xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/IntrinsicsAMDGPU.h"
30 #include "llvm/IR/IntrinsicsR600.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/KnownBits.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "si-lower"
37 
38 STATISTIC(NumTailCalls, "Number of tail calls");
39 
40 static cl::opt<bool> DisableLoopAlignment(
41   "amdgpu-disable-loop-alignment",
42   cl::desc("Do not align and prefetch loops"),
43   cl::init(false));
44 
45 static cl::opt<bool> VGPRReserveforSGPRSpill(
46     "amdgpu-reserve-vgpr-for-sgpr-spill",
47     cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
48 
49 static cl::opt<bool> UseDivergentRegisterIndexing(
50   "amdgpu-use-divergent-register-indexing",
51   cl::Hidden,
52   cl::desc("Use indirect register addressing for divergent indexes"),
53   cl::init(false));
54 
55 static bool hasFP32Denormals(const MachineFunction &MF) {
56   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
57   return Info->getMode().allFP32Denormals();
58 }
59 
60 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
61   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
62   return Info->getMode().allFP64FP16Denormals();
63 }
64 
65 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
66   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
67   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
68     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
69       return AMDGPU::SGPR0 + Reg;
70     }
71   }
72   llvm_unreachable("Cannot allocate sgpr");
73 }
74 
75 SITargetLowering::SITargetLowering(const TargetMachine &TM,
76                                    const GCNSubtarget &STI)
77     : AMDGPUTargetLowering(TM, STI),
78       Subtarget(&STI) {
79   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
80   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
81 
82   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
83   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
84 
85   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
86 
87   const SIRegisterInfo *TRI = STI.getRegisterInfo();
88   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
89 
90   addRegisterClass(MVT::f64, V64RegClass);
91   addRegisterClass(MVT::v2f32, V64RegClass);
92 
93   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
94   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
95 
96   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
97   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
98 
99   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
100   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
101 
102   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
103   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
104 
105   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
106   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
107 
108   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
109   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
110 
111   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
112   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
113 
114   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
115   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
116 
117   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
118   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
119 
120   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
121   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
122 
123   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
124   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
125 
126   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
127   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
128 
129   if (Subtarget->has16BitInsts()) {
130     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
131     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
132 
133     // Unless there are also VOP3P operations, not operations are really legal.
134     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
135     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
136     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
137     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
138   }
139 
140   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
141   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
142 
143   computeRegisterProperties(Subtarget->getRegisterInfo());
144 
145   // The boolean content concept here is too inflexible. Compares only ever
146   // really produce a 1-bit result. Any copy/extend from these will turn into a
147   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
148   // it's what most targets use.
149   setBooleanContents(ZeroOrOneBooleanContent);
150   setBooleanVectorContents(ZeroOrOneBooleanContent);
151 
152   // We need to custom lower vector stores from local memory
153   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
154   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
155   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
156   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
157   setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
159   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
160   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
161   setOperationAction(ISD::LOAD, MVT::i1, Custom);
162   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
163 
164   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
165   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
166   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
167   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
168   setOperationAction(ISD::STORE, MVT::v6i32, Custom);
169   setOperationAction(ISD::STORE, MVT::v7i32, Custom);
170   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
171   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
172   setOperationAction(ISD::STORE, MVT::i1, Custom);
173   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
176   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
177   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
178   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
179   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
180   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
181   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
182   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
183   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
184   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
185   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
186   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
187   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
188   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
189   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
190   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
191 
192   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
193   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
194   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
195   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
196   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
197   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
198   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
199 
200   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
201   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202 
203   setOperationAction(ISD::SELECT, MVT::i1, Promote);
204   setOperationAction(ISD::SELECT, MVT::i64, Custom);
205   setOperationAction(ISD::SELECT, MVT::f64, Promote);
206   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
207 
208   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
209   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
210   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
211   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
212   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
213 
214   setOperationAction(ISD::SETCC, MVT::i1, Promote);
215   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
216   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
217   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
218 
219   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
220   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
221   setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
222   setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
223   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
224   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
225   setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
226   setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
227   setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
228   setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
229   setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
230   setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
231   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
232   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
233   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
234   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
235 
236   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
237   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
238   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
239   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
240   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
241   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
243   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
244 
245   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
246   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
247   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
248   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
249   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
250   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
251 
252   setOperationAction(ISD::UADDO, MVT::i32, Legal);
253   setOperationAction(ISD::USUBO, MVT::i32, Legal);
254 
255   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
256   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
257 
258   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
259   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
260   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
261 
262 #if 0
263   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
264   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
265 #endif
266 
267   // We only support LOAD/STORE and vector manipulation ops for vectors
268   // with > 4 elements.
269   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
270                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
271                   MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
272                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
273                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
274     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
275       switch (Op) {
276       case ISD::LOAD:
277       case ISD::STORE:
278       case ISD::BUILD_VECTOR:
279       case ISD::BITCAST:
280       case ISD::EXTRACT_VECTOR_ELT:
281       case ISD::INSERT_VECTOR_ELT:
282       case ISD::EXTRACT_SUBVECTOR:
283       case ISD::SCALAR_TO_VECTOR:
284         break;
285       case ISD::INSERT_SUBVECTOR:
286       case ISD::CONCAT_VECTORS:
287         setOperationAction(Op, VT, Custom);
288         break;
289       default:
290         setOperationAction(Op, VT, Expand);
291         break;
292       }
293     }
294   }
295 
296   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
297 
298   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
299   // is expanded to avoid having two separate loops in case the index is a VGPR.
300 
301   // Most operations are naturally 32-bit vector operations. We only support
302   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
303   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
304     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
305     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
306 
307     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
308     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
309 
310     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
311     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
312 
313     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
314     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
315   }
316 
317   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
318     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
319     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
320 
321     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
322     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
323 
324     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
325     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
326 
327     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
328     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
329   }
330 
331   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
332     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
333     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
334 
335     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
336     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
337 
338     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
339     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
340 
341     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
342     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
343   }
344 
345   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
346     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
347     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
348 
349     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
350     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
351 
352     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
353     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
354 
355     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
356     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
357   }
358 
359   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
360     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
361     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
362 
363     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
364     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
365 
366     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
367     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
368 
369     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
370     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
371   }
372 
373   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
374   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
375   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
376   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
377 
378   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
379   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
380 
381   // Avoid stack access for these.
382   // TODO: Generalize to more vector types.
383   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
384   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
385   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
386   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
387 
388   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
389   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
390   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
391   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
392   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
393   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
394 
395   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
396   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
397   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
398   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
399 
400   // Deal with vec3 vector operations when widened to vec4.
401   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
402   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
403   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
404   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
405 
406   // Deal with vec5/6/7 vector operations when widened to vec8.
407   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
408   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
409   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
410   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
411   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
415 
416   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
417   // and output demarshalling
418   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
419   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
420 
421   // We can't return success/failure, only the old value,
422   // let LLVM add the comparison
423   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
424   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
425 
426   if (Subtarget->hasFlatAddressSpace()) {
427     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
428     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
429   }
430 
431   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
432   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
433 
434   // FIXME: This should be narrowed to i32, but that only happens if i64 is
435   // illegal.
436   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
437   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
438   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
439 
440   // On SI this is s_memtime and s_memrealtime on VI.
441   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
442   setOperationAction(ISD::TRAP, MVT::Other, Custom);
443   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
444 
445   if (Subtarget->has16BitInsts()) {
446     setOperationAction(ISD::FPOW, MVT::f16, Promote);
447     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
448     setOperationAction(ISD::FLOG, MVT::f16, Custom);
449     setOperationAction(ISD::FEXP, MVT::f16, Custom);
450     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
451   }
452 
453   if (Subtarget->hasMadMacF32Insts())
454     setOperationAction(ISD::FMAD, MVT::f32, Legal);
455 
456   if (!Subtarget->hasBFI()) {
457     // fcopysign can be done in a single instruction with BFI.
458     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
459     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
460   }
461 
462   if (!Subtarget->hasBCNT(32))
463     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
464 
465   if (!Subtarget->hasBCNT(64))
466     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
467 
468   if (Subtarget->hasFFBH())
469     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
470 
471   if (Subtarget->hasFFBL())
472     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
473 
474   // We only really have 32-bit BFE instructions (and 16-bit on VI).
475   //
476   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
477   // effort to match them now. We want this to be false for i64 cases when the
478   // extraction isn't restricted to the upper or lower half. Ideally we would
479   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
480   // span the midpoint are probably relatively rare, so don't worry about them
481   // for now.
482   if (Subtarget->hasBFE())
483     setHasExtractBitsInsn(true);
484 
485   // Clamp modifier on add/sub
486   if (Subtarget->hasIntClamp()) {
487     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
488     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
489   }
490 
491   if (Subtarget->hasAddNoCarry()) {
492     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
493     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
494     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
495     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
496   }
497 
498   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
499   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
500   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
501   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
502 
503 
504   // These are really only legal for ieee_mode functions. We should be avoiding
505   // them for functions that don't have ieee_mode enabled, so just say they are
506   // legal.
507   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
508   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
509   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
510   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
511 
512 
513   if (Subtarget->haveRoundOpsF64()) {
514     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
515     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
516     setOperationAction(ISD::FRINT, MVT::f64, Legal);
517   } else {
518     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
519     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
520     setOperationAction(ISD::FRINT, MVT::f64, Custom);
521     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
522   }
523 
524   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
525 
526   setOperationAction(ISD::FSIN, MVT::f32, Custom);
527   setOperationAction(ISD::FCOS, MVT::f32, Custom);
528   setOperationAction(ISD::FDIV, MVT::f32, Custom);
529   setOperationAction(ISD::FDIV, MVT::f64, Custom);
530 
531   if (Subtarget->has16BitInsts()) {
532     setOperationAction(ISD::Constant, MVT::i16, Legal);
533 
534     setOperationAction(ISD::SMIN, MVT::i16, Legal);
535     setOperationAction(ISD::SMAX, MVT::i16, Legal);
536 
537     setOperationAction(ISD::UMIN, MVT::i16, Legal);
538     setOperationAction(ISD::UMAX, MVT::i16, Legal);
539 
540     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
541     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
542 
543     setOperationAction(ISD::ROTR, MVT::i16, Expand);
544     setOperationAction(ISD::ROTL, MVT::i16, Expand);
545 
546     setOperationAction(ISD::SDIV, MVT::i16, Promote);
547     setOperationAction(ISD::UDIV, MVT::i16, Promote);
548     setOperationAction(ISD::SREM, MVT::i16, Promote);
549     setOperationAction(ISD::UREM, MVT::i16, Promote);
550     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
551     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
552 
553     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
554 
555     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
556     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
557     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
558     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
559     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
560 
561     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
562 
563     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
564 
565     setOperationAction(ISD::LOAD, MVT::i16, Custom);
566 
567     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
568 
569     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
570     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
571     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
572     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
573 
574     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
575     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
576 
577     // F16 - Constant Actions.
578     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
579 
580     // F16 - Load/Store Actions.
581     setOperationAction(ISD::LOAD, MVT::f16, Promote);
582     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
583     setOperationAction(ISD::STORE, MVT::f16, Promote);
584     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
585 
586     // F16 - VOP1 Actions.
587     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
588     setOperationAction(ISD::FCOS, MVT::f16, Custom);
589     setOperationAction(ISD::FSIN, MVT::f16, Custom);
590 
591     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
592     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
593 
594     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
595     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
596     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
597     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
598     setOperationAction(ISD::FROUND, MVT::f16, Custom);
599 
600     // F16 - VOP2 Actions.
601     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
602     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
603 
604     setOperationAction(ISD::FDIV, MVT::f16, Custom);
605 
606     // F16 - VOP3 Actions.
607     setOperationAction(ISD::FMA, MVT::f16, Legal);
608     if (STI.hasMadF16())
609       setOperationAction(ISD::FMAD, MVT::f16, Legal);
610 
611     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
612       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
613         switch (Op) {
614         case ISD::LOAD:
615         case ISD::STORE:
616         case ISD::BUILD_VECTOR:
617         case ISD::BITCAST:
618         case ISD::EXTRACT_VECTOR_ELT:
619         case ISD::INSERT_VECTOR_ELT:
620         case ISD::INSERT_SUBVECTOR:
621         case ISD::EXTRACT_SUBVECTOR:
622         case ISD::SCALAR_TO_VECTOR:
623           break;
624         case ISD::CONCAT_VECTORS:
625           setOperationAction(Op, VT, Custom);
626           break;
627         default:
628           setOperationAction(Op, VT, Expand);
629           break;
630         }
631       }
632     }
633 
634     // v_perm_b32 can handle either of these.
635     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
636     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
637     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
638 
639     // XXX - Do these do anything? Vector constants turn into build_vector.
640     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
641     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
642 
643     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
644     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
645 
646     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
647     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
648     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
649     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
650 
651     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
652     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
653     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
654     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
655 
656     setOperationAction(ISD::AND, MVT::v2i16, Promote);
657     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
658     setOperationAction(ISD::OR, MVT::v2i16, Promote);
659     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
660     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
661     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
662 
663     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
664     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
665     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
666     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
667 
668     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
669     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
670     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
671     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
672 
673     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
674     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
675     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
676     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
677 
678     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
679     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
680     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
681 
682     if (!Subtarget->hasVOP3PInsts()) {
683       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
684       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
685     }
686 
687     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
688     // This isn't really legal, but this avoids the legalizer unrolling it (and
689     // allows matching fneg (fabs x) patterns)
690     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
691 
692     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
693     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
694     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
695     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
696 
697     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
698     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
699 
700     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
701     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
702   }
703 
704   if (Subtarget->hasVOP3PInsts()) {
705     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
706     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
707     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
708     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
709     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
710     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
711     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
712     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
713     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
714     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
715 
716     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
717     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
718     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
719     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
720 
721     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
722     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
723     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
724 
725     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
726     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
727 
728     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
729 
730     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
731     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
732 
733     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
734     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
735 
736     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
737     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
738     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
739     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
740     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
741     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
742 
743     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
744     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
745     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
746     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
747 
748     setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
749     setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
750     setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
751     setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
752 
753     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
754     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
755     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
756 
757     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
758     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
759 
760     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
761     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
762     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
763 
764     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
765     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
766     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
767 
768     if (Subtarget->hasPackedFP32Ops()) {
769       setOperationAction(ISD::FADD, MVT::v2f32, Legal);
770       setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
771       setOperationAction(ISD::FMA,  MVT::v2f32, Legal);
772       setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
773 
774       for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
775         setOperationAction(ISD::FADD, VT, Custom);
776         setOperationAction(ISD::FMUL, VT, Custom);
777         setOperationAction(ISD::FMA, VT, Custom);
778       }
779     }
780   }
781 
782   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
783   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
784 
785   if (Subtarget->has16BitInsts()) {
786     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
787     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
788     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
789     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
790   } else {
791     // Legalization hack.
792     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
793     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
794 
795     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
796     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
797   }
798 
799   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
800     setOperationAction(ISD::SELECT, VT, Custom);
801   }
802 
803   setOperationAction(ISD::SMULO, MVT::i64, Custom);
804   setOperationAction(ISD::UMULO, MVT::i64, Custom);
805 
806   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
807   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
808   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
809   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
810   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
811   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
812   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
813 
814   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
815   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
816   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
817   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
818   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
819   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
820   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
821   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
822   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
823   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
824   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
825 
826   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
827   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
828   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
829   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
830   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
831   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
832   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
833   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
834   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
835   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
836 
837   setTargetDAGCombine(ISD::ADD);
838   setTargetDAGCombine(ISD::ADDCARRY);
839   setTargetDAGCombine(ISD::SUB);
840   setTargetDAGCombine(ISD::SUBCARRY);
841   setTargetDAGCombine(ISD::FADD);
842   setTargetDAGCombine(ISD::FSUB);
843   setTargetDAGCombine(ISD::FMINNUM);
844   setTargetDAGCombine(ISD::FMAXNUM);
845   setTargetDAGCombine(ISD::FMINNUM_IEEE);
846   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
847   setTargetDAGCombine(ISD::FMA);
848   setTargetDAGCombine(ISD::SMIN);
849   setTargetDAGCombine(ISD::SMAX);
850   setTargetDAGCombine(ISD::UMIN);
851   setTargetDAGCombine(ISD::UMAX);
852   setTargetDAGCombine(ISD::SETCC);
853   setTargetDAGCombine(ISD::AND);
854   setTargetDAGCombine(ISD::OR);
855   setTargetDAGCombine(ISD::XOR);
856   setTargetDAGCombine(ISD::SINT_TO_FP);
857   setTargetDAGCombine(ISD::UINT_TO_FP);
858   setTargetDAGCombine(ISD::FCANONICALIZE);
859   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
860   setTargetDAGCombine(ISD::ZERO_EXTEND);
861   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
862   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
863   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
864 
865   // All memory operations. Some folding on the pointer operand is done to help
866   // matching the constant offsets in the addressing modes.
867   setTargetDAGCombine(ISD::LOAD);
868   setTargetDAGCombine(ISD::STORE);
869   setTargetDAGCombine(ISD::ATOMIC_LOAD);
870   setTargetDAGCombine(ISD::ATOMIC_STORE);
871   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
872   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
873   setTargetDAGCombine(ISD::ATOMIC_SWAP);
874   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
875   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
876   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
877   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
878   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
879   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
880   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
881   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
882   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
883   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
884   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
885   setTargetDAGCombine(ISD::INTRINSIC_VOID);
886   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
887 
888   // FIXME: In other contexts we pretend this is a per-function property.
889   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
890 
891   setSchedulingPreference(Sched::RegPressure);
892 }
893 
894 const GCNSubtarget *SITargetLowering::getSubtarget() const {
895   return Subtarget;
896 }
897 
898 //===----------------------------------------------------------------------===//
899 // TargetLowering queries
900 //===----------------------------------------------------------------------===//
901 
902 // v_mad_mix* support a conversion from f16 to f32.
903 //
904 // There is only one special case when denormals are enabled we don't currently,
905 // where this is OK to use.
906 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
907                                        EVT DestVT, EVT SrcVT) const {
908   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
909           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
910     DestVT.getScalarType() == MVT::f32 &&
911     SrcVT.getScalarType() == MVT::f16 &&
912     // TODO: This probably only requires no input flushing?
913     !hasFP32Denormals(DAG.getMachineFunction());
914 }
915 
916 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
917   // SI has some legal vector types, but no legal vector operations. Say no
918   // shuffles are legal in order to prefer scalarizing some vector operations.
919   return false;
920 }
921 
922 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
923                                                     CallingConv::ID CC,
924                                                     EVT VT) const {
925   if (CC == CallingConv::AMDGPU_KERNEL)
926     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
927 
928   if (VT.isVector()) {
929     EVT ScalarVT = VT.getScalarType();
930     unsigned Size = ScalarVT.getSizeInBits();
931     if (Size == 16) {
932       if (Subtarget->has16BitInsts())
933         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
934       return VT.isInteger() ? MVT::i32 : MVT::f32;
935     }
936 
937     if (Size < 16)
938       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
939     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
940   }
941 
942   if (VT.getSizeInBits() > 32)
943     return MVT::i32;
944 
945   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
946 }
947 
948 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
949                                                          CallingConv::ID CC,
950                                                          EVT VT) const {
951   if (CC == CallingConv::AMDGPU_KERNEL)
952     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
953 
954   if (VT.isVector()) {
955     unsigned NumElts = VT.getVectorNumElements();
956     EVT ScalarVT = VT.getScalarType();
957     unsigned Size = ScalarVT.getSizeInBits();
958 
959     // FIXME: Should probably promote 8-bit vectors to i16.
960     if (Size == 16 && Subtarget->has16BitInsts())
961       return (NumElts + 1) / 2;
962 
963     if (Size <= 32)
964       return NumElts;
965 
966     if (Size > 32)
967       return NumElts * ((Size + 31) / 32);
968   } else if (VT.getSizeInBits() > 32)
969     return (VT.getSizeInBits() + 31) / 32;
970 
971   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
972 }
973 
974 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
975   LLVMContext &Context, CallingConv::ID CC,
976   EVT VT, EVT &IntermediateVT,
977   unsigned &NumIntermediates, MVT &RegisterVT) const {
978   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
979     unsigned NumElts = VT.getVectorNumElements();
980     EVT ScalarVT = VT.getScalarType();
981     unsigned Size = ScalarVT.getSizeInBits();
982     // FIXME: We should fix the ABI to be the same on targets without 16-bit
983     // support, but unless we can properly handle 3-vectors, it will be still be
984     // inconsistent.
985     if (Size == 16 && Subtarget->has16BitInsts()) {
986       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
987       IntermediateVT = RegisterVT;
988       NumIntermediates = (NumElts + 1) / 2;
989       return NumIntermediates;
990     }
991 
992     if (Size == 32) {
993       RegisterVT = ScalarVT.getSimpleVT();
994       IntermediateVT = RegisterVT;
995       NumIntermediates = NumElts;
996       return NumIntermediates;
997     }
998 
999     if (Size < 16 && Subtarget->has16BitInsts()) {
1000       // FIXME: Should probably form v2i16 pieces
1001       RegisterVT = MVT::i16;
1002       IntermediateVT = ScalarVT;
1003       NumIntermediates = NumElts;
1004       return NumIntermediates;
1005     }
1006 
1007 
1008     if (Size != 16 && Size <= 32) {
1009       RegisterVT = MVT::i32;
1010       IntermediateVT = ScalarVT;
1011       NumIntermediates = NumElts;
1012       return NumIntermediates;
1013     }
1014 
1015     if (Size > 32) {
1016       RegisterVT = MVT::i32;
1017       IntermediateVT = RegisterVT;
1018       NumIntermediates = NumElts * ((Size + 31) / 32);
1019       return NumIntermediates;
1020     }
1021   }
1022 
1023   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1024     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1025 }
1026 
1027 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1028   assert(DMaskLanes != 0);
1029 
1030   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1031     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1032     return EVT::getVectorVT(Ty->getContext(),
1033                             EVT::getEVT(VT->getElementType()),
1034                             NumElts);
1035   }
1036 
1037   return EVT::getEVT(Ty);
1038 }
1039 
1040 // Peek through TFE struct returns to only use the data size.
1041 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1042   auto *ST = dyn_cast<StructType>(Ty);
1043   if (!ST)
1044     return memVTFromImageData(Ty, DMaskLanes);
1045 
1046   // Some intrinsics return an aggregate type - special case to work out the
1047   // correct memVT.
1048   //
1049   // Only limited forms of aggregate type currently expected.
1050   if (ST->getNumContainedTypes() != 2 ||
1051       !ST->getContainedType(1)->isIntegerTy(32))
1052     return EVT();
1053   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1054 }
1055 
1056 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1057                                           const CallInst &CI,
1058                                           MachineFunction &MF,
1059                                           unsigned IntrID) const {
1060   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1061           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1062     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1063                                                   (Intrinsic::ID)IntrID);
1064     if (Attr.hasFnAttribute(Attribute::ReadNone))
1065       return false;
1066 
1067     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1068 
1069     if (RsrcIntr->IsImage) {
1070       Info.ptrVal =
1071           MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1072       Info.align.reset();
1073     } else {
1074       Info.ptrVal =
1075           MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1076     }
1077 
1078     Info.flags = MachineMemOperand::MODereferenceable;
1079     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1080       unsigned DMaskLanes = 4;
1081 
1082       if (RsrcIntr->IsImage) {
1083         const AMDGPU::ImageDimIntrinsicInfo *Intr
1084           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1085         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1086           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1087 
1088         if (!BaseOpcode->Gather4) {
1089           // If this isn't a gather, we may have excess loaded elements in the
1090           // IR type. Check the dmask for the real number of elements loaded.
1091           unsigned DMask
1092             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1093           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1094         }
1095 
1096         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1097       } else
1098         Info.memVT = EVT::getEVT(CI.getType());
1099 
1100       // FIXME: What does alignment mean for an image?
1101       Info.opc = ISD::INTRINSIC_W_CHAIN;
1102       Info.flags |= MachineMemOperand::MOLoad;
1103     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1104       Info.opc = ISD::INTRINSIC_VOID;
1105 
1106       Type *DataTy = CI.getArgOperand(0)->getType();
1107       if (RsrcIntr->IsImage) {
1108         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1109         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1110         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1111       } else
1112         Info.memVT = EVT::getEVT(DataTy);
1113 
1114       Info.flags |= MachineMemOperand::MOStore;
1115     } else {
1116       // Atomic
1117       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1118                                             ISD::INTRINSIC_W_CHAIN;
1119       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1120       Info.flags = MachineMemOperand::MOLoad |
1121                    MachineMemOperand::MOStore |
1122                    MachineMemOperand::MODereferenceable;
1123 
1124       // XXX - Should this be volatile without known ordering?
1125       Info.flags |= MachineMemOperand::MOVolatile;
1126     }
1127     return true;
1128   }
1129 
1130   switch (IntrID) {
1131   case Intrinsic::amdgcn_atomic_inc:
1132   case Intrinsic::amdgcn_atomic_dec:
1133   case Intrinsic::amdgcn_ds_ordered_add:
1134   case Intrinsic::amdgcn_ds_ordered_swap:
1135   case Intrinsic::amdgcn_ds_fadd:
1136   case Intrinsic::amdgcn_ds_fmin:
1137   case Intrinsic::amdgcn_ds_fmax: {
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.memVT = MVT::getVT(CI.getType());
1140     Info.ptrVal = CI.getOperand(0);
1141     Info.align.reset();
1142     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1143 
1144     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1145     if (!Vol->isZero())
1146       Info.flags |= MachineMemOperand::MOVolatile;
1147 
1148     return true;
1149   }
1150   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1151     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1152 
1153     Info.opc = ISD::INTRINSIC_W_CHAIN;
1154     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1155     Info.ptrVal =
1156         MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1157     Info.align.reset();
1158     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1159 
1160     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1161     if (!Vol || !Vol->isZero())
1162       Info.flags |= MachineMemOperand::MOVolatile;
1163 
1164     return true;
1165   }
1166   case Intrinsic::amdgcn_ds_append:
1167   case Intrinsic::amdgcn_ds_consume: {
1168     Info.opc = ISD::INTRINSIC_W_CHAIN;
1169     Info.memVT = MVT::getVT(CI.getType());
1170     Info.ptrVal = CI.getOperand(0);
1171     Info.align.reset();
1172     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1173 
1174     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1175     if (!Vol->isZero())
1176       Info.flags |= MachineMemOperand::MOVolatile;
1177 
1178     return true;
1179   }
1180   case Intrinsic::amdgcn_global_atomic_csub: {
1181     Info.opc = ISD::INTRINSIC_W_CHAIN;
1182     Info.memVT = MVT::getVT(CI.getType());
1183     Info.ptrVal = CI.getOperand(0);
1184     Info.align.reset();
1185     Info.flags = MachineMemOperand::MOLoad |
1186                  MachineMemOperand::MOStore |
1187                  MachineMemOperand::MOVolatile;
1188     return true;
1189   }
1190   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1191     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1192     Info.opc = ISD::INTRINSIC_W_CHAIN;
1193     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1194     Info.ptrVal =
1195         MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1196     Info.align.reset();
1197     Info.flags = MachineMemOperand::MOLoad |
1198                  MachineMemOperand::MODereferenceable;
1199     return true;
1200   }
1201   case Intrinsic::amdgcn_global_atomic_fadd:
1202   case Intrinsic::amdgcn_global_atomic_fmin:
1203   case Intrinsic::amdgcn_global_atomic_fmax:
1204   case Intrinsic::amdgcn_flat_atomic_fadd:
1205   case Intrinsic::amdgcn_flat_atomic_fmin:
1206   case Intrinsic::amdgcn_flat_atomic_fmax: {
1207     Info.opc = ISD::INTRINSIC_W_CHAIN;
1208     Info.memVT = MVT::getVT(CI.getType());
1209     Info.ptrVal = CI.getOperand(0);
1210     Info.align.reset();
1211     Info.flags = MachineMemOperand::MOLoad |
1212                  MachineMemOperand::MOStore |
1213                  MachineMemOperand::MODereferenceable |
1214                  MachineMemOperand::MOVolatile;
1215     return true;
1216   }
1217   case Intrinsic::amdgcn_ds_gws_init:
1218   case Intrinsic::amdgcn_ds_gws_barrier:
1219   case Intrinsic::amdgcn_ds_gws_sema_v:
1220   case Intrinsic::amdgcn_ds_gws_sema_br:
1221   case Intrinsic::amdgcn_ds_gws_sema_p:
1222   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1223     Info.opc = ISD::INTRINSIC_VOID;
1224 
1225     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1226     Info.ptrVal =
1227         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1228 
1229     // This is an abstract access, but we need to specify a type and size.
1230     Info.memVT = MVT::i32;
1231     Info.size = 4;
1232     Info.align = Align(4);
1233 
1234     Info.flags = MachineMemOperand::MOStore;
1235     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1236       Info.flags = MachineMemOperand::MOLoad;
1237     return true;
1238   }
1239   default:
1240     return false;
1241   }
1242 }
1243 
1244 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1245                                             SmallVectorImpl<Value*> &Ops,
1246                                             Type *&AccessTy) const {
1247   switch (II->getIntrinsicID()) {
1248   case Intrinsic::amdgcn_atomic_inc:
1249   case Intrinsic::amdgcn_atomic_dec:
1250   case Intrinsic::amdgcn_ds_ordered_add:
1251   case Intrinsic::amdgcn_ds_ordered_swap:
1252   case Intrinsic::amdgcn_ds_append:
1253   case Intrinsic::amdgcn_ds_consume:
1254   case Intrinsic::amdgcn_ds_fadd:
1255   case Intrinsic::amdgcn_ds_fmin:
1256   case Intrinsic::amdgcn_ds_fmax:
1257   case Intrinsic::amdgcn_global_atomic_fadd:
1258   case Intrinsic::amdgcn_flat_atomic_fadd:
1259   case Intrinsic::amdgcn_flat_atomic_fmin:
1260   case Intrinsic::amdgcn_flat_atomic_fmax:
1261   case Intrinsic::amdgcn_global_atomic_csub: {
1262     Value *Ptr = II->getArgOperand(0);
1263     AccessTy = II->getType();
1264     Ops.push_back(Ptr);
1265     return true;
1266   }
1267   default:
1268     return false;
1269   }
1270 }
1271 
1272 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1273   if (!Subtarget->hasFlatInstOffsets()) {
1274     // Flat instructions do not have offsets, and only have the register
1275     // address.
1276     return AM.BaseOffs == 0 && AM.Scale == 0;
1277   }
1278 
1279   return AM.Scale == 0 &&
1280          (AM.BaseOffs == 0 ||
1281           Subtarget->getInstrInfo()->isLegalFLATOffset(
1282               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1283 }
1284 
1285 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1286   if (Subtarget->hasFlatGlobalInsts())
1287     return AM.Scale == 0 &&
1288            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1289                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1290                                     SIInstrFlags::FlatGlobal));
1291 
1292   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1293       // Assume the we will use FLAT for all global memory accesses
1294       // on VI.
1295       // FIXME: This assumption is currently wrong.  On VI we still use
1296       // MUBUF instructions for the r + i addressing mode.  As currently
1297       // implemented, the MUBUF instructions only work on buffer < 4GB.
1298       // It may be possible to support > 4GB buffers with MUBUF instructions,
1299       // by setting the stride value in the resource descriptor which would
1300       // increase the size limit to (stride * 4GB).  However, this is risky,
1301       // because it has never been validated.
1302     return isLegalFlatAddressingMode(AM);
1303   }
1304 
1305   return isLegalMUBUFAddressingMode(AM);
1306 }
1307 
1308 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1309   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1310   // additionally can do r + r + i with addr64. 32-bit has more addressing
1311   // mode options. Depending on the resource constant, it can also do
1312   // (i64 r0) + (i32 r1) * (i14 i).
1313   //
1314   // Private arrays end up using a scratch buffer most of the time, so also
1315   // assume those use MUBUF instructions. Scratch loads / stores are currently
1316   // implemented as mubuf instructions with offen bit set, so slightly
1317   // different than the normal addr64.
1318   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1319     return false;
1320 
1321   // FIXME: Since we can split immediate into soffset and immediate offset,
1322   // would it make sense to allow any immediate?
1323 
1324   switch (AM.Scale) {
1325   case 0: // r + i or just i, depending on HasBaseReg.
1326     return true;
1327   case 1:
1328     return true; // We have r + r or r + i.
1329   case 2:
1330     if (AM.HasBaseReg) {
1331       // Reject 2 * r + r.
1332       return false;
1333     }
1334 
1335     // Allow 2 * r as r + r
1336     // Or  2 * r + i is allowed as r + r + i.
1337     return true;
1338   default: // Don't allow n * r
1339     return false;
1340   }
1341 }
1342 
1343 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1344                                              const AddrMode &AM, Type *Ty,
1345                                              unsigned AS, Instruction *I) const {
1346   // No global is ever allowed as a base.
1347   if (AM.BaseGV)
1348     return false;
1349 
1350   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1351     return isLegalGlobalAddressingMode(AM);
1352 
1353   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1354       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1355       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1356     // If the offset isn't a multiple of 4, it probably isn't going to be
1357     // correctly aligned.
1358     // FIXME: Can we get the real alignment here?
1359     if (AM.BaseOffs % 4 != 0)
1360       return isLegalMUBUFAddressingMode(AM);
1361 
1362     // There are no SMRD extloads, so if we have to do a small type access we
1363     // will use a MUBUF load.
1364     // FIXME?: We also need to do this if unaligned, but we don't know the
1365     // alignment here.
1366     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1367       return isLegalGlobalAddressingMode(AM);
1368 
1369     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1370       // SMRD instructions have an 8-bit, dword offset on SI.
1371       if (!isUInt<8>(AM.BaseOffs / 4))
1372         return false;
1373     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1374       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1375       // in 8-bits, it can use a smaller encoding.
1376       if (!isUInt<32>(AM.BaseOffs / 4))
1377         return false;
1378     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1379       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1380       if (!isUInt<20>(AM.BaseOffs))
1381         return false;
1382     } else
1383       llvm_unreachable("unhandled generation");
1384 
1385     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1386       return true;
1387 
1388     if (AM.Scale == 1 && AM.HasBaseReg)
1389       return true;
1390 
1391     return false;
1392 
1393   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1394     return isLegalMUBUFAddressingMode(AM);
1395   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1396              AS == AMDGPUAS::REGION_ADDRESS) {
1397     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1398     // field.
1399     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1400     // an 8-bit dword offset but we don't know the alignment here.
1401     if (!isUInt<16>(AM.BaseOffs))
1402       return false;
1403 
1404     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1405       return true;
1406 
1407     if (AM.Scale == 1 && AM.HasBaseReg)
1408       return true;
1409 
1410     return false;
1411   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1412              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1413     // For an unknown address space, this usually means that this is for some
1414     // reason being used for pure arithmetic, and not based on some addressing
1415     // computation. We don't have instructions that compute pointers with any
1416     // addressing modes, so treat them as having no offset like flat
1417     // instructions.
1418     return isLegalFlatAddressingMode(AM);
1419   }
1420 
1421   // Assume a user alias of global for unknown address spaces.
1422   return isLegalGlobalAddressingMode(AM);
1423 }
1424 
1425 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1426                                         const SelectionDAG &DAG) const {
1427   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1428     return (MemVT.getSizeInBits() <= 4 * 32);
1429   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1430     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1431     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1432   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1433     return (MemVT.getSizeInBits() <= 2 * 32);
1434   }
1435   return true;
1436 }
1437 
1438 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1439     unsigned Size, unsigned AddrSpace, Align Alignment,
1440     MachineMemOperand::Flags Flags, bool *IsFast) const {
1441   if (IsFast)
1442     *IsFast = false;
1443 
1444   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1445       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1446     // Check if alignment requirements for ds_read/write instructions are
1447     // disabled.
1448     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1449         !Subtarget->hasLDSMisalignedBug()) {
1450       if (IsFast)
1451         *IsFast = Alignment != Align(2);
1452       return true;
1453     }
1454 
1455     // Either, the alignment requirements are "enabled", or there is an
1456     // unaligned LDS access related hardware bug though alignment requirements
1457     // are "disabled". In either case, we need to check for proper alignment
1458     // requirements.
1459     //
1460     if (Size == 64) {
1461       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1462       // can do a 4 byte aligned, 8 byte access in a single operation using
1463       // ds_read2/write2_b32 with adjacent offsets.
1464       bool AlignedBy4 = Alignment >= Align(4);
1465       if (IsFast)
1466         *IsFast = AlignedBy4;
1467 
1468       return AlignedBy4;
1469     }
1470     if (Size == 96) {
1471       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1472       // gfx8 and older.
1473       bool AlignedBy16 = Alignment >= Align(16);
1474       if (IsFast)
1475         *IsFast = AlignedBy16;
1476 
1477       return AlignedBy16;
1478     }
1479     if (Size == 128) {
1480       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1481       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1482       // single operation using ds_read2/write2_b64.
1483       bool AlignedBy8 = Alignment >= Align(8);
1484       if (IsFast)
1485         *IsFast = AlignedBy8;
1486 
1487       return AlignedBy8;
1488     }
1489   }
1490 
1491   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1492     bool AlignedBy4 = Alignment >= Align(4);
1493     if (IsFast)
1494       *IsFast = AlignedBy4;
1495 
1496     return AlignedBy4 ||
1497            Subtarget->enableFlatScratch() ||
1498            Subtarget->hasUnalignedScratchAccess();
1499   }
1500 
1501   // FIXME: We have to be conservative here and assume that flat operations
1502   // will access scratch.  If we had access to the IR function, then we
1503   // could determine if any private memory was used in the function.
1504   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1505       !Subtarget->hasUnalignedScratchAccess()) {
1506     bool AlignedBy4 = Alignment >= Align(4);
1507     if (IsFast)
1508       *IsFast = AlignedBy4;
1509 
1510     return AlignedBy4;
1511   }
1512 
1513   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1514       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1515         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1516     // If we have an uniform constant load, it still requires using a slow
1517     // buffer instruction if unaligned.
