombine(N, DCI);
11467   case ISD::FMA:
11468     return performFMACombine(N, DCI);
11469   case ISD::AND:
11470     return performAndCombine(N, DCI);
11471   case ISD::OR:
11472     return performOrCombine(N, DCI);
11473   case ISD::XOR:
11474     return performXorCombine(N, DCI);
11475   case ISD::ZERO_EXTEND:
11476     return performZeroExtendCombine(N, DCI);
11477   case ISD::SIGN_EXTEND_INREG:
11478     return performSignExtendInRegCombine(N , DCI);
11479   case AMDGPUISD::FP_CLASS:
11480     return performClassCombine(N, DCI);
11481   case ISD::FCANONICALIZE:
11482     return performFCanonicalizeCombine(N, DCI);
11483   case AMDGPUISD::RCP:
11484     return performRcpCombine(N, DCI);
11485   case AMDGPUISD::FRACT:
11486   case AMDGPUISD::RSQ:
11487   case AMDGPUISD::RCP_LEGACY:
11488   case AMDGPUISD::RCP_IFLAG:
11489   case AMDGPUISD::RSQ_CLAMP:
11490   case AMDGPUISD::LDEXP: {
11491     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11492     SDValue Src = N->getOperand(0);
11493     if (Src.isUndef())
11494       return Src;
11495     break;
11496   }
11497   case ISD::SINT_TO_FP:
11498   case ISD::UINT_TO_FP:
11499     return performUCharToFloatCombine(N, DCI);
11500   case AMDGPUISD::CVT_F32_UBYTE0:
11501   case AMDGPUISD::CVT_F32_UBYTE1:
11502   case AMDGPUISD::CVT_F32_UBYTE2:
11503   case AMDGPUISD::CVT_F32_UBYTE3:
11504     return performCvtF32UByteNCombine(N, DCI);
11505   case AMDGPUISD::FMED3:
11506     return performFMed3Combine(N, DCI);
11507   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11508     return performCvtPkRTZCombine(N, DCI);
11509   case AMDGPUISD::CLAMP:
11510     return performClampCombine(N, DCI);
11511   case ISD::SCALAR_TO_VECTOR: {
11512     SelectionDAG &DAG = DCI.DAG;
11513     EVT VT = N->getValueType(0);
11514 
11515     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11516     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11517       SDLoc SL(N);
11518       SDValue Src = N->getOperand(0);
11519       EVT EltVT = Src.getValueType();
11520       if (EltVT == MVT::f16)
11521         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11522 
11523       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11524       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11525     }
11526 
11527     break;
11528   }
11529   case ISD::EXTRACT_VECTOR_ELT:
11530     return performExtractVectorEltCombine(N, DCI);
11531   case ISD::INSERT_VECTOR_ELT:
11532     return performInsertVectorEltCombine(N, DCI);
11533   case ISD::LOAD: {
11534     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11535       return Widended;
11536     LLVM_FALLTHROUGH;
11537   }
11538   default: {
11539     if (!DCI.isBeforeLegalize()) {
11540       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11541         return performMemSDNodeCombine(MemNode, DCI);
11542     }
11543 
11544     break;
11545   }
11546   }
11547 
11548   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11549 }
11550 
11551 /// Helper function for adjustWritemask
11552 static unsigned SubIdx2Lane(unsigned Idx) {
11553   switch (Idx) {
11554   default: return ~0u;
11555   case AMDGPU::sub0: return 0;
11556   case AMDGPU::sub1: return 1;
11557   case AMDGPU::sub2: return 2;
11558   case AMDGPU::sub3: return 3;
11559   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11560   }
11561 }
11562 
11563 /// Adjust the writemask of MIMG instructions
11564 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11565                                           SelectionDAG &DAG) const {
11566   unsigned Opcode = Node->getMachineOpcode();
11567 
11568   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11569   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11570   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11571     return Node; // not implemented for D16
11572 
11573   SDNode *Users[5] = { nullptr };
11574   unsigned Lane = 0;
11575   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11576   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11577   unsigned NewDmask = 0;
11578   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11579   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11580   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11581                   Node->getConstantOperandVal(LWEIdx))
11582                      ? true
11583                      : false;
11584   unsigned TFCLane = 0;
11585   bool HasChain = Node->getNumValues() > 1;
11586 
11587   if (OldDmask == 0) {
11588     // These are folded out, but on the chance it happens don't assert.
11589     return Node;
11590   }
11591 
11592   unsigned OldBitsSet = countPopulation(OldDmask);
11593   // Work out which is the TFE/LWE lane if that is enabled.
11594   if (UsesTFC) {
11595     TFCLane = OldBitsSet;
11596   }
11597 
11598   // Try to figure out the used register components
11599   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11600        I != E; ++I) {
11601 
11602     // Don't look at users of the chain.
11603     if (I.getUse().getResNo() != 0)
11604       continue;
11605 
11606     // Abort if we can't understand the usage
11607     if (!I->isMachineOpcode() ||
11608         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11609       return Node;
11610 
11611     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11612     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11613     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11614     // set, etc.
11615     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11616     if (Lane == ~0u)
11617       return Node;
11618 
11619     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11620     if (UsesTFC && Lane == TFCLane) {
11621       Users[Lane] = *I;
11622     } else {
11623       // Set which texture component corresponds to the lane.
11624       unsigned Comp;
11625       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11626         Comp = countTrailingZeros(Dmask);
11627         Dmask &= ~(1 << Comp);
11628       }
11629 
11630       // Abort if we have more than one user per component.
11631       if (Users[Lane])
11632         return Node;
11633 
11634       Users[Lane] = *I;
11635       NewDmask |= 1 << Comp;
11636     }
11637   }
11638 
11639   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11640   bool NoChannels = !NewDmask;
11641   if (NoChannels) {
11642     if (!UsesTFC) {
11643       // No uses of the result and not using TFC. Then do nothing.
