1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/BinaryFormat/ELF.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/IntrinsicsAMDGPU.h" 35 #include "llvm/IR/IntrinsicsR600.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "si-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 static cl::opt<bool> DisableLoopAlignment( 46 "amdgpu-disable-loop-alignment", 47 cl::desc("Do not align and prefetch loops"), 48 cl::init(false)); 49 50 static cl::opt<bool> UseDivergentRegisterIndexing( 51 "amdgpu-use-divergent-register-indexing", 52 cl::Hidden, 53 cl::desc("Use indirect register addressing for divergent indexes"), 54 cl::init(false)); 55 56 static bool hasFP32Denormals(const MachineFunction &MF) { 57 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 58 return Info->getMode().allFP32Denormals(); 59 } 60 61 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 62 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 63 return Info->getMode().allFP64FP16Denormals(); 64 } 65 66 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 67 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 68 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 69 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 70 return AMDGPU::SGPR0 + Reg; 71 } 72 } 73 llvm_unreachable("Cannot allocate sgpr"); 74 } 75 76 SITargetLowering::SITargetLowering(const TargetMachine &TM, 77 const GCNSubtarget &STI) 78 : AMDGPUTargetLowering(TM, STI), 79 Subtarget(&STI) { 80 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 81 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 82 83 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 84 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 85 86 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 87 88 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 89 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 90 91 addRegisterClass(MVT::f64, V64RegClass); 92 addRegisterClass(MVT::v2f32, V64RegClass); 93 94 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 95 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 96 97 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 98 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 99 100 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 101 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 102 103 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 104 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 105 106 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 107 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 108 109 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 110 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 111 112 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 113 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 114 115 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 116 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 117 118 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 119 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 120 121 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 122 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 123 124 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 125 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 126 127 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 128 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 129 130 if (Subtarget->has16BitInsts()) { 131 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 132 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 133 134 // Unless there are also VOP3P operations, not operations are really legal. 135 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 136 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 137 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 138 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 139 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 140 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 141 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); 142 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); 143 } 144 145 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 146 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 147 148 computeRegisterProperties(Subtarget->getRegisterInfo()); 149 150 // The boolean content concept here is too inflexible. Compares only ever 151 // really produce a 1-bit result. Any copy/extend from these will turn into a 152 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 153 // it's what most targets use. 154 setBooleanContents(ZeroOrOneBooleanContent); 155 setBooleanVectorContents(ZeroOrOneBooleanContent); 156 157 // We need to custom lower vector stores from local memory 158 setOperationAction(ISD::LOAD, 159 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 160 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1, 161 MVT::v32i32}, 162 Custom); 163 164 setOperationAction(ISD::STORE, 165 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 166 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1, 167 MVT::v32i32}, 168 Custom); 169 170 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 171 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 172 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 173 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 174 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 175 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 177 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 178 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 179 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 180 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 181 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 182 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 183 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 184 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 185 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 186 187 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 188 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 189 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 190 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 191 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 192 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 193 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 194 195 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); 196 197 setOperationAction(ISD::SELECT, MVT::i1, Promote); 198 setOperationAction(ISD::SELECT, MVT::i64, Custom); 199 setOperationAction(ISD::SELECT, MVT::f64, Promote); 200 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 201 202 setOperationAction(ISD::SELECT_CC, 203 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); 204 205 setOperationAction(ISD::SETCC, MVT::i1, Promote); 206 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); 207 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 208 209 setOperationAction(ISD::TRUNCATE, 210 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 211 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32}, 212 Expand); 213 setOperationAction(ISD::FP_ROUND, 214 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, 215 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32}, 216 Expand); 217 218 setOperationAction(ISD::SIGN_EXTEND_INREG, 219 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, 220 MVT::v3i16, MVT::v4i16, MVT::Other}, 221 Custom); 222 223 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 224 setOperationAction(ISD::BR_CC, 225 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); 226 227 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); 228 229 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal); 230 231 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, 232 Expand); 233 234 #if 0 235 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal); 236 #endif 237 238 // We only support LOAD/STORE and vector manipulation ops for vectors 239 // with > 4 elements. 240 for (MVT VT : 241 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, 242 MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v3i64, MVT::v3f64, 243 MVT::v6i32, MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, 244 MVT::v8f64, MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16, 245 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32}) { 246 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 247 switch (Op) { 248 case ISD::LOAD: 249 case ISD::STORE: 250 case ISD::BUILD_VECTOR: 251 case ISD::BITCAST: 252 case ISD::UNDEF: 253 case ISD::EXTRACT_VECTOR_ELT: 254 case ISD::INSERT_VECTOR_ELT: 255 case ISD::EXTRACT_SUBVECTOR: 256 case ISD::SCALAR_TO_VECTOR: 257 break; 258 case ISD::INSERT_SUBVECTOR: 259 case ISD::CONCAT_VECTORS: 260 setOperationAction(Op, VT, Custom); 261 break; 262 default: 263 setOperationAction(Op, VT, Expand); 264 break; 265 } 266 } 267 } 268 269 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 270 271 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 272 // is expanded to avoid having two separate loops in case the index is a VGPR. 273 274 // Most operations are naturally 32-bit vector operations. We only support 275 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 276 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 277 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 278 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 279 280 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 281 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 282 283 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 284 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 285 286 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 287 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 288 } 289 290 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 291 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 292 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 293 294 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 295 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 296 297 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 298 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 299 300 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 301 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 302 } 303 304 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 305 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 306 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 307 308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 309 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 310 311 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 312 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 313 314 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 315 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 316 } 317 318 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 319 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 320 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 321 322 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 323 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 324 325 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 326 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 327 328 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 329 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 330 } 331 332 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 333 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 334 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 335 336 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 337 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 338 339 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 340 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 341 342 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 343 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 344 } 345 346 setOperationAction(ISD::VECTOR_SHUFFLE, 347 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, 348 Expand); 349 350 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); 351 352 // Avoid stack access for these. 353 // TODO: Generalize to more vector types. 354 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, 355 {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 356 MVT::v4i16, MVT::v4f16}, 357 Custom); 358 359 // Deal with vec3 vector operations when widened to vec4. 360 setOperationAction(ISD::INSERT_SUBVECTOR, 361 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); 362 363 // Deal with vec5/6/7 vector operations when widened to vec8. 364 setOperationAction(ISD::INSERT_SUBVECTOR, 365 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, 366 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32}, 367 Custom); 368 369 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 370 // and output demarshalling 371 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); 372 373 // We can't return success/failure, only the old value, 374 // let LLVM add the comparison 375 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, 376 Expand); 377 378 if (Subtarget->hasFlatAddressSpace()) 379 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); 380 381 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); 382 383 // FIXME: This should be narrowed to i32, but that only happens if i64 is 384 // illegal. 385 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 386 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); 387 388 // On SI this is s_memtime and s_memrealtime on VI. 389 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 390 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); 391 392 if (Subtarget->has16BitInsts()) { 393 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); 394 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); 395 } 396 397 if (Subtarget->hasMadMacF32Insts()) 398 setOperationAction(ISD::FMAD, MVT::f32, Legal); 399 400 if (!Subtarget->hasBFI()) 401 // fcopysign can be done in a single instruction with BFI. 402 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 403 404 if (!Subtarget->hasBCNT(32)) 405 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 406 407 if (!Subtarget->hasBCNT(64)) 408 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 409 410 if (Subtarget->hasFFBH()) 411 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 412 413 if (Subtarget->hasFFBL()) 414 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 415 416 // We only really have 32-bit BFE instructions (and 16-bit on VI). 417 // 418 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 419 // effort to match them now. We want this to be false for i64 cases when the 420 // extraction isn't restricted to the upper or lower half. Ideally we would 421 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 422 // span the midpoint are probably relatively rare, so don't worry about them 423 // for now. 424 if (Subtarget->hasBFE()) 425 setHasExtractBitsInsn(true); 426 427 // Clamp modifier on add/sub 428 if (Subtarget->hasIntClamp()) 429 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); 430 431 if (Subtarget->hasAddNoCarry()) 432 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, 433 Legal); 434 435 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, 436 Custom); 437 438 // These are really only legal for ieee_mode functions. We should be avoiding 439 // them for functions that don't have ieee_mode enabled, so just say they are 440 // legal. 441 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 442 {MVT::f32, MVT::f64}, Legal); 443 444 if (Subtarget->haveRoundOpsF64()) 445 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); 446 else 447 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, 448 MVT::f64, Custom); 449 450 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 451 452 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); 453 setOperationAction(ISD::FDIV, MVT::f64, Custom); 454 455 if (Subtarget->has16BitInsts()) { 456 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, 457 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, 458 MVT::i16, Legal); 459 460 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 461 462 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, 463 MVT::i16, Expand); 464 465 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, 466 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, 467 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 468 ISD::CTPOP}, 469 MVT::i16, Promote); 470 471 setOperationAction(ISD::LOAD, MVT::i16, Custom); 472 473 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 474 475 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 476 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 477 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 478 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 479 480 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); 481 482 // F16 - Constant Actions. 483 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 484 485 // F16 - Load/Store Actions. 486 setOperationAction(ISD::LOAD, MVT::f16, Promote); 487 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 488 setOperationAction(ISD::STORE, MVT::f16, Promote); 489 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 490 491 // F16 - VOP1 Actions. 492 setOperationAction( 493 {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, 494 MVT::f16, Custom); 495 496 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 497 498 setOperationAction( 499 {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, 500 MVT::f16, Promote); 501 502 // F16 - VOP2 Actions. 503 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); 504 505 setOperationAction(ISD::FDIV, MVT::f16, Custom); 506 507 // F16 - VOP3 Actions. 508 setOperationAction(ISD::FMA, MVT::f16, Legal); 509 if (STI.hasMadF16()) 510 setOperationAction(ISD::FMAD, MVT::f16, Legal); 511 512 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, 513 MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 514 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 515 switch (Op) { 516 case ISD::LOAD: 517 case ISD::STORE: 518 case ISD::BUILD_VECTOR: 519 case ISD::BITCAST: 520 case ISD::UNDEF: 521 case ISD::EXTRACT_VECTOR_ELT: 522 case ISD::INSERT_VECTOR_ELT: 523 case ISD::INSERT_SUBVECTOR: 524 case ISD::EXTRACT_SUBVECTOR: 525 case ISD::SCALAR_TO_VECTOR: 526 break; 527 case ISD::CONCAT_VECTORS: 528 setOperationAction(Op, VT, Custom); 529 break; 530 default: 531 setOperationAction(Op, VT, Expand); 532 break; 533 } 534 } 535 } 536 537 // v_perm_b32 can handle either of these. 538 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); 539 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 540 541 // XXX - Do these do anything? Vector constants turn into build_vector. 542 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); 543 544 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); 545 546 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 547 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 548 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 549 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 550 551 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 552 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 553 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 554 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 555 556 setOperationAction(ISD::AND, MVT::v2i16, Promote); 557 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 558 setOperationAction(ISD::OR, MVT::v2i16, Promote); 559 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 560 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 561 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 562 563 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 564 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 565 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 566 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 567 568 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 569 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 570 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 571 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 572 573 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 574 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 575 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 576 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 577 578 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 579 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 580 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 581 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 582 583 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 584 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 585 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 586 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 587 588 setOperationAction(ISD::LOAD, MVT::v16i16, Promote); 589 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); 590 setOperationAction(ISD::LOAD, MVT::v16f16, Promote); 591 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); 592 593 setOperationAction(ISD::STORE, MVT::v16i16, Promote); 594 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); 595 setOperationAction(ISD::STORE, MVT::v16f16, Promote); 596 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); 597 598 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 599 MVT::v2i32, Expand); 600 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 601 602 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 603 MVT::v4i32, Expand); 604 605 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 606 MVT::v8i32, Expand); 607 608 if (!Subtarget->hasVOP3PInsts()) 609 setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); 610 611 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 612 // This isn't really legal, but this avoids the legalizer unrolling it (and 613 // allows matching fneg (fabs x) patterns) 614 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 615 616 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); 617 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); 618 619 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 620 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); 621 622 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, 623 {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); 624 625 for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { 626 setOperationAction( 627 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, 628 Vec16, Custom); 629 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 630 } 631 } 632 633 if (Subtarget->hasVOP3PInsts()) { 634 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, 635 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 636 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, 637 MVT::v2i16, Legal); 638 639 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, 640 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, 641 MVT::v2f16, Legal); 642 643 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, 644 Custom); 645 646 setOperationAction(ISD::VECTOR_SHUFFLE, 647 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, 648 MVT::v16f16, MVT::v16i16}, 649 Custom); 650 651 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) 652 // Split vector operations. 653 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, 654 ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, 655 ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, 656 ISD::SSUBSAT}, 657 VT, Custom); 658 659 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) 660 // Split vector operations. 661 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, 662 VT, Custom); 663 664 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, 665 Custom); 666 667 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 668 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); 669 670 if (Subtarget->hasPackedFP32Ops()) { 671 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, 672 MVT::v2f32, Legal); 673 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, 674 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, 675 Custom); 676 } 677 } 678 679 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); 680 681 if (Subtarget->has16BitInsts()) { 682 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 683 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 684 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 685 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 686 } else { 687 // Legalization hack. 688 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); 689 690 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); 691 } 692 693 setOperationAction(ISD::SELECT, 694 {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 695 MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, 696 Custom); 697 698 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); 699 700 if (Subtarget->hasMad64_32()) 701 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); 702 703 setOperationAction(ISD::INTRINSIC_WO_CHAIN, 704 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, 705 MVT::v2i16, MVT::v2f16}, 706 Custom); 707 708 setOperationAction(ISD::INTRINSIC_W_CHAIN, 709 {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, 710 MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, 711 MVT::i16, MVT::i8}, 712 Custom); 713 714 setOperationAction(ISD::INTRINSIC_VOID, 715 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, 716 MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, 717 MVT::i8}, 718 Custom); 719 720 setTargetDAGCombine({ISD::ADD, 721 ISD::ADDCARRY, 722 ISD::SUB, 723 ISD::SUBCARRY, 724 ISD::FADD, 725 ISD::FSUB, 726 ISD::FMINNUM, 727 ISD::FMAXNUM, 728 ISD::FMINNUM_IEEE, 729 ISD::FMAXNUM_IEEE, 730 ISD::FMA, 731 ISD::SMIN, 732 ISD::SMAX, 733 ISD::UMIN, 734 ISD::UMAX, 735 ISD::SETCC, 736 ISD::AND, 737 ISD::OR, 738 ISD::XOR, 739 ISD::SINT_TO_FP, 740 ISD::UINT_TO_FP, 741 ISD::FCANONICALIZE, 742 ISD::SCALAR_TO_VECTOR, 743 ISD::ZERO_EXTEND, 744 ISD::SIGN_EXTEND_INREG, 745 ISD::EXTRACT_VECTOR_ELT, 746 ISD::INSERT_VECTOR_ELT}); 747 748 // All memory operations. Some folding on the pointer operand is done to help 749 // matching the constant offsets in the addressing modes. 750 setTargetDAGCombine({ISD::LOAD, 751 ISD::STORE, 752 ISD::ATOMIC_LOAD, 753 ISD::ATOMIC_STORE, 754 ISD::ATOMIC_CMP_SWAP, 755 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 756 ISD::ATOMIC_SWAP, 757 ISD::ATOMIC_LOAD_ADD, 758 ISD::ATOMIC_LOAD_SUB, 759 ISD::ATOMIC_LOAD_AND, 760 ISD::ATOMIC_LOAD_OR, 761 ISD::ATOMIC_LOAD_XOR, 762 ISD::ATOMIC_LOAD_NAND, 763 ISD::ATOMIC_LOAD_MIN, 764 ISD::ATOMIC_LOAD_MAX, 765 ISD::ATOMIC_LOAD_UMIN, 766 ISD::ATOMIC_LOAD_UMAX, 767 ISD::ATOMIC_LOAD_FADD, 768 ISD::INTRINSIC_VOID, 769 ISD::INTRINSIC_W_CHAIN}); 770 771 // FIXME: In other contexts we pretend this is a per-function property. 772 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 773 774 setSchedulingPreference(Sched::RegPressure); 775 } 776 777 const GCNSubtarget *SITargetLowering::getSubtarget() const { 778 return Subtarget; 779 } 780 781 //===----------------------------------------------------------------------===// 782 // TargetLowering queries 783 //===----------------------------------------------------------------------===// 784 785 // v_mad_mix* support a conversion from f16 to f32. 786 // 787 // There is only one special case when denormals are enabled we don't currently, 788 // where this is OK to use. 789 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 790 EVT DestVT, EVT SrcVT) const { 791 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 792 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 793 DestVT.getScalarType() == MVT::f32 && 794 SrcVT.getScalarType() == MVT::f16 && 795 // TODO: This probably only requires no input flushing? 796 !hasFP32Denormals(DAG.getMachineFunction()); 797 } 798 799 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 800 LLT DestTy, LLT SrcTy) const { 801 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 802 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 803 DestTy.getScalarSizeInBits() == 32 && 804 SrcTy.getScalarSizeInBits() == 16 && 805 // TODO: This probably only requires no input flushing? 806 !hasFP32Denormals(*MI.getMF()); 807 } 808 809 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 810 // SI has some legal vector types, but no legal vector operations. Say no 811 // shuffles are legal in order to prefer scalarizing some vector operations. 812 return false; 813 } 814 815 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 816 CallingConv::ID CC, 817 EVT VT) const { 818 if (CC == CallingConv::AMDGPU_KERNEL) 819 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 820 821 if (VT.isVector()) { 822 EVT ScalarVT = VT.getScalarType(); 823 unsigned Size = ScalarVT.getSizeInBits(); 824 if (Size == 16) { 825 if (Subtarget->has16BitInsts()) 826 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 827 return VT.isInteger() ? MVT::i32 : MVT::f32; 828 } 829 830 if (Size < 16) 831 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 832 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 833 } 834 835 if (VT.getSizeInBits() > 32) 836 return MVT::i32; 837 838 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 839 } 840 841 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 842 CallingConv::ID CC, 843 EVT VT) const { 844 if (CC == CallingConv::AMDGPU_KERNEL) 845 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 846 847 if (VT.isVector()) { 848 unsigned NumElts = VT.getVectorNumElements(); 849 EVT ScalarVT = VT.getScalarType(); 850 unsigned Size = ScalarVT.getSizeInBits(); 851 852 // FIXME: Should probably promote 8-bit vectors to i16. 853 if (Size == 16 && Subtarget->has16BitInsts()) 854 return (NumElts + 1) / 2; 855 856 if (Size <= 32) 857 return NumElts; 858 859 if (Size > 32) 860 return NumElts * ((Size + 31) / 32); 861 } else if (VT.getSizeInBits() > 32) 862 return (VT.getSizeInBits() + 31) / 32; 863 864 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 865 } 866 867 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 868 LLVMContext &Context, CallingConv::ID CC, 869 EVT VT, EVT &IntermediateVT, 870 unsigned &NumIntermediates, MVT &RegisterVT) const { 871 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 872 unsigned NumElts = VT.getVectorNumElements(); 873 EVT ScalarVT = VT.getScalarType(); 874 unsigned Size = ScalarVT.getSizeInBits(); 875 // FIXME: We should fix the ABI to be the same on targets without 16-bit 876 // support, but unless we can properly handle 3-vectors, it will be still be 877 // inconsistent. 878 if (Size == 16 && Subtarget->has16BitInsts()) { 879 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 880 IntermediateVT = RegisterVT; 881 NumIntermediates = (NumElts + 1) / 2; 882 return NumIntermediates; 883 } 884 885 if (Size == 32) { 886 RegisterVT = ScalarVT.getSimpleVT(); 887 IntermediateVT = RegisterVT; 888 NumIntermediates = NumElts; 889 return NumIntermediates; 890 } 891 892 if (Size < 16 && Subtarget->has16BitInsts()) { 893 // FIXME: Should probably form v2i16 pieces 894 RegisterVT = MVT::i16; 895 IntermediateVT = ScalarVT; 896 NumIntermediates = NumElts; 897 return NumIntermediates; 898 } 899 900 901 if (Size != 16 && Size <= 32) { 902 RegisterVT = MVT::i32; 903 IntermediateVT = ScalarVT; 904 NumIntermediates = NumElts; 905 return NumIntermediates; 906 } 907 908 if (Size > 32) { 909 RegisterVT = MVT::i32; 910 IntermediateVT = RegisterVT; 911 NumIntermediates = NumElts * ((Size + 31) / 32); 912 return NumIntermediates; 913 } 914 } 915 916 return TargetLowering::getVectorTypeBreakdownForCallingConv( 917 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 918 } 919 920 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 921 assert(DMaskLanes != 0); 922 923 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 924 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 925 return EVT::getVectorVT(Ty->getContext(), 926 EVT::getEVT(VT->getElementType()), 927 NumElts); 928 } 929 930 return EVT::getEVT(Ty); 931 } 932 933 // Peek through TFE struct returns to only use the data size. 934 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 935 auto *ST = dyn_cast<StructType>(Ty); 936 if (!ST) 937 return memVTFromImageData(Ty, DMaskLanes); 938 939 // Some intrinsics return an aggregate type - special case to work out the 940 // correct memVT. 941 // 942 // Only limited forms of aggregate type currently expected. 943 if (ST->getNumContainedTypes() != 2 || 944 !ST->getContainedType(1)->isIntegerTy(32)) 945 return EVT(); 946 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 947 } 948 949 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 950 const CallInst &CI, 951 MachineFunction &MF, 952 unsigned IntrID) const { 953 Info.flags = MachineMemOperand::MONone; 954 if (CI.hasMetadata(LLVMContext::MD_invariant_load)) 955 Info.flags |= MachineMemOperand::MOInvariant; 956 957 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 958 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 959 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 960 (Intrinsic::ID)IntrID); 961 if (Attr.hasFnAttr(Attribute::ReadNone)) 962 return false; 963 964 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 965 966 const GCNTargetMachine &TM = 967 static_cast<const GCNTargetMachine &>(getTargetMachine()); 968 969 if (RsrcIntr->IsImage) { 970 Info.ptrVal = MFI->getImagePSV(TM); 971 Info.align.reset(); 972 } else { 973 Info.ptrVal = MFI->getBufferPSV(TM); 974 } 975 976 Info.flags |= MachineMemOperand::MODereferenceable; 977 if (Attr.hasFnAttr(Attribute::ReadOnly)) { 978 unsigned DMaskLanes = 4; 979 980 if (RsrcIntr->IsImage) { 981 const AMDGPU::ImageDimIntrinsicInfo *Intr 982 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 983 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 984 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 985 986 if (!BaseOpcode->Gather4) { 987 // If this isn't a gather, we may have excess loaded elements in the 988 // IR type. Check the dmask for the real number of elements loaded. 989 unsigned DMask 990 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 991 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 992 } 993 994 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 995 } else 996 Info.memVT = EVT::getEVT(CI.getType()); 997 998 // FIXME: What does alignment mean for an image? 999 Info.opc = ISD::INTRINSIC_W_CHAIN; 1000 Info.flags |= MachineMemOperand::MOLoad; 1001 } else if (Attr.hasFnAttr(Attribute::WriteOnly)) { 1002 Info.opc = ISD::INTRINSIC_VOID; 1003 1004 Type *DataTy = CI.getArgOperand(0)->getType(); 1005 if (RsrcIntr->IsImage) { 1006 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1007 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1008 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1009 } else 1010 Info.memVT = EVT::getEVT(DataTy); 1011 1012 Info.flags |= MachineMemOperand::MOStore; 1013 } else { 1014 // Atomic 1015 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1016 ISD::INTRINSIC_W_CHAIN; 1017 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1018 Info.flags |= MachineMemOperand::MOLoad | 1019 MachineMemOperand::MOStore | 1020 MachineMemOperand::MODereferenceable; 1021 1022 // XXX - Should this be volatile without known ordering? 1023 Info.flags |= MachineMemOperand::MOVolatile; 1024 1025 switch (IntrID) { 1026 default: 1027 break; 1028 case Intrinsic::amdgcn_raw_buffer_load_lds: 1029 case Intrinsic::amdgcn_struct_buffer_load_lds: { 1030 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1031 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1032 return true; 1033 } 1034 } 1035 } 1036 return true; 1037 } 1038 1039 switch (IntrID) { 1040 case Intrinsic::amdgcn_atomic_inc: 1041 case Intrinsic::amdgcn_atomic_dec: 1042 case Intrinsic::amdgcn_ds_ordered_add: 1043 case Intrinsic::amdgcn_ds_ordered_swap: 1044 case Intrinsic::amdgcn_ds_fadd: 1045 case Intrinsic::amdgcn_ds_fmin: 1046 case Intrinsic::amdgcn_ds_fmax: { 1047 Info.opc = ISD::INTRINSIC_W_CHAIN; 1048 Info.memVT = MVT::getVT(CI.getType()); 1049 Info.ptrVal = CI.getOperand(0); 1050 Info.align.reset(); 1051 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1052 1053 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1054 if (!Vol->isZero()) 1055 Info.flags |= MachineMemOperand::MOVolatile; 1056 1057 return true; 1058 } 1059 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1060 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1061 1062 const GCNTargetMachine &TM = 1063 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1064 1065 Info.opc = ISD::INTRINSIC_W_CHAIN; 1066 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1067 Info.ptrVal = MFI->getBufferPSV(TM); 1068 Info.align.reset(); 1069 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1070 1071 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1072 if (!Vol || !Vol->isZero()) 1073 Info.flags |= MachineMemOperand::MOVolatile; 1074 1075 return true; 1076 } 1077 case Intrinsic::amdgcn_ds_append: 1078 case Intrinsic::amdgcn_ds_consume: { 1079 Info.opc = ISD::INTRINSIC_W_CHAIN; 1080 Info.memVT = MVT::getVT(CI.getType()); 1081 Info.ptrVal = CI.getOperand(0); 1082 Info.align.reset(); 1083 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1084 1085 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1086 if (!Vol->isZero()) 1087 Info.flags |= MachineMemOperand::MOVolatile; 1088 1089 return true; 1090 } 1091 case Intrinsic::amdgcn_global_atomic_csub: { 1092 Info.opc = ISD::INTRINSIC_W_CHAIN; 1093 Info.memVT = MVT::getVT(CI.getType()); 1094 Info.ptrVal = CI.getOperand(0); 1095 Info.align.reset(); 1096 Info.flags |= MachineMemOperand::MOLoad | 1097 MachineMemOperand::MOStore | 1098 MachineMemOperand::MOVolatile; 1099 return true; 1100 } 1101 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1102 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1103 Info.opc = ISD::INTRINSIC_W_CHAIN; 1104 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1105 1106 const GCNTargetMachine &TM = 1107 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1108 1109 Info.ptrVal = MFI->getImagePSV(TM); 1110 Info.align.reset(); 1111 Info.flags |= MachineMemOperand::MOLoad | 1112 MachineMemOperand::MODereferenceable; 1113 return true; 1114 } 1115 case Intrinsic::amdgcn_global_atomic_fadd: 1116 case Intrinsic::amdgcn_global_atomic_fmin: 1117 case Intrinsic::amdgcn_global_atomic_fmax: 1118 case Intrinsic::amdgcn_flat_atomic_fadd: 1119 case Intrinsic::amdgcn_flat_atomic_fmin: 1120 case Intrinsic::amdgcn_flat_atomic_fmax: 1121 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1122 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { 1123 Info.opc = ISD::INTRINSIC_W_CHAIN; 1124 Info.memVT = MVT::getVT(CI.getType()); 1125 Info.ptrVal = CI.getOperand(0); 1126 Info.align.reset(); 1127 Info.flags |= MachineMemOperand::MOLoad | 1128 MachineMemOperand::MOStore | 1129 MachineMemOperand::MODereferenceable | 1130 MachineMemOperand::MOVolatile; 1131 return true; 1132 } 1133 case Intrinsic::amdgcn_ds_gws_init: 1134 case Intrinsic::amdgcn_ds_gws_barrier: 1135 case Intrinsic::amdgcn_ds_gws_sema_v: 1136 case Intrinsic::amdgcn_ds_gws_sema_br: 1137 case Intrinsic::amdgcn_ds_gws_sema_p: 1138 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1139 Info.opc = ISD::INTRINSIC_VOID; 1140 1141 const GCNTargetMachine &TM = 1142 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1143 1144 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1145 Info.ptrVal = MFI->getGWSPSV(TM); 1146 1147 // This is an abstract access, but we need to specify a type and size. 1148 Info.memVT = MVT::i32; 1149 Info.size = 4; 1150 Info.align = Align(4); 1151 1152 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1153 Info.flags |= MachineMemOperand::MOLoad; 1154 else 1155 Info.flags |= MachineMemOperand::MOStore; 1156 return true; 1157 } 1158 case Intrinsic::amdgcn_global_load_lds: { 1159 Info.opc = ISD::INTRINSIC_VOID; 1160 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1161 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1162 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1163 MachineMemOperand::MOVolatile; 1164 return true; 1165 } 1166 default: 1167 return false; 1168 } 1169 } 1170 1171 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1172 SmallVectorImpl<Value*> &Ops, 1173 Type *&AccessTy) const { 1174 switch (II->getIntrinsicID()) { 1175 case Intrinsic::amdgcn_atomic_inc: 1176 case Intrinsic::amdgcn_atomic_dec: 1177 case Intrinsic::amdgcn_ds_ordered_add: 1178 case Intrinsic::amdgcn_ds_ordered_swap: 1179 case Intrinsic::amdgcn_ds_append: 1180 case Intrinsic::amdgcn_ds_consume: 1181 case Intrinsic::amdgcn_ds_fadd: 1182 case Intrinsic::amdgcn_ds_fmin: 1183 case Intrinsic::amdgcn_ds_fmax: 1184 case Intrinsic::amdgcn_global_atomic_fadd: 1185 case Intrinsic::amdgcn_flat_atomic_fadd: 1186 case Intrinsic::amdgcn_flat_atomic_fmin: 1187 case Intrinsic::amdgcn_flat_atomic_fmax: 1188 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1189 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: 1190 case Intrinsic::amdgcn_global_atomic_csub: { 1191 Value *Ptr = II->getArgOperand(0); 1192 AccessTy = II->getType(); 1193 Ops.push_back(Ptr); 1194 return true; 1195 } 1196 default: 1197 return false; 1198 } 1199 } 1200 1201 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1202 if (!Subtarget->hasFlatInstOffsets()) { 1203 // Flat instructions do not have offsets, and only have the register 1204 // address. 1205 return AM.BaseOffs == 0 && AM.Scale == 0; 1206 } 1207 1208 return AM.Scale == 0 && 1209 (AM.BaseOffs == 0 || 1210 Subtarget->getInstrInfo()->isLegalFLATOffset( 1211 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); 1212 } 1213 1214 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1215 if (Subtarget->hasFlatGlobalInsts()) 1216 return AM.Scale == 0 && 1217 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1218 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1219 SIInstrFlags::FlatGlobal)); 1220 1221 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1222 // Assume the we will use FLAT for all global memory accesses 1223 // on VI. 1224 // FIXME: This assumption is currently wrong. On VI we still use 1225 // MUBUF instructions for the r + i addressing mode. As currently 1226 // implemented, the MUBUF instructions only work on buffer < 4GB. 1227 // It may be possible to support > 4GB buffers with MUBUF instructions, 1228 // by setting the stride value in the resource descriptor which would 1229 // increase the size limit to (stride * 4GB). However, this is risky, 1230 // because it has never been validated. 1231 return isLegalFlatAddressingMode(AM); 1232 } 1233 1234 return isLegalMUBUFAddressingMode(AM); 1235 } 1236 1237 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1238 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1239 // additionally can do r + r + i with addr64. 32-bit has more addressing 1240 // mode options. Depending on the resource constant, it can also do 1241 // (i64 r0) + (i32 r1) * (i14 i). 1242 // 1243 // Private arrays end up using a scratch buffer most of the time, so also 1244 // assume those use MUBUF instructions. Scratch loads / stores are currently 1245 // implemented as mubuf instructions with offen bit set, so slightly 1246 // different than the normal addr64. 1247 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1248 return false; 1249 1250 // FIXME: Since we can split immediate into soffset and immediate offset, 1251 // would it make sense to allow any immediate? 1252 1253 switch (AM.Scale) { 1254 case 0: // r + i or just i, depending on HasBaseReg. 1255 return true; 1256 case 1: 1257 return true; // We have r + r or r + i. 1258 case 2: 1259 if (AM.HasBaseReg) { 1260 // Reject 2 * r + r. 1261 return false; 1262 } 1263 1264 // Allow 2 * r as r + r 1265 // Or 2 * r + i is allowed as r + r + i. 1266 return true; 1267 default: // Don't allow n * r 1268 return false; 1269 } 1270 } 1271 1272 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1273 const AddrMode &AM, Type *Ty, 1274 unsigned AS, Instruction *I) const { 1275 // No global is ever allowed as a base. 1276 if (AM.BaseGV) 1277 return false; 1278 1279 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1280 return isLegalGlobalAddressingMode(AM); 1281 1282 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1283 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1284 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1285 // If the offset isn't a multiple of 4, it probably isn't going to be 1286 // correctly aligned. 1287 // FIXME: Can we get the real alignment here? 1288 if (AM.BaseOffs % 4 != 0) 1289 return isLegalMUBUFAddressingMode(AM); 1290 1291 // There are no SMRD extloads, so if we have to do a small type access we 1292 // will use a MUBUF load. 1293 // FIXME?: We also need to do this if unaligned, but we don't know the 1294 // alignment here. 1295 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1296 return isLegalGlobalAddressingMode(AM); 1297 1298 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1299 // SMRD instructions have an 8-bit, dword offset on SI. 1300 if (!isUInt<8>(AM.BaseOffs / 4)) 1301 return false; 1302 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1303 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1304 // in 8-bits, it can use a smaller encoding. 1305 if (!isUInt<32>(AM.BaseOffs / 4)) 1306 return false; 1307 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1308 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1309 if (!isUInt<20>(AM.BaseOffs)) 1310 return false; 1311 } else 1312 llvm_unreachable("unhandled generation"); 1313 1314 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1315 return true; 1316 1317 if (AM.Scale == 1 && AM.HasBaseReg) 1318 return true; 1319 1320 return false; 1321 1322 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1323 return isLegalMUBUFAddressingMode(AM); 1324 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1325 AS == AMDGPUAS::REGION_ADDRESS) { 1326 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1327 // field. 1328 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1329 // an 8-bit dword offset but we don't know the alignment here. 1330 if (!isUInt<16>(AM.BaseOffs)) 1331 return false; 1332 1333 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1334 return true; 1335 1336 if (AM.Scale == 1 && AM.HasBaseReg) 1337 return true; 1338 1339 return false; 1340 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1341 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1342 // For an unknown address space, this usually means that this is for some 1343 // reason being used for pure arithmetic, and not based on some addressing 1344 // computation. We don't have instructions that compute pointers with any 1345 // addressing modes, so treat them as having no offset like flat 1346 // instructions. 1347 return isLegalFlatAddressingMode(AM); 1348 } 1349 1350 // Assume a user alias of global for unknown address spaces. 1351 return isLegalGlobalAddressingMode(AM); 1352 } 1353 1354 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1355 const MachineFunction &MF) const { 1356 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1357 return (MemVT.getSizeInBits() <= 4 * 32); 1358 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1359 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1360 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1361 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1362 return (MemVT.getSizeInBits() <= 2 * 32); 1363 } 1364 return true; 1365 } 1366 1367 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1368 unsigned Size, unsigned AddrSpace, Align Alignment, 1369 MachineMemOperand::Flags Flags, bool *IsFast) const { 1370 if (IsFast) 1371 *IsFast = false; 1372 1373 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1374 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1375 // Check if alignment requirements for ds_read/write instructions are 1376 // disabled. 1377 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) 1378 return false; 1379 1380 Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. 1381 if (Subtarget->hasLDSMisalignedBug() && Size > 32 && 1382 Alignment < RequiredAlignment) 1383 return false; 1384 1385 // Either, the alignment requirements are "enabled", or there is an 1386 // unaligned LDS access related hardware bug though alignment requirements 1387 // are "disabled". In either case, we need to check for proper alignment 1388 // requirements. 1389 // 1390 switch (Size) { 1391 case 64: 1392 // SI has a hardware bug in the LDS / GDS bounds checking: if the base 1393 // address is negative, then the instruction is incorrectly treated as 1394 // out-of-bounds even if base + offsets is in bounds. Split vectorized 1395 // loads here to avoid emitting ds_read2_b32. We may re-combine the 1396 // load later in the SILoadStoreOptimizer. 1397 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) 1398 return false; 1399 1400 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1401 // can do a 4 byte aligned, 8 byte access in a single operation using 1402 // ds_read2/write2_b32 with adjacent offsets. 1403 RequiredAlignment = Align(4); 1404 1405 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1406 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ 1407 // ds_write2_b32 depending on the alignment. In either case with either 1408 // alignment there is no faster way of doing this. 1409 if (IsFast) 1410 *IsFast = true; 1411 return true; 1412 } 1413 1414 break; 1415 case 96: 1416 if (!Subtarget->hasDS96AndDS128()) 1417 return false; 1418 1419 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1420 // gfx8 and older. 1421 1422 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1423 // Naturally aligned access is fastest. However, also report it is Fast 1424 // if memory is aligned less than DWORD. A narrow load or store will be 1425 // be equally slow as a single ds_read_b96/ds_write_b96, but there will 1426 // be more of them, so overall we will pay less penalty issuing a single 1427 // instruction. 1428 if (IsFast) 1429 *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4); 1430 return true; 1431 } 1432 1433 break; 1434 case 128: 1435 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) 1436 return false; 1437 1438 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1439 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1440 // single operation using ds_read2/write2_b64. 1441 RequiredAlignment = Align(8); 1442 1443 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1444 // Naturally aligned access is fastest. However, also report it is Fast 1445 // if memory is aligned less than DWORD. A narrow load or store will be 1446 // be equally slow as a single ds_read_b128/ds_write_b128, but there 1447 // will be more of them, so overall we will pay less penalty issuing a 1448 // single instruction. 1449 if (IsFast) 1450 *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4); 1451 return true; 1452 } 1453 1454 break; 1455 default: 1456 if (Size > 32) 1457 return false; 1458 1459 break; 1460 } 1461 1462 if (IsFast) 1463 *IsFast = Alignment >= RequiredAlignment; 1464 1465 return Alignment >= RequiredAlignment || 1466 Subtarget->hasUnalignedDSAccessEnabled(); 1467 } 1468 1469 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1470 bool AlignedBy4 = Alignment >= Align(4); 1471 if (IsFast) 1472 *IsFast = AlignedBy4; 1473 1474 return AlignedBy4 || 1475 Subtarget->enableFlatScratch() || 1476 Subtarget->hasUnalignedScratchAccess(); 1477 } 1478 1479 // FIXME: We have to be conservative here and assume that flat operations 1480 // will access scratch. If we had access to the IR function, then we 1481 // could determine if any private memory was used in the function. 1482 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1483 !Subtarget->hasUnalignedScratchAccess()) { 1484 bool AlignedBy4 = Alignment >= Align(4); 1485 if (IsFast) 1486 *IsFast = AlignedBy4; 1487 1488 return AlignedBy4; 1489 } 1490 1491 if (Subtarget->hasUnalignedBufferAccessEnabled()) { 1492 // If we have a uniform constant load, it still requires using a slow 1493 // buffer instruction if unaligned. 1494 if (IsFast) { 1495 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1496 // 2-byte alignment is worse than 1 unless doing a 2-byte access. 1497 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1498 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1499 Alignment >= Align(4) : Alignment != Align(2); 1500 } 1501 1502 return true; 1503 } 1504 1505 // Smaller than dword value must be aligned. 1506 if (Size < 32) 1507 return false; 1508 1509 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1510 // byte-address are ignored, thus forcing Dword alignment. 1511 // This applies to private, global, and constant memory. 1512 if (IsFast) 1513 *IsFast = true; 1514 1515 return Size >= 32 && Alignment >= Align(4); 1516 } 1517 1518 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1519 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1520 bool *IsFast) const { 1521 bool Allow = allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1522 Alignment, Flags, IsFast); 1523 1524 if (Allow && IsFast && Subtarget->hasUnalignedDSAccessEnabled() && 1525 (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1526 AddrSpace == AMDGPUAS::REGION_ADDRESS)) { 1527 // Lie it is fast if +unaligned-access-mode is passed so that DS accesses 1528 // get vectorized. We could use ds_read2_b*/ds_write2_b* instructions on a 1529 // misaligned data which is faster than a pair of ds_read_b*/ds_write_b* 1530 // which would be equally misaligned. 1531 // This is only used by the common passes, selection always calls the 1532 // allowsMisalignedMemoryAccessesImpl version. 1533 *IsFast = true; 1534 } 1535 1536 return Allow; 1537 } 1538 1539 EVT SITargetLowering::getOptimalMemOpType( 1540 const MemOp &Op, const AttributeList &FuncAttributes) const { 1541 // FIXME: Should account for address space here. 1542 1543 // The default fallback uses the private pointer size as a guess for a type to 1544 // use. Make sure we switch these to 64-bit accesses. 1545 1546 if (Op.size() >= 16 && 1547 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1548 return MVT::v4i32; 1549 1550 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1551 return MVT::v2i32; 1552 1553 // Use the default. 1554 return MVT::Other; 1555 } 1556 1557 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1558 const MemSDNode *MemNode = cast<MemSDNode>(N); 1559 return MemNode->getMemOperand()->getFlags() & MONoClobber; 1560 } 1561 1562 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1563 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1564 AS == AMDGPUAS::PRIVATE_ADDRESS; 1565 } 1566 1567 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1568 unsigned DestAS) const { 1569 // Flat -> private/local is a simple truncate. 1570 // Flat -> global is no-op 1571 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1572 return true; 1573 1574 const GCNTargetMachine &TM = 1575 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1576 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1577 } 1578 1579 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1580 const MemSDNode *MemNode = cast<MemSDNode>(N); 1581 1582 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1583 } 1584 1585 TargetLoweringBase::LegalizeTypeAction 1586 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1587 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1588 VT.getScalarType().bitsLE(MVT::i16)) 1589 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1590 return TargetLoweringBase::getPreferredVectorAction(VT); 1591 } 1592 1593 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1594 Type *Ty) const { 1595 // FIXME: Could be smarter if called for vector constants. 1596 return true; 1597 } 1598 1599 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 1600 unsigned Index) const { 1601 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 1602 return false; 1603 1604 // TODO: Add more cases that are cheap. 1605 return Index == 0; 1606 } 1607 1608 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1609 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1610 switch (Op) { 1611 case ISD::LOAD: 1612 case ISD::STORE: 1613 1614 // These operations are done with 32-bit instructions anyway. 1615 case ISD::AND: 1616 case ISD::OR: 1617 case ISD::XOR: 1618 case ISD::SELECT: 1619 // TODO: Extensions? 1620 return true; 1621 default: 1622 return false; 1623 } 1624 } 1625 1626 // SimplifySetCC uses this function to determine whether or not it should 1627 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1628 if (VT == MVT::i1 && Op == ISD::SETCC) 1629 return false; 1630 1631 return TargetLowering::isTypeDesirableForOp(Op, VT); 1632 } 1633 1634 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1635 const SDLoc &SL, 1636 SDValue Chain, 1637 uint64_t Offset) const { 1638 const DataLayout &DL = DAG.getDataLayout(); 1639 MachineFunction &MF = DAG.getMachineFunction(); 1640 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1641 1642 const ArgDescriptor *InputPtrReg; 1643 const TargetRegisterClass *RC; 1644 LLT ArgTy; 1645 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1646 1647 std::tie(InputPtrReg, RC, ArgTy) = 1648 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1649 1650 // We may not have the kernarg segment argument if we have no kernel 1651 // arguments. 