1518     if (IsFast) {
1519       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1520       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1521       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1522                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1523         Alignment >= Align(4) : Alignment != Align(2);
1524     }
1525 
1526     return true;
1527   }
1528 
1529   // Smaller than dword value must be aligned.
1530   if (Size < 32)
1531     return false;
1532 
1533   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1534   // byte-address are ignored, thus forcing Dword alignment.
1535   // This applies to private, global, and constant memory.
1536   if (IsFast)
1537     *IsFast = true;
1538 
1539   return Size >= 32 && Alignment >= Align(4);
1540 }
1541 
1542 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1543     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1544     bool *IsFast) const {
1545   if (IsFast)
1546     *IsFast = false;
1547 
1548   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1549   // which isn't a simple VT.
1550   // Until MVT is extended to handle this, simply check for the size and
1551   // rely on the condition below: allow accesses if the size is a multiple of 4.
1552   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1553                            VT.getStoreSize() > 16)) {
1554     return false;
1555   }
1556 
1557   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1558                                             Alignment, Flags, IsFast);
1559 }
1560 
1561 EVT SITargetLowering::getOptimalMemOpType(
1562     const MemOp &Op, const AttributeList &FuncAttributes) const {
1563   // FIXME: Should account for address space here.
1564 
1565   // The default fallback uses the private pointer size as a guess for a type to
1566   // use. Make sure we switch these to 64-bit accesses.
1567 
1568   if (Op.size() >= 16 &&
1569       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1570     return MVT::v4i32;
1571 
1572   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1573     return MVT::v2i32;
1574 
1575   // Use the default.
1576   return MVT::Other;
1577 }
1578 
1579 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1580   const MemSDNode *MemNode = cast<MemSDNode>(N);
1581   const Value *Ptr = MemNode->getMemOperand()->getValue();
1582   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1583   return I && I->getMetadata("amdgpu.noclobber");
1584 }
1585 
1586 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1587   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1588          AS == AMDGPUAS::PRIVATE_ADDRESS;
1589 }
1590 
1591 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1592                                            unsigned DestAS) const {
1593   // Flat -> private/local is a simple truncate.
1594   // Flat -> global is no-op
1595   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1596     return true;
1597 
1598   const GCNTargetMachine &TM =
1599       static_cast<const GCNTargetMachine &>(getTargetMachine());
1600   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1601 }
1602 
1603 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1604   const MemSDNode *MemNode = cast<MemSDNode>(N);
1605 
1606   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1607 }
1608 
1609 TargetLoweringBase::LegalizeTypeAction
1610 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1611   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1612       VT.getScalarType().bitsLE(MVT::i16))
1613     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1614   return TargetLoweringBase::getPreferredVectorAction(VT);
1615 }
1616 
1617 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1618                                                          Type *Ty) const {
1619   // FIXME: Could be smarter if called for vector constants.
1620   return true;
1621 }
1622 
1623 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1624   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1625     switch (Op) {
1626     case ISD::LOAD:
1627     case ISD::STORE:
1628 
1629     // These operations are done with 32-bit instructions anyway.
1630     case ISD::AND:
1631     case ISD::OR:
1632     case ISD::XOR:
1633     case ISD::SELECT:
1634       // TODO: Extensions?
1635       return true;
1636     default:
1637       return false;
1638     }
1639   }
1640 
1641   // SimplifySetCC uses this function to determine whether or not it should
1642   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1643   if (VT == MVT::i1 && Op == ISD::SETCC)
1644     return false;
1645 
1646   return TargetLowering::isTypeDesirableForOp(Op, VT);
1647 }
1648 
1649 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1650                                                    const SDLoc &SL,
1651                                                    SDValue Chain,
1652                                                    uint64_t Offset) const {
1653   const DataLayout &DL = DAG.getDataLayout();
1654   MachineFunction &MF = DAG.getMachineFunction();
1655   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1656 
1657   const ArgDescriptor *InputPtrReg;
1658   const TargetRegisterClass *RC;
1659   LLT ArgTy;
1660 
1661   std::tie(InputPtrReg, RC, ArgTy) =
1662       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1663 
1664   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1665   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1666   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1667     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1668 
1669   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1670 }
1671 
1672 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1673                                             const SDLoc &SL) const {
1674   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1675                                                FIRST_IMPLICIT);
1676   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1677 }
1678 
1679 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1680                                          const SDLoc &SL, SDValue Val,
1681                                          bool Signed,
1682                                          const ISD::InputArg *Arg) const {
1683   // First, if it is a widened vector, narrow it.
1684   if (VT.isVector() &&
1685       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1686     EVT NarrowedVT =
1687         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1688                          VT.getVectorNumElements());
1689     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1690                       DAG.getConstant(0, SL, MVT::i32));
1691   }
1692 
1693   // Then convert the vector elements or scalar value.
1694   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1695       VT.bitsLT(MemVT)) {
1696     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1697     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1698   }
1699 
1700   if (MemVT.isFloatingPoint())
1701     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1702   else if (Signed)
1703     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1704   else
1705     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1706 
1707   return Val;
1708 }
1709 
1710 SDValue SITargetLowering::lowerKernargMemParameter(
1711     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1712     uint64_t Offset, Align Alignment, bool Signed,
1713     const ISD::InputArg *Arg) const {
1714   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1715 
1716   // Try to avoid using an extload by loading earlier than the argument address,
1717   // and extracting the relevant bits. The load should hopefully be merged with
1718   // the previous argument.
1719   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1720     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1721     int64_t AlignDownOffset = alignDown(Offset, 4);
1722     int64_t OffsetDiff = Offset - AlignDownOffset;
1723 
1724     EVT IntVT = MemVT.changeTypeToInteger();
1725 
1726     // TODO: If we passed in the base kernel offset we could have a better
1727     // alignment than 4, but we don't really need it.
1728     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1729     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1730                                MachineMemOperand::MODereferenceable |
1731                                    MachineMemOperand::MOInvariant);
1732 
1733     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1734     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1735 
1736     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1737     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1738     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1739 
1740 
1741     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1742   }
1743 
1744   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1745   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1746                              MachineMemOperand::MODereferenceable |
1747                                  MachineMemOperand::MOInvariant);
1748 
1749   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1750   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1751 }
1752 
1753 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1754                                               const SDLoc &SL, SDValue Chain,
1755                                               const ISD::InputArg &Arg) const {
1756   MachineFunction &MF = DAG.getMachineFunction();
1757   MachineFrameInfo &MFI = MF.getFrameInfo();
1758 
1759   if (Arg.Flags.isByVal()) {
1760     unsigned Size = Arg.Flags.getByValSize();
1761     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1762     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1763   }
1764 
1765   unsigned ArgOffset = VA.getLocMemOffset();
1766   unsigned ArgSize = VA.getValVT().getStoreSize();
1767 
1768   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1769 
1770   // Create load nodes to retrieve arguments from the stack.
1771   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1772   SDValue ArgValue;
1773 
1774   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1775   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1776   MVT MemVT = VA.getValVT();
1777 
1778   switch (VA.getLocInfo()) {
1779   default:
1780     break;
1781   case CCValAssign::BCvt:
1782     MemVT = VA.getLocVT();
1783     break;
1784   case CCValAssign::SExt:
1785     ExtType = ISD::SEXTLOAD;
1786     break;
1787   case CCValAssign::ZExt:
1788     ExtType = ISD::ZEXTLOAD;
1789     break;
1790   case CCValAssign::AExt:
1791     ExtType = ISD::EXTLOAD;
1792     break;
1793   }
1794 
1795   ArgValue = DAG.getExtLoad(
1796     ExtType, SL, VA.getLocVT(), Chain, FIN,
1797     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1798     MemVT);
1799   return ArgValue;
1800 }
1801 
1802 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1803   const SIMachineFunctionInfo &MFI,
1804   EVT VT,
1805   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1806   const ArgDescriptor *Reg;
1807   const TargetRegisterClass *RC;
1808   LLT Ty;
1809 
1810   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1811   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1812 }
1813 
1814 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1815                                CallingConv::ID CallConv,
1816                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1817                                FunctionType *FType,
1818                                SIMachineFunctionInfo *Info) {
1819   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1820     const ISD::InputArg *Arg = &Ins[I];
1821 
1822     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1823            "vector type argument should have been split");
1824 
1825     // First check if it's a PS input addr.
1826     if (CallConv == CallingConv::AMDGPU_PS &&
1827         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1828       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1829 
1830       // Inconveniently only the first part of the split is marked as isSplit,
1831       // so skip to the end. We only want to increment PSInputNum once for the
1832       // entire split argument.
1833       if (Arg->Flags.isSplit()) {
1834         while (!Arg->Flags.isSplitEnd()) {
1835           assert((!Arg->VT.isVector() ||
1836                   Arg->VT.getScalarSizeInBits() == 16) &&
1837                  "unexpected vector split in ps argument type");
1838           if (!SkipArg)
1839             Splits.push_back(*Arg);
1840           Arg = &Ins[++I];
1841         }
1842       }
1843 
1844       if (SkipArg) {
1845         // We can safely skip PS inputs.
1846         Skipped.set(Arg->getOrigArgIndex());
1847         ++PSInputNum;
1848         continue;
1849       }
1850 
1851       Info->markPSInputAllocated(PSInputNum);
1852       if (Arg->Used)
1853         Info->markPSInputEnabled(PSInputNum);
1854 
1855       ++PSInputNum;
1856     }
1857 
1858     Splits.push_back(*Arg);
1859   }
1860 }
1861 
1862 // Allocate special inputs passed in VGPRs.
1863 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1864                                                       MachineFunction &MF,
1865                                                       const SIRegisterInfo &TRI,
1866                                                       SIMachineFunctionInfo &Info) const {
1867   const LLT S32 = LLT::scalar(32);
1868   MachineRegisterInfo &MRI = MF.getRegInfo();
1869 
1870   if (Info.hasWorkItemIDX()) {
1871     Register Reg = AMDGPU::VGPR0;
1872     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1873 
1874     CCInfo.AllocateReg(Reg);
1875     unsigned Mask = (Subtarget->hasPackedTID() &&
1876                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1877     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1878   }
1879 
1880   if (Info.hasWorkItemIDY()) {
1881     assert(Info.hasWorkItemIDX());
1882     if (Subtarget->hasPackedTID()) {
1883       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1884                                                         0x3ff << 10));
1885     } else {
1886       unsigned Reg = AMDGPU::VGPR1;
1887       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1888 
1889       CCInfo.AllocateReg(Reg);
1890       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1891     }
1892   }
1893 
1894   if (Info.hasWorkItemIDZ()) {
1895     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1896     if (Subtarget->hasPackedTID()) {
1897       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1898                                                         0x3ff << 20));
1899     } else {
1900       unsigned Reg = AMDGPU::VGPR2;
1901       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1902 
1903       CCInfo.AllocateReg(Reg);
1904       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1905     }
1906   }
1907 }
1908 
1909 // Try to allocate a VGPR at the end of the argument list, or if no argument
1910 // VGPRs are left allocating a stack slot.
1911 // If \p Mask is is given it indicates bitfield position in the register.
1912 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1913 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1914                                          ArgDescriptor Arg = ArgDescriptor()) {
1915   if (Arg.isSet())
1916     return ArgDescriptor::createArg(Arg, Mask);
1917 
1918   ArrayRef<MCPhysReg> ArgVGPRs
1919     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1920   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1921   if (RegIdx == ArgVGPRs.size()) {
1922     // Spill to stack required.
1923     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1924 
1925     return ArgDescriptor::createStack(Offset, Mask);
1926   }
1927 
1928   unsigned Reg = ArgVGPRs[RegIdx];
1929   Reg = CCInfo.AllocateReg(Reg);
1930   assert(Reg != AMDGPU::NoRegister);
1931 
1932   MachineFunction &MF = CCInfo.getMachineFunction();
1933   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1934   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1935   return ArgDescriptor::createRegister(Reg, Mask);
1936 }
1937 
1938 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1939                                              const TargetRegisterClass *RC,
1940                                              unsigned NumArgRegs) {
1941   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1942   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1943   if (RegIdx == ArgSGPRs.size())
1944     report_fatal_error("ran out of SGPRs for arguments");
1945 
1946   unsigned Reg = ArgSGPRs[RegIdx];
1947   Reg = CCInfo.AllocateReg(Reg);
1948   assert(Reg != AMDGPU::NoRegister);
1949 
1950   MachineFunction &MF = CCInfo.getMachineFunction();
1951   MF.addLiveIn(Reg, RC);
1952   return ArgDescriptor::createRegister(Reg);
1953 }
1954 
1955 // If this has a fixed position, we still should allocate the register in the
1956 // CCInfo state. Technically we could get away with this for values passed
1957 // outside of the normal argument range.
1958 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1959                                        const TargetRegisterClass *RC,
1960                                        MCRegister Reg) {
1961   Reg = CCInfo.AllocateReg(Reg);
1962   assert(Reg != AMDGPU::NoRegister);
1963   MachineFunction &MF = CCInfo.getMachineFunction();
1964   MF.addLiveIn(Reg, RC);
1965 }
1966 
1967 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1968   if (Arg) {
1969     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1970                                Arg.getRegister());
1971   } else
1972     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1973 }
1974 
1975 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1976   if (Arg) {
1977     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1978                                Arg.getRegister());
1979   } else
1980     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1981 }
1982 
1983 /// Allocate implicit function VGPR arguments at the end of allocated user
1984 /// arguments.
1985 void SITargetLowering::allocateSpecialInputVGPRs(
1986   CCState &CCInfo, MachineFunction &MF,
1987   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1988   const unsigned Mask = 0x3ff;
1989   ArgDescriptor Arg;
1990 
1991   if (Info.hasWorkItemIDX()) {
1992     Arg = allocateVGPR32Input(CCInfo, Mask);
1993     Info.setWorkItemIDX(Arg);
1994   }
1995 
1996   if (Info.hasWorkItemIDY()) {
1997     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1998     Info.setWorkItemIDY(Arg);
1999   }
2000 
2001   if (Info.hasWorkItemIDZ())
2002     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2003 }
2004 
2005 /// Allocate implicit function VGPR arguments in fixed registers.
2006 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2007   CCState &CCInfo, MachineFunction &MF,
2008   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2009   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2010   if (!Reg)
2011     report_fatal_error("failed to allocated VGPR for implicit arguments");
2012 
2013   const unsigned Mask = 0x3ff;
2014   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2015   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2016   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2017 }
2018 
2019 void SITargetLowering::allocateSpecialInputSGPRs(
2020   CCState &CCInfo,
2021   MachineFunction &MF,
2022   const SIRegisterInfo &TRI,
2023   SIMachineFunctionInfo &Info) const {
2024   auto &ArgInfo = Info.getArgInfo();
2025 
2026   // TODO: Unify handling with private memory pointers.
2027 
2028   if (Info.hasDispatchPtr())
2029     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2030 
2031   if (Info.hasQueuePtr())
2032     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2033 
2034   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2035   // constant offset from the kernarg segment.
2036   if (Info.hasImplicitArgPtr())
2037     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2038 
2039   if (Info.hasDispatchID())
2040     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2041 
2042   // flat_scratch_init is not applicable for non-kernel functions.
2043 
2044   if (Info.hasWorkGroupIDX())
2045     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2046 
2047   if (Info.hasWorkGroupIDY())
2048     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2049 
2050   if (Info.hasWorkGroupIDZ())
2051     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2052 }
2053 
2054 // Allocate special inputs passed in user SGPRs.
2055 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2056                                             MachineFunction &MF,
2057                                             const SIRegisterInfo &TRI,
2058                                             SIMachineFunctionInfo &Info) const {
2059   if (Info.hasImplicitBufferPtr()) {
2060     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2061     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2062     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2063   }
2064 
2065   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2066   if (Info.hasPrivateSegmentBuffer()) {
2067     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2068     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2069     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2070   }
2071 
2072   if (Info.hasDispatchPtr()) {
2073     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2074     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2075     CCInfo.AllocateReg(DispatchPtrReg);
2076   }
2077 
2078   if (Info.hasQueuePtr()) {
2079     Register QueuePtrReg = Info.addQueuePtr(TRI);
2080     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2081     CCInfo.AllocateReg(QueuePtrReg);
2082   }
2083 
2084   if (Info.hasKernargSegmentPtr()) {
2085     MachineRegisterInfo &MRI = MF.getRegInfo();
2086     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2087     CCInfo.AllocateReg(InputPtrReg);
2088 
2089     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2090     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2091   }
2092 
2093   if (Info.hasDispatchID()) {
2094     Register DispatchIDReg = Info.addDispatchID(TRI);
2095     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2096     CCInfo.AllocateReg(DispatchIDReg);
2097   }
2098 
2099   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2100     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2101     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2102     CCInfo.AllocateReg(FlatScratchInitReg);
2103   }
2104 
2105   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2106   // these from the dispatch pointer.
2107 }
2108 
2109 // Allocate special input registers that are initialized per-wave.
2110 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2111                                            MachineFunction &MF,
2112                                            SIMachineFunctionInfo &Info,
2113                                            CallingConv::ID CallConv,
2114                                            bool IsShader) const {
2115   if (Info.hasWorkGroupIDX()) {
2116     Register Reg = Info.addWorkGroupIDX();
2117     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2118     CCInfo.AllocateReg(Reg);
2119   }
2120 
2121   if (Info.hasWorkGroupIDY()) {
2122     Register Reg = Info.addWorkGroupIDY();
2123     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2124     CCInfo.AllocateReg(Reg);
2125   }
2126 
2127   if (Info.hasWorkGroupIDZ()) {
2128     Register Reg = Info.addWorkGroupIDZ();
2129     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2130     CCInfo.AllocateReg(Reg);
2131   }
2132 
2133   if (Info.hasWorkGroupInfo()) {
2134     Register Reg = Info.addWorkGroupInfo();
2135     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2136     CCInfo.AllocateReg(Reg);
2137   }
2138 
2139   if (Info.hasPrivateSegmentWaveByteOffset()) {
2140     // Scratch wave offset passed in system SGPR.
2141     unsigned PrivateSegmentWaveByteOffsetReg;
2142 
2143     if (IsShader) {
2144       PrivateSegmentWaveByteOffsetReg =
2145         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2146 
2147       // This is true if the scratch wave byte offset doesn't have a fixed
2148       // location.
2149       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2150         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2151         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2152       }
2153     } else
2154       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2155 
2156     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2157     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2158   }
2159 }
2160 
2161 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2162                                      MachineFunction &MF,
2163                                      const SIRegisterInfo &TRI,
2164                                      SIMachineFunctionInfo &Info) {
2165   // Now that we've figured out where the scratch register inputs are, see if
2166   // should reserve the arguments and use them directly.
2167   MachineFrameInfo &MFI = MF.getFrameInfo();
2168   bool HasStackObjects = MFI.hasStackObjects();
2169   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2170 
2171   // Record that we know we have non-spill stack objects so we don't need to
2172   // check all stack objects later.
2173   if (HasStackObjects)
2174     Info.setHasNonSpillStackObjects(true);
2175 
2176   // Everything live out of a block is spilled with fast regalloc, so it's
2177   // almost certain that spilling will be required.
2178   if (TM.getOptLevel() == CodeGenOpt::None)
2179     HasStackObjects = true;
2180 
2181   // For now assume stack access is needed in any callee functions, so we need
2182   // the scratch registers to pass in.
2183   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2184 
2185   if (!ST.enableFlatScratch()) {
2186     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2187       // If we have stack objects, we unquestionably need the private buffer
2188       // resource. For the Code Object V2 ABI, this will be the first 4 user
2189       // SGPR inputs. We can reserve those and use them directly.
2190 
2191       Register PrivateSegmentBufferReg =
2192           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2193       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2194     } else {
2195       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2196       // We tentatively reserve the last registers (skipping the last registers
2197       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2198       // we'll replace these with the ones immediately after those which were
2199       // really allocated. In the prologue copies will be inserted from the
2200       // argument to these reserved registers.
2201 
2202       // Without HSA, relocations are used for the scratch pointer and the
2203       // buffer resource setup is always inserted in the prologue. Scratch wave
2204       // offset is still in an input SGPR.
2205       Info.setScratchRSrcReg(ReservedBufferReg);
2206     }
2207   }
2208 
2209   MachineRegisterInfo &MRI = MF.getRegInfo();
2210 
2211   // For entry functions we have to set up the stack pointer if we use it,
2212   // whereas non-entry functions get this "for free". This means there is no
2213   // intrinsic advantage to using S32 over S34 in cases where we do not have
2214   // calls but do need a frame pointer (i.e. if we are requested to have one
2215   // because frame pointer elimination is disabled). To keep things simple we
2216   // only ever use S32 as the call ABI stack pointer, and so using it does not
2217   // imply we need a separate frame pointer.
2218   //
2219   // Try to use s32 as the SP, but move it if it would interfere with input
2220   // arguments. This won't work with calls though.
2221   //
2222   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2223   // registers.
2224   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2225     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2226   } else {
2227     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2228 
2229     if (MFI.hasCalls())
2230       report_fatal_error("call in graphics shader with too many input SGPRs");
2231 
2232     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2233       if (!MRI.isLiveIn(Reg)) {
2234         Info.setStackPtrOffsetReg(Reg);
2235         break;
2236       }
2237     }
2238 
2239     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2240       report_fatal_error("failed to find register for SP");
2241   }
2242 
2243   // hasFP should be accurate for entry functions even before the frame is
2244   // finalized, because it does not rely on the known stack size, only
2245   // properties like whether variable sized objects are present.
2246   if (ST.getFrameLowering()->hasFP(MF)) {
2247     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2248   }
2249 }
2250 
2251 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2252   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2253   return !Info->isEntryFunction();
2254 }
2255 
2256 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2257 
2258 }
2259 
2260 void SITargetLowering::insertCopiesSplitCSR(
2261   MachineBasicBlock *Entry,
2262   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2263   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2264 
2265   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2266   if (!IStart)
2267     return;
2268 
2269   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2270   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2271   MachineBasicBlock::iterator MBBI = Entry->begin();
2272   for (const MCPhysReg *I = IStart; *I; ++I) {
2273     const TargetRegisterClass *RC = nullptr;
2274     if (AMDGPU::SReg_64RegClass.contains(*I))
2275       RC = &AMDGPU::SGPR_64RegClass;
2276     else if (AMDGPU::SReg_32RegClass.contains(*I))
2277       RC = &AMDGPU::SGPR_32RegClass;
2278     else
2279       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2280 
2281     Register NewVR = MRI->createVirtualRegister(RC);
2282     // Create copy from CSR to a virtual register.
2283     Entry->addLiveIn(*I);
2284     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2285       .addReg(*I);
2286 
2287     // Insert the copy-back instructions right before the terminator.
2288     for (auto *Exit : Exits)
2289       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2290               TII->get(TargetOpcode::COPY), *I)
2291         .addReg(NewVR);
2292   }
2293 }
2294 
2295 SDValue SITargetLowering::LowerFormalArguments(
2296     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2297     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2298     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2299   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2300 
2301   MachineFunction &MF = DAG.getMachineFunction();
2302   const Function &Fn = MF.getFunction();
2303   FunctionType *FType = MF.getFunction().getFunctionType();
2304   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2305 
2306   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2307     DiagnosticInfoUnsupported NoGraphicsHSA(
2308         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2309     DAG.getContext()->diagnose(NoGraphicsHSA);
2310     return DAG.getEntryNode();
2311   }
2312 
2313   Info->allocateModuleLDSGlobal(Fn.getParent());
2314 
2315   SmallVector<ISD::InputArg, 16> Splits;
2316   SmallVector<CCValAssign, 16> ArgLocs;
2317   BitVector Skipped(Ins.size());
2318   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2319                  *DAG.getContext());
2320 
2321   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2322   bool IsKernel = AMDGPU::isKernel(CallConv);
2323   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2324 
2325   if (IsGraphics) {
2326     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2327            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2328            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2329            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2330            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2331            !Info->hasWorkItemIDZ());
2332   }
2333 
2334   if (CallConv == CallingConv::AMDGPU_PS) {
2335     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2336 
2337     // At least one interpolation mode must be enabled or else the GPU will
2338     // hang.
2339     //
2340     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2341     // set PSInputAddr, the user wants to enable some bits after the compilation
2342     // based on run-time states. Since we can't know what the final PSInputEna
2343     // will look like, so we shouldn't do anything here and the user should take
2344     // responsibility for the correct programming.
2345     //
2346     // Otherwise, the following restrictions apply:
2347     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2348     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2349     //   enabled too.
2350     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2351         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2352       CCInfo.AllocateReg(AMDGPU::VGPR0);
2353       CCInfo.AllocateReg(AMDGPU::VGPR1);
2354       Info->markPSInputAllocated(0);
2355       Info->markPSInputEnabled(0);
2356     }
2357     if (Subtarget->isAmdPalOS()) {
2358       // For isAmdPalOS, the user does not enable some bits after compilation
2359       // based on run-time states; the register values being generated here are
2360       // the final ones set in hardware. Therefore we need to apply the
2361       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2362       // a bit is set in PSInputAddr but not PSInputEnable is where the
2363       // frontend set up an input arg for a particular interpolation mode, but
2364       // nothing uses that input arg. Really we should have an earlier pass
2365       // that removes such an arg.)
2366       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2367       if ((PsInputBits & 0x7F) == 0 ||
2368           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2369         Info->markPSInputEnabled(
2370             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2371     }
2372   } else if (IsKernel) {
2373     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2374   } else {
2375     Splits.append(Ins.begin(), Ins.end());
2376   }
2377 
2378   if (IsEntryFunc) {
2379     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2380     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2381   } else {
2382     // For the fixed ABI, pass workitem IDs in the last argument register.
2383     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2384       allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2385   }
2386 
2387   if (IsKernel) {
2388     analyzeFormalArgumentsCompute(CCInfo, Ins);
2389   } else {
2390     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2391     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2392   }
2393 
2394   SmallVector<SDValue, 16> Chains;
2395 
2396   // FIXME: This is the minimum kernel argument alignment. We should improve
2397   // this to the maximum alignment of the arguments.
2398   //
2399   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2400   // kern arg offset.
2401   const Align KernelArgBaseAlign = Align(16);
2402 
2403   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2404     const ISD::InputArg &Arg = Ins[i];
2405     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2406       InVals.push_back(DAG.getUNDEF(Arg.VT));
2407       continue;
2408     }
2409 
2410     CCValAssign &VA = ArgLocs[ArgIdx++];
2411     MVT VT = VA.getLocVT();
2412 
2413     if (IsEntryFunc && VA.isMemLoc()) {
2414       VT = Ins[i].VT;
2415       EVT MemVT = VA.getLocVT();
2416 
2417       const uint64_t Offset = VA.getLocMemOffset();
2418       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2419 
2420       if (Arg.Flags.isByRef()) {
2421         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2422 
2423         const GCNTargetMachine &TM =
2424             static_cast<const GCNTargetMachine &>(getTargetMachine());
2425         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2426                                     Arg.Flags.getPointerAddrSpace())) {
2427           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2428                                      Arg.Flags.getPointerAddrSpace());
2429         }
2430 
2431         InVals.push_back(Ptr);
2432         continue;
2433       }
2434 
2435       SDValue Arg = lowerKernargMemParameter(
2436         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2437       Chains.push_back(Arg.getValue(1));
2438 
2439       auto *ParamTy =
2440         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2441       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2442           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2443                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2444         // On SI local pointers are just offsets into LDS, so they are always
2445         // less than 16-bits.  On CI and newer they could potentially be
2446         // real pointers, so we can't guarantee their size.
2447         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2448                           DAG.getValueType(MVT::i16));
2449       }
2450 
2451       InVals.push_back(Arg);
2452       continue;
2453     } else if (!IsEntryFunc && VA.isMemLoc()) {
2454       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2455       InVals.push_back(Val);
2456       if (!Arg.Flags.isByVal())
2457         Chains.push_back(Val.getValue(1));
2458       continue;
2459     }
2460 
2461     assert(VA.isRegLoc() && "Parameter must be in a register!");
2462 
2463     Register Reg = VA.getLocReg();
2464     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2465     EVT ValVT = VA.getValVT();
2466 
2467     Reg = MF.addLiveIn(Reg, RC);
2468     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2469 
2470     if (Arg.Flags.isSRet()) {
2471       // The return object should be reasonably addressable.
2472 
2473       // FIXME: This helps when the return is a real sret. If it is a
2474       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2475       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2476       unsigned NumBits
2477         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2478       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2479         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2480     }
2481 
2482     // If this is an 8 or 16-bit value, it is really passed promoted
2483     // to 32 bits. Insert an assert[sz]ext to capture this, then
2484     // truncate to the right size.
2485     switch (VA.getLocInfo()) {
2486     case CCValAssign::Full:
2487       break;
2488     case CCValAssign::BCvt:
2489       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2490       break;
2491     case CCValAssign::SExt:
2492       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2493                         DAG.getValueType(ValVT));
2494       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2495       break;
2496     case CCValAssign::ZExt:
2497       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2498                         DAG.getValueType(ValVT));
2499       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2500       break;
2501     case CCValAssign::AExt:
2502       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2503       break;
2504     default:
2505       llvm_unreachable("Unknown loc info!");
2506     }
2507 
2508     InVals.push_back(Val);
2509   }
2510 
2511   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2512     // Special inputs come after user arguments.
2513     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2514   }
2515 
2516   // Start adding system SGPRs.
2517   if (IsEntryFunc) {
2518     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2519   } else {
2520     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2521     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2522   }
2523 
2524   auto &ArgUsageInfo =
2525     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2526   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2527 
2528   unsigned StackArgSize = CCInfo.getNextStackOffset();
2529   Info->setBytesInStackArgArea(StackArgSize);
2530 
2531   return Chains.empty() ? Chain :
2532     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2533 }
2534 
2535 // TODO: If return values can't fit in registers, we should return as many as
2536 // possible in registers before passing on stack.
2537 bool SITargetLowering::CanLowerReturn(
2538   CallingConv::ID CallConv,
2539   MachineFunction &MF, bool IsVarArg,
2540   const SmallVectorImpl<ISD::OutputArg> &Outs,
2541   LLVMContext &Context) const {
2542   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2543   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2544   // for shaders. Vector types should be explicitly handled by CC.
2545   if (AMDGPU::isEntryFunctionCC(CallConv))
2546     return true;
2547 
2548   SmallVector<CCValAssign, 16> RVLocs;
2549   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2550   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2551 }
2552 
2553 SDValue
2554 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2555                               bool isVarArg,
2556                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2557                               const SmallVectorImpl<SDValue> &OutVals,
2558                               const SDLoc &DL, SelectionDAG &DAG) const {
2559   MachineFunction &MF = DAG.getMachineFunction();
2560   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2561 
2562   if (AMDGPU::isKernel(CallConv)) {
2563     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2564                                              OutVals, DL, DAG);
2565   }
2566 
2567   bool IsShader = AMDGPU::isShader(CallConv);
2568 
2569   Info->setIfReturnsVoid(Outs.empty());
2570   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2571 
2572   // CCValAssign - represent the assignment of the return value to a location.
2573   SmallVector<CCValAssign, 48> RVLocs;
2574   SmallVector<ISD::OutputArg, 48> Splits;
2575 
2576   // CCState - Info about the registers and stack slots.
2577   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2578                  *DAG.getContext());
2579 
2580   // Analyze outgoing return values.
2581   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2582 
2583   SDValue Flag;
2584   SmallVector<SDValue, 48> RetOps;
2585   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2586 
2587   // Add return address for callable functions.
2588   if (!Info->isEntryFunction()) {
2589     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2590     SDValue ReturnAddrReg = CreateLiveInRegister(
2591       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2592 
2593     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2594         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2595         MVT::i64);
2596     Chain =
2597         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2598     Flag = Chain.getValue(1);
2599     RetOps.push_back(ReturnAddrVirtualReg);
2600   }
2601 
2602   // Copy the result values into the output registers.
2603   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2604        ++I, ++RealRVLocIdx) {
2605     CCValAssign &VA = RVLocs[I];
2606     assert(VA.isRegLoc() && "Can only return in registers!");
2607     // TODO: Partially return in registers if return values don't fit.
2608     SDValue Arg = OutVals[RealRVLocIdx];
2609 
2610     // Copied from other backends.
2611     switch (VA.getLocInfo()) {
2612     case CCValAssign::Full:
2613       break;
2614     case CCValAssign::BCvt:
2615       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2616       break;
2617     case CCValAssign::SExt:
2618       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2619       break;
2620     case CCValAssign::ZExt:
2621       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2622       break;
2623     case CCValAssign::AExt:
2624       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2625       break;
2626     default:
2627       llvm_unreachable("Unknown loc info!");
2628     }
2629 
2630     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2631     Flag = Chain.getValue(1);
2632     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2633   }
2634 
2635   // FIXME: Does sret work properly?
2636   if (!Info->isEntryFunction()) {
2637     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2638     const MCPhysReg *I =
2639       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2640     if (I) {
2641       for (; *I; ++I) {
2642         if (AMDGPU::SReg_64RegClass.contains(*I))
2643           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2644         else if (AMDGPU::SReg_32RegClass.contains(*I))
2645           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2646         else
2647           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2648       }
2649     }
2650   }
2651 
2652   // Update chain and glue.
2653   RetOps[0] = Chain;
2654   if (Flag.getNode())
2655     RetOps.push_back(Flag);
2656 
2657   unsigned Opc = AMDGPUISD::ENDPGM;
2658   if (!IsWaveEnd)
2659     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2660   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2661 }
2662 
2663 SDValue SITargetLowering::LowerCallResult(
2664     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2665     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2666     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2667     SDValue ThisVal) const {
2668   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2669 
2670   // Assign locations to each value returned by this call.
2671   SmallVector<CCValAssign, 16> RVLocs;
2672   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2673                  *DAG.getContext());
2674   CCInfo.AnalyzeCallResult(Ins, RetCC);
2675 
2676   // Copy all of the result registers out of their specified physreg.
2677   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2678     CCValAssign VA = RVLocs[i];
2679     SDValue Val;
2680 
2681     if (VA.isRegLoc()) {
2682       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2683       Chain = Val.getValue(1);
2684       InFlag = Val.getValue(2);
2685     } else if (VA.isMemLoc()) {
2686       report_fatal_error("TODO: return values in memory");
2687     } else
2688       llvm_unreachable("unknown argument location type");
2689 
2690     switch (VA.getLocInfo()) {
2691     case CCValAssign::Full:
2692       break;
2693     case CCValAssign::BCvt:
2694       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2695       break;
2696     case CCValAssign::ZExt:
2697       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2698                         DAG.getValueType(VA.getValVT()));
2699       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2700       break;
2701     case CCValAssign::SExt:
2702       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2703                         DAG.getValueType(VA.getValVT()));
2704       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2705       break;
2706     case CCValAssign::AExt:
2707       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2708       break;
2709     default:
2710       llvm_unreachable("Unknown loc info!");
2711     }
2712 
2713     InVals.push_back(Val);
2714   }
2715 
2716   return Chain;
2717 }
2718 
2719 // Add code to pass special inputs required depending on used features separate
2720 // from the explicit user arguments present in the IR.
2721 void SITargetLowering::passSpecialInputs(
2722     CallLoweringInfo &CLI,
2723     CCState &CCInfo,
2724     const SIMachineFunctionInfo &Info,
2725     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2726     SmallVectorImpl<SDValue> &MemOpChains,
2727     SDValue Chain) const {
2728   // If we don't have a call site, this was a call inserted by
2729   // legalization. These can never use special inputs.
2730   if (!CLI.CB)
2731     return;
2732 
2733   SelectionDAG &DAG = CLI.DAG;
2734   const SDLoc &DL = CLI.DL;
2735 
2736   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2737   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2738 
2739   const AMDGPUFunctionArgInfo *CalleeArgInfo
2740     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2741   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2742     auto &ArgUsageInfo =
2743       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2744     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2745   }
2746 
2747   // TODO: Unify with private memory register handling. This is complicated by
2748   // the fact that at least in kernels, the input argument is not necessarily
2749   // in the same location as the input.
2750   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2751     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2752     AMDGPUFunctionArgInfo::QUEUE_PTR,
2753     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2754     AMDGPUFunctionArgInfo::DISPATCH_ID,
2755     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2756     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2757     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2758   };
2759 
2760   for (auto InputID : InputRegs) {
2761     const ArgDescriptor *OutgoingArg;
2762     const TargetRegisterClass *ArgRC;
2763     LLT ArgTy;
2764 
2765     std::tie(OutgoingArg, ArgRC, ArgTy) =
2766         CalleeArgInfo->getPreloadedValue(InputID);
2767     if (!OutgoingArg)
2768       continue;
2769 
2770     const ArgDescriptor *IncomingArg;
2771     const TargetRegisterClass *IncomingArgRC;
2772     LLT Ty;
2773     std::tie(IncomingArg, IncomingArgRC, Ty) =
2774         CallerArgInfo.getPreloadedValue(InputID);
2775     assert(IncomingArgRC == ArgRC);
2776 
2777     // All special arguments are ints for now.
2778     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2779     SDValue InputReg;
2780 
2781     if (IncomingArg) {
2782       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2783     } else {
2784       // The implicit arg ptr is special because it doesn't have a corresponding
2785       // input for kernels, and is computed from the kernarg segment pointer.
2786       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2787       InputReg = getImplicitArgPtr(DAG, DL);
2788     }
2789 
2790     if (OutgoingArg->isRegister()) {
2791       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2792       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2793         report_fatal_error("failed to allocate implicit input argument");
2794     } else {
2795       unsigned SpecialArgOffset =
2796           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2797       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2798                                               SpecialArgOffset);
2799       MemOpChains.push_back(ArgStore);
2800     }
2801   }
2802 
2803   // Pack workitem IDs into a single register or pass it as is if already
2804   // packed.