11644       return Node;
11645     }
11646     // If the original dmask has one channel - then nothing to do
11647     if (OldBitsSet == 1)
11648       return Node;
11649     // Use an arbitrary dmask - required for the instruction to work
11650     NewDmask = 1;
11651   }
11652   // Abort if there's no change
11653   if (NewDmask == OldDmask)
11654     return Node;
11655 
11656   unsigned BitsSet = countPopulation(NewDmask);
11657 
11658   // Check for TFE or LWE - increase the number of channels by one to account
11659   // for the extra return value
11660   // This will need adjustment for D16 if this is also included in
11661   // adjustWriteMask (this function) but at present D16 are excluded.
11662   unsigned NewChannels = BitsSet + UsesTFC;
11663 
11664   int NewOpcode =
11665       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11666   assert(NewOpcode != -1 &&
11667          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11668          "failed to find equivalent MIMG op");
11669 
11670   // Adjust the writemask in the node
11671   SmallVector<SDValue, 12> Ops;
11672   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11673   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11674   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11675 
11676   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11677 
11678   MVT ResultVT = NewChannels == 1 ?
11679     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11680                            NewChannels == 5 ? 8 : NewChannels);
11681   SDVTList NewVTList = HasChain ?
11682     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11683 
11684 
11685   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11686                                               NewVTList, Ops);
11687 
11688   if (HasChain) {
11689     // Update chain.
11690     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11691     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11692   }
11693 
11694   if (NewChannels == 1) {
11695     assert(Node->hasNUsesOfValue(1, 0));
11696     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11697                                       SDLoc(Node), Users[Lane]->getValueType(0),
11698                                       SDValue(NewNode, 0));
11699     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11700     return nullptr;
11701   }
11702 
11703   // Update the users of the node with the new indices
11704   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11705     SDNode *User = Users[i];
11706     if (!User) {
11707       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11708       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11709       if (i || !NoChannels)
11710         continue;
11711     } else {
11712       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11713       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11714     }
11715 
11716     switch (Idx) {
11717     default: break;
11718     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11719     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11720     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11721     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11722     }
11723   }
11724 
11725   DAG.RemoveDeadNode(Node);
11726   return nullptr;
11727 }
11728 
11729 static bool isFrameIndexOp(SDValue Op) {
11730   if (Op.getOpcode() == ISD::AssertZext)
11731     Op = Op.getOperand(0);
11732 
11733   return isa<FrameIndexSDNode>(Op);
11734 }
11735 
11736 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11737 /// with frame index operands.
11738 /// LLVM assumes that inputs are to these instructions are registers.
11739 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11740                                                         SelectionDAG &DAG) const {
11741   if (Node->getOpcode() == ISD::CopyToReg) {
11742     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11743     SDValue SrcVal = Node->getOperand(2);
11744 
11745     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11746     // to try understanding copies to physical registers.
11747     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11748       SDLoc SL(Node);
11749       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11750       SDValue VReg = DAG.getRegister(
11751         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11752 
11753       SDNode *Glued = Node->getGluedNode();
11754       SDValue ToVReg
11755         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11756                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11757       SDValue ToResultReg
11758         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11759                            VReg, ToVReg.getValue(1));
11760       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11761       DAG.RemoveDeadNode(Node);
11762       return ToResultReg.getNode();
11763     }
11764   }
11765 
11766   SmallVector<SDValue, 8> Ops;
11767   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11768     if (!isFrameIndexOp(Node->getOperand(i))) {
11769       Ops.push_back(Node->getOperand(i));
11770       continue;
11771     }
11772 
11773     SDLoc DL(Node);
11774     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11775                                      Node->getOperand(i).getValueType(),
11776                                      Node->getOperand(i)), 0));
11777   }
11778 
11779   return DAG.UpdateNodeOperands(Node, Ops);
11780 }
11781 
11782 /// Fold the instructions after selecting them.
11783 /// Returns null if users were already updated.
11784 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11785                                           SelectionDAG &DAG) const {
11786   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11787   unsigned Opcode = Node->getMachineOpcode();
11788 
11789   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11790       !TII->isGather4(Opcode) &&
11791       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11792     return adjustWritemask(Node, DAG);
11793   }
11794 
11795   if (Opcode == AMDGPU::INSERT_SUBREG ||
11796       Opcode == AMDGPU::REG_SEQUENCE) {
11797     legalizeTargetIndependentNode(Node, DAG);
11798     return Node;
11799   }
11800 
11801   switch (Opcode) {
11802   case AMDGPU::V_DIV_SCALE_F32_e64:
11803   case AMDGPU::V_DIV_SCALE_F64_e64: {
11804     // Satisfy the operand register constraint when one of the inputs is
11805     // undefined. Ordinarily each undef value will have its own implicit_def of
11806     // a vreg, so force these to use a single register.
11807     SDValue Src0 = Node->getOperand(1);
11808     SDValue Src1 = Node->getOperand(3);
11809     SDValue Src2 = Node->getOperand(5);
11810 
11811     if ((Src0.isMachineOpcode() &&
11812          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11813         (Src0 == Src1 || Src0 == Src2))
11814       break;
11815 
11816     MVT VT = Src0.getValueType().getSimpleVT();
11817     const TargetRegisterClass *RC =
11818         getRegClassFor(VT, Src0.getNode()->isDivergent());
11819 
11820     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11821     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11822 
11823     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11824                                       UndefReg, Src0, SDValue());
11825 
11826     // src0 must be the same register as src1 or src2, even if the value is
11827     // undefined, so make sure we don't violate this constraint.