1652 if (!InputPtrReg) 1653 return DAG.getConstant(0, SL, PtrVT); 1654 1655 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1656 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1657 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1658 1659 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1660 } 1661 1662 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1663 const SDLoc &SL) const { 1664 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1665 FIRST_IMPLICIT); 1666 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1667 } 1668 1669 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, 1670 const SDLoc &SL) const { 1671 1672 Function &F = DAG.getMachineFunction().getFunction(); 1673 Optional<uint32_t> KnownSize = 1674 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 1675 if (KnownSize.has_value()) 1676 return DAG.getConstant(KnownSize.value(), SL, MVT::i32); 1677 return SDValue(); 1678 } 1679 1680 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1681 const SDLoc &SL, SDValue Val, 1682 bool Signed, 1683 const ISD::InputArg *Arg) const { 1684 // First, if it is a widened vector, narrow it. 1685 if (VT.isVector() && 1686 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1687 EVT NarrowedVT = 1688 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1689 VT.getVectorNumElements()); 1690 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1691 DAG.getConstant(0, SL, MVT::i32)); 1692 } 1693 1694 // Then convert the vector elements or scalar value. 1695 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1696 VT.bitsLT(MemVT)) { 1697 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1698 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1699 } 1700 1701 if (MemVT.isFloatingPoint()) 1702 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1703 else if (Signed) 1704 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1705 else 1706 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1707 1708 return Val; 1709 } 1710 1711 SDValue SITargetLowering::lowerKernargMemParameter( 1712 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1713 uint64_t Offset, Align Alignment, bool Signed, 1714 const ISD::InputArg *Arg) const { 1715 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1716 1717 // Try to avoid using an extload by loading earlier than the argument address, 1718 // and extracting the relevant bits. The load should hopefully be merged with 1719 // the previous argument. 1720 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1721 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1722 int64_t AlignDownOffset = alignDown(Offset, 4); 1723 int64_t OffsetDiff = Offset - AlignDownOffset; 1724 1725 EVT IntVT = MemVT.changeTypeToInteger(); 1726 1727 // TODO: If we passed in the base kernel offset we could have a better 1728 // alignment than 4, but we don't really need it. 1729 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1730 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1731 MachineMemOperand::MODereferenceable | 1732 MachineMemOperand::MOInvariant); 1733 1734 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1735 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1736 1737 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1738 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1739 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1740 1741 1742 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1743 } 1744 1745 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1746 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1747 MachineMemOperand::MODereferenceable | 1748 MachineMemOperand::MOInvariant); 1749 1750 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1751 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1752 } 1753 1754 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1755 const SDLoc &SL, SDValue Chain, 1756 const ISD::InputArg &Arg) const { 1757 MachineFunction &MF = DAG.getMachineFunction(); 1758 MachineFrameInfo &MFI = MF.getFrameInfo(); 1759 1760 if (Arg.Flags.isByVal()) { 1761 unsigned Size = Arg.Flags.getByValSize(); 1762 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1763 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1764 } 1765 1766 unsigned ArgOffset = VA.getLocMemOffset(); 1767 unsigned ArgSize = VA.getValVT().getStoreSize(); 1768 1769 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1770 1771 // Create load nodes to retrieve arguments from the stack. 1772 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1773 SDValue ArgValue; 1774 1775 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1776 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1777 MVT MemVT = VA.getValVT(); 1778 1779 switch (VA.getLocInfo()) { 1780 default: 1781 break; 1782 case CCValAssign::BCvt: 1783 MemVT = VA.getLocVT(); 1784 break; 1785 case CCValAssign::SExt: 1786 ExtType = ISD::SEXTLOAD; 1787 break; 1788 case CCValAssign::ZExt: 1789 ExtType = ISD::ZEXTLOAD; 1790 break; 1791 case CCValAssign::AExt: 1792 ExtType = ISD::EXTLOAD; 1793 break; 1794 } 1795 1796 ArgValue = DAG.getExtLoad( 1797 ExtType, SL, VA.getLocVT(), Chain, FIN, 1798 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1799 MemVT); 1800 return ArgValue; 1801 } 1802 1803 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1804 const SIMachineFunctionInfo &MFI, 1805 EVT VT, 1806 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1807 const ArgDescriptor *Reg; 1808 const TargetRegisterClass *RC; 1809 LLT Ty; 1810 1811 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1812 if (!Reg) { 1813 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 1814 // It's possible for a kernarg intrinsic call to appear in a kernel with 1815 // no allocated segment, in which case we do not add the user sgpr 1816 // argument, so just return null. 1817 return DAG.getConstant(0, SDLoc(), VT); 1818 } 1819 1820 // It's undefined behavior if a function marked with the amdgpu-no-* 1821 // attributes uses the corresponding intrinsic. 1822 return DAG.getUNDEF(VT); 1823 } 1824 1825 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1826 } 1827 1828 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1829 CallingConv::ID CallConv, 1830 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1831 FunctionType *FType, 1832 SIMachineFunctionInfo *Info) { 1833 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1834 const ISD::InputArg *Arg = &Ins[I]; 1835 1836 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1837 "vector type argument should have been split"); 1838 1839 // First check if it's a PS input addr. 1840 if (CallConv == CallingConv::AMDGPU_PS && 1841 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1842 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1843 1844 // Inconveniently only the first part of the split is marked as isSplit, 1845 // so skip to the end. We only want to increment PSInputNum once for the 1846 // entire split argument. 1847 if (Arg->Flags.isSplit()) { 1848 while (!Arg->Flags.isSplitEnd()) { 1849 assert((!Arg->VT.isVector() || 1850 Arg->VT.getScalarSizeInBits() == 16) && 1851 "unexpected vector split in ps argument type"); 1852 if (!SkipArg) 1853 Splits.push_back(*Arg); 1854 Arg = &Ins[++I]; 1855 } 1856 } 1857 1858 if (SkipArg) { 1859 // We can safely skip PS inputs. 1860 Skipped.set(Arg->getOrigArgIndex()); 1861 ++PSInputNum; 1862 continue; 1863 } 1864 1865 Info->markPSInputAllocated(PSInputNum); 1866 if (Arg->Used) 1867 Info->markPSInputEnabled(PSInputNum); 1868 1869 ++PSInputNum; 1870 } 1871 1872 Splits.push_back(*Arg); 1873 } 1874 } 1875 1876 // Allocate special inputs passed in VGPRs. 1877 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1878 MachineFunction &MF, 1879 const SIRegisterInfo &TRI, 1880 SIMachineFunctionInfo &Info) const { 1881 const LLT S32 = LLT::scalar(32); 1882 MachineRegisterInfo &MRI = MF.getRegInfo(); 1883 1884 if (Info.hasWorkItemIDX()) { 1885 Register Reg = AMDGPU::VGPR0; 1886 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1887 1888 CCInfo.AllocateReg(Reg); 1889 unsigned Mask = (Subtarget->hasPackedTID() && 1890 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 1891 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1892 } 1893 1894 if (Info.hasWorkItemIDY()) { 1895 assert(Info.hasWorkItemIDX()); 1896 if (Subtarget->hasPackedTID()) { 1897 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1898 0x3ff << 10)); 1899 } else { 1900 unsigned Reg = AMDGPU::VGPR1; 1901 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1902 1903 CCInfo.AllocateReg(Reg); 1904 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1905 } 1906 } 1907 1908 if (Info.hasWorkItemIDZ()) { 1909 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 1910 if (Subtarget->hasPackedTID()) { 1911 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1912 0x3ff << 20)); 1913 } else { 1914 unsigned Reg = AMDGPU::VGPR2; 1915 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1916 1917 CCInfo.AllocateReg(Reg); 1918 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1919 } 1920 } 1921 } 1922 1923 // Try to allocate a VGPR at the end of the argument list, or if no argument 1924 // VGPRs are left allocating a stack slot. 1925 // If \p Mask is is given it indicates bitfield position in the register. 1926 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1927 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1928 ArgDescriptor Arg = ArgDescriptor()) { 1929 if (Arg.isSet()) 1930 return ArgDescriptor::createArg(Arg, Mask); 1931 1932 ArrayRef<MCPhysReg> ArgVGPRs 1933 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1934 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1935 if (RegIdx == ArgVGPRs.size()) { 1936 // Spill to stack required. 1937 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 1938 1939 return ArgDescriptor::createStack(Offset, Mask); 1940 } 1941 1942 unsigned Reg = ArgVGPRs[RegIdx]; 1943 Reg = CCInfo.AllocateReg(Reg); 1944 assert(Reg != AMDGPU::NoRegister); 1945 1946 MachineFunction &MF = CCInfo.getMachineFunction(); 1947 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1948 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1949 return ArgDescriptor::createRegister(Reg, Mask); 1950 } 1951 1952 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1953 const TargetRegisterClass *RC, 1954 unsigned NumArgRegs) { 1955 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1956 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1957 if (RegIdx == ArgSGPRs.size()) 1958 report_fatal_error("ran out of SGPRs for arguments"); 1959 1960 unsigned Reg = ArgSGPRs[RegIdx]; 1961 Reg = CCInfo.AllocateReg(Reg); 1962 assert(Reg != AMDGPU::NoRegister); 1963 1964 MachineFunction &MF = CCInfo.getMachineFunction(); 1965 MF.addLiveIn(Reg, RC); 1966 return ArgDescriptor::createRegister(Reg); 1967 } 1968 1969 // If this has a fixed position, we still should allocate the register in the 1970 // CCInfo state. Technically we could get away with this for values passed 1971 // outside of the normal argument range. 1972 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 1973 const TargetRegisterClass *RC, 1974 MCRegister Reg) { 1975 Reg = CCInfo.AllocateReg(Reg); 1976 assert(Reg != AMDGPU::NoRegister); 1977 MachineFunction &MF = CCInfo.getMachineFunction(); 1978 MF.addLiveIn(Reg, RC); 1979 } 1980 1981 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 1982 if (Arg) { 1983 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 1984 Arg.getRegister()); 1985 } else 1986 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1987 } 1988 1989 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 1990 if (Arg) { 1991 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 1992 Arg.getRegister()); 1993 } else 1994 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1995 } 1996 1997 /// Allocate implicit function VGPR arguments at the end of allocated user 1998 /// arguments. 1999 void SITargetLowering::allocateSpecialInputVGPRs( 2000 CCState &CCInfo, MachineFunction &MF, 2001 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2002 const unsigned Mask = 0x3ff; 2003 ArgDescriptor Arg; 2004 2005 if (Info.hasWorkItemIDX()) { 2006 Arg = allocateVGPR32Input(CCInfo, Mask); 2007 Info.setWorkItemIDX(Arg); 2008 } 2009 2010 if (Info.hasWorkItemIDY()) { 2011 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2012 Info.setWorkItemIDY(Arg); 2013 } 2014 2015 if (Info.hasWorkItemIDZ()) 2016 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2017 } 2018 2019 /// Allocate implicit function VGPR arguments in fixed registers. 2020 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2021 CCState &CCInfo, MachineFunction &MF, 2022 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2023 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2024 if (!Reg) 2025 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2026 2027 const unsigned Mask = 0x3ff; 2028 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2029 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2030 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2031 } 2032 2033 void SITargetLowering::allocateSpecialInputSGPRs( 2034 CCState &CCInfo, 2035 MachineFunction &MF, 2036 const SIRegisterInfo &TRI, 2037 SIMachineFunctionInfo &Info) const { 2038 auto &ArgInfo = Info.getArgInfo(); 2039 2040 // TODO: Unify handling with private memory pointers. 2041 if (Info.hasDispatchPtr()) 2042 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2043 2044 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) 2045 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2046 2047 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2048 // constant offset from the kernarg segment. 2049 if (Info.hasImplicitArgPtr()) 2050 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2051 2052 if (Info.hasDispatchID()) 2053 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2054 2055 // flat_scratch_init is not applicable for non-kernel functions. 2056 2057 if (Info.hasWorkGroupIDX()) 2058 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2059 2060 if (Info.hasWorkGroupIDY()) 2061 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2062 2063 if (Info.hasWorkGroupIDZ()) 2064 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2065 2066 if (Info.hasLDSKernelId()) 2067 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); 2068 } 2069 2070 // Allocate special inputs passed in user SGPRs. 2071 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2072 MachineFunction &MF, 2073 const SIRegisterInfo &TRI, 2074 SIMachineFunctionInfo &Info) const { 2075 if (Info.hasImplicitBufferPtr()) { 2076 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2077 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2078 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2079 } 2080 2081 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2082 if (Info.hasPrivateSegmentBuffer()) { 2083 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2084 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2085 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2086 } 2087 2088 if (Info.hasDispatchPtr()) { 2089 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2090 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2091 CCInfo.AllocateReg(DispatchPtrReg); 2092 } 2093 2094 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) { 2095 Register QueuePtrReg = Info.addQueuePtr(TRI); 2096 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2097 CCInfo.AllocateReg(QueuePtrReg); 2098 } 2099 2100 if (Info.hasKernargSegmentPtr()) { 2101 MachineRegisterInfo &MRI = MF.getRegInfo(); 2102 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2103 CCInfo.AllocateReg(InputPtrReg); 2104 2105 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2106 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2107 } 2108 2109 if (Info.hasDispatchID()) { 2110 Register DispatchIDReg = Info.addDispatchID(TRI); 2111 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2112 CCInfo.AllocateReg(DispatchIDReg); 2113 } 2114 2115 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2116 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2117 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2118 CCInfo.AllocateReg(FlatScratchInitReg); 2119 } 2120 2121 if (Info.hasLDSKernelId()) { 2122 Register Reg = Info.addLDSKernelId(); 2123 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2124 CCInfo.AllocateReg(Reg); 2125 } 2126 2127 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2128 // these from the dispatch pointer. 2129 } 2130 2131 // Allocate special input registers that are initialized per-wave. 2132 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2133 MachineFunction &MF, 2134 SIMachineFunctionInfo &Info, 2135 CallingConv::ID CallConv, 2136 bool IsShader) const { 2137 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { 2138 // Note: user SGPRs are handled by the front-end for graphics shaders 2139 // Pad up the used user SGPRs with dead inputs. 2140 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); 2141 2142 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to 2143 // rely on it to reach 16 since if we end up having no stack usage, it will 2144 // not really be added. 2145 unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + 2146 Info.hasWorkGroupIDY() + 2147 Info.hasWorkGroupIDZ() + 2148 Info.hasWorkGroupInfo(); 2149 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { 2150 Register Reg = Info.addReservedUserSGPR(); 2151 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2152 CCInfo.AllocateReg(Reg); 2153 } 2154 } 2155 2156 if (Info.hasWorkGroupIDX()) { 2157 Register Reg = Info.addWorkGroupIDX(); 2158 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2159 CCInfo.AllocateReg(Reg); 2160 } 2161 2162 if (Info.hasWorkGroupIDY()) { 2163 Register Reg = Info.addWorkGroupIDY(); 2164 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2165 CCInfo.AllocateReg(Reg); 2166 } 2167 2168 if (Info.hasWorkGroupIDZ()) { 2169 Register Reg = Info.addWorkGroupIDZ(); 2170 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2171 CCInfo.AllocateReg(Reg); 2172 } 2173 2174 if (Info.hasWorkGroupInfo()) { 2175 Register Reg = Info.addWorkGroupInfo(); 2176 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2177 CCInfo.AllocateReg(Reg); 2178 } 2179 2180 if (Info.hasPrivateSegmentWaveByteOffset()) { 2181 // Scratch wave offset passed in system SGPR. 2182 unsigned PrivateSegmentWaveByteOffsetReg; 2183 2184 if (IsShader) { 2185 PrivateSegmentWaveByteOffsetReg = 2186 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2187 2188 // This is true if the scratch wave byte offset doesn't have a fixed 2189 // location. 2190 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2191 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2192 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2193 } 2194 } else 2195 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2196 2197 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2198 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2199 } 2200 2201 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || 2202 Info.getNumPreloadedSGPRs() >= 16); 2203 } 2204 2205 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2206 MachineFunction &MF, 2207 const SIRegisterInfo &TRI, 2208 SIMachineFunctionInfo &Info) { 2209 // Now that we've figured out where the scratch register inputs are, see if 2210 // should reserve the arguments and use them directly. 2211 MachineFrameInfo &MFI = MF.getFrameInfo(); 2212 bool HasStackObjects = MFI.hasStackObjects(); 2213 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2214 2215 // Record that we know we have non-spill stack objects so we don't need to 2216 // check all stack objects later. 2217 if (HasStackObjects) 2218 Info.setHasNonSpillStackObjects(true); 2219 2220 // Everything live out of a block is spilled with fast regalloc, so it's 2221 // almost certain that spilling will be required. 2222 if (TM.getOptLevel() == CodeGenOpt::None) 2223 HasStackObjects = true; 2224 2225 // For now assume stack access is needed in any callee functions, so we need 2226 // the scratch registers to pass in. 2227 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2228 2229 if (!ST.enableFlatScratch()) { 2230 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2231 // If we have stack objects, we unquestionably need the private buffer 2232 // resource. For the Code Object V2 ABI, this will be the first 4 user 2233 // SGPR inputs. We can reserve those and use them directly. 2234 2235 Register PrivateSegmentBufferReg = 2236 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2237 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2238 } else { 2239 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2240 // We tentatively reserve the last registers (skipping the last registers 2241 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2242 // we'll replace these with the ones immediately after those which were 2243 // really allocated. In the prologue copies will be inserted from the 2244 // argument to these reserved registers. 2245 2246 // Without HSA, relocations are used for the scratch pointer and the 2247 // buffer resource setup is always inserted in the prologue. Scratch wave 2248 // offset is still in an input SGPR. 2249 Info.setScratchRSrcReg(ReservedBufferReg); 2250 } 2251 } 2252 2253 MachineRegisterInfo &MRI = MF.getRegInfo(); 2254 2255 // For entry functions we have to set up the stack pointer if we use it, 2256 // whereas non-entry functions get this "for free". This means there is no 2257 // intrinsic advantage to using S32 over S34 in cases where we do not have 2258 // calls but do need a frame pointer (i.e. if we are requested to have one 2259 // because frame pointer elimination is disabled). To keep things simple we 2260 // only ever use S32 as the call ABI stack pointer, and so using it does not 2261 // imply we need a separate frame pointer. 2262 // 2263 // Try to use s32 as the SP, but move it if it would interfere with input 2264 // arguments. This won't work with calls though. 2265 // 2266 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2267 // registers. 2268 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2269 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2270 } else { 2271 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2272 2273 if (MFI.hasCalls()) 2274 report_fatal_error("call in graphics shader with too many input SGPRs"); 2275 2276 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2277 if (!MRI.isLiveIn(Reg)) { 2278 Info.setStackPtrOffsetReg(Reg); 2279 break; 2280 } 2281 } 2282 2283 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2284 report_fatal_error("failed to find register for SP"); 2285 } 2286 2287 // hasFP should be accurate for entry functions even before the frame is 2288 // finalized, because it does not rely on the known stack size, only 2289 // properties like whether variable sized objects are present. 2290 if (ST.getFrameLowering()->hasFP(MF)) { 2291 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2292 } 2293 } 2294 2295 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2296 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2297 return !Info->isEntryFunction(); 2298 } 2299 2300 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2301 2302 } 2303 2304 void SITargetLowering::insertCopiesSplitCSR( 2305 MachineBasicBlock *Entry, 2306 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2307 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2308 2309 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2310 if (!IStart) 2311 return; 2312 2313 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2314 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2315 MachineBasicBlock::iterator MBBI = Entry->begin(); 2316 for (const MCPhysReg *I = IStart; *I; ++I) { 2317 const TargetRegisterClass *RC = nullptr; 2318 if (AMDGPU::SReg_64RegClass.contains(*I)) 2319 RC = &AMDGPU::SGPR_64RegClass; 2320 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2321 RC = &AMDGPU::SGPR_32RegClass; 2322 else 2323 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2324 2325 Register NewVR = MRI->createVirtualRegister(RC); 2326 // Create copy from CSR to a virtual register. 2327 Entry->addLiveIn(*I); 2328 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2329 .addReg(*I); 2330 2331 // Insert the copy-back instructions right before the terminator. 2332 for (auto *Exit : Exits) 2333 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2334 TII->get(TargetOpcode::COPY), *I) 2335 .addReg(NewVR); 2336 } 2337 } 2338 2339 SDValue SITargetLowering::LowerFormalArguments( 2340 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2341 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2342 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2343 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2344 2345 MachineFunction &MF = DAG.getMachineFunction(); 2346 const Function &Fn = MF.getFunction(); 2347 FunctionType *FType = MF.getFunction().getFunctionType(); 2348 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2349 2350 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2351 DiagnosticInfoUnsupported NoGraphicsHSA( 2352 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2353 DAG.getContext()->diagnose(NoGraphicsHSA); 2354 return DAG.getEntryNode(); 2355 } 2356 2357 Info->allocateModuleLDSGlobal(Fn); 2358 2359 SmallVector<ISD::InputArg, 16> Splits; 2360 SmallVector<CCValAssign, 16> ArgLocs; 2361 BitVector Skipped(Ins.size()); 2362 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2363 *DAG.getContext()); 2364 2365 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2366 bool IsKernel = AMDGPU::isKernel(CallConv); 2367 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2368 2369 if (IsGraphics) { 2370 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2371 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && 2372 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2373 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2374 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && 2375 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); 2376 } 2377 2378 if (CallConv == CallingConv::AMDGPU_PS) { 2379 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2380 2381 // At least one interpolation mode must be enabled or else the GPU will 2382 // hang. 2383 // 2384 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2385 // set PSInputAddr, the user wants to enable some bits after the compilation 2386 // based on run-time states. Since we can't know what the final PSInputEna 2387 // will look like, so we shouldn't do anything here and the user should take 2388 // responsibility for the correct programming. 2389 // 2390 // Otherwise, the following restrictions apply: 2391 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2392 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2393 // enabled too. 2394 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2395 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2396 CCInfo.AllocateReg(AMDGPU::VGPR0); 2397 CCInfo.AllocateReg(AMDGPU::VGPR1); 2398 Info->markPSInputAllocated(0); 2399 Info->markPSInputEnabled(0); 2400 } 2401 if (Subtarget->isAmdPalOS()) { 2402 // For isAmdPalOS, the user does not enable some bits after compilation 2403 // based on run-time states; the register values being generated here are 2404 // the final ones set in hardware. Therefore we need to apply the 2405 // workaround to PSInputAddr and PSInputEnable together. (The case where 2406 // a bit is set in PSInputAddr but not PSInputEnable is where the 2407 // frontend set up an input arg for a particular interpolation mode, but 2408 // nothing uses that input arg. Really we should have an earlier pass 2409 // that removes such an arg.) 2410 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2411 if ((PsInputBits & 0x7F) == 0 || 2412 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2413 Info->markPSInputEnabled( 2414 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2415 } 2416 } else if (IsKernel) { 2417 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2418 } else { 2419 Splits.append(Ins.begin(), Ins.end()); 2420 } 2421 2422 if (IsEntryFunc) { 2423 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2424 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2425 } else if (!IsGraphics) { 2426 // For the fixed ABI, pass workitem IDs in the last argument register. 2427 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2428 } 2429 2430 if (IsKernel) { 2431 analyzeFormalArgumentsCompute(CCInfo, Ins); 2432 } else { 2433 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2434 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2435 } 2436 2437 SmallVector<SDValue, 16> Chains; 2438 2439 // FIXME: This is the minimum kernel argument alignment. We should improve 2440 // this to the maximum alignment of the arguments. 2441 // 2442 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2443 // kern arg offset. 2444 const Align KernelArgBaseAlign = Align(16); 2445 2446 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2447 const ISD::InputArg &Arg = Ins[i]; 2448 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2449 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2450 continue; 2451 } 2452 2453 CCValAssign &VA = ArgLocs[ArgIdx++]; 2454 MVT VT = VA.getLocVT(); 2455 2456 if (IsEntryFunc && VA.isMemLoc()) { 2457 VT = Ins[i].VT; 2458 EVT MemVT = VA.getLocVT(); 2459 2460 const uint64_t Offset = VA.getLocMemOffset(); 2461 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2462 2463 if (Arg.Flags.isByRef()) { 2464 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2465 2466 const GCNTargetMachine &TM = 2467 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2468 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2469 Arg.Flags.getPointerAddrSpace())) { 2470 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2471 Arg.Flags.getPointerAddrSpace()); 2472 } 2473 2474 InVals.push_back(Ptr); 2475 continue; 2476 } 2477 2478 SDValue Arg = lowerKernargMemParameter( 2479 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2480 Chains.push_back(Arg.getValue(1)); 2481 2482 auto *ParamTy = 2483 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2484 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2485 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2486 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2487 // On SI local pointers are just offsets into LDS, so they are always 2488 // less than 16-bits. On CI and newer they could potentially be 2489 // real pointers, so we can't guarantee their size. 2490 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2491 DAG.getValueType(MVT::i16)); 2492 } 2493 2494 InVals.push_back(Arg); 2495 continue; 2496 } else if (!IsEntryFunc && VA.isMemLoc()) { 2497 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2498 InVals.push_back(Val); 2499 if (!Arg.Flags.isByVal()) 2500 Chains.push_back(Val.getValue(1)); 2501 continue; 2502 } 2503 2504 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2505 2506 Register Reg = VA.getLocReg(); 2507 const TargetRegisterClass *RC = nullptr; 2508 if (AMDGPU::VGPR_32RegClass.contains(Reg)) 2509 RC = &AMDGPU::VGPR_32RegClass; 2510 else if (AMDGPU::SGPR_32RegClass.contains(Reg)) 2511 RC = &AMDGPU::SGPR_32RegClass; 2512 else 2513 llvm_unreachable("Unexpected register class in LowerFormalArguments!"); 2514 EVT ValVT = VA.getValVT(); 2515 2516 Reg = MF.addLiveIn(Reg, RC); 2517 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2518 2519 if (Arg.Flags.isSRet()) { 2520 // The return object should be reasonably addressable. 2521 2522 // FIXME: This helps when the return is a real sret. If it is a 2523 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2524 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2525 unsigned NumBits 2526 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2527 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2528 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2529 } 2530 2531 // If this is an 8 or 16-bit value, it is really passed promoted 2532 // to 32 bits. Insert an assert[sz]ext to capture this, then 2533 // truncate to the right size. 2534 switch (VA.getLocInfo()) { 2535 case CCValAssign::Full: 2536 break; 2537 case CCValAssign::BCvt: 2538 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2539 break; 2540 case CCValAssign::SExt: 2541 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2542 DAG.getValueType(ValVT)); 2543 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2544 break; 2545 case CCValAssign::ZExt: 2546 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2547 DAG.getValueType(ValVT)); 2548 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2549 break; 2550 case CCValAssign::AExt: 2551 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2552 break; 2553 default: 2554 llvm_unreachable("Unknown loc info!"); 2555 } 2556 2557 InVals.push_back(Val); 2558 } 2559 2560 // Start adding system SGPRs. 2561 if (IsEntryFunc) { 2562 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2563 } else { 2564 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2565 if (!IsGraphics) 2566 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2567 } 2568 2569 auto &ArgUsageInfo = 2570 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2571 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2572 2573 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2574 Info->setBytesInStackArgArea(StackArgSize); 2575 2576 return Chains.empty() ? Chain : 2577 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2578 } 2579 2580 // TODO: If return values can't fit in registers, we should return as many as 2581 // possible in registers before passing on stack. 2582 bool SITargetLowering::CanLowerReturn( 2583 CallingConv::ID CallConv, 2584 MachineFunction &MF, bool IsVarArg, 2585 const SmallVectorImpl<ISD::OutputArg> &Outs, 2586 LLVMContext &Context) const { 2587 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2588 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2589 // for shaders. Vector types should be explicitly handled by CC. 2590 if (AMDGPU::isEntryFunctionCC(CallConv)) 2591 return true; 2592 2593 SmallVector<CCValAssign, 16> RVLocs; 2594 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2595 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2596 } 2597 2598 SDValue 2599 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2600 bool isVarArg, 2601 const SmallVectorImpl<ISD::OutputArg> &Outs, 2602 const SmallVectorImpl<SDValue> &OutVals, 2603 const SDLoc &DL, SelectionDAG &DAG) const { 2604 MachineFunction &MF = DAG.getMachineFunction(); 2605 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2606 2607 if (AMDGPU::isKernel(CallConv)) { 2608 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2609 OutVals, DL, DAG); 2610 } 2611 2612 bool IsShader = AMDGPU::isShader(CallConv); 2613 2614 Info->setIfReturnsVoid(Outs.empty()); 2615 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2616 2617 // CCValAssign - represent the assignment of the return value to a location. 2618 SmallVector<CCValAssign, 48> RVLocs; 2619 SmallVector<ISD::OutputArg, 48> Splits; 2620 2621 // CCState - Info about the registers and stack slots. 2622 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2623 *DAG.getContext()); 2624 2625 // Analyze outgoing return values. 2626 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2627 2628 SDValue Flag; 2629 SmallVector<SDValue, 48> RetOps; 2630 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2631 2632 // Copy the result values into the output registers. 2633 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2634 ++I, ++RealRVLocIdx) { 2635 CCValAssign &VA = RVLocs[I]; 2636 assert(VA.isRegLoc() && "Can only return in registers!"); 2637 // TODO: Partially return in registers if return values don't fit. 2638 SDValue Arg = OutVals[RealRVLocIdx]; 2639 2640 // Copied from other backends. 2641 switch (VA.getLocInfo()) { 2642 case CCValAssign::Full: 2643 break; 2644 case CCValAssign::BCvt: 2645 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2646 break; 2647 case CCValAssign::SExt: 2648 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2649 break; 2650 case CCValAssign::ZExt: 2651 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2652 break; 2653 case CCValAssign::AExt: 2654 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2655 break; 2656 default: 2657 llvm_unreachable("Unknown loc info!"); 2658 } 2659 2660 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2661 Flag = Chain.getValue(1); 2662 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2663 } 2664 2665 // FIXME: Does sret work properly? 2666 if (!Info->isEntryFunction()) { 2667 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2668 const MCPhysReg *I = 2669 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2670 if (I) { 2671 for (; *I; ++I) { 2672 if (AMDGPU::SReg_64RegClass.contains(*I)) 2673 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2674 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2675 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2676 else 2677 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2678 } 2679 } 2680 } 2681 2682 // Update chain and glue. 2683 RetOps[0] = Chain; 2684 if (Flag.getNode()) 2685 RetOps.push_back(Flag); 2686 2687 unsigned Opc = AMDGPUISD::ENDPGM; 2688 if (!IsWaveEnd) 2689 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2690 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2691 } 2692 2693 SDValue SITargetLowering::LowerCallResult( 2694 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2695 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2696 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2697 SDValue ThisVal) const { 2698 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2699 2700 // Assign locations to each value returned by this call. 2701 SmallVector<CCValAssign, 16> RVLocs; 2702 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2703 *DAG.getContext()); 2704 CCInfo.AnalyzeCallResult(Ins, RetCC); 2705 2706 // Copy all of the result registers out of their specified physreg. 2707 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2708 CCValAssign VA = RVLocs[i]; 2709 SDValue Val; 2710 2711 if (VA.isRegLoc()) { 2712 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2713 Chain = Val.getValue(1); 2714 InFlag = Val.getValue(2); 2715 } else if (VA.isMemLoc()) { 2716 report_fatal_error("TODO: return values in memory"); 2717 } else 2718 llvm_unreachable("unknown argument location type"); 2719 2720 switch (VA.getLocInfo()) { 2721 case CCValAssign::Full: 2722 break; 2723 case CCValAssign::BCvt: 2724 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2725 break; 2726 case CCValAssign::ZExt: 2727 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2728 DAG.getValueType(VA.getValVT())); 2729 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2730 break; 2731 case CCValAssign::SExt: 2732 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2733 DAG.getValueType(VA.getValVT())); 2734 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2735 break; 2736 case CCValAssign::AExt: 2737 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2738 break; 2739 default: 2740 llvm_unreachable("Unknown loc info!"); 2741 } 2742 2743 InVals.push_back(Val); 2744 } 2745 2746 return Chain; 2747 } 2748 2749 // Add code to pass special inputs required depending on used features separate 2750 // from the explicit user arguments present in the IR. 2751 void SITargetLowering::passSpecialInputs( 2752 CallLoweringInfo &CLI, 2753 CCState &CCInfo, 2754 const SIMachineFunctionInfo &Info, 2755 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2756 SmallVectorImpl<SDValue> &MemOpChains, 2757 SDValue Chain) const { 2758 // If we don't have a call site, this was a call inserted by 2759 // legalization. These can never use special inputs. 2760 if (!CLI.CB) 2761 return; 2762 2763 SelectionDAG &DAG = CLI.DAG; 2764 const SDLoc &DL = CLI.DL; 2765 const Function &F = DAG.getMachineFunction().getFunction(); 2766 2767 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2768 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2769 2770 const AMDGPUFunctionArgInfo *CalleeArgInfo 2771 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2772 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2773 auto &ArgUsageInfo = 2774 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2775 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2776 } 2777 2778 // TODO: Unify with private memory register handling. This is complicated by 2779 // the fact that at least in kernels, the input argument is not necessarily 2780 // in the same location as the input. 2781 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 2782 StringLiteral> ImplicitAttrs[] = { 2783 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 2784 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 2785 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 2786 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 2787 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 2788 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 2789 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, 2790 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, 2791 }; 2792 2793 for (auto Attr : ImplicitAttrs) { 2794 const ArgDescriptor *OutgoingArg; 2795 const TargetRegisterClass *ArgRC; 2796 LLT ArgTy; 2797 2798 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 2799 2800 // If the callee does not use the attribute value, skip copying the value. 2801 if (CLI.CB->hasFnAttr(Attr.second)) 2802 continue; 2803 2804 std::tie(OutgoingArg, ArgRC, ArgTy) = 2805 CalleeArgInfo->getPreloadedValue(InputID); 2806 if (!OutgoingArg) 2807 continue; 2808 2809 const ArgDescriptor *IncomingArg; 2810 const TargetRegisterClass *IncomingArgRC; 2811 LLT Ty; 2812 std::tie(IncomingArg, IncomingArgRC, Ty) = 2813 CallerArgInfo.getPreloadedValue(InputID); 2814 assert(IncomingArgRC == ArgRC); 2815 2816 // All special arguments are ints for now. 2817 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2818 SDValue InputReg; 2819 2820 if (IncomingArg) { 2821 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2822 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 2823 // The implicit arg ptr is special because it doesn't have a corresponding 2824 // input for kernels, and is computed from the kernarg segment pointer. 2825 InputReg = getImplicitArgPtr(DAG, DL); 2826 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 2827 Optional<uint32_t> Id = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 2828 if (Id.has_value()) { 2829 InputReg = DAG.getConstant(Id.value(), DL, ArgVT); 2830 } else { 2831 InputReg = DAG.getUNDEF(ArgVT); 2832 } 2833 } else { 2834 // We may have proven the input wasn't needed, although the ABI is 2835 // requiring it. We just need to allocate the register appropriately. 2836 InputReg = DAG.getUNDEF(ArgVT); 2837 } 2838 2839 if (OutgoingArg->isRegister()) { 2840 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2841 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2842 report_fatal_error("failed to allocate implicit input argument"); 2843 } else { 2844 unsigned SpecialArgOffset = 2845 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2846 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2847 SpecialArgOffset); 2848 MemOpChains.push_back(ArgStore); 2849 } 2850 } 2851 2852 // Pack workitem IDs into a single register or pass it as is if already 2853 // packed. 2854 const ArgDescriptor *OutgoingArg; 2855 const TargetRegisterClass *ArgRC; 2856 LLT Ty; 2857 2858 std::tie(OutgoingArg, ArgRC, Ty) = 2859 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2860 if (!OutgoingArg) 2861 std::tie(OutgoingArg, ArgRC, Ty) = 2862 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2863 if (!OutgoingArg) 2864 std::tie(OutgoingArg, ArgRC, Ty) = 2865 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2866 if (!OutgoingArg) 2867 return; 2868 2869 const ArgDescriptor *IncomingArgX = std::get<0>( 2870 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2871 const ArgDescriptor *IncomingArgY = std::get<0>( 2872 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2873 const ArgDescriptor *IncomingArgZ = std::get<0>( 2874 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2875 2876 SDValue InputReg; 2877 SDLoc SL; 2878 2879 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 2880 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 2881 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 2882 2883 // If incoming ids are not packed we need to pack them. 2884 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 2885 NeedWorkItemIDX) { 2886 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 2887 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2888 } else { 2889 InputReg = DAG.getConstant(0, DL, MVT::i32); 2890 } 2891 } 2892 2893 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 2894 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 2895 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2896 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2897 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2898 InputReg = InputReg.getNode() ? 2899 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2900 } 2901 2902 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 2903 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 2904 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2905 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2906 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2907 InputReg = InputReg.getNode() ? 2908 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2909 } 2910 2911 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 2912 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 2913 // We're in a situation where the outgoing function requires the workitem 2914 // ID, but the calling function does not have it (e.g a graphics function 2915 // calling a C calling convention function). This is illegal, but we need 2916 // to produce something. 2917 InputReg = DAG.getUNDEF(MVT::i32); 2918 } else { 2919 // Workitem ids are already packed, any of present incoming arguments 2920 // will carry all required fields. 2921 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2922 IncomingArgX ? *IncomingArgX : 2923 IncomingArgY ? *IncomingArgY : 2924 *IncomingArgZ, ~0u); 2925 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2926 } 2927 } 2928 2929 if (OutgoingArg->isRegister()) { 2930 if (InputReg) 2931 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2932 2933 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2934 } else { 2935 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2936 if (InputReg) { 2937 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2938 SpecialArgOffset); 2939 MemOpChains.push_back(ArgStore); 2940 } 2941 } 2942 } 2943 2944 static bool canGuaranteeTCO(CallingConv::ID CC) { 2945 return CC == CallingConv::Fast; 2946 } 2947 2948 /// Return true if we might ever do TCO for calls with this calling convention. 2949 static bool mayTailCallThisCC(CallingConv::ID CC) { 2950 switch (CC) { 2951 case CallingConv::C: 2952 case CallingConv::AMDGPU_Gfx: 2953 return true; 2954 default: 2955 return canGuaranteeTCO(CC); 2956 } 2957 } 2958 2959 bool SITargetLowering::isEligibleForTailCallOptimization( 2960 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2961 const SmallVectorImpl<ISD::OutputArg> &Outs, 2962 const SmallVectorImpl<SDValue> &OutVals, 2963 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2964 if (!mayTailCallThisCC(CalleeCC)) 2965 return false; 2966 2967 // For a divergent call target, we need to do a waterfall loop over the 2968 // possible callees which precludes us from using a simple jump. 2969 if (Callee->isDivergent()) 2970 return false; 2971 2972 MachineFunction &MF = DAG.getMachineFunction(); 2973 const Function &CallerF = MF.getFunction(); 2974 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2975 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2976 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2977 2978 // Kernels aren't callable, and don't have a live in return address so it 2979 // doesn't make sense to do a tail call with entry functions. 2980 if (!CallerPreserved) 2981 return false; 2982 2983 bool CCMatch = CallerCC == CalleeCC; 2984 2985 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2986 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2987 return true; 2988 return false; 2989 } 2990 2991 // TODO: Can we handle var args? 2992 if (IsVarArg) 2993 return false; 2994 2995 for (const Argument &Arg : CallerF.args()) { 2996 if (Arg.hasByValAttr()) 2997 return false; 2998 } 2999 3000 LLVMContext &Ctx = *DAG.getContext(); 3001 3002 // Check that the call results are passed in the same way. 3003 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3004 CCAssignFnForCall(CalleeCC, IsVarArg), 3005 CCAssignFnForCall(CallerCC, IsVarArg))) 3006 return false; 3007 3008 // The callee has to preserve all registers the caller needs to preserve. 3009 if (!CCMatch) { 3010 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3011 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3012 return false; 3013 } 3014 3015 // Nothing more to check if the callee is taking no arguments. 3016 if (Outs.empty()) 3017 return true; 3018 3019 SmallVector<CCValAssign, 16> ArgLocs; 3020 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3021 3022 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3023 3024 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3025 // If the stack arguments for this call do not fit into our own save area then 3026 // the call cannot be made tail. 3027 // TODO: Is this really necessary? 3028 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 3029 return false; 3030 3031 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3032 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3033 } 3034 3035 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3036 if (!CI->isTailCall()) 3037 return false; 3038 3039 const Function *ParentFn = CI->getParent()->getParent(); 3040 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3041 return false; 3042 return true; 3043 } 3044 3045 // The wave scratch offset register is used as the global base pointer. 3046 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3047 SmallVectorImpl<SDValue> &InVals) const { 3048 SelectionDAG &DAG = CLI.DAG; 3049 const SDLoc &DL = CLI.DL; 3050 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3051 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3052 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3053 SDValue Chain = CLI.Chain; 3054 SDValue Callee = CLI.Callee; 3055 bool &IsTailCall = CLI.IsTailCall; 3056 CallingConv::ID CallConv = CLI.CallConv; 3057 bool IsVarArg = CLI.IsVarArg; 3058 bool IsSibCall = false; 3059 bool IsThisReturn = false; 3060 MachineFunction &MF = DAG.getMachineFunction(); 3061 3062 if (Callee.isUndef() || isNullConstant(Callee)) { 3063 if (!CLI.IsTailCall) { 3064 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3065 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3066 } 3067 3068 return Chain; 3069 } 3070 3071 if (IsVarArg) { 3072 return lowerUnhandledCall(CLI, InVals, 3073 "unsupported call to variadic function "); 3074 } 3075 3076 if (!CLI.CB) 3077 report_fatal_error("unsupported libcall legalization"); 3078 3079 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3080 return lowerUnhandledCall(CLI, InVals, 3081 "unsupported required tail call to function "); 3082 } 3083 3084 if (AMDGPU::isShader(CallConv)) { 3085 // Note the issue is with the CC of the called function, not of the call 3086 // itself. 3087 return lowerUnhandledCall(CLI, InVals, 3088 "unsupported call to a shader function "); 3089 } 3090 3091 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && 3092 CallConv != CallingConv::AMDGPU_Gfx) { 3093 // Only allow calls with specific calling conventions. 3094 return lowerUnhandledCall(CLI, InVals, 3095 "unsupported calling convention for call from " 3096 "graphics shader of function "); 3097 } 3098 3099 if (IsTailCall) { 3100 IsTailCall = isEligibleForTailCallOptimization( 3101 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3102 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 3103 report_fatal_error("failed to perform tail call elimination on a call " 3104 "site marked musttail"); 3105 } 3106 3107 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3108 3109 // A sibling call is one where we're under the usual C ABI and not planning 3110 // to change that but can still do a tail call: 3111 if (!TailCallOpt && IsTailCall) 3112 IsSibCall = true; 3113 3114 if (IsTailCall) 3115 ++NumTailCalls; 3116 } 3117 3118 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3119 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3120 SmallVector<SDValue, 8> MemOpChains; 3121 3122 // Analyze operands of the call, assigning locations to each operand. 3123 SmallVector<CCValAssign, 16> ArgLocs; 3124 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3125 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3126 3127 if (CallConv != CallingConv::AMDGPU_Gfx) { 3128 // With a fixed ABI, allocate fixed registers before user arguments. 3129 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3130 } 3131 3132 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3133 3134 // Get a count of how many bytes are to be pushed on the stack. 3135 unsigned NumBytes = CCInfo.getNextStackOffset(); 3136 3137 if (IsSibCall) { 3138 // Since we're not changing the ABI to make this a tail call, the memory 3139 // operands are already available in the caller's incoming argument space. 3140 NumBytes = 0; 3141 } 3142 3143 // FPDiff is the byte offset of the call's argument area from the callee's. 3144 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3145 // by this amount for a tail call. In a sibling call it must be 0 because the 3146 // caller will deallocate the entire stack and the callee still expects its 3147 // arguments to begin at SP+0. Completely unused for non-tail calls. 3148 int32_t FPDiff = 0; 3149 MachineFrameInfo &MFI = MF.getFrameInfo(); 3150 3151 // Adjust the stack pointer for the new arguments... 3152 // These operations are automatically eliminated by the prolog/epilog pass 3153 if (!IsSibCall) { 3154 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3155 3156 if (!Subtarget->enableFlatScratch()) { 3157 SmallVector<SDValue, 4> CopyFromChains; 3158 3159 // In the HSA case, this should be an identity copy. 3160 SDValue ScratchRSrcReg 3161 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3162 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 3163 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3164 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3165 } 3166 } 3167 3168 MVT PtrVT = MVT::i32; 3169 3170 // Walk the register/memloc assignments, inserting copies/loads. 3171 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3172 CCValAssign &VA = ArgLocs[i]; 3173 SDValue Arg = OutVals[i]; 3174 3175 // Promote the value if needed. 3176 switch (VA.getLocInfo()) { 3177 case CCValAssign::Full: 3178 break; 3179 case CCValAssign::BCvt: 3180 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3181 break; 3182 case CCValAssign::ZExt: 3183 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3184 break; 3185 case CCValAssign::SExt: 3186 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3187 break; 3188 case CCValAssign::AExt: 3189 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3190 break; 3191 case CCValAssign::FPExt: 3192 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3193 break; 3194 default: 3195 llvm_unreachable("Unknown loc info!"); 3196 } 3197 3198 if (VA.isRegLoc()) { 3199 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3200 } else { 3201 assert(VA.isMemLoc()); 3202 3203 SDValue DstAddr; 3204 MachinePointerInfo DstInfo; 3205 3206 unsigned LocMemOffset = VA.getLocMemOffset(); 3207 int32_t Offset = LocMemOffset; 3208 3209 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3210 MaybeAlign Alignment; 3211 3212 if (IsTailCall) { 3213 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3214 unsigned OpSize = Flags.isByVal() ? 3215 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3216 3217 // FIXME: We can have better than the minimum byval required alignment. 3218 Alignment = 3219 Flags.isByVal() 3220 ? Flags.getNonZeroByValAlign() 3221 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3222 3223 Offset = Offset + FPDiff; 3224 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3225 3226 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3227 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3228 3229 // Make sure any stack arguments overlapping with where we're storing 3230 // are loaded before this eventual operation. Otherwise they'll be 3231 // clobbered. 3232 3233 // FIXME: Why is this really necessary? This seems to just result in a 3234 // lot of code to copy the stack and write them back to the same 3235 // locations, which are supposed to be immutable? 