2805   const ArgDescriptor *OutgoingArg;
2806   const TargetRegisterClass *ArgRC;
2807   LLT Ty;
2808 
2809   std::tie(OutgoingArg, ArgRC, Ty) =
2810       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2811   if (!OutgoingArg)
2812     std::tie(OutgoingArg, ArgRC, Ty) =
2813         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2814   if (!OutgoingArg)
2815     std::tie(OutgoingArg, ArgRC, Ty) =
2816         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2817   if (!OutgoingArg)
2818     return;
2819 
2820   const ArgDescriptor *IncomingArgX = std::get<0>(
2821       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2822   const ArgDescriptor *IncomingArgY = std::get<0>(
2823       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2824   const ArgDescriptor *IncomingArgZ = std::get<0>(
2825       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2826 
2827   SDValue InputReg;
2828   SDLoc SL;
2829 
2830   // If incoming ids are not packed we need to pack them.
2831   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2832     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2833 
2834   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2835     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2836     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2837                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2838     InputReg = InputReg.getNode() ?
2839                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2840   }
2841 
2842   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2843     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2844     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2845                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2846     InputReg = InputReg.getNode() ?
2847                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2848   }
2849 
2850   if (!InputReg.getNode()) {
2851     // Workitem ids are already packed, any of present incoming arguments
2852     // will carry all required fields.
2853     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2854       IncomingArgX ? *IncomingArgX :
2855       IncomingArgY ? *IncomingArgY :
2856                      *IncomingArgZ, ~0u);
2857     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2858   }
2859 
2860   if (OutgoingArg->isRegister()) {
2861     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2862     CCInfo.AllocateReg(OutgoingArg->getRegister());
2863   } else {
2864     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2865     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2866                                             SpecialArgOffset);
2867     MemOpChains.push_back(ArgStore);
2868   }
2869 }
2870 
2871 static bool canGuaranteeTCO(CallingConv::ID CC) {
2872   return CC == CallingConv::Fast;
2873 }
2874 
2875 /// Return true if we might ever do TCO for calls with this calling convention.
2876 static bool mayTailCallThisCC(CallingConv::ID CC) {
2877   switch (CC) {
2878   case CallingConv::C:
2879   case CallingConv::AMDGPU_Gfx:
2880     return true;
2881   default:
2882     return canGuaranteeTCO(CC);
2883   }
2884 }
2885 
2886 bool SITargetLowering::isEligibleForTailCallOptimization(
2887     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2888     const SmallVectorImpl<ISD::OutputArg> &Outs,
2889     const SmallVectorImpl<SDValue> &OutVals,
2890     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2891   if (!mayTailCallThisCC(CalleeCC))
2892     return false;
2893 
2894   // For a divergent call target, we need to do a waterfall loop over the
2895   // possible callees which precludes us from using a simple jump.
2896   if (Callee->isDivergent())
2897     return false;
2898 
2899   MachineFunction &MF = DAG.getMachineFunction();
2900   const Function &CallerF = MF.getFunction();
2901   CallingConv::ID CallerCC = CallerF.getCallingConv();
2902   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2903   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2904 
2905   // Kernels aren't callable, and don't have a live in return address so it
2906   // doesn't make sense to do a tail call with entry functions.
2907   if (!CallerPreserved)
2908     return false;
2909 
2910   bool CCMatch = CallerCC == CalleeCC;
2911 
2912   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2913     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2914       return true;
2915     return false;
2916   }
2917 
2918   // TODO: Can we handle var args?
2919   if (IsVarArg)
2920     return false;
2921 
2922   for (const Argument &Arg : CallerF.args()) {
2923     if (Arg.hasByValAttr())
2924       return false;
2925   }
2926 
2927   LLVMContext &Ctx = *DAG.getContext();
2928 
2929   // Check that the call results are passed in the same way.
2930   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2931                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2932                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2933     return false;
2934 
2935   // The callee has to preserve all registers the caller needs to preserve.
2936   if (!CCMatch) {
2937     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2938     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2939       return false;
2940   }
2941 
2942   // Nothing more to check if the callee is taking no arguments.
2943   if (Outs.empty())
2944     return true;
2945 
2946   SmallVector<CCValAssign, 16> ArgLocs;
2947   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2948 
2949   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2950 
2951   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2952   // If the stack arguments for this call do not fit into our own save area then
2953   // the call cannot be made tail.
2954   // TODO: Is this really necessary?
2955   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2956     return false;
2957 
2958   const MachineRegisterInfo &MRI = MF.getRegInfo();
2959   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2960 }
2961 
2962 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2963   if (!CI->isTailCall())
2964     return false;
2965 
2966   const Function *ParentFn = CI->getParent()->getParent();
2967   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2968     return false;
2969   return true;
2970 }
2971 
2972 // The wave scratch offset register is used as the global base pointer.
2973 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2974                                     SmallVectorImpl<SDValue> &InVals) const {
2975   SelectionDAG &DAG = CLI.DAG;
2976   const SDLoc &DL = CLI.DL;
2977   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2978   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2979   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2980   SDValue Chain = CLI.Chain;
2981   SDValue Callee = CLI.Callee;
2982   bool &IsTailCall = CLI.IsTailCall;
2983   CallingConv::ID CallConv = CLI.CallConv;
2984   bool IsVarArg = CLI.IsVarArg;
2985   bool IsSibCall = false;
2986   bool IsThisReturn = false;
2987   MachineFunction &MF = DAG.getMachineFunction();
2988 
2989   if (Callee.isUndef() || isNullConstant(Callee)) {
2990     if (!CLI.IsTailCall) {
2991       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2992         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2993     }
2994 
2995     return Chain;
2996   }
2997 
2998   if (IsVarArg) {
2999     return lowerUnhandledCall(CLI, InVals,
3000                               "unsupported call to variadic function ");
3001   }
3002 
3003   if (!CLI.CB)
3004     report_fatal_error("unsupported libcall legalization");
3005 
3006   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3007     return lowerUnhandledCall(CLI, InVals,
3008                               "unsupported required tail call to function ");
3009   }
3010 
3011   if (AMDGPU::isShader(CallConv)) {
3012     // Note the issue is with the CC of the called function, not of the call
3013     // itself.
3014     return lowerUnhandledCall(CLI, InVals,
3015                               "unsupported call to a shader function ");
3016   }
3017 
3018   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3019       CallConv != CallingConv::AMDGPU_Gfx) {
3020     // Only allow calls with specific calling conventions.
3021     return lowerUnhandledCall(CLI, InVals,
3022                               "unsupported calling convention for call from "
3023                               "graphics shader of function ");
3024   }
3025 
3026   if (IsTailCall) {
3027     IsTailCall = isEligibleForTailCallOptimization(
3028       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3029     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3030       report_fatal_error("failed to perform tail call elimination on a call "
3031                          "site marked musttail");
3032     }
3033 
3034     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3035 
3036     // A sibling call is one where we're under the usual C ABI and not planning
3037     // to change that but can still do a tail call:
3038     if (!TailCallOpt && IsTailCall)
3039       IsSibCall = true;
3040 
3041     if (IsTailCall)
3042       ++NumTailCalls;
3043   }
3044 
3045   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3046   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3047   SmallVector<SDValue, 8> MemOpChains;
3048 
3049   // Analyze operands of the call, assigning locations to each operand.
3050   SmallVector<CCValAssign, 16> ArgLocs;
3051   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3052   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3053 
3054   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
3055       CallConv != CallingConv::AMDGPU_Gfx) {
3056     // With a fixed ABI, allocate fixed registers before user arguments.
3057     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3058   }
3059 
3060   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3061 
3062   // Get a count of how many bytes are to be pushed on the stack.
3063   unsigned NumBytes = CCInfo.getNextStackOffset();
3064 
3065   if (IsSibCall) {
3066     // Since we're not changing the ABI to make this a tail call, the memory
3067     // operands are already available in the caller's incoming argument space.
3068     NumBytes = 0;
3069   }
3070 
3071   // FPDiff is the byte offset of the call's argument area from the callee's.
3072   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3073   // by this amount for a tail call. In a sibling call it must be 0 because the
3074   // caller will deallocate the entire stack and the callee still expects its
3075   // arguments to begin at SP+0. Completely unused for non-tail calls.
3076   int32_t FPDiff = 0;
3077   MachineFrameInfo &MFI = MF.getFrameInfo();
3078 
3079   // Adjust the stack pointer for the new arguments...
3080   // These operations are automatically eliminated by the prolog/epilog pass
3081   if (!IsSibCall) {
3082     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3083 
3084     if (!Subtarget->enableFlatScratch()) {
3085       SmallVector<SDValue, 4> CopyFromChains;
3086 
3087       // In the HSA case, this should be an identity copy.
3088       SDValue ScratchRSrcReg
3089         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3090       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3091       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3092       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3093     }
3094   }
3095 
3096   MVT PtrVT = MVT::i32;
3097 
3098   // Walk the register/memloc assignments, inserting copies/loads.
3099   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3100     CCValAssign &VA = ArgLocs[i];
3101     SDValue Arg = OutVals[i];
3102 
3103     // Promote the value if needed.
3104     switch (VA.getLocInfo()) {
3105     case CCValAssign::Full:
3106       break;
3107     case CCValAssign::BCvt:
3108       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3109       break;
3110     case CCValAssign::ZExt:
3111       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3112       break;
3113     case CCValAssign::SExt:
3114       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3115       break;
3116     case CCValAssign::AExt:
3117       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3118       break;
3119     case CCValAssign::FPExt:
3120       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3121       break;
3122     default:
3123       llvm_unreachable("Unknown loc info!");
3124     }
3125 
3126     if (VA.isRegLoc()) {
3127       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3128     } else {
3129       assert(VA.isMemLoc());
3130 
3131       SDValue DstAddr;
3132       MachinePointerInfo DstInfo;
3133 
3134       unsigned LocMemOffset = VA.getLocMemOffset();
3135       int32_t Offset = LocMemOffset;
3136 
3137       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3138       MaybeAlign Alignment;
3139 
3140       if (IsTailCall) {
3141         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3142         unsigned OpSize = Flags.isByVal() ?
3143           Flags.getByValSize() : VA.getValVT().getStoreSize();
3144 
3145         // FIXME: We can have better than the minimum byval required alignment.
3146         Alignment =
3147             Flags.isByVal()
3148                 ? Flags.getNonZeroByValAlign()
3149                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3150 
3151         Offset = Offset + FPDiff;
3152         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3153 
3154         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3155         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3156 
3157         // Make sure any stack arguments overlapping with where we're storing
3158         // are loaded before this eventual operation. Otherwise they'll be
3159         // clobbered.
3160 
3161         // FIXME: Why is this really necessary? This seems to just result in a
3162         // lot of code to copy the stack and write them back to the same
3163         // locations, which are supposed to be immutable?
3164         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3165       } else {
3166         // Stores to the argument stack area are relative to the stack pointer.
3167         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3168                                         MVT::i32);
3169         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3170         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3171         Alignment =
3172             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3173       }
3174 
3175       if (Outs[i].Flags.isByVal()) {
3176         SDValue SizeNode =
3177             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3178         SDValue Cpy =
3179             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3180                           Outs[i].Flags.getNonZeroByValAlign(),
3181                           /*isVol = */ false, /*AlwaysInline = */ true,
3182                           /*isTailCall = */ false, DstInfo,
3183                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3184 
3185         MemOpChains.push_back(Cpy);
3186       } else {
3187         SDValue Store =
3188             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3189         MemOpChains.push_back(Store);
3190       }
3191     }
3192   }
3193 
3194   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3195       CallConv != CallingConv::AMDGPU_Gfx) {
3196     // Copy special input registers after user input arguments.
3197     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3198   }
3199 
3200   if (!MemOpChains.empty())
3201     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3202 
3203   // Build a sequence of copy-to-reg nodes chained together with token chain
3204   // and flag operands which copy the outgoing args into the appropriate regs.
3205   SDValue InFlag;
3206   for (auto &RegToPass : RegsToPass) {
3207     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3208                              RegToPass.second, InFlag);
3209     InFlag = Chain.getValue(1);
3210   }
3211 
3212 
3213   SDValue PhysReturnAddrReg;
3214   if (IsTailCall) {
3215     // Since the return is being combined with the call, we need to pass on the
3216     // return address.
3217 
3218     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3219     SDValue ReturnAddrReg = CreateLiveInRegister(
3220       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3221 
3222     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3223                                         MVT::i64);
3224     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3225     InFlag = Chain.getValue(1);
3226   }
3227 
3228   // We don't usually want to end the call-sequence here because we would tidy
3229   // the frame up *after* the call, however in the ABI-changing tail-call case
3230   // we've carefully laid out the parameters so that when sp is reset they'll be
3231   // in the correct location.
3232   if (IsTailCall && !IsSibCall) {
3233     Chain = DAG.getCALLSEQ_END(Chain,
3234                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3235                                DAG.getTargetConstant(0, DL, MVT::i32),
3236                                InFlag, DL);
3237     InFlag = Chain.getValue(1);
3238   }
3239 
3240   std::vector<SDValue> Ops;
3241   Ops.push_back(Chain);
3242   Ops.push_back(Callee);
3243   // Add a redundant copy of the callee global which will not be legalized, as
3244   // we need direct access to the callee later.
3245   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3246     const GlobalValue *GV = GSD->getGlobal();
3247     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3248   } else {
3249     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3250   }
3251 
3252   if (IsTailCall) {
3253     // Each tail call may have to adjust the stack by a different amount, so
3254     // this information must travel along with the operation for eventual
3255     // consumption by emitEpilogue.
3256     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3257 
3258     Ops.push_back(PhysReturnAddrReg);
3259   }
3260 
3261   // Add argument registers to the end of the list so that they are known live
3262   // into the call.
3263   for (auto &RegToPass : RegsToPass) {
3264     Ops.push_back(DAG.getRegister(RegToPass.first,
3265                                   RegToPass.second.getValueType()));
3266   }
3267 
3268   // Add a register mask operand representing the call-preserved registers.
3269 
3270   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3271   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3272   assert(Mask && "Missing call preserved mask for calling convention");
3273   Ops.push_back(DAG.getRegisterMask(Mask));
3274 
3275   if (InFlag.getNode())
3276     Ops.push_back(InFlag);
3277 
3278   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3279 
3280   // If we're doing a tall call, use a TC_RETURN here rather than an
3281   // actual call instruction.
3282   if (IsTailCall) {
3283     MFI.setHasTailCall();
3284     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3285   }
3286 
3287   // Returns a chain and a flag for retval copy to use.
3288   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3289   Chain = Call.getValue(0);
3290   InFlag = Call.getValue(1);
3291 
3292   uint64_t CalleePopBytes = NumBytes;
3293   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3294                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3295                              InFlag, DL);
3296   if (!Ins.empty())
3297     InFlag = Chain.getValue(1);
3298 
3299   // Handle result values, copying them out of physregs into vregs that we
3300   // return.
3301   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3302                          InVals, IsThisReturn,
3303                          IsThisReturn ? OutVals[0] : SDValue());
3304 }
3305 
3306 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3307 // except for applying the wave size scale to the increment amount.
3308 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3309     SDValue Op, SelectionDAG &DAG) const {
3310   const MachineFunction &MF = DAG.getMachineFunction();
3311   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3312 
3313   SDLoc dl(Op);
3314   EVT VT = Op.getValueType();
3315   SDValue Tmp1 = Op;
3316   SDValue Tmp2 = Op.getValue(1);
3317   SDValue Tmp3 = Op.getOperand(2);
3318   SDValue Chain = Tmp1.getOperand(0);
3319 
3320   Register SPReg = Info->getStackPtrOffsetReg();
3321 
3322   // Chain the dynamic stack allocation so that it doesn't modify the stack
3323   // pointer when other instructions are using the stack.
3324   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3325 
3326   SDValue Size  = Tmp2.getOperand(1);
3327   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3328   Chain = SP.getValue(1);
3329   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3330   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3331   const TargetFrameLowering *TFL = ST.getFrameLowering();
3332   unsigned Opc =
3333     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3334     ISD::ADD : ISD::SUB;
3335 
3336   SDValue ScaledSize = DAG.getNode(
3337       ISD::SHL, dl, VT, Size,
3338       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3339 
3340   Align StackAlign = TFL->getStackAlign();
3341   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3342   if (Alignment && *Alignment > StackAlign) {
3343     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3344                        DAG.getConstant(-(uint64_t)Alignment->value()
3345                                            << ST.getWavefrontSizeLog2(),
3346                                        dl, VT));
3347   }
3348 
3349   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3350   Tmp2 = DAG.getCALLSEQ_END(
3351       Chain, DAG.getIntPtrConstant(0, dl, true),
3352       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3353 
3354   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3355 }
3356 
3357 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3358                                                   SelectionDAG &DAG) const {
3359   // We only handle constant sizes here to allow non-entry block, static sized
3360   // allocas. A truly dynamic value is more difficult to support because we
3361   // don't know if the size value is uniform or not. If the size isn't uniform,
3362   // we would need to do a wave reduction to get the maximum size to know how
3363   // much to increment the uniform stack pointer.
3364   SDValue Size = Op.getOperand(1);
3365   if (isa<ConstantSDNode>(Size))
3366       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3367 
3368   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3369 }
3370 
3371 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3372                                              const MachineFunction &MF) const {
3373   Register Reg = StringSwitch<Register>(RegName)
3374     .Case("m0", AMDGPU::M0)
3375     .Case("exec", AMDGPU::EXEC)
3376     .Case("exec_lo", AMDGPU::EXEC_LO)
3377     .Case("exec_hi", AMDGPU::EXEC_HI)
3378     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3379     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3380     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3381     .Default(Register());
3382 
3383   if (Reg == AMDGPU::NoRegister) {
3384     report_fatal_error(Twine("invalid register name \""
3385                              + StringRef(RegName)  + "\"."));
3386 
3387   }
3388 
3389   if (!Subtarget->hasFlatScrRegister() &&
3390        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3391     report_fatal_error(Twine("invalid register \""
3392                              + StringRef(RegName)  + "\" for subtarget."));
3393   }
3394 
3395   switch (Reg) {
3396   case AMDGPU::M0:
3397   case AMDGPU::EXEC_LO:
3398   case AMDGPU::EXEC_HI:
3399   case AMDGPU::FLAT_SCR_LO:
3400   case AMDGPU::FLAT_SCR_HI:
3401     if (VT.getSizeInBits() == 32)
3402       return Reg;
3403     break;
3404   case AMDGPU::EXEC:
3405   case AMDGPU::FLAT_SCR:
3406     if (VT.getSizeInBits() == 64)
3407       return Reg;
3408     break;
3409   default:
3410     llvm_unreachable("missing register type checking");
3411   }
3412 
3413   report_fatal_error(Twine("invalid type for register \""
3414                            + StringRef(RegName) + "\"."));
3415 }
3416 
3417 // If kill is not the last instruction, split the block so kill is always a
3418 // proper terminator.
3419 MachineBasicBlock *
3420 SITargetLowering::splitKillBlock(MachineInstr &MI,
3421                                  MachineBasicBlock *BB) const {
3422   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3423   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3424   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3425   return SplitBB;
3426 }
3427 
3428 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3429 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3430 // be the first instruction in the remainder block.
3431 //
3432 /// \returns { LoopBody, Remainder }
3433 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3434 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3435   MachineFunction *MF = MBB.getParent();
3436   MachineBasicBlock::iterator I(&MI);
3437 
3438   // To insert the loop we need to split the block. Move everything after this
3439   // point to a new block, and insert a new empty block between the two.
3440   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3441   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3442   MachineFunction::iterator MBBI(MBB);
3443   ++MBBI;
3444 
3445   MF->insert(MBBI, LoopBB);
3446   MF->insert(MBBI, RemainderBB);
3447 
3448   LoopBB->addSuccessor(LoopBB);
3449   LoopBB->addSuccessor(RemainderBB);
3450 
3451   // Move the rest of the block into a new block.
3452   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3453 
3454   if (InstInLoop) {
3455     auto Next = std::next(I);
3456 
3457     // Move instruction to loop body.
3458     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3459 
3460     // Move the rest of the block.
3461     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3462   } else {
3463     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3464   }
3465 
3466   MBB.addSuccessor(LoopBB);
3467 
3468   return std::make_pair(LoopBB, RemainderBB);
3469 }
3470 
3471 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3472 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3473   MachineBasicBlock *MBB = MI.getParent();
3474   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3475   auto I = MI.getIterator();
3476   auto E = std::next(I);
3477 
3478   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3479     .addImm(0);
3480 
3481   MIBundleBuilder Bundler(*MBB, I, E);
3482   finalizeBundle(*MBB, Bundler.begin());
3483 }
3484 
3485 MachineBasicBlock *
3486 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3487                                          MachineBasicBlock *BB) const {
3488   const DebugLoc &DL = MI.getDebugLoc();
3489 
3490   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3491 
3492   MachineBasicBlock *LoopBB;
3493   MachineBasicBlock *RemainderBB;
3494   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3495 
3496   // Apparently kill flags are only valid if the def is in the same block?
3497   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3498     Src->setIsKill(false);
3499 
3500   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3501 
3502   MachineBasicBlock::iterator I = LoopBB->end();
3503 
3504   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3505     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3506 
3507   // Clear TRAP_STS.MEM_VIOL
3508   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3509     .addImm(0)
3510     .addImm(EncodedReg);
3511 
3512   bundleInstWithWaitcnt(MI);
3513 
3514   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3515 
3516   // Load and check TRAP_STS.MEM_VIOL
3517   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3518     .addImm(EncodedReg);
3519 
3520   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3521   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3522     .addReg(Reg, RegState::Kill)
3523     .addImm(0);
3524   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3525     .addMBB(LoopBB);
3526 
3527   return RemainderBB;
3528 }
3529 
3530 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3531 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3532 // will only do one iteration. In the worst case, this will loop 64 times.
3533 //
3534 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3535 static MachineBasicBlock::iterator
3536 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3537                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3538                        const DebugLoc &DL, const MachineOperand &Idx,
3539                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3540                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3541                        Register &SGPRIdxReg) {
3542 
3543   MachineFunction *MF = OrigBB.getParent();
3544   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3545   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3546   MachineBasicBlock::iterator I = LoopBB.begin();
3547 
3548   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3549   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3550   Register NewExec = MRI.createVirtualRegister(BoolRC);
3551   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3552   Register CondReg = MRI.createVirtualRegister(BoolRC);
3553 
3554   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3555     .addReg(InitReg)
3556     .addMBB(&OrigBB)
3557     .addReg(ResultReg)
3558     .addMBB(&LoopBB);
3559 
3560   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3561     .addReg(InitSaveExecReg)
3562     .addMBB(&OrigBB)
3563     .addReg(NewExec)
3564     .addMBB(&LoopBB);
3565 
3566   // Read the next variant <- also loop target.
3567   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3568       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3569 
3570   // Compare the just read M0 value to all possible Idx values.
3571   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3572       .addReg(CurrentIdxReg)
3573       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3574 
3575   // Update EXEC, save the original EXEC value to VCC.
3576   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3577                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3578           NewExec)
3579     .addReg(CondReg, RegState::Kill);
3580 
3581   MRI.setSimpleHint(NewExec, CondReg);
3582 
3583   if (UseGPRIdxMode) {
3584     if (Offset == 0) {
3585       SGPRIdxReg = CurrentIdxReg;
3586     } else {
3587       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3588       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3589           .addReg(CurrentIdxReg, RegState::Kill)
3590           .addImm(Offset);
3591     }
3592   } else {
3593     // Move index from VCC into M0
3594     if (Offset == 0) {
3595       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3596         .addReg(CurrentIdxReg, RegState::Kill);
3597     } else {
3598       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3599         .addReg(CurrentIdxReg, RegState::Kill)
3600         .addImm(Offset);
3601     }
3602   }
3603 
3604   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3605   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3606   MachineInstr *InsertPt =
3607     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3608                                                   : AMDGPU::S_XOR_B64_term), Exec)
3609       .addReg(Exec)
3610       .addReg(NewExec);
3611 
3612   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3613   // s_cbranch_scc0?
3614 
3615   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3616   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3617     .addMBB(&LoopBB);
3618 
3619   return InsertPt->getIterator();
3620 }
3621 
3622 // This has slightly sub-optimal regalloc when the source vector is killed by
3623 // the read. The register allocator does not understand that the kill is
3624 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3625 // subregister from it, using 1 more VGPR than necessary. This was saved when
3626 // this was expanded after register allocation.
3627 static MachineBasicBlock::iterator
3628 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3629                unsigned InitResultReg, unsigned PhiReg, int Offset,
3630                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3631   MachineFunction *MF = MBB.getParent();
3632   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3633   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3634   MachineRegisterInfo &MRI = MF->getRegInfo();
3635   const DebugLoc &DL = MI.getDebugLoc();
3636   MachineBasicBlock::iterator I(&MI);
3637 
3638   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3639   Register DstReg = MI.getOperand(0).getReg();
3640   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3641   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3642   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3643   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3644 
3645   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3646 
3647   // Save the EXEC mask
3648   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3649     .addReg(Exec);
3650 
3651   MachineBasicBlock *LoopBB;
3652   MachineBasicBlock *RemainderBB;
3653   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3654 
3655   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3656 
3657   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3658                                       InitResultReg, DstReg, PhiReg, TmpExec,
3659                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3660 
3661   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3662   MachineFunction::iterator MBBI(LoopBB);
3663   ++MBBI;
3664   MF->insert(MBBI, LandingPad);
3665   LoopBB->removeSuccessor(RemainderBB);
3666   LandingPad->addSuccessor(RemainderBB);
3667   LoopBB->addSuccessor(LandingPad);
3668   MachineBasicBlock::iterator First = LandingPad->begin();
3669   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3670     .addReg(SaveExec);
3671 
3672   return InsPt;
3673 }
3674 
3675 // Returns subreg index, offset
3676 static std::pair<unsigned, int>
3677 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3678                             const TargetRegisterClass *SuperRC,
3679                             unsigned VecReg,
3680                             int Offset) {
3681   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3682 
3683   // Skip out of bounds offsets, or else we would end up using an undefined
3684   // register.
3685   if (Offset >= NumElts || Offset < 0)
3686     return std::make_pair(AMDGPU::sub0, Offset);
3687 
3688   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3689 }
3690 
3691 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3692                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3693                                  int Offset) {
3694   MachineBasicBlock *MBB = MI.getParent();
3695   const DebugLoc &DL = MI.getDebugLoc();
3696   MachineBasicBlock::iterator I(&MI);
3697 
3698   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3699 
3700   assert(Idx->getReg() != AMDGPU::NoRegister);
3701 
3702   if (Offset == 0) {
3703     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3704   } else {
3705     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3706         .add(*Idx)
3707         .addImm(Offset);
3708   }
3709 }
3710 
3711 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3712                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3713                                    int Offset) {
3714   MachineBasicBlock *MBB = MI.getParent();
3715   const DebugLoc &DL = MI.getDebugLoc();
3716   MachineBasicBlock::iterator I(&MI);
3717 
3718   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3719 
3720   if (Offset == 0)
3721     return Idx->getReg();
3722 
3723   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3724   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3725       .add(*Idx)
3726       .addImm(Offset);
3727   return Tmp;
3728 }
3729 
3730 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3731                                           MachineBasicBlock &MBB,
3732                                           const GCNSubtarget &ST) {
3733   const SIInstrInfo *TII = ST.getInstrInfo();
3734   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3735   MachineFunction *MF = MBB.getParent();
3736   MachineRegisterInfo &MRI = MF->getRegInfo();
3737 
3738   Register Dst = MI.getOperand(0).getReg();
3739   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3740   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3741   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3742 
3743   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3744   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3745 
3746   unsigned SubReg;
3747   std::tie(SubReg, Offset)
3748     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3749 
3750   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3751 
3752   // Check for a SGPR index.
3753   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3754     MachineBasicBlock::iterator I(&MI);
3755     const DebugLoc &DL = MI.getDebugLoc();
3756 
3757     if (UseGPRIdxMode) {
3758       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3759       // to avoid interfering with other uses, so probably requires a new
3760       // optimization pass.
3761       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3762 
3763       const MCInstrDesc &GPRIDXDesc =
3764           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3765       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3766           .addReg(SrcReg)
3767           .addReg(Idx)
3768           .addImm(SubReg);
3769     } else {
3770       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3771 
3772       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3773         .addReg(SrcReg, 0, SubReg)
3774         .addReg(SrcReg, RegState::Implicit);
3775     }
3776 
3777     MI.eraseFromParent();
3778 
3779     return &MBB;
3780   }
3781 
3782   // Control flow needs to be inserted if indexing with a VGPR.
3783   const DebugLoc &DL = MI.getDebugLoc();
3784   MachineBasicBlock::iterator I(&MI);
3785 
3786   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3787   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3788 
3789   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3790 
3791   Register SGPRIdxReg;
3792   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3793                               UseGPRIdxMode, SGPRIdxReg);
3794 
3795   MachineBasicBlock *LoopBB = InsPt->getParent();
3796 
3797   if (UseGPRIdxMode) {
3798     const MCInstrDesc &GPRIDXDesc =
3799         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3800 
3801     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3802         .addReg(SrcReg)
3803         .addReg(SGPRIdxReg)
3804         .addImm(SubReg);
3805   } else {
3806     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3807       .addReg(SrcReg, 0, SubReg)
3808       .addReg(SrcReg, RegState::Implicit);
3809   }
3810 
3811   MI.eraseFromParent();
3812 
3813   return LoopBB;
3814 }
3815 
3816 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3817                                           MachineBasicBlock &MBB,
3818                                           const GCNSubtarget &ST) {
3819   const SIInstrInfo *TII = ST.getInstrInfo();
3820   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3821   MachineFunction *MF = MBB.getParent();
3822   MachineRegisterInfo &MRI = MF->getRegInfo();
3823 
3824   Register Dst = MI.getOperand(0).getReg();
3825   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3826   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3827   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3828   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3829   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3830   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3831 
3832   // This can be an immediate, but will be folded later.
3833   assert(Val->getReg());
3834 
3835   unsigned SubReg;
3836   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3837                                                          SrcVec->getReg(),
3838                                                          Offset);
3839   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3840 
3841   if (Idx->getReg() == AMDGPU::NoRegister) {
3842     MachineBasicBlock::iterator I(&MI);
3843     const DebugLoc &DL = MI.getDebugLoc();
3844 
3845     assert(Offset == 0);
3846 
3847     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3848         .add(*SrcVec)
3849         .add(*Val)
3850         .addImm(SubReg);
3851 
3852     MI.eraseFromParent();
3853     return &MBB;
3854   }
3855 
3856   // Check for a SGPR index.
3857   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3858     MachineBasicBlock::iterator I(&MI);
3859     const DebugLoc &DL = MI.getDebugLoc();
3860 
3861     if (UseGPRIdxMode) {
3862       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3863 
3864       const MCInstrDesc &GPRIDXDesc =
3865           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3866       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3867           .addReg(SrcVec->getReg())
3868           .add(*Val)
3869           .addReg(Idx)
3870           .addImm(SubReg);
3871     } else {
3872       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3873 
3874       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3875           TRI.getRegSizeInBits(*VecRC), 32, false);
3876       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3877           .addReg(SrcVec->getReg())
3878           .add(*Val)
3879           .addImm(SubReg);
3880     }
3881     MI.eraseFromParent();
3882     return &MBB;
3883   }
3884 
3885   // Control flow needs to be inserted if indexing with a VGPR.
3886   if (Val->isReg())
3887     MRI.clearKillFlags(Val->getReg());
3888 
3889   const DebugLoc &DL = MI.getDebugLoc();
3890 
3891   Register PhiReg = MRI.createVirtualRegister(VecRC);
3892 
3893   Register SGPRIdxReg;
3894   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3895                               UseGPRIdxMode, SGPRIdxReg);
3896   MachineBasicBlock *LoopBB = InsPt->getParent();
3897 
3898   if (UseGPRIdxMode) {
3899     const MCInstrDesc &GPRIDXDesc =
3900         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3901 
3902     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3903         .addReg(PhiReg)
3904         .add(*Val)
3905         .addReg(SGPRIdxReg)
3906         .addImm(AMDGPU::sub0);
3907   } else {
3908     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3909         TRI.getRegSizeInBits(*VecRC), 32, false);
3910     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3911         .addReg(PhiReg)
3912         .add(*Val)
3913         .addImm(AMDGPU::sub0);
3914   }
3915 
3916   MI.eraseFromParent();
3917   return LoopBB;
3918 }
3919 
3920 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3921   MachineInstr &MI, MachineBasicBlock *BB) const {
3922 
3923   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3924   MachineFunction *MF = BB->getParent();
3925   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3926 
3927   switch (MI.getOpcode()) {
3928   case AMDGPU::S_UADDO_PSEUDO:
3929   case AMDGPU::S_USUBO_PSEUDO: {
3930     const DebugLoc &DL = MI.getDebugLoc();
3931     MachineOperand &Dest0 = MI.getOperand(0);
3932     MachineOperand &Dest1 = MI.getOperand(1);
3933     MachineOperand &Src0 = MI.getOperand(2);
3934     MachineOperand &Src1 = MI.getOperand(3);
3935 
3936     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3937                        ? AMDGPU::S_ADD_I32
3938                        : AMDGPU::S_SUB_I32;
3939     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3940 
3941     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3942         .addImm(1)
3943         .addImm(0);
3944 
3945     MI.eraseFromParent();
3946     return BB;
3947   }
3948   case AMDGPU::S_ADD_U64_PSEUDO:
3949   case AMDGPU::S_SUB_U64_PSEUDO: {
3950     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3951     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3952     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3953     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3954     const DebugLoc &DL = MI.getDebugLoc();
3955 
3956     MachineOperand &Dest = MI.getOperand(0);
3957     MachineOperand &Src0 = MI.getOperand(1);
3958     MachineOperand &Src1 = MI.getOperand(2);
3959 
3960     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3961     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3962 
3963     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3964         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3965     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3966         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3967 
3968     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3969         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3970     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3971         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3972 
3973     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3974 
3975     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3976     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3977     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3978     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3979     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3980         .addReg(DestSub0)
3981         .addImm(AMDGPU::sub0)
3982         .addReg(DestSub1)
3983         .addImm(AMDGPU::sub1);
3984     MI.eraseFromParent();
3985     return BB;
3986   }
3987   case AMDGPU::V_ADD_U64_PSEUDO:
3988   case AMDGPU::V_SUB_U64_PSEUDO: {
3989     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3990     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3991     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3992     const DebugLoc &DL = MI.getDebugLoc();
3993 
3994     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3995 
3996     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3997 
3998     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3999     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4000 
4001     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4002     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4003 
4004     MachineOperand &Dest = MI.getOperand(0);
4005     MachineOperand &Src0 = MI.getOperand(1);
4006     MachineOperand &Src1 = MI.getOperand(2);
4007 
4008     const TargetRegisterClass *Src0RC = Src0.isReg()
4009                                             ? MRI.getRegClass(Src0.getReg())
4010                                             : &AMDGPU::VReg_64RegClass;
4011     const TargetRegisterClass *Src1RC = Src1.isReg()
4012                                             ? MRI.getRegClass(Src1.getReg())
4013                                             : &AMDGPU::VReg_64RegClass;
4014 
4015     const TargetRegisterClass *Src0SubRC =
4016         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4017     const TargetRegisterClass *Src1SubRC =
4018         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4019 
4020     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4021         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4022     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4023         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4024 
4025     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4026         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4027     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4028         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4029 
4030     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4031     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4032                                .addReg(CarryReg, RegState::Define)
4033                                .add(SrcReg0Sub0)
4034                                .add(SrcReg1Sub0)
4035                                .addImm(0); // clamp bit
4036 
4037     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4038     MachineInstr *HiHalf =
4039         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4040             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4041             .add(SrcReg0Sub1)
4042             .add(SrcReg1Sub1)
4043             .addReg(CarryReg, RegState::Kill)
4044             .addImm(0); // clamp bit
4045 
4046     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4047         .addReg(DestSub0)
4048         .addImm(AMDGPU::sub0)
4049         .addReg(DestSub1)
4050         .addImm(AMDGPU::sub1);
4051     TII->legalizeOperands(*LoHalf);
4052     TII->legalizeOperands(*HiHalf);
4053     MI.eraseFromParent();
4054     return BB;
4055   }
4056   case AMDGPU::S_ADD_CO_PSEUDO:
4057   case AMDGPU::S_SUB_CO_PSEUDO: {
4058     // This pseudo has a chance to be selected
4059     // only from uniform add/subcarry node. All the VGPR operands
4060     // therefore assumed to be splat vectors.