11828     if (Src0.isMachineOpcode() &&
11829         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11830       if (Src1.isMachineOpcode() &&
11831           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11832         Src0 = Src1;
11833       else if (Src2.isMachineOpcode() &&
11834                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11835         Src0 = Src2;
11836       else {
11837         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11838         Src0 = UndefReg;
11839         Src1 = UndefReg;
11840       }
11841     } else
11842       break;
11843 
11844     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11845     Ops[1] = Src0;
11846     Ops[3] = Src1;
11847     Ops[5] = Src2;
11848     Ops.push_back(ImpDef.getValue(1));
11849     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11850   }
11851   default:
11852     break;
11853   }
11854 
11855   return Node;
11856 }
11857 
11858 // Any MIMG instructions that use tfe or lwe require an initialization of the
11859 // result register that will be written in the case of a memory access failure.
11860 // The required code is also added to tie this init code to the result of the
11861 // img instruction.
11862 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11863   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11864   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11865   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11866   MachineBasicBlock &MBB = *MI.getParent();
11867 
11868   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11869   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11870   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11871 
11872   if (!TFE && !LWE) // intersect_ray
11873     return;
11874 
11875   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11876   unsigned LWEVal = LWE->getImm();
11877   unsigned D16Val = D16 ? D16->getImm() : 0;
11878 
11879   if (!TFEVal && !LWEVal)
11880     return;
11881 
11882   // At least one of TFE or LWE are non-zero
11883   // We have to insert a suitable initialization of the result value and
11884   // tie this to the dest of the image instruction.
11885 
11886   const DebugLoc &DL = MI.getDebugLoc();
11887 
11888   int DstIdx =
11889       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11890 
11891   // Calculate which dword we have to initialize to 0.
11892   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11893 
11894   // check that dmask operand is found.
11895   assert(MO_Dmask && "Expected dmask operand in instruction");
11896 
11897   unsigned dmask = MO_Dmask->getImm();
11898   // Determine the number of active lanes taking into account the
11899   // Gather4 special case
11900   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11901 
11902   bool Packed = !Subtarget->hasUnpackedD16VMem();
11903 
11904   unsigned InitIdx =
11905       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11906 
11907   // Abandon attempt if the dst size isn't large enough
11908   // - this is in fact an error but this is picked up elsewhere and
11909   // reported correctly.
11910   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11911   if (DstSize < InitIdx)
11912     return;
11913 
11914   // Create a register for the initialization value.
11915   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11916   unsigned NewDst = 0; // Final initialized value will be in here
11917 
11918   // If PRTStrictNull feature is enabled (the default) then initialize
11919   // all the result registers to 0, otherwise just the error indication
11920   // register (VGPRn+1)
11921   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11922   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11923 
11924   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11925   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11926     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11927     // Initialize dword
11928     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11929     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11930       .addImm(0);
11931     // Insert into the super-reg
11932     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11933       .addReg(PrevDst)
11934       .addReg(SubReg)
11935       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11936 
11937     PrevDst = NewDst;
11938   }
11939 
11940   // Add as an implicit operand
11941   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11942 
11943   // Tie the just added implicit operand to the dst
11944   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11945 }
11946 
11947 /// Assign the register class depending on the number of
11948 /// bits set in the writemask
11949 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11950                                                      SDNode *Node) const {
11951   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11952 
11953   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11954 
11955   if (TII->isVOP3(MI.getOpcode())) {
11956     // Make sure constant bus requirements are respected.
11957     TII->legalizeOperandsVOP3(MRI, MI);
11958 
11959     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11960     // This saves a chain-copy of registers and better balance register
11961     // use between vgpr and agpr as agpr tuples tend to be big.
11962     if (MI.getDesc().OpInfo) {
11963       unsigned Opc = MI.getOpcode();
11964       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11965       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11966                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11967         if (I == -1)
11968           break;
11969         MachineOperand &Op = MI.getOperand(I);
11970         if (!Op.isReg() || !Op.getReg().isVirtual())
11971           continue;
11972         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11973         if (!TRI->hasAGPRs(RC))
11974           continue;
11975         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11976         if (!Src || !Src->isCopy() ||
11977             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11978           continue;
11979         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11980         // All uses of agpr64 and agpr32 can also accept vgpr except for
11981         // v_accvgpr_read, but we do not produce agpr reads during selection,
11982         // so no use checks are needed.
11983         MRI.setRegClass(Op.getReg(), NewRC);
11984       }
11985 
11986       // Resolve the rest of AV operands to AGPRs.
11987       if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
11988         if (Src2->isReg() && Src2->getReg().isVirtual()) {
11989           auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
11990           if (TRI->isVectorSuperClass(RC)) {
11991             auto *NewRC = TRI->getEquivalentAGPRClass(RC);
11992             MRI.setRegClass(Src2->getReg(), NewRC);
11993             if (Src2->isTied())
11994               MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
11995           }
11996         }
11997       }
11998     }
11999 
12000     return;
12001   }
12002 
12003   if (TII->isMIMG(MI)) {
12004     if (!MI.mayStore())
12005       AddIMGInit(MI);
12006     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
12007   }
12008 }
12009 
12010 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
12011                               uint64_t Val) {
12012   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
12013   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
12014 }
12015 
12016 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
12017                                                 const SDLoc &DL,
12018                                                 SDValue Ptr) const {
12019   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12020 
12021   // Build the half of the subregister with the constants before building the
12022   // full 128-bit register. If we are building multiple resource descriptors,
12023   // this will allow CSEing of the 2-component register.
12024   const SDValue Ops0[] = {
12025     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
12026     buildSMovImm32(DAG, DL, 0),
12027     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
12028     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
12029     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
12030   };
12031 
12032   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
12033                                                 MVT::v2i32, Ops0), 0);
12034 
12035   // Combine the constants and the pointer.
12036   const SDValue Ops1[] = {
12037     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
12038     Ptr,
12039     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
12040     SubRegHi,
12041     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
12042   };
12043 
12044   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
12045 }
12046 
12047 /// Return a resource descriptor with the 'Add TID' bit enabled
12048 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
12049 ///        of the resource descriptor) to create an offset, which is added to
12050 ///        the resource pointer.