3236 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3237 } else { 3238 // Stores to the argument stack area are relative to the stack pointer. 3239 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3240 MVT::i32); 3241 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3242 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3243 Alignment = 3244 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3245 } 3246 3247 if (Outs[i].Flags.isByVal()) { 3248 SDValue SizeNode = 3249 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3250 SDValue Cpy = 3251 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3252 Outs[i].Flags.getNonZeroByValAlign(), 3253 /*isVol = */ false, /*AlwaysInline = */ true, 3254 /*isTailCall = */ false, DstInfo, 3255 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3256 3257 MemOpChains.push_back(Cpy); 3258 } else { 3259 SDValue Store = 3260 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3261 MemOpChains.push_back(Store); 3262 } 3263 } 3264 } 3265 3266 if (!MemOpChains.empty()) 3267 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3268 3269 // Build a sequence of copy-to-reg nodes chained together with token chain 3270 // and flag operands which copy the outgoing args into the appropriate regs. 3271 SDValue InFlag; 3272 for (auto &RegToPass : RegsToPass) { 3273 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3274 RegToPass.second, InFlag); 3275 InFlag = Chain.getValue(1); 3276 } 3277 3278 3279 // We don't usually want to end the call-sequence here because we would tidy 3280 // the frame up *after* the call, however in the ABI-changing tail-call case 3281 // we've carefully laid out the parameters so that when sp is reset they'll be 3282 // in the correct location. 3283 if (IsTailCall && !IsSibCall) { 3284 Chain = DAG.getCALLSEQ_END(Chain, 3285 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3286 DAG.getTargetConstant(0, DL, MVT::i32), 3287 InFlag, DL); 3288 InFlag = Chain.getValue(1); 3289 } 3290 3291 std::vector<SDValue> Ops; 3292 Ops.push_back(Chain); 3293 Ops.push_back(Callee); 3294 // Add a redundant copy of the callee global which will not be legalized, as 3295 // we need direct access to the callee later. 3296 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3297 const GlobalValue *GV = GSD->getGlobal(); 3298 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3299 } else { 3300 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3301 } 3302 3303 if (IsTailCall) { 3304 // Each tail call may have to adjust the stack by a different amount, so 3305 // this information must travel along with the operation for eventual 3306 // consumption by emitEpilogue. 3307 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3308 } 3309 3310 // Add argument registers to the end of the list so that they are known live 3311 // into the call. 3312 for (auto &RegToPass : RegsToPass) { 3313 Ops.push_back(DAG.getRegister(RegToPass.first, 3314 RegToPass.second.getValueType())); 3315 } 3316 3317 // Add a register mask operand representing the call-preserved registers. 3318 3319 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3320 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3321 assert(Mask && "Missing call preserved mask for calling convention"); 3322 Ops.push_back(DAG.getRegisterMask(Mask)); 3323 3324 if (InFlag.getNode()) 3325 Ops.push_back(InFlag); 3326 3327 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3328 3329 // If we're doing a tall call, use a TC_RETURN here rather than an 3330 // actual call instruction. 3331 if (IsTailCall) { 3332 MFI.setHasTailCall(); 3333 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3334 } 3335 3336 // Returns a chain and a flag for retval copy to use. 3337 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3338 Chain = Call.getValue(0); 3339 InFlag = Call.getValue(1); 3340 3341 uint64_t CalleePopBytes = NumBytes; 3342 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3343 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3344 InFlag, DL); 3345 if (!Ins.empty()) 3346 InFlag = Chain.getValue(1); 3347 3348 // Handle result values, copying them out of physregs into vregs that we 3349 // return. 3350 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3351 InVals, IsThisReturn, 3352 IsThisReturn ? OutVals[0] : SDValue()); 3353 } 3354 3355 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3356 // except for applying the wave size scale to the increment amount. 3357 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3358 SDValue Op, SelectionDAG &DAG) const { 3359 const MachineFunction &MF = DAG.getMachineFunction(); 3360 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3361 3362 SDLoc dl(Op); 3363 EVT VT = Op.getValueType(); 3364 SDValue Tmp1 = Op; 3365 SDValue Tmp2 = Op.getValue(1); 3366 SDValue Tmp3 = Op.getOperand(2); 3367 SDValue Chain = Tmp1.getOperand(0); 3368 3369 Register SPReg = Info->getStackPtrOffsetReg(); 3370 3371 // Chain the dynamic stack allocation so that it doesn't modify the stack 3372 // pointer when other instructions are using the stack. 3373 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3374 3375 SDValue Size = Tmp2.getOperand(1); 3376 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3377 Chain = SP.getValue(1); 3378 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3379 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3380 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3381 unsigned Opc = 3382 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3383 ISD::ADD : ISD::SUB; 3384 3385 SDValue ScaledSize = DAG.getNode( 3386 ISD::SHL, dl, VT, Size, 3387 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3388 3389 Align StackAlign = TFL->getStackAlign(); 3390 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3391 if (Alignment && *Alignment > StackAlign) { 3392 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3393 DAG.getConstant(-(uint64_t)Alignment->value() 3394 << ST.getWavefrontSizeLog2(), 3395 dl, VT)); 3396 } 3397 3398 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3399 Tmp2 = DAG.getCALLSEQ_END( 3400 Chain, DAG.getIntPtrConstant(0, dl, true), 3401 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3402 3403 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3404 } 3405 3406 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3407 SelectionDAG &DAG) const { 3408 // We only handle constant sizes here to allow non-entry block, static sized 3409 // allocas. A truly dynamic value is more difficult to support because we 3410 // don't know if the size value is uniform or not. If the size isn't uniform, 3411 // we would need to do a wave reduction to get the maximum size to know how 3412 // much to increment the uniform stack pointer. 3413 SDValue Size = Op.getOperand(1); 3414 if (isa<ConstantSDNode>(Size)) 3415 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3416 3417 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3418 } 3419 3420 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3421 const MachineFunction &MF) const { 3422 Register Reg = StringSwitch<Register>(RegName) 3423 .Case("m0", AMDGPU::M0) 3424 .Case("exec", AMDGPU::EXEC) 3425 .Case("exec_lo", AMDGPU::EXEC_LO) 3426 .Case("exec_hi", AMDGPU::EXEC_HI) 3427 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3428 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3429 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3430 .Default(Register()); 3431 3432 if (Reg == AMDGPU::NoRegister) { 3433 report_fatal_error(Twine("invalid register name \"" 3434 + StringRef(RegName) + "\".")); 3435 3436 } 3437 3438 if (!Subtarget->hasFlatScrRegister() && 3439 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3440 report_fatal_error(Twine("invalid register \"" 3441 + StringRef(RegName) + "\" for subtarget.")); 3442 } 3443 3444 switch (Reg) { 3445 case AMDGPU::M0: 3446 case AMDGPU::EXEC_LO: 3447 case AMDGPU::EXEC_HI: 3448 case AMDGPU::FLAT_SCR_LO: 3449 case AMDGPU::FLAT_SCR_HI: 3450 if (VT.getSizeInBits() == 32) 3451 return Reg; 3452 break; 3453 case AMDGPU::EXEC: 3454 case AMDGPU::FLAT_SCR: 3455 if (VT.getSizeInBits() == 64) 3456 return Reg; 3457 break; 3458 default: 3459 llvm_unreachable("missing register type checking"); 3460 } 3461 3462 report_fatal_error(Twine("invalid type for register \"" 3463 + StringRef(RegName) + "\".")); 3464 } 3465 3466 // If kill is not the last instruction, split the block so kill is always a 3467 // proper terminator. 3468 MachineBasicBlock * 3469 SITargetLowering::splitKillBlock(MachineInstr &MI, 3470 MachineBasicBlock *BB) const { 3471 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3472 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3473 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3474 return SplitBB; 3475 } 3476 3477 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3478 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3479 // be the first instruction in the remainder block. 3480 // 3481 /// \returns { LoopBody, Remainder } 3482 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3483 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3484 MachineFunction *MF = MBB.getParent(); 3485 MachineBasicBlock::iterator I(&MI); 3486 3487 // To insert the loop we need to split the block. Move everything after this 3488 // point to a new block, and insert a new empty block between the two. 3489 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3490 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3491 MachineFunction::iterator MBBI(MBB); 3492 ++MBBI; 3493 3494 MF->insert(MBBI, LoopBB); 3495 MF->insert(MBBI, RemainderBB); 3496 3497 LoopBB->addSuccessor(LoopBB); 3498 LoopBB->addSuccessor(RemainderBB); 3499 3500 // Move the rest of the block into a new block. 3501 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3502 3503 if (InstInLoop) { 3504 auto Next = std::next(I); 3505 3506 // Move instruction to loop body. 3507 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3508 3509 // Move the rest of the block. 3510 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3511 } else { 3512 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3513 } 3514 3515 MBB.addSuccessor(LoopBB); 3516 3517 return std::make_pair(LoopBB, RemainderBB); 3518 } 3519 3520 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3521 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3522 MachineBasicBlock *MBB = MI.getParent(); 3523 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3524 auto I = MI.getIterator(); 3525 auto E = std::next(I); 3526 3527 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3528 .addImm(0); 3529 3530 MIBundleBuilder Bundler(*MBB, I, E); 3531 finalizeBundle(*MBB, Bundler.begin()); 3532 } 3533 3534 MachineBasicBlock * 3535 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3536 MachineBasicBlock *BB) const { 3537 const DebugLoc &DL = MI.getDebugLoc(); 3538 3539 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3540 3541 MachineBasicBlock *LoopBB; 3542 MachineBasicBlock *RemainderBB; 3543 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3544 3545 // Apparently kill flags are only valid if the def is in the same block? 3546 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3547 Src->setIsKill(false); 3548 3549 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3550 3551 MachineBasicBlock::iterator I = LoopBB->end(); 3552 3553 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3554 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3555 3556 // Clear TRAP_STS.MEM_VIOL 3557 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3558 .addImm(0) 3559 .addImm(EncodedReg); 3560 3561 bundleInstWithWaitcnt(MI); 3562 3563 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3564 3565 // Load and check TRAP_STS.MEM_VIOL 3566 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3567 .addImm(EncodedReg); 3568 3569 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3570 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3571 .addReg(Reg, RegState::Kill) 3572 .addImm(0); 3573 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3574 .addMBB(LoopBB); 3575 3576 return RemainderBB; 3577 } 3578 3579 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3580 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3581 // will only do one iteration. In the worst case, this will loop 64 times. 3582 // 3583 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3584 static MachineBasicBlock::iterator 3585 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3586 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3587 const DebugLoc &DL, const MachineOperand &Idx, 3588 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3589 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3590 Register &SGPRIdxReg) { 3591 3592 MachineFunction *MF = OrigBB.getParent(); 3593 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3594 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3595 MachineBasicBlock::iterator I = LoopBB.begin(); 3596 3597 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3598 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3599 Register NewExec = MRI.createVirtualRegister(BoolRC); 3600 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3601 Register CondReg = MRI.createVirtualRegister(BoolRC); 3602 3603 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3604 .addReg(InitReg) 3605 .addMBB(&OrigBB) 3606 .addReg(ResultReg) 3607 .addMBB(&LoopBB); 3608 3609 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3610 .addReg(InitSaveExecReg) 3611 .addMBB(&OrigBB) 3612 .addReg(NewExec) 3613 .addMBB(&LoopBB); 3614 3615 // Read the next variant <- also loop target. 3616 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3617 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3618 3619 // Compare the just read M0 value to all possible Idx values. 3620 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3621 .addReg(CurrentIdxReg) 3622 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3623 3624 // Update EXEC, save the original EXEC value to VCC. 3625 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3626 : AMDGPU::S_AND_SAVEEXEC_B64), 3627 NewExec) 3628 .addReg(CondReg, RegState::Kill); 3629 3630 MRI.setSimpleHint(NewExec, CondReg); 3631 3632 if (UseGPRIdxMode) { 3633 if (Offset == 0) { 3634 SGPRIdxReg = CurrentIdxReg; 3635 } else { 3636 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3637 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3638 .addReg(CurrentIdxReg, RegState::Kill) 3639 .addImm(Offset); 3640 } 3641 } else { 3642 // Move index from VCC into M0 3643 if (Offset == 0) { 3644 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3645 .addReg(CurrentIdxReg, RegState::Kill); 3646 } else { 3647 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3648 .addReg(CurrentIdxReg, RegState::Kill) 3649 .addImm(Offset); 3650 } 3651 } 3652 3653 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3654 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3655 MachineInstr *InsertPt = 3656 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3657 : AMDGPU::S_XOR_B64_term), Exec) 3658 .addReg(Exec) 3659 .addReg(NewExec); 3660 3661 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3662 // s_cbranch_scc0? 3663 3664 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3665 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3666 .addMBB(&LoopBB); 3667 3668 return InsertPt->getIterator(); 3669 } 3670 3671 // This has slightly sub-optimal regalloc when the source vector is killed by 3672 // the read. The register allocator does not understand that the kill is 3673 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3674 // subregister from it, using 1 more VGPR than necessary. This was saved when 3675 // this was expanded after register allocation. 3676 static MachineBasicBlock::iterator 3677 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3678 unsigned InitResultReg, unsigned PhiReg, int Offset, 3679 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3680 MachineFunction *MF = MBB.getParent(); 3681 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3682 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3683 MachineRegisterInfo &MRI = MF->getRegInfo(); 3684 const DebugLoc &DL = MI.getDebugLoc(); 3685 MachineBasicBlock::iterator I(&MI); 3686 3687 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3688 Register DstReg = MI.getOperand(0).getReg(); 3689 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3690 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3691 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3692 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3693 3694 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3695 3696 // Save the EXEC mask 3697 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3698 .addReg(Exec); 3699 3700 MachineBasicBlock *LoopBB; 3701 MachineBasicBlock *RemainderBB; 3702 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3703 3704 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3705 3706 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3707 InitResultReg, DstReg, PhiReg, TmpExec, 3708 Offset, UseGPRIdxMode, SGPRIdxReg); 3709 3710 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3711 MachineFunction::iterator MBBI(LoopBB); 3712 ++MBBI; 3713 MF->insert(MBBI, LandingPad); 3714 LoopBB->removeSuccessor(RemainderBB); 3715 LandingPad->addSuccessor(RemainderBB); 3716 LoopBB->addSuccessor(LandingPad); 3717 MachineBasicBlock::iterator First = LandingPad->begin(); 3718 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3719 .addReg(SaveExec); 3720 3721 return InsPt; 3722 } 3723 3724 // Returns subreg index, offset 3725 static std::pair<unsigned, int> 3726 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3727 const TargetRegisterClass *SuperRC, 3728 unsigned VecReg, 3729 int Offset) { 3730 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3731 3732 // Skip out of bounds offsets, or else we would end up using an undefined 3733 // register. 3734 if (Offset >= NumElts || Offset < 0) 3735 return std::make_pair(AMDGPU::sub0, Offset); 3736 3737 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3738 } 3739 3740 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3741 MachineRegisterInfo &MRI, MachineInstr &MI, 3742 int Offset) { 3743 MachineBasicBlock *MBB = MI.getParent(); 3744 const DebugLoc &DL = MI.getDebugLoc(); 3745 MachineBasicBlock::iterator I(&MI); 3746 3747 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3748 3749 assert(Idx->getReg() != AMDGPU::NoRegister); 3750 3751 if (Offset == 0) { 3752 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3753 } else { 3754 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3755 .add(*Idx) 3756 .addImm(Offset); 3757 } 3758 } 3759 3760 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3761 MachineRegisterInfo &MRI, MachineInstr &MI, 3762 int Offset) { 3763 MachineBasicBlock *MBB = MI.getParent(); 3764 const DebugLoc &DL = MI.getDebugLoc(); 3765 MachineBasicBlock::iterator I(&MI); 3766 3767 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3768 3769 if (Offset == 0) 3770 return Idx->getReg(); 3771 3772 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3773 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3774 .add(*Idx) 3775 .addImm(Offset); 3776 return Tmp; 3777 } 3778 3779 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3780 MachineBasicBlock &MBB, 3781 const GCNSubtarget &ST) { 3782 const SIInstrInfo *TII = ST.getInstrInfo(); 3783 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3784 MachineFunction *MF = MBB.getParent(); 3785 MachineRegisterInfo &MRI = MF->getRegInfo(); 3786 3787 Register Dst = MI.getOperand(0).getReg(); 3788 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3789 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3790 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3791 3792 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3793 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3794 3795 unsigned SubReg; 3796 std::tie(SubReg, Offset) 3797 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3798 3799 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3800 3801 // Check for a SGPR index. 3802 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3803 MachineBasicBlock::iterator I(&MI); 3804 const DebugLoc &DL = MI.getDebugLoc(); 3805 3806 if (UseGPRIdxMode) { 3807 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3808 // to avoid interfering with other uses, so probably requires a new 3809 // optimization pass. 3810 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3811 3812 const MCInstrDesc &GPRIDXDesc = 3813 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3814 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3815 .addReg(SrcReg) 3816 .addReg(Idx) 3817 .addImm(SubReg); 3818 } else { 3819 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3820 3821 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3822 .addReg(SrcReg, 0, SubReg) 3823 .addReg(SrcReg, RegState::Implicit); 3824 } 3825 3826 MI.eraseFromParent(); 3827 3828 return &MBB; 3829 } 3830 3831 // Control flow needs to be inserted if indexing with a VGPR. 3832 const DebugLoc &DL = MI.getDebugLoc(); 3833 MachineBasicBlock::iterator I(&MI); 3834 3835 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3836 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3837 3838 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3839 3840 Register SGPRIdxReg; 3841 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3842 UseGPRIdxMode, SGPRIdxReg); 3843 3844 MachineBasicBlock *LoopBB = InsPt->getParent(); 3845 3846 if (UseGPRIdxMode) { 3847 const MCInstrDesc &GPRIDXDesc = 3848 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3849 3850 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3851 .addReg(SrcReg) 3852 .addReg(SGPRIdxReg) 3853 .addImm(SubReg); 3854 } else { 3855 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3856 .addReg(SrcReg, 0, SubReg) 3857 .addReg(SrcReg, RegState::Implicit); 3858 } 3859 3860 MI.eraseFromParent(); 3861 3862 return LoopBB; 3863 } 3864 3865 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3866 MachineBasicBlock &MBB, 3867 const GCNSubtarget &ST) { 3868 const SIInstrInfo *TII = ST.getInstrInfo(); 3869 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3870 MachineFunction *MF = MBB.getParent(); 3871 MachineRegisterInfo &MRI = MF->getRegInfo(); 3872 3873 Register Dst = MI.getOperand(0).getReg(); 3874 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3875 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3876 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3877 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3878 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3879 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3880 3881 // This can be an immediate, but will be folded later. 3882 assert(Val->getReg()); 3883 3884 unsigned SubReg; 3885 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3886 SrcVec->getReg(), 3887 Offset); 3888 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3889 3890 if (Idx->getReg() == AMDGPU::NoRegister) { 3891 MachineBasicBlock::iterator I(&MI); 3892 const DebugLoc &DL = MI.getDebugLoc(); 3893 3894 assert(Offset == 0); 3895 3896 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3897 .add(*SrcVec) 3898 .add(*Val) 3899 .addImm(SubReg); 3900 3901 MI.eraseFromParent(); 3902 return &MBB; 3903 } 3904 3905 // Check for a SGPR index. 3906 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3907 MachineBasicBlock::iterator I(&MI); 3908 const DebugLoc &DL = MI.getDebugLoc(); 3909 3910 if (UseGPRIdxMode) { 3911 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3912 3913 const MCInstrDesc &GPRIDXDesc = 3914 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3915 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3916 .addReg(SrcVec->getReg()) 3917 .add(*Val) 3918 .addReg(Idx) 3919 .addImm(SubReg); 3920 } else { 3921 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3922 3923 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3924 TRI.getRegSizeInBits(*VecRC), 32, false); 3925 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3926 .addReg(SrcVec->getReg()) 3927 .add(*Val) 3928 .addImm(SubReg); 3929 } 3930 MI.eraseFromParent(); 3931 return &MBB; 3932 } 3933 3934 // Control flow needs to be inserted if indexing with a VGPR. 3935 if (Val->isReg()) 3936 MRI.clearKillFlags(Val->getReg()); 3937 3938 const DebugLoc &DL = MI.getDebugLoc(); 3939 3940 Register PhiReg = MRI.createVirtualRegister(VecRC); 3941 3942 Register SGPRIdxReg; 3943 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 3944 UseGPRIdxMode, SGPRIdxReg); 3945 MachineBasicBlock *LoopBB = InsPt->getParent(); 3946 3947 if (UseGPRIdxMode) { 3948 const MCInstrDesc &GPRIDXDesc = 3949 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3950 3951 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3952 .addReg(PhiReg) 3953 .add(*Val) 3954 .addReg(SGPRIdxReg) 3955 .addImm(AMDGPU::sub0); 3956 } else { 3957 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3958 TRI.getRegSizeInBits(*VecRC), 32, false); 3959 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3960 .addReg(PhiReg) 3961 .add(*Val) 3962 .addImm(AMDGPU::sub0); 3963 } 3964 3965 MI.eraseFromParent(); 3966 return LoopBB; 3967 } 3968 3969 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3970 MachineInstr &MI, MachineBasicBlock *BB) const { 3971 3972 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3973 MachineFunction *MF = BB->getParent(); 3974 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3975 3976 switch (MI.getOpcode()) { 3977 case AMDGPU::S_UADDO_PSEUDO: 3978 case AMDGPU::S_USUBO_PSEUDO: { 3979 const DebugLoc &DL = MI.getDebugLoc(); 3980 MachineOperand &Dest0 = MI.getOperand(0); 3981 MachineOperand &Dest1 = MI.getOperand(1); 3982 MachineOperand &Src0 = MI.getOperand(2); 3983 MachineOperand &Src1 = MI.getOperand(3); 3984 3985 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3986 ? AMDGPU::S_ADD_I32 3987 : AMDGPU::S_SUB_I32; 3988 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3989 3990 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3991 .addImm(1) 3992 .addImm(0); 3993 3994 MI.eraseFromParent(); 3995 return BB; 3996 } 3997 case AMDGPU::S_ADD_U64_PSEUDO: 3998 case AMDGPU::S_SUB_U64_PSEUDO: { 3999 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4000 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4001 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4002 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4003 const DebugLoc &DL = MI.getDebugLoc(); 4004 4005 MachineOperand &Dest = MI.getOperand(0); 4006 MachineOperand &Src0 = MI.getOperand(1); 4007 MachineOperand &Src1 = MI.getOperand(2); 4008 4009 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4010 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4011 4012 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4013 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4014 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4015 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4016 4017 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4018 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4019 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4020 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4021 4022 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4023 4024 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4025 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4026 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 4027 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 4028 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4029 .addReg(DestSub0) 4030 .addImm(AMDGPU::sub0) 4031 .addReg(DestSub1) 4032 .addImm(AMDGPU::sub1); 4033 MI.eraseFromParent(); 4034 return BB; 4035 } 4036 case AMDGPU::V_ADD_U64_PSEUDO: 4037 case AMDGPU::V_SUB_U64_PSEUDO: { 4038 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4039 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4040 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4041 const DebugLoc &DL = MI.getDebugLoc(); 4042 4043 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4044 4045 MachineOperand &Dest = MI.getOperand(0); 4046 MachineOperand &Src0 = MI.getOperand(1); 4047 MachineOperand &Src1 = MI.getOperand(2); 4048 4049 if (IsAdd && ST.hasLshlAddB64()) { 4050 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), 4051 Dest.getReg()) 4052 .add(Src0) 4053 .addImm(0) 4054 .add(Src1); 4055 TII->legalizeOperands(*Add); 4056 MI.eraseFromParent(); 4057 return BB; 4058 } 4059 4060 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4061 4062 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4063 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4064 4065 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4066 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4067 4068 const TargetRegisterClass *Src0RC = Src0.isReg() 4069 ? MRI.getRegClass(Src0.getReg()) 4070 : &AMDGPU::VReg_64RegClass; 4071 const TargetRegisterClass *Src1RC = Src1.isReg() 4072 ? MRI.getRegClass(Src1.getReg()) 4073 : &AMDGPU::VReg_64RegClass; 4074 4075 const TargetRegisterClass *Src0SubRC = 4076 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 4077 const TargetRegisterClass *Src1SubRC = 4078 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 4079 4080 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4081 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4082 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4083 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4084 4085 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4086 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4087 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4088 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4089 4090 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4091 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4092 .addReg(CarryReg, RegState::Define) 4093 .add(SrcReg0Sub0) 4094 .add(SrcReg1Sub0) 4095 .addImm(0); // clamp bit 4096 4097 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4098 MachineInstr *HiHalf = 4099 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4100 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4101 .add(SrcReg0Sub1) 4102 .add(SrcReg1Sub1) 4103 .addReg(CarryReg, RegState::Kill) 4104 .addImm(0); // clamp bit 4105 4106 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4107 .addReg(DestSub0) 4108 .addImm(AMDGPU::sub0) 4109 .addReg(DestSub1) 4110 .addImm(AMDGPU::sub1); 4111 TII->legalizeOperands(*LoHalf); 4112 TII->legalizeOperands(*HiHalf); 4113 MI.eraseFromParent(); 4114 return BB; 4115 } 4116 case AMDGPU::S_ADD_CO_PSEUDO: 4117 case AMDGPU::S_SUB_CO_PSEUDO: { 4118 // This pseudo has a chance to be selected 4119 // only from uniform add/subcarry node. All the VGPR operands 4120 // therefore assumed to be splat vectors. 4121 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4122 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4123 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4124 MachineBasicBlock::iterator MII = MI; 4125 const DebugLoc &DL = MI.getDebugLoc(); 4126 MachineOperand &Dest = MI.getOperand(0); 4127 MachineOperand &CarryDest = MI.getOperand(1); 4128 MachineOperand &Src0 = MI.getOperand(2); 4129 MachineOperand &Src1 = MI.getOperand(3); 4130 MachineOperand &Src2 = MI.getOperand(4); 4131 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4132 ? AMDGPU::S_ADDC_U32 4133 : AMDGPU::S_SUBB_U32; 4134 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4135 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4136 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4137 .addReg(Src0.getReg()); 4138 Src0.setReg(RegOp0); 4139 } 4140 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4141 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4142 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4143 .addReg(Src1.getReg()); 4144 Src1.setReg(RegOp1); 4145 } 4146 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4147 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4148 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4149 .addReg(Src2.getReg()); 4150 Src2.setReg(RegOp2); 4151 } 4152 4153 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4154 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4155 assert(WaveSize == 64 || WaveSize == 32); 4156 4157 if (WaveSize == 64) { 4158 if (ST.hasScalarCompareEq64()) { 4159 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4160 .addReg(Src2.getReg()) 4161 .addImm(0); 4162 } else { 4163 const TargetRegisterClass *SubRC = 4164 TRI->getSubRegClass(Src2RC, AMDGPU::sub0); 4165 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4166 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4167 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4168 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4169 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4170 4171 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4172 .add(Src2Sub0) 4173 .add(Src2Sub1); 4174 4175 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4176 .addReg(Src2_32, RegState::Kill) 4177 .addImm(0); 4178 } 4179 } else { 4180 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 4181 .addReg(Src2.getReg()) 4182 .addImm(0); 4183 } 4184 4185 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4186 4187 unsigned SelOpc = 4188 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4189 4190 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4191 .addImm(-1) 4192 .addImm(0); 4193 4194 MI.eraseFromParent(); 4195 return BB; 4196 } 4197 case AMDGPU::SI_INIT_M0: { 4198 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4199 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4200 .add(MI.getOperand(0)); 4201 MI.eraseFromParent(); 4202 return BB; 4203 } 4204 case AMDGPU::GET_GROUPSTATICSIZE: { 4205 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4206 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4207 DebugLoc DL = MI.getDebugLoc(); 4208 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4209 .add(MI.getOperand(0)) 4210 .addImm(MFI->getLDSSize()); 4211 MI.eraseFromParent(); 4212 return BB; 4213 } 4214 case AMDGPU::SI_INDIRECT_SRC_V1: 4215 case AMDGPU::SI_INDIRECT_SRC_V2: 4216 case AMDGPU::SI_INDIRECT_SRC_V4: 4217 case AMDGPU::SI_INDIRECT_SRC_V8: 4218 case AMDGPU::SI_INDIRECT_SRC_V16: 4219 case AMDGPU::SI_INDIRECT_SRC_V32: 4220 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4221 case AMDGPU::SI_INDIRECT_DST_V1: 4222 case AMDGPU::SI_INDIRECT_DST_V2: 4223 case AMDGPU::SI_INDIRECT_DST_V4: 4224 case AMDGPU::SI_INDIRECT_DST_V8: 4225 case AMDGPU::SI_INDIRECT_DST_V16: 4226 case AMDGPU::SI_INDIRECT_DST_V32: 4227 return emitIndirectDst(MI, *BB, *getSubtarget()); 4228 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4229 case AMDGPU::SI_KILL_I1_PSEUDO: 4230 return splitKillBlock(MI, BB); 4231 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4232 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4233 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4234 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4235 4236 Register Dst = MI.getOperand(0).getReg(); 4237 Register Src0 = MI.getOperand(1).getReg(); 4238 Register Src1 = MI.getOperand(2).getReg(); 4239 const DebugLoc &DL = MI.getDebugLoc(); 4240 Register SrcCond = MI.getOperand(3).getReg(); 4241 4242 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4243 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4244 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4245 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4246 4247 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4248 .addReg(SrcCond); 4249 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4250 .addImm(0) 4251 .addReg(Src0, 0, AMDGPU::sub0) 4252 .addImm(0) 4253 .addReg(Src1, 0, AMDGPU::sub0) 4254 .addReg(SrcCondCopy); 4255 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4256 .addImm(0) 4257 .addReg(Src0, 0, AMDGPU::sub1) 4258 .addImm(0) 4259 .addReg(Src1, 0, AMDGPU::sub1) 4260 .addReg(SrcCondCopy); 4261 4262 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4263 .addReg(DstLo) 4264 .addImm(AMDGPU::sub0) 4265 .addReg(DstHi) 4266 .addImm(AMDGPU::sub1); 4267 MI.eraseFromParent(); 4268 return BB; 4269 } 4270 case AMDGPU::SI_BR_UNDEF: { 4271 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4272 const DebugLoc &DL = MI.getDebugLoc(); 4273 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4274 .add(MI.getOperand(0)); 4275 Br->getOperand(1).setIsUndef(true); // read undef SCC 4276 MI.eraseFromParent(); 4277 return BB; 4278 } 4279 case AMDGPU::ADJCALLSTACKUP: 4280 case AMDGPU::ADJCALLSTACKDOWN: { 4281 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4282 MachineInstrBuilder MIB(*MF, &MI); 4283 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4284 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4285 return BB; 4286 } 4287 case AMDGPU::SI_CALL_ISEL: { 4288 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4289 const DebugLoc &DL = MI.getDebugLoc(); 4290 4291 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4292 4293 MachineInstrBuilder MIB; 4294 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4295 4296 for (const MachineOperand &MO : MI.operands()) 4297 MIB.add(MO); 4298 4299 MIB.cloneMemRefs(MI); 4300 MI.eraseFromParent(); 4301 return BB; 4302 } 4303 case AMDGPU::V_ADD_CO_U32_e32: 4304 case AMDGPU::V_SUB_CO_U32_e32: 4305 case AMDGPU::V_SUBREV_CO_U32_e32: { 4306 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4307 const DebugLoc &DL = MI.getDebugLoc(); 4308 unsigned Opc = MI.getOpcode(); 4309 4310 bool NeedClampOperand = false; 4311 if (TII->pseudoToMCOpcode(Opc) == -1) { 4312 Opc = AMDGPU::getVOPe64(Opc); 4313 NeedClampOperand = true; 4314 } 4315 4316 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4317 if (TII->isVOP3(*I)) { 4318 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4319 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4320 I.addReg(TRI->getVCC(), RegState::Define); 4321 } 4322 I.add(MI.getOperand(1)) 4323 .add(MI.getOperand(2)); 4324 if (NeedClampOperand) 4325 I.addImm(0); // clamp bit for e64 encoding 4326 4327 TII->legalizeOperands(*I); 4328 4329 MI.eraseFromParent(); 4330 return BB; 4331 } 4332 case AMDGPU::V_ADDC_U32_e32: 4333 case AMDGPU::V_SUBB_U32_e32: 4334 case AMDGPU::V_SUBBREV_U32_e32: 4335 // These instructions have an implicit use of vcc which counts towards the 4336 // constant bus limit. 4337 TII->legalizeOperands(MI); 4338 return BB; 4339 case AMDGPU::DS_GWS_INIT: 4340 case AMDGPU::DS_GWS_SEMA_BR: 4341 case AMDGPU::DS_GWS_BARRIER: 4342 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); 4343 LLVM_FALLTHROUGH; 4344 case AMDGPU::DS_GWS_SEMA_V: 4345 case AMDGPU::DS_GWS_SEMA_P: 4346 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4347 // A s_waitcnt 0 is required to be the instruction immediately following. 4348 if (getSubtarget()->hasGWSAutoReplay()) { 4349 bundleInstWithWaitcnt(MI); 4350 return BB; 4351 } 4352 4353 return emitGWSMemViolTestLoop(MI, BB); 4354 case AMDGPU::S_SETREG_B32: { 4355 // Try to optimize cases that only set the denormal mode or rounding mode. 4356 // 4357 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4358 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4359 // instead. 4360 // 4361 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4362 // allow you to have a no side effect instruction in the output of a 4363 // sideeffecting pattern. 4364 unsigned ID, Offset, Width; 4365 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4366 if (ID != AMDGPU::Hwreg::ID_MODE) 4367 return BB; 4368 4369 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4370 const unsigned SetMask = WidthMask << Offset; 4371 4372 if (getSubtarget()->hasDenormModeInst()) { 4373 unsigned SetDenormOp = 0; 4374 unsigned SetRoundOp = 0; 4375 4376 // The dedicated instructions can only set the whole denorm or round mode 4377 // at once, not a subset of bits in either. 4378 if (SetMask == 4379 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4380 // If this fully sets both the round and denorm mode, emit the two 4381 // dedicated instructions for these. 4382 SetRoundOp = AMDGPU::S_ROUND_MODE; 4383 SetDenormOp = AMDGPU::S_DENORM_MODE; 4384 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4385 SetRoundOp = AMDGPU::S_ROUND_MODE; 4386 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4387 SetDenormOp = AMDGPU::S_DENORM_MODE; 4388 } 4389 4390 if (SetRoundOp || SetDenormOp) { 4391 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4392 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4393 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4394 unsigned ImmVal = Def->getOperand(1).getImm(); 4395 if (SetRoundOp) { 4396 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4397 .addImm(ImmVal & 0xf); 4398 4399 // If we also have the denorm mode, get just the denorm mode bits. 4400 ImmVal >>= 4; 4401 } 4402 4403 if (SetDenormOp) { 4404 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4405 .addImm(ImmVal & 0xf); 4406 } 4407 4408 MI.eraseFromParent(); 4409 return BB; 4410 } 4411 } 4412 } 4413 4414 // If only FP bits are touched, used the no side effects pseudo. 4415 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4416 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4417 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4418 4419 return BB; 4420 } 4421 default: 4422 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4423 } 4424 } 4425 4426 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4427 return isTypeLegal(VT.getScalarType()); 4428 } 4429 4430 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { 4431 switch (Op.getValue(0).getSimpleValueType().SimpleTy) { 4432 case MVT::f32: 4433 return Subtarget->hasAtomicFaddRtnInsts(); 4434 case MVT::v2f16: 4435 case MVT::f64: 4436 return Subtarget->hasGFX90AInsts(); 4437 default: 4438 return false; 4439 } 4440 } 4441 4442 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4443 // This currently forces unfolding various combinations of fsub into fma with 4444 // free fneg'd operands. As long as we have fast FMA (controlled by 4445 // isFMAFasterThanFMulAndFAdd), we should perform these. 4446 4447 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4448 // most of these combines appear to be cycle neutral but save on instruction 4449 // count / code size. 4450 return true; 4451 } 4452 4453 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 4454 4455 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4456 EVT VT) const { 4457 if (!VT.isVector()) { 4458 return MVT::i1; 4459 } 4460 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4461 } 4462 4463 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4464 // TODO: Should i16 be used always if legal? For now it would force VALU 4465 // shifts. 4466 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4467 } 4468 4469 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4470 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4471 ? Ty.changeElementSize(16) 4472 : Ty.changeElementSize(32); 4473 } 4474 4475 // Answering this is somewhat tricky and depends on the specific device which 4476 // have different rates for fma or all f64 operations. 4477 // 4478 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4479 // regardless of which device (although the number of cycles differs between 4480 // devices), so it is always profitable for f64. 4481 // 4482 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4483 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4484 // which we can always do even without fused FP ops since it returns the same 4485 // result as the separate operations and since it is always full 4486 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4487 // however does not support denormals, so we do report fma as faster if we have 4488 // a fast fma device and require denormals. 4489 // 4490 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4491 EVT VT) const { 4492 VT = VT.getScalarType(); 4493 4494 switch (VT.getSimpleVT().SimpleTy) { 4495 case MVT::f32: { 4496 // If mad is not available this depends only on if f32 fma is full rate. 4497 if (!Subtarget->hasMadMacF32Insts()) 4498 return Subtarget->hasFastFMAF32(); 4499 4500 // Otherwise f32 mad is always full rate and returns the same result as 4501 // the separate operations so should be preferred over fma. 4502 // However does not support denormals. 4503 if (hasFP32Denormals(MF)) 4504 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4505 4506 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4507 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4508 } 4509 case MVT::f64: 4510 return true; 4511 case MVT::f16: 4512 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4513 default: 4514 break; 4515 } 4516 4517 return false; 4518 } 4519 4520 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4521 LLT Ty) const { 4522 switch (Ty.getScalarSizeInBits()) { 4523 case 16: 4524 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 4525 case 32: 4526 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 4527 case 64: 4528 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 4529 default: 4530 break; 4531 } 4532 4533 return false; 4534 } 4535 4536 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 4537 if (!Ty.isScalar()) 4538 return false; 4539 4540 if (Ty.getScalarSizeInBits() == 16) 4541 return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); 4542 if (Ty.getScalarSizeInBits() == 32) 4543 return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); 4544 4545 return false; 4546 } 4547 4548 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4549 const SDNode *N) const { 4550 // TODO: Check future ftz flag 4551 // v_mad_f32/v_mac_f32 do not support denormals. 4552 EVT VT = N->getValueType(0); 4553 if (VT == MVT::f32) 4554 return Subtarget->hasMadMacF32Insts() && 4555 !hasFP32Denormals(DAG.getMachineFunction()); 4556 if (VT == MVT::f16) { 4557 return Subtarget->hasMadF16() && 4558 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4559 } 4560 4561 return false; 4562 } 4563 4564 //===----------------------------------------------------------------------===// 4565 // Custom DAG Lowering Operations 4566 //===----------------------------------------------------------------------===// 4567 4568 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4569 // wider vector type is legal. 4570 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4571 SelectionDAG &DAG) const { 4572 unsigned Opc = Op.getOpcode(); 4573 EVT VT = Op.getValueType(); 4574 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4575 4576 SDValue Lo, Hi; 4577 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4578 4579 SDLoc SL(Op); 4580 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4581 Op->getFlags()); 4582 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4583 Op->getFlags()); 4584 4585 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4586 } 4587 4588 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4589 // wider vector type is legal. 4590 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4591 SelectionDAG &DAG) const { 4592 unsigned Opc = Op.getOpcode(); 4593 EVT VT = Op.getValueType(); 4594 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4595 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 4596 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4597 VT == MVT::v32f32); 4598 4599 SDValue Lo0, Hi0; 4600 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4601 SDValue Lo1, Hi1; 4602 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4603 4604 SDLoc SL(Op); 4605 4606 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4607 Op->getFlags()); 4608 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4609 Op->getFlags()); 4610 4611 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4612 } 4613 4614 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4615 SelectionDAG &DAG) const { 4616 unsigned Opc = Op.getOpcode(); 4617 EVT VT = Op.getValueType(); 4618 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 4619 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || 4620 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 4621 VT == MVT::v32f32); 4622 4623 SDValue Lo0, Hi0; 4624 SDValue Op0 = Op.getOperand(0); 4625 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 4626 ? DAG.SplitVectorOperand(Op.getNode(), 0) 4627 : std::make_pair(Op0, Op0); 4628 SDValue Lo1, Hi1; 4629 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4630 SDValue Lo2, Hi2; 4631 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4632 4633 SDLoc SL(Op); 4634 auto ResVT = DAG.GetSplitDestVTs(VT); 4635 4636 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 4637 Op->getFlags()); 4638 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 4639 Op->getFlags()); 4640 4641 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4642 } 4643 4644 4645 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4646 switch (Op.getOpcode()) { 4647 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4648 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4649 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4650 case ISD::LOAD: { 4651 SDValue Result = LowerLOAD(Op, DAG); 4652 assert((!Result.getNode() || 4653 Result.getNode()->getNumValues() == 2) && 4654 "Load should return a value and a chain"); 4655 return Result; 4656 } 4657 4658 case ISD::FSIN: 4659 case ISD::FCOS: 4660 return LowerTrig(Op, DAG); 4661 case ISD::SELECT: return LowerSELECT(Op, DAG); 4662 case ISD::FDIV: return LowerFDIV(Op, DAG); 4663 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4664 case ISD::STORE: return LowerSTORE(Op, DAG); 4665 case ISD::GlobalAddress: { 4666 MachineFunction &MF = DAG.getMachineFunction(); 4667 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4668 return LowerGlobalAddress(MFI, Op, DAG); 4669 } 4670 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4671 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4672 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4673 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4674 case ISD::INSERT_SUBVECTOR: 4675 return lowerINSERT_SUBVECTOR(Op, DAG); 4676 case ISD::INSERT_VECTOR_ELT: 4677 return lowerINSERT_VECTOR_ELT(Op, DAG); 4678 case ISD::EXTRACT_VECTOR_ELT: 4679 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4680 case ISD::VECTOR_SHUFFLE: 4681 return lowerVECTOR_SHUFFLE(Op, DAG); 4682 case ISD::SCALAR_TO_VECTOR: 4683 return lowerSCALAR_TO_VECTOR(Op, DAG); 4684 case ISD::BUILD_VECTOR: 4685 return lowerBUILD_VECTOR(Op, DAG); 4686 case ISD::FP_ROUND: 4687 return lowerFP_ROUND(Op, DAG); 4688 case ISD::FPTRUNC_ROUND: { 4689 unsigned Opc; 4690 SDLoc DL(Op); 4691 4692 if (Op.getOperand(0)->getValueType(0) != MVT::f32) 4693 return SDValue(); 4694 4695 // Get the rounding mode from the last operand 4696 int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4697 if (RoundMode == (int)RoundingMode::TowardPositive) 4698 Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; 4699 else if (RoundMode == (int)RoundingMode::TowardNegative) 4700 Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; 4701 else 4702 return SDValue(); 4703 4704 return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); 4705 } 4706 case ISD::TRAP: 4707 return lowerTRAP(Op, DAG); 4708 case ISD::DEBUGTRAP: 4709 return lowerDEBUGTRAP(Op, DAG); 4710 case ISD::FABS: 4711 case ISD::FNEG: 4712 case ISD::FCANONICALIZE: 4713 case ISD::BSWAP: 4714 return splitUnaryVectorOp(Op, DAG); 4715 case ISD::FMINNUM: 4716 case ISD::FMAXNUM: 4717 return lowerFMINNUM_FMAXNUM(Op, DAG); 4718 case ISD::FMA: 4719 return splitTernaryVectorOp(Op, DAG); 4720 case ISD::FP_TO_SINT: 4721 case ISD::FP_TO_UINT: 4722 return LowerFP_TO_INT(Op, DAG); 4723 case ISD::SHL: 4724 case ISD::SRA: 4725 case ISD::SRL: 4726 case ISD::ADD: 4727 case ISD::SUB: 4728 case ISD::MUL: 4729 case ISD::SMIN: 4730 case ISD::SMAX: 4731 case ISD::UMIN: 4732 case ISD::UMAX: 4733 case ISD::FADD: 4734 case ISD::FMUL: 4735 case ISD::FMINNUM_IEEE: 4736 case ISD::FMAXNUM_IEEE: 4737 case ISD::UADDSAT: 4738 case ISD::USUBSAT: 4739 case ISD::SADDSAT: 4740 case ISD::SSUBSAT: 4741 return splitBinaryVectorOp(Op, DAG); 4742 case ISD::SMULO: 4743 case ISD::UMULO: 4744 return lowerXMULO(Op, DAG); 4745 case ISD::SMUL_LOHI: 4746 case ISD::UMUL_LOHI: 4747 return lowerXMUL_LOHI(Op, DAG); 4748 case ISD::DYNAMIC_STACKALLOC: 4749 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4750 } 4751 return SDValue(); 4752 } 4753 4754 // Used for D16: Casts the result of an instruction into the right vector, 4755 // packs values if loads return unpacked values. 4756 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4757 const SDLoc &DL, 4758 SelectionDAG &DAG, bool Unpacked) { 4759 if (!LoadVT.isVector()) 4760 return Result; 4761 4762 // Cast back to the original packed type or to a larger type that is a 4763 // multiple of 32 bit for D16. Widening the return type is a required for 4764 // legalization. 4765 EVT FittingLoadVT = LoadVT; 4766 if ((LoadVT.getVectorNumElements() % 2) == 1) { 4767 FittingLoadVT = 4768 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4769 LoadVT.getVectorNumElements() + 1); 4770 } 4771 4772 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4773 // Truncate to v2i16/v4i16. 4774 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 4775 4776 // Workaround legalizer not scalarizing truncate after vector op 4777 // legalization but not creating intermediate vector trunc. 4778 SmallVector<SDValue, 4> Elts; 4779 DAG.ExtractVectorElements(Result, Elts); 4780 for (SDValue &Elt : Elts) 4781 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4782 4783 // Pad illegal v1i16/v3fi6 to v4i16 4784 if ((LoadVT.getVectorNumElements() % 2) == 1) 4785 Elts.push_back(DAG.getUNDEF(MVT::i16)); 4786 4787 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4788 4789 // Bitcast to original type (v2f16/v4f16). 4790 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4791 } 4792 4793 // Cast back to the original packed type. 4794 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4795 } 4796 4797 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4798 MemSDNode *M, 4799 SelectionDAG &DAG, 4800 ArrayRef<SDValue> Ops, 4801 bool IsIntrinsic) const { 4802 SDLoc DL(M); 4803 4804 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4805 EVT LoadVT = M->getValueType(0); 4806 4807 EVT EquivLoadVT = LoadVT; 4808 if (LoadVT.isVector()) { 4809 if (Unpacked) { 4810 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4811 LoadVT.getVectorNumElements()); 4812 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 4813 // Widen v3f16 to legal type 4814 EquivLoadVT = 4815 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4816 LoadVT.getVectorNumElements() + 1); 4817 } 4818 } 4819 4820 // Change from v4f16/v2f16 to EquivLoadVT. 