4061     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4062     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4063     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4064     MachineBasicBlock::iterator MII = MI;
4065     const DebugLoc &DL = MI.getDebugLoc();
4066     MachineOperand &Dest = MI.getOperand(0);
4067     MachineOperand &CarryDest = MI.getOperand(1);
4068     MachineOperand &Src0 = MI.getOperand(2);
4069     MachineOperand &Src1 = MI.getOperand(3);
4070     MachineOperand &Src2 = MI.getOperand(4);
4071     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4072                        ? AMDGPU::S_ADDC_U32
4073                        : AMDGPU::S_SUBB_U32;
4074     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4075       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4076       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4077           .addReg(Src0.getReg());
4078       Src0.setReg(RegOp0);
4079     }
4080     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4081       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4082       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4083           .addReg(Src1.getReg());
4084       Src1.setReg(RegOp1);
4085     }
4086     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4087     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4088       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4089           .addReg(Src2.getReg());
4090       Src2.setReg(RegOp2);
4091     }
4092 
4093     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4094     if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4095       if (ST.hasScalarCompareEq64()) {
4096         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4097             .addReg(Src2.getReg())
4098             .addImm(0);
4099       } else {
4100         const TargetRegisterClass *SubRC =
4101             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4102         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4103             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4104         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4105             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4106         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4107 
4108         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4109             .add(Src2Sub0)
4110             .add(Src2Sub1);
4111 
4112         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4113             .addReg(Src2_32, RegState::Kill)
4114             .addImm(0);
4115       }
4116     } else {
4117       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4118           .addReg(Src2.getReg())
4119           .addImm(0);
4120     }
4121 
4122     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4123 
4124     BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4125       .addReg(AMDGPU::SCC);
4126     MI.eraseFromParent();
4127     return BB;
4128   }
4129   case AMDGPU::SI_INIT_M0: {
4130     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4131             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4132         .add(MI.getOperand(0));
4133     MI.eraseFromParent();
4134     return BB;
4135   }
4136   case AMDGPU::GET_GROUPSTATICSIZE: {
4137     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4138            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4139     DebugLoc DL = MI.getDebugLoc();
4140     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4141         .add(MI.getOperand(0))
4142         .addImm(MFI->getLDSSize());
4143     MI.eraseFromParent();
4144     return BB;
4145   }
4146   case AMDGPU::SI_INDIRECT_SRC_V1:
4147   case AMDGPU::SI_INDIRECT_SRC_V2:
4148   case AMDGPU::SI_INDIRECT_SRC_V4:
4149   case AMDGPU::SI_INDIRECT_SRC_V8:
4150   case AMDGPU::SI_INDIRECT_SRC_V16:
4151   case AMDGPU::SI_INDIRECT_SRC_V32:
4152     return emitIndirectSrc(MI, *BB, *getSubtarget());
4153   case AMDGPU::SI_INDIRECT_DST_V1:
4154   case AMDGPU::SI_INDIRECT_DST_V2:
4155   case AMDGPU::SI_INDIRECT_DST_V4:
4156   case AMDGPU::SI_INDIRECT_DST_V8:
4157   case AMDGPU::SI_INDIRECT_DST_V16:
4158   case AMDGPU::SI_INDIRECT_DST_V32:
4159     return emitIndirectDst(MI, *BB, *getSubtarget());
4160   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4161   case AMDGPU::SI_KILL_I1_PSEUDO:
4162     return splitKillBlock(MI, BB);
4163   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4164     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4165     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4166     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4167 
4168     Register Dst = MI.getOperand(0).getReg();
4169     Register Src0 = MI.getOperand(1).getReg();
4170     Register Src1 = MI.getOperand(2).getReg();
4171     const DebugLoc &DL = MI.getDebugLoc();
4172     Register SrcCond = MI.getOperand(3).getReg();
4173 
4174     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4175     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4176     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4177     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4178 
4179     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4180       .addReg(SrcCond);
4181     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4182       .addImm(0)
4183       .addReg(Src0, 0, AMDGPU::sub0)
4184       .addImm(0)
4185       .addReg(Src1, 0, AMDGPU::sub0)
4186       .addReg(SrcCondCopy);
4187     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4188       .addImm(0)
4189       .addReg(Src0, 0, AMDGPU::sub1)
4190       .addImm(0)
4191       .addReg(Src1, 0, AMDGPU::sub1)
4192       .addReg(SrcCondCopy);
4193 
4194     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4195       .addReg(DstLo)
4196       .addImm(AMDGPU::sub0)
4197       .addReg(DstHi)
4198       .addImm(AMDGPU::sub1);
4199     MI.eraseFromParent();
4200     return BB;
4201   }
4202   case AMDGPU::SI_BR_UNDEF: {
4203     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4204     const DebugLoc &DL = MI.getDebugLoc();
4205     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4206                            .add(MI.getOperand(0));
4207     Br->getOperand(1).setIsUndef(true); // read undef SCC
4208     MI.eraseFromParent();
4209     return BB;
4210   }
4211   case AMDGPU::ADJCALLSTACKUP:
4212   case AMDGPU::ADJCALLSTACKDOWN: {
4213     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4214     MachineInstrBuilder MIB(*MF, &MI);
4215     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4216        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4217     return BB;
4218   }
4219   case AMDGPU::SI_CALL_ISEL: {
4220     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4221     const DebugLoc &DL = MI.getDebugLoc();
4222 
4223     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4224 
4225     MachineInstrBuilder MIB;
4226     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4227 
4228     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4229       MIB.add(MI.getOperand(I));
4230 
4231     MIB.cloneMemRefs(MI);
4232     MI.eraseFromParent();
4233     return BB;
4234   }
4235   case AMDGPU::V_ADD_CO_U32_e32:
4236   case AMDGPU::V_SUB_CO_U32_e32:
4237   case AMDGPU::V_SUBREV_CO_U32_e32: {
4238     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4239     const DebugLoc &DL = MI.getDebugLoc();
4240     unsigned Opc = MI.getOpcode();
4241 
4242     bool NeedClampOperand = false;
4243     if (TII->pseudoToMCOpcode(Opc) == -1) {
4244       Opc = AMDGPU::getVOPe64(Opc);
4245       NeedClampOperand = true;
4246     }
4247 
4248     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4249     if (TII->isVOP3(*I)) {
4250       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4251       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4252       I.addReg(TRI->getVCC(), RegState::Define);
4253     }
4254     I.add(MI.getOperand(1))
4255      .add(MI.getOperand(2));
4256     if (NeedClampOperand)
4257       I.addImm(0); // clamp bit for e64 encoding
4258 
4259     TII->legalizeOperands(*I);
4260 
4261     MI.eraseFromParent();
4262     return BB;
4263   }
4264   case AMDGPU::DS_GWS_INIT:
4265   case AMDGPU::DS_GWS_SEMA_BR:
4266   case AMDGPU::DS_GWS_BARRIER:
4267     if (Subtarget->needsAlignedVGPRs()) {
4268       // Add implicit aligned super-reg to force alignment on the data operand.
4269       const DebugLoc &DL = MI.getDebugLoc();
4270       MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4271       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4272       MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4273       Register DataReg = Op->getReg();
4274       bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4275       Register Undef = MRI.createVirtualRegister(
4276           IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4277       BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4278       Register NewVR =
4279           MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4280                                            : &AMDGPU::VReg_64_Align2RegClass);
4281       BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4282           .addReg(DataReg, 0, Op->getSubReg())
4283           .addImm(AMDGPU::sub0)
4284           .addReg(Undef)
4285           .addImm(AMDGPU::sub1);
4286       Op->setReg(NewVR);
4287       Op->setSubReg(AMDGPU::sub0);
4288       MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4289     }
4290     LLVM_FALLTHROUGH;
4291   case AMDGPU::DS_GWS_SEMA_V:
4292   case AMDGPU::DS_GWS_SEMA_P:
4293   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4294     // A s_waitcnt 0 is required to be the instruction immediately following.
4295     if (getSubtarget()->hasGWSAutoReplay()) {
4296       bundleInstWithWaitcnt(MI);
4297       return BB;
4298     }
4299 
4300     return emitGWSMemViolTestLoop(MI, BB);
4301   case AMDGPU::S_SETREG_B32: {
4302     // Try to optimize cases that only set the denormal mode or rounding mode.
4303     //
4304     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4305     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4306     // instead.
4307     //
4308     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4309     // allow you to have a no side effect instruction in the output of a
4310     // sideeffecting pattern.
4311     unsigned ID, Offset, Width;
4312     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4313     if (ID != AMDGPU::Hwreg::ID_MODE)
4314       return BB;
4315 
4316     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4317     const unsigned SetMask = WidthMask << Offset;
4318 
4319     if (getSubtarget()->hasDenormModeInst()) {
4320       unsigned SetDenormOp = 0;
4321       unsigned SetRoundOp = 0;
4322 
4323       // The dedicated instructions can only set the whole denorm or round mode
4324       // at once, not a subset of bits in either.
4325       if (SetMask ==
4326           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4327         // If this fully sets both the round and denorm mode, emit the two
4328         // dedicated instructions for these.
4329         SetRoundOp = AMDGPU::S_ROUND_MODE;
4330         SetDenormOp = AMDGPU::S_DENORM_MODE;
4331       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4332         SetRoundOp = AMDGPU::S_ROUND_MODE;
4333       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4334         SetDenormOp = AMDGPU::S_DENORM_MODE;
4335       }
4336 
4337       if (SetRoundOp || SetDenormOp) {
4338         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4339         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4340         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4341           unsigned ImmVal = Def->getOperand(1).getImm();
4342           if (SetRoundOp) {
4343             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4344                 .addImm(ImmVal & 0xf);
4345 
4346             // If we also have the denorm mode, get just the denorm mode bits.
4347             ImmVal >>= 4;
4348           }
4349 
4350           if (SetDenormOp) {
4351             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4352                 .addImm(ImmVal & 0xf);
4353           }
4354 
4355           MI.eraseFromParent();
4356           return BB;
4357         }
4358       }
4359     }
4360 
4361     // If only FP bits are touched, used the no side effects pseudo.
4362     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4363                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4364       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4365 
4366     return BB;
4367   }
4368   default:
4369     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4370   }
4371 }
4372 
4373 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4374   return isTypeLegal(VT.getScalarType());
4375 }
4376 
4377 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4378   // This currently forces unfolding various combinations of fsub into fma with
4379   // free fneg'd operands. As long as we have fast FMA (controlled by
4380   // isFMAFasterThanFMulAndFAdd), we should perform these.
4381 
4382   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4383   // most of these combines appear to be cycle neutral but save on instruction
4384   // count / code size.
4385   return true;
4386 }
4387 
4388 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4389                                          EVT VT) const {
4390   if (!VT.isVector()) {
4391     return MVT::i1;
4392   }
4393   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4394 }
4395 
4396 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4397   // TODO: Should i16 be used always if legal? For now it would force VALU
4398   // shifts.
4399   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4400 }
4401 
4402 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4403   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4404              ? Ty.changeElementSize(16)
4405              : Ty.changeElementSize(32);
4406 }
4407 
4408 // Answering this is somewhat tricky and depends on the specific device which
4409 // have different rates for fma or all f64 operations.
4410 //
4411 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4412 // regardless of which device (although the number of cycles differs between
4413 // devices), so it is always profitable for f64.
4414 //
4415 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4416 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4417 // which we can always do even without fused FP ops since it returns the same
4418 // result as the separate operations and since it is always full
4419 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4420 // however does not support denormals, so we do report fma as faster if we have
4421 // a fast fma device and require denormals.
4422 //
4423 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4424                                                   EVT VT) const {
4425   VT = VT.getScalarType();
4426 
4427   switch (VT.getSimpleVT().SimpleTy) {
4428   case MVT::f32: {
4429     // If mad is not available this depends only on if f32 fma is full rate.
4430     if (!Subtarget->hasMadMacF32Insts())
4431       return Subtarget->hasFastFMAF32();
4432 
4433     // Otherwise f32 mad is always full rate and returns the same result as
4434     // the separate operations so should be preferred over fma.
4435     // However does not support denomals.
4436     if (hasFP32Denormals(MF))
4437       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4438 
4439     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4440     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4441   }
4442   case MVT::f64:
4443     return true;
4444   case MVT::f16:
4445     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4446   default:
4447     break;
4448   }
4449 
4450   return false;
4451 }
4452 
4453 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4454                                    const SDNode *N) const {
4455   // TODO: Check future ftz flag
4456   // v_mad_f32/v_mac_f32 do not support denormals.
4457   EVT VT = N->getValueType(0);
4458   if (VT == MVT::f32)
4459     return Subtarget->hasMadMacF32Insts() &&
4460            !hasFP32Denormals(DAG.getMachineFunction());
4461   if (VT == MVT::f16) {
4462     return Subtarget->hasMadF16() &&
4463            !hasFP64FP16Denormals(DAG.getMachineFunction());
4464   }
4465 
4466   return false;
4467 }
4468 
4469 //===----------------------------------------------------------------------===//
4470 // Custom DAG Lowering Operations
4471 //===----------------------------------------------------------------------===//
4472 
4473 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4474 // wider vector type is legal.
4475 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4476                                              SelectionDAG &DAG) const {
4477   unsigned Opc = Op.getOpcode();
4478   EVT VT = Op.getValueType();
4479   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4480 
4481   SDValue Lo, Hi;
4482   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4483 
4484   SDLoc SL(Op);
4485   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4486                              Op->getFlags());
4487   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4488                              Op->getFlags());
4489 
4490   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4491 }
4492 
4493 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4494 // wider vector type is legal.
4495 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4496                                               SelectionDAG &DAG) const {
4497   unsigned Opc = Op.getOpcode();
4498   EVT VT = Op.getValueType();
4499   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4500          VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4501 
4502   SDValue Lo0, Hi0;
4503   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4504   SDValue Lo1, Hi1;
4505   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4506 
4507   SDLoc SL(Op);
4508 
4509   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4510                              Op->getFlags());
4511   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4512                              Op->getFlags());
4513 
4514   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4515 }
4516 
4517 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4518                                               SelectionDAG &DAG) const {
4519   unsigned Opc = Op.getOpcode();
4520   EVT VT = Op.getValueType();
4521   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4522          VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4523 
4524   SDValue Lo0, Hi0;
4525   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4526   SDValue Lo1, Hi1;
4527   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4528   SDValue Lo2, Hi2;
4529   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4530 
4531   SDLoc SL(Op);
4532 
4533   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4534                              Op->getFlags());
4535   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4536                              Op->getFlags());
4537 
4538   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4539 }
4540 
4541 
4542 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4543   switch (Op.getOpcode()) {
4544   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4545   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4546   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4547   case ISD::LOAD: {
4548     SDValue Result = LowerLOAD(Op, DAG);
4549     assert((!Result.getNode() ||
4550             Result.getNode()->getNumValues() == 2) &&
4551            "Load should return a value and a chain");
4552     return Result;
4553   }
4554 
4555   case ISD::FSIN:
4556   case ISD::FCOS:
4557     return LowerTrig(Op, DAG);
4558   case ISD::SELECT: return LowerSELECT(Op, DAG);
4559   case ISD::FDIV: return LowerFDIV(Op, DAG);
4560   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4561   case ISD::STORE: return LowerSTORE(Op, DAG);
4562   case ISD::GlobalAddress: {
4563     MachineFunction &MF = DAG.getMachineFunction();
4564     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4565     return LowerGlobalAddress(MFI, Op, DAG);
4566   }
4567   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4568   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4569   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4570   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4571   case ISD::INSERT_SUBVECTOR:
4572     return lowerINSERT_SUBVECTOR(Op, DAG);
4573   case ISD::INSERT_VECTOR_ELT:
4574     return lowerINSERT_VECTOR_ELT(Op, DAG);
4575   case ISD::EXTRACT_VECTOR_ELT:
4576     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4577   case ISD::VECTOR_SHUFFLE:
4578     return lowerVECTOR_SHUFFLE(Op, DAG);
4579   case ISD::BUILD_VECTOR:
4580     return lowerBUILD_VECTOR(Op, DAG);
4581   case ISD::FP_ROUND:
4582     return lowerFP_ROUND(Op, DAG);
4583   case ISD::TRAP:
4584     return lowerTRAP(Op, DAG);
4585   case ISD::DEBUGTRAP:
4586     return lowerDEBUGTRAP(Op, DAG);
4587   case ISD::FABS:
4588   case ISD::FNEG:
4589   case ISD::FCANONICALIZE:
4590   case ISD::BSWAP:
4591     return splitUnaryVectorOp(Op, DAG);
4592   case ISD::FMINNUM:
4593   case ISD::FMAXNUM:
4594     return lowerFMINNUM_FMAXNUM(Op, DAG);
4595   case ISD::FMA:
4596     return splitTernaryVectorOp(Op, DAG);
4597   case ISD::FP_TO_SINT:
4598   case ISD::FP_TO_UINT:
4599     return LowerFP_TO_INT(Op, DAG);
4600   case ISD::SHL:
4601   case ISD::SRA:
4602   case ISD::SRL:
4603   case ISD::ADD:
4604   case ISD::SUB:
4605   case ISD::MUL:
4606   case ISD::SMIN:
4607   case ISD::SMAX:
4608   case ISD::UMIN:
4609   case ISD::UMAX:
4610   case ISD::FADD:
4611   case ISD::FMUL:
4612   case ISD::FMINNUM_IEEE:
4613   case ISD::FMAXNUM_IEEE:
4614   case ISD::UADDSAT:
4615   case ISD::USUBSAT:
4616   case ISD::SADDSAT:
4617   case ISD::SSUBSAT:
4618     return splitBinaryVectorOp(Op, DAG);
4619   case ISD::SMULO:
4620   case ISD::UMULO:
4621     return lowerXMULO(Op, DAG);
4622   case ISD::DYNAMIC_STACKALLOC:
4623     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4624   }
4625   return SDValue();
4626 }
4627 
4628 // Used for D16: Casts the result of an instruction into the right vector,
4629 // packs values if loads return unpacked values.
4630 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4631                                        const SDLoc &DL,
4632                                        SelectionDAG &DAG, bool Unpacked) {
4633   if (!LoadVT.isVector())
4634     return Result;
4635 
4636   // Cast back to the original packed type or to a larger type that is a
4637   // multiple of 32 bit for D16. Widening the return type is a required for
4638   // legalization.
4639   EVT FittingLoadVT = LoadVT;
4640   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4641     FittingLoadVT =
4642         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4643                          LoadVT.getVectorNumElements() + 1);
4644   }
4645 
4646   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4647     // Truncate to v2i16/v4i16.
4648     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4649 
4650     // Workaround legalizer not scalarizing truncate after vector op
4651     // legalization but not creating intermediate vector trunc.
4652     SmallVector<SDValue, 4> Elts;
4653     DAG.ExtractVectorElements(Result, Elts);
4654     for (SDValue &Elt : Elts)
4655       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4656 
4657     // Pad illegal v1i16/v3fi6 to v4i16
4658     if ((LoadVT.getVectorNumElements() % 2) == 1)
4659       Elts.push_back(DAG.getUNDEF(MVT::i16));
4660 
4661     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4662 
4663     // Bitcast to original type (v2f16/v4f16).
4664     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4665   }
4666 
4667   // Cast back to the original packed type.
4668   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4669 }
4670 
4671 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4672                                               MemSDNode *M,
4673                                               SelectionDAG &DAG,
4674                                               ArrayRef<SDValue> Ops,
4675                                               bool IsIntrinsic) const {
4676   SDLoc DL(M);
4677 
4678   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4679   EVT LoadVT = M->getValueType(0);
4680 
4681   EVT EquivLoadVT = LoadVT;
4682   if (LoadVT.isVector()) {
4683     if (Unpacked) {
4684       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4685                                      LoadVT.getVectorNumElements());
4686     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4687       // Widen v3f16 to legal type
4688       EquivLoadVT =
4689           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4690                            LoadVT.getVectorNumElements() + 1);
4691     }
4692   }
4693 
4694   // Change from v4f16/v2f16 to EquivLoadVT.
4695   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4696 
4697   SDValue Load
4698     = DAG.getMemIntrinsicNode(
4699       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4700       VTList, Ops, M->getMemoryVT(),
4701       M->getMemOperand());
4702 
4703   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4704 
4705   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4706 }
4707 
4708 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4709                                              SelectionDAG &DAG,
4710                                              ArrayRef<SDValue> Ops) const {
4711   SDLoc DL(M);
4712   EVT LoadVT = M->getValueType(0);
4713   EVT EltType = LoadVT.getScalarType();
4714   EVT IntVT = LoadVT.changeTypeToInteger();
4715 
4716   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4717 
4718   unsigned Opc =
4719       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4720 
4721   if (IsD16) {
4722     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4723   }
4724 
4725   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4726   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4727     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4728 
4729   if (isTypeLegal(LoadVT)) {
4730     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4731                                M->getMemOperand(), DAG);
4732   }
4733 
4734   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4735   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4736   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4737                                         M->getMemOperand(), DAG);
4738   return DAG.getMergeValues(
4739       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4740       DL);
4741 }
4742 
4743 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4744                                   SDNode *N, SelectionDAG &DAG) {
4745   EVT VT = N->getValueType(0);
4746   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4747   unsigned CondCode = CD->getZExtValue();
4748   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4749     return DAG.getUNDEF(VT);
4750 
4751   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4752 
4753   SDValue LHS = N->getOperand(1);
4754   SDValue RHS = N->getOperand(2);
4755 
4756   SDLoc DL(N);
4757 
4758   EVT CmpVT = LHS.getValueType();
4759   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4760     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4761       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4762     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4763     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4764   }
4765 
4766   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4767 
4768   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4769   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4770 
4771   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4772                               DAG.getCondCode(CCOpcode));
4773   if (VT.bitsEq(CCVT))
4774     return SetCC;
4775   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4776 }
4777 
4778 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4779                                   SDNode *N, SelectionDAG &DAG) {
4780   EVT VT = N->getValueType(0);
4781   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4782 
4783   unsigned CondCode = CD->getZExtValue();
4784   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4785     return DAG.getUNDEF(VT);
4786 
4787   SDValue Src0 = N->getOperand(1);
4788   SDValue Src1 = N->getOperand(2);
4789   EVT CmpVT = Src0.getValueType();
4790   SDLoc SL(N);
4791 
4792   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4793     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4794     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4795   }
4796 
4797   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4798   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4799   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4800   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4801   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4802                               Src1, DAG.getCondCode(CCOpcode));
4803   if (VT.bitsEq(CCVT))
4804     return SetCC;
4805   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4806 }
4807 
4808 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4809                                     SelectionDAG &DAG) {
4810   EVT VT = N->getValueType(0);
4811   SDValue Src = N->getOperand(1);
4812   SDLoc SL(N);
4813 
4814   if (Src.getOpcode() == ISD::SETCC) {
4815     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4816     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4817                        Src.getOperand(1), Src.getOperand(2));
4818   }
4819   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4820     // (ballot 0) -> 0
4821     if (Arg->isNullValue())
4822       return DAG.getConstant(0, SL, VT);
4823 
4824     // (ballot 1) -> EXEC/EXEC_LO
4825     if (Arg->isOne()) {
4826       Register Exec;
4827       if (VT.getScalarSizeInBits() == 32)
4828         Exec = AMDGPU::EXEC_LO;
4829       else if (VT.getScalarSizeInBits() == 64)
4830         Exec = AMDGPU::EXEC;
4831       else
4832         return SDValue();
4833 
4834       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4835     }
4836   }
4837 
4838   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4839   // ISD::SETNE)
4840   return DAG.getNode(
4841       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4842       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4843 }
4844 
4845 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4846                                           SmallVectorImpl<SDValue> &Results,
4847                                           SelectionDAG &DAG) const {
4848   switch (N->getOpcode()) {
4849   case ISD::INSERT_VECTOR_ELT: {
4850     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4851       Results.push_back(Res);
4852     return;
4853   }
4854   case ISD::EXTRACT_VECTOR_ELT: {
4855     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4856       Results.push_back(Res);
4857     return;
4858   }
4859   case ISD::INTRINSIC_WO_CHAIN: {
4860     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4861     switch (IID) {
4862     case Intrinsic::amdgcn_cvt_pkrtz: {
4863       SDValue Src0 = N->getOperand(1);
4864       SDValue Src1 = N->getOperand(2);
4865       SDLoc SL(N);
4866       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4867                                 Src0, Src1);
4868       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4869       return;
4870     }
4871     case Intrinsic::amdgcn_cvt_pknorm_i16:
4872     case Intrinsic::amdgcn_cvt_pknorm_u16:
4873     case Intrinsic::amdgcn_cvt_pk_i16:
4874     case Intrinsic::amdgcn_cvt_pk_u16: {
4875       SDValue Src0 = N->getOperand(1);
4876       SDValue Src1 = N->getOperand(2);
4877       SDLoc SL(N);
4878       unsigned Opcode;
4879 
4880       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4881         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4882       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4883         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4884       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4885         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4886       else
4887         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4888 
4889       EVT VT = N->getValueType(0);
4890       if (isTypeLegal(VT))
4891         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4892       else {
4893         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4894         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4895       }
4896       return;
4897     }
4898     }
4899     break;
4900   }
4901   case ISD::INTRINSIC_W_CHAIN: {
4902     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4903       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4904         // FIXME: Hacky
4905         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4906           Results.push_back(Res.getOperand(I));
4907         }
4908       } else {
4909         Results.push_back(Res);
4910         Results.push_back(Res.getValue(1));
4911       }
4912       return;
4913     }
4914 
4915     break;
4916   }
4917   case ISD::SELECT: {
4918     SDLoc SL(N);
4919     EVT VT = N->getValueType(0);
4920     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4921     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4922     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4923 
4924     EVT SelectVT = NewVT;
4925     if (NewVT.bitsLT(MVT::i32)) {
4926       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4927       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4928       SelectVT = MVT::i32;
4929     }
4930 
4931     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4932                                     N->getOperand(0), LHS, RHS);
4933 
4934     if (NewVT != SelectVT)
4935       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4936     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4937     return;
4938   }
4939   case ISD::FNEG: {
4940     if (N->getValueType(0) != MVT::v2f16)
4941       break;
4942 
4943     SDLoc SL(N);
4944     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4945 
4946     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4947                              BC,
4948                              DAG.getConstant(0x80008000, SL, MVT::i32));
4949     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4950     return;
4951   }
4952   case ISD::FABS: {
4953     if (N->getValueType(0) != MVT::v2f16)
4954       break;
4955 
4956     SDLoc SL(N);
4957     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4958 
4959     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4960                              BC,
4961                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4962     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4963     return;
4964   }
4965   default:
4966     break;
4967   }
4968 }
4969 
4970 /// Helper function for LowerBRCOND
4971 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4972 
4973   SDNode *Parent = Value.getNode();
4974   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4975        I != E; ++I) {
4976 
4977     if (I.getUse().get() != Value)
4978       continue;
4979 
4980     if (I->getOpcode() == Opcode)
4981       return *I;
4982   }
4983   return nullptr;
4984 }
4985 
4986 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4987   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4988     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4989     case Intrinsic::amdgcn_if:
4990       return AMDGPUISD::IF;
4991     case Intrinsic::amdgcn_else:
4992       return AMDGPUISD::ELSE;
4993     case Intrinsic::amdgcn_loop:
4994       return AMDGPUISD::LOOP;
4995     case Intrinsic::amdgcn_end_cf:
4996       llvm_unreachable("should not occur");
4997     default:
4998       return 0;
4999     }
5000   }
5001 
5002   // break, if_break, else_break are all only used as inputs to loop, not
5003   // directly as branch conditions.
5004   return 0;
5005 }
5006 
5007 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5008   const Triple &TT = getTargetMachine().getTargetTriple();
5009   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5010           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5011          AMDGPU::shouldEmitConstantsToTextSection(TT);
5012 }
5013 
5014 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5015   // FIXME: Either avoid relying on address space here or change the default
5016   // address space for functions to avoid the explicit check.
5017   return (GV->getValueType()->isFunctionTy() ||
5018           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5019          !shouldEmitFixup(GV) &&
5020          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5021 }
5022 
5023 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5024   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5025 }
5026 
5027 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5028   if (!GV->hasExternalLinkage())
5029     return true;
5030 
5031   const auto OS = getTargetMachine().getTargetTriple().getOS();
5032   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5033 }
5034 
5035 /// This transforms the control flow intrinsics to get the branch destination as
5036 /// last parameter, also switches branch target with BR if the need arise
5037 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5038                                       SelectionDAG &DAG) const {
5039   SDLoc DL(BRCOND);
5040 
5041   SDNode *Intr = BRCOND.getOperand(1).getNode();
5042   SDValue Target = BRCOND.getOperand(2);
5043   SDNode *BR = nullptr;
5044   SDNode *SetCC = nullptr;
5045 
5046   if (Intr->getOpcode() == ISD::SETCC) {
5047     // As long as we negate the condition everything is fine
5048     SetCC = Intr;
5049     Intr = SetCC->getOperand(0).getNode();
5050 
5051   } else {
5052     // Get the target from BR if we don't negate the condition
5053     BR = findUser(BRCOND, ISD::BR);
5054     assert(BR && "brcond missing unconditional branch user");
5055     Target = BR->getOperand(1);
5056   }
5057 
5058   unsigned CFNode = isCFIntrinsic(Intr);
5059   if (CFNode == 0) {
5060     // This is a uniform branch so we don't need to legalize.
5061     return BRCOND;
5062   }
5063 
5064   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5065                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5066 
5067   assert(!SetCC ||
5068         (SetCC->getConstantOperandVal(1) == 1 &&
5069          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5070                                                              ISD::SETNE));
5071 
5072   // operands of the new intrinsic call
5073   SmallVector<SDValue, 4> Ops;
5074   if (HaveChain)
5075     Ops.push_back(BRCOND.getOperand(0));
5076 
5077   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5078   Ops.push_back(Target);
5079 
5080   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5081 
5082   // build the new intrinsic call
5083   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5084 
5085   if (!HaveChain) {
5086     SDValue Ops[] =  {
5087       SDValue(Result, 0),
5088       BRCOND.getOperand(0)
5089     };
5090 
5091     Result = DAG.getMergeValues(Ops, DL).getNode();
5092   }
5093 
5094   if (BR) {
5095     // Give the branch instruction our target
5096     SDValue Ops[] = {
5097       BR->getOperand(0),
5098       BRCOND.getOperand(2)
5099     };
5100     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5101     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5102   }
5103 
5104   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5105 
5106   // Copy the intrinsic results to registers
5107   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5108     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5109     if (!CopyToReg)
5110       continue;
5111 
5112     Chain = DAG.getCopyToReg(
5113       Chain, DL,
5114       CopyToReg->getOperand(1),
5115       SDValue(Result, i - 1),
5116       SDValue());
5117 
5118     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5119   }
5120 
5121   // Remove the old intrinsic from the chain
5122   DAG.ReplaceAllUsesOfValueWith(
5123     SDValue(Intr, Intr->getNumValues() - 1),
5124     Intr->getOperand(0));
5125 
5126   return Chain;
5127 }
5128 
5129 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5130                                           SelectionDAG &DAG) const {
5131   MVT VT = Op.getSimpleValueType();
5132   SDLoc DL(Op);
5133   // Checking the depth
5134   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5135     return DAG.getConstant(0, DL, VT);
5136 
5137   MachineFunction &MF = DAG.getMachineFunction();
5138   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5139   // Check for kernel and shader functions
5140   if (Info->isEntryFunction())
5141     return DAG.getConstant(0, DL, VT);
5142 
5143   MachineFrameInfo &MFI = MF.getFrameInfo();
5144   // There is a call to @llvm.returnaddress in this function
5145   MFI.setReturnAddressIsTaken(true);
5146 
5147   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5148   // Get the return address reg and mark it as an implicit live-in
5149   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5150 
5151   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5152 }
5153 
5154 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5155                                             SDValue Op,
5156                                             const SDLoc &DL,
5157                                             EVT VT) const {
5158   return Op.getValueType().bitsLE(VT) ?
5159       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5160     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5161                 DAG.getTargetConstant(0, DL, MVT::i32));
5162 }
5163 
5164 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5165   assert(Op.getValueType() == MVT::f16 &&
5166          "Do not know how to custom lower FP_ROUND for non-f16 type");
5167 
5168   SDValue Src = Op.getOperand(0);
5169   EVT SrcVT = Src.getValueType();
5170   if (SrcVT != MVT::f64)
5171     return Op;
5172 
5173   SDLoc DL(Op);
5174 
5175   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5176   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5177   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5178 }
5179 
5180 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5181                                                SelectionDAG &DAG) const {
5182   EVT VT = Op.getValueType();
5183   const MachineFunction &MF = DAG.getMachineFunction();
5184   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5185   bool IsIEEEMode = Info->getMode().IEEE;
5186 
5187   // FIXME: Assert during selection that this is only selected for
5188   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5189   // mode functions, but this happens to be OK since it's only done in cases
5190   // where there is known no sNaN.
5191   if (IsIEEEMode)
5192     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5193 
5194   if (VT == MVT::v4f16)
5195     return splitBinaryVectorOp(Op, DAG);
5196   return Op;
5197 }
5198 
5199 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5200   EVT VT = Op.getValueType();
5201   SDLoc SL(Op);
5202   SDValue LHS = Op.getOperand(0);
5203   SDValue RHS = Op.getOperand(1);
5204   bool isSigned = Op.getOpcode() == ISD::SMULO;
5205 
5206   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5207     const APInt &C = RHSC->getAPIntValue();
5208     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5209     if (C.isPowerOf2()) {
5210       // smulo(x, signed_min) is same as umulo(x, signed_min).
5211       bool UseArithShift = isSigned && !C.isMinSignedValue();
5212       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5213       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5214       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5215           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5216                       SL, VT, Result, ShiftAmt),
5217           LHS, ISD::SETNE);
5218       return DAG.getMergeValues({ Result, Overflow }, SL);
5219     }
5220   }
5221 
5222   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5223   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5224                             SL, VT, LHS, RHS);
5225 
5226   SDValue Sign = isSigned
5227     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5228                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5229     : DAG.getConstant(0, SL, VT);
5230   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5231 
5232   return DAG.getMergeValues({ Result, Overflow }, SL);
5233 }
5234 
5235 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5236   if (!Subtarget->isTrapHandlerEnabled() ||
5237       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5238     return lowerTrapEndpgm(Op, DAG);
5239 
5240   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5241     switch (*HsaAbiVer) {
5242     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5243     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5244       return lowerTrapHsaQueuePtr(Op, DAG);
5245     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5246       return Subtarget->supportsGetDoorbellID() ?
5247           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5248     }
5249   }
5250 
5251   llvm_unreachable("Unknown trap handler");
5252 }
5253 
5254 SDValue SITargetLowering::lowerTrapEndpgm(
5255     SDValue Op, SelectionDAG &DAG) const {
5256   SDLoc SL(Op);
5257   SDValue Chain = Op.getOperand(0);
5258   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5259 }
5260 
5261 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5262     SDValue Op, SelectionDAG &DAG) const {
5263   SDLoc SL(Op);
5264   SDValue Chain = Op.getOperand(0);
5265 
5266   MachineFunction &MF = DAG.getMachineFunction();
5267   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5268   Register UserSGPR = Info->getQueuePtrUserSGPR();
5269   assert(UserSGPR != AMDGPU::NoRegister);
5270   SDValue QueuePtr = CreateLiveInRegister(
5271     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5272   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5273   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5274                                    QueuePtr, SDValue());
5275 
5276   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5277   SDValue Ops[] = {
5278     ToReg,
5279     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5280     SGPR01,
5281     ToReg.getValue(1)
5282   };
5283   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5284 }
5285 
5286 SDValue SITargetLowering::lowerTrapHsa(
5287     SDValue Op, SelectionDAG &DAG) const {
5288   SDLoc SL(Op);
5289   SDValue Chain = Op.getOperand(0);
5290 
5291   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5292   SDValue Ops[] = {
5293     Chain,
5294     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5295   };
5296   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5297 }
5298 
5299 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5300   SDLoc SL(Op);
5301   SDValue Chain = Op.getOperand(0);
5302   MachineFunction &MF = DAG.getMachineFunction();
5303 
5304   if (!Subtarget->isTrapHandlerEnabled() ||
5305       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5306     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5307                                      "debugtrap handler not supported",
5308                                      Op.getDebugLoc(),
5309                                      DS_Warning);
5310     LLVMContext &Ctx = MF.getFunction().getContext();
5311     Ctx.diagnose(NoTrap);
5312     return Chain;
5313   }
5314 
5315   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5316   SDValue Ops[] = {
5317     Chain,
5318     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5319   };
5320   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5321 }
5322 
5323 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5324                                              SelectionDAG &DAG) const {
5325   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5326   if (Subtarget->hasApertureRegs()) {
5327     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5328         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5329         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5330     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5331         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5332         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5333     unsigned Encoding =
5334         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5335         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5336         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5337 
5338     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5339     SDValue ApertureReg = SDValue(
5340         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5341     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5342     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5343   }
5344 
5345   MachineFunction &MF = DAG.getMachineFunction();
5346   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5347   Register UserSGPR = Info->getQueuePtrUserSGPR();
5348   assert(UserSGPR != AMDGPU::NoRegister);
5349 
5350   SDValue QueuePtr = CreateLiveInRegister(
5351     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5352 
5353   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5354   // private_segment_aperture_base_hi.
5355   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5356 
5357   SDValue Ptr =
5358       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5359 
5360   // TODO: Use custom target PseudoSourceValue.
5361   // TODO: We should use the value from the IR intrinsic call, but it might not
5362   // be available and how do we get it?
5363   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5364   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5365                      commonAlignment(Align(64), StructOffset),
5366                      MachineMemOperand::MODereferenceable |
5367                          MachineMemOperand::MOInvariant);
5368 }
5369 
5370 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5371                                              SelectionDAG &DAG) const {
5372   SDLoc SL(Op);
5373   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5374 
5375   SDValue Src = ASC->getOperand(0);
5376   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5377 
5378   const AMDGPUTargetMachine &TM =
5379     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5380 
5381   // flat -> local/private
5382   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5383     unsigned DestAS = ASC->getDestAddressSpace();
5384 
5385     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5386         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5387       unsigned NullVal = TM.getNullPointerValue(DestAS);
5388       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5389       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5390       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5391 
5392       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5393                          NonNull, Ptr, SegmentNullPtr);
5394     }
5395   }
5396 
5397   // local/private -> flat
5398   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5399     unsigned SrcAS = ASC->getSrcAddressSpace();
5400 
5401     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5402         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5403       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5404       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5405 
5406       SDValue NonNull
5407         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5408 
5409       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5410       SDValue CvtPtr
5411         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5412 
5413       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5414                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5415                          FlatNullPtr);
5416     }
5417   }
5418 
5419   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5420       Src.getValueType() == MVT::i64)
5421     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5422 
5423   // global <-> flat are no-ops and never emitted.
5424 
5425   const MachineFunction &MF = DAG.getMachineFunction();
5426   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5427     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5428   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5429 
5430   return DAG.getUNDEF(ASC->getValueType(0));
5431 }
5432 
5433 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5434 // the small vector and inserting them into the big vector. That is better than
5435 // the default expansion of doing it via a stack slot. Even though the use of
5436 // the stack slot would be optimized away afterwards, the stack slot itself
5437 // remains.