12051 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
12052                                            SDValue Ptr, uint32_t RsrcDword1,
12053                                            uint64_t RsrcDword2And3) const {
12054   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
12055   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
12056   if (RsrcDword1) {
12057     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
12058                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
12059                     0);
12060   }
12061 
12062   SDValue DataLo = buildSMovImm32(DAG, DL,
12063                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
12064   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
12065 
12066   const SDValue Ops[] = {
12067     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
12068     PtrLo,
12069     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
12070     PtrHi,
12071     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
12072     DataLo,
12073     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
12074     DataHi,
12075     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
12076   };
12077 
12078   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
12079 }
12080 
12081 //===----------------------------------------------------------------------===//
12082 //                         SI Inline Assembly Support
12083 //===----------------------------------------------------------------------===//
12084 
12085 std::pair<unsigned, const TargetRegisterClass *>
12086 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
12087                                                StringRef Constraint,
12088                                                MVT VT) const {
12089   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
12090 
12091   const TargetRegisterClass *RC = nullptr;
12092   if (Constraint.size() == 1) {
12093     const unsigned BitWidth = VT.getSizeInBits();
12094     switch (Constraint[0]) {
12095     default:
12096       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12097     case 's':
12098     case 'r':
12099       switch (BitWidth) {
12100       case 16:
12101         RC = &AMDGPU::SReg_32RegClass;
12102         break;
12103       case 64:
12104         RC = &AMDGPU::SGPR_64RegClass;
12105         break;
12106       default:
12107         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
12108         if (!RC)
12109           return std::make_pair(0U, nullptr);
12110         break;
12111       }
12112       break;
12113     case 'v':
12114       switch (BitWidth) {
12115       case 16:
12116         RC = &AMDGPU::VGPR_32RegClass;
12117         break;
12118       default:
12119         RC = TRI->getVGPRClassForBitWidth(BitWidth);
12120         if (!RC)
12121           return std::make_pair(0U, nullptr);
12122         break;
12123       }
12124       break;
12125     case 'a':
12126       if (!Subtarget->hasMAIInsts())
12127         break;
12128       switch (BitWidth) {
12129       case 16:
12130         RC = &AMDGPU::AGPR_32RegClass;
12131         break;
12132       default:
12133         RC = TRI->getAGPRClassForBitWidth(BitWidth);
12134         if (!RC)
12135           return std::make_pair(0U, nullptr);
12136         break;
12137       }
12138       break;
12139     }
12140     // We actually support i128, i16 and f16 as inline parameters
12141     // even if they are not reported as legal
12142     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
12143                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
12144       return std::make_pair(0U, RC);
12145   }
12146 
12147   if (Constraint.startswith("{") && Constraint.endswith("}")) {
12148     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
12149     if (RegName.consume_front("v")) {
12150       RC = &AMDGPU::VGPR_32RegClass;
12151     } else if (RegName.consume_front("s")) {
12152       RC = &AMDGPU::SGPR_32RegClass;
12153     } else if (RegName.consume_front("a")) {
12154       RC = &AMDGPU::AGPR_32RegClass;
12155     }
12156 
12157     if (RC) {
12158       uint32_t Idx;
12159       if (RegName.consume_front("[")) {
12160         uint32_t End;
12161         bool Failed = RegName.consumeInteger(10, Idx);
12162         Failed |= !RegName.consume_front(":");
12163         Failed |= RegName.consumeInteger(10, End);
12164         Failed |= !RegName.consume_back("]");
12165         if (!Failed) {
12166           uint32_t Width = (End - Idx + 1) * 32;
12167           MCRegister Reg = RC->getRegister(Idx);
12168           if (SIRegisterInfo::isVGPRClass(RC))
12169             RC = TRI->getVGPRClassForBitWidth(Width);
12170           else if (SIRegisterInfo::isSGPRClass(RC))
12171             RC = TRI->getSGPRClassForBitWidth(Width);
12172           else if (SIRegisterInfo::isAGPRClass(RC))
12173             RC = TRI->getAGPRClassForBitWidth(Width);
12174           if (RC) {
12175             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
12176             return std::make_pair(Reg, RC);
12177           }
12178         }
12179       } else {
12180         bool Failed = RegName.getAsInteger(10, Idx);
12181         if (!Failed && Idx < RC->getNumRegs())
12182           return std::make_pair(RC->getRegister(Idx), RC);
12183       }
12184     }
12185   }
12186 
12187   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12188   if (Ret.first)
12189     Ret.second = TRI->getPhysRegClass(Ret.first);
12190 
12191   return Ret;
12192 }
12193 
12194 static bool isImmConstraint(StringRef Constraint) {
12195   if (Constraint.size() == 1) {
12196     switch (Constraint[0]) {
12197     default: break;
12198     case 'I':
12199     case 'J':
12200     case 'A':
12201     case 'B':
12202     case 'C':
12203       return true;
12204     }
12205   } else if (Constraint == "DA" ||
12206              Constraint == "DB") {
12207     return true;
12208   }
12209   return false;
12210 }
12211 
12212 SITargetLowering::ConstraintType
12213 SITargetLowering::getConstraintType(StringRef Constraint) const {
12214   if (Constraint.size() == 1) {
12215     switch (Constraint[0]) {
12216     default: break;
12217     case 's':
12218     case 'v':
12219     case 'a':
12220       return C_RegisterClass;
12221     }
12222   }
12223   if (isImmConstraint(Constraint)) {
12224     return C_Other;
12225   }
12226   return TargetLowering::getConstraintType(Constraint);
12227 }
12228 
12229 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
12230   if (!AMDGPU::isInlinableIntLiteral(Val)) {
12231     Val = Val & maskTrailingOnes<uint64_t>(Size);
12232   }
12233   return Val;
12234 }
12235 
12236 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12237                                                     std::string &Constraint,
12238                                                     std::vector<SDValue> &Ops,
12239                                                     SelectionDAG &DAG) const {
12240   if (isImmConstraint(Constraint)) {
12241     uint64_t Val;