4821 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4822 4823 SDValue Load 4824 = DAG.getMemIntrinsicNode( 4825 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4826 VTList, Ops, M->getMemoryVT(), 4827 M->getMemOperand()); 4828 4829 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4830 4831 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4832 } 4833 4834 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4835 SelectionDAG &DAG, 4836 ArrayRef<SDValue> Ops) const { 4837 SDLoc DL(M); 4838 EVT LoadVT = M->getValueType(0); 4839 EVT EltType = LoadVT.getScalarType(); 4840 EVT IntVT = LoadVT.changeTypeToInteger(); 4841 4842 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4843 4844 unsigned Opc = 4845 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4846 4847 if (IsD16) { 4848 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4849 } 4850 4851 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4852 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4853 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4854 4855 if (isTypeLegal(LoadVT)) { 4856 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4857 M->getMemOperand(), DAG); 4858 } 4859 4860 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4861 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4862 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4863 M->getMemOperand(), DAG); 4864 return DAG.getMergeValues( 4865 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4866 DL); 4867 } 4868 4869 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4870 SDNode *N, SelectionDAG &DAG) { 4871 EVT VT = N->getValueType(0); 4872 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4873 unsigned CondCode = CD->getZExtValue(); 4874 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4875 return DAG.getUNDEF(VT); 4876 4877 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4878 4879 SDValue LHS = N->getOperand(1); 4880 SDValue RHS = N->getOperand(2); 4881 4882 SDLoc DL(N); 4883 4884 EVT CmpVT = LHS.getValueType(); 4885 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4886 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4887 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4888 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4889 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4890 } 4891 4892 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4893 4894 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4895 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4896 4897 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4898 DAG.getCondCode(CCOpcode)); 4899 if (VT.bitsEq(CCVT)) 4900 return SetCC; 4901 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4902 } 4903 4904 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4905 SDNode *N, SelectionDAG &DAG) { 4906 EVT VT = N->getValueType(0); 4907 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4908 4909 unsigned CondCode = CD->getZExtValue(); 4910 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4911 return DAG.getUNDEF(VT); 4912 4913 SDValue Src0 = N->getOperand(1); 4914 SDValue Src1 = N->getOperand(2); 4915 EVT CmpVT = Src0.getValueType(); 4916 SDLoc SL(N); 4917 4918 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4919 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4920 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4921 } 4922 4923 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4924 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4925 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4926 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4927 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4928 Src1, DAG.getCondCode(CCOpcode)); 4929 if (VT.bitsEq(CCVT)) 4930 return SetCC; 4931 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4932 } 4933 4934 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4935 SelectionDAG &DAG) { 4936 EVT VT = N->getValueType(0); 4937 SDValue Src = N->getOperand(1); 4938 SDLoc SL(N); 4939 4940 if (Src.getOpcode() == ISD::SETCC) { 4941 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4942 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4943 Src.getOperand(1), Src.getOperand(2)); 4944 } 4945 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4946 // (ballot 0) -> 0 4947 if (Arg->isZero()) 4948 return DAG.getConstant(0, SL, VT); 4949 4950 // (ballot 1) -> EXEC/EXEC_LO 4951 if (Arg->isOne()) { 4952 Register Exec; 4953 if (VT.getScalarSizeInBits() == 32) 4954 Exec = AMDGPU::EXEC_LO; 4955 else if (VT.getScalarSizeInBits() == 64) 4956 Exec = AMDGPU::EXEC; 4957 else 4958 return SDValue(); 4959 4960 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4961 } 4962 } 4963 4964 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4965 // ISD::SETNE) 4966 return DAG.getNode( 4967 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4968 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4969 } 4970 4971 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4972 SmallVectorImpl<SDValue> &Results, 4973 SelectionDAG &DAG) const { 4974 switch (N->getOpcode()) { 4975 case ISD::INSERT_VECTOR_ELT: { 4976 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4977 Results.push_back(Res); 4978 return; 4979 } 4980 case ISD::EXTRACT_VECTOR_ELT: { 4981 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4982 Results.push_back(Res); 4983 return; 4984 } 4985 case ISD::INTRINSIC_WO_CHAIN: { 4986 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4987 switch (IID) { 4988 case Intrinsic::amdgcn_cvt_pkrtz: { 4989 SDValue Src0 = N->getOperand(1); 4990 SDValue Src1 = N->getOperand(2); 4991 SDLoc SL(N); 4992 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4993 Src0, Src1); 4994 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4995 return; 4996 } 4997 case Intrinsic::amdgcn_cvt_pknorm_i16: 4998 case Intrinsic::amdgcn_cvt_pknorm_u16: 4999 case Intrinsic::amdgcn_cvt_pk_i16: 5000 case Intrinsic::amdgcn_cvt_pk_u16: { 5001 SDValue Src0 = N->getOperand(1); 5002 SDValue Src1 = N->getOperand(2); 5003 SDLoc SL(N); 5004 unsigned Opcode; 5005 5006 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5007 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5008 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5009 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5010 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5011 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5012 else 5013 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5014 5015 EVT VT = N->getValueType(0); 5016 if (isTypeLegal(VT)) 5017 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5018 else { 5019 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5020 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5021 } 5022 return; 5023 } 5024 } 5025 break; 5026 } 5027 case ISD::INTRINSIC_W_CHAIN: { 5028 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5029 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5030 // FIXME: Hacky 5031 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5032 Results.push_back(Res.getOperand(I)); 5033 } 5034 } else { 5035 Results.push_back(Res); 5036 Results.push_back(Res.getValue(1)); 5037 } 5038 return; 5039 } 5040 5041 break; 5042 } 5043 case ISD::SELECT: { 5044 SDLoc SL(N); 5045 EVT VT = N->getValueType(0); 5046 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 5047 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 5048 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 5049 5050 EVT SelectVT = NewVT; 5051 if (NewVT.bitsLT(MVT::i32)) { 5052 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 5053 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 5054 SelectVT = MVT::i32; 5055 } 5056 5057 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 5058 N->getOperand(0), LHS, RHS); 5059 5060 if (NewVT != SelectVT) 5061 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 5062 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 5063 return; 5064 } 5065 case ISD::FNEG: { 5066 if (N->getValueType(0) != MVT::v2f16) 5067 break; 5068 5069 SDLoc SL(N); 5070 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5071 5072 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 5073 BC, 5074 DAG.getConstant(0x80008000, SL, MVT::i32)); 5075 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5076 return; 5077 } 5078 case ISD::FABS: { 5079 if (N->getValueType(0) != MVT::v2f16) 5080 break; 5081 5082 SDLoc SL(N); 5083 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5084 5085 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 5086 BC, 5087 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 5088 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5089 return; 5090 } 5091 default: 5092 break; 5093 } 5094 } 5095 5096 /// Helper function for LowerBRCOND 5097 static SDNode *findUser(SDValue Value, unsigned Opcode) { 5098 5099 SDNode *Parent = Value.getNode(); 5100 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 5101 I != E; ++I) { 5102 5103 if (I.getUse().get() != Value) 5104 continue; 5105 5106 if (I->getOpcode() == Opcode) 5107 return *I; 5108 } 5109 return nullptr; 5110 } 5111 5112 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 5113 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 5114 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 5115 case Intrinsic::amdgcn_if: 5116 return AMDGPUISD::IF; 5117 case Intrinsic::amdgcn_else: 5118 return AMDGPUISD::ELSE; 5119 case Intrinsic::amdgcn_loop: 5120 return AMDGPUISD::LOOP; 5121 case Intrinsic::amdgcn_end_cf: 5122 llvm_unreachable("should not occur"); 5123 default: 5124 return 0; 5125 } 5126 } 5127 5128 // break, if_break, else_break are all only used as inputs to loop, not 5129 // directly as branch conditions. 5130 return 0; 5131 } 5132 5133 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 5134 const Triple &TT = getTargetMachine().getTargetTriple(); 5135 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5136 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5137 AMDGPU::shouldEmitConstantsToTextSection(TT); 5138 } 5139 5140 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 5141 // FIXME: Either avoid relying on address space here or change the default 5142 // address space for functions to avoid the explicit check. 5143 return (GV->getValueType()->isFunctionTy() || 5144 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 5145 !shouldEmitFixup(GV) && 5146 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 5147 } 5148 5149 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 5150 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 5151 } 5152 5153 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 5154 if (!GV->hasExternalLinkage()) 5155 return true; 5156 5157 const auto OS = getTargetMachine().getTargetTriple().getOS(); 5158 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 5159 } 5160 5161 /// This transforms the control flow intrinsics to get the branch destination as 5162 /// last parameter, also switches branch target with BR if the need arise 5163 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 5164 SelectionDAG &DAG) const { 5165 SDLoc DL(BRCOND); 5166 5167 SDNode *Intr = BRCOND.getOperand(1).getNode(); 5168 SDValue Target = BRCOND.getOperand(2); 5169 SDNode *BR = nullptr; 5170 SDNode *SetCC = nullptr; 5171 5172 if (Intr->getOpcode() == ISD::SETCC) { 5173 // As long as we negate the condition everything is fine 5174 SetCC = Intr; 5175 Intr = SetCC->getOperand(0).getNode(); 5176 5177 } else { 5178 // Get the target from BR if we don't negate the condition 5179 BR = findUser(BRCOND, ISD::BR); 5180 assert(BR && "brcond missing unconditional branch user"); 5181 Target = BR->getOperand(1); 5182 } 5183 5184 unsigned CFNode = isCFIntrinsic(Intr); 5185 if (CFNode == 0) { 5186 // This is a uniform branch so we don't need to legalize. 5187 return BRCOND; 5188 } 5189 5190 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 5191 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 5192 5193 assert(!SetCC || 5194 (SetCC->getConstantOperandVal(1) == 1 && 5195 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 5196 ISD::SETNE)); 5197 5198 // operands of the new intrinsic call 5199 SmallVector<SDValue, 4> Ops; 5200 if (HaveChain) 5201 Ops.push_back(BRCOND.getOperand(0)); 5202 5203 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 5204 Ops.push_back(Target); 5205 5206 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 5207 5208 // build the new intrinsic call 5209 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 5210 5211 if (!HaveChain) { 5212 SDValue Ops[] = { 5213 SDValue(Result, 0), 5214 BRCOND.getOperand(0) 5215 }; 5216 5217 Result = DAG.getMergeValues(Ops, DL).getNode(); 5218 } 5219 5220 if (BR) { 5221 // Give the branch instruction our target 5222 SDValue Ops[] = { 5223 BR->getOperand(0), 5224 BRCOND.getOperand(2) 5225 }; 5226 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 5227 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 5228 } 5229 5230 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 5231 5232 // Copy the intrinsic results to registers 5233 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 5234 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 5235 if (!CopyToReg) 5236 continue; 5237 5238 Chain = DAG.getCopyToReg( 5239 Chain, DL, 5240 CopyToReg->getOperand(1), 5241 SDValue(Result, i - 1), 5242 SDValue()); 5243 5244 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 5245 } 5246 5247 // Remove the old intrinsic from the chain 5248 DAG.ReplaceAllUsesOfValueWith( 5249 SDValue(Intr, Intr->getNumValues() - 1), 5250 Intr->getOperand(0)); 5251 5252 return Chain; 5253 } 5254 5255 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 5256 SelectionDAG &DAG) const { 5257 MVT VT = Op.getSimpleValueType(); 5258 SDLoc DL(Op); 5259 // Checking the depth 5260 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 5261 return DAG.getConstant(0, DL, VT); 5262 5263 MachineFunction &MF = DAG.getMachineFunction(); 5264 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5265 // Check for kernel and shader functions 5266 if (Info->isEntryFunction()) 5267 return DAG.getConstant(0, DL, VT); 5268 5269 MachineFrameInfo &MFI = MF.getFrameInfo(); 5270 // There is a call to @llvm.returnaddress in this function 5271 MFI.setReturnAddressIsTaken(true); 5272 5273 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5274 // Get the return address reg and mark it as an implicit live-in 5275 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5276 5277 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5278 } 5279 5280 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5281 SDValue Op, 5282 const SDLoc &DL, 5283 EVT VT) const { 5284 return Op.getValueType().bitsLE(VT) ? 5285 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5286 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5287 DAG.getTargetConstant(0, DL, MVT::i32)); 5288 } 5289 5290 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5291 assert(Op.getValueType() == MVT::f16 && 5292 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5293 5294 SDValue Src = Op.getOperand(0); 5295 EVT SrcVT = Src.getValueType(); 5296 if (SrcVT != MVT::f64) 5297 return Op; 5298 5299 SDLoc DL(Op); 5300 5301 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5302 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5303 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5304 } 5305 5306 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5307 SelectionDAG &DAG) const { 5308 EVT VT = Op.getValueType(); 5309 const MachineFunction &MF = DAG.getMachineFunction(); 5310 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5311 bool IsIEEEMode = Info->getMode().IEEE; 5312 5313 // FIXME: Assert during selection that this is only selected for 5314 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5315 // mode functions, but this happens to be OK since it's only done in cases 5316 // where there is known no sNaN. 5317 if (IsIEEEMode) 5318 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5319 5320 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) 5321 return splitBinaryVectorOp(Op, DAG); 5322 return Op; 5323 } 5324 5325 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5326 EVT VT = Op.getValueType(); 5327 SDLoc SL(Op); 5328 SDValue LHS = Op.getOperand(0); 5329 SDValue RHS = Op.getOperand(1); 5330 bool isSigned = Op.getOpcode() == ISD::SMULO; 5331 5332 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5333 const APInt &C = RHSC->getAPIntValue(); 5334 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5335 if (C.isPowerOf2()) { 5336 // smulo(x, signed_min) is same as umulo(x, signed_min). 5337 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5338 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5339 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5340 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5341 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5342 SL, VT, Result, ShiftAmt), 5343 LHS, ISD::SETNE); 5344 return DAG.getMergeValues({ Result, Overflow }, SL); 5345 } 5346 } 5347 5348 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5349 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5350 SL, VT, LHS, RHS); 5351 5352 SDValue Sign = isSigned 5353 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5354 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5355 : DAG.getConstant(0, SL, VT); 5356 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5357 5358 return DAG.getMergeValues({ Result, Overflow }, SL); 5359 } 5360 5361 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 5362 if (Op->isDivergent()) { 5363 // Select to V_MAD_[IU]64_[IU]32. 5364 return Op; 5365 } 5366 if (Subtarget->hasSMulHi()) { 5367 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 5368 return SDValue(); 5369 } 5370 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 5371 // calculate the high part, so we might as well do the whole thing with 5372 // V_MAD_[IU]64_[IU]32. 5373 return Op; 5374 } 5375 5376 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5377 if (!Subtarget->isTrapHandlerEnabled() || 5378 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 5379 return lowerTrapEndpgm(Op, DAG); 5380 5381 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { 5382 switch (*HsaAbiVer) { 5383 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 5384 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 5385 return lowerTrapHsaQueuePtr(Op, DAG); 5386 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 5387 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 5388 return Subtarget->supportsGetDoorbellID() ? 5389 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); 5390 } 5391 } 5392 5393 llvm_unreachable("Unknown trap handler"); 5394 } 5395 5396 SDValue SITargetLowering::lowerTrapEndpgm( 5397 SDValue Op, SelectionDAG &DAG) const { 5398 SDLoc SL(Op); 5399 SDValue Chain = Op.getOperand(0); 5400 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5401 } 5402 5403 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, 5404 const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { 5405 MachineFunction &MF = DAG.getMachineFunction(); 5406 uint64_t Offset = getImplicitParameterOffset(MF, Param); 5407 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); 5408 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5409 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, 5410 MachineMemOperand::MODereferenceable | 5411 MachineMemOperand::MOInvariant); 5412 } 5413 5414 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 5415 SDValue Op, SelectionDAG &DAG) const { 5416 SDLoc SL(Op); 5417 SDValue Chain = Op.getOperand(0); 5418 5419 SDValue QueuePtr; 5420 // For code object version 5, QueuePtr is passed through implicit kernarg. 5421 if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { 5422 QueuePtr = 5423 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); 5424 } else { 5425 MachineFunction &MF = DAG.getMachineFunction(); 5426 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5427 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5428 5429 if (UserSGPR == AMDGPU::NoRegister) { 5430 // We probably are in a function incorrectly marked with 5431 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the 5432 // trap, so just use a null pointer. 5433 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 5434 } else { 5435 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, 5436 MVT::i64); 5437 } 5438 } 5439 5440 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5441 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5442 QueuePtr, SDValue()); 5443 5444 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5445 SDValue Ops[] = { 5446 ToReg, 5447 DAG.getTargetConstant(TrapID, SL, MVT::i16), 5448 SGPR01, 5449 ToReg.getValue(1) 5450 }; 5451 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5452 } 5453 5454 SDValue SITargetLowering::lowerTrapHsa( 5455 SDValue Op, SelectionDAG &DAG) const { 5456 SDLoc SL(Op); 5457 SDValue Chain = Op.getOperand(0); 5458 5459 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5460 SDValue Ops[] = { 5461 Chain, 5462 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5463 }; 5464 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5465 } 5466 5467 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5468 SDLoc SL(Op); 5469 SDValue Chain = Op.getOperand(0); 5470 MachineFunction &MF = DAG.getMachineFunction(); 5471 5472 if (!Subtarget->isTrapHandlerEnabled() || 5473 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 5474 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5475 "debugtrap handler not supported", 5476 Op.getDebugLoc(), 5477 DS_Warning); 5478 LLVMContext &Ctx = MF.getFunction().getContext(); 5479 Ctx.diagnose(NoTrap); 5480 return Chain; 5481 } 5482 5483 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 5484 SDValue Ops[] = { 5485 Chain, 5486 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5487 }; 5488 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5489 } 5490 5491 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5492 SelectionDAG &DAG) const { 5493 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5494 if (Subtarget->hasApertureRegs()) { 5495 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5496 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5497 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5498 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5499 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5500 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5501 unsigned Encoding = 5502 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5503 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5504 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5505 5506 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5507 SDValue ApertureReg = SDValue( 5508 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5509 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5510 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5511 } 5512 5513 // For code object version 5, private_base and shared_base are passed through 5514 // implicit kernargs. 5515 if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { 5516 ImplicitParameter Param = 5517 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; 5518 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); 5519 } 5520 5521 MachineFunction &MF = DAG.getMachineFunction(); 5522 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5523 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5524 if (UserSGPR == AMDGPU::NoRegister) { 5525 // We probably are in a function incorrectly marked with 5526 // amdgpu-no-queue-ptr. This is undefined. 5527 return DAG.getUNDEF(MVT::i32); 5528 } 5529 5530 SDValue QueuePtr = CreateLiveInRegister( 5531 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5532 5533 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5534 // private_segment_aperture_base_hi. 5535 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5536 5537 SDValue Ptr = 5538 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5539 5540 // TODO: Use custom target PseudoSourceValue. 5541 // TODO: We should use the value from the IR intrinsic call, but it might not 5542 // be available and how do we get it? 5543 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5544 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5545 commonAlignment(Align(64), StructOffset), 5546 MachineMemOperand::MODereferenceable | 5547 MachineMemOperand::MOInvariant); 5548 } 5549 5550 /// Return true if the value is a known valid address, such that a null check is 5551 /// not necessary. 5552 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 5553 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 5554 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 5555 isa<BasicBlockSDNode>(Val)) 5556 return true; 5557 5558 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 5559 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 5560 5561 // TODO: Search through arithmetic, handle arguments and loads 5562 // marked nonnull. 5563 return false; 5564 } 5565 5566 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5567 SelectionDAG &DAG) const { 5568 SDLoc SL(Op); 5569 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5570 5571 SDValue Src = ASC->getOperand(0); 5572 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5573 unsigned SrcAS = ASC->getSrcAddressSpace(); 5574 5575 const AMDGPUTargetMachine &TM = 5576 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5577 5578 // flat -> local/private 5579 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 5580 unsigned DestAS = ASC->getDestAddressSpace(); 5581 5582 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5583 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5584 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5585 5586 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5587 return Ptr; 5588 5589 unsigned NullVal = TM.getNullPointerValue(DestAS); 5590 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5591 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5592 5593 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 5594 SegmentNullPtr); 5595 } 5596 } 5597 5598 // local/private -> flat 5599 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5600 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5601 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5602 5603 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5604 SDValue CvtPtr = 5605 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5606 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 5607 5608 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5609 return CvtPtr; 5610 5611 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5612 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5613 5614 SDValue NonNull 5615 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5616 5617 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 5618 FlatNullPtr); 5619 } 5620 } 5621 5622 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5623 Op.getValueType() == MVT::i64) { 5624 const SIMachineFunctionInfo *Info = 5625 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); 5626 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); 5627 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); 5628 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 5629 } 5630 5631 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5632 Src.getValueType() == MVT::i64) 5633 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5634 5635 // global <-> flat are no-ops and never emitted. 5636 5637 const MachineFunction &MF = DAG.getMachineFunction(); 5638 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5639 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5640 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5641 5642 return DAG.getUNDEF(ASC->getValueType(0)); 5643 } 5644 5645 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5646 // the small vector and inserting them into the big vector. That is better than 5647 // the default expansion of doing it via a stack slot. Even though the use of 5648 // the stack slot would be optimized away afterwards, the stack slot itself 5649 // remains. 5650 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5651 SelectionDAG &DAG) const { 5652 SDValue Vec = Op.getOperand(0); 5653 SDValue Ins = Op.getOperand(1); 5654 SDValue Idx = Op.getOperand(2); 5655 EVT VecVT = Vec.getValueType(); 5656 EVT InsVT = Ins.getValueType(); 5657 EVT EltVT = VecVT.getVectorElementType(); 5658 unsigned InsNumElts = InsVT.getVectorNumElements(); 5659 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5660 SDLoc SL(Op); 5661 5662 for (unsigned I = 0; I != InsNumElts; ++I) { 5663 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5664 DAG.getConstant(I, SL, MVT::i32)); 5665 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5666 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5667 } 5668 return Vec; 5669 } 5670 5671 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5672 SelectionDAG &DAG) const { 5673 SDValue Vec = Op.getOperand(0); 5674 SDValue InsVal = Op.getOperand(1); 5675 SDValue Idx = Op.getOperand(2); 5676 EVT VecVT = Vec.getValueType(); 5677 EVT EltVT = VecVT.getVectorElementType(); 5678 unsigned VecSize = VecVT.getSizeInBits(); 5679 unsigned EltSize = EltVT.getSizeInBits(); 5680 SDLoc SL(Op); 5681 5682 // Specially handle the case of v4i16 with static indexing. 5683 unsigned NumElts = VecVT.getVectorNumElements(); 5684 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5685 if (NumElts == 4 && EltSize == 16 && KIdx) { 5686 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5687 5688 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5689 DAG.getConstant(0, SL, MVT::i32)); 5690 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5691 DAG.getConstant(1, SL, MVT::i32)); 5692 5693 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5694 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5695 5696 unsigned Idx = KIdx->getZExtValue(); 5697 bool InsertLo = Idx < 2; 5698 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5699 InsertLo ? LoVec : HiVec, 5700 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5701 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5702 5703 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5704 5705 SDValue Concat = InsertLo ? 5706 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5707 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5708 5709 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5710 } 5711 5712 // Static indexing does not lower to stack access, and hence there is no need 5713 // for special custom lowering to avoid stack access. 5714 if (isa<ConstantSDNode>(Idx)) 5715 return SDValue(); 5716 5717 // Avoid stack access for dynamic indexing by custom lowering to 5718 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5719 5720 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); 5721 5722 MVT IntVT = MVT::getIntegerVT(VecSize); 5723 5724 // Convert vector index to bit-index and get the required bit mask. 5725 assert(isPowerOf2_32(EltSize)); 5726 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5727 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5728 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5729 DAG.getConstant(0xffff, SL, IntVT), 5730 ScaledIdx); 5731 5732 // 1. Create a congruent vector with the target value in each element. 5733 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5734 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5735 5736 // 2. Mask off all other indicies except the required index within (1). 5737 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5738 5739 // 3. Mask off the required index within the target vector. 5740 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5741 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5742 DAG.getNOT(SL, BFM, IntVT), BCVec); 5743 5744 // 4. Get (2) and (3) ORed into the target vector. 5745 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5746 5747 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5748 } 5749 5750 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5751 SelectionDAG &DAG) const { 5752 SDLoc SL(Op); 5753 5754 EVT ResultVT = Op.getValueType(); 5755 SDValue Vec = Op.getOperand(0); 5756 SDValue Idx = Op.getOperand(1); 5757 EVT VecVT = Vec.getValueType(); 5758 unsigned VecSize = VecVT.getSizeInBits(); 5759 EVT EltVT = VecVT.getVectorElementType(); 5760 5761 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5762 5763 // Make sure we do any optimizations that will make it easier to fold 5764 // source modifiers before obscuring it with bit operations. 5765 5766 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5767 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5768 return Combined; 5769 5770 if (VecSize == 128 || VecSize == 256) { 5771 SDValue Lo, Hi; 5772 EVT LoVT, HiVT; 5773 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5774 5775 if (VecSize == 128) { 5776 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 5777 Lo = DAG.getBitcast(LoVT, 5778 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5779 DAG.getConstant(0, SL, MVT::i32))); 5780 Hi = DAG.getBitcast(HiVT, 5781 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5782 DAG.getConstant(1, SL, MVT::i32))); 5783 } else { 5784 assert(VecSize == 256); 5785 5786 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); 5787 SDValue Parts[4]; 5788 for (unsigned P = 0; P < 4; ++P) { 5789 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 5790 DAG.getConstant(P, SL, MVT::i32)); 5791 } 5792 5793 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 5794 Parts[0], Parts[1])); 5795 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 5796 Parts[2], Parts[3])); 5797 } 5798 5799 EVT IdxVT = Idx.getValueType(); 5800 unsigned NElem = VecVT.getVectorNumElements(); 5801 assert(isPowerOf2_32(NElem)); 5802 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 5803 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 5804 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 5805 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 5806 } 5807 5808 assert(VecSize <= 64); 5809 5810 MVT IntVT = MVT::getIntegerVT(VecSize); 5811 5812 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. 5813 SDValue VecBC = peekThroughBitcasts(Vec); 5814 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5815 SDValue Src = VecBC.getOperand(0); 5816 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); 5817 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); 5818 } 5819 5820 unsigned EltSize = EltVT.getSizeInBits(); 5821 assert(isPowerOf2_32(EltSize)); 5822 5823 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5824 5825 // Convert vector index to bit-index (* EltSize) 5826 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5827 5828 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5829 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5830 5831 if (ResultVT == MVT::f16) { 5832 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5833 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5834 } 5835 5836 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5837 } 5838 5839 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5840 assert(Elt % 2 == 0); 5841 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5842 } 5843 5844 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5845 SelectionDAG &DAG) const { 5846 SDLoc SL(Op); 5847 EVT ResultVT = Op.getValueType(); 5848 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5849 5850 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5851 EVT EltVT = PackVT.getVectorElementType(); 5852 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5853 5854 // vector_shuffle <0,1,6,7> lhs, rhs 5855 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5856 // 5857 // vector_shuffle <6,7,2,3> lhs, rhs 5858 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5859 // 5860 // vector_shuffle <6,7,0,1> lhs, rhs 5861 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5862 5863 // Avoid scalarizing when both halves are reading from consecutive elements. 5864 SmallVector<SDValue, 4> Pieces; 5865 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5866 if (elementPairIsContiguous(SVN->getMask(), I)) { 5867 const int Idx = SVN->getMaskElt(I); 5868 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5869 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5870 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5871 PackVT, SVN->getOperand(VecIdx), 5872 DAG.getConstant(EltIdx, SL, MVT::i32)); 5873 Pieces.push_back(SubVec); 5874 } else { 5875 const int Idx0 = SVN->getMaskElt(I); 5876 const int Idx1 = SVN->getMaskElt(I + 1); 5877 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5878 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5879 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5880 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5881 5882 SDValue Vec0 = SVN->getOperand(VecIdx0); 5883 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5884 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5885 5886 SDValue Vec1 = SVN->getOperand(VecIdx1); 5887 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5888 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5889 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5890 } 5891 } 5892 5893 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5894 } 5895 5896 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5897 SelectionDAG &DAG) const { 5898 SDValue SVal = Op.getOperand(0); 5899 EVT ResultVT = Op.getValueType(); 5900 EVT SValVT = SVal.getValueType(); 5901 SDValue UndefVal = DAG.getUNDEF(SValVT); 5902 SDLoc SL(Op); 5903 5904 SmallVector<SDValue, 8> VElts; 5905 VElts.push_back(SVal); 5906 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) 5907 VElts.push_back(UndefVal); 5908 5909 return DAG.getBuildVector(ResultVT, SL, VElts); 5910 } 5911 5912 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5913 SelectionDAG &DAG) const { 5914 SDLoc SL(Op); 5915 EVT VT = Op.getValueType(); 5916 5917 if (VT == MVT::v4i16 || VT == MVT::v4f16 || 5918 VT == MVT::v8i16 || VT == MVT::v8f16) { 5919 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5920 VT.getVectorNumElements() / 2); 5921 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 5922 5923 // Turn into pair of packed build_vectors. 5924 // TODO: Special case for constants that can be materialized with s_mov_b64. 5925 SmallVector<SDValue, 4> LoOps, HiOps; 5926 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 5927 LoOps.push_back(Op.getOperand(I)); 5928 HiOps.push_back(Op.getOperand(I + E)); 5929 } 5930 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 5931 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 5932 5933 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 5934 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 5935 5936 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 5937 { CastLo, CastHi }); 5938 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5939 } 5940 5941 if (VT == MVT::v16i16 || VT == MVT::v16f16) { 5942 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5943 VT.getVectorNumElements() / 4); 5944 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 5945 5946 SmallVector<SDValue, 4> Parts[4]; 5947 for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { 5948 for (unsigned P = 0; P < 4; ++P) 5949 Parts[P].push_back(Op.getOperand(I + P * E)); 5950 } 5951 SDValue Casts[4]; 5952 for (unsigned P = 0; P < 4; ++P) { 5953 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 5954 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 5955 } 5956 5957 SDValue Blend = 5958 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); 5959 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5960 } 5961 5962 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5963 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5964 5965 SDValue Lo = Op.getOperand(0); 5966 SDValue Hi = Op.getOperand(1); 5967 5968 // Avoid adding defined bits with the zero_extend. 5969 if (Hi.isUndef()) { 5970 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5971 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5972 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5973 } 5974 5975 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5976 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5977 5978 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5979 DAG.getConstant(16, SL, MVT::i32)); 5980 if (Lo.isUndef()) 5981 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5982 5983 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5984 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5985 5986 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5987 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5988 } 5989 5990 bool 5991 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5992 // We can fold offsets for anything that doesn't require a GOT relocation. 5993 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5994 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5995 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5996 !shouldEmitGOTReloc(GA->getGlobal()); 5997 } 5998 5999 static SDValue 6000 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 6001 const SDLoc &DL, int64_t Offset, EVT PtrVT, 6002 unsigned GAFlags = SIInstrInfo::MO_NONE) { 6003 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 6004 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 6005 // lowered to the following code sequence: 6006 // 6007 // For constant address space: 6008 // s_getpc_b64 s[0:1] 6009 // s_add_u32 s0, s0, $symbol 6010 // s_addc_u32 s1, s1, 0 6011 // 6012 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6013 // a fixup or relocation is emitted to replace $symbol with a literal 6014 // constant, which is a pc-relative offset from the encoding of the $symbol 6015 // operand to the global variable. 6016 // 6017 // For global address space: 6018 // s_getpc_b64 s[0:1] 6019 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 6020 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 6021 // 6022 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 6023 // fixups or relocations are emitted to replace $symbol@*@lo and 6024 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 6025 // which is a 64-bit pc-relative offset from the encoding of the $symbol 6026 // operand to the global variable. 6027 // 6028 // What we want here is an offset from the value returned by s_getpc 6029 // (which is the address of the s_add_u32 instruction) to the global 6030 // variable, but since the encoding of $symbol starts 4 bytes after the start 6031 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 6032 // small. This requires us to add 4 to the global variable offset in order to 6033 // compute the correct address. Similarly for the s_addc_u32 instruction, the 6034 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 6035 // instruction. 6036 SDValue PtrLo = 6037 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 6038 SDValue PtrHi; 6039 if (GAFlags == SIInstrInfo::MO_NONE) { 6040 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 6041 } else { 6042 PtrHi = 6043 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 6044 } 6045 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 6046 } 6047 6048 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 6049 SDValue Op, 6050 SelectionDAG &DAG) const { 6051 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 6052 SDLoc DL(GSD); 6053 EVT PtrVT = Op.getValueType(); 6054 6055 const GlobalValue *GV = GSD->getGlobal(); 6056 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6057 shouldUseLDSConstAddress(GV)) || 6058 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 6059 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 6060 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 6061 GV->hasExternalLinkage()) { 6062 Type *Ty = GV->getValueType(); 6063 // HIP uses an unsized array `extern __shared__ T s[]` or similar 6064 // zero-sized type in other languages to declare the dynamic shared 6065 // memory which size is not known at the compile time. They will be 6066 // allocated by the runtime and placed directly after the static 6067 // allocated ones. They all share the same offset. 6068 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 6069 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 6070 // Adjust alignment for that dynamic shared memory array. 6071 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); 6072 return SDValue( 6073 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 6074 } 6075 } 6076 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 6077 } 6078 6079 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 6080 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 6081 SIInstrInfo::MO_ABS32_LO); 6082 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 6083 } 6084 6085 if (shouldEmitFixup(GV)) 6086 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 6087 else if (shouldEmitPCReloc(GV)) 6088 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 6089 SIInstrInfo::MO_REL32); 6090 6091 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 6092 SIInstrInfo::MO_GOTPCREL32); 6093 6094 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 6095 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 6096 const DataLayout &DataLayout = DAG.getDataLayout(); 6097 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 6098 MachinePointerInfo PtrInfo 6099 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 6100 6101 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 6102 MachineMemOperand::MODereferenceable | 6103 MachineMemOperand::MOInvariant); 6104 } 6105 6106 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 6107 const SDLoc &DL, SDValue V) const { 6108 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 6109 // the destination register. 6110 // 6111 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 6112 // so we will end up with redundant moves to m0. 6113 // 6114 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 6115 6116 // A Null SDValue creates a glue result. 6117 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 6118 V, Chain); 6119 return SDValue(M0, 0); 6120 } 6121 6122 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 6123 SDValue Op, 6124 MVT VT, 6125 unsigned Offset) const { 6126 SDLoc SL(Op); 6127 SDValue Param = lowerKernargMemParameter( 6128 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 6129 // The local size values will have the hi 16-bits as zero. 6130 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 6131 DAG.getValueType(VT)); 6132 } 6133 6134 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6135 EVT VT) { 6136 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6137 "non-hsa intrinsic with hsa target", 6138 DL.getDebugLoc()); 6139 DAG.getContext()->diagnose(BadIntrin); 6140 return DAG.getUNDEF(VT); 6141 } 6142 6143 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6144 EVT VT) { 6145 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6146 "intrinsic not supported on subtarget", 6147 DL.getDebugLoc()); 6148 DAG.getContext()->diagnose(BadIntrin); 6149 return DAG.getUNDEF(VT); 6150 } 6151 6152 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 6153 ArrayRef<SDValue> Elts) { 6154 assert(!Elts.empty()); 6155 MVT Type; 6156 unsigned NumElts = Elts.size(); 6157 6158 if (NumElts <= 8) { 6159 Type = MVT::getVectorVT(MVT::f32, NumElts); 6160 } else { 6161 assert(Elts.size() <= 16); 6162 Type = MVT::v16f32; 6163 NumElts = 16; 6164 } 6165 6166 SmallVector<SDValue, 16> VecElts(NumElts); 6167 for (unsigned i = 0; i < Elts.size(); ++i) { 6168 SDValue Elt = Elts[i]; 6169 if (Elt.getValueType() != MVT::f32) 6170 Elt = DAG.getBitcast(MVT::f32, Elt); 6171 VecElts[i] = Elt; 6172 } 6173 for (unsigned i = Elts.size(); i < NumElts; ++i) 6174 VecElts[i] = DAG.getUNDEF(MVT::f32); 6175 6176 if (NumElts == 1) 6177 return VecElts[0]; 6178 return DAG.getBuildVector(Type, DL, VecElts); 6179 } 6180 6181 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 6182 SDValue Src, int ExtraElts) { 6183 EVT SrcVT = Src.getValueType(); 6184 6185 SmallVector<SDValue, 8> Elts; 6186 6187 if (SrcVT.isVector()) 6188 DAG.ExtractVectorElements(Src, Elts); 6189 else 6190 Elts.push_back(Src); 6191 6192 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 6193 while (ExtraElts--) 6194 Elts.push_back(Undef); 6195 6196 return DAG.getBuildVector(CastVT, DL, Elts); 6197 } 6198 6199 // Re-construct the required return value for a image load intrinsic. 6200 // This is more complicated due to the optional use TexFailCtrl which means the required 6201 // return type is an aggregate 6202 static SDValue constructRetValue(SelectionDAG &DAG, 6203 MachineSDNode *Result, 6204 ArrayRef<EVT> ResultTypes, 6205 bool IsTexFail, bool Unpacked, bool IsD16, 6206 int DMaskPop, int NumVDataDwords, 6207 const SDLoc &DL) { 6208 // Determine the required return type. This is the same regardless of IsTexFail flag 6209 EVT ReqRetVT = ResultTypes[0]; 6210 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 6211 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6212 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 6213 6214 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6215 DMaskPop : (DMaskPop + 1) / 2; 6216 6217 MVT DataDwordVT = NumDataDwords == 1 ? 6218 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 6219 6220 MVT MaskPopVT = MaskPopDwords == 1 ? 6221 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 6222 6223 SDValue Data(Result, 0); 6224 SDValue TexFail; 6225 6226 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 6227 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 6228 if (MaskPopVT.isVector()) { 6229 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 6230 SDValue(Result, 0), ZeroIdx); 6231 } else { 6232 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 6233 SDValue(Result, 0), ZeroIdx); 6234 } 6235 } 6236 6237 if (DataDwordVT.isVector()) 6238 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 6239 NumDataDwords - MaskPopDwords); 6240 6241 if (IsD16) 6242 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 6243 6244 EVT LegalReqRetVT = ReqRetVT; 6245 if (!ReqRetVT.isVector()) { 6246 if (!Data.getValueType().isInteger()) 6247 Data = DAG.getNode(ISD::BITCAST, DL, 6248 Data.getValueType().changeTypeToInteger(), Data); 6249 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 6250 } else { 6251 // We need to widen the return vector to a legal type 6252 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 6253 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 6254 LegalReqRetVT = 6255 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 6256 ReqRetVT.getVectorNumElements() + 1); 6257 } 6258 } 6259 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 6260 6261 if (IsTexFail) { 6262 TexFail = 6263 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 6264 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 6265 6266 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 6267 } 6268 6269 if (Result->getNumValues() == 1) 6270 return Data; 6271 6272 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 6273 } 6274 6275 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 6276 SDValue *LWE, bool &IsTexFail) { 6277 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 6278 6279 uint64_t Value = TexFailCtrlConst->getZExtValue(); 6280 if (Value) { 6281 IsTexFail = true; 6282 } 6283 6284 SDLoc DL(TexFailCtrlConst); 6285 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 6286 Value &= ~(uint64_t)0x1; 6287 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 6288 Value &= ~(uint64_t)0x2; 6289 6290 return Value == 0; 6291 } 6292 6293 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 6294 MVT PackVectorVT, 6295 SmallVectorImpl<SDValue> &PackedAddrs, 6296 unsigned DimIdx, unsigned EndIdx, 6297 unsigned NumGradients) { 6298 SDLoc DL(Op); 6299 for (unsigned I = DimIdx; I < EndIdx; I++) { 6300 SDValue Addr = Op.getOperand(I); 6301 6302 // Gradients are packed with undef for each coordinate. 6303 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 6304 // 1D: undef,dx/dh; undef,dx/dv 6305 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 6306 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 6307 if (((I + 1) >= EndIdx) || 6308 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 6309 I == DimIdx + NumGradients - 1))) { 6310 if (Addr.getValueType() != MVT::i16) 6311 Addr = DAG.getBitcast(MVT::i16, Addr); 6312 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 6313 } else { 6314 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 6315 I++; 6316 } 6317 Addr = DAG.getBitcast(MVT::f32, Addr); 6318 PackedAddrs.push_back(Addr); 6319 } 6320 } 6321 6322 SDValue SITargetLowering::lowerImage(SDValue Op, 6323 const AMDGPU::ImageDimIntrinsicInfo *Intr, 6324 SelectionDAG &DAG, bool WithChain) const { 6325 SDLoc DL(Op); 6326 MachineFunction &MF = DAG.getMachineFunction(); 6327 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 6328 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 6329 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 6330 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 6331 unsigned IntrOpcode = Intr->BaseOpcode; 6332 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 6333 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 6334 6335 SmallVector<EVT, 3> ResultTypes(Op->values()); 6336 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 6337 bool IsD16 = false; 6338 bool IsG16 = false; 6339 bool IsA16 = false; 6340 SDValue VData; 6341 int NumVDataDwords; 6342 bool AdjustRetType = false; 6343 6344 // Offset of intrinsic arguments 6345 const unsigned ArgOffset = WithChain ? 2 : 1; 6346 6347 unsigned DMask; 6348 unsigned DMaskLanes = 0; 6349 6350 if (BaseOpcode->Atomic) { 6351 VData = Op.getOperand(2); 6352 6353 bool Is64Bit = VData.getValueType() == MVT::i64; 6354 if (BaseOpcode->AtomicX2) { 6355 SDValue VData2 = Op.getOperand(3); 6356 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 6357 {VData, VData2}); 6358 if (Is64Bit) 6359 VData = DAG.getBitcast(MVT::v4i32, VData); 6360 6361 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 6362 DMask = Is64Bit ? 0xf : 0x3; 6363 NumVDataDwords = Is64Bit ? 4 : 2; 6364 } else { 6365 DMask = Is64Bit ? 0x3 : 0x1; 6366 NumVDataDwords = Is64Bit ? 2 : 1; 6367 } 6368 } else { 6369 auto *DMaskConst = 6370 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 6371 DMask = DMaskConst->getZExtValue(); 6372 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 6373 6374 if (BaseOpcode->Store) { 6375 VData = Op.getOperand(2); 6376 6377 MVT StoreVT = VData.getSimpleValueType(); 6378 if (StoreVT.getScalarType() == MVT::f16) { 6379 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6380 return Op; // D16 is unsupported for this instruction 6381 6382 IsD16 = true; 6383 VData = handleD16VData(VData, DAG, true); 6384 } 6385 6386 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 6387 } else { 6388 // Work out the num dwords based on the dmask popcount and underlying type 6389 // and whether packing is supported. 6390 MVT LoadVT = ResultTypes[0].getSimpleVT(); 6391 if (LoadVT.getScalarType() == MVT::f16) { 6392 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6393 return Op; // D16 is unsupported for this instruction 6394 6395 IsD16 = true; 6396 } 6397 6398 // Confirm that the return type is large enough for the dmask specified 6399 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 6400 (!LoadVT.isVector() && DMaskLanes > 1)) 6401 return Op; 6402 6403 // The sq block of gfx8 and gfx9 do not estimate register use correctly 6404 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 6405 // instructions. 6406 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 6407 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 6408 NumVDataDwords = (DMaskLanes + 1) / 2; 6409 else 6410 NumVDataDwords = DMaskLanes; 6411 6412 AdjustRetType = true; 6413 } 6414 } 6415 6416 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 6417 SmallVector<SDValue, 4> VAddrs; 6418 6419 // Check for 16 bit addresses or derivatives and pack if true. 6420 MVT VAddrVT = 6421 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 6422 MVT VAddrScalarVT = VAddrVT.getScalarType(); 6423 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6424 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6425 6426 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6427 VAddrScalarVT = VAddrVT.getScalarType(); 6428 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6429 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6430 6431 // Push back extra arguments. 6432 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 6433 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 6434 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 6435 // Special handling of bias when A16 is on. Bias is of type half but 6436 // occupies full 32-bit. 6437 SDValue Bias = DAG.getBuildVector( 6438 MVT::v2f16, DL, 6439 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 6440 VAddrs.push_back(Bias); 6441 } else { 6442 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 6443 "Bias needs to be converted to 16 bit in A16 mode"); 6444 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 6445 } 6446 } 6447 6448 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 6449 // 16 bit gradients are supported, but are tied to the A16 control 6450 // so both gradients and addresses must be 16 bit 6451 LLVM_DEBUG( 6452 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6453 "require 16 bit args for both gradients and addresses"); 6454 return Op; 6455 } 6456 6457 if (IsA16) { 6458 if (!ST->hasA16()) { 6459 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6460 "support 16 bit addresses\n"); 6461 return Op; 6462 } 6463 } 6464 6465 // We've dealt with incorrect input so we know that if IsA16, IsG16 6466 // are set then we have to compress/pack operands (either address, 6467 // gradient or both) 6468 // In the case where a16 and gradients are tied (no G16 support) then we 6469 // have already verified that both IsA16 and IsG16 are true 6470 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 6471 // Activate g16 6472 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6473 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6474 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6475 } 6476 6477 // Add gradients (packed or unpacked) 6478 if (IsG16) { 6479 // Pack the gradients 6480 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6481 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 6482 ArgOffset + Intr->GradientStart, 6483 ArgOffset + Intr->CoordStart, Intr->NumGradients); 6484 } else { 6485 for (unsigned I = ArgOffset + Intr->GradientStart; 6486 I < ArgOffset + Intr->CoordStart; I++) 6487 VAddrs.push_back(Op.getOperand(I)); 6488 } 6489 6490 // Add addresses (packed or unpacked) 6491 if (IsA16) { 6492 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 6493 ArgOffset + Intr->CoordStart, VAddrEnd, 6494 0 /* No gradients */); 6495 } else { 6496 // Add uncompressed address 6497 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6498 VAddrs.push_back(Op.getOperand(I)); 6499 } 6500 6501 // If the register allocator cannot place the address registers contiguously 6502 // without introducing moves, then using the non-sequential address encoding 6503 // is always preferable, since it saves VALU instructions and is usually a 6504 // wash in terms of code size or even better. 6505 // 6506 // However, we currently have no way of hinting to the register allocator that 6507 // MIMG addresses should be placed contiguously when it is possible to do so, 6508 // so force non-NSA for the common 2-address case as a heuristic. 