5438 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5439                                                 SelectionDAG &DAG) const {
5440   SDValue Vec = Op.getOperand(0);
5441   SDValue Ins = Op.getOperand(1);
5442   SDValue Idx = Op.getOperand(2);
5443   EVT VecVT = Vec.getValueType();
5444   EVT InsVT = Ins.getValueType();
5445   EVT EltVT = VecVT.getVectorElementType();
5446   unsigned InsNumElts = InsVT.getVectorNumElements();
5447   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5448   SDLoc SL(Op);
5449 
5450   for (unsigned I = 0; I != InsNumElts; ++I) {
5451     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5452                               DAG.getConstant(I, SL, MVT::i32));
5453     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5454                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5455   }
5456   return Vec;
5457 }
5458 
5459 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5460                                                  SelectionDAG &DAG) const {
5461   SDValue Vec = Op.getOperand(0);
5462   SDValue InsVal = Op.getOperand(1);
5463   SDValue Idx = Op.getOperand(2);
5464   EVT VecVT = Vec.getValueType();
5465   EVT EltVT = VecVT.getVectorElementType();
5466   unsigned VecSize = VecVT.getSizeInBits();
5467   unsigned EltSize = EltVT.getSizeInBits();
5468 
5469 
5470   assert(VecSize <= 64);
5471 
5472   unsigned NumElts = VecVT.getVectorNumElements();
5473   SDLoc SL(Op);
5474   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5475 
5476   if (NumElts == 4 && EltSize == 16 && KIdx) {
5477     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5478 
5479     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5480                                  DAG.getConstant(0, SL, MVT::i32));
5481     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5482                                  DAG.getConstant(1, SL, MVT::i32));
5483 
5484     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5485     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5486 
5487     unsigned Idx = KIdx->getZExtValue();
5488     bool InsertLo = Idx < 2;
5489     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5490       InsertLo ? LoVec : HiVec,
5491       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5492       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5493 
5494     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5495 
5496     SDValue Concat = InsertLo ?
5497       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5498       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5499 
5500     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5501   }
5502 
5503   if (isa<ConstantSDNode>(Idx))
5504     return SDValue();
5505 
5506   MVT IntVT = MVT::getIntegerVT(VecSize);
5507 
5508   // Avoid stack access for dynamic indexing.
5509   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5510 
5511   // Create a congruent vector with the target value in each element so that
5512   // the required element can be masked and ORed into the target vector.
5513   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5514                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5515 
5516   assert(isPowerOf2_32(EltSize));
5517   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5518 
5519   // Convert vector index to bit-index.
5520   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5521 
5522   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5523   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5524                             DAG.getConstant(0xffff, SL, IntVT),
5525                             ScaledIdx);
5526 
5527   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5528   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5529                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5530 
5531   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5532   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5533 }
5534 
5535 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5536                                                   SelectionDAG &DAG) const {
5537   SDLoc SL(Op);
5538 
5539   EVT ResultVT = Op.getValueType();
5540   SDValue Vec = Op.getOperand(0);
5541   SDValue Idx = Op.getOperand(1);
5542   EVT VecVT = Vec.getValueType();
5543   unsigned VecSize = VecVT.getSizeInBits();
5544   EVT EltVT = VecVT.getVectorElementType();
5545   assert(VecSize <= 64);
5546 
5547   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5548 
5549   // Make sure we do any optimizations that will make it easier to fold
5550   // source modifiers before obscuring it with bit operations.
5551 
5552   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5553   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5554     return Combined;
5555 
5556   unsigned EltSize = EltVT.getSizeInBits();
5557   assert(isPowerOf2_32(EltSize));
5558 
5559   MVT IntVT = MVT::getIntegerVT(VecSize);
5560   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5561 
5562   // Convert vector index to bit-index (* EltSize)
5563   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5564 
5565   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5566   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5567 
5568   if (ResultVT == MVT::f16) {
5569     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5570     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5571   }
5572 
5573   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5574 }
5575 
5576 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5577   assert(Elt % 2 == 0);
5578   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5579 }
5580 
5581 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5582                                               SelectionDAG &DAG) const {
5583   SDLoc SL(Op);
5584   EVT ResultVT = Op.getValueType();
5585   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5586 
5587   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5588   EVT EltVT = PackVT.getVectorElementType();
5589   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5590 
5591   // vector_shuffle <0,1,6,7> lhs, rhs
5592   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5593   //
5594   // vector_shuffle <6,7,2,3> lhs, rhs
5595   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5596   //
5597   // vector_shuffle <6,7,0,1> lhs, rhs
5598   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5599 
5600   // Avoid scalarizing when both halves are reading from consecutive elements.
5601   SmallVector<SDValue, 4> Pieces;
5602   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5603     if (elementPairIsContiguous(SVN->getMask(), I)) {
5604       const int Idx = SVN->getMaskElt(I);
5605       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5606       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5607       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5608                                     PackVT, SVN->getOperand(VecIdx),
5609                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5610       Pieces.push_back(SubVec);
5611     } else {
5612       const int Idx0 = SVN->getMaskElt(I);
5613       const int Idx1 = SVN->getMaskElt(I + 1);
5614       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5615       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5616       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5617       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5618 
5619       SDValue Vec0 = SVN->getOperand(VecIdx0);
5620       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5621                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5622 
5623       SDValue Vec1 = SVN->getOperand(VecIdx1);
5624       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5625                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5626       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5627     }
5628   }
5629 
5630   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5631 }
5632 
5633 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5634                                             SelectionDAG &DAG) const {
5635   SDLoc SL(Op);
5636   EVT VT = Op.getValueType();
5637 
5638   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5639     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5640 
5641     // Turn into pair of packed build_vectors.
5642     // TODO: Special case for constants that can be materialized with s_mov_b64.
5643     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5644                                     { Op.getOperand(0), Op.getOperand(1) });
5645     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5646                                     { Op.getOperand(2), Op.getOperand(3) });
5647 
5648     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5649     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5650 
5651     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5652     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5653   }
5654 
5655   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5656   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5657 
5658   SDValue Lo = Op.getOperand(0);
5659   SDValue Hi = Op.getOperand(1);
5660 
5661   // Avoid adding defined bits with the zero_extend.
5662   if (Hi.isUndef()) {
5663     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5664     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5665     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5666   }
5667 
5668   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5669   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5670 
5671   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5672                               DAG.getConstant(16, SL, MVT::i32));
5673   if (Lo.isUndef())
5674     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5675 
5676   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5677   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5678 
5679   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5680   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5681 }
5682 
5683 bool
5684 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5685   // We can fold offsets for anything that doesn't require a GOT relocation.
5686   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5687           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5688           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5689          !shouldEmitGOTReloc(GA->getGlobal());
5690 }
5691 
5692 static SDValue
5693 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5694                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5695                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5696   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5697   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5698   // lowered to the following code sequence:
5699   //
5700   // For constant address space:
5701   //   s_getpc_b64 s[0:1]
5702   //   s_add_u32 s0, s0, $symbol
5703   //   s_addc_u32 s1, s1, 0
5704   //
5705   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5706   //   a fixup or relocation is emitted to replace $symbol with a literal
5707   //   constant, which is a pc-relative offset from the encoding of the $symbol
5708   //   operand to the global variable.
5709   //
5710   // For global address space:
5711   //   s_getpc_b64 s[0:1]
5712   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5713   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5714   //
5715   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5716   //   fixups or relocations are emitted to replace $symbol@*@lo and
5717   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5718   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5719   //   operand to the global variable.
5720   //
5721   // What we want here is an offset from the value returned by s_getpc
5722   // (which is the address of the s_add_u32 instruction) to the global
5723   // variable, but since the encoding of $symbol starts 4 bytes after the start
5724   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5725   // small. This requires us to add 4 to the global variable offset in order to
5726   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5727   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5728   // instruction.
5729   SDValue PtrLo =
5730       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5731   SDValue PtrHi;
5732   if (GAFlags == SIInstrInfo::MO_NONE) {
5733     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5734   } else {
5735     PtrHi =
5736         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5737   }
5738   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5739 }
5740 
5741 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5742                                              SDValue Op,
5743                                              SelectionDAG &DAG) const {
5744   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5745   SDLoc DL(GSD);
5746   EVT PtrVT = Op.getValueType();
5747 
5748   const GlobalValue *GV = GSD->getGlobal();
5749   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5750        shouldUseLDSConstAddress(GV)) ||
5751       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5752       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5753     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5754         GV->hasExternalLinkage()) {
5755       Type *Ty = GV->getValueType();
5756       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5757       // zero-sized type in other languages to declare the dynamic shared
5758       // memory which size is not known at the compile time. They will be
5759       // allocated by the runtime and placed directly after the static
5760       // allocated ones. They all share the same offset.
5761       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5762         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5763         // Adjust alignment for that dynamic shared memory array.
5764         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5765         return SDValue(
5766             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5767       }
5768     }
5769     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5770   }
5771 
5772   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5773     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5774                                             SIInstrInfo::MO_ABS32_LO);
5775     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5776   }
5777 
5778   if (shouldEmitFixup(GV))
5779     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5780   else if (shouldEmitPCReloc(GV))
5781     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5782                                    SIInstrInfo::MO_REL32);
5783 
5784   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5785                                             SIInstrInfo::MO_GOTPCREL32);
5786 
5787   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5788   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5789   const DataLayout &DataLayout = DAG.getDataLayout();
5790   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5791   MachinePointerInfo PtrInfo
5792     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5793 
5794   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5795                      MachineMemOperand::MODereferenceable |
5796                          MachineMemOperand::MOInvariant);
5797 }
5798 
5799 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5800                                    const SDLoc &DL, SDValue V) const {
5801   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5802   // the destination register.
5803   //
5804   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5805   // so we will end up with redundant moves to m0.
5806   //
5807   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5808 
5809   // A Null SDValue creates a glue result.
5810   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5811                                   V, Chain);
5812   return SDValue(M0, 0);
5813 }
5814 
5815 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5816                                                  SDValue Op,
5817                                                  MVT VT,
5818                                                  unsigned Offset) const {
5819   SDLoc SL(Op);
5820   SDValue Param = lowerKernargMemParameter(
5821       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5822   // The local size values will have the hi 16-bits as zero.
5823   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5824                      DAG.getValueType(VT));
5825 }
5826 
5827 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5828                                         EVT VT) {
5829   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5830                                       "non-hsa intrinsic with hsa target",
5831                                       DL.getDebugLoc());
5832   DAG.getContext()->diagnose(BadIntrin);
5833   return DAG.getUNDEF(VT);
5834 }
5835 
5836 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5837                                          EVT VT) {
5838   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5839                                       "intrinsic not supported on subtarget",
5840                                       DL.getDebugLoc());
5841   DAG.getContext()->diagnose(BadIntrin);
5842   return DAG.getUNDEF(VT);
5843 }
5844 
5845 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5846                                     ArrayRef<SDValue> Elts) {
5847   assert(!Elts.empty());
5848   MVT Type;
5849   unsigned NumElts = Elts.size();
5850 
5851   if (NumElts <= 8) {
5852     Type = MVT::getVectorVT(MVT::f32, NumElts);
5853   } else {
5854     assert(Elts.size() <= 16);
5855     Type = MVT::v16f32;
5856     NumElts = 16;
5857   }
5858 
5859   SmallVector<SDValue, 16> VecElts(NumElts);
5860   for (unsigned i = 0; i < Elts.size(); ++i) {
5861     SDValue Elt = Elts[i];
5862     if (Elt.getValueType() != MVT::f32)
5863       Elt = DAG.getBitcast(MVT::f32, Elt);
5864     VecElts[i] = Elt;
5865   }
5866   for (unsigned i = Elts.size(); i < NumElts; ++i)
5867     VecElts[i] = DAG.getUNDEF(MVT::f32);
5868 
5869   if (NumElts == 1)
5870     return VecElts[0];
5871   return DAG.getBuildVector(Type, DL, VecElts);
5872 }
5873 
5874 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5875                               SDValue Src, int ExtraElts) {
5876   EVT SrcVT = Src.getValueType();
5877 
5878   SmallVector<SDValue, 8> Elts;
5879 
5880   if (SrcVT.isVector())
5881     DAG.ExtractVectorElements(Src, Elts);
5882   else
5883     Elts.push_back(Src);
5884 
5885   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5886   while (ExtraElts--)
5887     Elts.push_back(Undef);
5888 
5889   return DAG.getBuildVector(CastVT, DL, Elts);
5890 }
5891 
5892 // Re-construct the required return value for a image load intrinsic.
5893 // This is more complicated due to the optional use TexFailCtrl which means the required
5894 // return type is an aggregate
5895 static SDValue constructRetValue(SelectionDAG &DAG,
5896                                  MachineSDNode *Result,
5897                                  ArrayRef<EVT> ResultTypes,
5898                                  bool IsTexFail, bool Unpacked, bool IsD16,
5899                                  int DMaskPop, int NumVDataDwords,
5900                                  const SDLoc &DL) {
5901   // Determine the required return type. This is the same regardless of IsTexFail flag
5902   EVT ReqRetVT = ResultTypes[0];
5903   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5904   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5905     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5906 
5907   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5908     DMaskPop : (DMaskPop + 1) / 2;
5909 
5910   MVT DataDwordVT = NumDataDwords == 1 ?
5911     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5912 
5913   MVT MaskPopVT = MaskPopDwords == 1 ?
5914     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5915 
5916   SDValue Data(Result, 0);
5917   SDValue TexFail;
5918 
5919   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5920     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5921     if (MaskPopVT.isVector()) {
5922       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5923                          SDValue(Result, 0), ZeroIdx);
5924     } else {
5925       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5926                          SDValue(Result, 0), ZeroIdx);
5927     }
5928   }
5929 
5930   if (DataDwordVT.isVector())
5931     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5932                           NumDataDwords - MaskPopDwords);
5933 
5934   if (IsD16)
5935     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5936 
5937   EVT LegalReqRetVT = ReqRetVT;
5938   if (!ReqRetVT.isVector()) {
5939     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5940   } else {
5941     // We need to widen the return vector to a legal type
5942     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5943         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5944       LegalReqRetVT =
5945           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5946                            ReqRetVT.getVectorNumElements() + 1);
5947     }
5948   }
5949   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5950 
5951   if (IsTexFail) {
5952     TexFail =
5953         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5954                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5955 
5956     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5957   }
5958 
5959   if (Result->getNumValues() == 1)
5960     return Data;
5961 
5962   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5963 }
5964 
5965 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5966                          SDValue *LWE, bool &IsTexFail) {
5967   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5968 
5969   uint64_t Value = TexFailCtrlConst->getZExtValue();
5970   if (Value) {
5971     IsTexFail = true;
5972   }
5973 
5974   SDLoc DL(TexFailCtrlConst);
5975   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5976   Value &= ~(uint64_t)0x1;
5977   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5978   Value &= ~(uint64_t)0x2;
5979 
5980   return Value == 0;
5981 }
5982 
5983 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
5984                                       MVT PackVectorVT,
5985                                       SmallVectorImpl<SDValue> &PackedAddrs,
5986                                       unsigned DimIdx, unsigned EndIdx,
5987                                       unsigned NumGradients) {
5988   SDLoc DL(Op);
5989   for (unsigned I = DimIdx; I < EndIdx; I++) {
5990     SDValue Addr = Op.getOperand(I);
5991 
5992     // Gradients are packed with undef for each coordinate.
5993     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5994     // 1D: undef,dx/dh; undef,dx/dv
5995     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5996     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5997     if (((I + 1) >= EndIdx) ||
5998         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5999                                          I == DimIdx + NumGradients - 1))) {
6000       if (Addr.getValueType() != MVT::i16)
6001         Addr = DAG.getBitcast(MVT::i16, Addr);
6002       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6003     } else {
6004       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6005       I++;
6006     }
6007     Addr = DAG.getBitcast(MVT::f32, Addr);
6008     PackedAddrs.push_back(Addr);
6009   }
6010 }
6011 
6012 SDValue SITargetLowering::lowerImage(SDValue Op,
6013                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6014                                      SelectionDAG &DAG, bool WithChain) const {
6015   SDLoc DL(Op);
6016   MachineFunction &MF = DAG.getMachineFunction();
6017   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6018   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6019       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6020   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6021   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
6022       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
6023   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6024       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6025   unsigned IntrOpcode = Intr->BaseOpcode;
6026   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6027 
6028   SmallVector<EVT, 3> ResultTypes(Op->values());
6029   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6030   bool IsD16 = false;
6031   bool IsG16 = false;
6032   bool IsA16 = false;
6033   SDValue VData;
6034   int NumVDataDwords;
6035   bool AdjustRetType = false;
6036 
6037   // Offset of intrinsic arguments
6038   const unsigned ArgOffset = WithChain ? 2 : 1;
6039 
6040   unsigned DMask;
6041   unsigned DMaskLanes = 0;
6042 
6043   if (BaseOpcode->Atomic) {
6044     VData = Op.getOperand(2);
6045 
6046     bool Is64Bit = VData.getValueType() == MVT::i64;
6047     if (BaseOpcode->AtomicX2) {
6048       SDValue VData2 = Op.getOperand(3);
6049       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6050                                  {VData, VData2});
6051       if (Is64Bit)
6052         VData = DAG.getBitcast(MVT::v4i32, VData);
6053 
6054       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6055       DMask = Is64Bit ? 0xf : 0x3;
6056       NumVDataDwords = Is64Bit ? 4 : 2;
6057     } else {
6058       DMask = Is64Bit ? 0x3 : 0x1;
6059       NumVDataDwords = Is64Bit ? 2 : 1;
6060     }
6061   } else {
6062     auto *DMaskConst =
6063         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6064     DMask = DMaskConst->getZExtValue();
6065     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6066 
6067     if (BaseOpcode->Store) {
6068       VData = Op.getOperand(2);
6069 
6070       MVT StoreVT = VData.getSimpleValueType();
6071       if (StoreVT.getScalarType() == MVT::f16) {
6072         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6073           return Op; // D16 is unsupported for this instruction
6074 
6075         IsD16 = true;
6076         VData = handleD16VData(VData, DAG, true);
6077       }
6078 
6079       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6080     } else {
6081       // Work out the num dwords based on the dmask popcount and underlying type
6082       // and whether packing is supported.
6083       MVT LoadVT = ResultTypes[0].getSimpleVT();
6084       if (LoadVT.getScalarType() == MVT::f16) {
6085         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6086           return Op; // D16 is unsupported for this instruction
6087 
6088         IsD16 = true;
6089       }
6090 
6091       // Confirm that the return type is large enough for the dmask specified
6092       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6093           (!LoadVT.isVector() && DMaskLanes > 1))
6094           return Op;
6095 
6096       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6097       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6098       // instructions.
6099       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6100           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6101         NumVDataDwords = (DMaskLanes + 1) / 2;
6102       else
6103         NumVDataDwords = DMaskLanes;
6104 
6105       AdjustRetType = true;
6106     }
6107   }
6108 
6109   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6110   SmallVector<SDValue, 4> VAddrs;
6111 
6112   // Optimize _L to _LZ when _L is zero
6113   if (LZMappingInfo) {
6114     if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6115             Op.getOperand(ArgOffset + Intr->LodIndex))) {
6116       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6117         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
6118         VAddrEnd--;                      // remove 'lod'
6119       }
6120     }
6121   }
6122 
6123   // Optimize _mip away, when 'lod' is zero
6124   if (MIPMappingInfo) {
6125     if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6126             Op.getOperand(ArgOffset + Intr->MipIndex))) {
6127       if (ConstantLod->isNullValue()) {
6128         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
6129         VAddrEnd--;                           // remove 'mip'
6130       }
6131     }
6132   }
6133 
6134   // Push back extra arguments.
6135   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6136     VAddrs.push_back(Op.getOperand(ArgOffset + I));
6137 
6138   // Check for 16 bit addresses or derivatives and pack if true.
6139   MVT VAddrVT =
6140       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6141   MVT VAddrScalarVT = VAddrVT.getScalarType();
6142   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6143   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6144 
6145   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6146   VAddrScalarVT = VAddrVT.getScalarType();
6147   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6148   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6149 
6150   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6151     // 16 bit gradients are supported, but are tied to the A16 control
6152     // so both gradients and addresses must be 16 bit
6153     LLVM_DEBUG(
6154         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6155                   "require 16 bit args for both gradients and addresses");
6156     return Op;
6157   }
6158 
6159   if (IsA16) {
6160     if (!ST->hasA16()) {
6161       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6162                            "support 16 bit addresses\n");
6163       return Op;
6164     }
6165   }
6166 
6167   // We've dealt with incorrect input so we know that if IsA16, IsG16
6168   // are set then we have to compress/pack operands (either address,
6169   // gradient or both)
6170   // In the case where a16 and gradients are tied (no G16 support) then we
6171   // have already verified that both IsA16 and IsG16 are true
6172   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6173     // Activate g16
6174     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6175         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6176     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6177   }
6178 
6179   // Add gradients (packed or unpacked)
6180   if (IsG16) {
6181     // Pack the gradients
6182     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6183     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6184                               ArgOffset + Intr->GradientStart,
6185                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6186   } else {
6187     for (unsigned I = ArgOffset + Intr->GradientStart;
6188          I < ArgOffset + Intr->CoordStart; I++)
6189       VAddrs.push_back(Op.getOperand(I));
6190   }
6191 
6192   // Add addresses (packed or unpacked)
6193   if (IsA16) {
6194     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6195                               ArgOffset + Intr->CoordStart, VAddrEnd,
6196                               0 /* No gradients */);
6197   } else {
6198     // Add uncompressed address
6199     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6200       VAddrs.push_back(Op.getOperand(I));
6201   }
6202 
6203   // If the register allocator cannot place the address registers contiguously
6204   // without introducing moves, then using the non-sequential address encoding
6205   // is always preferable, since it saves VALU instructions and is usually a
6206   // wash in terms of code size or even better.
6207   //
6208   // However, we currently have no way of hinting to the register allocator that
6209   // MIMG addresses should be placed contiguously when it is possible to do so,
6210   // so force non-NSA for the common 2-address case as a heuristic.
6211   //
6212   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6213   // allocation when possible.
6214   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6215                 VAddrs.size() >= 3 &&
6216                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6217   SDValue VAddr;
6218   if (!UseNSA)
6219     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6220 
6221   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6222   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6223   SDValue Unorm;
6224   if (!BaseOpcode->Sampler) {
6225     Unorm = True;
6226   } else {
6227     auto UnormConst =
6228         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6229 
6230     Unorm = UnormConst->getZExtValue() ? True : False;
6231   }
6232 
6233   SDValue TFE;
6234   SDValue LWE;
6235   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6236   bool IsTexFail = false;
6237   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6238     return Op;
6239 
6240   if (IsTexFail) {
6241     if (!DMaskLanes) {
6242       // Expecting to get an error flag since TFC is on - and dmask is 0
6243       // Force dmask to be at least 1 otherwise the instruction will fail
6244       DMask = 0x1;
6245       DMaskLanes = 1;
6246       NumVDataDwords = 1;
6247     }
6248     NumVDataDwords += 1;
6249     AdjustRetType = true;
6250   }
6251 
6252   // Has something earlier tagged that the return type needs adjusting
6253   // This happens if the instruction is a load or has set TexFailCtrl flags
6254   if (AdjustRetType) {
6255     // NumVDataDwords reflects the true number of dwords required in the return type
6256     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6257       // This is a no-op load. This can be eliminated
6258       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6259       if (isa<MemSDNode>(Op))
6260         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6261       return Undef;
6262     }
6263 
6264     EVT NewVT = NumVDataDwords > 1 ?
6265                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6266                 : MVT::i32;
6267 
6268     ResultTypes[0] = NewVT;
6269     if (ResultTypes.size() == 3) {
6270       // Original result was aggregate type used for TexFailCtrl results
6271       // The actual instruction returns as a vector type which has now been
6272       // created. Remove the aggregate result.
6273       ResultTypes.erase(&ResultTypes[1]);
6274     }
6275   }
6276 
6277   unsigned CPol = cast<ConstantSDNode>(
6278       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6279   if (BaseOpcode->Atomic)
6280     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6281   if (CPol & ~AMDGPU::CPol::ALL)
6282     return Op;
6283 
6284   SmallVector<SDValue, 26> Ops;
6285   if (BaseOpcode->Store || BaseOpcode->Atomic)
6286     Ops.push_back(VData); // vdata
6287   if (UseNSA)
6288     append_range(Ops, VAddrs);
6289   else
6290     Ops.push_back(VAddr);
6291   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6292   if (BaseOpcode->Sampler)
6293     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6294   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6295   if (IsGFX10Plus)
6296     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6297   Ops.push_back(Unorm);
6298   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6299   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6300                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6301   if (IsGFX10Plus)
6302     Ops.push_back(IsA16 ? True : False);
6303   if (!Subtarget->hasGFX90AInsts()) {
6304     Ops.push_back(TFE); //tfe
6305   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6306     report_fatal_error("TFE is not supported on this GPU");
6307   }
6308   Ops.push_back(LWE); // lwe
6309   if (!IsGFX10Plus)
6310     Ops.push_back(DimInfo->DA ? True : False);
6311   if (BaseOpcode->HasD16)
6312     Ops.push_back(IsD16 ? True : False);
6313   if (isa<MemSDNode>(Op))
6314     Ops.push_back(Op.getOperand(0)); // chain
6315 
6316   int NumVAddrDwords =
6317       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6318   int Opcode = -1;
6319 
6320   if (IsGFX10Plus) {
6321     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6322                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6323                                           : AMDGPU::MIMGEncGfx10Default,
6324                                    NumVDataDwords, NumVAddrDwords);
6325   } else {
6326     if (Subtarget->hasGFX90AInsts()) {
6327       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6328                                      NumVDataDwords, NumVAddrDwords);
6329       if (Opcode == -1)
6330         report_fatal_error(
6331             "requested image instruction is not supported on this GPU");
6332     }
6333     if (Opcode == -1 &&
6334         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6335       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6336                                      NumVDataDwords, NumVAddrDwords);
6337     if (Opcode == -1)
6338       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6339                                      NumVDataDwords, NumVAddrDwords);
6340   }
6341   assert(Opcode != -1);
6342 
6343   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6344   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6345     MachineMemOperand *MemRef = MemOp->getMemOperand();
6346     DAG.setNodeMemRefs(NewNode, {MemRef});
6347   }
6348 
6349   if (BaseOpcode->AtomicX2) {
6350     SmallVector<SDValue, 1> Elt;
6351     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6352     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6353   }
6354   if (BaseOpcode->Store)
6355     return SDValue(NewNode, 0);
6356   return constructRetValue(DAG, NewNode,
6357                            OrigResultTypes, IsTexFail,
6358                            Subtarget->hasUnpackedD16VMem(), IsD16,
6359                            DMaskLanes, NumVDataDwords, DL);
6360 }
6361 
6362 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6363                                        SDValue Offset, SDValue CachePolicy,
6364                                        SelectionDAG &DAG) const {
6365   MachineFunction &MF = DAG.getMachineFunction();
6366 
6367   const DataLayout &DataLayout = DAG.getDataLayout();
6368   Align Alignment =
6369       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6370 
6371   MachineMemOperand *MMO = MF.getMachineMemOperand(
6372       MachinePointerInfo(),
6373       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6374           MachineMemOperand::MOInvariant,
6375       VT.getStoreSize(), Alignment);
6376 
6377   if (!Offset->isDivergent()) {
6378     SDValue Ops[] = {
6379         Rsrc,
6380         Offset, // Offset
6381         CachePolicy
6382     };
6383 
6384     // Widen vec3 load to vec4.
6385     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6386       EVT WidenedVT =
6387           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6388       auto WidenedOp = DAG.getMemIntrinsicNode(
6389           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6390           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6391       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6392                                    DAG.getVectorIdxConstant(0, DL));
6393       return Subvector;
6394     }
6395 
6396     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6397                                    DAG.getVTList(VT), Ops, VT, MMO);
6398   }
6399 
6400   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6401   // assume that the buffer is unswizzled.
6402   SmallVector<SDValue, 4> Loads;
6403   unsigned NumLoads = 1;
6404   MVT LoadVT = VT.getSimpleVT();
6405   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6406   assert((LoadVT.getScalarType() == MVT::i32 ||
6407           LoadVT.getScalarType() == MVT::f32));
6408 
6409   if (NumElts == 8 || NumElts == 16) {
6410     NumLoads = NumElts / 4;
6411     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6412   }
6413 
6414   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6415   SDValue Ops[] = {
6416       DAG.getEntryNode(),                               // Chain
6417       Rsrc,                                             // rsrc
6418       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6419       {},                                               // voffset
6420       {},                                               // soffset
6421       {},                                               // offset
6422       CachePolicy,                                      // cachepolicy
6423       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6424   };
6425 
6426   // Use the alignment to ensure that the required offsets will fit into the
6427   // immediate offsets.
6428   setBufferOffsets(Offset, DAG, &Ops[3],
6429                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6430 
6431   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6432   for (unsigned i = 0; i < NumLoads; ++i) {
6433     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6434     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6435                                         LoadVT, MMO, DAG));
6436   }
6437 
6438   if (NumElts == 8 || NumElts == 16)
6439     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6440 
6441   return Loads[0];
6442 }
6443 
6444 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6445                                                   SelectionDAG &DAG) const {
6446   MachineFunction &MF = DAG.getMachineFunction();
6447   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6448 
6449   EVT VT = Op.getValueType();
6450   SDLoc DL(Op);
6451   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6452 
6453   // TODO: Should this propagate fast-math-flags?
6454 
6455   switch (IntrinsicID) {
6456   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6457     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6458       return emitNonHSAIntrinsicError(DAG, DL, VT);
6459     return getPreloadedValue(DAG, *MFI, VT,
6460                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6461   }
6462   case Intrinsic::amdgcn_dispatch_ptr:
6463   case Intrinsic::amdgcn_queue_ptr: {
6464     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6465       DiagnosticInfoUnsupported BadIntrin(
6466           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6467           DL.getDebugLoc());
6468       DAG.getContext()->diagnose(BadIntrin);
6469       return DAG.getUNDEF(VT);
6470     }
6471 
6472     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6473       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6474     return getPreloadedValue(DAG, *MFI, VT, RegID);
6475   }
6476   case Intrinsic::amdgcn_implicitarg_ptr: {
6477     if (MFI->isEntryFunction())
6478       return getImplicitArgPtr(DAG, DL);
6479     return getPreloadedValue(DAG, *MFI, VT,
6480                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6481   }
6482   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6483     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6484       // This only makes sense to call in a kernel, so just lower to null.
6485       return DAG.getConstant(0, DL, VT);
6486     }
6487 
6488     return getPreloadedValue(DAG, *MFI, VT,
6489                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6490   }
6491   case Intrinsic::amdgcn_dispatch_id: {
6492     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6493   }
6494   case Intrinsic::amdgcn_rcp:
6495     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6496   case Intrinsic::amdgcn_rsq:
6497     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6498   case Intrinsic::amdgcn_rsq_legacy:
6499     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6500       return emitRemovedIntrinsicError(DAG, DL, VT);
6501     return SDValue();
6502   case Intrinsic::amdgcn_rcp_legacy:
6503     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6504       return emitRemovedIntrinsicError(DAG, DL, VT);
6505     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6506   case Intrinsic::amdgcn_rsq_clamp: {
6507     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6508       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6509 
6510     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6511     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6512     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6513 
6514     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6515     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6516                               DAG.getConstantFP(Max, DL, VT));
6517     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6518                        DAG.getConstantFP(Min, DL, VT));
6519   }
6520   case Intrinsic::r600_read_ngroups_x:
6521     if (Subtarget->isAmdHsaOS())
6522       return emitNonHSAIntrinsicError(DAG, DL, VT);
6523 
6524     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6525                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6526                                     false);
6527   case Intrinsic::r600_read_ngroups_y:
6528     if (Subtarget->isAmdHsaOS())
6529       return emitNonHSAIntrinsicError(DAG, DL, VT);
6530 
6531     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6532                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6533                                     false);
6534   case Intrinsic::r600_read_ngroups_z:
6535     if (Subtarget->isAmdHsaOS())
6536       return emitNonHSAIntrinsicError(DAG, DL, VT);
6537 
6538     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6539                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6540                                     false);
6541   case Intrinsic::r600_read_global_size_x:
6542     if (Subtarget->isAmdHsaOS())
6543       return emitNonHSAIntrinsicError(DAG, DL, VT);
6544 
6545     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6546                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6547                                     Align(4), false);
6548   case Intrinsic::r600_read_global_size_y:
6549     if (Subtarget->isAmdHsaOS())
6550       return emitNonHSAIntrinsicError(DAG, DL, VT);
6551 
6552     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6553                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6554                                     Align(4), false);
6555   case Intrinsic::r600_read_global_size_z:
6556     if (Subtarget->isAmdHsaOS())
6557       return emitNonHSAIntrinsicError(DAG, DL, VT);
6558 
6559     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6560                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6561                                     Align(4), false);
6562   case Intrinsic::r600_read_local_size_x:
6563     if (Subtarget->isAmdHsaOS())
6564       return emitNonHSAIntrinsicError(DAG, DL, VT);
6565 
6566     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6567                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6568   case Intrinsic::r600_read_local_size_y:
6569     if (Subtarget->isAmdHsaOS())
6570       return emitNonHSAIntrinsicError(DAG, DL, VT);
6571 
6572     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6573                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6574   case Intrinsic::r600_read_local_size_z:
6575     if (Subtarget->isAmdHsaOS())
6576       return emitNonHSAIntrinsicError(DAG, DL, VT);
6577 
6578     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6579                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6580   case Intrinsic::amdgcn_workgroup_id_x:
6581     return getPreloadedValue(DAG, *MFI, VT,
6582                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6583   case Intrinsic::amdgcn_workgroup_id_y:
6584     return getPreloadedValue(DAG, *MFI, VT,
6585                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6586   case Intrinsic::amdgcn_workgroup_id_z:
6587     return getPreloadedValue(DAG, *MFI, VT,
6588                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6589   case Intrinsic::amdgcn_workitem_id_x:
6590     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6591                           SDLoc(DAG.getEntryNode()),
6592                           MFI->getArgInfo().WorkItemIDX);
6593   case Intrinsic::amdgcn_workitem_id_y:
6594     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6595                           SDLoc(DAG.getEntryNode()),
6596                           MFI->getArgInfo().WorkItemIDY);
6597   case Intrinsic::amdgcn_workitem_id_z:
6598     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6599                           SDLoc(DAG.getEntryNode()),
6600                           MFI->getArgInfo().WorkItemIDZ);
6601   case Intrinsic::amdgcn_wavefrontsize:
6602     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6603                            SDLoc(Op), MVT::i32);
6604   case Intrinsic::amdgcn_s_buffer_load: {
6605     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6606     if (CPol & ~AMDGPU::CPol::ALL)
6607       return Op;
6608     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6609                         DAG);
6610   }
6611   case Intrinsic::amdgcn_fdiv_fast:
6612     return lowerFDIV_FAST(Op, DAG);
6613   case Intrinsic::amdgcn_sin:
6614     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6615 
6616   case Intrinsic::amdgcn_cos:
6617     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6618 
6619   case Intrinsic::amdgcn_mul_u24:
6620     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6621   case Intrinsic::amdgcn_mul_i24:
6622     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6623 
6624   case Intrinsic::amdgcn_log_clamp: {
6625     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6626       return SDValue();
6627 
6628     return emitRemovedIntrinsicError(DAG, DL, VT);
6629   }
6630   case Intrinsic::amdgcn_ldexp:
6631     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6632                        Op.getOperand(1), Op.getOperand(2));
6633 
6634   case Intrinsic::amdgcn_fract:
6635     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6636 
6637   case Intrinsic::amdgcn_class:
6638     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6639                        Op.getOperand(1), Op.getOperand(2));
6640   case Intrinsic::amdgcn_div_fmas:
6641     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6642                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6643                        Op.getOperand(4));
6644 
6645   case Intrinsic::amdgcn_div_fixup:
6646     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6647                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6648 
6649   case Intrinsic::amdgcn_div_scale: {
6650     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6651 
6652     // Translate to the operands expected by the machine instruction. The
6653     // first parameter must be the same as the first instruction.
6654     SDValue Numerator = Op.getOperand(1);
6655     SDValue Denominator = Op.getOperand(2);
6656 
6657     // Note this order is opposite of the machine instruction's operations,
6658     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6659     // intrinsic has the numerator as the first operand to match a normal
6660     // division operation.
6661 
6662     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6663 
6664     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6665                        Denominator, Numerator);
6666   }
6667   case Intrinsic::amdgcn_icmp: {
6668     // There is a Pat that handles this variant, so return it as-is.
6669     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6670         Op.getConstantOperandVal(2) == 0 &&
6671         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6672       return Op;
6673     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6674   }
6675   case Intrinsic::amdgcn_fcmp: {
6676     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6677   }
6678   case Intrinsic::amdgcn_ballot:
6679     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6680   case Intrinsic::amdgcn_fmed3:
6681     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6682                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6683   case Intrinsic::amdgcn_fdot2:
6684     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6685                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6686                        Op.getOperand(4));
6687   case Intrinsic::amdgcn_fmul_legacy:
6688     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6689                        Op.getOperand(1), Op.getOperand(2));
6690   case Intrinsic::amdgcn_sffbh:
6691     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6692   case Intrinsic::amdgcn_sbfe:
6693     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6694                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6695   case Intrinsic::amdgcn_ubfe:
6696     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6697                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6698   case Intrinsic::amdgcn_cvt_pkrtz:
6699   case Intrinsic::amdgcn_cvt_pknorm_i16:
6700   case Intrinsic::amdgcn_cvt_pknorm_u16:
6701   case Intrinsic::amdgcn_cvt_pk_i16:
6702   case Intrinsic::amdgcn_cvt_pk_u16: {
6703     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6704     EVT VT = Op.getValueType();
6705     unsigned Opcode;
6706 
6707     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6708       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6709     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6710       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6711     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6712       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6713     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6714       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6715     else
6716       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6717 
6718     if (isTypeLegal(VT))
6719       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6720 
6721     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6722                                Op.getOperand(1), Op.getOperand(2));
6723     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6724   }
6725   case Intrinsic::amdgcn_fmad_ftz:
6726     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6727                        Op.getOperand(2), Op.getOperand(3));
6728 
6729   case Intrinsic::amdgcn_if_break:
6730     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6731                                       Op->getOperand(1), Op->getOperand(2)), 0);
6732 
6733   case Intrinsic::amdgcn_groupstaticsize: {
6734     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6735     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6736       return Op;
6737 
6738     const Module *M = MF.getFunction().getParent();
6739     const GlobalValue *GV =
6740         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6741     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6742                                             SIInstrInfo::MO_ABS32_LO);
6743     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6744   }
6745   case Intrinsic::amdgcn_is_shared:
6746   case Intrinsic::amdgcn_is_private: {
6747     SDLoc SL(Op);
6748     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6749       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6750     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6751     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6752                                  Op.getOperand(1));
6753 
6754     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6755                                 DAG.getConstant(1, SL, MVT::i32));
6756     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6757   }
6758   case Intrinsic::amdgcn_alignbit:
6759     return DAG.getNode(ISD::FSHR, DL, VT,
6760                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6761   case Intrinsic::amdgcn_perm:
6762     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
6763                        Op.getOperand(2), Op.getOperand(3));
6764   case Intrinsic::amdgcn_reloc_constant: {
6765     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6766     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6767     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6768     auto RelocSymbol = cast<GlobalVariable>(
6769         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6770     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6771                                             SIInstrInfo::MO_ABS32_LO);
6772     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6773   }
6774   default:
6775     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6776             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6777       return lowerImage(Op, ImageDimIntr, DAG, false);
6778 
6779     return Op;
6780   }
6781 }
6782 
6783 /// Update \p MMO based on the offset inputs to an intrinsic.