12242     if (getAsmOperandConstVal(Op, Val) &&
12243         checkAsmConstraintVal(Op, Constraint, Val)) {
12244       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
12245       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
12246     }
12247   } else {
12248     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12249   }
12250 }
12251 
12252 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
12253   unsigned Size = Op.getScalarValueSizeInBits();
12254   if (Size > 64)
12255     return false;
12256 
12257   if (Size == 16 && !Subtarget->has16BitInsts())
12258     return false;
12259 
12260   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12261     Val = C->getSExtValue();
12262     return true;
12263   }
12264   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
12265     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12266     return true;
12267   }
12268   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
12269     if (Size != 16 || Op.getNumOperands() != 2)
12270       return false;
12271     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
12272       return false;
12273     if (ConstantSDNode *C = V->getConstantSplatNode()) {
12274       Val = C->getSExtValue();
12275       return true;
12276     }
12277     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
12278       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12279       return true;
12280     }
12281   }
12282 
12283   return false;
12284 }
12285 
12286 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
12287                                              const std::string &Constraint,
12288                                              uint64_t Val) const {
12289   if (Constraint.size() == 1) {
12290     switch (Constraint[0]) {
12291     case 'I':
12292       return AMDGPU::isInlinableIntLiteral(Val);
12293     case 'J':
12294       return isInt<16>(Val);
12295     case 'A':
12296       return checkAsmConstraintValA(Op, Val);
12297     case 'B':
12298       return isInt<32>(Val);
12299     case 'C':
12300       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
12301              AMDGPU::isInlinableIntLiteral(Val);
12302     default:
12303       break;
12304     }
12305   } else if (Constraint.size() == 2) {
12306     if (Constraint == "DA") {
12307       int64_t HiBits = static_cast<int32_t>(Val >> 32);
12308       int64_t LoBits = static_cast<int32_t>(Val);
12309       return checkAsmConstraintValA(Op, HiBits, 32) &&
12310              checkAsmConstraintValA(Op, LoBits, 32);
12311     }
12312     if (Constraint == "DB") {
12313       return true;
12314     }
12315   }
12316   llvm_unreachable("Invalid asm constraint");
12317 }
12318 
12319 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
12320                                               uint64_t Val,
12321                                               unsigned MaxSize) const {
12322   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
12323   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
12324   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
12325       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
12326       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
12327     return true;
12328   }
12329   return false;
12330 }
12331 
12332 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
12333   switch (UnalignedClassID) {
12334   case AMDGPU::VReg_64RegClassID:
12335     return AMDGPU::VReg_64_Align2RegClassID;
12336   case AMDGPU::VReg_96RegClassID:
12337     return AMDGPU::VReg_96_Align2RegClassID;
12338   case AMDGPU::VReg_128RegClassID:
12339     return AMDGPU::VReg_128_Align2RegClassID;
12340   case AMDGPU::VReg_160RegClassID:
12341     return AMDGPU::VReg_160_Align2RegClassID;
12342   case AMDGPU::VReg_192RegClassID:
12343     return AMDGPU::VReg_192_Align2RegClassID;
12344   case AMDGPU::VReg_224RegClassID:
12345     return AMDGPU::VReg_224_Align2RegClassID;
12346   case AMDGPU::VReg_256RegClassID:
12347     return AMDGPU::VReg_256_Align2RegClassID;
12348   case AMDGPU::VReg_512RegClassID:
12349     return AMDGPU::VReg_512_Align2RegClassID;
12350   case AMDGPU::VReg_1024RegClassID:
12351     return AMDGPU::VReg_1024_Align2RegClassID;
12352   case AMDGPU::AReg_64RegClassID:
12353     return AMDGPU::AReg_64_Align2RegClassID;
12354   case AMDGPU::AReg_96RegClassID:
12355     return AMDGPU::AReg_96_Align2RegClassID;
12356   case AMDGPU::AReg_128RegClassID:
12357     return AMDGPU::AReg_128_Align2RegClassID;
12358   case AMDGPU::AReg_160RegClassID:
12359     return AMDGPU::AReg_160_Align2RegClassID;
12360   case AMDGPU::AReg_192RegClassID:
12361     return AMDGPU::AReg_192_Align2RegClassID;
12362   case AMDGPU::AReg_256RegClassID:
12363     return AMDGPU::AReg_256_Align2RegClassID;
12364   case AMDGPU::AReg_512RegClassID:
12365     return AMDGPU::AReg_512_Align2RegClassID;
12366   case AMDGPU::AReg_1024RegClassID:
12367     return AMDGPU::AReg_1024_Align2RegClassID;
12368   default:
12369     return -1;
12370   }
12371 }
12372 
12373 // Figure out which registers should be reserved for stack access. Only after
12374 // the function is legalized do we know all of the non-spill stack objects or if
12375 // calls are present.
12376 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
12377   MachineRegisterInfo &MRI = MF.getRegInfo();
12378   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12379   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
12380   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12381   const SIInstrInfo *TII = ST.getInstrInfo();
12382 
12383   if (Info->isEntryFunction()) {
12384     // Callable functions have fixed registers used for stack access.
12385     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
12386   }
12387 
12388   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
12389                              Info->getStackPtrOffsetReg()));
12390   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
12391     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
12392 
12393   // We need to worry about replacing the default register with itself in case
12394   // of MIR testcases missing the MFI.
12395   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12396     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12397 
12398   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12399     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12400 
12401   Info->limitOccupancy(MF);
12402 
12403   if (ST.isWave32() && !MF.empty()) {
12404     for (auto &MBB : MF) {
12405       for (auto &MI : MBB) {
12406         TII->fixImplicitOperands(MI);
12407       }
12408     }
12409   }
12410 
12411   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12412   // classes if required. Ideally the register class constraints would differ
12413   // per-subtarget, but there's no easy way to achieve that right now. This is
12414   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12415   // from using them as the register class for legal types.