6509 // 6510 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6511 // allocation when possible. 6512 // 6513 // TODO: we can actually allow partial NSA where the final register is a 6514 // contiguous set of the remaining addresses. 6515 // This could help where there are more addresses than supported. 6516 bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) && 6517 VAddrs.size() >= 3 && 6518 VAddrs.size() <= (unsigned)ST->getNSAMaxSize(); 6519 SDValue VAddr; 6520 if (!UseNSA) 6521 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6522 6523 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6524 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6525 SDValue Unorm; 6526 if (!BaseOpcode->Sampler) { 6527 Unorm = True; 6528 } else { 6529 auto UnormConst = 6530 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6531 6532 Unorm = UnormConst->getZExtValue() ? True : False; 6533 } 6534 6535 SDValue TFE; 6536 SDValue LWE; 6537 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6538 bool IsTexFail = false; 6539 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6540 return Op; 6541 6542 if (IsTexFail) { 6543 if (!DMaskLanes) { 6544 // Expecting to get an error flag since TFC is on - and dmask is 0 6545 // Force dmask to be at least 1 otherwise the instruction will fail 6546 DMask = 0x1; 6547 DMaskLanes = 1; 6548 NumVDataDwords = 1; 6549 } 6550 NumVDataDwords += 1; 6551 AdjustRetType = true; 6552 } 6553 6554 // Has something earlier tagged that the return type needs adjusting 6555 // This happens if the instruction is a load or has set TexFailCtrl flags 6556 if (AdjustRetType) { 6557 // NumVDataDwords reflects the true number of dwords required in the return type 6558 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6559 // This is a no-op load. This can be eliminated 6560 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6561 if (isa<MemSDNode>(Op)) 6562 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6563 return Undef; 6564 } 6565 6566 EVT NewVT = NumVDataDwords > 1 ? 6567 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6568 : MVT::i32; 6569 6570 ResultTypes[0] = NewVT; 6571 if (ResultTypes.size() == 3) { 6572 // Original result was aggregate type used for TexFailCtrl results 6573 // The actual instruction returns as a vector type which has now been 6574 // created. Remove the aggregate result. 6575 ResultTypes.erase(&ResultTypes[1]); 6576 } 6577 } 6578 6579 unsigned CPol = cast<ConstantSDNode>( 6580 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 6581 if (BaseOpcode->Atomic) 6582 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 6583 if (CPol & ~AMDGPU::CPol::ALL) 6584 return Op; 6585 6586 SmallVector<SDValue, 26> Ops; 6587 if (BaseOpcode->Store || BaseOpcode->Atomic) 6588 Ops.push_back(VData); // vdata 6589 if (UseNSA) 6590 append_range(Ops, VAddrs); 6591 else 6592 Ops.push_back(VAddr); 6593 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6594 if (BaseOpcode->Sampler) 6595 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6596 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6597 if (IsGFX10Plus) 6598 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6599 Ops.push_back(Unorm); 6600 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 6601 Ops.push_back(IsA16 && // r128, a16 for gfx9 6602 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6603 if (IsGFX10Plus) 6604 Ops.push_back(IsA16 ? True : False); 6605 if (!Subtarget->hasGFX90AInsts()) { 6606 Ops.push_back(TFE); //tfe 6607 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { 6608 report_fatal_error("TFE is not supported on this GPU"); 6609 } 6610 Ops.push_back(LWE); // lwe 6611 if (!IsGFX10Plus) 6612 Ops.push_back(DimInfo->DA ? True : False); 6613 if (BaseOpcode->HasD16) 6614 Ops.push_back(IsD16 ? True : False); 6615 if (isa<MemSDNode>(Op)) 6616 Ops.push_back(Op.getOperand(0)); // chain 6617 6618 int NumVAddrDwords = 6619 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6620 int Opcode = -1; 6621 6622 if (IsGFX11Plus) { 6623 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6624 UseNSA ? AMDGPU::MIMGEncGfx11NSA 6625 : AMDGPU::MIMGEncGfx11Default, 6626 NumVDataDwords, NumVAddrDwords); 6627 } else if (IsGFX10Plus) { 6628 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6629 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6630 : AMDGPU::MIMGEncGfx10Default, 6631 NumVDataDwords, NumVAddrDwords); 6632 } else { 6633 if (Subtarget->hasGFX90AInsts()) { 6634 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 6635 NumVDataDwords, NumVAddrDwords); 6636 if (Opcode == -1) 6637 report_fatal_error( 6638 "requested image instruction is not supported on this GPU"); 6639 } 6640 if (Opcode == -1 && 6641 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6642 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6643 NumVDataDwords, NumVAddrDwords); 6644 if (Opcode == -1) 6645 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6646 NumVDataDwords, NumVAddrDwords); 6647 } 6648 assert(Opcode != -1); 6649 6650 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6651 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6652 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6653 DAG.setNodeMemRefs(NewNode, {MemRef}); 6654 } 6655 6656 if (BaseOpcode->AtomicX2) { 6657 SmallVector<SDValue, 1> Elt; 6658 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6659 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6660 } 6661 if (BaseOpcode->Store) 6662 return SDValue(NewNode, 0); 6663 return constructRetValue(DAG, NewNode, 6664 OrigResultTypes, IsTexFail, 6665 Subtarget->hasUnpackedD16VMem(), IsD16, 6666 DMaskLanes, NumVDataDwords, DL); 6667 } 6668 6669 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6670 SDValue Offset, SDValue CachePolicy, 6671 SelectionDAG &DAG) const { 6672 MachineFunction &MF = DAG.getMachineFunction(); 6673 6674 const DataLayout &DataLayout = DAG.getDataLayout(); 6675 Align Alignment = 6676 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6677 6678 MachineMemOperand *MMO = MF.getMachineMemOperand( 6679 MachinePointerInfo(), 6680 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6681 MachineMemOperand::MOInvariant, 6682 VT.getStoreSize(), Alignment); 6683 6684 if (!Offset->isDivergent()) { 6685 SDValue Ops[] = { 6686 Rsrc, 6687 Offset, // Offset 6688 CachePolicy 6689 }; 6690 6691 // Widen vec3 load to vec4. 6692 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6693 EVT WidenedVT = 6694 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6695 auto WidenedOp = DAG.getMemIntrinsicNode( 6696 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6697 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6698 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6699 DAG.getVectorIdxConstant(0, DL)); 6700 return Subvector; 6701 } 6702 6703 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6704 DAG.getVTList(VT), Ops, VT, MMO); 6705 } 6706 6707 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6708 // assume that the buffer is unswizzled. 6709 SmallVector<SDValue, 4> Loads; 6710 unsigned NumLoads = 1; 6711 MVT LoadVT = VT.getSimpleVT(); 6712 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6713 assert((LoadVT.getScalarType() == MVT::i32 || 6714 LoadVT.getScalarType() == MVT::f32)); 6715 6716 if (NumElts == 8 || NumElts == 16) { 6717 NumLoads = NumElts / 4; 6718 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6719 } 6720 6721 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6722 SDValue Ops[] = { 6723 DAG.getEntryNode(), // Chain 6724 Rsrc, // rsrc 6725 DAG.getConstant(0, DL, MVT::i32), // vindex 6726 {}, // voffset 6727 {}, // soffset 6728 {}, // offset 6729 CachePolicy, // cachepolicy 6730 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6731 }; 6732 6733 // Use the alignment to ensure that the required offsets will fit into the 6734 // immediate offsets. 6735 setBufferOffsets(Offset, DAG, &Ops[3], 6736 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6737 6738 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6739 for (unsigned i = 0; i < NumLoads; ++i) { 6740 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6741 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6742 LoadVT, MMO, DAG)); 6743 } 6744 6745 if (NumElts == 8 || NumElts == 16) 6746 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6747 6748 return Loads[0]; 6749 } 6750 6751 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, 6752 unsigned Dim, 6753 const ArgDescriptor &Arg) const { 6754 SDLoc SL(Op); 6755 MachineFunction &MF = DAG.getMachineFunction(); 6756 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); 6757 if (MaxID == 0) 6758 return DAG.getConstant(0, SL, MVT::i32); 6759 6760 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6761 SDLoc(DAG.getEntryNode()), Arg); 6762 6763 // Don't bother inserting AssertZext for packed IDs since we're emitting the 6764 // masking operations anyway. 6765 // 6766 // TODO: We could assert the top bit is 0 for the source copy. 6767 if (Arg.isMasked()) 6768 return Val; 6769 6770 // Preserve the known bits after expansion to a copy. 6771 EVT SmallVT = 6772 EVT::getIntegerVT(*DAG.getContext(), 32 - countLeadingZeros(MaxID)); 6773 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, 6774 DAG.getValueType(SmallVT)); 6775 } 6776 6777 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6778 SelectionDAG &DAG) const { 6779 MachineFunction &MF = DAG.getMachineFunction(); 6780 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6781 6782 EVT VT = Op.getValueType(); 6783 SDLoc DL(Op); 6784 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6785 6786 // TODO: Should this propagate fast-math-flags? 6787 6788 switch (IntrinsicID) { 6789 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6790 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6791 return emitNonHSAIntrinsicError(DAG, DL, VT); 6792 return getPreloadedValue(DAG, *MFI, VT, 6793 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6794 } 6795 case Intrinsic::amdgcn_dispatch_ptr: 6796 case Intrinsic::amdgcn_queue_ptr: { 6797 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6798 DiagnosticInfoUnsupported BadIntrin( 6799 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6800 DL.getDebugLoc()); 6801 DAG.getContext()->diagnose(BadIntrin); 6802 return DAG.getUNDEF(VT); 6803 } 6804 6805 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6806 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6807 return getPreloadedValue(DAG, *MFI, VT, RegID); 6808 } 6809 case Intrinsic::amdgcn_implicitarg_ptr: { 6810 if (MFI->isEntryFunction()) 6811 return getImplicitArgPtr(DAG, DL); 6812 return getPreloadedValue(DAG, *MFI, VT, 6813 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6814 } 6815 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6816 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6817 // This only makes sense to call in a kernel, so just lower to null. 6818 return DAG.getConstant(0, DL, VT); 6819 } 6820 6821 return getPreloadedValue(DAG, *MFI, VT, 6822 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6823 } 6824 case Intrinsic::amdgcn_dispatch_id: { 6825 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6826 } 6827 case Intrinsic::amdgcn_rcp: 6828 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6829 case Intrinsic::amdgcn_rsq: 6830 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6831 case Intrinsic::amdgcn_rsq_legacy: 6832 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6833 return emitRemovedIntrinsicError(DAG, DL, VT); 6834 return SDValue(); 6835 case Intrinsic::amdgcn_rcp_legacy: 6836 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6837 return emitRemovedIntrinsicError(DAG, DL, VT); 6838 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6839 case Intrinsic::amdgcn_rsq_clamp: { 6840 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6841 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6842 6843 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6844 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6845 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6846 6847 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6848 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6849 DAG.getConstantFP(Max, DL, VT)); 6850 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6851 DAG.getConstantFP(Min, DL, VT)); 6852 } 6853 case Intrinsic::r600_read_ngroups_x: 6854 if (Subtarget->isAmdHsaOS()) 6855 return emitNonHSAIntrinsicError(DAG, DL, VT); 6856 6857 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6858 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6859 false); 6860 case Intrinsic::r600_read_ngroups_y: 6861 if (Subtarget->isAmdHsaOS()) 6862 return emitNonHSAIntrinsicError(DAG, DL, VT); 6863 6864 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6865 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6866 false); 6867 case Intrinsic::r600_read_ngroups_z: 6868 if (Subtarget->isAmdHsaOS()) 6869 return emitNonHSAIntrinsicError(DAG, DL, VT); 6870 6871 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6872 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6873 false); 6874 case Intrinsic::r600_read_global_size_x: 6875 if (Subtarget->isAmdHsaOS()) 6876 return emitNonHSAIntrinsicError(DAG, DL, VT); 6877 6878 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6879 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6880 Align(4), false); 6881 case Intrinsic::r600_read_global_size_y: 6882 if (Subtarget->isAmdHsaOS()) 6883 return emitNonHSAIntrinsicError(DAG, DL, VT); 6884 6885 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6886 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6887 Align(4), false); 6888 case Intrinsic::r600_read_global_size_z: 6889 if (Subtarget->isAmdHsaOS()) 6890 return emitNonHSAIntrinsicError(DAG, DL, VT); 6891 6892 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6893 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6894 Align(4), false); 6895 case Intrinsic::r600_read_local_size_x: 6896 if (Subtarget->isAmdHsaOS()) 6897 return emitNonHSAIntrinsicError(DAG, DL, VT); 6898 6899 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6900 SI::KernelInputOffsets::LOCAL_SIZE_X); 6901 case Intrinsic::r600_read_local_size_y: 6902 if (Subtarget->isAmdHsaOS()) 6903 return emitNonHSAIntrinsicError(DAG, DL, VT); 6904 6905 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6906 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6907 case Intrinsic::r600_read_local_size_z: 6908 if (Subtarget->isAmdHsaOS()) 6909 return emitNonHSAIntrinsicError(DAG, DL, VT); 6910 6911 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6912 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6913 case Intrinsic::amdgcn_workgroup_id_x: 6914 return getPreloadedValue(DAG, *MFI, VT, 6915 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6916 case Intrinsic::amdgcn_workgroup_id_y: 6917 return getPreloadedValue(DAG, *MFI, VT, 6918 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6919 case Intrinsic::amdgcn_workgroup_id_z: 6920 return getPreloadedValue(DAG, *MFI, VT, 6921 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6922 case Intrinsic::amdgcn_lds_kernel_id: { 6923 if (MFI->isEntryFunction()) 6924 return getLDSKernelId(DAG, DL); 6925 return getPreloadedValue(DAG, *MFI, VT, 6926 AMDGPUFunctionArgInfo::LDS_KERNEL_ID); 6927 } 6928 case Intrinsic::amdgcn_workitem_id_x: 6929 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); 6930 case Intrinsic::amdgcn_workitem_id_y: 6931 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); 6932 case Intrinsic::amdgcn_workitem_id_z: 6933 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); 6934 case Intrinsic::amdgcn_wavefrontsize: 6935 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6936 SDLoc(Op), MVT::i32); 6937 case Intrinsic::amdgcn_s_buffer_load: { 6938 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6939 if (CPol & ~AMDGPU::CPol::ALL) 6940 return Op; 6941 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6942 DAG); 6943 } 6944 case Intrinsic::amdgcn_fdiv_fast: 6945 return lowerFDIV_FAST(Op, DAG); 6946 case Intrinsic::amdgcn_sin: 6947 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6948 6949 case Intrinsic::amdgcn_cos: 6950 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6951 6952 case Intrinsic::amdgcn_mul_u24: 6953 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6954 case Intrinsic::amdgcn_mul_i24: 6955 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6956 6957 case Intrinsic::amdgcn_log_clamp: { 6958 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6959 return SDValue(); 6960 6961 return emitRemovedIntrinsicError(DAG, DL, VT); 6962 } 6963 case Intrinsic::amdgcn_ldexp: 6964 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6965 Op.getOperand(1), Op.getOperand(2)); 6966 6967 case Intrinsic::amdgcn_fract: 6968 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6969 6970 case Intrinsic::amdgcn_class: 6971 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6972 Op.getOperand(1), Op.getOperand(2)); 6973 case Intrinsic::amdgcn_div_fmas: 6974 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6975 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6976 Op.getOperand(4)); 6977 6978 case Intrinsic::amdgcn_div_fixup: 6979 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6980 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6981 6982 case Intrinsic::amdgcn_div_scale: { 6983 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6984 6985 // Translate to the operands expected by the machine instruction. The 6986 // first parameter must be the same as the first instruction. 6987 SDValue Numerator = Op.getOperand(1); 6988 SDValue Denominator = Op.getOperand(2); 6989 6990 // Note this order is opposite of the machine instruction's operations, 6991 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6992 // intrinsic has the numerator as the first operand to match a normal 6993 // division operation. 6994 6995 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 6996 6997 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6998 Denominator, Numerator); 6999 } 7000 case Intrinsic::amdgcn_icmp: { 7001 // There is a Pat that handles this variant, so return it as-is. 7002 if (Op.getOperand(1).getValueType() == MVT::i1 && 7003 Op.getConstantOperandVal(2) == 0 && 7004 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 7005 return Op; 7006 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 7007 } 7008 case Intrinsic::amdgcn_fcmp: { 7009 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 7010 } 7011 case Intrinsic::amdgcn_ballot: 7012 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 7013 case Intrinsic::amdgcn_fmed3: 7014 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 7015 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7016 case Intrinsic::amdgcn_fdot2: 7017 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 7018 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 7019 Op.getOperand(4)); 7020 case Intrinsic::amdgcn_fmul_legacy: 7021 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 7022 Op.getOperand(1), Op.getOperand(2)); 7023 case Intrinsic::amdgcn_sffbh: 7024 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 7025 case Intrinsic::amdgcn_sbfe: 7026 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 7027 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7028 case Intrinsic::amdgcn_ubfe: 7029 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 7030 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 7031 case Intrinsic::amdgcn_cvt_pkrtz: 7032 case Intrinsic::amdgcn_cvt_pknorm_i16: 7033 case Intrinsic::amdgcn_cvt_pknorm_u16: 7034 case Intrinsic::amdgcn_cvt_pk_i16: 7035 case Intrinsic::amdgcn_cvt_pk_u16: { 7036 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 7037 EVT VT = Op.getValueType(); 7038 unsigned Opcode; 7039 7040 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 7041 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 7042 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 7043 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 7044 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 7045 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 7046 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 7047 Opcode = AMDGPUISD::CVT_PK_I16_I32; 7048 else 7049 Opcode = AMDGPUISD::CVT_PK_U16_U32; 7050 7051 if (isTypeLegal(VT)) 7052 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 7053 7054 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 7055 Op.getOperand(1), Op.getOperand(2)); 7056 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 7057 } 7058 case Intrinsic::amdgcn_fmad_ftz: 7059 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 7060 Op.getOperand(2), Op.getOperand(3)); 7061 7062 case Intrinsic::amdgcn_if_break: 7063 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 7064 Op->getOperand(1), Op->getOperand(2)), 0); 7065 7066 case Intrinsic::amdgcn_groupstaticsize: { 7067 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 7068 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 7069 return Op; 7070 7071 const Module *M = MF.getFunction().getParent(); 7072 const GlobalValue *GV = 7073 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 7074 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 7075 SIInstrInfo::MO_ABS32_LO); 7076 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7077 } 7078 case Intrinsic::amdgcn_is_shared: 7079 case Intrinsic::amdgcn_is_private: { 7080 SDLoc SL(Op); 7081 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 7082 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 7083 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 7084 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 7085 Op.getOperand(1)); 7086 7087 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 7088 DAG.getConstant(1, SL, MVT::i32)); 7089 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 7090 } 7091 case Intrinsic::amdgcn_perm: 7092 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 7093 Op.getOperand(2), Op.getOperand(3)); 7094 case Intrinsic::amdgcn_reloc_constant: { 7095 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 7096 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 7097 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 7098 auto RelocSymbol = cast<GlobalVariable>( 7099 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 7100 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 7101 SIInstrInfo::MO_ABS32_LO); 7102 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7103 } 7104 default: 7105 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7106 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7107 return lowerImage(Op, ImageDimIntr, DAG, false); 7108 7109 return Op; 7110 } 7111 } 7112 7113 /// Update \p MMO based on the offset inputs to an intrinsic. 7114 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, 7115 SDValue SOffset, SDValue Offset, 7116 SDValue VIndex = SDValue()) { 7117 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 7118 !isa<ConstantSDNode>(Offset)) { 7119 // The combined offset is not known to be constant, so we cannot represent 7120 // it in the MMO. Give up. 7121 MMO->setValue((Value *)nullptr); 7122 return; 7123 } 7124 7125 if (VIndex && (!isa<ConstantSDNode>(VIndex) || 7126 !cast<ConstantSDNode>(VIndex)->isZero())) { 7127 // The strided index component of the address is not known to be zero, so we 7128 // cannot represent it in the MMO. Give up. 7129 MMO->setValue((Value *)nullptr); 7130 return; 7131 } 7132 7133 MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() + 7134 cast<ConstantSDNode>(SOffset)->getSExtValue() + 7135 cast<ConstantSDNode>(Offset)->getSExtValue()); 7136 } 7137 7138 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 7139 SelectionDAG &DAG, 7140 unsigned NewOpcode) const { 7141 SDLoc DL(Op); 7142 7143 SDValue VData = Op.getOperand(2); 7144 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7145 SDValue Ops[] = { 7146 Op.getOperand(0), // Chain 7147 VData, // vdata 7148 Op.getOperand(3), // rsrc 7149 DAG.getConstant(0, DL, MVT::i32), // vindex 7150 Offsets.first, // voffset 7151 Op.getOperand(5), // soffset 7152 Offsets.second, // offset 7153 Op.getOperand(6), // cachepolicy 7154 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7155 }; 7156 7157 auto *M = cast<MemSDNode>(Op); 7158 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 7159 7160 EVT MemVT = VData.getValueType(); 7161 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7162 M->getMemOperand()); 7163 } 7164 7165 // Return a value to use for the idxen operand by examining the vindex operand. 7166 static unsigned getIdxEn(SDValue VIndex) { 7167 if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex)) 7168 // No need to set idxen if vindex is known to be zero. 7169 return VIndexC->getZExtValue() != 0; 7170 return 1; 7171 } 7172 7173 SDValue 7174 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 7175 unsigned NewOpcode) const { 7176 SDLoc DL(Op); 7177 7178 SDValue VData = Op.getOperand(2); 7179 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7180 SDValue Ops[] = { 7181 Op.getOperand(0), // Chain 7182 VData, // vdata 7183 Op.getOperand(3), // rsrc 7184 Op.getOperand(4), // vindex 7185 Offsets.first, // voffset 7186 Op.getOperand(6), // soffset 7187 Offsets.second, // offset 7188 Op.getOperand(7), // cachepolicy 7189 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7190 }; 7191 7192 auto *M = cast<MemSDNode>(Op); 7193 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7194 7195 EVT MemVT = VData.getValueType(); 7196 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7197 M->getMemOperand()); 7198 } 7199 7200 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 7201 SelectionDAG &DAG) const { 7202 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7203 SDLoc DL(Op); 7204 7205 switch (IntrID) { 7206 case Intrinsic::amdgcn_ds_ordered_add: 7207 case Intrinsic::amdgcn_ds_ordered_swap: { 7208 MemSDNode *M = cast<MemSDNode>(Op); 7209 SDValue Chain = M->getOperand(0); 7210 SDValue M0 = M->getOperand(2); 7211 SDValue Value = M->getOperand(3); 7212 unsigned IndexOperand = M->getConstantOperandVal(7); 7213 unsigned WaveRelease = M->getConstantOperandVal(8); 7214 unsigned WaveDone = M->getConstantOperandVal(9); 7215 7216 unsigned OrderedCountIndex = IndexOperand & 0x3f; 7217 IndexOperand &= ~0x3f; 7218 unsigned CountDw = 0; 7219 7220 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 7221 CountDw = (IndexOperand >> 24) & 0xf; 7222 IndexOperand &= ~(0xf << 24); 7223 7224 if (CountDw < 1 || CountDw > 4) { 7225 report_fatal_error( 7226 "ds_ordered_count: dword count must be between 1 and 4"); 7227 } 7228 } 7229 7230 if (IndexOperand) 7231 report_fatal_error("ds_ordered_count: bad index operand"); 7232 7233 if (WaveDone && !WaveRelease) 7234 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 7235 7236 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 7237 unsigned ShaderType = 7238 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 7239 unsigned Offset0 = OrderedCountIndex << 2; 7240 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); 7241 7242 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 7243 Offset1 |= (CountDw - 1) << 6; 7244 7245 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) 7246 Offset1 |= ShaderType << 2; 7247 7248 unsigned Offset = Offset0 | (Offset1 << 8); 7249 7250 SDValue Ops[] = { 7251 Chain, 7252 Value, 7253 DAG.getTargetConstant(Offset, DL, MVT::i16), 7254 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 7255 }; 7256 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 7257 M->getVTList(), Ops, M->getMemoryVT(), 7258 M->getMemOperand()); 7259 } 7260 case Intrinsic::amdgcn_ds_fadd: { 7261 MemSDNode *M = cast<MemSDNode>(Op); 7262 unsigned Opc; 7263 switch (IntrID) { 7264 case Intrinsic::amdgcn_ds_fadd: 7265 Opc = ISD::ATOMIC_LOAD_FADD; 7266 break; 7267 } 7268 7269 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 7270 M->getOperand(0), M->getOperand(2), M->getOperand(3), 7271 M->getMemOperand()); 7272 } 7273 case Intrinsic::amdgcn_atomic_inc: 7274 case Intrinsic::amdgcn_atomic_dec: 7275 case Intrinsic::amdgcn_ds_fmin: 7276 case Intrinsic::amdgcn_ds_fmax: { 7277 MemSDNode *M = cast<MemSDNode>(Op); 7278 unsigned Opc; 7279 switch (IntrID) { 7280 case Intrinsic::amdgcn_atomic_inc: 7281 Opc = AMDGPUISD::ATOMIC_INC; 7282 break; 7283 case Intrinsic::amdgcn_atomic_dec: 7284 Opc = AMDGPUISD::ATOMIC_DEC; 7285 break; 7286 case Intrinsic::amdgcn_ds_fmin: 7287 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 7288 break; 7289 case Intrinsic::amdgcn_ds_fmax: 7290 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 7291 break; 7292 default: 7293 llvm_unreachable("Unknown intrinsic!"); 7294 } 7295 SDValue Ops[] = { 7296 M->getOperand(0), // Chain 7297 M->getOperand(2), // Ptr 7298 M->getOperand(3) // Value 7299 }; 7300 7301 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 7302 M->getMemoryVT(), M->getMemOperand()); 7303 } 7304 case Intrinsic::amdgcn_buffer_load: 7305 case Intrinsic::amdgcn_buffer_load_format: { 7306 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 7307 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7308 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7309 SDValue Ops[] = { 7310 Op.getOperand(0), // Chain 7311 Op.getOperand(2), // rsrc 7312 Op.getOperand(3), // vindex 7313 SDValue(), // voffset -- will be set by setBufferOffsets 7314 SDValue(), // soffset -- will be set by setBufferOffsets 7315 SDValue(), // offset -- will be set by setBufferOffsets 7316 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7317 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7318 }; 7319 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 7320 7321 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 7322 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 7323 7324 EVT VT = Op.getValueType(); 7325 EVT IntVT = VT.changeTypeToInteger(); 7326 auto *M = cast<MemSDNode>(Op); 7327 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7328 EVT LoadVT = Op.getValueType(); 7329 7330 if (LoadVT.getScalarType() == MVT::f16) 7331 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 7332 M, DAG, Ops); 7333 7334 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 7335 if (LoadVT.getScalarType() == MVT::i8 || 7336 LoadVT.getScalarType() == MVT::i16) 7337 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 7338 7339 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 7340 M->getMemOperand(), DAG); 7341 } 7342 case Intrinsic::amdgcn_raw_buffer_load: 7343 case Intrinsic::amdgcn_raw_buffer_load_format: { 7344 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 7345 7346 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7347 SDValue Ops[] = { 7348 Op.getOperand(0), // Chain 7349 Op.getOperand(2), // rsrc 7350 DAG.getConstant(0, DL, MVT::i32), // vindex 7351 Offsets.first, // voffset 7352 Op.getOperand(4), // soffset 7353 Offsets.second, // offset 7354 Op.getOperand(5), // cachepolicy, swizzled buffer 7355 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7356 }; 7357 7358 auto *M = cast<MemSDNode>(Op); 7359 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); 7360 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 7361 } 7362 case Intrinsic::amdgcn_struct_buffer_load: 7363 case Intrinsic::amdgcn_struct_buffer_load_format: { 7364 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 7365 7366 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7367 SDValue Ops[] = { 7368 Op.getOperand(0), // Chain 7369 Op.getOperand(2), // rsrc 7370 Op.getOperand(3), // vindex 7371 Offsets.first, // voffset 7372 Op.getOperand(5), // soffset 7373 Offsets.second, // offset 7374 Op.getOperand(6), // cachepolicy, swizzled buffer 7375 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7376 }; 7377 7378 auto *M = cast<MemSDNode>(Op); 7379 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7380 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 7381 } 7382 case Intrinsic::amdgcn_tbuffer_load: { 7383 MemSDNode *M = cast<MemSDNode>(Op); 7384 EVT LoadVT = Op.getValueType(); 7385 7386 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7387 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7388 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7389 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7390 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7391 SDValue Ops[] = { 7392 Op.getOperand(0), // Chain 7393 Op.getOperand(2), // rsrc 7394 Op.getOperand(3), // vindex 7395 Op.getOperand(4), // voffset 7396 Op.getOperand(5), // soffset 7397 Op.getOperand(6), // offset 7398 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7399 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7400 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 7401 }; 7402 7403 if (LoadVT.getScalarType() == MVT::f16) 7404 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7405 M, DAG, Ops); 7406 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7407 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7408 DAG); 7409 } 7410 case Intrinsic::amdgcn_raw_tbuffer_load: { 7411 MemSDNode *M = cast<MemSDNode>(Op); 7412 EVT LoadVT = Op.getValueType(); 7413 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7414 7415 SDValue Ops[] = { 7416 Op.getOperand(0), // Chain 7417 Op.getOperand(2), // rsrc 7418 DAG.getConstant(0, DL, MVT::i32), // vindex 7419 Offsets.first, // voffset 7420 Op.getOperand(4), // soffset 7421 Offsets.second, // offset 7422 Op.getOperand(5), // format 7423 Op.getOperand(6), // cachepolicy, swizzled buffer 7424 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7425 }; 7426 7427 if (LoadVT.getScalarType() == MVT::f16) 7428 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7429 M, DAG, Ops); 7430 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7431 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7432 DAG); 7433 } 7434 case Intrinsic::amdgcn_struct_tbuffer_load: { 7435 MemSDNode *M = cast<MemSDNode>(Op); 7436 EVT LoadVT = Op.getValueType(); 7437 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7438 7439 SDValue Ops[] = { 7440 Op.getOperand(0), // Chain 7441 Op.getOperand(2), // rsrc 7442 Op.getOperand(3), // vindex 7443 Offsets.first, // voffset 7444 Op.getOperand(5), // soffset 7445 Offsets.second, // offset 7446 Op.getOperand(6), // format 7447 Op.getOperand(7), // cachepolicy, swizzled buffer 7448 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7449 }; 7450 7451 if (LoadVT.getScalarType() == MVT::f16) 7452 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7453 M, DAG, Ops); 7454 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7455 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7456 DAG); 7457 } 7458 case Intrinsic::amdgcn_buffer_atomic_swap: 7459 case Intrinsic::amdgcn_buffer_atomic_add: 7460 case Intrinsic::amdgcn_buffer_atomic_sub: 7461 case Intrinsic::amdgcn_buffer_atomic_csub: 7462 case Intrinsic::amdgcn_buffer_atomic_smin: 7463 case Intrinsic::amdgcn_buffer_atomic_umin: 7464 case Intrinsic::amdgcn_buffer_atomic_smax: 7465 case Intrinsic::amdgcn_buffer_atomic_umax: 7466 case Intrinsic::amdgcn_buffer_atomic_and: 7467 case Intrinsic::amdgcn_buffer_atomic_or: 7468 case Intrinsic::amdgcn_buffer_atomic_xor: 7469 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7470 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7471 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7472 SDValue Ops[] = { 7473 Op.getOperand(0), // Chain 7474 Op.getOperand(2), // vdata 7475 Op.getOperand(3), // rsrc 7476 Op.getOperand(4), // vindex 7477 SDValue(), // voffset -- will be set by setBufferOffsets 7478 SDValue(), // soffset -- will be set by setBufferOffsets 7479 SDValue(), // offset -- will be set by setBufferOffsets 7480 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7481 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7482 }; 7483 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7484 7485 EVT VT = Op.getValueType(); 7486 7487 auto *M = cast<MemSDNode>(Op); 7488 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7489 unsigned Opcode = 0; 7490 7491 switch (IntrID) { 7492 case Intrinsic::amdgcn_buffer_atomic_swap: 7493 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7494 break; 7495 case Intrinsic::amdgcn_buffer_atomic_add: 7496 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7497 break; 7498 case Intrinsic::amdgcn_buffer_atomic_sub: 7499 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7500 break; 7501 case Intrinsic::amdgcn_buffer_atomic_csub: 7502 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7503 break; 7504 case Intrinsic::amdgcn_buffer_atomic_smin: 7505 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7506 break; 7507 case Intrinsic::amdgcn_buffer_atomic_umin: 7508 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7509 break; 7510 case Intrinsic::amdgcn_buffer_atomic_smax: 7511 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7512 break; 7513 case Intrinsic::amdgcn_buffer_atomic_umax: 7514 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7515 break; 7516 case Intrinsic::amdgcn_buffer_atomic_and: 7517 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7518 break; 7519 case Intrinsic::amdgcn_buffer_atomic_or: 7520 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7521 break; 7522 case Intrinsic::amdgcn_buffer_atomic_xor: 7523 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7524 break; 7525 case Intrinsic::amdgcn_buffer_atomic_fadd: 7526 if (!Op.getValue(0).use_empty() && !hasAtomicFaddRtnForTy(Op)) { 7527 DiagnosticInfoUnsupported 7528 NoFpRet(DAG.getMachineFunction().getFunction(), 7529 "return versions of fp atomics not supported", 7530 DL.getDebugLoc(), DS_Error); 7531 DAG.getContext()->diagnose(NoFpRet); 7532 return SDValue(); 7533 } 7534 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7535 break; 7536 default: 7537 llvm_unreachable("unhandled atomic opcode"); 7538 } 7539 7540 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7541 M->getMemOperand()); 7542 } 7543 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7544 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7545 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7546 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7547 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 7548 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7549 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 7550 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7551 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 7552 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7553 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 7554 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7555 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7556 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7557 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7558 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7559 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7560 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7561 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7562 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7563 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7564 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7565 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7566 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7567 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7568 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7569 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7570 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7571 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7572 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7573 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7574 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7575 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7576 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7577 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7578 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7579 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7580 return lowerStructBufferAtomicIntrin(Op, DAG, 7581 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7582 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7583 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7584 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7585 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7586 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7587 return lowerStructBufferAtomicIntrin(Op, DAG, 7588 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7589 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7590 return lowerStructBufferAtomicIntrin(Op, DAG, 7591 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7592 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7593 return lowerStructBufferAtomicIntrin(Op, DAG, 7594 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7595 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7596 return lowerStructBufferAtomicIntrin(Op, DAG, 7597 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7598 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7599 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7600 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7601 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7602 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7603 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7604 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7605 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7606 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7607 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7608 7609 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7610 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7611 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 7612 SDValue Ops[] = { 7613 Op.getOperand(0), // Chain 7614 Op.getOperand(2), // src 7615 Op.getOperand(3), // cmp 7616 Op.getOperand(4), // rsrc 7617 Op.getOperand(5), // vindex 7618 SDValue(), // voffset -- will be set by setBufferOffsets 7619 SDValue(), // soffset -- will be set by setBufferOffsets 7620 SDValue(), // offset -- will be set by setBufferOffsets 7621 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7622 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7623 }; 7624 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7625 7626 EVT VT = Op.getValueType(); 7627 auto *M = cast<MemSDNode>(Op); 7628 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7629 7630 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7631 Op->getVTList(), Ops, VT, M->getMemOperand()); 7632 } 7633 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7634 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7635 SDValue Ops[] = { 7636 Op.getOperand(0), // Chain 7637 Op.getOperand(2), // src 7638 Op.getOperand(3), // cmp 7639 Op.getOperand(4), // rsrc 7640 DAG.getConstant(0, DL, MVT::i32), // vindex 7641 Offsets.first, // voffset 7642 Op.getOperand(6), // soffset 7643 Offsets.second, // offset 7644 Op.getOperand(7), // cachepolicy 7645 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7646 }; 7647 EVT VT = Op.getValueType(); 7648 auto *M = cast<MemSDNode>(Op); 7649 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); 7650 7651 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7652 Op->getVTList(), Ops, VT, M->getMemOperand()); 7653 } 7654 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7655 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7656 SDValue Ops[] = { 7657 Op.getOperand(0), // Chain 7658 Op.getOperand(2), // src 7659 Op.getOperand(3), // cmp 7660 Op.getOperand(4), // rsrc 7661 Op.getOperand(5), // vindex 7662 Offsets.first, // voffset 7663 Op.getOperand(7), // soffset 7664 Offsets.second, // offset 7665 Op.getOperand(8), // cachepolicy 7666 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7667 }; 7668 EVT VT = Op.getValueType(); 7669 auto *M = cast<MemSDNode>(Op); 7670 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7671 7672 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7673 Op->getVTList(), Ops, VT, M->getMemOperand()); 7674 } 7675 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 7676 MemSDNode *M = cast<MemSDNode>(Op); 7677 SDValue NodePtr = M->getOperand(2); 7678 SDValue RayExtent = M->getOperand(3); 7679 SDValue RayOrigin = M->getOperand(4); 7680 SDValue RayDir = M->getOperand(5); 7681 SDValue RayInvDir = M->getOperand(6); 7682 SDValue TDescr = M->getOperand(7); 7683 7684 assert(NodePtr.getValueType() == MVT::i32 || 7685 NodePtr.getValueType() == MVT::i64); 7686 assert(RayDir.getValueType() == MVT::v3f16 || 7687 RayDir.getValueType() == MVT::v3f32); 7688 7689 if (!Subtarget->hasGFX10_AEncoding()) { 7690 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 7691 return SDValue(); 7692 } 7693 7694 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 7695 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 7696 const bool Is64 = NodePtr.getValueType() == MVT::i64; 7697 const unsigned NumVDataDwords = 4; 7698 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 7699 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; 7700 const bool UseNSA = 7701 Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize(); 7702 const unsigned BaseOpcodes[2][2] = { 7703 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 7704 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 7705 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 7706 int Opcode; 7707 if (UseNSA) { 7708 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7709 IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA 7710 : AMDGPU::MIMGEncGfx10NSA, 7711 NumVDataDwords, NumVAddrDwords); 7712 } else { 7713 Opcode = 7714 AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7715 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default 7716 : AMDGPU::MIMGEncGfx10Default, 7717 NumVDataDwords, PowerOf2Ceil(NumVAddrDwords)); 7718 } 7719 assert(Opcode != -1); 7720 7721 SmallVector<SDValue, 16> Ops; 7722 7723 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 7724 SmallVector<SDValue, 3> Lanes; 7725 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 7726 if (Lanes[0].getValueSizeInBits() == 32) { 7727 for (unsigned I = 0; I < 3; ++I) 7728 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 7729 } else { 7730 if (IsAligned) { 7731 Ops.push_back( 7732 DAG.getBitcast(MVT::i32, 7733 DAG.getBuildVector(MVT::v2f16, DL, 7734 { Lanes[0], Lanes[1] }))); 7735 Ops.push_back(Lanes[2]); 7736 } else { 7737 SDValue Elt0 = Ops.pop_back_val(); 7738 Ops.push_back( 7739 DAG.getBitcast(MVT::i32, 7740 DAG.getBuildVector(MVT::v2f16, DL, 7741 { Elt0, Lanes[0] }))); 7742 Ops.push_back( 7743 DAG.getBitcast(MVT::i32, 7744 DAG.getBuildVector(MVT::v2f16, DL, 7745 { Lanes[1], Lanes[2] }))); 7746 } 7747 } 7748 }; 7749 7750 if (UseNSA && IsGFX11Plus) { 7751 Ops.push_back(NodePtr); 7752 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7753 Ops.push_back(RayOrigin); 7754 if (IsA16) { 7755 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; 7756 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); 7757 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); 7758 for (unsigned I = 0; I < 3; ++I) { 7759 MergedLanes.push_back(DAG.getBitcast( 7760 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, 7761 {DirLanes[I], InvDirLanes[I]}))); 7762 } 7763 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); 7764 } else { 7765 Ops.push_back(RayDir); 7766 Ops.push_back(RayInvDir); 7767 } 7768 } else { 7769 if (Is64) 7770 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 7771 2); 7772 else 7773 Ops.push_back(NodePtr); 7774 7775 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7776 packLanes(RayOrigin, true); 7777 packLanes(RayDir, true); 7778 packLanes(RayInvDir, false); 7779 } 7780 7781 if (!UseNSA) { 7782 // Build a single vector containing all the operands so far prepared. 7783 if (NumVAddrDwords > 8) { 7784 SDValue Undef = DAG.getUNDEF(MVT::i32); 7785 Ops.append(16 - Ops.size(), Undef); 7786 } 7787 assert(Ops.size() == 8 || Ops.size() == 16); 7788 SDValue MergedOps = DAG.getBuildVector( 7789 Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops); 7790 Ops.clear(); 7791 Ops.push_back(MergedOps); 7792 } 7793 7794 Ops.push_back(TDescr); 7795 if (IsA16) 7796 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); 7797 Ops.push_back(M->getChain()); 7798 7799 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 7800 MachineMemOperand *MemRef = M->getMemOperand(); 7801 DAG.setNodeMemRefs(NewNode, {MemRef}); 7802 return SDValue(NewNode, 0); 7803 } 7804 case Intrinsic::amdgcn_global_atomic_fadd: 7805 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7806 DiagnosticInfoUnsupported 7807 NoFpRet(DAG.getMachineFunction().getFunction(), 7808 "return versions of fp atomics not supported", 7809 DL.getDebugLoc(), DS_Error); 7810 DAG.getContext()->diagnose(NoFpRet); 7811 return SDValue(); 7812 } 7813 LLVM_FALLTHROUGH; 7814 case Intrinsic::amdgcn_global_atomic_fmin: 7815 case Intrinsic::amdgcn_global_atomic_fmax: 7816 case Intrinsic::amdgcn_flat_atomic_fadd: 7817 case Intrinsic::amdgcn_flat_atomic_fmin: 7818 case Intrinsic::amdgcn_flat_atomic_fmax: { 7819 MemSDNode *M = cast<MemSDNode>(Op); 7820 SDValue Ops[] = { 7821 M->getOperand(0), // Chain 7822 M->getOperand(2), // Ptr 7823 M->getOperand(3) // Value 7824 }; 7825 unsigned Opcode = 0; 7826 switch (IntrID) { 7827 case Intrinsic::amdgcn_global_atomic_fadd: 7828 case Intrinsic::amdgcn_flat_atomic_fadd: { 7829 EVT VT = Op.getOperand(3).getValueType(); 7830 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7831 DAG.getVTList(VT, MVT::Other), Ops, 7832 M->getMemOperand()); 7833 } 7834 case Intrinsic::amdgcn_global_atomic_fmin: 7835 case Intrinsic::amdgcn_flat_atomic_fmin: { 7836 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 7837 break; 7838 } 7839 case Intrinsic::amdgcn_global_atomic_fmax: 7840 case Intrinsic::amdgcn_flat_atomic_fmax: { 7841 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 7842 break; 7843 } 7844 default: 7845 llvm_unreachable("unhandled atomic opcode"); 7846 } 7847 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 7848 M->getVTList(), Ops, M->getMemoryVT(), 7849 M->getMemOperand()); 7850 } 7851 default: 7852 7853 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7854 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7855 return lowerImage(Op, ImageDimIntr, DAG, true); 7856 7857 return SDValue(); 7858 } 7859 } 7860 7861 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7862 // dwordx4 if on SI. 7863 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7864 SDVTList VTList, 7865 ArrayRef<SDValue> Ops, EVT MemVT, 7866 MachineMemOperand *MMO, 7867 SelectionDAG &DAG) const { 7868 EVT VT = VTList.VTs[0]; 7869 EVT WidenedVT = VT; 7870 EVT WidenedMemVT = MemVT; 7871 if (!Subtarget->hasDwordx3LoadStores() && 7872 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7873 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7874 WidenedVT.getVectorElementType(), 4); 7875 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7876 WidenedMemVT.getVectorElementType(), 4); 7877 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7878 } 7879 7880 assert(VTList.NumVTs == 2); 7881 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7882 7883 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7884 WidenedMemVT, MMO); 7885 if (WidenedVT != VT) { 7886 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7887 DAG.getVectorIdxConstant(0, DL)); 7888 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7889 } 7890 return NewOp; 7891 } 7892 7893 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 7894 bool ImageStore) const { 7895 EVT StoreVT = VData.getValueType(); 7896 7897 // No change for f16 and legal vector D16 types. 7898 if (!StoreVT.isVector()) 7899 return VData; 7900 7901 SDLoc DL(VData); 7902 unsigned NumElements = StoreVT.getVectorNumElements(); 7903 7904 if (Subtarget->hasUnpackedD16VMem()) { 7905 // We need to unpack the packed data to store. 7906 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7907 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7908 7909 EVT EquivStoreVT = 7910 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 7911 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7912 return DAG.UnrollVectorOp(ZExt.getNode()); 7913 } 7914 7915 // The sq block of gfx8.1 does not estimate register use correctly for d16 7916 // image store instructions. The data operand is computed as if it were not a 7917 // d16 image instruction. 