6784 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
6785                             SDValue SOffset, SDValue Offset,
6786                             SDValue VIndex = SDValue()) {
6787   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6788       !isa<ConstantSDNode>(Offset)) {
6789     // The combined offset is not known to be constant, so we cannot represent
6790     // it in the MMO. Give up.
6791     MMO->setValue((Value *)nullptr);
6792     return;
6793   }
6794 
6795   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
6796                  !cast<ConstantSDNode>(VIndex)->isNullValue())) {
6797     // The strided index component of the address is not known to be zero, so we
6798     // cannot represent it in the MMO. Give up.
6799     MMO->setValue((Value *)nullptr);
6800     return;
6801   }
6802 
6803   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
6804                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
6805                  cast<ConstantSDNode>(Offset)->getSExtValue());
6806 }
6807 
6808 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6809                                                      SelectionDAG &DAG,
6810                                                      unsigned NewOpcode) const {
6811   SDLoc DL(Op);
6812 
6813   SDValue VData = Op.getOperand(2);
6814   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6815   SDValue Ops[] = {
6816     Op.getOperand(0), // Chain
6817     VData,            // vdata
6818     Op.getOperand(3), // rsrc
6819     DAG.getConstant(0, DL, MVT::i32), // vindex
6820     Offsets.first,    // voffset
6821     Op.getOperand(5), // soffset
6822     Offsets.second,   // offset
6823     Op.getOperand(6), // cachepolicy
6824     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6825   };
6826 
6827   auto *M = cast<MemSDNode>(Op);
6828   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
6829 
6830   EVT MemVT = VData.getValueType();
6831   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6832                                  M->getMemOperand());
6833 }
6834 
6835 // Return a value to use for the idxen operand by examining the vindex operand.
6836 static unsigned getIdxEn(SDValue VIndex) {
6837   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
6838     // No need to set idxen if vindex is known to be zero.
6839     return VIndexC->getZExtValue() != 0;
6840   return 1;
6841 }
6842 
6843 SDValue
6844 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6845                                                 unsigned NewOpcode) const {
6846   SDLoc DL(Op);
6847 
6848   SDValue VData = Op.getOperand(2);
6849   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6850   SDValue Ops[] = {
6851     Op.getOperand(0), // Chain
6852     VData,            // vdata
6853     Op.getOperand(3), // rsrc
6854     Op.getOperand(4), // vindex
6855     Offsets.first,    // voffset
6856     Op.getOperand(6), // soffset
6857     Offsets.second,   // offset
6858     Op.getOperand(7), // cachepolicy
6859     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6860   };
6861 
6862   auto *M = cast<MemSDNode>(Op);
6863   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
6864 
6865   EVT MemVT = VData.getValueType();
6866   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6867                                  M->getMemOperand());
6868 }
6869 
6870 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6871                                                  SelectionDAG &DAG) const {
6872   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6873   SDLoc DL(Op);
6874 
6875   switch (IntrID) {
6876   case Intrinsic::amdgcn_ds_ordered_add:
6877   case Intrinsic::amdgcn_ds_ordered_swap: {
6878     MemSDNode *M = cast<MemSDNode>(Op);
6879     SDValue Chain = M->getOperand(0);
6880     SDValue M0 = M->getOperand(2);
6881     SDValue Value = M->getOperand(3);
6882     unsigned IndexOperand = M->getConstantOperandVal(7);
6883     unsigned WaveRelease = M->getConstantOperandVal(8);
6884     unsigned WaveDone = M->getConstantOperandVal(9);
6885 
6886     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6887     IndexOperand &= ~0x3f;
6888     unsigned CountDw = 0;
6889 
6890     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6891       CountDw = (IndexOperand >> 24) & 0xf;
6892       IndexOperand &= ~(0xf << 24);
6893 
6894       if (CountDw < 1 || CountDw > 4) {
6895         report_fatal_error(
6896             "ds_ordered_count: dword count must be between 1 and 4");
6897       }
6898     }
6899 
6900     if (IndexOperand)
6901       report_fatal_error("ds_ordered_count: bad index operand");
6902 
6903     if (WaveDone && !WaveRelease)
6904       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6905 
6906     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6907     unsigned ShaderType =
6908         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6909     unsigned Offset0 = OrderedCountIndex << 2;
6910     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6911                        (Instruction << 4);
6912 
6913     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6914       Offset1 |= (CountDw - 1) << 6;
6915 
6916     unsigned Offset = Offset0 | (Offset1 << 8);
6917 
6918     SDValue Ops[] = {
6919       Chain,
6920       Value,
6921       DAG.getTargetConstant(Offset, DL, MVT::i16),
6922       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6923     };
6924     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6925                                    M->getVTList(), Ops, M->getMemoryVT(),
6926                                    M->getMemOperand());
6927   }
6928   case Intrinsic::amdgcn_ds_fadd: {
6929     MemSDNode *M = cast<MemSDNode>(Op);
6930     unsigned Opc;
6931     switch (IntrID) {
6932     case Intrinsic::amdgcn_ds_fadd:
6933       Opc = ISD::ATOMIC_LOAD_FADD;
6934       break;
6935     }
6936 
6937     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6938                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6939                          M->getMemOperand());
6940   }
6941   case Intrinsic::amdgcn_atomic_inc:
6942   case Intrinsic::amdgcn_atomic_dec:
6943   case Intrinsic::amdgcn_ds_fmin:
6944   case Intrinsic::amdgcn_ds_fmax: {
6945     MemSDNode *M = cast<MemSDNode>(Op);
6946     unsigned Opc;
6947     switch (IntrID) {
6948     case Intrinsic::amdgcn_atomic_inc:
6949       Opc = AMDGPUISD::ATOMIC_INC;
6950       break;
6951     case Intrinsic::amdgcn_atomic_dec:
6952       Opc = AMDGPUISD::ATOMIC_DEC;
6953       break;
6954     case Intrinsic::amdgcn_ds_fmin:
6955       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6956       break;
6957     case Intrinsic::amdgcn_ds_fmax:
6958       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6959       break;
6960     default:
6961       llvm_unreachable("Unknown intrinsic!");
6962     }
6963     SDValue Ops[] = {
6964       M->getOperand(0), // Chain
6965       M->getOperand(2), // Ptr
6966       M->getOperand(3)  // Value
6967     };
6968 
6969     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6970                                    M->getMemoryVT(), M->getMemOperand());
6971   }
6972   case Intrinsic::amdgcn_buffer_load:
6973   case Intrinsic::amdgcn_buffer_load_format: {
6974     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6975     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6976     unsigned IdxEn = getIdxEn(Op.getOperand(3));
6977     SDValue Ops[] = {
6978       Op.getOperand(0), // Chain
6979       Op.getOperand(2), // rsrc
6980       Op.getOperand(3), // vindex
6981       SDValue(),        // voffset -- will be set by setBufferOffsets
6982       SDValue(),        // soffset -- will be set by setBufferOffsets
6983       SDValue(),        // offset -- will be set by setBufferOffsets
6984       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6985       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6986     };
6987     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6988 
6989     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6990         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6991 
6992     EVT VT = Op.getValueType();
6993     EVT IntVT = VT.changeTypeToInteger();
6994     auto *M = cast<MemSDNode>(Op);
6995     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
6996     EVT LoadVT = Op.getValueType();
6997 
6998     if (LoadVT.getScalarType() == MVT::f16)
6999       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7000                                  M, DAG, Ops);
7001 
7002     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7003     if (LoadVT.getScalarType() == MVT::i8 ||
7004         LoadVT.getScalarType() == MVT::i16)
7005       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7006 
7007     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7008                                M->getMemOperand(), DAG);
7009   }
7010   case Intrinsic::amdgcn_raw_buffer_load:
7011   case Intrinsic::amdgcn_raw_buffer_load_format: {
7012     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7013 
7014     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7015     SDValue Ops[] = {
7016       Op.getOperand(0), // Chain
7017       Op.getOperand(2), // rsrc
7018       DAG.getConstant(0, DL, MVT::i32), // vindex
7019       Offsets.first,    // voffset
7020       Op.getOperand(4), // soffset
7021       Offsets.second,   // offset
7022       Op.getOperand(5), // cachepolicy, swizzled buffer
7023       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7024     };
7025 
7026     auto *M = cast<MemSDNode>(Op);
7027     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7028     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7029   }
7030   case Intrinsic::amdgcn_struct_buffer_load:
7031   case Intrinsic::amdgcn_struct_buffer_load_format: {
7032     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7033 
7034     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7035     SDValue Ops[] = {
7036       Op.getOperand(0), // Chain
7037       Op.getOperand(2), // rsrc
7038       Op.getOperand(3), // vindex
7039       Offsets.first,    // voffset
7040       Op.getOperand(5), // soffset
7041       Offsets.second,   // offset
7042       Op.getOperand(6), // cachepolicy, swizzled buffer
7043       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7044     };
7045 
7046     auto *M = cast<MemSDNode>(Op);
7047     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7048     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7049   }
7050   case Intrinsic::amdgcn_tbuffer_load: {
7051     MemSDNode *M = cast<MemSDNode>(Op);
7052     EVT LoadVT = Op.getValueType();
7053 
7054     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7055     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7056     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7057     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7058     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7059     SDValue Ops[] = {
7060       Op.getOperand(0),  // Chain
7061       Op.getOperand(2),  // rsrc
7062       Op.getOperand(3),  // vindex
7063       Op.getOperand(4),  // voffset
7064       Op.getOperand(5),  // soffset
7065       Op.getOperand(6),  // offset
7066       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7067       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7068       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7069     };
7070 
7071     if (LoadVT.getScalarType() == MVT::f16)
7072       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7073                                  M, DAG, Ops);
7074     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7075                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7076                                DAG);
7077   }
7078   case Intrinsic::amdgcn_raw_tbuffer_load: {
7079     MemSDNode *M = cast<MemSDNode>(Op);
7080     EVT LoadVT = Op.getValueType();
7081     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7082 
7083     SDValue Ops[] = {
7084       Op.getOperand(0),  // Chain
7085       Op.getOperand(2),  // rsrc
7086       DAG.getConstant(0, DL, MVT::i32), // vindex
7087       Offsets.first,     // voffset
7088       Op.getOperand(4),  // soffset
7089       Offsets.second,    // offset
7090       Op.getOperand(5),  // format
7091       Op.getOperand(6),  // cachepolicy, swizzled buffer
7092       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7093     };
7094 
7095     if (LoadVT.getScalarType() == MVT::f16)
7096       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7097                                  M, DAG, Ops);
7098     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7099                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7100                                DAG);
7101   }
7102   case Intrinsic::amdgcn_struct_tbuffer_load: {
7103     MemSDNode *M = cast<MemSDNode>(Op);
7104     EVT LoadVT = Op.getValueType();
7105     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7106 
7107     SDValue Ops[] = {
7108       Op.getOperand(0),  // Chain
7109       Op.getOperand(2),  // rsrc
7110       Op.getOperand(3),  // vindex
7111       Offsets.first,     // voffset
7112       Op.getOperand(5),  // soffset
7113       Offsets.second,    // offset
7114       Op.getOperand(6),  // format
7115       Op.getOperand(7),  // cachepolicy, swizzled buffer
7116       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7117     };
7118 
7119     if (LoadVT.getScalarType() == MVT::f16)
7120       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7121                                  M, DAG, Ops);
7122     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7123                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7124                                DAG);
7125   }
7126   case Intrinsic::amdgcn_buffer_atomic_swap:
7127   case Intrinsic::amdgcn_buffer_atomic_add:
7128   case Intrinsic::amdgcn_buffer_atomic_sub:
7129   case Intrinsic::amdgcn_buffer_atomic_csub:
7130   case Intrinsic::amdgcn_buffer_atomic_smin:
7131   case Intrinsic::amdgcn_buffer_atomic_umin:
7132   case Intrinsic::amdgcn_buffer_atomic_smax:
7133   case Intrinsic::amdgcn_buffer_atomic_umax:
7134   case Intrinsic::amdgcn_buffer_atomic_and:
7135   case Intrinsic::amdgcn_buffer_atomic_or:
7136   case Intrinsic::amdgcn_buffer_atomic_xor:
7137   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7138     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7139     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7140     SDValue Ops[] = {
7141       Op.getOperand(0), // Chain
7142       Op.getOperand(2), // vdata
7143       Op.getOperand(3), // rsrc
7144       Op.getOperand(4), // vindex
7145       SDValue(),        // voffset -- will be set by setBufferOffsets
7146       SDValue(),        // soffset -- will be set by setBufferOffsets
7147       SDValue(),        // offset -- will be set by setBufferOffsets
7148       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7149       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7150     };
7151     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7152 
7153     EVT VT = Op.getValueType();
7154 
7155     auto *M = cast<MemSDNode>(Op);
7156     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7157     unsigned Opcode = 0;
7158 
7159     switch (IntrID) {
7160     case Intrinsic::amdgcn_buffer_atomic_swap:
7161       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7162       break;
7163     case Intrinsic::amdgcn_buffer_atomic_add:
7164       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7165       break;
7166     case Intrinsic::amdgcn_buffer_atomic_sub:
7167       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7168       break;
7169     case Intrinsic::amdgcn_buffer_atomic_csub:
7170       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7171       break;
7172     case Intrinsic::amdgcn_buffer_atomic_smin:
7173       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7174       break;
7175     case Intrinsic::amdgcn_buffer_atomic_umin:
7176       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7177       break;
7178     case Intrinsic::amdgcn_buffer_atomic_smax:
7179       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7180       break;
7181     case Intrinsic::amdgcn_buffer_atomic_umax:
7182       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7183       break;
7184     case Intrinsic::amdgcn_buffer_atomic_and:
7185       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7186       break;
7187     case Intrinsic::amdgcn_buffer_atomic_or:
7188       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7189       break;
7190     case Intrinsic::amdgcn_buffer_atomic_xor:
7191       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7192       break;
7193     case Intrinsic::amdgcn_buffer_atomic_fadd:
7194       if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7195         DiagnosticInfoUnsupported
7196           NoFpRet(DAG.getMachineFunction().getFunction(),
7197                   "return versions of fp atomics not supported",
7198                   DL.getDebugLoc(), DS_Error);
7199         DAG.getContext()->diagnose(NoFpRet);
7200         return SDValue();
7201       }
7202       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7203       break;
7204     default:
7205       llvm_unreachable("unhandled atomic opcode");
7206     }
7207 
7208     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7209                                    M->getMemOperand());
7210   }
7211   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7212     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7213   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7214     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7215   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7216     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7217   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7218     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7219   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7220     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7221   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7222     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7223   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7224     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7225   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7226     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7227   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7228     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7229   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7230     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7231   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7232     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7233   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7234     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7235   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7236     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7237   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7238     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7239   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7240     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7241   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7242     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7243   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7244     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7245   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7246     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7247   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7248     return lowerStructBufferAtomicIntrin(Op, DAG,
7249                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7250   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7251     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7252   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7253     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7254   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7255     return lowerStructBufferAtomicIntrin(Op, DAG,
7256                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7257   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7258     return lowerStructBufferAtomicIntrin(Op, DAG,
7259                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7260   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7261     return lowerStructBufferAtomicIntrin(Op, DAG,
7262                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7263   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7264     return lowerStructBufferAtomicIntrin(Op, DAG,
7265                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7266   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7267     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7268   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7269     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7270   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7271     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7272   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7273     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7274   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7275     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7276 
7277   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7278     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7279     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7280     SDValue Ops[] = {
7281       Op.getOperand(0), // Chain
7282       Op.getOperand(2), // src
7283       Op.getOperand(3), // cmp
7284       Op.getOperand(4), // rsrc
7285       Op.getOperand(5), // vindex
7286       SDValue(),        // voffset -- will be set by setBufferOffsets
7287       SDValue(),        // soffset -- will be set by setBufferOffsets
7288       SDValue(),        // offset -- will be set by setBufferOffsets
7289       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7290       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7291     };
7292     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7293 
7294     EVT VT = Op.getValueType();
7295     auto *M = cast<MemSDNode>(Op);
7296     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7297 
7298     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7299                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7300   }
7301   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7302     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7303     SDValue Ops[] = {
7304       Op.getOperand(0), // Chain
7305       Op.getOperand(2), // src
7306       Op.getOperand(3), // cmp
7307       Op.getOperand(4), // rsrc
7308       DAG.getConstant(0, DL, MVT::i32), // vindex
7309       Offsets.first,    // voffset
7310       Op.getOperand(6), // soffset
7311       Offsets.second,   // offset
7312       Op.getOperand(7), // cachepolicy
7313       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7314     };
7315     EVT VT = Op.getValueType();
7316     auto *M = cast<MemSDNode>(Op);
7317     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7318 
7319     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7320                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7321   }
7322   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7323     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7324     SDValue Ops[] = {
7325       Op.getOperand(0), // Chain
7326       Op.getOperand(2), // src
7327       Op.getOperand(3), // cmp
7328       Op.getOperand(4), // rsrc
7329       Op.getOperand(5), // vindex
7330       Offsets.first,    // voffset
7331       Op.getOperand(7), // soffset
7332       Offsets.second,   // offset
7333       Op.getOperand(8), // cachepolicy
7334       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7335     };
7336     EVT VT = Op.getValueType();
7337     auto *M = cast<MemSDNode>(Op);
7338     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7339 
7340     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7341                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7342   }
7343   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7344     SDLoc DL(Op);
7345     MemSDNode *M = cast<MemSDNode>(Op);
7346     SDValue NodePtr = M->getOperand(2);
7347     SDValue RayExtent = M->getOperand(3);
7348     SDValue RayOrigin = M->getOperand(4);
7349     SDValue RayDir = M->getOperand(5);
7350     SDValue RayInvDir = M->getOperand(6);
7351     SDValue TDescr = M->getOperand(7);
7352 
7353     assert(NodePtr.getValueType() == MVT::i32 ||
7354            NodePtr.getValueType() == MVT::i64);
7355     assert(RayDir.getValueType() == MVT::v4f16 ||
7356            RayDir.getValueType() == MVT::v4f32);
7357 
7358     if (!Subtarget->hasGFX10_AEncoding()) {
7359       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7360       return SDValue();
7361     }
7362 
7363     bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7364     bool Is64 = NodePtr.getValueType() == MVT::i64;
7365     unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7366                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7367                             : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7368                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7369 
7370     SmallVector<SDValue, 16> Ops;
7371 
7372     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7373       SmallVector<SDValue, 3> Lanes;
7374       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7375       if (Lanes[0].getValueSizeInBits() == 32) {
7376         for (unsigned I = 0; I < 3; ++I)
7377           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7378       } else {
7379         if (IsAligned) {
7380           Ops.push_back(
7381             DAG.getBitcast(MVT::i32,
7382                            DAG.getBuildVector(MVT::v2f16, DL,
7383                                               { Lanes[0], Lanes[1] })));
7384           Ops.push_back(Lanes[2]);
7385         } else {
7386           SDValue Elt0 = Ops.pop_back_val();
7387           Ops.push_back(
7388             DAG.getBitcast(MVT::i32,
7389                            DAG.getBuildVector(MVT::v2f16, DL,
7390                                               { Elt0, Lanes[0] })));
7391           Ops.push_back(
7392             DAG.getBitcast(MVT::i32,
7393                            DAG.getBuildVector(MVT::v2f16, DL,
7394                                               { Lanes[1], Lanes[2] })));
7395         }
7396       }
7397     };
7398 
7399     if (Is64)
7400       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7401     else
7402       Ops.push_back(NodePtr);
7403 
7404     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7405     packLanes(RayOrigin, true);
7406     packLanes(RayDir, true);
7407     packLanes(RayInvDir, false);
7408     Ops.push_back(TDescr);
7409     if (IsA16)
7410       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7411     Ops.push_back(M->getChain());
7412 
7413     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7414     MachineMemOperand *MemRef = M->getMemOperand();
7415     DAG.setNodeMemRefs(NewNode, {MemRef});
7416     return SDValue(NewNode, 0);
7417   }
7418   case Intrinsic::amdgcn_global_atomic_fadd:
7419     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7420       DiagnosticInfoUnsupported
7421         NoFpRet(DAG.getMachineFunction().getFunction(),
7422                 "return versions of fp atomics not supported",
7423                 DL.getDebugLoc(), DS_Error);
7424       DAG.getContext()->diagnose(NoFpRet);
7425       return SDValue();
7426     }
7427     LLVM_FALLTHROUGH;
7428   case Intrinsic::amdgcn_global_atomic_fmin:
7429   case Intrinsic::amdgcn_global_atomic_fmax:
7430   case Intrinsic::amdgcn_flat_atomic_fadd:
7431   case Intrinsic::amdgcn_flat_atomic_fmin:
7432   case Intrinsic::amdgcn_flat_atomic_fmax: {
7433     MemSDNode *M = cast<MemSDNode>(Op);
7434     SDValue Ops[] = {
7435       M->getOperand(0), // Chain
7436       M->getOperand(2), // Ptr
7437       M->getOperand(3)  // Value
7438     };
7439     unsigned Opcode = 0;
7440     switch (IntrID) {
7441     case Intrinsic::amdgcn_global_atomic_fadd:
7442     case Intrinsic::amdgcn_flat_atomic_fadd: {
7443       EVT VT = Op.getOperand(3).getValueType();
7444       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7445                            DAG.getVTList(VT, MVT::Other), Ops,
7446                            M->getMemOperand());
7447     }
7448     case Intrinsic::amdgcn_global_atomic_fmin:
7449     case Intrinsic::amdgcn_flat_atomic_fmin: {
7450       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7451       break;
7452     }
7453     case Intrinsic::amdgcn_global_atomic_fmax:
7454     case Intrinsic::amdgcn_flat_atomic_fmax: {
7455       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7456       break;
7457     }
7458     default:
7459       llvm_unreachable("unhandled atomic opcode");
7460     }
7461     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7462                                    M->getVTList(), Ops, M->getMemoryVT(),
7463                                    M->getMemOperand());
7464   }
7465   default:
7466 
7467     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7468             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7469       return lowerImage(Op, ImageDimIntr, DAG, true);
7470 
7471     return SDValue();
7472   }
7473 }
7474 
7475 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7476 // dwordx4 if on SI.
7477 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7478                                               SDVTList VTList,
7479                                               ArrayRef<SDValue> Ops, EVT MemVT,
7480                                               MachineMemOperand *MMO,
7481                                               SelectionDAG &DAG) const {
7482   EVT VT = VTList.VTs[0];
7483   EVT WidenedVT = VT;
7484   EVT WidenedMemVT = MemVT;
7485   if (!Subtarget->hasDwordx3LoadStores() &&
7486       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7487     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7488                                  WidenedVT.getVectorElementType(), 4);
7489     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7490                                     WidenedMemVT.getVectorElementType(), 4);
7491     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7492   }
7493 
7494   assert(VTList.NumVTs == 2);
7495   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7496 
7497   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7498                                        WidenedMemVT, MMO);
7499   if (WidenedVT != VT) {
7500     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7501                                DAG.getVectorIdxConstant(0, DL));
7502     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7503   }
7504   return NewOp;
7505 }
7506 
7507 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7508                                          bool ImageStore) const {
7509   EVT StoreVT = VData.getValueType();
7510 
7511   // No change for f16 and legal vector D16 types.
7512   if (!StoreVT.isVector())
7513     return VData;
7514 
7515   SDLoc DL(VData);
7516   unsigned NumElements = StoreVT.getVectorNumElements();
7517 
7518   if (Subtarget->hasUnpackedD16VMem()) {
7519     // We need to unpack the packed data to store.
7520     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7521     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7522 
7523     EVT EquivStoreVT =
7524         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7525     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7526     return DAG.UnrollVectorOp(ZExt.getNode());
7527   }
7528 
7529   // The sq block of gfx8.1 does not estimate register use correctly for d16
7530   // image store instructions. The data operand is computed as if it were not a
7531   // d16 image instruction.
7532   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7533     // Bitcast to i16
7534     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7535     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7536 
7537     // Decompose into scalars
7538     SmallVector<SDValue, 4> Elts;
7539     DAG.ExtractVectorElements(IntVData, Elts);
7540 
7541     // Group pairs of i16 into v2i16 and bitcast to i32
7542     SmallVector<SDValue, 4> PackedElts;
7543     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7544       SDValue Pair =
7545           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7546       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7547       PackedElts.push_back(IntPair);
7548     }
7549     if ((NumElements % 2) == 1) {
7550       // Handle v3i16
7551       unsigned I = Elts.size() / 2;
7552       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7553                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7554       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7555       PackedElts.push_back(IntPair);
7556     }
7557 
7558     // Pad using UNDEF
7559     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7560 
7561     // Build final vector
7562     EVT VecVT =
7563         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7564     return DAG.getBuildVector(VecVT, DL, PackedElts);
7565   }
7566 
7567   if (NumElements == 3) {
7568     EVT IntStoreVT =
7569         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7570     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7571 
7572     EVT WidenedStoreVT = EVT::getVectorVT(
7573         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7574     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7575                                          WidenedStoreVT.getStoreSizeInBits());
7576     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7577     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7578   }
7579 
7580   assert(isTypeLegal(StoreVT));
7581   return VData;
7582 }
7583 
7584 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7585                                               SelectionDAG &DAG) const {
7586   SDLoc DL(Op);
7587   SDValue Chain = Op.getOperand(0);
7588   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7589   MachineFunction &MF = DAG.getMachineFunction();
7590 
7591   switch (IntrinsicID) {
7592   case Intrinsic::amdgcn_exp_compr: {
7593     SDValue Src0 = Op.getOperand(4);
7594     SDValue Src1 = Op.getOperand(5);
7595     // Hack around illegal type on SI by directly selecting it.
7596     if (isTypeLegal(Src0.getValueType()))
7597       return SDValue();
7598 
7599     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7600     SDValue Undef = DAG.getUNDEF(MVT::f32);
7601     const SDValue Ops[] = {
7602       Op.getOperand(2), // tgt
7603       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7604       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7605       Undef, // src2
7606       Undef, // src3
7607       Op.getOperand(7), // vm
7608       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7609       Op.getOperand(3), // en
7610       Op.getOperand(0) // Chain
7611     };
7612 
7613     unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7614     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7615   }
7616   case Intrinsic::amdgcn_s_barrier: {
7617     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7618       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7619       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7620       if (WGSize <= ST.getWavefrontSize())
7621         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7622                                           Op.getOperand(0)), 0);
7623     }
7624     return SDValue();
7625   };
7626   case Intrinsic::amdgcn_tbuffer_store: {
7627     SDValue VData = Op.getOperand(2);
7628     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7629     if (IsD16)
7630       VData = handleD16VData(VData, DAG);
7631     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7632     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7633     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7634     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7635     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7636     SDValue Ops[] = {
7637       Chain,
7638       VData,             // vdata
7639       Op.getOperand(3),  // rsrc
7640       Op.getOperand(4),  // vindex
7641       Op.getOperand(5),  // voffset
7642       Op.getOperand(6),  // soffset
7643       Op.getOperand(7),  // offset
7644       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7645       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7646       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7647     };
7648     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7649                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7650     MemSDNode *M = cast<MemSDNode>(Op);
7651     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7652                                    M->getMemoryVT(), M->getMemOperand());
7653   }
7654 
7655   case Intrinsic::amdgcn_struct_tbuffer_store: {
7656     SDValue VData = Op.getOperand(2);
7657     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7658     if (IsD16)
7659       VData = handleD16VData(VData, DAG);
7660     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7661     SDValue Ops[] = {
7662       Chain,
7663       VData,             // vdata
7664       Op.getOperand(3),  // rsrc
7665       Op.getOperand(4),  // vindex
7666       Offsets.first,     // voffset
7667       Op.getOperand(6),  // soffset
7668       Offsets.second,    // offset
7669       Op.getOperand(7),  // format
7670       Op.getOperand(8),  // cachepolicy, swizzled buffer
7671       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7672     };
7673     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7674                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7675     MemSDNode *M = cast<MemSDNode>(Op);
7676     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7677                                    M->getMemoryVT(), M->getMemOperand());
7678   }
7679 
7680   case Intrinsic::amdgcn_raw_tbuffer_store: {
7681     SDValue VData = Op.getOperand(2);
7682     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7683     if (IsD16)
7684       VData = handleD16VData(VData, DAG);
7685     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7686     SDValue Ops[] = {
7687       Chain,
7688       VData,             // vdata
7689       Op.getOperand(3),  // rsrc
7690       DAG.getConstant(0, DL, MVT::i32), // vindex
7691       Offsets.first,     // voffset
7692       Op.getOperand(5),  // soffset
7693       Offsets.second,    // offset
7694       Op.getOperand(6),  // format
7695       Op.getOperand(7),  // cachepolicy, swizzled buffer
7696       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7697     };
7698     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7699                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7700     MemSDNode *M = cast<MemSDNode>(Op);
7701     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7702                                    M->getMemoryVT(), M->getMemOperand());
7703   }
7704 
7705   case Intrinsic::amdgcn_buffer_store:
7706   case Intrinsic::amdgcn_buffer_store_format: {
7707     SDValue VData = Op.getOperand(2);
7708     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7709     if (IsD16)
7710       VData = handleD16VData(VData, DAG);
7711     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7712     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7713     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7714     SDValue Ops[] = {
7715       Chain,
7716       VData,
7717       Op.getOperand(3), // rsrc
7718       Op.getOperand(4), // vindex
7719       SDValue(), // voffset -- will be set by setBufferOffsets
7720       SDValue(), // soffset -- will be set by setBufferOffsets
7721       SDValue(), // offset -- will be set by setBufferOffsets
7722       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7723       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7724     };
7725     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7726 
7727     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7728                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7729     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7730     MemSDNode *M = cast<MemSDNode>(Op);
7731     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7732 
7733     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7734     EVT VDataType = VData.getValueType().getScalarType();
7735     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7736       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7737 
7738     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7739                                    M->getMemoryVT(), M->getMemOperand());
7740   }
7741 
7742   case Intrinsic::amdgcn_raw_buffer_store:
7743   case Intrinsic::amdgcn_raw_buffer_store_format: {
7744     const bool IsFormat =
7745         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7746 
7747     SDValue VData = Op.getOperand(2);
7748     EVT VDataVT = VData.getValueType();
7749     EVT EltType = VDataVT.getScalarType();
7750     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7751     if (IsD16) {
7752       VData = handleD16VData(VData, DAG);
7753       VDataVT = VData.getValueType();
7754     }
7755 
7756     if (!isTypeLegal(VDataVT)) {
7757       VData =
7758           DAG.getNode(ISD::BITCAST, DL,
7759                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7760     }
7761 
7762     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7763     SDValue Ops[] = {
7764       Chain,
7765       VData,
7766       Op.getOperand(3), // rsrc
7767       DAG.getConstant(0, DL, MVT::i32), // vindex
7768       Offsets.first,    // voffset
7769       Op.getOperand(5), // soffset
7770       Offsets.second,   // offset
7771       Op.getOperand(6), // cachepolicy, swizzled buffer
7772       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7773     };
7774     unsigned Opc =
7775         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7776     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7777     MemSDNode *M = cast<MemSDNode>(Op);
7778     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7779 
7780     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7781     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7782       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7783 
7784     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7785                                    M->getMemoryVT(), M->getMemOperand());
7786   }
7787 
7788   case Intrinsic::amdgcn_struct_buffer_store:
7789   case Intrinsic::amdgcn_struct_buffer_store_format: {
7790     const bool IsFormat =
7791         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7792 
7793     SDValue VData = Op.getOperand(2);
7794     EVT VDataVT = VData.getValueType();
7795     EVT EltType = VDataVT.getScalarType();
7796     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7797 
7798     if (IsD16) {
7799       VData = handleD16VData(VData, DAG);
7800       VDataVT = VData.getValueType();
7801     }
7802 
7803     if (!isTypeLegal(VDataVT)) {
7804       VData =
7805           DAG.getNode(ISD::BITCAST, DL,
7806                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7807     }
7808 
7809     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7810     SDValue Ops[] = {
7811       Chain,
7812       VData,
7813       Op.getOperand(3), // rsrc
7814       Op.getOperand(4), // vindex
7815       Offsets.first,    // voffset
7816       Op.getOperand(6), // soffset
7817       Offsets.second,   // offset
7818       Op.getOperand(7), // cachepolicy, swizzled buffer
7819       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7820     };
7821     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7822                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7823     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7824     MemSDNode *M = cast<MemSDNode>(Op);
7825     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7826 
7827     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7828     EVT VDataType = VData.getValueType().getScalarType();
7829     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7830       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7831 
7832     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7833                                    M->getMemoryVT(), M->getMemOperand());
7834   }
7835   case Intrinsic::amdgcn_end_cf:
7836     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7837                                       Op->getOperand(2), Chain), 0);
7838 
7839   default: {
7840     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7841             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7842       return lowerImage(Op, ImageDimIntr, DAG, true);
7843 
7844     return Op;
7845   }
7846   }
7847 }
7848 
7849 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7850 // offset (the offset that is included in bounds checking and swizzling, to be
7851 // split between the instruction's voffset and immoffset fields) and soffset
7852 // (the offset that is excluded from bounds checking and swizzling, to go in
7853 // the instruction's soffset field).  This function takes the first kind of
7854 // offset and figures out how to split it between voffset and immoffset.
7855 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7856     SDValue Offset, SelectionDAG &DAG) const {
7857   SDLoc DL(Offset);
7858   const unsigned MaxImm = 4095;
7859   SDValue N0 = Offset;
7860   ConstantSDNode *C1 = nullptr;
7861 
7862   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7863     N0 = SDValue();
7864   else if (DAG.isBaseWithConstantOffset(N0)) {
7865     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7866     N0 = N0.getOperand(0);
7867   }
7868 
7869   if (C1) {
7870     unsigned ImmOffset = C1->getZExtValue();
7871     // If the immediate value is too big for the immoffset field, put the value
7872     // and -4096 into the immoffset field so that the value that is copied/added
7873     // for the voffset field is a multiple of 4096, and it stands more chance
7874     // of being CSEd with the copy/add for another similar load/store.
7875     // However, do not do that rounding down to a multiple of 4096 if that is a
7876     // negative number, as it appears to be illegal to have a negative offset
7877     // in the vgpr, even if adding the immediate offset makes it positive.
7878     unsigned Overflow = ImmOffset & ~MaxImm;
7879     ImmOffset -= Overflow;
7880     if ((int32_t)Overflow < 0) {
7881       Overflow += ImmOffset;
7882       ImmOffset = 0;
7883     }
7884     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7885     if (Overflow) {
7886       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7887       if (!N0)
7888         N0 = OverflowVal;
7889       else {
7890         SDValue Ops[] = { N0, OverflowVal };
7891         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7892       }
7893     }
7894   }
7895   if (!N0)
7896     N0 = DAG.getConstant(0, DL, MVT::i32);
7897   if (!C1)
7898     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7899   return {N0, SDValue(C1, 0)};
7900 }
7901 
7902 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7903 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7904 // pointed to by Offsets.
7905 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7906                                         SelectionDAG &DAG, SDValue *Offsets,
7907                                         Align Alignment) const {
7908   SDLoc DL(CombinedOffset);
7909   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7910     uint32_t Imm = C->getZExtValue();
7911     uint32_t SOffset, ImmOffset;
7912     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7913                                  Alignment)) {
7914       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7915       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7916       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7917       return;
7918     }
7919   }
7920   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7921     SDValue N0 = CombinedOffset.getOperand(0);
7922     SDValue N1 = CombinedOffset.getOperand(1);
7923     uint32_t SOffset, ImmOffset;
7924     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7925     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7926                                                 Subtarget, Alignment)) {
7927       Offsets[0] = N0;
7928       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7929       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7930       return;
7931     }
7932   }
7933   Offsets[0] = CombinedOffset;
7934   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7935   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7936 }
7937 
7938 // Handle 8 bit and 16 bit buffer loads
7939 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7940                                                      EVT LoadVT, SDLoc DL,
7941                                                      ArrayRef<SDValue> Ops,
7942                                                      MemSDNode *M) const {
7943   EVT IntVT = LoadVT.changeTypeToInteger();
7944   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7945          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7946 
7947   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7948   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7949                                                Ops, IntVT,
7950                                                M->getMemOperand());
7951   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7952   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7953 
7954   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7955 }
7956 
7957 // Handle 8 bit and 16 bit buffer stores
7958 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7959                                                       EVT VDataType, SDLoc DL,
7960                                                       SDValue Ops[],
7961                                                       MemSDNode *M) const {
7962   if (VDataType == MVT::f16)
7963     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7964 
7965   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7966   Ops[1] = BufferStoreExt;
7967   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7968                                  AMDGPUISD::BUFFER_STORE_SHORT;
7969   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7970   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7971                                      M->getMemOperand());
7972 }
7973 
7974 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7975                                  ISD::LoadExtType ExtType, SDValue Op,
7976                                  const SDLoc &SL, EVT VT) {
7977   if (VT.bitsLT(Op.getValueType()))
7978     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7979 
7980   switch (ExtType) {
7981   case ISD::SEXTLOAD:
7982     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7983   case ISD::ZEXTLOAD:
7984     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7985   case ISD::EXTLOAD:
7986     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7987   case ISD::NON_EXTLOAD:
7988     return Op;
7989   }
7990 
7991   llvm_unreachable("invalid ext type");
7992 }
7993 
7994 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7995   SelectionDAG &DAG = DCI.DAG;
7996   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7997     return SDValue();
7998 
7999   // FIXME: Constant loads should all be marked invariant.