12416   if (ST.needsAlignedVGPRs()) {
12417     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12418       const Register Reg = Register::index2VirtReg(I);
12419       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12420       if (!RC)
12421         continue;
12422       int NewClassID = getAlignedAGPRClassID(RC->getID());
12423       if (NewClassID != -1)
12424         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12425     }
12426   }
12427 
12428   TargetLoweringBase::finalizeLowering(MF);
12429 }
12430 
12431 void SITargetLowering::computeKnownBitsForFrameIndex(
12432   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12433   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12434 
12435   // Set the high bits to zero based on the maximum allowed scratch size per
12436   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12437   // calculation won't overflow, so assume the sign bit is never set.
12438   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12439 }
12440 
12441 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12442                                    KnownBits &Known, unsigned Dim) {
12443   unsigned MaxValue =
12444       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12445   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12446 }
12447 
12448 void SITargetLowering::computeKnownBitsForTargetInstr(
12449     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12450     const MachineRegisterInfo &MRI, unsigned Depth) const {
12451   const MachineInstr *MI = MRI.getVRegDef(R);
12452   switch (MI->getOpcode()) {
12453   case AMDGPU::G_INTRINSIC: {
12454     switch (MI->getIntrinsicID()) {
12455     case Intrinsic::amdgcn_workitem_id_x:
12456       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12457       break;
12458     case Intrinsic::amdgcn_workitem_id_y:
12459       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12460       break;
12461     case Intrinsic::amdgcn_workitem_id_z:
12462       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12463       break;
12464     case Intrinsic::amdgcn_mbcnt_lo:
12465     case Intrinsic::amdgcn_mbcnt_hi: {
12466       // These return at most the wavefront size - 1.
12467       unsigned Size = MRI.getType(R).getSizeInBits();
12468       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12469       break;
12470     }
12471     case Intrinsic::amdgcn_groupstaticsize: {
12472       // We can report everything over the maximum size as 0. We can't report
12473       // based on the actual size because we don't know if it's accurate or not
12474       // at any given point.
12475       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12476       break;
12477     }
12478     }
12479     break;
12480   }
12481   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12482     Known.Zero.setHighBits(24);
12483     break;
12484   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12485     Known.Zero.setHighBits(16);
12486     break;
12487   }
12488 }
12489 
12490 Align SITargetLowering::computeKnownAlignForTargetInstr(
12491   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12492   unsigned Depth) const {
12493   const MachineInstr *MI = MRI.getVRegDef(R);
12494   switch (MI->getOpcode()) {
12495   case AMDGPU::G_INTRINSIC:
12496   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12497     // FIXME: Can this move to generic code? What about the case where the call
12498     // site specifies a lower alignment?
12499     Intrinsic::ID IID = MI->getIntrinsicID();
12500     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12501     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12502     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12503       return *RetAlign;
12504     return Align(1);
12505   }
12506   default:
12507     return Align(1);
12508   }
12509 }
12510 
12511 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12512   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12513   const Align CacheLineAlign = Align(64);
12514 
12515   // Pre-GFX10 target did not benefit from loop alignment
12516   if (!ML || DisableLoopAlignment ||
12517       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12518       getSubtarget()->hasInstFwdPrefetchBug())
12519     return PrefAlign;
12520 
12521   // On GFX10 I$ is 4 x 64 bytes cache lines.
12522   // By default prefetcher keeps one cache line behind and reads two ahead.
12523   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12524   // behind and one ahead.
12525   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12526   // If loop fits 64 bytes it always spans no more than two cache lines and
12527   // does not need an alignment.
12528   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12529   // Else if loop is less or equal 192 bytes we need two lines behind.
12530 
12531   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12532   const MachineBasicBlock *Header = ML->getHeader();
12533   if (Header->getAlignment() != PrefAlign)
12534     return Header->getAlignment(); // Already processed.
12535 
12536   unsigned LoopSize = 0;
12537   for (const MachineBasicBlock *MBB : ML->blocks()) {
12538     // If inner loop block is aligned assume in average half of the alignment
12539     // size to be added as nops.
12540     if (MBB != Header)
12541       LoopSize += MBB->getAlignment().value() / 2;
12542 
12543     for (const MachineInstr &MI : *MBB) {
12544       LoopSize += TII->getInstSizeInBytes(MI);
12545       if (LoopSize > 192)
12546         return PrefAlign;
12547     }
12548   }
12549 
12550   if (LoopSize <= 64)
12551     return PrefAlign;
12552 
12553   if (LoopSize <= 128)
12554     return CacheLineAlign;
12555 
12556   // If any of parent loops is surrounded by prefetch instructions do not
12557   // insert new for inner loop, which would reset parent's settings.
12558   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12559     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12560       auto I = Exit->getFirstNonDebugInstr();
12561       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12562         return CacheLineAlign;
12563     }
12564   }
12565 
12566   MachineBasicBlock *Pre = ML->getLoopPreheader();
12567   MachineBasicBlock *Exit = ML->getExitBlock();
12568 
12569   if (Pre && Exit) {
12570     auto PreTerm = Pre->getFirstTerminator();
12571     if (PreTerm == Pre->begin() ||
12572         std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
12573       BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12574           .addImm(1); // prefetch 2 lines behind PC
12575 
12576     auto ExitHead = Exit->getFirstNonDebugInstr();
12577     if (ExitHead == Exit->end() ||
12578         ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
12579       BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12580           .addImm(2); // prefetch 1 line behind PC
12581   }
12582 
12583   return CacheLineAlign;
12584 }
12585 
12586 LLVM_ATTRIBUTE_UNUSED
12587 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12588   assert(N->getOpcode() == ISD::CopyFromReg);
12589   do {
12590     // Follow the chain until we find an INLINEASM node.