7918 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 7919 // Bitcast to i16 7920 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7921 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7922 7923 // Decompose into scalars 7924 SmallVector<SDValue, 4> Elts; 7925 DAG.ExtractVectorElements(IntVData, Elts); 7926 7927 // Group pairs of i16 into v2i16 and bitcast to i32 7928 SmallVector<SDValue, 4> PackedElts; 7929 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 7930 SDValue Pair = 7931 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 7932 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7933 PackedElts.push_back(IntPair); 7934 } 7935 if ((NumElements % 2) == 1) { 7936 // Handle v3i16 7937 unsigned I = Elts.size() / 2; 7938 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 7939 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 7940 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7941 PackedElts.push_back(IntPair); 7942 } 7943 7944 // Pad using UNDEF 7945 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 7946 7947 // Build final vector 7948 EVT VecVT = 7949 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 7950 return DAG.getBuildVector(VecVT, DL, PackedElts); 7951 } 7952 7953 if (NumElements == 3) { 7954 EVT IntStoreVT = 7955 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 7956 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7957 7958 EVT WidenedStoreVT = EVT::getVectorVT( 7959 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 7960 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 7961 WidenedStoreVT.getStoreSizeInBits()); 7962 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 7963 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 7964 } 7965 7966 assert(isTypeLegal(StoreVT)); 7967 return VData; 7968 } 7969 7970 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7971 SelectionDAG &DAG) const { 7972 SDLoc DL(Op); 7973 SDValue Chain = Op.getOperand(0); 7974 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7975 MachineFunction &MF = DAG.getMachineFunction(); 7976 7977 switch (IntrinsicID) { 7978 case Intrinsic::amdgcn_exp_compr: { 7979 if (!Subtarget->hasCompressedExport()) { 7980 DiagnosticInfoUnsupported BadIntrin( 7981 DAG.getMachineFunction().getFunction(), 7982 "intrinsic not supported on subtarget", DL.getDebugLoc()); 7983 DAG.getContext()->diagnose(BadIntrin); 7984 } 7985 SDValue Src0 = Op.getOperand(4); 7986 SDValue Src1 = Op.getOperand(5); 7987 // Hack around illegal type on SI by directly selecting it. 7988 if (isTypeLegal(Src0.getValueType())) 7989 return SDValue(); 7990 7991 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7992 SDValue Undef = DAG.getUNDEF(MVT::f32); 7993 const SDValue Ops[] = { 7994 Op.getOperand(2), // tgt 7995 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7996 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7997 Undef, // src2 7998 Undef, // src3 7999 Op.getOperand(7), // vm 8000 DAG.getTargetConstant(1, DL, MVT::i1), // compr 8001 Op.getOperand(3), // en 8002 Op.getOperand(0) // Chain 8003 }; 8004 8005 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 8006 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 8007 } 8008 case Intrinsic::amdgcn_s_barrier: { 8009 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 8010 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 8011 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 8012 if (WGSize <= ST.getWavefrontSize()) 8013 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 8014 Op.getOperand(0)), 0); 8015 } 8016 return SDValue(); 8017 }; 8018 case Intrinsic::amdgcn_tbuffer_store: { 8019 SDValue VData = Op.getOperand(2); 8020 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8021 if (IsD16) 8022 VData = handleD16VData(VData, DAG); 8023 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 8024 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 8025 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 8026 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 8027 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8028 SDValue Ops[] = { 8029 Chain, 8030 VData, // vdata 8031 Op.getOperand(3), // rsrc 8032 Op.getOperand(4), // vindex 8033 Op.getOperand(5), // voffset 8034 Op.getOperand(6), // soffset 8035 Op.getOperand(7), // offset 8036 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 8037 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8038 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8039 }; 8040 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8041 AMDGPUISD::TBUFFER_STORE_FORMAT; 8042 MemSDNode *M = cast<MemSDNode>(Op); 8043 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8044 M->getMemoryVT(), M->getMemOperand()); 8045 } 8046 8047 case Intrinsic::amdgcn_struct_tbuffer_store: { 8048 SDValue VData = Op.getOperand(2); 8049 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8050 if (IsD16) 8051 VData = handleD16VData(VData, DAG); 8052 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8053 SDValue Ops[] = { 8054 Chain, 8055 VData, // vdata 8056 Op.getOperand(3), // rsrc 8057 Op.getOperand(4), // vindex 8058 Offsets.first, // voffset 8059 Op.getOperand(6), // soffset 8060 Offsets.second, // offset 8061 Op.getOperand(7), // format 8062 Op.getOperand(8), // cachepolicy, swizzled buffer 8063 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8064 }; 8065 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8066 AMDGPUISD::TBUFFER_STORE_FORMAT; 8067 MemSDNode *M = cast<MemSDNode>(Op); 8068 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8069 M->getMemoryVT(), M->getMemOperand()); 8070 } 8071 8072 case Intrinsic::amdgcn_raw_tbuffer_store: { 8073 SDValue VData = Op.getOperand(2); 8074 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8075 if (IsD16) 8076 VData = handleD16VData(VData, DAG); 8077 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8078 SDValue Ops[] = { 8079 Chain, 8080 VData, // vdata 8081 Op.getOperand(3), // rsrc 8082 DAG.getConstant(0, DL, MVT::i32), // vindex 8083 Offsets.first, // voffset 8084 Op.getOperand(5), // soffset 8085 Offsets.second, // offset 8086 Op.getOperand(6), // format 8087 Op.getOperand(7), // cachepolicy, swizzled buffer 8088 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8089 }; 8090 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 8091 AMDGPUISD::TBUFFER_STORE_FORMAT; 8092 MemSDNode *M = cast<MemSDNode>(Op); 8093 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8094 M->getMemoryVT(), M->getMemOperand()); 8095 } 8096 8097 case Intrinsic::amdgcn_buffer_store: 8098 case Intrinsic::amdgcn_buffer_store_format: { 8099 SDValue VData = Op.getOperand(2); 8100 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 8101 if (IsD16) 8102 VData = handleD16VData(VData, DAG); 8103 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 8104 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 8105 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8106 SDValue Ops[] = { 8107 Chain, 8108 VData, 8109 Op.getOperand(3), // rsrc 8110 Op.getOperand(4), // vindex 8111 SDValue(), // voffset -- will be set by setBufferOffsets 8112 SDValue(), // soffset -- will be set by setBufferOffsets 8113 SDValue(), // offset -- will be set by setBufferOffsets 8114 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8115 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8116 }; 8117 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 8118 8119 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 8120 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8121 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8122 MemSDNode *M = cast<MemSDNode>(Op); 8123 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8124 8125 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8126 EVT VDataType = VData.getValueType().getScalarType(); 8127 if (VDataType == MVT::i8 || VDataType == MVT::i16) 8128 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8129 8130 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8131 M->getMemoryVT(), M->getMemOperand()); 8132 } 8133 8134 case Intrinsic::amdgcn_raw_buffer_store: 8135 case Intrinsic::amdgcn_raw_buffer_store_format: { 8136 const bool IsFormat = 8137 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 8138 8139 SDValue VData = Op.getOperand(2); 8140 EVT VDataVT = VData.getValueType(); 8141 EVT EltType = VDataVT.getScalarType(); 8142 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8143 if (IsD16) { 8144 VData = handleD16VData(VData, DAG); 8145 VDataVT = VData.getValueType(); 8146 } 8147 8148 if (!isTypeLegal(VDataVT)) { 8149 VData = 8150 DAG.getNode(ISD::BITCAST, DL, 8151 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8152 } 8153 8154 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8155 SDValue Ops[] = { 8156 Chain, 8157 VData, 8158 Op.getOperand(3), // rsrc 8159 DAG.getConstant(0, DL, MVT::i32), // vindex 8160 Offsets.first, // voffset 8161 Op.getOperand(5), // soffset 8162 Offsets.second, // offset 8163 Op.getOperand(6), // cachepolicy, swizzled buffer 8164 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8165 }; 8166 unsigned Opc = 8167 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 8168 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8169 MemSDNode *M = cast<MemSDNode>(Op); 8170 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 8171 8172 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8173 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8174 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 8175 8176 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8177 M->getMemoryVT(), M->getMemOperand()); 8178 } 8179 8180 case Intrinsic::amdgcn_struct_buffer_store: 8181 case Intrinsic::amdgcn_struct_buffer_store_format: { 8182 const bool IsFormat = 8183 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 8184 8185 SDValue VData = Op.getOperand(2); 8186 EVT VDataVT = VData.getValueType(); 8187 EVT EltType = VDataVT.getScalarType(); 8188 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8189 8190 if (IsD16) { 8191 VData = handleD16VData(VData, DAG); 8192 VDataVT = VData.getValueType(); 8193 } 8194 8195 if (!isTypeLegal(VDataVT)) { 8196 VData = 8197 DAG.getNode(ISD::BITCAST, DL, 8198 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8199 } 8200 8201 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8202 SDValue Ops[] = { 8203 Chain, 8204 VData, 8205 Op.getOperand(3), // rsrc 8206 Op.getOperand(4), // vindex 8207 Offsets.first, // voffset 8208 Op.getOperand(6), // soffset 8209 Offsets.second, // offset 8210 Op.getOperand(7), // cachepolicy, swizzled buffer 8211 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8212 }; 8213 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 8214 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8215 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8216 MemSDNode *M = cast<MemSDNode>(Op); 8217 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8218 8219 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8220 EVT VDataType = VData.getValueType().getScalarType(); 8221 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8222 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8223 8224 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8225 M->getMemoryVT(), M->getMemOperand()); 8226 } 8227 case Intrinsic::amdgcn_raw_buffer_load_lds: 8228 case Intrinsic::amdgcn_struct_buffer_load_lds: { 8229 unsigned Opc; 8230 bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds; 8231 unsigned OpOffset = HasVIndex ? 1 : 0; 8232 SDValue VOffset = Op.getOperand(5 + OpOffset); 8233 auto CVOffset = dyn_cast<ConstantSDNode>(VOffset); 8234 bool HasVOffset = !CVOffset || !CVOffset->isZero(); 8235 unsigned Size = Op->getConstantOperandVal(4); 8236 8237 switch (Size) { 8238 default: 8239 return SDValue(); 8240 case 1: 8241 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN 8242 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN 8243 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN 8244 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; 8245 break; 8246 case 2: 8247 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN 8248 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN 8249 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN 8250 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; 8251 break; 8252 case 4: 8253 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN 8254 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN 8255 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN 8256 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; 8257 break; 8258 } 8259 8260 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8261 8262 SmallVector<SDValue, 8> Ops; 8263 8264 if (HasVIndex && HasVOffset) 8265 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, 8266 { Op.getOperand(5), // VIndex 8267 VOffset })); 8268 else if (HasVIndex) 8269 Ops.push_back(Op.getOperand(5)); 8270 else if (HasVOffset) 8271 Ops.push_back(VOffset); 8272 8273 Ops.push_back(Op.getOperand(2)); // rsrc 8274 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset 8275 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset 8276 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); 8277 Ops.push_back( 8278 DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol 8279 Ops.push_back( 8280 DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz 8281 Ops.push_back(M0Val.getValue(0)); // Chain 8282 Ops.push_back(M0Val.getValue(1)); // Glue 8283 8284 auto *M = cast<MemSDNode>(Op); 8285 MachineMemOperand *LoadMMO = M->getMemOperand(); 8286 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8287 LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset); 8288 MachinePointerInfo StorePtrI = LoadPtrI; 8289 StorePtrI.V = nullptr; 8290 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8291 8292 auto F = LoadMMO->getFlags() & 8293 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8294 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8295 Size, LoadMMO->getBaseAlign()); 8296 8297 MachineMemOperand *StoreMMO = 8298 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8299 sizeof(int32_t), LoadMMO->getBaseAlign()); 8300 8301 auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); 8302 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8303 8304 return SDValue(Load, 0); 8305 } 8306 case Intrinsic::amdgcn_global_load_lds: { 8307 unsigned Opc; 8308 unsigned Size = Op->getConstantOperandVal(4); 8309 switch (Size) { 8310 default: 8311 return SDValue(); 8312 case 1: 8313 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; 8314 break; 8315 case 2: 8316 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; 8317 break; 8318 case 4: 8319 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; 8320 break; 8321 } 8322 8323 auto *M = cast<MemSDNode>(Op); 8324 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 8325 8326 SmallVector<SDValue, 6> Ops; 8327 8328 SDValue Addr = Op.getOperand(2); // Global ptr 8329 SDValue VOffset; 8330 // Try to split SAddr and VOffset. Global and LDS pointers share the same 8331 // immediate offset, so we cannot use a regular SelectGlobalSAddr(). 8332 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { 8333 SDValue LHS = Addr.getOperand(0); 8334 SDValue RHS = Addr.getOperand(1); 8335 8336 if (LHS->isDivergent()) 8337 std::swap(LHS, RHS); 8338 8339 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && 8340 RHS.getOperand(0).getValueType() == MVT::i32) { 8341 // add (i64 sgpr), (zero_extend (i32 vgpr)) 8342 Addr = LHS; 8343 VOffset = RHS.getOperand(0); 8344 } 8345 } 8346 8347 Ops.push_back(Addr); 8348 if (!Addr->isDivergent()) { 8349 Opc = AMDGPU::getGlobalSaddrOp(Opc); 8350 if (!VOffset) 8351 VOffset = SDValue( 8352 DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, 8353 DAG.getTargetConstant(0, DL, MVT::i32)), 0); 8354 Ops.push_back(VOffset); 8355 } 8356 8357 Ops.push_back(Op.getOperand(5)); // Offset 8358 Ops.push_back(Op.getOperand(6)); // CPol 8359 Ops.push_back(M0Val.getValue(0)); // Chain 8360 Ops.push_back(M0Val.getValue(1)); // Glue 8361 8362 MachineMemOperand *LoadMMO = M->getMemOperand(); 8363 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 8364 LoadPtrI.Offset = Op->getConstantOperandVal(5); 8365 MachinePointerInfo StorePtrI = LoadPtrI; 8366 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 8367 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 8368 auto F = LoadMMO->getFlags() & 8369 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 8370 LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, 8371 Size, LoadMMO->getBaseAlign()); 8372 MachineMemOperand *StoreMMO = 8373 MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, 8374 sizeof(int32_t), Align(4)); 8375 8376 auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 8377 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 8378 8379 return SDValue(Load, 0); 8380 } 8381 case Intrinsic::amdgcn_end_cf: 8382 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 8383 Op->getOperand(2), Chain), 0); 8384 8385 default: { 8386 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8387 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8388 return lowerImage(Op, ImageDimIntr, DAG, true); 8389 8390 return Op; 8391 } 8392 } 8393 } 8394 8395 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 8396 // offset (the offset that is included in bounds checking and swizzling, to be 8397 // split between the instruction's voffset and immoffset fields) and soffset 8398 // (the offset that is excluded from bounds checking and swizzling, to go in 8399 // the instruction's soffset field). This function takes the first kind of 8400 // offset and figures out how to split it between voffset and immoffset. 8401 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 8402 SDValue Offset, SelectionDAG &DAG) const { 8403 SDLoc DL(Offset); 8404 const unsigned MaxImm = 4095; 8405 SDValue N0 = Offset; 8406 ConstantSDNode *C1 = nullptr; 8407 8408 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 8409 N0 = SDValue(); 8410 else if (DAG.isBaseWithConstantOffset(N0)) { 8411 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 8412 N0 = N0.getOperand(0); 8413 } 8414 8415 if (C1) { 8416 unsigned ImmOffset = C1->getZExtValue(); 8417 // If the immediate value is too big for the immoffset field, put the value 8418 // and -4096 into the immoffset field so that the value that is copied/added 8419 // for the voffset field is a multiple of 4096, and it stands more chance 8420 // of being CSEd with the copy/add for another similar load/store. 8421 // However, do not do that rounding down to a multiple of 4096 if that is a 8422 // negative number, as it appears to be illegal to have a negative offset 8423 // in the vgpr, even if adding the immediate offset makes it positive. 8424 unsigned Overflow = ImmOffset & ~MaxImm; 8425 ImmOffset -= Overflow; 8426 if ((int32_t)Overflow < 0) { 8427 Overflow += ImmOffset; 8428 ImmOffset = 0; 8429 } 8430 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 8431 if (Overflow) { 8432 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 8433 if (!N0) 8434 N0 = OverflowVal; 8435 else { 8436 SDValue Ops[] = { N0, OverflowVal }; 8437 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 8438 } 8439 } 8440 } 8441 if (!N0) 8442 N0 = DAG.getConstant(0, DL, MVT::i32); 8443 if (!C1) 8444 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 8445 return {N0, SDValue(C1, 0)}; 8446 } 8447 8448 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 8449 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 8450 // pointed to by Offsets. 8451 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 8452 SelectionDAG &DAG, SDValue *Offsets, 8453 Align Alignment) const { 8454 SDLoc DL(CombinedOffset); 8455 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 8456 uint32_t Imm = C->getZExtValue(); 8457 uint32_t SOffset, ImmOffset; 8458 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 8459 Alignment)) { 8460 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 8461 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8462 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8463 return; 8464 } 8465 } 8466 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 8467 SDValue N0 = CombinedOffset.getOperand(0); 8468 SDValue N1 = CombinedOffset.getOperand(1); 8469 uint32_t SOffset, ImmOffset; 8470 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 8471 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 8472 Subtarget, Alignment)) { 8473 Offsets[0] = N0; 8474 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8475 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8476 return; 8477 } 8478 } 8479 Offsets[0] = CombinedOffset; 8480 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 8481 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 8482 } 8483 8484 // Handle 8 bit and 16 bit buffer loads 8485 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 8486 EVT LoadVT, SDLoc DL, 8487 ArrayRef<SDValue> Ops, 8488 MemSDNode *M) const { 8489 EVT IntVT = LoadVT.changeTypeToInteger(); 8490 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 8491 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 8492 8493 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 8494 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 8495 Ops, IntVT, 8496 M->getMemOperand()); 8497 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 8498 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 8499 8500 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 8501 } 8502 8503 // Handle 8 bit and 16 bit buffer stores 8504 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 8505 EVT VDataType, SDLoc DL, 8506 SDValue Ops[], 8507 MemSDNode *M) const { 8508 if (VDataType == MVT::f16) 8509 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 8510 8511 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 8512 Ops[1] = BufferStoreExt; 8513 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 8514 AMDGPUISD::BUFFER_STORE_SHORT; 8515 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 8516 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 8517 M->getMemOperand()); 8518 } 8519 8520 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 8521 ISD::LoadExtType ExtType, SDValue Op, 8522 const SDLoc &SL, EVT VT) { 8523 if (VT.bitsLT(Op.getValueType())) 8524 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 8525 8526 switch (ExtType) { 8527 case ISD::SEXTLOAD: 8528 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 8529 case ISD::ZEXTLOAD: 8530 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 8531 case ISD::EXTLOAD: 8532 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 8533 case ISD::NON_EXTLOAD: 8534 return Op; 8535 } 8536 8537 llvm_unreachable("invalid ext type"); 8538 } 8539 8540 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 8541 SelectionDAG &DAG = DCI.DAG; 8542 if (Ld->getAlign() < Align(4) || Ld->isDivergent()) 8543 return SDValue(); 8544 8545 // FIXME: Constant loads should all be marked invariant. 8546 unsigned AS = Ld->getAddressSpace(); 8547 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 8548 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 8549 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 8550 return SDValue(); 8551 8552 // Don't do this early, since it may interfere with adjacent load merging for 8553 // illegal types. We can avoid losing alignment information for exotic types 8554 // pre-legalize. 8555 EVT MemVT = Ld->getMemoryVT(); 8556 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 8557 MemVT.getSizeInBits() >= 32) 8558 return SDValue(); 8559 8560 SDLoc SL(Ld); 8561 8562 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 8563 "unexpected vector extload"); 8564 8565 // TODO: Drop only high part of range. 8566 SDValue Ptr = Ld->getBasePtr(); 8567 SDValue NewLoad = DAG.getLoad( 8568 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, 8569 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), 8570 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), 8571 nullptr); // Drop ranges 8572 8573 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 8574 if (MemVT.isFloatingPoint()) { 8575 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 8576 "unexpected fp extload"); 8577 TruncVT = MemVT.changeTypeToInteger(); 8578 } 8579 8580 SDValue Cvt = NewLoad; 8581 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 8582 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 8583 DAG.getValueType(TruncVT)); 8584 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 8585 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 8586 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 8587 } else { 8588 assert(Ld->getExtensionType() == ISD::EXTLOAD); 8589 } 8590 8591 EVT VT = Ld->getValueType(0); 8592 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8593 8594 DCI.AddToWorklist(Cvt.getNode()); 8595 8596 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 8597 // the appropriate extension from the 32-bit load. 8598 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 8599 DCI.AddToWorklist(Cvt.getNode()); 8600 8601 // Handle conversion back to floating point if necessary. 8602 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 8603 8604 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 8605 } 8606 8607 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 8608 SDLoc DL(Op); 8609 LoadSDNode *Load = cast<LoadSDNode>(Op); 8610 ISD::LoadExtType ExtType = Load->getExtensionType(); 8611 EVT MemVT = Load->getMemoryVT(); 8612 8613 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 8614 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 8615 return SDValue(); 8616 8617 // FIXME: Copied from PPC 8618 // First, load into 32 bits, then truncate to 1 bit. 8619 8620 SDValue Chain = Load->getChain(); 8621 SDValue BasePtr = Load->getBasePtr(); 8622 MachineMemOperand *MMO = Load->getMemOperand(); 8623 8624 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 8625 8626 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 8627 BasePtr, RealMemVT, MMO); 8628 8629 if (!MemVT.isVector()) { 8630 SDValue Ops[] = { 8631 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 8632 NewLD.getValue(1) 8633 }; 8634 8635 return DAG.getMergeValues(Ops, DL); 8636 } 8637 8638 SmallVector<SDValue, 3> Elts; 8639 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 8640 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 8641 DAG.getConstant(I, DL, MVT::i32)); 8642 8643 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 8644 } 8645 8646 SDValue Ops[] = { 8647 DAG.getBuildVector(MemVT, DL, Elts), 8648 NewLD.getValue(1) 8649 }; 8650 8651 return DAG.getMergeValues(Ops, DL); 8652 } 8653 8654 if (!MemVT.isVector()) 8655 return SDValue(); 8656 8657 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 8658 "Custom lowering for non-i32 vectors hasn't been implemented."); 8659 8660 Align Alignment = Load->getAlign(); 8661 unsigned AS = Load->getAddressSpace(); 8662 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && 8663 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 8664 return SplitVectorLoad(Op, DAG); 8665 } 8666 8667 MachineFunction &MF = DAG.getMachineFunction(); 8668 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8669 // If there is a possibility that flat instruction access scratch memory 8670 // then we need to use the same legalization rules we use for private. 8671 if (AS == AMDGPUAS::FLAT_ADDRESS && 8672 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8673 AS = MFI->hasFlatScratchInit() ? 8674 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8675 8676 unsigned NumElements = MemVT.getVectorNumElements(); 8677 8678 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8679 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 8680 if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { 8681 if (MemVT.isPow2VectorType()) 8682 return SDValue(); 8683 return WidenOrSplitVectorLoad(Op, DAG); 8684 } 8685 // Non-uniform loads will be selected to MUBUF instructions, so they 8686 // have the same legalization requirements as global and private 8687 // loads. 8688 // 8689 } 8690 8691 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8692 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8693 AS == AMDGPUAS::GLOBAL_ADDRESS) { 8694 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 8695 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 8696 Alignment >= Align(4) && NumElements < 32) { 8697 if (MemVT.isPow2VectorType()) 8698 return SDValue(); 8699 return WidenOrSplitVectorLoad(Op, DAG); 8700 } 8701 // Non-uniform loads will be selected to MUBUF instructions, so they 8702 // have the same legalization requirements as global and private 8703 // loads. 8704 // 8705 } 8706 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8707 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8708 AS == AMDGPUAS::GLOBAL_ADDRESS || 8709 AS == AMDGPUAS::FLAT_ADDRESS) { 8710 if (NumElements > 4) 8711 return SplitVectorLoad(Op, DAG); 8712 // v3 loads not supported on SI. 8713 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8714 return WidenOrSplitVectorLoad(Op, DAG); 8715 8716 // v3 and v4 loads are supported for private and global memory. 8717 return SDValue(); 8718 } 8719 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8720 // Depending on the setting of the private_element_size field in the 8721 // resource descriptor, we can only make private accesses up to a certain 8722 // size. 8723 switch (Subtarget->getMaxPrivateElementSize()) { 8724 case 4: { 8725 SDValue Ops[2]; 8726 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 8727 return DAG.getMergeValues(Ops, DL); 8728 } 8729 case 8: 8730 if (NumElements > 2) 8731 return SplitVectorLoad(Op, DAG); 8732 return SDValue(); 8733 case 16: 8734 // Same as global/flat 8735 if (NumElements > 4) 8736 return SplitVectorLoad(Op, DAG); 8737 // v3 loads not supported on SI. 8738 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8739 return WidenOrSplitVectorLoad(Op, DAG); 8740 8741 return SDValue(); 8742 default: 8743 llvm_unreachable("unsupported private_element_size"); 8744 } 8745 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8746 bool Fast = false; 8747 auto Flags = Load->getMemOperand()->getFlags(); 8748 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 8749 Load->getAlign(), Flags, &Fast) && 8750 Fast) 8751 return SDValue(); 8752 8753 if (MemVT.isVector()) 8754 return SplitVectorLoad(Op, DAG); 8755 } 8756 8757 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8758 MemVT, *Load->getMemOperand())) { 8759 SDValue Ops[2]; 8760 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 8761 return DAG.getMergeValues(Ops, DL); 8762 } 8763 8764 return SDValue(); 8765 } 8766 8767 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 8768 EVT VT = Op.getValueType(); 8769 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256) 8770 return splitTernaryVectorOp(Op, DAG); 8771 8772 assert(VT.getSizeInBits() == 64); 8773 8774 SDLoc DL(Op); 8775 SDValue Cond = Op.getOperand(0); 8776 8777 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 8778 SDValue One = DAG.getConstant(1, DL, MVT::i32); 8779 8780 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 8781 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 8782 8783 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 8784 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 8785 8786 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 8787 8788 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 8789 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 8790 8791 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 8792 8793 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 8794 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 8795 } 8796 8797 // Catch division cases where we can use shortcuts with rcp and rsq 8798 // instructions. 8799 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 8800 SelectionDAG &DAG) const { 8801 SDLoc SL(Op); 8802 SDValue LHS = Op.getOperand(0); 8803 SDValue RHS = Op.getOperand(1); 8804 EVT VT = Op.getValueType(); 8805 const SDNodeFlags Flags = Op->getFlags(); 8806 8807 bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); 8808 8809 // Without !fpmath accuracy information, we can't do more because we don't 8810 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8811 if (!AllowInaccurateRcp) 8812 return SDValue(); 8813 8814 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8815 if (CLHS->isExactlyValue(1.0)) { 8816 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8817 // the CI documentation has a worst case error of 1 ulp. 8818 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8819 // use it as long as we aren't trying to use denormals. 8820 // 8821 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8822 8823 // 1.0 / sqrt(x) -> rsq(x) 8824 8825 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8826 // error seems really high at 2^29 ULP. 8827 if (RHS.getOpcode() == ISD::FSQRT) 8828 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8829 8830 // 1.0 / x -> rcp(x) 8831 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8832 } 8833 8834 // Same as for 1.0, but expand the sign out of the constant. 8835 if (CLHS->isExactlyValue(-1.0)) { 8836 // -1.0 / x -> rcp (fneg x) 8837 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8838 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8839 } 8840 } 8841 8842 // Turn into multiply by the reciprocal. 8843 // x / y -> x * (1.0 / y) 8844 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8845 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8846 } 8847 8848 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 8849 SelectionDAG &DAG) const { 8850 SDLoc SL(Op); 8851 SDValue X = Op.getOperand(0); 8852 SDValue Y = Op.getOperand(1); 8853 EVT VT = Op.getValueType(); 8854 const SDNodeFlags Flags = Op->getFlags(); 8855 8856 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 8857 DAG.getTarget().Options.UnsafeFPMath; 8858 if (!AllowInaccurateDiv) 8859 return SDValue(); 8860 8861 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 8862 SDValue One = DAG.getConstantFP(1.0, SL, VT); 8863 8864 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 8865 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8866 8867 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 8868 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8869 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 8870 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 8871 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 8872 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 8873 } 8874 8875 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8876 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8877 SDNodeFlags Flags) { 8878 if (GlueChain->getNumValues() <= 1) { 8879 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8880 } 8881 8882 assert(GlueChain->getNumValues() == 3); 8883 8884 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8885 switch (Opcode) { 8886 default: llvm_unreachable("no chain equivalent for opcode"); 8887 case ISD::FMUL: 8888 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8889 break; 8890 } 8891 8892 return DAG.getNode(Opcode, SL, VTList, 8893 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8894 Flags); 8895 } 8896 8897 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8898 EVT VT, SDValue A, SDValue B, SDValue C, 8899 SDValue GlueChain, SDNodeFlags Flags) { 8900 if (GlueChain->getNumValues() <= 1) { 8901 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8902 } 8903 8904 assert(GlueChain->getNumValues() == 3); 8905 8906 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8907 switch (Opcode) { 8908 default: llvm_unreachable("no chain equivalent for opcode"); 8909 case ISD::FMA: 8910 Opcode = AMDGPUISD::FMA_W_CHAIN; 8911 break; 8912 } 8913 8914 return DAG.getNode(Opcode, SL, VTList, 8915 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8916 Flags); 8917 } 8918 8919 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8920 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8921 return FastLowered; 8922 8923 SDLoc SL(Op); 8924 SDValue Src0 = Op.getOperand(0); 8925 SDValue Src1 = Op.getOperand(1); 8926 8927 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8928 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8929 8930 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8931 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8932 8933 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8934 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8935 8936 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8937 } 8938 8939 // Faster 2.5 ULP division that does not support denormals. 8940 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8941 SDLoc SL(Op); 8942 SDValue LHS = Op.getOperand(1); 8943 SDValue RHS = Op.getOperand(2); 8944 8945 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8946 8947 const APFloat K0Val(BitsToFloat(0x6f800000)); 8948 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8949 8950 const APFloat K1Val(BitsToFloat(0x2f800000)); 8951 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8952 8953 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8954 8955 EVT SetCCVT = 8956 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8957 8958 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8959 8960 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8961 8962 // TODO: Should this propagate fast-math-flags? 8963 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8964 8965 // rcp does not support denormals. 8966 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8967 8968 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8969 8970 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8971 } 8972 8973 // Returns immediate value for setting the F32 denorm mode when using the 8974 // S_DENORM_MODE instruction. 8975 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8976 const SDLoc &SL, const GCNSubtarget *ST) { 8977 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8978 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8979 ? FP_DENORM_FLUSH_NONE 8980 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8981 8982 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8983 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8984 } 8985 8986 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8987 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8988 return FastLowered; 8989 8990 // The selection matcher assumes anything with a chain selecting to a 8991 // mayRaiseFPException machine instruction. Since we're introducing a chain 8992 // here, we need to explicitly report nofpexcept for the regular fdiv 8993 // lowering. 8994 SDNodeFlags Flags = Op->getFlags(); 8995 Flags.setNoFPExcept(true); 8996 8997 SDLoc SL(Op); 8998 SDValue LHS = Op.getOperand(0); 8999 SDValue RHS = Op.getOperand(1); 9000 9001 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 9002 9003 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 9004 9005 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9006 {RHS, RHS, LHS}, Flags); 9007 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 9008 {LHS, RHS, LHS}, Flags); 9009 9010 // Denominator is scaled to not be denormal, so using rcp is ok. 9011 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 9012 DenominatorScaled, Flags); 9013 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 9014 DenominatorScaled, Flags); 9015 9016 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 9017 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 9018 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 9019 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 9020 9021 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 9022 9023 if (!HasFP32Denormals) { 9024 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 9025 // lowering. The chain dependence is insufficient, and we need glue. We do 9026 // not need the glue variants in a strictfp function. 9027 9028 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 9029 9030 SDNode *EnableDenorm; 9031 if (Subtarget->hasDenormModeInst()) { 9032 const SDValue EnableDenormValue = 9033 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 9034 9035 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 9036 DAG.getEntryNode(), EnableDenormValue).getNode(); 9037 } else { 9038 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 9039 SL, MVT::i32); 9040 EnableDenorm = 9041 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 9042 {EnableDenormValue, BitField, DAG.getEntryNode()}); 9043 } 9044 9045 SDValue Ops[3] = { 9046 NegDivScale0, 9047 SDValue(EnableDenorm, 0), 9048 SDValue(EnableDenorm, 1) 9049 }; 9050 9051 NegDivScale0 = DAG.getMergeValues(Ops, SL); 9052 } 9053 9054 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 9055 ApproxRcp, One, NegDivScale0, Flags); 9056 9057 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 9058 ApproxRcp, Fma0, Flags); 9059 9060 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 9061 Fma1, Fma1, Flags); 9062 9063 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 9064 NumeratorScaled, Mul, Flags); 9065 9066 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 9067 Fma2, Fma1, Mul, Fma2, Flags); 9068 9069 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 9070 NumeratorScaled, Fma3, Flags); 9071 9072 if (!HasFP32Denormals) { 9073 SDNode *DisableDenorm; 9074 if (Subtarget->hasDenormModeInst()) { 9075 const SDValue DisableDenormValue = 9076 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 9077 9078 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 9079 Fma4.getValue(1), DisableDenormValue, 9080 Fma4.getValue(2)).getNode(); 9081 } else { 9082 const SDValue DisableDenormValue = 9083 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 9084 9085 DisableDenorm = DAG.getMachineNode( 9086 AMDGPU::S_SETREG_B32, SL, MVT::Other, 9087 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 9088 } 9089 9090 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 9091 SDValue(DisableDenorm, 0), DAG.getRoot()); 9092 DAG.setRoot(OutputChain); 9093 } 9094 9095 SDValue Scale = NumeratorScaled.getValue(1); 9096 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 9097 {Fma4, Fma1, Fma3, Scale}, Flags); 9098 9099 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 9100 } 9101 9102 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 9103 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 9104 return FastLowered; 9105 9106 SDLoc SL(Op); 9107 SDValue X = Op.getOperand(0); 9108 SDValue Y = Op.getOperand(1); 9109 9110 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 9111 9112 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 9113 9114 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 9115 9116 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 9117 9118 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 9119 9120 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 9121 9122 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 9123 9124 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 9125 9126 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 9127 9128 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 9129 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 9130 9131 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 9132 NegDivScale0, Mul, DivScale1); 9133 9134 SDValue Scale; 9135 9136 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 9137 // Workaround a hardware bug on SI where the condition output from div_scale 9138 // is not usable. 9139 9140 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 9141 9142 // Figure out if the scale to use for div_fmas. 9143 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 9144 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 9145 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 9146 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 9147 9148 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 9149 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 9150 9151 SDValue Scale0Hi 9152 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 9153 SDValue Scale1Hi 9154 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 9155 9156 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 9157 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 9158 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 9159 } else { 9160 Scale = DivScale1.getValue(1); 9161 } 9162 9163 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 9164 Fma4, Fma3, Mul, Scale); 9165 9166 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 9167 } 9168 9169 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 9170 EVT VT = Op.getValueType(); 9171 9172 if (VT == MVT::f32) 9173 return LowerFDIV32(Op, DAG); 9174 9175 if (VT == MVT::f64) 9176 return LowerFDIV64(Op, DAG); 9177 9178 if (VT == MVT::f16) 9179 return LowerFDIV16(Op, DAG); 9180 9181 llvm_unreachable("Unexpected type for fdiv"); 9182 } 9183 9184 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 9185 SDLoc DL(Op); 9186 StoreSDNode *Store = cast<StoreSDNode>(Op); 9187 EVT VT = Store->getMemoryVT(); 9188 9189 if (VT == MVT::i1) { 9190 return DAG.getTruncStore(Store->getChain(), DL, 9191 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 9192 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 9193 } 9194 9195 assert(VT.isVector() && 9196 Store->getValue().getValueType().getScalarType() == MVT::i32); 9197 9198 unsigned AS = Store->getAddressSpace(); 9199 if (Subtarget->hasLDSMisalignedBug() && 9200 AS == AMDGPUAS::FLAT_ADDRESS && 9201 Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 9202 return SplitVectorStore(Op, DAG); 9203 } 9204 9205 MachineFunction &MF = DAG.getMachineFunction(); 9206 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9207 // If there is a possibility that flat instruction access scratch memory 9208 // then we need to use the same legalization rules we use for private. 9209 if (AS == AMDGPUAS::FLAT_ADDRESS && 9210 !Subtarget->hasMultiDwordFlatScratchAddressing()) 9211 AS = MFI->hasFlatScratchInit() ? 9212 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 9213 9214 unsigned NumElements = VT.getVectorNumElements(); 9215 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 9216 AS == AMDGPUAS::FLAT_ADDRESS) { 9217 if (NumElements > 4) 9218 return SplitVectorStore(Op, DAG); 9219 // v3 stores not supported on SI. 9220 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 9221 return SplitVectorStore(Op, DAG); 9222 9223 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 9224 VT, *Store->getMemOperand())) 9225 return expandUnalignedStore(Store, DAG); 9226 9227 return SDValue(); 9228 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 9229 switch (Subtarget->getMaxPrivateElementSize()) { 9230 case 4: 9231 return scalarizeVectorStore(Store, DAG); 9232 case 8: 9233 if (NumElements > 2) 9234 return SplitVectorStore(Op, DAG); 9235 return SDValue(); 9236 case 16: 9237 if (NumElements > 4 || 9238 (NumElements == 3 && !Subtarget->enableFlatScratch())) 9239 return SplitVectorStore(Op, DAG); 9240 return SDValue(); 9241 default: 9242 llvm_unreachable("unsupported private_element_size"); 9243 } 9244 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 9245 bool Fast = false; 9246 auto Flags = Store->getMemOperand()->getFlags(); 9247 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 9248 Store->getAlign(), Flags, &Fast) && 9249 Fast) 9250 return SDValue(); 9251 9252 if (VT.isVector()) 9253 return SplitVectorStore(Op, DAG); 9254 9255 return expandUnalignedStore(Store, DAG); 9256 } 9257 9258 // Probably an invalid store. If so we'll end up emitting a selection error. 9259 return SDValue(); 9260 } 9261 9262 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 9263 SDLoc DL(Op); 9264 EVT VT = Op.getValueType(); 9265 SDValue Arg = Op.getOperand(0); 9266 SDValue TrigVal; 9267 9268 // Propagate fast-math flags so that the multiply we introduce can be folded 9269 // if Arg is already the result of a multiply by constant. 9270 auto Flags = Op->getFlags(); 9271 9272 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 9273 9274 if (Subtarget->hasTrigReducedRange()) { 9275 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9276 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 9277 } else { 9278 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9279 } 9280 9281 switch (Op.getOpcode()) { 9282 case ISD::FCOS: 9283 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 9284 case ISD::FSIN: 9285 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 9286 default: 9287 llvm_unreachable("Wrong trig opcode"); 9288 } 9289 } 9290 9291 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 9292 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 9293 assert(AtomicNode->isCompareAndSwap()); 9294 unsigned AS = AtomicNode->getAddressSpace(); 9295 9296 // No custom lowering required for local address space 9297 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 9298 return Op; 9299 9300 // Non-local address space requires custom lowering for atomic compare 9301 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 9302 SDLoc DL(Op); 9303 SDValue ChainIn = Op.getOperand(0); 9304 SDValue Addr = Op.getOperand(1); 9305 SDValue Old = Op.getOperand(2); 9306 SDValue New = Op.getOperand(3); 9307 EVT VT = Op.getValueType(); 9308 MVT SimpleVT = VT.getSimpleVT(); 9309 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 9310 9311 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 9312 SDValue Ops[] = { ChainIn, Addr, NewOld }; 9313 9314 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 9315 Ops, VT, AtomicNode->getMemOperand()); 9316 } 9317 9318 //===----------------------------------------------------------------------===// 9319 // Custom DAG optimizations 9320 //===----------------------------------------------------------------------===// 9321 9322 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 9323 DAGCombinerInfo &DCI) const { 9324 EVT VT = N->getValueType(0); 9325 EVT ScalarVT = VT.getScalarType(); 9326 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 9327 return SDValue(); 9328 9329 SelectionDAG &DAG = DCI.DAG; 9330 SDLoc DL(N); 9331 9332 SDValue Src = N->getOperand(0); 9333 EVT SrcVT = Src.getValueType(); 9334 9335 // TODO: We could try to match extracting the higher bytes, which would be 9336 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 9337 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 9338 // about in practice. 9339 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 9340 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 9341 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 9342 DCI.AddToWorklist(Cvt.getNode()); 9343 9344 // For the f16 case, fold to a cast to f32 and then cast back to f16. 9345 if (ScalarVT != MVT::f32) { 9346 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 9347 DAG.getTargetConstant(0, DL, MVT::i32)); 9348 } 9349 return Cvt; 9350 } 9351 } 9352 9353 return SDValue(); 9354 } 9355 9356 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 9357 9358 // This is a variant of 9359 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 9360 // 9361 // The normal DAG combiner will do this, but only if the add has one use since 9362 // that would increase the number of instructions. 9363 // 9364 // This prevents us from seeing a constant offset that can be folded into a 9365 // memory instruction's addressing mode. If we know the resulting add offset of 9366 // a pointer can be folded into an addressing offset, we can replace the pointer 9367 // operand with the add of new constant offset. This eliminates one of the uses, 9368 // and may allow the remaining use to also be simplified. 9369 // 9370 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 9371 unsigned AddrSpace, 9372 EVT MemVT, 9373 DAGCombinerInfo &DCI) const { 9374 SDValue N0 = N->getOperand(0); 9375 SDValue N1 = N->getOperand(1); 9376 9377 // We only do this to handle cases where it's profitable when there are 9378 // multiple uses of the add, so defer to the standard combine. 9379 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 9380 N0->hasOneUse()) 9381 return SDValue(); 9382 9383 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 9384 if (!CN1) 9385 return SDValue(); 9386 9387 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 9388 if (!CAdd) 9389 return SDValue(); 9390 9391 // If the resulting offset is too large, we can't fold it into the addressing 9392 // mode offset. 9393 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 9394 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 9395 9396 AddrMode AM; 9397 AM.HasBaseReg = true; 9398 AM.BaseOffs = Offset.getSExtValue(); 9399 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 9400 return SDValue(); 9401 9402 SelectionDAG &DAG = DCI.DAG; 9403 SDLoc SL(N); 9404 EVT VT = N->getValueType(0); 9405 9406 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 9407 SDValue COffset = DAG.getConstant(Offset, SL, VT); 9408 9409 SDNodeFlags Flags; 9410 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 9411 (N0.getOpcode() == ISD::OR || 9412 N0->getFlags().hasNoUnsignedWrap())); 9413 9414 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 9415 } 9416 9417 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 9418 /// by the chain and intrinsic ID. Theoretically we would also need to check the 9419 /// specific intrinsic, but they all place the pointer operand first. 9420 static unsigned getBasePtrIndex(const MemSDNode *N) { 9421 switch (N->getOpcode()) { 9422 case ISD::STORE: 9423 case ISD::INTRINSIC_W_CHAIN: 9424 case ISD::INTRINSIC_VOID: 9425 return 2; 9426 default: 9427 return 1; 9428 } 9429 } 9430 9431 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 9432 DAGCombinerInfo &DCI) const { 9433 SelectionDAG &DAG = DCI.DAG; 9434 SDLoc SL(N); 9435 9436 unsigned PtrIdx = getBasePtrIndex(N); 9437 SDValue Ptr = N->getOperand(PtrIdx); 9438 9439 // TODO: We could also do this for multiplies. 9440 if (Ptr.getOpcode() == ISD::SHL) { 9441 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 9442 N->getMemoryVT(), DCI); 9443 if (NewPtr) { 9444 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 9445 9446 NewOps[PtrIdx] = NewPtr; 9447 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 9448 } 9449 } 9450 9451 return SDValue(); 9452 } 9453 9454 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 9455 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 9456 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 9457 (Opc == ISD::XOR && Val == 0); 9458 } 9459 9460 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 9461 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 9462 // integer combine opportunities since most 64-bit operations are decomposed 9463 // this way. TODO: We won't want this for SALU especially if it is an inline 9464 // immediate. 9465 SDValue SITargetLowering::splitBinaryBitConstantOp( 9466 DAGCombinerInfo &DCI, 9467 const SDLoc &SL, 9468 unsigned Opc, SDValue LHS, 9469 const ConstantSDNode *CRHS) const { 9470 uint64_t Val = CRHS->getZExtValue(); 9471 uint32_t ValLo = Lo_32(Val); 9472 uint32_t ValHi = Hi_32(Val); 9473 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9474 9475 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 9476 bitOpWithConstantIsReducible(Opc, ValHi)) || 9477 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 9478 // If we need to materialize a 64-bit immediate, it will be split up later 9479 // anyway. Avoid creating the harder to understand 64-bit immediate 9480 // materialization. 9481 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 9482 } 9483 9484 return SDValue(); 9485 } 9486 9487 // Returns true if argument is a boolean value which is not serialized into 9488 // memory or argument and does not require v_cndmask_b32 to be deserialized. 9489 static bool isBoolSGPR(SDValue V) { 9490 if (V.getValueType() != MVT::i1) 9491 return false; 9492 switch (V.getOpcode()) { 9493 default: 9494 break; 9495 case ISD::SETCC: 9496 case AMDGPUISD::FP_CLASS: 9497 return true; 9498 case ISD::AND: 9499 case ISD::OR: 9500 case ISD::XOR: 9501 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 9502 } 9503 return false; 9504 } 9505 9506 // If a constant has all zeroes or all ones within each byte return it. 9507 // Otherwise return 0. 9508 static uint32_t getConstantPermuteMask(uint32_t C) { 9509 // 0xff for any zero byte in the mask 9510 uint32_t ZeroByteMask = 0; 9511 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 9512 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 9513 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 9514 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 9515 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 9516 if ((NonZeroByteMask & C) != NonZeroByteMask) 9517 return 0; // Partial bytes selected. 9518 return C; 9519 } 9520 9521 // Check if a node selects whole bytes from its operand 0 starting at a byte 9522 // boundary while masking the rest. Returns select mask as in the v_perm_b32 9523 // or -1 if not succeeded. 9524 // Note byte select encoding: 9525 // value 0-3 selects corresponding source byte; 9526 // value 0xc selects zero; 9527 // value 0xff selects 0xff. 9528 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 9529 assert(V.getValueSizeInBits() == 32); 9530 9531 if (V.getNumOperands() != 2) 9532 return ~0; 9533 9534 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 9535 if (!N1) 9536 return ~0; 9537 9538 uint32_t C = N1->getZExtValue(); 9539 9540 switch (V.getOpcode()) { 9541 default: 9542 break; 9543 case ISD::AND: 9544 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9545 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 9546 } 9547 break; 9548 9549 case ISD::OR: 9550 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9551 return (0x03020100 & ~ConstMask) | ConstMask; 9552 } 9553 break; 9554 9555 case ISD::SHL: 9556 if (C % 8) 9557 return ~0; 9558 9559 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 9560 9561 case ISD::SRL: 9562 if (C % 8) 9563 return ~0; 9564 9565 return uint32_t(0x0c0c0c0c03020100ull >> C); 9566 } 9567 9568 return ~0; 9569 } 9570 9571 SDValue SITargetLowering::performAndCombine(SDNode *N, 9572 DAGCombinerInfo &DCI) const { 9573 if (DCI.isBeforeLegalize()) 9574 return SDValue(); 9575 9576 SelectionDAG &DAG = DCI.DAG; 9577 EVT VT = N->getValueType(0); 9578 SDValue LHS = N->getOperand(0); 9579 SDValue RHS = N->getOperand(1); 9580 9581 9582 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9583 if (VT == MVT::i64 && CRHS) { 9584 if (SDValue Split 9585 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 9586 return Split; 9587 } 9588 9589 if (CRHS && VT == MVT::i32) { 9590 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 9591 // nb = number of trailing zeroes in mask 9592 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 9593 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 9594 uint64_t Mask = CRHS->getZExtValue(); 9595 unsigned Bits = countPopulation(Mask); 9596 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 9597 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 9598 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 9599 unsigned Shift = CShift->getZExtValue(); 9600 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 9601 unsigned Offset = NB + Shift; 9602 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 9603 SDLoc SL(N); 9604 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 9605 LHS->getOperand(0), 9606 DAG.getConstant(Offset, SL, MVT::i32), 9607 DAG.getConstant(Bits, SL, MVT::i32)); 9608 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9609 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 9610 DAG.getValueType(NarrowVT)); 9611 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 9612 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 9613 return Shl; 9614 } 9615 } 9616 } 9617 9618 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9619 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 9620 isa<ConstantSDNode>(LHS.getOperand(2))) { 9621 uint32_t Sel = getConstantPermuteMask(Mask); 9622 if (!Sel) 9623 return SDValue(); 9624 9625 // Select 0xc for all zero bytes 9626 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 9627 SDLoc DL(N); 9628 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9629 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9630 } 9631 } 9632 9633 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 9634 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 9635 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 9636 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9637 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 9638 9639 SDValue X = LHS.getOperand(0); 9640 SDValue Y = RHS.getOperand(0); 9641 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 9642 return SDValue(); 9643 9644 if (LCC == ISD::SETO) { 9645 if (X != LHS.getOperand(1)) 9646 return SDValue(); 9647 9648 if (RCC == ISD::SETUNE) { 9649 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 9650 if (!C1 || !C1->isInfinity() || C1->isNegative()) 9651 return SDValue(); 9652 9653 const uint32_t Mask = SIInstrFlags::N_NORMAL | 9654 SIInstrFlags::N_SUBNORMAL | 9655 SIInstrFlags::N_ZERO | 9656 SIInstrFlags::P_ZERO | 9657 SIInstrFlags::P_SUBNORMAL | 9658 SIInstrFlags::P_NORMAL; 9659 9660 static_assert(((~(SIInstrFlags::S_NAN | 9661 SIInstrFlags::Q_NAN | 9662 SIInstrFlags::N_INFINITY | 9663 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 9664 "mask not equal"); 9665 9666 SDLoc DL(N); 9667 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9668 X, DAG.getConstant(Mask, DL, MVT::i32)); 9669 } 9670 } 9671 } 9672 9673 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 9674 std::swap(LHS, RHS); 9675 9676 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 9677 RHS.hasOneUse()) { 9678 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9679 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 9680 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 9681 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9682 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 9683 (RHS.getOperand(0) == LHS.getOperand(0) && 9684 LHS.getOperand(0) == LHS.getOperand(1))) { 9685 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 9686 unsigned NewMask = LCC == ISD::SETO ? 