8000   unsigned AS = Ld->getAddressSpace();
8001   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8002       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8003       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8004     return SDValue();
8005 
8006   // Don't do this early, since it may interfere with adjacent load merging for
8007   // illegal types. We can avoid losing alignment information for exotic types
8008   // pre-legalize.
8009   EVT MemVT = Ld->getMemoryVT();
8010   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8011       MemVT.getSizeInBits() >= 32)
8012     return SDValue();
8013 
8014   SDLoc SL(Ld);
8015 
8016   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8017          "unexpected vector extload");
8018 
8019   // TODO: Drop only high part of range.
8020   SDValue Ptr = Ld->getBasePtr();
8021   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8022                                 MVT::i32, SL, Ld->getChain(), Ptr,
8023                                 Ld->getOffset(),
8024                                 Ld->getPointerInfo(), MVT::i32,
8025                                 Ld->getAlignment(),
8026                                 Ld->getMemOperand()->getFlags(),
8027                                 Ld->getAAInfo(),
8028                                 nullptr); // Drop ranges
8029 
8030   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8031   if (MemVT.isFloatingPoint()) {
8032     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8033            "unexpected fp extload");
8034     TruncVT = MemVT.changeTypeToInteger();
8035   }
8036 
8037   SDValue Cvt = NewLoad;
8038   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8039     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8040                       DAG.getValueType(TruncVT));
8041   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8042              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8043     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8044   } else {
8045     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8046   }
8047 
8048   EVT VT = Ld->getValueType(0);
8049   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8050 
8051   DCI.AddToWorklist(Cvt.getNode());
8052 
8053   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8054   // the appropriate extension from the 32-bit load.
8055   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8056   DCI.AddToWorklist(Cvt.getNode());
8057 
8058   // Handle conversion back to floating point if necessary.
8059   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8060 
8061   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8062 }
8063 
8064 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8065   SDLoc DL(Op);
8066   LoadSDNode *Load = cast<LoadSDNode>(Op);
8067   ISD::LoadExtType ExtType = Load->getExtensionType();
8068   EVT MemVT = Load->getMemoryVT();
8069 
8070   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8071     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8072       return SDValue();
8073 
8074     // FIXME: Copied from PPC
8075     // First, load into 32 bits, then truncate to 1 bit.
8076 
8077     SDValue Chain = Load->getChain();
8078     SDValue BasePtr = Load->getBasePtr();
8079     MachineMemOperand *MMO = Load->getMemOperand();
8080 
8081     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8082 
8083     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8084                                    BasePtr, RealMemVT, MMO);
8085 
8086     if (!MemVT.isVector()) {
8087       SDValue Ops[] = {
8088         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8089         NewLD.getValue(1)
8090       };
8091 
8092       return DAG.getMergeValues(Ops, DL);
8093     }
8094 
8095     SmallVector<SDValue, 3> Elts;
8096     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8097       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8098                                 DAG.getConstant(I, DL, MVT::i32));
8099 
8100       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8101     }
8102 
8103     SDValue Ops[] = {
8104       DAG.getBuildVector(MemVT, DL, Elts),
8105       NewLD.getValue(1)
8106     };
8107 
8108     return DAG.getMergeValues(Ops, DL);
8109   }
8110 
8111   if (!MemVT.isVector())
8112     return SDValue();
8113 
8114   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8115          "Custom lowering for non-i32 vectors hasn't been implemented.");
8116 
8117   unsigned Alignment = Load->getAlignment();
8118   unsigned AS = Load->getAddressSpace();
8119   if (Subtarget->hasLDSMisalignedBug() &&
8120       AS == AMDGPUAS::FLAT_ADDRESS &&
8121       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8122     return SplitVectorLoad(Op, DAG);
8123   }
8124 
8125   MachineFunction &MF = DAG.getMachineFunction();
8126   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8127   // If there is a possibilty that flat instruction access scratch memory
8128   // then we need to use the same legalization rules we use for private.
8129   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8130       !Subtarget->hasMultiDwordFlatScratchAddressing())
8131     AS = MFI->hasFlatScratchInit() ?
8132          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8133 
8134   unsigned NumElements = MemVT.getVectorNumElements();
8135 
8136   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8137       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8138     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8139       if (MemVT.isPow2VectorType())
8140         return SDValue();
8141       return WidenOrSplitVectorLoad(Op, DAG);
8142     }
8143     // Non-uniform loads will be selected to MUBUF instructions, so they
8144     // have the same legalization requirements as global and private
8145     // loads.
8146     //
8147   }
8148 
8149   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8150       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8151       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8152     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8153         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8154         Alignment >= 4 && NumElements < 32) {
8155       if (MemVT.isPow2VectorType())
8156         return SDValue();
8157       return WidenOrSplitVectorLoad(Op, DAG);
8158     }
8159     // Non-uniform loads will be selected to MUBUF instructions, so they
8160     // have the same legalization requirements as global and private
8161     // loads.
8162     //
8163   }
8164   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8165       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8166       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8167       AS == AMDGPUAS::FLAT_ADDRESS) {
8168     if (NumElements > 4)
8169       return SplitVectorLoad(Op, DAG);
8170     // v3 loads not supported on SI.
8171     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8172       return WidenOrSplitVectorLoad(Op, DAG);
8173 
8174     // v3 and v4 loads are supported for private and global memory.
8175     return SDValue();
8176   }
8177   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8178     // Depending on the setting of the private_element_size field in the
8179     // resource descriptor, we can only make private accesses up to a certain
8180     // size.
8181     switch (Subtarget->getMaxPrivateElementSize()) {
8182     case 4: {
8183       SDValue Ops[2];
8184       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8185       return DAG.getMergeValues(Ops, DL);
8186     }
8187     case 8:
8188       if (NumElements > 2)
8189         return SplitVectorLoad(Op, DAG);
8190       return SDValue();
8191     case 16:
8192       // Same as global/flat
8193       if (NumElements > 4)
8194         return SplitVectorLoad(Op, DAG);
8195       // v3 loads not supported on SI.
8196       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8197         return WidenOrSplitVectorLoad(Op, DAG);
8198 
8199       return SDValue();
8200     default:
8201       llvm_unreachable("unsupported private_element_size");
8202     }
8203   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8204     // Use ds_read_b128 or ds_read_b96 when possible.
8205     if (Subtarget->hasDS96AndDS128() &&
8206         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8207          MemVT.getStoreSize() == 12) &&
8208         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8209                                            Load->getAlign()))
8210       return SDValue();
8211 
8212     if (NumElements > 2)
8213       return SplitVectorLoad(Op, DAG);
8214 
8215     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8216     // address is negative, then the instruction is incorrectly treated as
8217     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8218     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8219     // load later in the SILoadStoreOptimizer.
8220     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8221         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8222         Load->getAlignment() < 8) {
8223       return SplitVectorLoad(Op, DAG);
8224     }
8225   }
8226 
8227   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8228                                       MemVT, *Load->getMemOperand())) {
8229     SDValue Ops[2];
8230     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8231     return DAG.getMergeValues(Ops, DL);
8232   }
8233 
8234   return SDValue();
8235 }
8236 
8237 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8238   EVT VT = Op.getValueType();
8239   assert(VT.getSizeInBits() == 64);
8240 
8241   SDLoc DL(Op);
8242   SDValue Cond = Op.getOperand(0);
8243 
8244   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8245   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8246 
8247   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8248   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8249 
8250   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8251   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8252 
8253   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8254 
8255   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8256   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8257 
8258   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8259 
8260   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8261   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8262 }
8263 
8264 // Catch division cases where we can use shortcuts with rcp and rsq
8265 // instructions.
8266 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8267                                               SelectionDAG &DAG) const {
8268   SDLoc SL(Op);
8269   SDValue LHS = Op.getOperand(0);
8270   SDValue RHS = Op.getOperand(1);
8271   EVT VT = Op.getValueType();
8272   const SDNodeFlags Flags = Op->getFlags();
8273 
8274   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8275 
8276   // Without !fpmath accuracy information, we can't do more because we don't
8277   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8278   if (!AllowInaccurateRcp)
8279     return SDValue();
8280 
8281   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8282     if (CLHS->isExactlyValue(1.0)) {
8283       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8284       // the CI documentation has a worst case error of 1 ulp.
8285       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8286       // use it as long as we aren't trying to use denormals.
8287       //
8288       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8289 
8290       // 1.0 / sqrt(x) -> rsq(x)
8291 
8292       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8293       // error seems really high at 2^29 ULP.
8294       if (RHS.getOpcode() == ISD::FSQRT)
8295         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8296 
8297       // 1.0 / x -> rcp(x)
8298       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8299     }
8300 
8301     // Same as for 1.0, but expand the sign out of the constant.
8302     if (CLHS->isExactlyValue(-1.0)) {
8303       // -1.0 / x -> rcp (fneg x)
8304       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8305       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8306     }
8307   }
8308 
8309   // Turn into multiply by the reciprocal.
8310   // x / y -> x * (1.0 / y)
8311   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8312   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8313 }
8314 
8315 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8316                                                 SelectionDAG &DAG) const {
8317   SDLoc SL(Op);
8318   SDValue X = Op.getOperand(0);
8319   SDValue Y = Op.getOperand(1);
8320   EVT VT = Op.getValueType();
8321   const SDNodeFlags Flags = Op->getFlags();
8322 
8323   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8324                             DAG.getTarget().Options.UnsafeFPMath;
8325   if (!AllowInaccurateDiv)
8326     return SDValue();
8327 
8328   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8329   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8330 
8331   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8332   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8333 
8334   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8335   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8336   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8337   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8338   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8339   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8340 }
8341 
8342 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8343                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8344                           SDNodeFlags Flags) {
8345   if (GlueChain->getNumValues() <= 1) {
8346     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8347   }
8348 
8349   assert(GlueChain->getNumValues() == 3);
8350 
8351   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8352   switch (Opcode) {
8353   default: llvm_unreachable("no chain equivalent for opcode");
8354   case ISD::FMUL:
8355     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8356     break;
8357   }
8358 
8359   return DAG.getNode(Opcode, SL, VTList,
8360                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8361                      Flags);
8362 }
8363 
8364 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8365                            EVT VT, SDValue A, SDValue B, SDValue C,
8366                            SDValue GlueChain, SDNodeFlags Flags) {
8367   if (GlueChain->getNumValues() <= 1) {
8368     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8369   }
8370 
8371   assert(GlueChain->getNumValues() == 3);
8372 
8373   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8374   switch (Opcode) {
8375   default: llvm_unreachable("no chain equivalent for opcode");
8376   case ISD::FMA:
8377     Opcode = AMDGPUISD::FMA_W_CHAIN;
8378     break;
8379   }
8380 
8381   return DAG.getNode(Opcode, SL, VTList,
8382                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8383                      Flags);
8384 }
8385 
8386 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8387   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8388     return FastLowered;
8389 
8390   SDLoc SL(Op);
8391   SDValue Src0 = Op.getOperand(0);
8392   SDValue Src1 = Op.getOperand(1);
8393 
8394   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8395   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8396 
8397   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8398   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8399 
8400   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8401   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8402 
8403   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8404 }
8405 
8406 // Faster 2.5 ULP division that does not support denormals.
8407 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8408   SDLoc SL(Op);
8409   SDValue LHS = Op.getOperand(1);
8410   SDValue RHS = Op.getOperand(2);
8411 
8412   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8413 
8414   const APFloat K0Val(BitsToFloat(0x6f800000));
8415   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8416 
8417   const APFloat K1Val(BitsToFloat(0x2f800000));
8418   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8419 
8420   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8421 
8422   EVT SetCCVT =
8423     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8424 
8425   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8426 
8427   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8428 
8429   // TODO: Should this propagate fast-math-flags?
8430   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8431 
8432   // rcp does not support denormals.
8433   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8434 
8435   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8436 
8437   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8438 }
8439 
8440 // Returns immediate value for setting the F32 denorm mode when using the
8441 // S_DENORM_MODE instruction.
8442 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8443                                     const SDLoc &SL, const GCNSubtarget *ST) {
8444   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8445   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8446                                 ? FP_DENORM_FLUSH_NONE
8447                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8448 
8449   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8450   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8451 }
8452 
8453 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8454   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8455     return FastLowered;
8456 
8457   // The selection matcher assumes anything with a chain selecting to a
8458   // mayRaiseFPException machine instruction. Since we're introducing a chain
8459   // here, we need to explicitly report nofpexcept for the regular fdiv
8460   // lowering.
8461   SDNodeFlags Flags = Op->getFlags();
8462   Flags.setNoFPExcept(true);
8463 
8464   SDLoc SL(Op);
8465   SDValue LHS = Op.getOperand(0);
8466   SDValue RHS = Op.getOperand(1);
8467 
8468   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8469 
8470   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8471 
8472   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8473                                           {RHS, RHS, LHS}, Flags);
8474   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8475                                         {LHS, RHS, LHS}, Flags);
8476 
8477   // Denominator is scaled to not be denormal, so using rcp is ok.
8478   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8479                                   DenominatorScaled, Flags);
8480   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8481                                      DenominatorScaled, Flags);
8482 
8483   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8484                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8485                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8486   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8487 
8488   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8489 
8490   if (!HasFP32Denormals) {
8491     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8492     // lowering. The chain dependence is insufficient, and we need glue. We do
8493     // not need the glue variants in a strictfp function.
8494 
8495     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8496 
8497     SDNode *EnableDenorm;
8498     if (Subtarget->hasDenormModeInst()) {
8499       const SDValue EnableDenormValue =
8500           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8501 
8502       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8503                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8504     } else {
8505       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8506                                                         SL, MVT::i32);
8507       EnableDenorm =
8508           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8509                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8510     }
8511 
8512     SDValue Ops[3] = {
8513       NegDivScale0,
8514       SDValue(EnableDenorm, 0),
8515       SDValue(EnableDenorm, 1)
8516     };
8517 
8518     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8519   }
8520 
8521   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8522                              ApproxRcp, One, NegDivScale0, Flags);
8523 
8524   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8525                              ApproxRcp, Fma0, Flags);
8526 
8527   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8528                            Fma1, Fma1, Flags);
8529 
8530   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8531                              NumeratorScaled, Mul, Flags);
8532 
8533   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8534                              Fma2, Fma1, Mul, Fma2, Flags);
8535 
8536   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8537                              NumeratorScaled, Fma3, Flags);
8538 
8539   if (!HasFP32Denormals) {
8540     SDNode *DisableDenorm;
8541     if (Subtarget->hasDenormModeInst()) {
8542       const SDValue DisableDenormValue =
8543           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8544 
8545       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8546                                   Fma4.getValue(1), DisableDenormValue,
8547                                   Fma4.getValue(2)).getNode();
8548     } else {
8549       const SDValue DisableDenormValue =
8550           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8551 
8552       DisableDenorm = DAG.getMachineNode(
8553           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8554           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8555     }
8556 
8557     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8558                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8559     DAG.setRoot(OutputChain);
8560   }
8561 
8562   SDValue Scale = NumeratorScaled.getValue(1);
8563   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8564                              {Fma4, Fma1, Fma3, Scale}, Flags);
8565 
8566   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8567 }
8568 
8569 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8570   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8571     return FastLowered;
8572 
8573   SDLoc SL(Op);
8574   SDValue X = Op.getOperand(0);
8575   SDValue Y = Op.getOperand(1);
8576 
8577   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8578 
8579   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8580 
8581   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8582 
8583   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8584 
8585   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8586 
8587   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8588 
8589   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8590 
8591   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8592 
8593   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8594 
8595   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8596   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8597 
8598   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8599                              NegDivScale0, Mul, DivScale1);
8600 
8601   SDValue Scale;
8602 
8603   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8604     // Workaround a hardware bug on SI where the condition output from div_scale
8605     // is not usable.
8606 
8607     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8608 
8609     // Figure out if the scale to use for div_fmas.
8610     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8611     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8612     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8613     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8614 
8615     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8616     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8617 
8618     SDValue Scale0Hi
8619       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8620     SDValue Scale1Hi
8621       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8622 
8623     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8624     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8625     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8626   } else {
8627     Scale = DivScale1.getValue(1);
8628   }
8629 
8630   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8631                              Fma4, Fma3, Mul, Scale);
8632 
8633   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8634 }
8635 
8636 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8637   EVT VT = Op.getValueType();
8638 
8639   if (VT == MVT::f32)
8640     return LowerFDIV32(Op, DAG);
8641 
8642   if (VT == MVT::f64)
8643     return LowerFDIV64(Op, DAG);
8644 
8645   if (VT == MVT::f16)
8646     return LowerFDIV16(Op, DAG);
8647 
8648   llvm_unreachable("Unexpected type for fdiv");
8649 }
8650 
8651 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8652   SDLoc DL(Op);
8653   StoreSDNode *Store = cast<StoreSDNode>(Op);
8654   EVT VT = Store->getMemoryVT();
8655 
8656   if (VT == MVT::i1) {
8657     return DAG.getTruncStore(Store->getChain(), DL,
8658        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8659        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8660   }
8661 
8662   assert(VT.isVector() &&
8663          Store->getValue().getValueType().getScalarType() == MVT::i32);
8664 
8665   unsigned AS = Store->getAddressSpace();
8666   if (Subtarget->hasLDSMisalignedBug() &&
8667       AS == AMDGPUAS::FLAT_ADDRESS &&
8668       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8669     return SplitVectorStore(Op, DAG);
8670   }
8671 
8672   MachineFunction &MF = DAG.getMachineFunction();
8673   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8674   // If there is a possibilty that flat instruction access scratch memory
8675   // then we need to use the same legalization rules we use for private.
8676   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8677       !Subtarget->hasMultiDwordFlatScratchAddressing())
8678     AS = MFI->hasFlatScratchInit() ?
8679          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8680 
8681   unsigned NumElements = VT.getVectorNumElements();
8682   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8683       AS == AMDGPUAS::FLAT_ADDRESS) {
8684     if (NumElements > 4)
8685       return SplitVectorStore(Op, DAG);
8686     // v3 stores not supported on SI.
8687     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8688       return SplitVectorStore(Op, DAG);
8689 
8690     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8691                                         VT, *Store->getMemOperand()))
8692       return expandUnalignedStore(Store, DAG);
8693 
8694     return SDValue();
8695   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8696     switch (Subtarget->getMaxPrivateElementSize()) {
8697     case 4:
8698       return scalarizeVectorStore(Store, DAG);
8699     case 8:
8700       if (NumElements > 2)
8701         return SplitVectorStore(Op, DAG);
8702       return SDValue();
8703     case 16:
8704       if (NumElements > 4 ||
8705           (NumElements == 3 && !Subtarget->enableFlatScratch()))
8706         return SplitVectorStore(Op, DAG);
8707       return SDValue();
8708     default:
8709       llvm_unreachable("unsupported private_element_size");
8710     }
8711   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8712     // Use ds_write_b128 or ds_write_b96 when possible.
8713     if (Subtarget->hasDS96AndDS128() &&
8714         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8715          (VT.getStoreSize() == 12)) &&
8716         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8717                                            Store->getAlign()))
8718       return SDValue();
8719 
8720     if (NumElements > 2)
8721       return SplitVectorStore(Op, DAG);
8722 
8723     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8724     // address is negative, then the instruction is incorrectly treated as
8725     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8726     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8727     // store later in the SILoadStoreOptimizer.
8728     if (!Subtarget->hasUsableDSOffset() &&
8729         NumElements == 2 && VT.getStoreSize() == 8 &&
8730         Store->getAlignment() < 8) {
8731       return SplitVectorStore(Op, DAG);
8732     }
8733 
8734     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8735                                         VT, *Store->getMemOperand())) {
8736       if (VT.isVector())
8737         return SplitVectorStore(Op, DAG);
8738       return expandUnalignedStore(Store, DAG);
8739     }
8740 
8741     return SDValue();
8742   } else {
8743     llvm_unreachable("unhandled address space");
8744   }
8745 }
8746 
8747 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8748   SDLoc DL(Op);
8749   EVT VT = Op.getValueType();
8750   SDValue Arg = Op.getOperand(0);
8751   SDValue TrigVal;
8752 
8753   // Propagate fast-math flags so that the multiply we introduce can be folded
8754   // if Arg is already the result of a multiply by constant.
8755   auto Flags = Op->getFlags();
8756 
8757   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8758 
8759   if (Subtarget->hasTrigReducedRange()) {
8760     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8761     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8762   } else {
8763     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8764   }
8765 
8766   switch (Op.getOpcode()) {
8767   case ISD::FCOS:
8768     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8769   case ISD::FSIN:
8770     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8771   default:
8772     llvm_unreachable("Wrong trig opcode");
8773   }
8774 }
8775 
8776 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8777   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8778   assert(AtomicNode->isCompareAndSwap());
8779   unsigned AS = AtomicNode->getAddressSpace();
8780 
8781   // No custom lowering required for local address space
8782   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8783     return Op;
8784 
8785   // Non-local address space requires custom lowering for atomic compare
8786   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8787   SDLoc DL(Op);
8788   SDValue ChainIn = Op.getOperand(0);
8789   SDValue Addr = Op.getOperand(1);
8790   SDValue Old = Op.getOperand(2);
8791   SDValue New = Op.getOperand(3);
8792   EVT VT = Op.getValueType();
8793   MVT SimpleVT = VT.getSimpleVT();
8794   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8795 
8796   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8797   SDValue Ops[] = { ChainIn, Addr, NewOld };
8798 
8799   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8800                                  Ops, VT, AtomicNode->getMemOperand());
8801 }
8802 
8803 //===----------------------------------------------------------------------===//
8804 // Custom DAG optimizations
8805 //===----------------------------------------------------------------------===//
8806 
8807 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8808                                                      DAGCombinerInfo &DCI) const {
8809   EVT VT = N->getValueType(0);
8810   EVT ScalarVT = VT.getScalarType();
8811   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8812     return SDValue();
8813 
8814   SelectionDAG &DAG = DCI.DAG;
8815   SDLoc DL(N);
8816 
8817   SDValue Src = N->getOperand(0);
8818   EVT SrcVT = Src.getValueType();
8819 
8820   // TODO: We could try to match extracting the higher bytes, which would be
8821   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8822   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8823   // about in practice.
8824   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8825     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8826       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8827       DCI.AddToWorklist(Cvt.getNode());
8828 
8829       // For the f16 case, fold to a cast to f32 and then cast back to f16.
8830       if (ScalarVT != MVT::f32) {
8831         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8832                           DAG.getTargetConstant(0, DL, MVT::i32));
8833       }
8834       return Cvt;
8835     }
8836   }
8837 
8838   return SDValue();
8839 }
8840 
8841 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8842 
8843 // This is a variant of
8844 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8845 //
8846 // The normal DAG combiner will do this, but only if the add has one use since
8847 // that would increase the number of instructions.
8848 //
8849 // This prevents us from seeing a constant offset that can be folded into a
8850 // memory instruction's addressing mode. If we know the resulting add offset of
8851 // a pointer can be folded into an addressing offset, we can replace the pointer
8852 // operand with the add of new constant offset. This eliminates one of the uses,
8853 // and may allow the remaining use to also be simplified.
8854 //
8855 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8856                                                unsigned AddrSpace,
8857                                                EVT MemVT,
8858                                                DAGCombinerInfo &DCI) const {
8859   SDValue N0 = N->getOperand(0);
8860   SDValue N1 = N->getOperand(1);
8861 
8862   // We only do this to handle cases where it's profitable when there are
8863   // multiple uses of the add, so defer to the standard combine.
8864   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8865       N0->hasOneUse())
8866     return SDValue();
8867 
8868   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8869   if (!CN1)
8870     return SDValue();
8871 
8872   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8873   if (!CAdd)
8874     return SDValue();
8875 
8876   // If the resulting offset is too large, we can't fold it into the addressing
8877   // mode offset.
8878   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8879   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8880 
8881   AddrMode AM;
8882   AM.HasBaseReg = true;
8883   AM.BaseOffs = Offset.getSExtValue();
8884   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8885     return SDValue();
8886 
8887   SelectionDAG &DAG = DCI.DAG;
8888   SDLoc SL(N);
8889   EVT VT = N->getValueType(0);
8890 
8891   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8892   SDValue COffset = DAG.getConstant(Offset, SL, VT);
8893 
8894   SDNodeFlags Flags;
8895   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8896                           (N0.getOpcode() == ISD::OR ||
8897                            N0->getFlags().hasNoUnsignedWrap()));
8898 
8899   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8900 }
8901 
8902 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8903 /// by the chain and intrinsic ID. Theoretically we would also need to check the
8904 /// specific intrinsic, but they all place the pointer operand first.
8905 static unsigned getBasePtrIndex(const MemSDNode *N) {
8906   switch (N->getOpcode()) {
8907   case ISD::STORE:
8908   case ISD::INTRINSIC_W_CHAIN:
8909   case ISD::INTRINSIC_VOID:
8910     return 2;
8911   default:
8912     return 1;
8913   }
8914 }
8915 
8916 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8917                                                   DAGCombinerInfo &DCI) const {
8918   SelectionDAG &DAG = DCI.DAG;
8919   SDLoc SL(N);
8920 
8921   unsigned PtrIdx = getBasePtrIndex(N);
8922   SDValue Ptr = N->getOperand(PtrIdx);
8923 
8924   // TODO: We could also do this for multiplies.
8925   if (Ptr.getOpcode() == ISD::SHL) {
8926     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8927                                           N->getMemoryVT(), DCI);
8928     if (NewPtr) {
8929       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8930 
8931       NewOps[PtrIdx] = NewPtr;
8932       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8933     }
8934   }
8935 
8936   return SDValue();
8937 }
8938 
8939 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8940   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8941          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8942          (Opc == ISD::XOR && Val == 0);
8943 }
8944 
8945 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8946 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8947 // integer combine opportunities since most 64-bit operations are decomposed
8948 // this way.  TODO: We won't want this for SALU especially if it is an inline
8949 // immediate.
8950 SDValue SITargetLowering::splitBinaryBitConstantOp(
8951   DAGCombinerInfo &DCI,
8952   const SDLoc &SL,
8953   unsigned Opc, SDValue LHS,
8954   const ConstantSDNode *CRHS) const {
8955   uint64_t Val = CRHS->getZExtValue();
8956   uint32_t ValLo = Lo_32(Val);
8957   uint32_t ValHi = Hi_32(Val);
8958   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8959 
8960     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8961          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8962         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8963     // If we need to materialize a 64-bit immediate, it will be split up later
8964     // anyway. Avoid creating the harder to understand 64-bit immediate
8965     // materialization.
8966     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8967   }
8968 
8969   return SDValue();
8970 }
8971 
8972 // Returns true if argument is a boolean value which is not serialized into
8973 // memory or argument and does not require v_cndmask_b32 to be deserialized.
8974 static bool isBoolSGPR(SDValue V) {
8975   if (V.getValueType() != MVT::i1)
8976     return false;
8977   switch (V.getOpcode()) {
8978   default:
8979     break;
8980   case ISD::SETCC:
8981   case AMDGPUISD::FP_CLASS:
8982     return true;
8983   case ISD::AND:
8984   case ISD::OR:
8985   case ISD::XOR:
8986     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
8987   }
8988   return false;
8989 }
8990 
8991 // If a constant has all zeroes or all ones within each byte return it.
8992 // Otherwise return 0.
8993 static uint32_t getConstantPermuteMask(uint32_t C) {
8994   // 0xff for any zero byte in the mask
8995   uint32_t ZeroByteMask = 0;
8996   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8997   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8998   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8999   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9000   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9001   if ((NonZeroByteMask & C) != NonZeroByteMask)
9002     return 0; // Partial bytes selected.
9003   return C;
9004 }
9005 
9006 // Check if a node selects whole bytes from its operand 0 starting at a byte
9007 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9008 // or -1 if not succeeded.
9009 // Note byte select encoding:
9010 // value 0-3 selects corresponding source byte;
9011 // value 0xc selects zero;
9012 // value 0xff selects 0xff.
9013 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9014   assert(V.getValueSizeInBits() == 32);
9015 
9016   if (V.getNumOperands() != 2)
9017     return ~0;
9018 
9019   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9020   if (!N1)
9021     return ~0;
9022 
9023   uint32_t C = N1->getZExtValue();
9024 
9025   switch (V.getOpcode()) {
9026   default:
9027     break;
9028   case ISD::AND:
9029     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9030       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9031     }
9032     break;
9033 
9034   case ISD::OR:
9035     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9036       return (0x03020100 & ~ConstMask) | ConstMask;
9037     }
9038     break;
9039 
9040   case ISD::SHL:
9041     if (C % 8)
9042       return ~0;
9043 
9044     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9045 
9046   case ISD::SRL:
9047     if (C % 8)
9048       return ~0;
9049 
9050     return uint32_t(0x0c0c0c0c03020100ull >> C);
9051   }
9052 
9053   return ~0;
9054 }
9055 
9056 SDValue SITargetLowering::performAndCombine(SDNode *N,
9057                                             DAGCombinerInfo &DCI) const {
9058   if (DCI.isBeforeLegalize())
9059     return SDValue();
9060 
9061   SelectionDAG &DAG = DCI.DAG;
9062   EVT VT = N->getValueType(0);
9063   SDValue LHS = N->getOperand(0);
9064   SDValue RHS = N->getOperand(1);
9065 
9066 
9067   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9068   if (VT == MVT::i64 && CRHS) {
9069     if (SDValue Split
9070         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9071       return Split;
9072   }
9073 
9074   if (CRHS && VT == MVT::i32) {
9075     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9076     // nb = number of trailing zeroes in mask
9077     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9078     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9079     uint64_t Mask = CRHS->getZExtValue();
9080     unsigned Bits = countPopulation(Mask);
9081     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9082         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9083       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9084         unsigned Shift = CShift->getZExtValue();
9085         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9086         unsigned Offset = NB + Shift;
9087         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9088           SDLoc SL(N);
9089           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9090                                     LHS->getOperand(0),
9091                                     DAG.getConstant(Offset, SL, MVT::i32),
9092                                     DAG.getConstant(Bits, SL, MVT::i32));
9093           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9094           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9095                                     DAG.getValueType(NarrowVT));
9096           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9097                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9098           return Shl;
9099         }
9100       }
9101     }
9102 
9103     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9104     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9105         isa<ConstantSDNode>(LHS.getOperand(2))) {
9106       uint32_t Sel = getConstantPermuteMask(Mask);
9107       if (!Sel)
9108         return SDValue();
9109 
9110       // Select 0xc for all zero bytes
9111       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9112       SDLoc DL(N);
9113       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9114                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9115     }
9116   }
9117 
9118   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9119   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9120   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9121     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9122     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9123 
9124     SDValue X = LHS.getOperand(0);
9125     SDValue Y = RHS.getOperand(0);
9126     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9127       return SDValue();
9128 
9129     if (LCC == ISD::SETO) {
9130       if (X != LHS.getOperand(1))
9131         return SDValue();
9132 
9133       if (RCC == ISD::SETUNE) {
9134         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9135         if (!C1 || !C1->isInfinity() || C1->isNegative())
9136           return SDValue();
9137 
9138         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9139                               SIInstrFlags::N_SUBNORMAL |
9140                               SIInstrFlags::N_ZERO |
9141                               SIInstrFlags::P_ZERO |
9142                               SIInstrFlags::P_SUBNORMAL |
9143                               SIInstrFlags::P_NORMAL;
9144 
9145         static_assert(((~(SIInstrFlags::S_NAN |
9146                           SIInstrFlags::Q_NAN |
9147                           SIInstrFlags::N_INFINITY |
9148                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9149                       "mask not equal");
9150 
9151         SDLoc DL(N);
9152         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9153                            X, DAG.getConstant(Mask, DL, MVT::i32));
9154       }
9155     }
9156   }
9157 
9158   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9159     std::swap(LHS, RHS);
9160 
9161   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9162       RHS.hasOneUse()) {
9163     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9164     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9165     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9166     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9167     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9168         (RHS.getOperand(0) == LHS.getOperand(0) &&
9169          LHS.getOperand(0) == LHS.getOperand(1))) {
9170       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9171       unsigned NewMask = LCC == ISD::SETO ?
9172         Mask->getZExtValue() & ~OrdMask :
9173         Mask->getZExtValue() & OrdMask;
9174 
9175       SDLoc DL(N);
9176       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9177                          DAG.getConstant(NewMask, DL, MVT::i32));
9178     }
9179   }
9180 
9181   if (VT == MVT::i32 &&
9182       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9183     // and x, (sext cc from i1) => select cc, x, 0
9184     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9185       std::swap(LHS, RHS);
9186     if (isBoolSGPR(RHS.getOperand(0)))
9187       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9188                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9189   }
9190 
9191   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9192   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9193   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9194       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9195     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9196     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9197     if (LHSMask != ~0u && RHSMask != ~0u) {
9198       // Canonicalize the expression in an attempt to have fewer unique masks
9199       // and therefore fewer registers used to hold the masks.
9200       if (LHSMask > RHSMask) {
9201         std::swap(LHSMask, RHSMask);
9202         std::swap(LHS, RHS);
9203       }
9204 
9205       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9206       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9207       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9208       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9209 
9210       // Check of we need to combine values from two sources within a byte.
9211       if (!(LHSUsedLanes & RHSUsedLanes) &&
9212           // If we select high and lower word keep it for SDWA.
9213           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9214           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9215         // Each byte in each mask is either selector mask 0-3, or has higher
9216         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9217         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9218         // mask which is not 0xff wins. By anding both masks we have a correct
9219         // result except that 0x0c shall be corrected to give 0x0c only.
9220         uint32_t Mask = LHSMask & RHSMask;
9221         for (unsigned I = 0; I < 32; I += 8) {
9222           uint32_t ByteSel = 0xff << I;
9223           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9224             Mask &= (0x0c << I) & 0xffffffff;
9225         }
9226 
9227         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9228         // or 0x0c.
9229         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9230         SDLoc DL(N);
9231 
9232         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9233                            LHS.getOperand(0), RHS.getOperand(0),
9234                            DAG.getConstant(Sel, DL, MVT::i32));
9235       }
9236     }
9237   }
9238 
9239   return SDValue();
9240 }
9241 
9242 SDValue SITargetLowering::performOrCombine(SDNode *N,
9243                                            DAGCombinerInfo &DCI) const {
9244   SelectionDAG &DAG = DCI.DAG;
9245   SDValue LHS = N->getOperand(0);
9246   SDValue RHS = N->getOperand(1);
9247 
9248   EVT VT = N->getValueType(0);
9249   if (VT == MVT::i1) {
9250     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9251     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9252         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9253       SDValue Src = LHS.getOperand(0);
9254       if (Src != RHS.getOperand(0))
9255         return SDValue();
9256 
9257       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9258       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9259       if (!CLHS || !CRHS)
9260         return SDValue();
9261 
9262       // Only 10 bits are used.
9263       static const uint32_t MaxMask = 0x3ff;
9264 
9265       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9266       SDLoc DL(N);
9267       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9268                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9269     }
9270 
9271     return SDValue();
9272   }
9273 
9274   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9275   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9276       LHS.getOpcode() == AMDGPUISD::PERM &&
9277       isa<ConstantSDNode>(LHS.getOperand(2))) {
9278     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9279     if (!Sel)
9280       return SDValue();
9281 
9282     Sel |= LHS.getConstantOperandVal(2);
9283     SDLoc DL(N);
9284     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9285                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9286   }
9287 
9288   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9289   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9290   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9291       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9292     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9293     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9294     if (LHSMask != ~0u && RHSMask != ~0u) {
9295       // Canonicalize the expression in an attempt to have fewer unique masks
9296       // and therefore fewer registers used to hold the masks.
9297       if (LHSMask > RHSMask) {
9298         std::swap(LHSMask, RHSMask);
9299         std::swap(LHS, RHS);
9300       }
9301 
9302       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9303       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9304       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9305       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9306 
9307       // Check of we need to combine values from two sources within a byte.
9308       if (!(LHSUsedLanes & RHSUsedLanes) &&
9309           // If we select high and lower word keep it for SDWA.
9310           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9311           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9312         // Kill zero bytes selected by other mask. Zero value is 0xc.
9313         LHSMask &= ~RHSUsedLanes;
9314         RHSMask &= ~LHSUsedLanes;
9315         // Add 4 to each active LHS lane
9316         LHSMask |= LHSUsedLanes & 0x04040404;
9317         // Combine masks
9318         uint32_t Sel = LHSMask | RHSMask;
9319         SDLoc DL(N);
9320 
9321         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9322                            LHS.getOperand(0), RHS.getOperand(0),
9323                            DAG.getConstant(Sel, DL, MVT::i32));
9324       }
9325     }
9326   }
9327 
9328   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9329     return SDValue();
9330 
9331   // TODO: This could be a generic combine with a predicate for extracting the
9332   // high half of an integer being free.