12591     N = N->getOperand(0).getNode();
12592     if (N->getOpcode() == ISD::INLINEASM ||
12593         N->getOpcode() == ISD::INLINEASM_BR)
12594       return true;
12595   } while (N->getOpcode() == ISD::CopyFromReg);
12596   return false;
12597 }
12598 
12599 bool SITargetLowering::isSDNodeSourceOfDivergence(
12600     const SDNode *N, FunctionLoweringInfo *FLI,
12601     LegacyDivergenceAnalysis *KDA) const {
12602   switch (N->getOpcode()) {
12603   case ISD::CopyFromReg: {
12604     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12605     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12606     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12607     Register Reg = R->getReg();
12608 
12609     // FIXME: Why does this need to consider isLiveIn?
12610     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12611       return !TRI->isSGPRReg(MRI, Reg);
12612 
12613     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12614       return KDA->isDivergent(V);
12615 
12616     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12617     return !TRI->isSGPRReg(MRI, Reg);
12618   }
12619   case ISD::LOAD: {
12620     const LoadSDNode *L = cast<LoadSDNode>(N);
12621     unsigned AS = L->getAddressSpace();
12622     // A flat load may access private memory.
12623     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12624   }
12625   case ISD::CALLSEQ_END:
12626     return true;
12627   case ISD::INTRINSIC_WO_CHAIN:
12628     return AMDGPU::isIntrinsicSourceOfDivergence(
12629         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12630   case ISD::INTRINSIC_W_CHAIN:
12631     return AMDGPU::isIntrinsicSourceOfDivergence(
12632         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12633   case AMDGPUISD::ATOMIC_CMP_SWAP:
12634   case AMDGPUISD::ATOMIC_INC:
12635   case AMDGPUISD::ATOMIC_DEC:
12636   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12637   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12638   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12639   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12640   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12641   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12642   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12643   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12644   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12645   case AMDGPUISD::BUFFER_ATOMIC_AND:
12646   case AMDGPUISD::BUFFER_ATOMIC_OR:
12647   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12648   case AMDGPUISD::BUFFER_ATOMIC_INC:
12649   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12650   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12651   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12652   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12653   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12654   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12655     // Target-specific read-modify-write atomics are sources of divergence.
12656     return true;
12657   default:
12658     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12659       // Generic read-modify-write atomics are sources of divergence.
12660       return A->readMem() && A->writeMem();
12661     }
12662     return false;
12663   }
12664 }
12665 
12666 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12667                                                EVT VT) const {
12668   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12669   case MVT::f32:
12670     return hasFP32Denormals(DAG.getMachineFunction());
12671   case MVT::f64:
12672   case MVT::f16:
12673     return hasFP64FP16Denormals(DAG.getMachineFunction());
12674   default:
12675     return false;
12676   }
12677 }
12678 
12679 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12680                                                MachineFunction &MF) const {
12681   switch (Ty.getScalarSizeInBits()) {
12682   case 32:
12683     return hasFP32Denormals(MF);
12684   case 64:
12685   case 16:
12686     return hasFP64FP16Denormals(MF);
12687   default:
12688     return false;
12689   }
12690 }
12691 
12692 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12693                                                     const SelectionDAG &DAG,
12694                                                     bool SNaN,
12695                                                     unsigned Depth) const {
12696   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12697     const MachineFunction &MF = DAG.getMachineFunction();
12698     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12699 
12700     if (Info->getMode().DX10Clamp)
12701       return true; // Clamped to 0.
12702     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12703   }
12704 
12705   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12706                                                             SNaN, Depth);
12707 }
12708 
12709 // Global FP atomic instructions have a hardcoded FP mode and do not support
12710 // FP32 denormals, and only support v2f16 denormals.
12711 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12712   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12713   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12714   if (&Flt == &APFloat::IEEEsingle())
12715     return DenormMode == DenormalMode::getPreserveSign();
12716   return DenormMode == DenormalMode::getIEEE();
12717 }
12718 
12719 TargetLowering::AtomicExpansionKind
12720 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12721   unsigned AS = RMW->getPointerAddressSpace();
12722   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
12723     return AtomicExpansionKind::NotAtomic;
12724 
12725   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12726     OptimizationRemarkEmitter ORE(RMW->getFunction());
12727     LLVMContext &Ctx = RMW->getFunction()->getContext();
12728     SmallVector<StringRef> SSNs;
12729     Ctx.getSyncScopeNames(SSNs);
12730     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12731                         ? "system"
12732                         : SSNs[RMW->getSyncScopeID()];
12733     ORE.emit([&]() {
12734       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12735              << "Hardware instruction generated for atomic "
12736              << RMW->getOperationName(RMW->getOperation())
12737              << " operation at memory scope " << MemScope
12738              << " due to an unsafe request.";
12739     });
12740     return Kind;
12741   };
12742 
12743   switch (RMW->getOperation()) {
12744   case AtomicRMWInst::FAdd: {
12745     Type *Ty = RMW->getType();
12746 
12747     // We don't have a way to support 16-bit atomics now, so just leave them
12748     // as-is.
12749     if (Ty->isHalfTy())
12750       return AtomicExpansionKind::None;
12751 
12752     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12753       return AtomicExpansionKind::CmpXChg;
12754 
12755     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12756         Subtarget->hasAtomicFaddNoRtnInsts()) {
12757       if (Subtarget->hasGFX940Insts())
12758         return AtomicExpansionKind::None;
12759 
12760       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12761       // floating point atomic instructions. May generate more efficient code,
12762       // but may not respect rounding and denormal modes, and may give incorrect
12763       // results for certain memory destinations.
12764       if (RMW->getFunction()
12765               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12766               .getValueAsString() != "true")
12767         return AtomicExpansionKind::CmpXChg;
12768 
12769       if (Subtarget->hasGFX90AInsts()) {
12770         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12771           return AtomicExpansionKind::CmpXChg;
12772 
12773         auto SSID = RMW->getSyncScopeID();
12774         if (SSID == SyncScope::System ||
12775             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12776           return AtomicExpansionKind::CmpXChg;
12777 
12778         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12779       }
12780 
12781       if (AS == AMDGPUAS::FLAT_ADDRESS)
12782         return AtomicExpansionKind::CmpXChg;
12783 
12784       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12785                               : AtomicExpansionKind::CmpXChg;
12786     }
12787 
12788     // DS FP atomics do respect the denormal mode, but the rounding mode is
12789     // fixed to round-to-nearest-even.