9687 Mask->getZExtValue() & ~OrdMask : 9688 Mask->getZExtValue() & OrdMask; 9689 9690 SDLoc DL(N); 9691 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 9692 DAG.getConstant(NewMask, DL, MVT::i32)); 9693 } 9694 } 9695 9696 if (VT == MVT::i32 && 9697 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 9698 // and x, (sext cc from i1) => select cc, x, 0 9699 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 9700 std::swap(LHS, RHS); 9701 if (isBoolSGPR(RHS.getOperand(0))) 9702 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 9703 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 9704 } 9705 9706 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9707 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9708 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9709 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9710 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9711 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9712 if (LHSMask != ~0u && RHSMask != ~0u) { 9713 // Canonicalize the expression in an attempt to have fewer unique masks 9714 // and therefore fewer registers used to hold the masks. 9715 if (LHSMask > RHSMask) { 9716 std::swap(LHSMask, RHSMask); 9717 std::swap(LHS, RHS); 9718 } 9719 9720 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9721 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9722 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9723 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9724 9725 // Check of we need to combine values from two sources within a byte. 9726 if (!(LHSUsedLanes & RHSUsedLanes) && 9727 // If we select high and lower word keep it for SDWA. 9728 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9729 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9730 // Each byte in each mask is either selector mask 0-3, or has higher 9731 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 9732 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 9733 // mask which is not 0xff wins. By anding both masks we have a correct 9734 // result except that 0x0c shall be corrected to give 0x0c only. 9735 uint32_t Mask = LHSMask & RHSMask; 9736 for (unsigned I = 0; I < 32; I += 8) { 9737 uint32_t ByteSel = 0xff << I; 9738 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 9739 Mask &= (0x0c << I) & 0xffffffff; 9740 } 9741 9742 // Add 4 to each active LHS lane. It will not affect any existing 0xff 9743 // or 0x0c. 9744 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 9745 SDLoc DL(N); 9746 9747 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9748 LHS.getOperand(0), RHS.getOperand(0), 9749 DAG.getConstant(Sel, DL, MVT::i32)); 9750 } 9751 } 9752 } 9753 9754 return SDValue(); 9755 } 9756 9757 SDValue SITargetLowering::performOrCombine(SDNode *N, 9758 DAGCombinerInfo &DCI) const { 9759 SelectionDAG &DAG = DCI.DAG; 9760 SDValue LHS = N->getOperand(0); 9761 SDValue RHS = N->getOperand(1); 9762 9763 EVT VT = N->getValueType(0); 9764 if (VT == MVT::i1) { 9765 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 9766 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 9767 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 9768 SDValue Src = LHS.getOperand(0); 9769 if (Src != RHS.getOperand(0)) 9770 return SDValue(); 9771 9772 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9773 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9774 if (!CLHS || !CRHS) 9775 return SDValue(); 9776 9777 // Only 10 bits are used. 9778 static const uint32_t MaxMask = 0x3ff; 9779 9780 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 9781 SDLoc DL(N); 9782 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9783 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 9784 } 9785 9786 return SDValue(); 9787 } 9788 9789 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9790 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 9791 LHS.getOpcode() == AMDGPUISD::PERM && 9792 isa<ConstantSDNode>(LHS.getOperand(2))) { 9793 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 9794 if (!Sel) 9795 return SDValue(); 9796 9797 Sel |= LHS.getConstantOperandVal(2); 9798 SDLoc DL(N); 9799 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9800 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9801 } 9802 9803 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9804 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9805 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9806 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9807 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9808 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9809 if (LHSMask != ~0u && RHSMask != ~0u) { 9810 // Canonicalize the expression in an attempt to have fewer unique masks 9811 // and therefore fewer registers used to hold the masks. 9812 if (LHSMask > RHSMask) { 9813 std::swap(LHSMask, RHSMask); 9814 std::swap(LHS, RHS); 9815 } 9816 9817 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9818 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9819 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9820 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9821 9822 // Check of we need to combine values from two sources within a byte. 9823 if (!(LHSUsedLanes & RHSUsedLanes) && 9824 // If we select high and lower word keep it for SDWA. 9825 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9826 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9827 // Kill zero bytes selected by other mask. Zero value is 0xc. 9828 LHSMask &= ~RHSUsedLanes; 9829 RHSMask &= ~LHSUsedLanes; 9830 // Add 4 to each active LHS lane 9831 LHSMask |= LHSUsedLanes & 0x04040404; 9832 // Combine masks 9833 uint32_t Sel = LHSMask | RHSMask; 9834 SDLoc DL(N); 9835 9836 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9837 LHS.getOperand(0), RHS.getOperand(0), 9838 DAG.getConstant(Sel, DL, MVT::i32)); 9839 } 9840 } 9841 } 9842 9843 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9844 return SDValue(); 9845 9846 // TODO: This could be a generic combine with a predicate for extracting the 9847 // high half of an integer being free. 9848 9849 // (or i64:x, (zero_extend i32:y)) -> 9850 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9851 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9852 RHS.getOpcode() != ISD::ZERO_EXTEND) 9853 std::swap(LHS, RHS); 9854 9855 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9856 SDValue ExtSrc = RHS.getOperand(0); 9857 EVT SrcVT = ExtSrc.getValueType(); 9858 if (SrcVT == MVT::i32) { 9859 SDLoc SL(N); 9860 SDValue LowLHS, HiBits; 9861 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9862 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9863 9864 DCI.AddToWorklist(LowOr.getNode()); 9865 DCI.AddToWorklist(HiBits.getNode()); 9866 9867 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9868 LowOr, HiBits); 9869 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9870 } 9871 } 9872 9873 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9874 if (CRHS) { 9875 if (SDValue Split 9876 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 9877 N->getOperand(0), CRHS)) 9878 return Split; 9879 } 9880 9881 return SDValue(); 9882 } 9883 9884 SDValue SITargetLowering::performXorCombine(SDNode *N, 9885 DAGCombinerInfo &DCI) const { 9886 if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) 9887 return RV; 9888 9889 EVT VT = N->getValueType(0); 9890 if (VT != MVT::i64) 9891 return SDValue(); 9892 9893 SDValue LHS = N->getOperand(0); 9894 SDValue RHS = N->getOperand(1); 9895 9896 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9897 if (CRHS) { 9898 if (SDValue Split 9899 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9900 return Split; 9901 } 9902 9903 return SDValue(); 9904 } 9905 9906 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9907 DAGCombinerInfo &DCI) const { 9908 if (!Subtarget->has16BitInsts() || 9909 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9910 return SDValue(); 9911 9912 EVT VT = N->getValueType(0); 9913 if (VT != MVT::i32) 9914 return SDValue(); 9915 9916 SDValue Src = N->getOperand(0); 9917 if (Src.getValueType() != MVT::i16) 9918 return SDValue(); 9919 9920 return SDValue(); 9921 } 9922 9923 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9924 DAGCombinerInfo &DCI) 9925 const { 9926 SDValue Src = N->getOperand(0); 9927 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9928 9929 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9930 VTSign->getVT() == MVT::i8) || 9931 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9932 VTSign->getVT() == MVT::i16)) && 9933 Src.hasOneUse()) { 9934 auto *M = cast<MemSDNode>(Src); 9935 SDValue Ops[] = { 9936 Src.getOperand(0), // Chain 9937 Src.getOperand(1), // rsrc 9938 Src.getOperand(2), // vindex 9939 Src.getOperand(3), // voffset 9940 Src.getOperand(4), // soffset 9941 Src.getOperand(5), // offset 9942 Src.getOperand(6), 9943 Src.getOperand(7) 9944 }; 9945 // replace with BUFFER_LOAD_BYTE/SHORT 9946 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9947 Src.getOperand(0).getValueType()); 9948 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9949 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9950 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9951 ResList, 9952 Ops, M->getMemoryVT(), 9953 M->getMemOperand()); 9954 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9955 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9956 } 9957 return SDValue(); 9958 } 9959 9960 SDValue SITargetLowering::performClassCombine(SDNode *N, 9961 DAGCombinerInfo &DCI) const { 9962 SelectionDAG &DAG = DCI.DAG; 9963 SDValue Mask = N->getOperand(1); 9964 9965 // fp_class x, 0 -> false 9966 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9967 if (CMask->isZero()) 9968 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9969 } 9970 9971 if (N->getOperand(0).isUndef()) 9972 return DAG.getUNDEF(MVT::i1); 9973 9974 return SDValue(); 9975 } 9976 9977 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9978 DAGCombinerInfo &DCI) const { 9979 EVT VT = N->getValueType(0); 9980 SDValue N0 = N->getOperand(0); 9981 9982 if (N0.isUndef()) 9983 return N0; 9984 9985 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9986 N0.getOpcode() == ISD::SINT_TO_FP)) { 9987 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9988 N->getFlags()); 9989 } 9990 9991 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9992 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9993 N0.getOperand(0), N->getFlags()); 9994 } 9995 9996 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9997 } 9998 9999 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 10000 unsigned MaxDepth) const { 10001 unsigned Opcode = Op.getOpcode(); 10002 if (Opcode == ISD::FCANONICALIZE) 10003 return true; 10004 10005 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10006 auto F = CFP->getValueAPF(); 10007 if (F.isNaN() && F.isSignaling()) 10008 return false; 10009 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 10010 } 10011 10012 // If source is a result of another standard FP operation it is already in 10013 // canonical form. 10014 if (MaxDepth == 0) 10015 return false; 10016 10017 switch (Opcode) { 10018 // These will flush denorms if required. 10019 case ISD::FADD: 10020 case ISD::FSUB: 10021 case ISD::FMUL: 10022 case ISD::FCEIL: 10023 case ISD::FFLOOR: 10024 case ISD::FMA: 10025 case ISD::FMAD: 10026 case ISD::FSQRT: 10027 case ISD::FDIV: 10028 case ISD::FREM: 10029 case ISD::FP_ROUND: 10030 case ISD::FP_EXTEND: 10031 case AMDGPUISD::FMUL_LEGACY: 10032 case AMDGPUISD::FMAD_FTZ: 10033 case AMDGPUISD::RCP: 10034 case AMDGPUISD::RSQ: 10035 case AMDGPUISD::RSQ_CLAMP: 10036 case AMDGPUISD::RCP_LEGACY: 10037 case AMDGPUISD::RCP_IFLAG: 10038 case AMDGPUISD::DIV_SCALE: 10039 case AMDGPUISD::DIV_FMAS: 10040 case AMDGPUISD::DIV_FIXUP: 10041 case AMDGPUISD::FRACT: 10042 case AMDGPUISD::LDEXP: 10043 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10044 case AMDGPUISD::CVT_F32_UBYTE0: 10045 case AMDGPUISD::CVT_F32_UBYTE1: 10046 case AMDGPUISD::CVT_F32_UBYTE2: 10047 case AMDGPUISD::CVT_F32_UBYTE3: 10048 return true; 10049 10050 // It can/will be lowered or combined as a bit operation. 10051 // Need to check their input recursively to handle. 10052 case ISD::FNEG: 10053 case ISD::FABS: 10054 case ISD::FCOPYSIGN: 10055 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10056 10057 case ISD::FSIN: 10058 case ISD::FCOS: 10059 case ISD::FSINCOS: 10060 return Op.getValueType().getScalarType() != MVT::f16; 10061 10062 case ISD::FMINNUM: 10063 case ISD::FMAXNUM: 10064 case ISD::FMINNUM_IEEE: 10065 case ISD::FMAXNUM_IEEE: 10066 case AMDGPUISD::CLAMP: 10067 case AMDGPUISD::FMED3: 10068 case AMDGPUISD::FMAX3: 10069 case AMDGPUISD::FMIN3: { 10070 // FIXME: Shouldn't treat the generic operations different based these. 10071 // However, we aren't really required to flush the result from 10072 // minnum/maxnum.. 10073 10074 // snans will be quieted, so we only need to worry about denormals. 10075 if (Subtarget->supportsMinMaxDenormModes() || 10076 denormalsEnabledForType(DAG, Op.getValueType())) 10077 return true; 10078 10079 // Flushing may be required. 10080 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 10081 // targets need to check their input recursively. 10082 10083 // FIXME: Does this apply with clamp? It's implemented with max. 10084 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 10085 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 10086 return false; 10087 } 10088 10089 return true; 10090 } 10091 case ISD::SELECT: { 10092 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 10093 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 10094 } 10095 case ISD::BUILD_VECTOR: { 10096 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 10097 SDValue SrcOp = Op.getOperand(i); 10098 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 10099 return false; 10100 } 10101 10102 return true; 10103 } 10104 case ISD::EXTRACT_VECTOR_ELT: 10105 case ISD::EXTRACT_SUBVECTOR: { 10106 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10107 } 10108 case ISD::INSERT_VECTOR_ELT: { 10109 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 10110 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 10111 } 10112 case ISD::UNDEF: 10113 // Could be anything. 10114 return false; 10115 10116 case ISD::BITCAST: 10117 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 10118 case ISD::TRUNCATE: { 10119 // Hack round the mess we make when legalizing extract_vector_elt 10120 if (Op.getValueType() == MVT::i16) { 10121 SDValue TruncSrc = Op.getOperand(0); 10122 if (TruncSrc.getValueType() == MVT::i32 && 10123 TruncSrc.getOpcode() == ISD::BITCAST && 10124 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 10125 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 10126 } 10127 } 10128 return false; 10129 } 10130 case ISD::INTRINSIC_WO_CHAIN: { 10131 unsigned IntrinsicID 10132 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10133 // TODO: Handle more intrinsics 10134 switch (IntrinsicID) { 10135 case Intrinsic::amdgcn_cvt_pkrtz: 10136 case Intrinsic::amdgcn_cubeid: 10137 case Intrinsic::amdgcn_frexp_mant: 10138 case Intrinsic::amdgcn_fdot2: 10139 case Intrinsic::amdgcn_rcp: 10140 case Intrinsic::amdgcn_rsq: 10141 case Intrinsic::amdgcn_rsq_clamp: 10142 case Intrinsic::amdgcn_rcp_legacy: 10143 case Intrinsic::amdgcn_rsq_legacy: 10144 case Intrinsic::amdgcn_trig_preop: 10145 return true; 10146 default: 10147 break; 10148 } 10149 10150 LLVM_FALLTHROUGH; 10151 } 10152 default: 10153 return denormalsEnabledForType(DAG, Op.getValueType()) && 10154 DAG.isKnownNeverSNaN(Op); 10155 } 10156 10157 llvm_unreachable("invalid operation"); 10158 } 10159 10160 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 10161 unsigned MaxDepth) const { 10162 MachineRegisterInfo &MRI = MF.getRegInfo(); 10163 MachineInstr *MI = MRI.getVRegDef(Reg); 10164 unsigned Opcode = MI->getOpcode(); 10165 10166 if (Opcode == AMDGPU::G_FCANONICALIZE) 10167 return true; 10168 10169 Optional<FPValueAndVReg> FCR; 10170 // Constant splat (can be padded with undef) or scalar constant. 10171 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 10172 if (FCR->Value.isSignaling()) 10173 return false; 10174 return !FCR->Value.isDenormal() || 10175 denormalsEnabledForType(MRI.getType(FCR->VReg), MF); 10176 } 10177 10178 if (MaxDepth == 0) 10179 return false; 10180 10181 switch (Opcode) { 10182 case AMDGPU::G_FMINNUM_IEEE: 10183 case AMDGPU::G_FMAXNUM_IEEE: { 10184 if (Subtarget->supportsMinMaxDenormModes() || 10185 denormalsEnabledForType(MRI.getType(Reg), MF)) 10186 return true; 10187 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 10188 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 10189 return false; 10190 return true; 10191 } 10192 default: 10193 return denormalsEnabledForType(MRI.getType(Reg), MF) && 10194 isKnownNeverSNaN(Reg, MRI); 10195 } 10196 10197 llvm_unreachable("invalid operation"); 10198 } 10199 10200 // Constant fold canonicalize. 10201 SDValue SITargetLowering::getCanonicalConstantFP( 10202 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 10203 // Flush denormals to 0 if not enabled. 10204 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 10205 return DAG.getConstantFP(0.0, SL, VT); 10206 10207 if (C.isNaN()) { 10208 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 10209 if (C.isSignaling()) { 10210 // Quiet a signaling NaN. 10211 // FIXME: Is this supposed to preserve payload bits? 10212 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 10213 } 10214 10215 // Make sure it is the canonical NaN bitpattern. 10216 // 10217 // TODO: Can we use -1 as the canonical NaN value since it's an inline 10218 // immediate? 10219 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 10220 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 10221 } 10222 10223 // Already canonical. 10224 return DAG.getConstantFP(C, SL, VT); 10225 } 10226 10227 static bool vectorEltWillFoldAway(SDValue Op) { 10228 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 10229 } 10230 10231 SDValue SITargetLowering::performFCanonicalizeCombine( 10232 SDNode *N, 10233 DAGCombinerInfo &DCI) const { 10234 SelectionDAG &DAG = DCI.DAG; 10235 SDValue N0 = N->getOperand(0); 10236 EVT VT = N->getValueType(0); 10237 10238 // fcanonicalize undef -> qnan 10239 if (N0.isUndef()) { 10240 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 10241 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 10242 } 10243 10244 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 10245 EVT VT = N->getValueType(0); 10246 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 10247 } 10248 10249 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 10250 // (fcanonicalize k) 10251 // 10252 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 10253 10254 // TODO: This could be better with wider vectors that will be split to v2f16, 10255 // and to consider uses since there aren't that many packed operations. 10256 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 10257 isTypeLegal(MVT::v2f16)) { 10258 SDLoc SL(N); 10259 SDValue NewElts[2]; 10260 SDValue Lo = N0.getOperand(0); 10261 SDValue Hi = N0.getOperand(1); 10262 EVT EltVT = Lo.getValueType(); 10263 10264 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 10265 for (unsigned I = 0; I != 2; ++I) { 10266 SDValue Op = N0.getOperand(I); 10267 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10268 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 10269 CFP->getValueAPF()); 10270 } else if (Op.isUndef()) { 10271 // Handled below based on what the other operand is. 10272 NewElts[I] = Op; 10273 } else { 10274 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 10275 } 10276 } 10277 10278 // If one half is undef, and one is constant, prefer a splat vector rather 10279 // than the normal qNaN. If it's a register, prefer 0.0 since that's 10280 // cheaper to use and may be free with a packed operation. 10281 if (NewElts[0].isUndef()) { 10282 if (isa<ConstantFPSDNode>(NewElts[1])) 10283 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 10284 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 10285 } 10286 10287 if (NewElts[1].isUndef()) { 10288 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 10289 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 10290 } 10291 10292 return DAG.getBuildVector(VT, SL, NewElts); 10293 } 10294 } 10295 10296 unsigned SrcOpc = N0.getOpcode(); 10297 10298 // If it's free to do so, push canonicalizes further up the source, which may 10299 // find a canonical source. 10300 // 10301 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 10302 // sNaNs. 10303 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 10304 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 10305 if (CRHS && N0.hasOneUse()) { 10306 SDLoc SL(N); 10307 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 10308 N0.getOperand(0)); 10309 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 10310 DCI.AddToWorklist(Canon0.getNode()); 10311 10312 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 10313 } 10314 } 10315 10316 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 10317 } 10318 10319 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 10320 switch (Opc) { 10321 case ISD::FMAXNUM: 10322 case ISD::FMAXNUM_IEEE: 10323 return AMDGPUISD::FMAX3; 10324 case ISD::SMAX: 10325 return AMDGPUISD::SMAX3; 10326 case ISD::UMAX: 10327 return AMDGPUISD::UMAX3; 10328 case ISD::FMINNUM: 10329 case ISD::FMINNUM_IEEE: 10330 return AMDGPUISD::FMIN3; 10331 case ISD::SMIN: 10332 return AMDGPUISD::SMIN3; 10333 case ISD::UMIN: 10334 return AMDGPUISD::UMIN3; 10335 default: 10336 llvm_unreachable("Not a min/max opcode"); 10337 } 10338 } 10339 10340 SDValue SITargetLowering::performIntMed3ImmCombine( 10341 SelectionDAG &DAG, const SDLoc &SL, 10342 SDValue Op0, SDValue Op1, bool Signed) const { 10343 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 10344 if (!K1) 10345 return SDValue(); 10346 10347 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 10348 if (!K0) 10349 return SDValue(); 10350 10351 if (Signed) { 10352 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 10353 return SDValue(); 10354 } else { 10355 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 10356 return SDValue(); 10357 } 10358 10359 EVT VT = K0->getValueType(0); 10360 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 10361 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 10362 return DAG.getNode(Med3Opc, SL, VT, 10363 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 10364 } 10365 10366 // If there isn't a 16-bit med3 operation, convert to 32-bit. 10367 if (VT == MVT::i16) { 10368 MVT NVT = MVT::i32; 10369 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10370 10371 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 10372 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 10373 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 10374 10375 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 10376 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 10377 } 10378 10379 return SDValue(); 10380 } 10381 10382 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 10383 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 10384 return C; 10385 10386 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 10387 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 10388 return C; 10389 } 10390 10391 return nullptr; 10392 } 10393 10394 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 10395 const SDLoc &SL, 10396 SDValue Op0, 10397 SDValue Op1) const { 10398 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 10399 if (!K1) 10400 return SDValue(); 10401 10402 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 10403 if (!K0) 10404 return SDValue(); 10405 10406 // Ordered >= (although NaN inputs should have folded away by now). 10407 if (K0->getValueAPF() > K1->getValueAPF()) 10408 return SDValue(); 10409 10410 const MachineFunction &MF = DAG.getMachineFunction(); 10411 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10412 10413 // TODO: Check IEEE bit enabled? 10414 EVT VT = Op0.getValueType(); 10415 if (Info->getMode().DX10Clamp) { 10416 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 10417 // hardware fmed3 behavior converting to a min. 10418 // FIXME: Should this be allowing -0.0? 10419 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 10420 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 10421 } 10422 10423 // med3 for f16 is only available on gfx9+, and not available for v2f16. 10424 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 10425 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 10426 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 10427 // then give the other result, which is different from med3 with a NaN 10428 // input. 10429 SDValue Var = Op0.getOperand(0); 10430 if (!DAG.isKnownNeverSNaN(Var)) 10431 return SDValue(); 10432 10433 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10434 10435 if ((!K0->hasOneUse() || 10436 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 10437 (!K1->hasOneUse() || 10438 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 10439 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 10440 Var, SDValue(K0, 0), SDValue(K1, 0)); 10441 } 10442 } 10443 10444 return SDValue(); 10445 } 10446 10447 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 10448 DAGCombinerInfo &DCI) const { 10449 SelectionDAG &DAG = DCI.DAG; 10450 10451 EVT VT = N->getValueType(0); 10452 unsigned Opc = N->getOpcode(); 10453 SDValue Op0 = N->getOperand(0); 10454 SDValue Op1 = N->getOperand(1); 10455 10456 // Only do this if the inner op has one use since this will just increases 10457 // register pressure for no benefit. 10458 10459 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 10460 !VT.isVector() && 10461 (VT == MVT::i32 || VT == MVT::f32 || 10462 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 10463 // max(max(a, b), c) -> max3(a, b, c) 10464 // min(min(a, b), c) -> min3(a, b, c) 10465 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 10466 SDLoc DL(N); 10467 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10468 DL, 10469 N->getValueType(0), 10470 Op0.getOperand(0), 10471 Op0.getOperand(1), 10472 Op1); 10473 } 10474 10475 // Try commuted. 10476 // max(a, max(b, c)) -> max3(a, b, c) 10477 // min(a, min(b, c)) -> min3(a, b, c) 10478 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 10479 SDLoc DL(N); 10480 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10481 DL, 10482 N->getValueType(0), 10483 Op0, 10484 Op1.getOperand(0), 10485 Op1.getOperand(1)); 10486 } 10487 } 10488 10489 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 10490 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 10491 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 10492 return Med3; 10493 } 10494 10495 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 10496 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 10497 return Med3; 10498 } 10499 10500 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 10501 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 10502 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 10503 (Opc == AMDGPUISD::FMIN_LEGACY && 10504 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 10505 (VT == MVT::f32 || VT == MVT::f64 || 10506 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 10507 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 10508 Op0.hasOneUse()) { 10509 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 10510 return Res; 10511 } 10512 10513 return SDValue(); 10514 } 10515 10516 static bool isClampZeroToOne(SDValue A, SDValue B) { 10517 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 10518 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 10519 // FIXME: Should this be allowing -0.0? 10520 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 10521 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 10522 } 10523 } 10524 10525 return false; 10526 } 10527 10528 // FIXME: Should only worry about snans for version with chain. 10529 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 10530 DAGCombinerInfo &DCI) const { 10531 EVT VT = N->getValueType(0); 10532 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 10533 // NaNs. With a NaN input, the order of the operands may change the result. 10534 10535 SelectionDAG &DAG = DCI.DAG; 10536 SDLoc SL(N); 10537 10538 SDValue Src0 = N->getOperand(0); 10539 SDValue Src1 = N->getOperand(1); 10540 SDValue Src2 = N->getOperand(2); 10541 10542 if (isClampZeroToOne(Src0, Src1)) { 10543 // const_a, const_b, x -> clamp is safe in all cases including signaling 10544 // nans. 10545 // FIXME: Should this be allowing -0.0? 10546 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 10547 } 10548 10549 const MachineFunction &MF = DAG.getMachineFunction(); 10550 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10551 10552 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 10553 // handling no dx10-clamp? 10554 if (Info->getMode().DX10Clamp) { 10555 // If NaNs is clamped to 0, we are free to reorder the inputs. 10556 10557 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10558 std::swap(Src0, Src1); 10559 10560 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 10561 std::swap(Src1, Src2); 10562 10563 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10564 std::swap(Src0, Src1); 10565 10566 if (isClampZeroToOne(Src1, Src2)) 10567 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 10568 } 10569 10570 return SDValue(); 10571 } 10572 10573 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 10574 DAGCombinerInfo &DCI) const { 10575 SDValue Src0 = N->getOperand(0); 10576 SDValue Src1 = N->getOperand(1); 10577 if (Src0.isUndef() && Src1.isUndef()) 10578 return DCI.DAG.getUNDEF(N->getValueType(0)); 10579 return SDValue(); 10580 } 10581 10582 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 10583 // expanded into a set of cmp/select instructions. 10584 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 10585 unsigned NumElem, 10586 bool IsDivergentIdx, 10587 const GCNSubtarget *Subtarget) { 10588 if (UseDivergentRegisterIndexing) 10589 return false; 10590 10591 unsigned VecSize = EltSize * NumElem; 10592 10593 // Sub-dword vectors of size 2 dword or less have better implementation. 10594 if (VecSize <= 64 && EltSize < 32) 10595 return false; 10596 10597 // Always expand the rest of sub-dword instructions, otherwise it will be 10598 // lowered via memory. 10599 if (EltSize < 32) 10600 return true; 10601 10602 // Always do this if var-idx is divergent, otherwise it will become a loop. 10603 if (IsDivergentIdx) 10604 return true; 10605 10606 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 10607 unsigned NumInsts = NumElem /* Number of compares */ + 10608 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 10609 10610 // On some architectures (GFX9) movrel is not available and it's better 10611 // to expand. 10612 if (!Subtarget->hasMovrel()) 10613 return NumInsts <= 16; 10614 10615 // If movrel is available, use it instead of expanding for vector of 8 10616 // elements. 10617 return NumInsts <= 15; 10618 } 10619 10620 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { 10621 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 10622 if (isa<ConstantSDNode>(Idx)) 10623 return false; 10624 10625 SDValue Vec = N->getOperand(0); 10626 EVT VecVT = Vec.getValueType(); 10627 EVT EltVT = VecVT.getVectorElementType(); 10628 unsigned EltSize = EltVT.getSizeInBits(); 10629 unsigned NumElem = VecVT.getVectorNumElements(); 10630 10631 return SITargetLowering::shouldExpandVectorDynExt( 10632 EltSize, NumElem, Idx->isDivergent(), getSubtarget()); 10633 } 10634 10635 SDValue SITargetLowering::performExtractVectorEltCombine( 10636 SDNode *N, DAGCombinerInfo &DCI) const { 10637 SDValue Vec = N->getOperand(0); 10638 SelectionDAG &DAG = DCI.DAG; 10639 10640 EVT VecVT = Vec.getValueType(); 10641 EVT EltVT = VecVT.getVectorElementType(); 10642 10643 if ((Vec.getOpcode() == ISD::FNEG || 10644 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 10645 SDLoc SL(N); 10646 EVT EltVT = N->getValueType(0); 10647 SDValue Idx = N->getOperand(1); 10648 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10649 Vec.getOperand(0), Idx); 10650 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 10651 } 10652 10653 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 10654 // => 10655 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 10656 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 10657 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 10658 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 10659 SDLoc SL(N); 10660 EVT EltVT = N->getValueType(0); 10661 SDValue Idx = N->getOperand(1); 10662 unsigned Opc = Vec.getOpcode(); 10663 10664 switch(Opc) { 10665 default: 10666 break; 10667 // TODO: Support other binary operations. 10668 case ISD::FADD: 10669 case ISD::FSUB: 10670 case ISD::FMUL: 10671 case ISD::ADD: 10672 case ISD::UMIN: 10673 case ISD::UMAX: 10674 case ISD::SMIN: 10675 case ISD::SMAX: 10676 case ISD::FMAXNUM: 10677 case ISD::FMINNUM: 10678 case ISD::FMAXNUM_IEEE: 10679 case ISD::FMINNUM_IEEE: { 10680 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10681 Vec.getOperand(0), Idx); 10682 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10683 Vec.getOperand(1), Idx); 10684 10685 DCI.AddToWorklist(Elt0.getNode()); 10686 DCI.AddToWorklist(Elt1.getNode()); 10687 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 10688 } 10689 } 10690 } 10691 10692 unsigned VecSize = VecVT.getSizeInBits(); 10693 unsigned EltSize = EltVT.getSizeInBits(); 10694 10695 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 10696 if (shouldExpandVectorDynExt(N)) { 10697 SDLoc SL(N); 10698 SDValue Idx = N->getOperand(1); 10699 SDValue V; 10700 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10701 SDValue IC = DAG.getVectorIdxConstant(I, SL); 10702 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10703 if (I == 0) 10704 V = Elt; 10705 else 10706 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 10707 } 10708 return V; 10709 } 10710 10711 if (!DCI.isBeforeLegalize()) 10712 return SDValue(); 10713 10714 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 10715 // elements. This exposes more load reduction opportunities by replacing 10716 // multiple small extract_vector_elements with a single 32-bit extract. 10717 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10718 if (isa<MemSDNode>(Vec) && 10719 EltSize <= 16 && 10720 EltVT.isByteSized() && 10721 VecSize > 32 && 10722 VecSize % 32 == 0 && 10723 Idx) { 10724 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 10725 10726 unsigned BitIndex = Idx->getZExtValue() * EltSize; 10727 unsigned EltIdx = BitIndex / 32; 10728 unsigned LeftoverBitIdx = BitIndex % 32; 10729 SDLoc SL(N); 10730 10731 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 10732 DCI.AddToWorklist(Cast.getNode()); 10733 10734 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 10735 DAG.getConstant(EltIdx, SL, MVT::i32)); 10736 DCI.AddToWorklist(Elt.getNode()); 10737 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 10738 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 10739 DCI.AddToWorklist(Srl.getNode()); 10740 10741 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 10742 DCI.AddToWorklist(Trunc.getNode()); 10743 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 10744 } 10745 10746 return SDValue(); 10747 } 10748 10749 SDValue 10750 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 10751 DAGCombinerInfo &DCI) const { 10752 SDValue Vec = N->getOperand(0); 10753 SDValue Idx = N->getOperand(2); 10754 EVT VecVT = Vec.getValueType(); 10755 EVT EltVT = VecVT.getVectorElementType(); 10756 10757 // INSERT_VECTOR_ELT (<n x e>, var-idx) 10758 // => BUILD_VECTOR n x select (e, const-idx) 10759 if (!shouldExpandVectorDynExt(N)) 10760 return SDValue(); 10761 10762 SelectionDAG &DAG = DCI.DAG; 10763 SDLoc SL(N); 10764 SDValue Ins = N->getOperand(1); 10765 EVT IdxVT = Idx.getValueType(); 10766 10767 SmallVector<SDValue, 16> Ops; 10768 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10769 SDValue IC = DAG.getConstant(I, SL, IdxVT); 10770 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10771 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 10772 Ops.push_back(V); 10773 } 10774 10775 return DAG.getBuildVector(VecVT, SL, Ops); 10776 } 10777 10778 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 10779 const SDNode *N0, 10780 const SDNode *N1) const { 10781 EVT VT = N0->getValueType(0); 10782 10783 // Only do this if we are not trying to support denormals. v_mad_f32 does not 10784 // support denormals ever. 10785 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 10786 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 10787 getSubtarget()->hasMadF16())) && 10788 isOperationLegal(ISD::FMAD, VT)) 10789 return ISD::FMAD; 10790 10791 const TargetOptions &Options = DAG.getTarget().Options; 10792 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10793 (N0->getFlags().hasAllowContract() && 10794 N1->getFlags().hasAllowContract())) && 10795 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 10796 return ISD::FMA; 10797 } 10798 10799 return 0; 10800 } 10801 10802 // For a reassociatable opcode perform: 10803 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 10804 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 10805 SelectionDAG &DAG) const { 10806 EVT VT = N->getValueType(0); 10807 if (VT != MVT::i32 && VT != MVT::i64) 10808 return SDValue(); 10809 10810 if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) 10811 return SDValue(); 10812 10813 unsigned Opc = N->getOpcode(); 10814 SDValue Op0 = N->getOperand(0); 10815 SDValue Op1 = N->getOperand(1); 10816 10817 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 10818 return SDValue(); 10819 10820 if (Op0->isDivergent()) 10821 std::swap(Op0, Op1); 10822 10823 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 10824 return SDValue(); 10825 10826 SDValue Op2 = Op1.getOperand(1); 10827 Op1 = Op1.getOperand(0); 10828 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 10829 return SDValue(); 10830 10831 if (Op1->isDivergent()) 10832 std::swap(Op1, Op2); 10833 10834 SDLoc SL(N); 10835 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10836 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10837 } 10838 10839 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10840 EVT VT, 10841 SDValue N0, SDValue N1, SDValue N2, 10842 bool Signed) { 10843 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10844 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10845 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10846 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10847 } 10848 10849 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high 10850 // multiplies, if any. 10851 // 10852 // Full 64-bit multiplies that feed into an addition are lowered here instead 10853 // of using the generic expansion. The generic expansion ends up with 10854 // a tree of ADD nodes that prevents us from using the "add" part of the 10855 // MAD instruction. The expansion produced here results in a chain of ADDs 10856 // instead of a tree. 10857 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, 10858 DAGCombinerInfo &DCI) const { 10859 assert(N->getOpcode() == ISD::ADD); 10860 10861 SelectionDAG &DAG = DCI.DAG; 10862 EVT VT = N->getValueType(0); 10863 SDLoc SL(N); 10864 SDValue LHS = N->getOperand(0); 10865 SDValue RHS = N->getOperand(1); 10866 10867 if (VT.isVector()) 10868 return SDValue(); 10869 10870 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall 10871 // result in scalar registers for uniform values. 10872 if (!N->isDivergent() && Subtarget->hasSMulHi()) 10873 return SDValue(); 10874 10875 unsigned NumBits = VT.getScalarSizeInBits(); 10876 if (NumBits <= 32 || NumBits > 64) 10877 return SDValue(); 10878 10879 if (LHS.getOpcode() != ISD::MUL) { 10880 assert(RHS.getOpcode() == ISD::MUL); 10881 std::swap(LHS, RHS); 10882 } 10883 10884 // Avoid the fold if it would unduly increase the number of multiplies due to 10885 // multiple uses, except on hardware with full-rate multiply-add (which is 10886 // part of full-rate 64-bit ops). 10887 if (!Subtarget->hasFullRate64Ops()) { 10888 unsigned NumUsers = 0; 10889 for (SDNode *Use : LHS->uses()) { 10890 // There is a use that does not feed into addition, so the multiply can't 10891 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. 10892 if (Use->getOpcode() != ISD::ADD) 10893 return SDValue(); 10894 10895 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer 10896 // MUL + 3xADD + 3xADDC over 3xMAD. 10897 ++NumUsers; 10898 if (NumUsers >= 3) 10899 return SDValue(); 10900 } 10901 } 10902 10903 SDValue MulLHS = LHS.getOperand(0); 10904 SDValue MulRHS = LHS.getOperand(1); 10905 SDValue AddRHS = RHS; 10906 10907 // Always check whether operands are small unsigned values, since that 10908 // knowledge is useful in more cases. Check for small signed values only if 10909 // doing so can unlock a shorter code sequence. 10910 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; 10911 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; 10912 10913 bool MulSignedLo = false; 10914 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { 10915 MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && 10916 numBitsSigned(MulRHS, DAG) <= 32; 10917 } 10918 10919 // The operands and final result all have the same number of bits. If 10920 // operands need to be extended, they can be extended with garbage. The 10921 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is 10922 // truncated away in the end. 10923 if (VT != MVT::i64) { 10924 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); 10925 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); 10926 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); 10927 } 10928 10929 // The basic code generated is conceptually straightforward. Pseudo code: 10930 // 10931 // accum = mad_64_32 lhs.lo, rhs.lo, accum 10932 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi 10933 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi 10934 // 10935 // The second and third lines are optional, depending on whether the factors 10936 // are {sign,zero}-extended or not. 10937 // 10938 // The actual DAG is noisier than the pseudo code, but only due to 10939 // instructions that disassemble values into low and high parts, and 10940 // assemble the final result. 10941 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 10942 SDValue One = DAG.getConstant(1, SL, MVT::i32); 10943 10944 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); 10945 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); 10946 SDValue Accum = 10947 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); 10948 10949 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { 10950 auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero); 10951 auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One); 10952 10953 if (!MulLHSUnsigned32) { 10954 auto MulLHSHi = 10955 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); 10956 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); 10957 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 10958 } 10959 10960 if (!MulRHSUnsigned32) { 10961 auto MulRHSHi = 10962 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); 10963 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); 10964 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 10965 } 10966 10967 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); 10968 Accum = DAG.getBitcast(MVT::i64, Accum); 10969 } 10970 10971 if (VT != MVT::i64) 10972 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); 10973 return Accum; 10974 } 10975 10976 SDValue SITargetLowering::performAddCombine(SDNode *N, 10977 DAGCombinerInfo &DCI) const { 10978 SelectionDAG &DAG = DCI.DAG; 10979 EVT VT = N->getValueType(0); 10980 SDLoc SL(N); 10981 SDValue LHS = N->getOperand(0); 10982 SDValue RHS = N->getOperand(1); 10983 10984 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { 10985 if (Subtarget->hasMad64_32()) { 10986 if (SDValue Folded = tryFoldToMad64_32(N, DCI)) 10987 return Folded; 10988 } 10989 10990 return SDValue(); 10991 } 10992 10993 if (SDValue V = reassociateScalarOps(N, DAG)) { 10994 return V; 10995 } 10996 10997 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10998 return SDValue(); 10999 11000 // add x, zext (setcc) => addcarry x, 0, setcc 11001 // add x, sext (setcc) => subcarry x, 0, setcc 11002 unsigned Opc = LHS.getOpcode(); 11003 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 11004 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 11005 std::swap(RHS, LHS); 11006 11007 Opc = RHS.getOpcode(); 11008 switch (Opc) { 11009 default: break; 11010 case ISD::ZERO_EXTEND: 11011 case ISD::SIGN_EXTEND: 11012 case ISD::ANY_EXTEND: { 11013 auto Cond = RHS.getOperand(0); 11014 // If this won't be a real VOPC output, we would still need to insert an 11015 // extra instruction anyway. 11016 if (!isBoolSGPR(Cond)) 11017 break; 11018 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 11019 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 11020 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 11021 return DAG.getNode(Opc, SL, VTList, Args); 11022 } 11023 case ISD::ADDCARRY: { 11024 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 11025 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 11026 if (!C || C->getZExtValue() != 0) break; 11027 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 11028 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 11029 } 11030 } 11031 return SDValue(); 11032 } 11033 11034 SDValue SITargetLowering::performSubCombine(SDNode *N, 11035 DAGCombinerInfo &DCI) const { 11036 SelectionDAG &DAG = DCI.DAG; 11037 EVT VT = N->getValueType(0); 11038 11039 if (VT != MVT::i32) 11040 return SDValue(); 11041 11042 SDLoc SL(N); 11043 SDValue LHS = N->getOperand(0); 11044 SDValue RHS = N->getOperand(1); 11045 11046 // sub x, zext (setcc) => subcarry x, 0, setcc 11047 // sub x, sext (setcc) => addcarry x, 0, setcc 11048 unsigned Opc = RHS.getOpcode(); 11049 switch (Opc) { 11050 default: break; 11051 case ISD::ZERO_EXTEND: 11052 case ISD::SIGN_EXTEND: 11053 case ISD::ANY_EXTEND: { 11054 auto Cond = RHS.getOperand(0); 11055 // If this won't be a real VOPC output, we would still need to insert an 11056 // extra instruction anyway. 11057 if (!isBoolSGPR(Cond)) 11058 break; 11059 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 11060 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 11061 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 11062 return DAG.getNode(Opc, SL, VTList, Args); 11063 } 11064 } 11065 11066 if (LHS.getOpcode() == ISD::SUBCARRY) { 11067 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 11068 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 11069 if (!C || !C->isZero()) 11070 return SDValue(); 11071 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 11072 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 11073 } 11074 return SDValue(); 11075 } 11076 11077 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 11078 DAGCombinerInfo &DCI) const { 11079 11080 if (N->getValueType(0) != MVT::i32) 11081 return SDValue(); 11082 11083 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11084 if (!C || C->getZExtValue() != 0) 11085 return SDValue(); 11086 11087 SelectionDAG &DAG = DCI.DAG; 11088 SDValue LHS = N->getOperand(0); 11089 11090 // addcarry (add x, y), 0, cc => addcarry x, y, cc 11091 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 11092 unsigned LHSOpc = LHS.getOpcode(); 11093 unsigned Opc = N->getOpcode(); 11094 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 11095 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 11096 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 11097 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 11098 } 11099 return SDValue(); 11100 } 11101 11102 SDValue SITargetLowering::performFAddCombine(SDNode *N, 11103 DAGCombinerInfo &DCI) const { 11104 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 11105 return SDValue(); 11106 11107 SelectionDAG &DAG = DCI.DAG; 11108 EVT VT = N->getValueType(0); 11109 11110 SDLoc SL(N); 11111 SDValue LHS = N->getOperand(0); 11112 SDValue RHS = N->getOperand(1); 11113 11114 // These should really be instruction patterns, but writing patterns with 11115 // source modifiers is a pain. 11116 11117 // fadd (fadd (a, a), b) -> mad 2.0, a, b 11118 if (LHS.getOpcode() == ISD::FADD) { 11119 SDValue A = LHS.getOperand(0); 11120 if (A == LHS.getOperand(1)) { 11121 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 11122 if (FusedOp != 0) { 11123 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11124 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 11125 } 11126 } 11127 } 11128 11129 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 11130 if (RHS.getOpcode() == ISD::FADD) { 11131 SDValue A = RHS.getOperand(0); 11132 if (A == RHS.getOperand(1)) { 11133 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 11134 if (FusedOp != 0) { 11135 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11136 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 11137 } 11138 } 11139 } 11140 11141 return SDValue(); 11142 } 11143 11144 SDValue SITargetLowering::performFSubCombine(SDNode *N, 11145 DAGCombinerInfo &DCI) const { 11146 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 11147 return SDValue(); 11148 11149 SelectionDAG &DAG = DCI.DAG; 11150 SDLoc SL(N); 11151 EVT VT = N->getValueType(0); 11152 assert(!VT.isVector()); 11153 11154 // Try to get the fneg to fold into the source modifier. This undoes generic 11155 // DAG combines and folds them into the mad. 11156 // 11157 // Only do this if we are not trying to support denormals. v_mad_f32 does 11158 // not support denormals ever. 11159 SDValue LHS = N->getOperand(0); 11160 SDValue RHS = N->getOperand(1); 11161 if (LHS.getOpcode() == ISD::FADD) { 11162 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 11163 SDValue A = LHS.getOperand(0); 11164 if (A == LHS.getOperand(1)) { 11165 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 11166 if (FusedOp != 0){ 11167 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 11168 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 11169 11170 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 11171 } 11172 } 11173 } 11174 11175 if (RHS.getOpcode() == ISD::FADD) { 11176 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 11177 11178 SDValue A = RHS.getOperand(0); 11179 if (A == RHS.getOperand(1)) { 11180 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 11181 if (FusedOp != 0){ 11182 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 11183 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 11184 } 11185 } 11186 } 11187 11188 return SDValue(); 11189 } 11190 11191 SDValue SITargetLowering::performFMACombine(SDNode *N, 11192 DAGCombinerInfo &DCI) const { 11193 SelectionDAG &DAG = DCI.DAG; 11194 EVT VT = N->getValueType(0); 11195 SDLoc SL(N); 11196 11197 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 11198 return SDValue(); 11199 11200 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 11201 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 11202 SDValue Op1 = N->getOperand(0); 11203 SDValue Op2 = N->getOperand(1); 11204 SDValue FMA = N->getOperand(2); 11205 11206 if (FMA.getOpcode() != ISD::FMA || 11207 Op1.getOpcode() != ISD::FP_EXTEND || 11208 Op2.getOpcode() != ISD::FP_EXTEND) 11209 return SDValue(); 11210 11211 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 11212 // regardless of the denorm mode setting. Therefore, 11213 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. 11214 const TargetOptions &Options = DAG.getTarget().Options; 11215 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 11216 (N->getFlags().hasAllowContract() && 11217 FMA->getFlags().hasAllowContract())) { 11218 Op1 = Op1.getOperand(0); 11219 Op2 = Op2.getOperand(0); 11220 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11221 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11222 return SDValue(); 11223 11224 SDValue Vec1 = Op1.getOperand(0); 11225 SDValue Idx1 = Op1.getOperand(1); 11226 SDValue Vec2 = Op2.getOperand(0); 11227 11228 SDValue FMAOp1 = FMA.getOperand(0); 11229 SDValue FMAOp2 = FMA.getOperand(1); 11230 SDValue FMAAcc = FMA.getOperand(2); 11231 11232 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 11233 FMAOp2.getOpcode() != ISD::FP_EXTEND) 11234 return SDValue(); 11235 11236 FMAOp1 = FMAOp1.getOperand(0); 11237 FMAOp2 = FMAOp2.getOperand(0); 11238 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11239 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11240 return SDValue(); 11241 11242 SDValue Vec3 = FMAOp1.getOperand(0); 11243 SDValue Vec4 = FMAOp2.getOperand(0); 11244 SDValue Idx2 = FMAOp1.getOperand(1); 11245 11246 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 11247 // Idx1 and Idx2 cannot be the same. 11248 Idx1 == Idx2) 11249 return SDValue(); 11250 11251 if (Vec1 == Vec2 || Vec3 == Vec4) 11252 return SDValue(); 11253 11254 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 11255 return SDValue(); 11256 11257 if ((Vec1 == Vec3 && Vec2 == Vec4) || 11258 (Vec1 == Vec4 && Vec2 == Vec3)) { 11259 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 11260 DAG.getTargetConstant(0, SL, MVT::i1)); 11261 } 11262 } 11263 return SDValue(); 11264 } 11265 11266 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 11267 DAGCombinerInfo &DCI) const { 11268 SelectionDAG &DAG = DCI.DAG; 11269 SDLoc SL(N); 11270 11271 SDValue LHS = N->getOperand(0); 11272 SDValue RHS = N->getOperand(1); 11273 EVT VT = LHS.getValueType(); 11274 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11275 11276 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 11277 if (!CRHS) { 11278 CRHS = dyn_cast<ConstantSDNode>(LHS); 11279 if (CRHS) { 11280 std::swap(LHS, RHS); 11281 CC = getSetCCSwappedOperands(CC); 11282 } 11283 } 11284 11285 if (CRHS) { 11286 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 11287 isBoolSGPR(LHS.getOperand(0))) { 11288 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 11289 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 11290 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 11291 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 11292 if ((CRHS->isAllOnes() && 11293 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 11294 (CRHS->isZero() && 11295 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 11296 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 11297 DAG.getConstant(-1, SL, MVT::i1)); 11298 if ((CRHS->isAllOnes() && 11299 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 11300 (CRHS->isZero() && 11301 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 11302 return LHS.getOperand(0); 11303 } 11304 11305 const APInt &CRHSVal = CRHS->getAPIntValue(); 11306 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 11307 LHS.getOpcode() == ISD::SELECT && 11308 isa<ConstantSDNode>(LHS.getOperand(1)) && 11309 isa<ConstantSDNode>(LHS.getOperand(2)) && 11310 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 11311 isBoolSGPR(LHS.getOperand(0))) { 11312 // Given CT != FT: 11313 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 11314 // setcc (select cc, CT, CF), CF, ne => cc 11315 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 11316 // setcc (select cc, CT, CF), CT, eq => cc 11317 const APInt &CT = LHS.getConstantOperandAPInt(1); 11318 const APInt &CF = LHS.getConstantOperandAPInt(2); 11319 11320 if ((CF == CRHSVal && CC == ISD::SETEQ) || 11321 (CT == CRHSVal && CC == ISD::SETNE)) 11322 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 11323 DAG.getConstant(-1, SL, MVT::i1)); 11324 if ((CF == CRHSVal && CC == ISD::SETNE) || 11325 (CT == CRHSVal && CC == ISD::SETEQ)) 11326 return LHS.getOperand(0); 11327 } 11328 } 11329 11330 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 11331 VT != MVT::f16)) 11332 return SDValue(); 11333 11334 // Match isinf/isfinite pattern 11335 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 11336 // (fcmp one (fabs x), inf) -> (fp_class x, 11337 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 11338 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 11339 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 11340 if (!CRHS) 11341 return SDValue(); 11342 11343 const APFloat &APF = CRHS->getValueAPF(); 11344 if (APF.isInfinity() && !APF.isNegative()) { 11345 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 11346 SIInstrFlags::N_INFINITY; 11347 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 11348 SIInstrFlags::P_ZERO | 11349 SIInstrFlags::N_NORMAL | 11350 SIInstrFlags::P_NORMAL | 11351 SIInstrFlags::N_SUBNORMAL | 11352 SIInstrFlags::P_SUBNORMAL; 11353 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 11354 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 11355 DAG.getConstant(Mask, SL, MVT::i32)); 11356 } 11357 } 11358 11359 return SDValue(); 11360 } 11361 11362 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 11363 DAGCombinerInfo &DCI) const { 11364 SelectionDAG &DAG = DCI.DAG; 11365 SDLoc SL(N); 11366 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 11367 11368 SDValue Src = N->getOperand(0); 11369 SDValue Shift = N->getOperand(0); 11370 11371 // TODO: Extend type shouldn't matter (assuming legal types). 