12790     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12791     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12792       if (!Ty->isDoubleTy())
12793         return AtomicExpansionKind::None;
12794 
12795       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12796         return AtomicExpansionKind::None;
12797 
12798       return RMW->getFunction()
12799                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12800                          .getValueAsString() == "true"
12801                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12802                  : AtomicExpansionKind::CmpXChg;
12803     }
12804 
12805     return AtomicExpansionKind::CmpXChg;
12806   }
12807   default:
12808     break;
12809   }
12810 
12811   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12812 }
12813 
12814 TargetLowering::AtomicExpansionKind
12815 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12816   return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12817              ? AtomicExpansionKind::NotAtomic
12818              : AtomicExpansionKind::None;
12819 }
12820 
12821 TargetLowering::AtomicExpansionKind
12822 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12823   return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12824              ? AtomicExpansionKind::NotAtomic
12825              : AtomicExpansionKind::None;
12826 }
12827 
12828 TargetLowering::AtomicExpansionKind
12829 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
12830   return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12831              ? AtomicExpansionKind::NotAtomic
12832              : AtomicExpansionKind::None;
12833 }
12834 
12835 const TargetRegisterClass *
12836 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12837   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12838   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12839   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12840     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12841                                                : &AMDGPU::SReg_32RegClass;
12842   if (!TRI->isSGPRClass(RC) && !isDivergent)
12843     return TRI->getEquivalentSGPRClass(RC);
12844   else if (TRI->isSGPRClass(RC) && isDivergent)
12845     return TRI->getEquivalentVGPRClass(RC);
12846 
12847   return RC;
12848 }
12849 
12850 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12851 // uniform values (as produced by the mask results of control flow intrinsics)
12852 // used outside of divergent blocks. The phi users need to also be treated as
12853 // always uniform.
12854 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12855                       unsigned WaveSize) {
12856   // FIXME: We assume we never cast the mask results of a control flow
12857   // intrinsic.
12858   // Early exit if the type won't be consistent as a compile time hack.
12859   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12860   if (!IT || IT->getBitWidth() != WaveSize)
12861     return false;
12862 
12863   if (!isa<Instruction>(V))
12864     return false;
12865   if (!Visited.insert(V).second)
12866     return false;
12867   bool Result = false;
12868   for (auto U : V->users()) {
12869     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12870       if (V == U->getOperand(1)) {
12871         switch (Intrinsic->getIntrinsicID()) {
12872         default:
12873           Result = false;
12874           break;
12875         case Intrinsic::amdgcn_if_break:
12876         case Intrinsic::amdgcn_if:
12877         case Intrinsic::amdgcn_else:
12878           Result = true;
12879           break;
12880         }
12881       }
12882       if (V == U->getOperand(0)) {
12883         switch (Intrinsic->getIntrinsicID()) {
12884         default:
12885           Result = false;
12886           break;
12887         case Intrinsic::amdgcn_end_cf:
12888         case Intrinsic::amdgcn_loop:
12889           Result = true;
12890           break;
12891         }
12892       }
12893     } else {
12894       Result = hasCFUser(U, Visited, WaveSize);
12895     }
12896     if (Result)
12897       break;
12898   }
12899   return Result;
12900 }
12901 
12902 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12903                                                const Value *V) const {
12904   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12905     if (CI->isInlineAsm()) {
12906       // FIXME: This cannot give a correct answer. This should only trigger in
12907       // the case where inline asm returns mixed SGPR and VGPR results, used
12908       // outside the defining block. We don't have a specific result to
12909       // consider, so this assumes if any value is SGPR, the overall register
12910       // also needs to be SGPR.
12911       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12912       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12913           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12914       for (auto &TC : TargetConstraints) {
12915         if (TC.Type == InlineAsm::isOutput) {
12916           ComputeConstraintToUse(TC, SDValue());
12917           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
12918               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
12919           if (RC && SIRI->isSGPRClass(RC))
12920             return true;
12921         }
12922       }
12923     }
12924   }
12925   SmallPtrSet<const Value *, 16> Visited;
12926   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12927 }
12928 
12929 std::pair<InstructionCost, MVT>
12930 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12931                                           Type *Ty) const {
12932   std::pair<InstructionCost, MVT> Cost =
12933       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12934   auto Size = DL.getTypeSizeInBits(Ty);
12935   // Maximum load or store can handle 8 dwords for scalar and 4 for
12936   // vector ALU. Let's assume anything above 8 dwords is expensive
12937   // even if legal.
12938   if (Size <= 256)
12939     return Cost;
12940 
12941   Cost.first += (Size + 255) / 256;
12942   return Cost;
12943 }
12944 
12945 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
12946   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
12947   for (; I != E; ++I) {
12948     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
12949       if (getBasePtrIndex(M) == I.getOperandNo())
12950         return true;
12951     }
12952   }
12953   return false;
12954 }
12955 
12956 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
12957                                            SDValue N1) const {
12958   if (!N0.hasOneUse())
12959     return false;
12960   // Take care of the opportunity to keep N0 uniform
12961   if (N0->isDivergent() || !N1->isDivergent())
12962     return true;
12963   // Check if we have a good chance to form the memory access pattern with the
12964   // base and offset
12965   return (DAG.isBaseWithConstantOffset(N0) &&
12966           hasMemSDNodeUser(*N0->use_begin()));
12967 }
12968 
12969 MachineMemOperand::Flags
12970 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
12971   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
12972   if (I.getMetadata("amdgpu.noclobber"))
12973     return MONoClobber;
12974   return MachineMemOperand::MONone;
12975 }
12976