11372 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 11373 Shift = Shift.getOperand(0); 11374 11375 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 11376 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 11377 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 11378 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 11379 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 11380 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 11381 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 11382 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 11383 SDLoc(Shift.getOperand(0)), MVT::i32); 11384 11385 unsigned ShiftOffset = 8 * Offset; 11386 if (Shift.getOpcode() == ISD::SHL) 11387 ShiftOffset -= C->getZExtValue(); 11388 else 11389 ShiftOffset += C->getZExtValue(); 11390 11391 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 11392 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 11393 MVT::f32, Shifted); 11394 } 11395 } 11396 } 11397 11398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11399 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 11400 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 11401 // We simplified Src. If this node is not dead, visit it again so it is 11402 // folded properly. 11403 if (N->getOpcode() != ISD::DELETED_NODE) 11404 DCI.AddToWorklist(N); 11405 return SDValue(N, 0); 11406 } 11407 11408 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 11409 if (SDValue DemandedSrc = 11410 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 11411 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 11412 11413 return SDValue(); 11414 } 11415 11416 SDValue SITargetLowering::performClampCombine(SDNode *N, 11417 DAGCombinerInfo &DCI) const { 11418 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 11419 if (!CSrc) 11420 return SDValue(); 11421 11422 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 11423 const APFloat &F = CSrc->getValueAPF(); 11424 APFloat Zero = APFloat::getZero(F.getSemantics()); 11425 if (F < Zero || 11426 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 11427 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 11428 } 11429 11430 APFloat One(F.getSemantics(), "1.0"); 11431 if (F > One) 11432 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 11433 11434 return SDValue(CSrc, 0); 11435 } 11436 11437 11438 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 11439 DAGCombinerInfo &DCI) const { 11440 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 11441 return SDValue(); 11442 switch (N->getOpcode()) { 11443 case ISD::ADD: 11444 return performAddCombine(N, DCI); 11445 case ISD::SUB: 11446 return performSubCombine(N, DCI); 11447 case ISD::ADDCARRY: 11448 case ISD::SUBCARRY: 11449 return performAddCarrySubCarryCombine(N, DCI); 11450 case ISD::FADD: 11451 return performFAddCombine(N, DCI); 11452 case ISD::FSUB: 11453 return performFSubCombine(N, DCI); 11454 case ISD::SETCC: 11455 return performSetCCCombine(N, DCI); 11456 case ISD::FMAXNUM: 11457 case ISD::FMINNUM: 11458 case ISD::FMAXNUM_IEEE: 11459 case ISD::FMINNUM_IEEE: 11460 case ISD::SMAX: 11461 case ISD::SMIN: 11462 case ISD::UMAX: 11463 case ISD::UMIN: 11464 case AMDGPUISD::FMIN_LEGACY: 11465 case AMDGPUISD::FMAX_LEGACY: 11466 return performMinMaxCombine(N, DCI); 11467 case ISD::FMA: 11468 return performFMACombine(N, DCI); 11469 case ISD::AND: 11470 return performAndCombine(N, DCI); 11471 case ISD::OR: 11472 return performOrCombine(N, DCI); 11473 case ISD::XOR: 11474 return performXorCombine(N, DCI); 11475 case ISD::ZERO_EXTEND: 11476 return performZeroExtendCombine(N, DCI); 11477 case ISD::SIGN_EXTEND_INREG: 11478 return performSignExtendInRegCombine(N , DCI); 11479 case AMDGPUISD::FP_CLASS: 11480 return performClassCombine(N, DCI); 11481 case ISD::FCANONICALIZE: 11482 return performFCanonicalizeCombine(N, DCI); 11483 case AMDGPUISD::RCP: 11484 return performRcpCombine(N, DCI); 11485 case AMDGPUISD::FRACT: 11486 case AMDGPUISD::RSQ: 11487 case AMDGPUISD::RCP_LEGACY: 11488 case AMDGPUISD::RCP_IFLAG: 11489 case AMDGPUISD::RSQ_CLAMP: 11490 case AMDGPUISD::LDEXP: { 11491 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 11492 SDValue Src = N->getOperand(0); 11493 if (Src.isUndef()) 11494 return Src; 11495 break; 11496 } 11497 case ISD::SINT_TO_FP: 11498 case ISD::UINT_TO_FP: 11499 return performUCharToFloatCombine(N, DCI); 11500 case AMDGPUISD::CVT_F32_UBYTE0: 11501 case AMDGPUISD::CVT_F32_UBYTE1: 11502 case AMDGPUISD::CVT_F32_UBYTE2: 11503 case AMDGPUISD::CVT_F32_UBYTE3: 11504 return performCvtF32UByteNCombine(N, DCI); 11505 case AMDGPUISD::FMED3: 11506 return performFMed3Combine(N, DCI); 11507 case AMDGPUISD::CVT_PKRTZ_F16_F32: 11508 return performCvtPkRTZCombine(N, DCI); 11509 case AMDGPUISD::CLAMP: 11510 return performClampCombine(N, DCI); 11511 case ISD::SCALAR_TO_VECTOR: { 11512 SelectionDAG &DAG = DCI.DAG; 11513 EVT VT = N->getValueType(0); 11514 11515 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 11516 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 11517 SDLoc SL(N); 11518 SDValue Src = N->getOperand(0); 11519 EVT EltVT = Src.getValueType(); 11520 if (EltVT == MVT::f16) 11521 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 11522 11523 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 11524 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 11525 } 11526 11527 break; 11528 } 11529 case ISD::EXTRACT_VECTOR_ELT: 11530 return performExtractVectorEltCombine(N, DCI); 11531 case ISD::INSERT_VECTOR_ELT: 11532 return performInsertVectorEltCombine(N, DCI); 11533 case ISD::LOAD: { 11534 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 11535 return Widended; 11536 LLVM_FALLTHROUGH; 11537 } 11538 default: { 11539 if (!DCI.isBeforeLegalize()) { 11540 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 11541 return performMemSDNodeCombine(MemNode, DCI); 11542 } 11543 11544 break; 11545 } 11546 } 11547 11548 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 11549 } 11550 11551 /// Helper function for adjustWritemask 11552 static unsigned SubIdx2Lane(unsigned Idx) { 11553 switch (Idx) { 11554 default: return ~0u; 11555 case AMDGPU::sub0: return 0; 11556 case AMDGPU::sub1: return 1; 11557 case AMDGPU::sub2: return 2; 11558 case AMDGPU::sub3: return 3; 11559 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 11560 } 11561 } 11562 11563 /// Adjust the writemask of MIMG instructions 11564 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 11565 SelectionDAG &DAG) const { 11566 unsigned Opcode = Node->getMachineOpcode(); 11567 11568 // Subtract 1 because the vdata output is not a MachineSDNode operand. 11569 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 11570 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 11571 return Node; // not implemented for D16 11572 11573 SDNode *Users[5] = { nullptr }; 11574 unsigned Lane = 0; 11575 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 11576 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 11577 unsigned NewDmask = 0; 11578 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 11579 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 11580 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 11581 Node->getConstantOperandVal(LWEIdx)) 11582 ? true 11583 : false; 11584 unsigned TFCLane = 0; 11585 bool HasChain = Node->getNumValues() > 1; 11586 11587 if (OldDmask == 0) { 11588 // These are folded out, but on the chance it happens don't assert. 11589 return Node; 11590 } 11591 11592 unsigned OldBitsSet = countPopulation(OldDmask); 11593 // Work out which is the TFE/LWE lane if that is enabled. 11594 if (UsesTFC) { 11595 TFCLane = OldBitsSet; 11596 } 11597 11598 // Try to figure out the used register components 11599 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 11600 I != E; ++I) { 11601 11602 // Don't look at users of the chain. 11603 if (I.getUse().getResNo() != 0) 11604 continue; 11605 11606 // Abort if we can't understand the usage 11607 if (!I->isMachineOpcode() || 11608 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 11609 return Node; 11610 11611 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 11612 // Note that subregs are packed, i.e. Lane==0 is the first bit set 11613 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 11614 // set, etc. 11615 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 11616 if (Lane == ~0u) 11617 return Node; 11618 11619 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 11620 if (UsesTFC && Lane == TFCLane) { 11621 Users[Lane] = *I; 11622 } else { 11623 // Set which texture component corresponds to the lane. 11624 unsigned Comp; 11625 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 11626 Comp = countTrailingZeros(Dmask); 11627 Dmask &= ~(1 << Comp); 11628 } 11629 11630 // Abort if we have more than one user per component. 11631 if (Users[Lane]) 11632 return Node; 11633 11634 Users[Lane] = *I; 11635 NewDmask |= 1 << Comp; 11636 } 11637 } 11638 11639 // Don't allow 0 dmask, as hardware assumes one channel enabled. 11640 bool NoChannels = !NewDmask; 11641 if (NoChannels) { 11642 if (!UsesTFC) { 11643 // No uses of the result and not using TFC. Then do nothing. 11644 return Node; 11645 } 11646 // If the original dmask has one channel - then nothing to do 11647 if (OldBitsSet == 1) 11648 return Node; 11649 // Use an arbitrary dmask - required for the instruction to work 11650 NewDmask = 1; 11651 } 11652 // Abort if there's no change 11653 if (NewDmask == OldDmask) 11654 return Node; 11655 11656 unsigned BitsSet = countPopulation(NewDmask); 11657 11658 // Check for TFE or LWE - increase the number of channels by one to account 11659 // for the extra return value 11660 // This will need adjustment for D16 if this is also included in 11661 // adjustWriteMask (this function) but at present D16 are excluded. 11662 unsigned NewChannels = BitsSet + UsesTFC; 11663 11664 int NewOpcode = 11665 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 11666 assert(NewOpcode != -1 && 11667 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 11668 "failed to find equivalent MIMG op"); 11669 11670 // Adjust the writemask in the node 11671 SmallVector<SDValue, 12> Ops; 11672 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 11673 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 11674 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 11675 11676 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 11677 11678 MVT ResultVT = NewChannels == 1 ? 11679 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 11680 NewChannels == 5 ? 8 : NewChannels); 11681 SDVTList NewVTList = HasChain ? 11682 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 11683 11684 11685 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 11686 NewVTList, Ops); 11687 11688 if (HasChain) { 11689 // Update chain. 11690 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 11691 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 11692 } 11693 11694 if (NewChannels == 1) { 11695 assert(Node->hasNUsesOfValue(1, 0)); 11696 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 11697 SDLoc(Node), Users[Lane]->getValueType(0), 11698 SDValue(NewNode, 0)); 11699 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 11700 return nullptr; 11701 } 11702 11703 // Update the users of the node with the new indices 11704 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 11705 SDNode *User = Users[i]; 11706 if (!User) { 11707 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 11708 // Users[0] is still nullptr because channel 0 doesn't really have a use. 11709 if (i || !NoChannels) 11710 continue; 11711 } else { 11712 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 11713 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 11714 } 11715 11716 switch (Idx) { 11717 default: break; 11718 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 11719 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 11720 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 11721 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 11722 } 11723 } 11724 11725 DAG.RemoveDeadNode(Node); 11726 return nullptr; 11727 } 11728 11729 static bool isFrameIndexOp(SDValue Op) { 11730 if (Op.getOpcode() == ISD::AssertZext) 11731 Op = Op.getOperand(0); 11732 11733 return isa<FrameIndexSDNode>(Op); 11734 } 11735 11736 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 11737 /// with frame index operands. 11738 /// LLVM assumes that inputs are to these instructions are registers. 11739 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 11740 SelectionDAG &DAG) const { 11741 if (Node->getOpcode() == ISD::CopyToReg) { 11742 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 11743 SDValue SrcVal = Node->getOperand(2); 11744 11745 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 11746 // to try understanding copies to physical registers. 11747 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 11748 SDLoc SL(Node); 11749 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11750 SDValue VReg = DAG.getRegister( 11751 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 11752 11753 SDNode *Glued = Node->getGluedNode(); 11754 SDValue ToVReg 11755 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 11756 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 11757 SDValue ToResultReg 11758 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 11759 VReg, ToVReg.getValue(1)); 11760 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 11761 DAG.RemoveDeadNode(Node); 11762 return ToResultReg.getNode(); 11763 } 11764 } 11765 11766 SmallVector<SDValue, 8> Ops; 11767 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 11768 if (!isFrameIndexOp(Node->getOperand(i))) { 11769 Ops.push_back(Node->getOperand(i)); 11770 continue; 11771 } 11772 11773 SDLoc DL(Node); 11774 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 11775 Node->getOperand(i).getValueType(), 11776 Node->getOperand(i)), 0)); 11777 } 11778 11779 return DAG.UpdateNodeOperands(Node, Ops); 11780 } 11781 11782 /// Fold the instructions after selecting them. 11783 /// Returns null if users were already updated. 11784 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 11785 SelectionDAG &DAG) const { 11786 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11787 unsigned Opcode = Node->getMachineOpcode(); 11788 11789 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 11790 !TII->isGather4(Opcode) && 11791 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { 11792 return adjustWritemask(Node, DAG); 11793 } 11794 11795 if (Opcode == AMDGPU::INSERT_SUBREG || 11796 Opcode == AMDGPU::REG_SEQUENCE) { 11797 legalizeTargetIndependentNode(Node, DAG); 11798 return Node; 11799 } 11800 11801 switch (Opcode) { 11802 case AMDGPU::V_DIV_SCALE_F32_e64: 11803 case AMDGPU::V_DIV_SCALE_F64_e64: { 11804 // Satisfy the operand register constraint when one of the inputs is 11805 // undefined. Ordinarily each undef value will have its own implicit_def of 11806 // a vreg, so force these to use a single register. 11807 SDValue Src0 = Node->getOperand(1); 11808 SDValue Src1 = Node->getOperand(3); 11809 SDValue Src2 = Node->getOperand(5); 11810 11811 if ((Src0.isMachineOpcode() && 11812 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 11813 (Src0 == Src1 || Src0 == Src2)) 11814 break; 11815 11816 MVT VT = Src0.getValueType().getSimpleVT(); 11817 const TargetRegisterClass *RC = 11818 getRegClassFor(VT, Src0.getNode()->isDivergent()); 11819 11820 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11821 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 11822 11823 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 11824 UndefReg, Src0, SDValue()); 11825 11826 // src0 must be the same register as src1 or src2, even if the value is 11827 // undefined, so make sure we don't violate this constraint. 11828 if (Src0.isMachineOpcode() && 11829 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 11830 if (Src1.isMachineOpcode() && 11831 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11832 Src0 = Src1; 11833 else if (Src2.isMachineOpcode() && 11834 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11835 Src0 = Src2; 11836 else { 11837 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 11838 Src0 = UndefReg; 11839 Src1 = UndefReg; 11840 } 11841 } else 11842 break; 11843 11844 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 11845 Ops[1] = Src0; 11846 Ops[3] = Src1; 11847 Ops[5] = Src2; 11848 Ops.push_back(ImpDef.getValue(1)); 11849 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 11850 } 11851 default: 11852 break; 11853 } 11854 11855 return Node; 11856 } 11857 11858 // Any MIMG instructions that use tfe or lwe require an initialization of the 11859 // result register that will be written in the case of a memory access failure. 11860 // The required code is also added to tie this init code to the result of the 11861 // img instruction. 11862 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 11863 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11864 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 11865 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 11866 MachineBasicBlock &MBB = *MI.getParent(); 11867 11868 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 11869 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 11870 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 11871 11872 if (!TFE && !LWE) // intersect_ray 11873 return; 11874 11875 unsigned TFEVal = TFE ? TFE->getImm() : 0; 11876 unsigned LWEVal = LWE->getImm(); 11877 unsigned D16Val = D16 ? D16->getImm() : 0; 11878 11879 if (!TFEVal && !LWEVal) 11880 return; 11881 11882 // At least one of TFE or LWE are non-zero 11883 // We have to insert a suitable initialization of the result value and 11884 // tie this to the dest of the image instruction. 11885 11886 const DebugLoc &DL = MI.getDebugLoc(); 11887 11888 int DstIdx = 11889 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 11890 11891 // Calculate which dword we have to initialize to 0. 11892 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 11893 11894 // check that dmask operand is found. 11895 assert(MO_Dmask && "Expected dmask operand in instruction"); 11896 11897 unsigned dmask = MO_Dmask->getImm(); 11898 // Determine the number of active lanes taking into account the 11899 // Gather4 special case 11900 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask); 11901 11902 bool Packed = !Subtarget->hasUnpackedD16VMem(); 11903 11904 unsigned InitIdx = 11905 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 11906 11907 // Abandon attempt if the dst size isn't large enough 11908 // - this is in fact an error but this is picked up elsewhere and 11909 // reported correctly. 11910 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 11911 if (DstSize < InitIdx) 11912 return; 11913 11914 // Create a register for the initialization value. 11915 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11916 unsigned NewDst = 0; // Final initialized value will be in here 11917 11918 // If PRTStrictNull feature is enabled (the default) then initialize 11919 // all the result registers to 0, otherwise just the error indication 11920 // register (VGPRn+1) 11921 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 11922 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 11923 11924 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 11925 for (; SizeLeft; SizeLeft--, CurrIdx++) { 11926 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11927 // Initialize dword 11928 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 11929 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 11930 .addImm(0); 11931 // Insert into the super-reg 11932 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 11933 .addReg(PrevDst) 11934 .addReg(SubReg) 11935 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 11936 11937 PrevDst = NewDst; 11938 } 11939 11940 // Add as an implicit operand 11941 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 11942 11943 // Tie the just added implicit operand to the dst 11944 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 11945 } 11946 11947 /// Assign the register class depending on the number of 11948 /// bits set in the writemask 11949 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 11950 SDNode *Node) const { 11951 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11952 11953 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 11954 11955 if (TII->isVOP3(MI.getOpcode())) { 11956 // Make sure constant bus requirements are respected. 11957 TII->legalizeOperandsVOP3(MRI, MI); 11958 11959 // Prefer VGPRs over AGPRs in mAI instructions where possible. 11960 // This saves a chain-copy of registers and better balance register 11961 // use between vgpr and agpr as agpr tuples tend to be big. 11962 if (MI.getDesc().OpInfo) { 11963 unsigned Opc = MI.getOpcode(); 11964 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11965 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 11966 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 11967 if (I == -1) 11968 break; 11969 MachineOperand &Op = MI.getOperand(I); 11970 if (!Op.isReg() || !Op.getReg().isVirtual()) 11971 continue; 11972 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 11973 if (!TRI->hasAGPRs(RC)) 11974 continue; 11975 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 11976 if (!Src || !Src->isCopy() || 11977 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 11978 continue; 11979 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 11980 // All uses of agpr64 and agpr32 can also accept vgpr except for 11981 // v_accvgpr_read, but we do not produce agpr reads during selection, 11982 // so no use checks are needed. 11983 MRI.setRegClass(Op.getReg(), NewRC); 11984 } 11985 11986 // Resolve the rest of AV operands to AGPRs. 11987 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { 11988 if (Src2->isReg() && Src2->getReg().isVirtual()) { 11989 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); 11990 if (TRI->isVectorSuperClass(RC)) { 11991 auto *NewRC = TRI->getEquivalentAGPRClass(RC); 11992 MRI.setRegClass(Src2->getReg(), NewRC); 11993 if (Src2->isTied()) 11994 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); 11995 } 11996 } 11997 } 11998 } 11999 12000 return; 12001 } 12002 12003 if (TII->isMIMG(MI)) { 12004 if (!MI.mayStore()) 12005 AddIMGInit(MI); 12006 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); 12007 } 12008 } 12009 12010 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 12011 uint64_t Val) { 12012 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 12013 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 12014 } 12015 12016 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 12017 const SDLoc &DL, 12018 SDValue Ptr) const { 12019 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12020 12021 // Build the half of the subregister with the constants before building the 12022 // full 128-bit register. If we are building multiple resource descriptors, 12023 // this will allow CSEing of the 2-component register. 12024 const SDValue Ops0[] = { 12025 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 12026 buildSMovImm32(DAG, DL, 0), 12027 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 12028 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 12029 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 12030 }; 12031 12032 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 12033 MVT::v2i32, Ops0), 0); 12034 12035 // Combine the constants and the pointer. 12036 const SDValue Ops1[] = { 12037 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 12038 Ptr, 12039 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 12040 SubRegHi, 12041 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 12042 }; 12043 12044 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 12045 } 12046 12047 /// Return a resource descriptor with the 'Add TID' bit enabled 12048 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 12049 /// of the resource descriptor) to create an offset, which is added to 12050 /// the resource pointer. 12051 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 12052 SDValue Ptr, uint32_t RsrcDword1, 12053 uint64_t RsrcDword2And3) const { 12054 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 12055 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 12056 if (RsrcDword1) { 12057 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 12058 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 12059 0); 12060 } 12061 12062 SDValue DataLo = buildSMovImm32(DAG, DL, 12063 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 12064 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 12065 12066 const SDValue Ops[] = { 12067 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 12068 PtrLo, 12069 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 12070 PtrHi, 12071 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 12072 DataLo, 12073 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 12074 DataHi, 12075 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 12076 }; 12077 12078 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 12079 } 12080 12081 //===----------------------------------------------------------------------===// 12082 // SI Inline Assembly Support 12083 //===----------------------------------------------------------------------===// 12084 12085 std::pair<unsigned, const TargetRegisterClass *> 12086 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 12087 StringRef Constraint, 12088 MVT VT) const { 12089 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 12090 12091 const TargetRegisterClass *RC = nullptr; 12092 if (Constraint.size() == 1) { 12093 const unsigned BitWidth = VT.getSizeInBits(); 12094 switch (Constraint[0]) { 12095 default: 12096 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12097 case 's': 12098 case 'r': 12099 switch (BitWidth) { 12100 case 16: 12101 RC = &AMDGPU::SReg_32RegClass; 12102 break; 12103 case 64: 12104 RC = &AMDGPU::SGPR_64RegClass; 12105 break; 12106 default: 12107 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 12108 if (!RC) 12109 return std::make_pair(0U, nullptr); 12110 break; 12111 } 12112 break; 12113 case 'v': 12114 switch (BitWidth) { 12115 case 16: 12116 RC = &AMDGPU::VGPR_32RegClass; 12117 break; 12118 default: 12119 RC = TRI->getVGPRClassForBitWidth(BitWidth); 12120 if (!RC) 12121 return std::make_pair(0U, nullptr); 12122 break; 12123 } 12124 break; 12125 case 'a': 12126 if (!Subtarget->hasMAIInsts()) 12127 break; 12128 switch (BitWidth) { 12129 case 16: 12130 RC = &AMDGPU::AGPR_32RegClass; 12131 break; 12132 default: 12133 RC = TRI->getAGPRClassForBitWidth(BitWidth); 12134 if (!RC) 12135 return std::make_pair(0U, nullptr); 12136 break; 12137 } 12138 break; 12139 } 12140 // We actually support i128, i16 and f16 as inline parameters 12141 // even if they are not reported as legal 12142 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 12143 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 12144 return std::make_pair(0U, RC); 12145 } 12146 12147 if (Constraint.startswith("{") && Constraint.endswith("}")) { 12148 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 12149 if (RegName.consume_front("v")) { 12150 RC = &AMDGPU::VGPR_32RegClass; 12151 } else if (RegName.consume_front("s")) { 12152 RC = &AMDGPU::SGPR_32RegClass; 12153 } else if (RegName.consume_front("a")) { 12154 RC = &AMDGPU::AGPR_32RegClass; 12155 } 12156 12157 if (RC) { 12158 uint32_t Idx; 12159 if (RegName.consume_front("[")) { 12160 uint32_t End; 12161 bool Failed = RegName.consumeInteger(10, Idx); 12162 Failed |= !RegName.consume_front(":"); 12163 Failed |= RegName.consumeInteger(10, End); 12164 Failed |= !RegName.consume_back("]"); 12165 if (!Failed) { 12166 uint32_t Width = (End - Idx + 1) * 32; 12167 MCRegister Reg = RC->getRegister(Idx); 12168 if (SIRegisterInfo::isVGPRClass(RC)) 12169 RC = TRI->getVGPRClassForBitWidth(Width); 12170 else if (SIRegisterInfo::isSGPRClass(RC)) 12171 RC = TRI->getSGPRClassForBitWidth(Width); 12172 else if (SIRegisterInfo::isAGPRClass(RC)) 12173 RC = TRI->getAGPRClassForBitWidth(Width); 12174 if (RC) { 12175 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 12176 return std::make_pair(Reg, RC); 12177 } 12178 } 12179 } else { 12180 bool Failed = RegName.getAsInteger(10, Idx); 12181 if (!Failed && Idx < RC->getNumRegs()) 12182 return std::make_pair(RC->getRegister(Idx), RC); 12183 } 12184 } 12185 } 12186 12187 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12188 if (Ret.first) 12189 Ret.second = TRI->getPhysRegClass(Ret.first); 12190 12191 return Ret; 12192 } 12193 12194 static bool isImmConstraint(StringRef Constraint) { 12195 if (Constraint.size() == 1) { 12196 switch (Constraint[0]) { 12197 default: break; 12198 case 'I': 12199 case 'J': 12200 case 'A': 12201 case 'B': 12202 case 'C': 12203 return true; 12204 } 12205 } else if (Constraint == "DA" || 12206 Constraint == "DB") { 12207 return true; 12208 } 12209 return false; 12210 } 12211 12212 SITargetLowering::ConstraintType 12213 SITargetLowering::getConstraintType(StringRef Constraint) const { 12214 if (Constraint.size() == 1) { 12215 switch (Constraint[0]) { 12216 default: break; 12217 case 's': 12218 case 'v': 12219 case 'a': 12220 return C_RegisterClass; 12221 } 12222 } 12223 if (isImmConstraint(Constraint)) { 12224 return C_Other; 12225 } 12226 return TargetLowering::getConstraintType(Constraint); 12227 } 12228 12229 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 12230 if (!AMDGPU::isInlinableIntLiteral(Val)) { 12231 Val = Val & maskTrailingOnes<uint64_t>(Size); 12232 } 12233 return Val; 12234 } 12235 12236 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 12237 std::string &Constraint, 12238 std::vector<SDValue> &Ops, 12239 SelectionDAG &DAG) const { 12240 if (isImmConstraint(Constraint)) { 12241 uint64_t Val; 12242 if (getAsmOperandConstVal(Op, Val) && 12243 checkAsmConstraintVal(Op, Constraint, Val)) { 12244 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 12245 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 12246 } 12247 } else { 12248 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12249 } 12250 } 12251 12252 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 12253 unsigned Size = Op.getScalarValueSizeInBits(); 12254 if (Size > 64) 12255 return false; 12256 12257 if (Size == 16 && !Subtarget->has16BitInsts()) 12258 return false; 12259 12260 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12261 Val = C->getSExtValue(); 12262 return true; 12263 } 12264 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 12265 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 12266 return true; 12267 } 12268 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 12269 if (Size != 16 || Op.getNumOperands() != 2) 12270 return false; 12271 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 12272 return false; 12273 if (ConstantSDNode *C = V->getConstantSplatNode()) { 12274 Val = C->getSExtValue(); 12275 return true; 12276 } 12277 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 12278 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 12279 return true; 12280 } 12281 } 12282 12283 return false; 12284 } 12285 12286 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 12287 const std::string &Constraint, 12288 uint64_t Val) const { 12289 if (Constraint.size() == 1) { 12290 switch (Constraint[0]) { 12291 case 'I': 12292 return AMDGPU::isInlinableIntLiteral(Val); 12293 case 'J': 12294 return isInt<16>(Val); 12295 case 'A': 12296 return checkAsmConstraintValA(Op, Val); 12297 case 'B': 12298 return isInt<32>(Val); 12299 case 'C': 12300 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 12301 AMDGPU::isInlinableIntLiteral(Val); 12302 default: 12303 break; 12304 } 12305 } else if (Constraint.size() == 2) { 12306 if (Constraint == "DA") { 12307 int64_t HiBits = static_cast<int32_t>(Val >> 32); 12308 int64_t LoBits = static_cast<int32_t>(Val); 12309 return checkAsmConstraintValA(Op, HiBits, 32) && 12310 checkAsmConstraintValA(Op, LoBits, 32); 12311 } 12312 if (Constraint == "DB") { 12313 return true; 12314 } 12315 } 12316 llvm_unreachable("Invalid asm constraint"); 12317 } 12318 12319 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 12320 uint64_t Val, 12321 unsigned MaxSize) const { 12322 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 12323 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 12324 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 12325 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 12326 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 12327 return true; 12328 } 12329 return false; 12330 } 12331 12332 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 12333 switch (UnalignedClassID) { 12334 case AMDGPU::VReg_64RegClassID: 12335 return AMDGPU::VReg_64_Align2RegClassID; 12336 case AMDGPU::VReg_96RegClassID: 12337 return AMDGPU::VReg_96_Align2RegClassID; 12338 case AMDGPU::VReg_128RegClassID: 12339 return AMDGPU::VReg_128_Align2RegClassID; 12340 case AMDGPU::VReg_160RegClassID: 12341 return AMDGPU::VReg_160_Align2RegClassID; 12342 case AMDGPU::VReg_192RegClassID: 12343 return AMDGPU::VReg_192_Align2RegClassID; 12344 case AMDGPU::VReg_224RegClassID: 12345 return AMDGPU::VReg_224_Align2RegClassID; 12346 case AMDGPU::VReg_256RegClassID: 12347 return AMDGPU::VReg_256_Align2RegClassID; 12348 case AMDGPU::VReg_512RegClassID: 12349 return AMDGPU::VReg_512_Align2RegClassID; 12350 case AMDGPU::VReg_1024RegClassID: 12351 return AMDGPU::VReg_1024_Align2RegClassID; 12352 case AMDGPU::AReg_64RegClassID: 12353 return AMDGPU::AReg_64_Align2RegClassID; 12354 case AMDGPU::AReg_96RegClassID: 12355 return AMDGPU::AReg_96_Align2RegClassID; 12356 case AMDGPU::AReg_128RegClassID: 12357 return AMDGPU::AReg_128_Align2RegClassID; 12358 case AMDGPU::AReg_160RegClassID: 12359 return AMDGPU::AReg_160_Align2RegClassID; 12360 case AMDGPU::AReg_192RegClassID: 12361 return AMDGPU::AReg_192_Align2RegClassID; 12362 case AMDGPU::AReg_256RegClassID: 12363 return AMDGPU::AReg_256_Align2RegClassID; 12364 case AMDGPU::AReg_512RegClassID: 12365 return AMDGPU::AReg_512_Align2RegClassID; 12366 case AMDGPU::AReg_1024RegClassID: 12367 return AMDGPU::AReg_1024_Align2RegClassID; 12368 default: 12369 return -1; 12370 } 12371 } 12372 12373 // Figure out which registers should be reserved for stack access. Only after 12374 // the function is legalized do we know all of the non-spill stack objects or if 12375 // calls are present. 12376 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 12377 MachineRegisterInfo &MRI = MF.getRegInfo(); 12378 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12379 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 12380 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12381 const SIInstrInfo *TII = ST.getInstrInfo(); 12382 12383 if (Info->isEntryFunction()) { 12384 // Callable functions have fixed registers used for stack access. 12385 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 12386 } 12387 12388 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 12389 Info->getStackPtrOffsetReg())); 12390 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 12391 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 12392 12393 // We need to worry about replacing the default register with itself in case 12394 // of MIR testcases missing the MFI. 12395 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 12396 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 12397 12398 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 12399 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 12400 12401 Info->limitOccupancy(MF); 12402 12403 if (ST.isWave32() && !MF.empty()) { 12404 for (auto &MBB : MF) { 12405 for (auto &MI : MBB) { 12406 TII->fixImplicitOperands(MI); 12407 } 12408 } 12409 } 12410 12411 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 12412 // classes if required. Ideally the register class constraints would differ 12413 // per-subtarget, but there's no easy way to achieve that right now. This is 12414 // not a problem for VGPRs because the correctly aligned VGPR class is implied 12415 // from using them as the register class for legal types. 12416 if (ST.needsAlignedVGPRs()) { 12417 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 12418 const Register Reg = Register::index2VirtReg(I); 12419 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 12420 if (!RC) 12421 continue; 12422 int NewClassID = getAlignedAGPRClassID(RC->getID()); 12423 if (NewClassID != -1) 12424 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 12425 } 12426 } 12427 12428 TargetLoweringBase::finalizeLowering(MF); 12429 } 12430 12431 void SITargetLowering::computeKnownBitsForFrameIndex( 12432 const int FI, KnownBits &Known, const MachineFunction &MF) const { 12433 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 12434 12435 // Set the high bits to zero based on the maximum allowed scratch size per 12436 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 12437 // calculation won't overflow, so assume the sign bit is never set. 12438 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 12439 } 12440 12441 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 12442 KnownBits &Known, unsigned Dim) { 12443 unsigned MaxValue = 12444 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 12445 Known.Zero.setHighBits(countLeadingZeros(MaxValue)); 12446 } 12447 12448 void SITargetLowering::computeKnownBitsForTargetInstr( 12449 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 12450 const MachineRegisterInfo &MRI, unsigned Depth) const { 12451 const MachineInstr *MI = MRI.getVRegDef(R); 12452 switch (MI->getOpcode()) { 12453 case AMDGPU::G_INTRINSIC: { 12454 switch (MI->getIntrinsicID()) { 12455 case Intrinsic::amdgcn_workitem_id_x: 12456 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 12457 break; 12458 case Intrinsic::amdgcn_workitem_id_y: 12459 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 12460 break; 12461 case Intrinsic::amdgcn_workitem_id_z: 12462 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 12463 break; 12464 case Intrinsic::amdgcn_mbcnt_lo: 12465 case Intrinsic::amdgcn_mbcnt_hi: { 12466 // These return at most the wavefront size - 1. 12467 unsigned Size = MRI.getType(R).getSizeInBits(); 12468 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 12469 break; 12470 } 12471 case Intrinsic::amdgcn_groupstaticsize: { 12472 // We can report everything over the maximum size as 0. We can't report 12473 // based on the actual size because we don't know if it's accurate or not 12474 // at any given point. 12475 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); 12476 break; 12477 } 12478 } 12479 break; 12480 } 12481 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 12482 Known.Zero.setHighBits(24); 12483 break; 12484 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 12485 Known.Zero.setHighBits(16); 12486 break; 12487 } 12488 } 12489 12490 Align SITargetLowering::computeKnownAlignForTargetInstr( 12491 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 12492 unsigned Depth) const { 12493 const MachineInstr *MI = MRI.getVRegDef(R); 12494 switch (MI->getOpcode()) { 12495 case AMDGPU::G_INTRINSIC: 12496 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 12497 // FIXME: Can this move to generic code? What about the case where the call 12498 // site specifies a lower alignment? 12499 Intrinsic::ID IID = MI->getIntrinsicID(); 12500 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 12501 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 12502 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 12503 return *RetAlign; 12504 return Align(1); 12505 } 12506 default: 12507 return Align(1); 12508 } 12509 } 12510 12511 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 12512 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 12513 const Align CacheLineAlign = Align(64); 12514 12515 // Pre-GFX10 target did not benefit from loop alignment 12516 if (!ML || DisableLoopAlignment || 12517 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 12518 getSubtarget()->hasInstFwdPrefetchBug()) 12519 return PrefAlign; 12520 12521 // On GFX10 I$ is 4 x 64 bytes cache lines. 12522 // By default prefetcher keeps one cache line behind and reads two ahead. 12523 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 12524 // behind and one ahead. 12525 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 12526 // If loop fits 64 bytes it always spans no more than two cache lines and 12527 // does not need an alignment. 12528 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 12529 // Else if loop is less or equal 192 bytes we need two lines behind. 12530 12531 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12532 const MachineBasicBlock *Header = ML->getHeader(); 12533 if (Header->getAlignment() != PrefAlign) 12534 return Header->getAlignment(); // Already processed. 12535 12536 unsigned LoopSize = 0; 12537 for (const MachineBasicBlock *MBB : ML->blocks()) { 12538 // If inner loop block is aligned assume in average half of the alignment 12539 // size to be added as nops. 12540 if (MBB != Header) 12541 LoopSize += MBB->getAlignment().value() / 2; 12542 12543 for (const MachineInstr &MI : *MBB) { 12544 LoopSize += TII->getInstSizeInBytes(MI); 12545 if (LoopSize > 192) 12546 return PrefAlign; 12547 } 12548 } 12549 12550 if (LoopSize <= 64) 12551 return PrefAlign; 12552 12553 if (LoopSize <= 128) 12554 return CacheLineAlign; 12555 12556 // If any of parent loops is surrounded by prefetch instructions do not 12557 // insert new for inner loop, which would reset parent's settings. 12558 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 12559 if (MachineBasicBlock *Exit = P->getExitBlock()) { 12560 auto I = Exit->getFirstNonDebugInstr(); 12561 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 12562 return CacheLineAlign; 12563 } 12564 } 12565 12566 MachineBasicBlock *Pre = ML->getLoopPreheader(); 12567 MachineBasicBlock *Exit = ML->getExitBlock(); 12568 12569 if (Pre && Exit) { 12570 auto PreTerm = Pre->getFirstTerminator(); 12571 if (PreTerm == Pre->begin() || 12572 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) 12573 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 12574 .addImm(1); // prefetch 2 lines behind PC 12575 12576 auto ExitHead = Exit->getFirstNonDebugInstr(); 12577 if (ExitHead == Exit->end() || 12578 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) 12579 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 12580 .addImm(2); // prefetch 1 line behind PC 12581 } 12582 12583 return CacheLineAlign; 12584 } 12585 12586 LLVM_ATTRIBUTE_UNUSED 12587 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 12588 assert(N->getOpcode() == ISD::CopyFromReg); 12589 do { 12590 // Follow the chain until we find an INLINEASM node. 12591 N = N->getOperand(0).getNode(); 12592 if (N->getOpcode() == ISD::INLINEASM || 12593 N->getOpcode() == ISD::INLINEASM_BR) 12594 return true; 12595 } while (N->getOpcode() == ISD::CopyFromReg); 12596 return false; 12597 } 12598 12599 bool SITargetLowering::isSDNodeSourceOfDivergence( 12600 const SDNode *N, FunctionLoweringInfo *FLI, 12601 LegacyDivergenceAnalysis *KDA) const { 12602 switch (N->getOpcode()) { 12603 case ISD::CopyFromReg: { 12604 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 12605 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 12606 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12607 Register Reg = R->getReg(); 12608 12609 // FIXME: Why does this need to consider isLiveIn? 12610 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 12611 return !TRI->isSGPRReg(MRI, Reg); 12612 12613 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 12614 return KDA->isDivergent(V); 12615 12616 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 12617 return !TRI->isSGPRReg(MRI, Reg); 12618 } 12619 case ISD::LOAD: { 12620 const LoadSDNode *L = cast<LoadSDNode>(N); 12621 unsigned AS = L->getAddressSpace(); 12622 // A flat load may access private memory. 12623 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 12624 } 12625 case ISD::CALLSEQ_END: 12626 return true; 12627 case ISD::INTRINSIC_WO_CHAIN: 12628 return AMDGPU::isIntrinsicSourceOfDivergence( 12629 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 12630 case ISD::INTRINSIC_W_CHAIN: 12631 return AMDGPU::isIntrinsicSourceOfDivergence( 12632 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 12633 case AMDGPUISD::ATOMIC_CMP_SWAP: 12634 case AMDGPUISD::ATOMIC_INC: 12635 case AMDGPUISD::ATOMIC_DEC: 12636 case AMDGPUISD::ATOMIC_LOAD_FMIN: 12637 case AMDGPUISD::ATOMIC_LOAD_FMAX: 12638 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 12639 case AMDGPUISD::BUFFER_ATOMIC_ADD: 12640 case AMDGPUISD::BUFFER_ATOMIC_SUB: 12641 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 12642 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 12643 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 12644 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 12645 case AMDGPUISD::BUFFER_ATOMIC_AND: 12646 case AMDGPUISD::BUFFER_ATOMIC_OR: 12647 case AMDGPUISD::BUFFER_ATOMIC_XOR: 12648 case AMDGPUISD::BUFFER_ATOMIC_INC: 12649 case AMDGPUISD::BUFFER_ATOMIC_DEC: 12650 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 12651 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 12652 case AMDGPUISD::BUFFER_ATOMIC_FADD: 12653 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 12654 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 12655 // Target-specific read-modify-write atomics are sources of divergence. 12656 return true; 12657 default: 12658 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 12659 // Generic read-modify-write atomics are sources of divergence. 12660 return A->readMem() && A->writeMem(); 12661 } 12662 return false; 12663 } 12664 } 12665 12666 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 12667 EVT VT) const { 12668 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 12669 case MVT::f32: 12670 return hasFP32Denormals(DAG.getMachineFunction()); 12671 case MVT::f64: 12672 case MVT::f16: 12673 return hasFP64FP16Denormals(DAG.getMachineFunction()); 12674 default: 12675 return false; 12676 } 12677 } 12678 12679 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 12680 MachineFunction &MF) const { 12681 switch (Ty.getScalarSizeInBits()) { 12682 case 32: 12683 return hasFP32Denormals(MF); 12684 case 64: 12685 case 16: 12686 return hasFP64FP16Denormals(MF); 12687 default: 12688 return false; 12689 } 12690 } 12691 12692 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 12693 const SelectionDAG &DAG, 12694 bool SNaN, 12695 unsigned Depth) const { 12696 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 12697 const MachineFunction &MF = DAG.getMachineFunction(); 12698 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12699 12700 if (Info->getMode().DX10Clamp) 12701 return true; // Clamped to 0. 12702 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 12703 } 12704 12705 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 12706 SNaN, Depth); 12707 } 12708 12709 // Global FP atomic instructions have a hardcoded FP mode and do not support 12710 // FP32 denormals, and only support v2f16 denormals. 12711 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 12712 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 12713 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 12714 if (&Flt == &APFloat::IEEEsingle()) 12715 return DenormMode == DenormalMode::getPreserveSign(); 12716 return DenormMode == DenormalMode::getIEEE(); 12717 } 12718 12719 TargetLowering::AtomicExpansionKind 12720 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 12721 unsigned AS = RMW->getPointerAddressSpace(); 12722 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 12723 return AtomicExpansionKind::NotAtomic; 12724 12725 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 12726 OptimizationRemarkEmitter ORE(RMW->getFunction()); 12727 LLVMContext &Ctx = RMW->getFunction()->getContext(); 12728 SmallVector<StringRef> SSNs; 12729 Ctx.getSyncScopeNames(SSNs); 12730 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 12731 ? "system" 12732 : SSNs[RMW->getSyncScopeID()]; 12733 ORE.emit([&]() { 12734 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 12735 << "Hardware instruction generated for atomic " 12736 << RMW->getOperationName(RMW->getOperation()) 12737 << " operation at memory scope " << MemScope 12738 << " due to an unsafe request."; 12739 }); 12740 return Kind; 12741 }; 12742 12743 switch (RMW->getOperation()) { 12744 case AtomicRMWInst::FAdd: { 12745 Type *Ty = RMW->getType(); 12746 12747 // We don't have a way to support 16-bit atomics now, so just leave them 12748 // as-is. 12749 if (Ty->isHalfTy()) 12750 return AtomicExpansionKind::None; 12751 12752 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 12753 return AtomicExpansionKind::CmpXChg; 12754 12755 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) && 12756 Subtarget->hasAtomicFaddNoRtnInsts()) { 12757 if (Subtarget->hasGFX940Insts()) 12758 return AtomicExpansionKind::None; 12759 12760 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 12761 // floating point atomic instructions. May generate more efficient code, 12762 // but may not respect rounding and denormal modes, and may give incorrect 12763 // results for certain memory destinations. 12764 if (RMW->getFunction() 12765 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12766 .getValueAsString() != "true") 12767 return AtomicExpansionKind::CmpXChg; 12768 12769 if (Subtarget->hasGFX90AInsts()) { 12770 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS) 12771 return AtomicExpansionKind::CmpXChg; 12772 12773 auto SSID = RMW->getSyncScopeID(); 12774 if (SSID == SyncScope::System || 12775 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as")) 12776 return AtomicExpansionKind::CmpXChg; 12777 12778 return ReportUnsafeHWInst(AtomicExpansionKind::None); 12779 } 12780 12781 if (AS == AMDGPUAS::FLAT_ADDRESS) 12782 return AtomicExpansionKind::CmpXChg; 12783 12784 return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12785 : AtomicExpansionKind::CmpXChg; 12786 } 12787 12788 // DS FP atomics do respect the denormal mode, but the rounding mode is 12789 // fixed to round-to-nearest-even. 12790 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 12791 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 12792 if (!Ty->isDoubleTy()) 12793 return AtomicExpansionKind::None; 12794 12795 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 12796 return AtomicExpansionKind::None; 12797 12798 return RMW->getFunction() 12799 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12800 .getValueAsString() == "true" 12801 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12802 : AtomicExpansionKind::CmpXChg; 12803 } 12804 12805 return AtomicExpansionKind::CmpXChg; 12806 } 12807 default: 12808 break; 12809 } 12810 12811 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 12812 } 12813 12814 TargetLowering::AtomicExpansionKind 12815 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 12816 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12817 ? AtomicExpansionKind::NotAtomic 12818 : AtomicExpansionKind::None; 12819 } 12820 12821 TargetLowering::AtomicExpansionKind 12822 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 12823 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12824 ? AtomicExpansionKind::NotAtomic 12825 : AtomicExpansionKind::None; 12826 } 12827 12828 TargetLowering::AtomicExpansionKind 12829 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { 12830 return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 12831 ? AtomicExpansionKind::NotAtomic 12832 : AtomicExpansionKind::None; 12833 } 12834 12835 const TargetRegisterClass * 12836 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 12837 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 12838 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12839 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 12840 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 12841 : &AMDGPU::SReg_32RegClass; 12842 if (!TRI->isSGPRClass(RC) && !isDivergent) 12843 return TRI->getEquivalentSGPRClass(RC); 12844 else if (TRI->isSGPRClass(RC) && isDivergent) 12845 return TRI->getEquivalentVGPRClass(RC); 12846 12847 return RC; 12848 } 12849 12850 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 12851 // uniform values (as produced by the mask results of control flow intrinsics) 12852 // used outside of divergent blocks. The phi users need to also be treated as 12853 // always uniform. 12854 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 12855 unsigned WaveSize) { 12856 // FIXME: We assume we never cast the mask results of a control flow 12857 // intrinsic. 12858 // Early exit if the type won't be consistent as a compile time hack. 12859 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 12860 if (!IT || IT->getBitWidth() != WaveSize) 12861 return false; 12862 12863 if (!isa<Instruction>(V)) 12864 return false; 12865 if (!Visited.insert(V).second) 12866 return false; 12867 bool Result = false; 12868 for (auto U : V->users()) { 12869 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 12870 if (V == U->getOperand(1)) { 12871 switch (Intrinsic->getIntrinsicID()) { 12872 default: 12873 Result = false; 12874 break; 12875 case Intrinsic::amdgcn_if_break: 12876 case Intrinsic::amdgcn_if: 12877 case Intrinsic::amdgcn_else: 12878 Result = true; 12879 break; 12880 } 12881 } 12882 if (V == U->getOperand(0)) { 12883 switch (Intrinsic->getIntrinsicID()) { 12884 default: 12885 Result = false; 12886 break; 12887 case Intrinsic::amdgcn_end_cf: 12888 case Intrinsic::amdgcn_loop: 12889 Result = true; 12890 break; 12891 } 12892 } 12893 } else { 12894 Result = hasCFUser(U, Visited, WaveSize); 12895 } 12896 if (Result) 12897 break; 12898 } 12899 return Result; 12900 } 12901 12902 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 12903 const Value *V) const { 12904 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 12905 if (CI->isInlineAsm()) { 12906 // FIXME: This cannot give a correct answer. This should only trigger in 12907 // the case where inline asm returns mixed SGPR and VGPR results, used 12908 // outside the defining block. We don't have a specific result to 12909 // consider, so this assumes if any value is SGPR, the overall register 12910 // also needs to be SGPR. 12911 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 12912 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 12913 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 12914 for (auto &TC : TargetConstraints) { 12915 if (TC.Type == InlineAsm::isOutput) { 12916 ComputeConstraintToUse(TC, SDValue()); 12917 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 12918 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 12919 if (RC && SIRI->isSGPRClass(RC)) 12920 return true; 12921 } 12922 } 12923 } 12924 } 12925 SmallPtrSet<const Value *, 16> Visited; 12926 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 12927 } 12928 12929 std::pair<InstructionCost, MVT> 12930 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 12931 Type *Ty) const { 12932 std::pair<InstructionCost, MVT> Cost = 12933 TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 12934 auto Size = DL.getTypeSizeInBits(Ty); 12935 // Maximum load or store can handle 8 dwords for scalar and 4 for 12936 // vector ALU. Let's assume anything above 8 dwords is expensive 12937 // even if legal. 12938 if (Size <= 256) 12939 return Cost; 12940 12941 Cost.first += (Size + 255) / 256; 12942 return Cost; 12943 } 12944 12945 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { 12946 SDNode::use_iterator I = N->use_begin(), E = N->use_end(); 12947 for (; I != E; ++I) { 12948 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { 12949 if (getBasePtrIndex(M) == I.getOperandNo()) 12950 return true; 12951 } 12952 } 12953 return false; 12954 } 12955 12956 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, 12957 SDValue N1) const { 12958 if (!N0.hasOneUse()) 12959 return false; 12960 // Take care of the opportunity to keep N0 uniform 12961 if (N0->isDivergent() || !N1->isDivergent()) 12962 return true; 12963 // Check if we have a good chance to form the memory access pattern with the 12964 // base and offset 12965 return (DAG.isBaseWithConstantOffset(N0) && 12966 hasMemSDNodeUser(*N0->use_begin())); 12967 } 12968 12969 MachineMemOperand::Flags 12970 SITargetLowering::getTargetMMOFlags(const Instruction &I) const { 12971 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. 12972 if (I.getMetadata("amdgpu.noclobber")) 12973 return MONoClobber; 12974 return MachineMemOperand::MONone; 12975 } 12976