9333 
9334   // (or i64:x, (zero_extend i32:y)) ->
9335   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9336   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9337       RHS.getOpcode() != ISD::ZERO_EXTEND)
9338     std::swap(LHS, RHS);
9339 
9340   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9341     SDValue ExtSrc = RHS.getOperand(0);
9342     EVT SrcVT = ExtSrc.getValueType();
9343     if (SrcVT == MVT::i32) {
9344       SDLoc SL(N);
9345       SDValue LowLHS, HiBits;
9346       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9347       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9348 
9349       DCI.AddToWorklist(LowOr.getNode());
9350       DCI.AddToWorklist(HiBits.getNode());
9351 
9352       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9353                                 LowOr, HiBits);
9354       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9355     }
9356   }
9357 
9358   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9359   if (CRHS) {
9360     if (SDValue Split
9361           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9362       return Split;
9363   }
9364 
9365   return SDValue();
9366 }
9367 
9368 SDValue SITargetLowering::performXorCombine(SDNode *N,
9369                                             DAGCombinerInfo &DCI) const {
9370   EVT VT = N->getValueType(0);
9371   if (VT != MVT::i64)
9372     return SDValue();
9373 
9374   SDValue LHS = N->getOperand(0);
9375   SDValue RHS = N->getOperand(1);
9376 
9377   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9378   if (CRHS) {
9379     if (SDValue Split
9380           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9381       return Split;
9382   }
9383 
9384   return SDValue();
9385 }
9386 
9387 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9388                                                    DAGCombinerInfo &DCI) const {
9389   if (!Subtarget->has16BitInsts() ||
9390       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9391     return SDValue();
9392 
9393   EVT VT = N->getValueType(0);
9394   if (VT != MVT::i32)
9395     return SDValue();
9396 
9397   SDValue Src = N->getOperand(0);
9398   if (Src.getValueType() != MVT::i16)
9399     return SDValue();
9400 
9401   return SDValue();
9402 }
9403 
9404 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9405                                                         DAGCombinerInfo &DCI)
9406                                                         const {
9407   SDValue Src = N->getOperand(0);
9408   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9409 
9410   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9411       VTSign->getVT() == MVT::i8) ||
9412       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9413       VTSign->getVT() == MVT::i16)) &&
9414       Src.hasOneUse()) {
9415     auto *M = cast<MemSDNode>(Src);
9416     SDValue Ops[] = {
9417       Src.getOperand(0), // Chain
9418       Src.getOperand(1), // rsrc
9419       Src.getOperand(2), // vindex
9420       Src.getOperand(3), // voffset
9421       Src.getOperand(4), // soffset
9422       Src.getOperand(5), // offset
9423       Src.getOperand(6),
9424       Src.getOperand(7)
9425     };
9426     // replace with BUFFER_LOAD_BYTE/SHORT
9427     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9428                                          Src.getOperand(0).getValueType());
9429     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9430                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9431     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9432                                                           ResList,
9433                                                           Ops, M->getMemoryVT(),
9434                                                           M->getMemOperand());
9435     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9436                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9437   }
9438   return SDValue();
9439 }
9440 
9441 SDValue SITargetLowering::performClassCombine(SDNode *N,
9442                                               DAGCombinerInfo &DCI) const {
9443   SelectionDAG &DAG = DCI.DAG;
9444   SDValue Mask = N->getOperand(1);
9445 
9446   // fp_class x, 0 -> false
9447   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9448     if (CMask->isNullValue())
9449       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9450   }
9451 
9452   if (N->getOperand(0).isUndef())
9453     return DAG.getUNDEF(MVT::i1);
9454 
9455   return SDValue();
9456 }
9457 
9458 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9459                                             DAGCombinerInfo &DCI) const {
9460   EVT VT = N->getValueType(0);
9461   SDValue N0 = N->getOperand(0);
9462 
9463   if (N0.isUndef())
9464     return N0;
9465 
9466   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9467                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9468     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9469                            N->getFlags());
9470   }
9471 
9472   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9473     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9474                            N0.getOperand(0), N->getFlags());
9475   }
9476 
9477   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9478 }
9479 
9480 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9481                                        unsigned MaxDepth) const {
9482   unsigned Opcode = Op.getOpcode();
9483   if (Opcode == ISD::FCANONICALIZE)
9484     return true;
9485 
9486   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9487     auto F = CFP->getValueAPF();
9488     if (F.isNaN() && F.isSignaling())
9489       return false;
9490     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9491   }
9492 
9493   // If source is a result of another standard FP operation it is already in
9494   // canonical form.
9495   if (MaxDepth == 0)
9496     return false;
9497 
9498   switch (Opcode) {
9499   // These will flush denorms if required.
9500   case ISD::FADD:
9501   case ISD::FSUB:
9502   case ISD::FMUL:
9503   case ISD::FCEIL:
9504   case ISD::FFLOOR:
9505   case ISD::FMA:
9506   case ISD::FMAD:
9507   case ISD::FSQRT:
9508   case ISD::FDIV:
9509   case ISD::FREM:
9510   case ISD::FP_ROUND:
9511   case ISD::FP_EXTEND:
9512   case AMDGPUISD::FMUL_LEGACY:
9513   case AMDGPUISD::FMAD_FTZ:
9514   case AMDGPUISD::RCP:
9515   case AMDGPUISD::RSQ:
9516   case AMDGPUISD::RSQ_CLAMP:
9517   case AMDGPUISD::RCP_LEGACY:
9518   case AMDGPUISD::RCP_IFLAG:
9519   case AMDGPUISD::DIV_SCALE:
9520   case AMDGPUISD::DIV_FMAS:
9521   case AMDGPUISD::DIV_FIXUP:
9522   case AMDGPUISD::FRACT:
9523   case AMDGPUISD::LDEXP:
9524   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9525   case AMDGPUISD::CVT_F32_UBYTE0:
9526   case AMDGPUISD::CVT_F32_UBYTE1:
9527   case AMDGPUISD::CVT_F32_UBYTE2:
9528   case AMDGPUISD::CVT_F32_UBYTE3:
9529     return true;
9530 
9531   // It can/will be lowered or combined as a bit operation.
9532   // Need to check their input recursively to handle.
9533   case ISD::FNEG:
9534   case ISD::FABS:
9535   case ISD::FCOPYSIGN:
9536     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9537 
9538   case ISD::FSIN:
9539   case ISD::FCOS:
9540   case ISD::FSINCOS:
9541     return Op.getValueType().getScalarType() != MVT::f16;
9542 
9543   case ISD::FMINNUM:
9544   case ISD::FMAXNUM:
9545   case ISD::FMINNUM_IEEE:
9546   case ISD::FMAXNUM_IEEE:
9547   case AMDGPUISD::CLAMP:
9548   case AMDGPUISD::FMED3:
9549   case AMDGPUISD::FMAX3:
9550   case AMDGPUISD::FMIN3: {
9551     // FIXME: Shouldn't treat the generic operations different based these.
9552     // However, we aren't really required to flush the result from
9553     // minnum/maxnum..
9554 
9555     // snans will be quieted, so we only need to worry about denormals.
9556     if (Subtarget->supportsMinMaxDenormModes() ||
9557         denormalsEnabledForType(DAG, Op.getValueType()))
9558       return true;
9559 
9560     // Flushing may be required.
9561     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9562     // targets need to check their input recursively.
9563 
9564     // FIXME: Does this apply with clamp? It's implemented with max.
9565     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9566       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9567         return false;
9568     }
9569 
9570     return true;
9571   }
9572   case ISD::SELECT: {
9573     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9574            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9575   }
9576   case ISD::BUILD_VECTOR: {
9577     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9578       SDValue SrcOp = Op.getOperand(i);
9579       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9580         return false;
9581     }
9582 
9583     return true;
9584   }
9585   case ISD::EXTRACT_VECTOR_ELT:
9586   case ISD::EXTRACT_SUBVECTOR: {
9587     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9588   }
9589   case ISD::INSERT_VECTOR_ELT: {
9590     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9591            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9592   }
9593   case ISD::UNDEF:
9594     // Could be anything.
9595     return false;
9596 
9597   case ISD::BITCAST:
9598     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9599   case ISD::TRUNCATE: {
9600     // Hack round the mess we make when legalizing extract_vector_elt
9601     if (Op.getValueType() == MVT::i16) {
9602       SDValue TruncSrc = Op.getOperand(0);
9603       if (TruncSrc.getValueType() == MVT::i32 &&
9604           TruncSrc.getOpcode() == ISD::BITCAST &&
9605           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9606         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9607       }
9608     }
9609     return false;
9610   }
9611   case ISD::INTRINSIC_WO_CHAIN: {
9612     unsigned IntrinsicID
9613       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9614     // TODO: Handle more intrinsics
9615     switch (IntrinsicID) {
9616     case Intrinsic::amdgcn_cvt_pkrtz:
9617     case Intrinsic::amdgcn_cubeid:
9618     case Intrinsic::amdgcn_frexp_mant:
9619     case Intrinsic::amdgcn_fdot2:
9620     case Intrinsic::amdgcn_rcp:
9621     case Intrinsic::amdgcn_rsq:
9622     case Intrinsic::amdgcn_rsq_clamp:
9623     case Intrinsic::amdgcn_rcp_legacy:
9624     case Intrinsic::amdgcn_rsq_legacy:
9625     case Intrinsic::amdgcn_trig_preop:
9626       return true;
9627     default:
9628       break;
9629     }
9630 
9631     LLVM_FALLTHROUGH;
9632   }
9633   default:
9634     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9635            DAG.isKnownNeverSNaN(Op);
9636   }
9637 
9638   llvm_unreachable("invalid operation");
9639 }
9640 
9641 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9642                                        unsigned MaxDepth) const {
9643   MachineRegisterInfo &MRI = MF.getRegInfo();
9644   MachineInstr *MI = MRI.getVRegDef(Reg);
9645   unsigned Opcode = MI->getOpcode();
9646 
9647   if (Opcode == AMDGPU::G_FCANONICALIZE)
9648     return true;
9649 
9650   if (Opcode == AMDGPU::G_FCONSTANT) {
9651     auto F = MI->getOperand(1).getFPImm()->getValueAPF();
9652     if (F.isNaN() && F.isSignaling())
9653       return false;
9654     return !F.isDenormal() || denormalsEnabledForType(MRI.getType(Reg), MF);
9655   }
9656 
9657   if (MaxDepth == 0)
9658     return false;
9659 
9660   switch (Opcode) {
9661   case AMDGPU::G_FMINNUM_IEEE:
9662   case AMDGPU::G_FMAXNUM_IEEE: {
9663     if (Subtarget->supportsMinMaxDenormModes() ||
9664         denormalsEnabledForType(MRI.getType(Reg), MF))
9665       return true;
9666     for (unsigned I = 1, E = MI->getNumOperands(); I != E; ++I) {
9667       if (!isCanonicalized(MI->getOperand(I).getReg(), MF, MaxDepth - 1))
9668         return false;
9669     }
9670     return true;
9671   }
9672   default:
9673     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9674            isKnownNeverSNaN(Reg, MRI);
9675   }
9676 
9677   llvm_unreachable("invalid operation");
9678 }
9679 
9680 // Constant fold canonicalize.
9681 SDValue SITargetLowering::getCanonicalConstantFP(
9682   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9683   // Flush denormals to 0 if not enabled.
9684   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9685     return DAG.getConstantFP(0.0, SL, VT);
9686 
9687   if (C.isNaN()) {
9688     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9689     if (C.isSignaling()) {
9690       // Quiet a signaling NaN.
9691       // FIXME: Is this supposed to preserve payload bits?
9692       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9693     }
9694 
9695     // Make sure it is the canonical NaN bitpattern.
9696     //
9697     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9698     // immediate?
9699     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9700       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9701   }
9702 
9703   // Already canonical.
9704   return DAG.getConstantFP(C, SL, VT);
9705 }
9706 
9707 static bool vectorEltWillFoldAway(SDValue Op) {
9708   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9709 }
9710 
9711 SDValue SITargetLowering::performFCanonicalizeCombine(
9712   SDNode *N,
9713   DAGCombinerInfo &DCI) const {
9714   SelectionDAG &DAG = DCI.DAG;
9715   SDValue N0 = N->getOperand(0);
9716   EVT VT = N->getValueType(0);
9717 
9718   // fcanonicalize undef -> qnan
9719   if (N0.isUndef()) {
9720     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9721     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9722   }
9723 
9724   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9725     EVT VT = N->getValueType(0);
9726     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9727   }
9728 
9729   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9730   //                                                   (fcanonicalize k)
9731   //
9732   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9733 
9734   // TODO: This could be better with wider vectors that will be split to v2f16,
9735   // and to consider uses since there aren't that many packed operations.
9736   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9737       isTypeLegal(MVT::v2f16)) {
9738     SDLoc SL(N);
9739     SDValue NewElts[2];
9740     SDValue Lo = N0.getOperand(0);
9741     SDValue Hi = N0.getOperand(1);
9742     EVT EltVT = Lo.getValueType();
9743 
9744     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9745       for (unsigned I = 0; I != 2; ++I) {
9746         SDValue Op = N0.getOperand(I);
9747         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9748           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9749                                               CFP->getValueAPF());
9750         } else if (Op.isUndef()) {
9751           // Handled below based on what the other operand is.
9752           NewElts[I] = Op;
9753         } else {
9754           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9755         }
9756       }
9757 
9758       // If one half is undef, and one is constant, perfer a splat vector rather
9759       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9760       // cheaper to use and may be free with a packed operation.
9761       if (NewElts[0].isUndef()) {
9762         if (isa<ConstantFPSDNode>(NewElts[1]))
9763           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9764             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9765       }
9766 
9767       if (NewElts[1].isUndef()) {
9768         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9769           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9770       }
9771 
9772       return DAG.getBuildVector(VT, SL, NewElts);
9773     }
9774   }
9775 
9776   unsigned SrcOpc = N0.getOpcode();
9777 
9778   // If it's free to do so, push canonicalizes further up the source, which may
9779   // find a canonical source.
9780   //
9781   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9782   // sNaNs.
9783   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9784     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9785     if (CRHS && N0.hasOneUse()) {
9786       SDLoc SL(N);
9787       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9788                                    N0.getOperand(0));
9789       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9790       DCI.AddToWorklist(Canon0.getNode());
9791 
9792       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9793     }
9794   }
9795 
9796   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9797 }
9798 
9799 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9800   switch (Opc) {
9801   case ISD::FMAXNUM:
9802   case ISD::FMAXNUM_IEEE:
9803     return AMDGPUISD::FMAX3;
9804   case ISD::SMAX:
9805     return AMDGPUISD::SMAX3;
9806   case ISD::UMAX:
9807     return AMDGPUISD::UMAX3;
9808   case ISD::FMINNUM:
9809   case ISD::FMINNUM_IEEE:
9810     return AMDGPUISD::FMIN3;
9811   case ISD::SMIN:
9812     return AMDGPUISD::SMIN3;
9813   case ISD::UMIN:
9814     return AMDGPUISD::UMIN3;
9815   default:
9816     llvm_unreachable("Not a min/max opcode");
9817   }
9818 }
9819 
9820 SDValue SITargetLowering::performIntMed3ImmCombine(
9821   SelectionDAG &DAG, const SDLoc &SL,
9822   SDValue Op0, SDValue Op1, bool Signed) const {
9823   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9824   if (!K1)
9825     return SDValue();
9826 
9827   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9828   if (!K0)
9829     return SDValue();
9830 
9831   if (Signed) {
9832     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9833       return SDValue();
9834   } else {
9835     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9836       return SDValue();
9837   }
9838 
9839   EVT VT = K0->getValueType(0);
9840   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9841   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9842     return DAG.getNode(Med3Opc, SL, VT,
9843                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9844   }
9845 
9846   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9847   if (VT == MVT::i16) {
9848     MVT NVT = MVT::i32;
9849     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9850 
9851     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9852     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9853     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9854 
9855     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9856     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9857   }
9858 
9859   return SDValue();
9860 }
9861 
9862 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9863   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9864     return C;
9865 
9866   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9867     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9868       return C;
9869   }
9870 
9871   return nullptr;
9872 }
9873 
9874 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9875                                                   const SDLoc &SL,
9876                                                   SDValue Op0,
9877                                                   SDValue Op1) const {
9878   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9879   if (!K1)
9880     return SDValue();
9881 
9882   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9883   if (!K0)
9884     return SDValue();
9885 
9886   // Ordered >= (although NaN inputs should have folded away by now).
9887   if (K0->getValueAPF() > K1->getValueAPF())
9888     return SDValue();
9889 
9890   const MachineFunction &MF = DAG.getMachineFunction();
9891   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9892 
9893   // TODO: Check IEEE bit enabled?
9894   EVT VT = Op0.getValueType();
9895   if (Info->getMode().DX10Clamp) {
9896     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9897     // hardware fmed3 behavior converting to a min.
9898     // FIXME: Should this be allowing -0.0?
9899     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9900       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9901   }
9902 
9903   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9904   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9905     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9906     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9907     // then give the other result, which is different from med3 with a NaN
9908     // input.
9909     SDValue Var = Op0.getOperand(0);
9910     if (!DAG.isKnownNeverSNaN(Var))
9911       return SDValue();
9912 
9913     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9914 
9915     if ((!K0->hasOneUse() ||
9916          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9917         (!K1->hasOneUse() ||
9918          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9919       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9920                          Var, SDValue(K0, 0), SDValue(K1, 0));
9921     }
9922   }
9923 
9924   return SDValue();
9925 }
9926 
9927 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9928                                                DAGCombinerInfo &DCI) const {
9929   SelectionDAG &DAG = DCI.DAG;
9930 
9931   EVT VT = N->getValueType(0);
9932   unsigned Opc = N->getOpcode();
9933   SDValue Op0 = N->getOperand(0);
9934   SDValue Op1 = N->getOperand(1);
9935 
9936   // Only do this if the inner op has one use since this will just increases
9937   // register pressure for no benefit.
9938 
9939   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9940       !VT.isVector() &&
9941       (VT == MVT::i32 || VT == MVT::f32 ||
9942        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9943     // max(max(a, b), c) -> max3(a, b, c)
9944     // min(min(a, b), c) -> min3(a, b, c)
9945     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9946       SDLoc DL(N);
9947       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9948                          DL,
9949                          N->getValueType(0),
9950                          Op0.getOperand(0),
9951                          Op0.getOperand(1),
9952                          Op1);
9953     }
9954 
9955     // Try commuted.
9956     // max(a, max(b, c)) -> max3(a, b, c)
9957     // min(a, min(b, c)) -> min3(a, b, c)
9958     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9959       SDLoc DL(N);
9960       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9961                          DL,
9962                          N->getValueType(0),
9963                          Op0,
9964                          Op1.getOperand(0),
9965                          Op1.getOperand(1));
9966     }
9967   }
9968 
9969   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9970   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9971     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9972       return Med3;
9973   }
9974 
9975   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9976     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9977       return Med3;
9978   }
9979 
9980   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9981   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9982        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9983        (Opc == AMDGPUISD::FMIN_LEGACY &&
9984         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9985       (VT == MVT::f32 || VT == MVT::f64 ||
9986        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9987        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9988       Op0.hasOneUse()) {
9989     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9990       return Res;
9991   }
9992 
9993   return SDValue();
9994 }
9995 
9996 static bool isClampZeroToOne(SDValue A, SDValue B) {
9997   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9998     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9999       // FIXME: Should this be allowing -0.0?
10000       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10001              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10002     }
10003   }
10004 
10005   return false;
10006 }
10007 
10008 // FIXME: Should only worry about snans for version with chain.
10009 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10010                                               DAGCombinerInfo &DCI) const {
10011   EVT VT = N->getValueType(0);
10012   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10013   // NaNs. With a NaN input, the order of the operands may change the result.
10014 
10015   SelectionDAG &DAG = DCI.DAG;
10016   SDLoc SL(N);
10017 
10018   SDValue Src0 = N->getOperand(0);
10019   SDValue Src1 = N->getOperand(1);
10020   SDValue Src2 = N->getOperand(2);
10021 
10022   if (isClampZeroToOne(Src0, Src1)) {
10023     // const_a, const_b, x -> clamp is safe in all cases including signaling
10024     // nans.
10025     // FIXME: Should this be allowing -0.0?
10026     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10027   }
10028 
10029   const MachineFunction &MF = DAG.getMachineFunction();
10030   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10031 
10032   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10033   // handling no dx10-clamp?
10034   if (Info->getMode().DX10Clamp) {
10035     // If NaNs is clamped to 0, we are free to reorder the inputs.
10036 
10037     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10038       std::swap(Src0, Src1);
10039 
10040     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10041       std::swap(Src1, Src2);
10042 
10043     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10044       std::swap(Src0, Src1);
10045 
10046     if (isClampZeroToOne(Src1, Src2))
10047       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10048   }
10049 
10050   return SDValue();
10051 }
10052 
10053 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10054                                                  DAGCombinerInfo &DCI) const {
10055   SDValue Src0 = N->getOperand(0);
10056   SDValue Src1 = N->getOperand(1);
10057   if (Src0.isUndef() && Src1.isUndef())
10058     return DCI.DAG.getUNDEF(N->getValueType(0));
10059   return SDValue();
10060 }
10061 
10062 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10063 // expanded into a set of cmp/select instructions.
10064 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10065                                                 unsigned NumElem,
10066                                                 bool IsDivergentIdx) {
10067   if (UseDivergentRegisterIndexing)
10068     return false;
10069 
10070   unsigned VecSize = EltSize * NumElem;
10071 
10072   // Sub-dword vectors of size 2 dword or less have better implementation.
10073   if (VecSize <= 64 && EltSize < 32)
10074     return false;
10075 
10076   // Always expand the rest of sub-dword instructions, otherwise it will be
10077   // lowered via memory.
10078   if (EltSize < 32)
10079     return true;
10080 
10081   // Always do this if var-idx is divergent, otherwise it will become a loop.
10082   if (IsDivergentIdx)
10083     return true;
10084 
10085   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10086   unsigned NumInsts = NumElem /* Number of compares */ +
10087                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10088   return NumInsts <= 16;
10089 }
10090 
10091 static bool shouldExpandVectorDynExt(SDNode *N) {
10092   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10093   if (isa<ConstantSDNode>(Idx))
10094     return false;
10095 
10096   SDValue Vec = N->getOperand(0);
10097   EVT VecVT = Vec.getValueType();
10098   EVT EltVT = VecVT.getVectorElementType();
10099   unsigned EltSize = EltVT.getSizeInBits();
10100   unsigned NumElem = VecVT.getVectorNumElements();
10101 
10102   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10103                                                     Idx->isDivergent());
10104 }
10105 
10106 SDValue SITargetLowering::performExtractVectorEltCombine(
10107   SDNode *N, DAGCombinerInfo &DCI) const {
10108   SDValue Vec = N->getOperand(0);
10109   SelectionDAG &DAG = DCI.DAG;
10110 
10111   EVT VecVT = Vec.getValueType();
10112   EVT EltVT = VecVT.getVectorElementType();
10113 
10114   if ((Vec.getOpcode() == ISD::FNEG ||
10115        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10116     SDLoc SL(N);
10117     EVT EltVT = N->getValueType(0);
10118     SDValue Idx = N->getOperand(1);
10119     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10120                               Vec.getOperand(0), Idx);
10121     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10122   }
10123 
10124   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10125   //    =>
10126   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10127   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10128   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10129   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10130     SDLoc SL(N);
10131     EVT EltVT = N->getValueType(0);
10132     SDValue Idx = N->getOperand(1);
10133     unsigned Opc = Vec.getOpcode();
10134 
10135     switch(Opc) {
10136     default:
10137       break;
10138       // TODO: Support other binary operations.
10139     case ISD::FADD:
10140     case ISD::FSUB:
10141     case ISD::FMUL:
10142     case ISD::ADD:
10143     case ISD::UMIN:
10144     case ISD::UMAX:
10145     case ISD::SMIN:
10146     case ISD::SMAX:
10147     case ISD::FMAXNUM:
10148     case ISD::FMINNUM:
10149     case ISD::FMAXNUM_IEEE:
10150     case ISD::FMINNUM_IEEE: {
10151       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10152                                  Vec.getOperand(0), Idx);
10153       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10154                                  Vec.getOperand(1), Idx);
10155 
10156       DCI.AddToWorklist(Elt0.getNode());
10157       DCI.AddToWorklist(Elt1.getNode());
10158       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10159     }
10160     }
10161   }
10162 
10163   unsigned VecSize = VecVT.getSizeInBits();
10164   unsigned EltSize = EltVT.getSizeInBits();
10165 
10166   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10167   if (::shouldExpandVectorDynExt(N)) {
10168     SDLoc SL(N);
10169     SDValue Idx = N->getOperand(1);
10170     SDValue V;
10171     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10172       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10173       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10174       if (I == 0)
10175         V = Elt;
10176       else
10177         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10178     }
10179     return V;
10180   }
10181 
10182   if (!DCI.isBeforeLegalize())
10183     return SDValue();
10184 
10185   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10186   // elements. This exposes more load reduction opportunities by replacing
10187   // multiple small extract_vector_elements with a single 32-bit extract.
10188   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10189   if (isa<MemSDNode>(Vec) &&
10190       EltSize <= 16 &&
10191       EltVT.isByteSized() &&
10192       VecSize > 32 &&
10193       VecSize % 32 == 0 &&
10194       Idx) {
10195     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10196 
10197     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10198     unsigned EltIdx = BitIndex / 32;
10199     unsigned LeftoverBitIdx = BitIndex % 32;
10200     SDLoc SL(N);
10201 
10202     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10203     DCI.AddToWorklist(Cast.getNode());
10204 
10205     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10206                               DAG.getConstant(EltIdx, SL, MVT::i32));
10207     DCI.AddToWorklist(Elt.getNode());
10208     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10209                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10210     DCI.AddToWorklist(Srl.getNode());
10211 
10212     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10213     DCI.AddToWorklist(Trunc.getNode());
10214     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10215   }
10216 
10217   return SDValue();
10218 }
10219 
10220 SDValue
10221 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10222                                                 DAGCombinerInfo &DCI) const {
10223   SDValue Vec = N->getOperand(0);
10224   SDValue Idx = N->getOperand(2);
10225   EVT VecVT = Vec.getValueType();
10226   EVT EltVT = VecVT.getVectorElementType();
10227 
10228   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10229   // => BUILD_VECTOR n x select (e, const-idx)
10230   if (!::shouldExpandVectorDynExt(N))
10231     return SDValue();
10232 
10233   SelectionDAG &DAG = DCI.DAG;
10234   SDLoc SL(N);
10235   SDValue Ins = N->getOperand(1);
10236   EVT IdxVT = Idx.getValueType();
10237 
10238   SmallVector<SDValue, 16> Ops;
10239   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10240     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10241     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10242     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10243     Ops.push_back(V);
10244   }
10245 
10246   return DAG.getBuildVector(VecVT, SL, Ops);
10247 }
10248 
10249 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10250                                           const SDNode *N0,
10251                                           const SDNode *N1) const {
10252   EVT VT = N0->getValueType(0);
10253 
10254   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10255   // support denormals ever.
10256   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10257        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10258         getSubtarget()->hasMadF16())) &&
10259        isOperationLegal(ISD::FMAD, VT))
10260     return ISD::FMAD;
10261 
10262   const TargetOptions &Options = DAG.getTarget().Options;
10263   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10264        (N0->getFlags().hasAllowContract() &&
10265         N1->getFlags().hasAllowContract())) &&
10266       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10267     return ISD::FMA;
10268   }
10269 
10270   return 0;
10271 }
10272 
10273 // For a reassociatable opcode perform:
10274 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10275 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10276                                                SelectionDAG &DAG) const {
10277   EVT VT = N->getValueType(0);
10278   if (VT != MVT::i32 && VT != MVT::i64)
10279     return SDValue();
10280 
10281   unsigned Opc = N->getOpcode();
10282   SDValue Op0 = N->getOperand(0);
10283   SDValue Op1 = N->getOperand(1);
10284 
10285   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10286     return SDValue();
10287 
10288   if (Op0->isDivergent())
10289     std::swap(Op0, Op1);
10290 
10291   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10292     return SDValue();
10293 
10294   SDValue Op2 = Op1.getOperand(1);
10295   Op1 = Op1.getOperand(0);
10296   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10297     return SDValue();
10298 
10299   if (Op1->isDivergent())
10300     std::swap(Op1, Op2);
10301 
10302   // If either operand is constant this will conflict with
10303   // DAGCombiner::ReassociateOps().
10304   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10305       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10306     return SDValue();
10307 
10308   SDLoc SL(N);
10309   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10310   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10311 }
10312 
10313 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10314                            EVT VT,
10315                            SDValue N0, SDValue N1, SDValue N2,
10316                            bool Signed) {
10317   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10318   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10319   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10320   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10321 }
10322 
10323 SDValue SITargetLowering::performAddCombine(SDNode *N,
10324                                             DAGCombinerInfo &DCI) const {
10325   SelectionDAG &DAG = DCI.DAG;
10326   EVT VT = N->getValueType(0);
10327   SDLoc SL(N);
10328   SDValue LHS = N->getOperand(0);
10329   SDValue RHS = N->getOperand(1);
10330 
10331   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10332       && Subtarget->hasMad64_32() &&
10333       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10334       VT.getScalarSizeInBits() <= 64) {
10335     if (LHS.getOpcode() != ISD::MUL)
10336       std::swap(LHS, RHS);
10337 
10338     SDValue MulLHS = LHS.getOperand(0);
10339     SDValue MulRHS = LHS.getOperand(1);
10340     SDValue AddRHS = RHS;
10341 
10342     // TODO: Maybe restrict if SGPR inputs.
10343     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10344         numBitsUnsigned(MulRHS, DAG) <= 32) {
10345       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10346       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10347       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10348       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10349     }
10350 
10351     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10352       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10353       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10354       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10355       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10356     }
10357 
10358     return SDValue();
10359   }
10360 
10361   if (SDValue V = reassociateScalarOps(N, DAG)) {
10362     return V;
10363   }
10364 
10365   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10366     return SDValue();
10367 
10368   // add x, zext (setcc) => addcarry x, 0, setcc
10369   // add x, sext (setcc) => subcarry x, 0, setcc
10370   unsigned Opc = LHS.getOpcode();
10371   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10372       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10373     std::swap(RHS, LHS);
10374 
10375   Opc = RHS.getOpcode();
10376   switch (Opc) {
10377   default: break;
10378   case ISD::ZERO_EXTEND:
10379   case ISD::SIGN_EXTEND:
10380   case ISD::ANY_EXTEND: {
10381     auto Cond = RHS.getOperand(0);
10382     // If this won't be a real VOPC output, we would still need to insert an
10383     // extra instruction anyway.
10384     if (!isBoolSGPR(Cond))
10385       break;
10386     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10387     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10388     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10389     return DAG.getNode(Opc, SL, VTList, Args);
10390   }
10391   case ISD::ADDCARRY: {
10392     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10393     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10394     if (!C || C->getZExtValue() != 0) break;
10395     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10396     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10397   }
10398   }
10399   return SDValue();
10400 }
10401 
10402 SDValue SITargetLowering::performSubCombine(SDNode *N,
10403                                             DAGCombinerInfo &DCI) const {
10404   SelectionDAG &DAG = DCI.DAG;
10405   EVT VT = N->getValueType(0);
10406 
10407   if (VT != MVT::i32)
10408     return SDValue();
10409 
10410   SDLoc SL(N);
10411   SDValue LHS = N->getOperand(0);
10412   SDValue RHS = N->getOperand(1);
10413 
10414   // sub x, zext (setcc) => subcarry x, 0, setcc
10415   // sub x, sext (setcc) => addcarry x, 0, setcc
10416   unsigned Opc = RHS.getOpcode();
10417   switch (Opc) {
10418   default: break;
10419   case ISD::ZERO_EXTEND:
10420   case ISD::SIGN_EXTEND:
10421   case ISD::ANY_EXTEND: {
10422     auto Cond = RHS.getOperand(0);
10423     // If this won't be a real VOPC output, we would still need to insert an
10424     // extra instruction anyway.
10425     if (!isBoolSGPR(Cond))
10426       break;
10427     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10428     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10429     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10430     return DAG.getNode(Opc, SL, VTList, Args);
10431   }
10432   }
10433 
10434   if (LHS.getOpcode() == ISD::SUBCARRY) {
10435     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10436     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10437     if (!C || !C->isNullValue())
10438       return SDValue();
10439     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10440     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10441   }
10442   return SDValue();
10443 }
10444 
10445 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10446   DAGCombinerInfo &DCI) const {
10447 
10448   if (N->getValueType(0) != MVT::i32)
10449     return SDValue();
10450 
10451   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10452   if (!C || C->getZExtValue() != 0)
10453     return SDValue();
10454 
10455   SelectionDAG &DAG = DCI.DAG;
10456   SDValue LHS = N->getOperand(0);
10457 
10458   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10459   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10460   unsigned LHSOpc = LHS.getOpcode();
10461   unsigned Opc = N->getOpcode();
10462   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10463       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10464     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10465     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10466   }
10467   return SDValue();
10468 }
10469 
10470 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10471                                              DAGCombinerInfo &DCI) const {
10472   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10473     return SDValue();
10474 
10475   SelectionDAG &DAG = DCI.DAG;
10476   EVT VT = N->getValueType(0);
10477 
10478   SDLoc SL(N);
10479   SDValue LHS = N->getOperand(0);
10480   SDValue RHS = N->getOperand(1);
10481 
10482   // These should really be instruction patterns, but writing patterns with
10483   // source modiifiers is a pain.
10484 
10485   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10486   if (LHS.getOpcode() == ISD::FADD) {
10487     SDValue A = LHS.getOperand(0);
10488     if (A == LHS.getOperand(1)) {
10489       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10490       if (FusedOp != 0) {
10491         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10492         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10493       }
10494     }
10495   }
10496 
10497   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10498   if (RHS.getOpcode() == ISD::FADD) {
10499     SDValue A = RHS.getOperand(0);
10500     if (A == RHS.getOperand(1)) {
10501       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10502       if (FusedOp != 0) {
10503         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10504         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10505       }
10506     }
10507   }
10508 
10509   return SDValue();
10510 }
10511 
10512 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10513                                              DAGCombinerInfo &DCI) const {
10514   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10515     return SDValue();
10516 
10517   SelectionDAG &DAG = DCI.DAG;
10518   SDLoc SL(N);
10519   EVT VT = N->getValueType(0);
10520   assert(!VT.isVector());
10521 
10522   // Try to get the fneg to fold into the source modifier. This undoes generic
10523   // DAG combines and folds them into the mad.
10524   //
10525   // Only do this if we are not trying to support denormals. v_mad_f32 does
10526   // not support denormals ever.
10527   SDValue LHS = N->getOperand(0);
10528   SDValue RHS = N->getOperand(1);
10529   if (LHS.getOpcode() == ISD::FADD) {
10530     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10531     SDValue A = LHS.getOperand(0);
10532     if (A == LHS.getOperand(1)) {
10533       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10534       if (FusedOp != 0){
10535         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10536         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10537 
10538         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10539       }
10540     }
10541   }
10542 
10543   if (RHS.getOpcode() == ISD::FADD) {
10544     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10545 
10546     SDValue A = RHS.getOperand(0);
10547     if (A == RHS.getOperand(1)) {
10548       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10549       if (FusedOp != 0){
10550         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10551         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10552       }
10553     }
10554   }
10555 
10556   return SDValue();
10557 }
10558 
10559 SDValue SITargetLowering::performFMACombine(SDNode *N,
10560                                             DAGCombinerInfo &DCI) const {
10561   SelectionDAG &DAG = DCI.DAG;
10562   EVT VT = N->getValueType(0);
10563   SDLoc SL(N);
10564 
10565   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10566     return SDValue();
10567 
10568   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10569   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10570   SDValue Op1 = N->getOperand(0);
10571   SDValue Op2 = N->getOperand(1);
10572   SDValue FMA = N->getOperand(2);
10573 
10574   if (FMA.getOpcode() != ISD::FMA ||
10575       Op1.getOpcode() != ISD::FP_EXTEND ||
10576       Op2.getOpcode() != ISD::FP_EXTEND)
10577     return SDValue();
10578 
10579   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10580   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10581   // is sufficient to allow generaing fdot2.
10582   const TargetOptions &Options = DAG.getTarget().Options;
10583   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10584       (N->getFlags().hasAllowContract() &&
10585        FMA->getFlags().hasAllowContract())) {
10586     Op1 = Op1.getOperand(0);
10587     Op2 = Op2.getOperand(0);
10588     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10589         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10590       return SDValue();
10591 
10592     SDValue Vec1 = Op1.getOperand(0);
10593     SDValue Idx1 = Op1.getOperand(1);
10594     SDValue Vec2 = Op2.getOperand(0);
10595 
10596     SDValue FMAOp1 = FMA.getOperand(0);
10597     SDValue FMAOp2 = FMA.getOperand(1);
10598     SDValue FMAAcc = FMA.getOperand(2);
10599 
10600     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10601         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10602       return SDValue();
10603 
10604     FMAOp1 = FMAOp1.getOperand(0);
10605     FMAOp2 = FMAOp2.getOperand(0);
10606     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10607         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10608       return SDValue();
10609 
10610     SDValue Vec3 = FMAOp1.getOperand(0);
10611     SDValue Vec4 = FMAOp2.getOperand(0);
10612     SDValue Idx2 = FMAOp1.getOperand(1);
10613 
10614     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10615         // Idx1 and Idx2 cannot be the same.
10616         Idx1 == Idx2)
10617       return SDValue();
10618 
10619     if (Vec1 == Vec2 || Vec3 == Vec4)
10620       return SDValue();
10621 
10622     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10623       return SDValue();
10624 
10625     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10626         (Vec1 == Vec4 && Vec2 == Vec3)) {
10627       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10628                          DAG.getTargetConstant(0, SL, MVT::i1));
10629     }
10630   }
10631   return SDValue();
10632 }
10633 
10634 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10635                                               DAGCombinerInfo &DCI) const {
10636   SelectionDAG &DAG = DCI.DAG;
10637   SDLoc SL(N);
10638 
10639   SDValue LHS = N->getOperand(0);
10640   SDValue RHS = N->getOperand(1);
10641   EVT VT = LHS.getValueType();
10642   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10643 
10644   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10645   if (!CRHS) {
10646     CRHS = dyn_cast<ConstantSDNode>(LHS);
10647     if (CRHS) {
10648       std::swap(LHS, RHS);
10649       CC = getSetCCSwappedOperands(CC);
10650     }
10651   }
10652 
10653   if (CRHS) {
10654     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10655         isBoolSGPR(LHS.getOperand(0))) {
10656       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10657       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10658       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10659       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10660       if ((CRHS->isAllOnesValue() &&
10661            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10662           (CRHS->isNullValue() &&
10663            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10664         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10665                            DAG.getConstant(-1, SL, MVT::i1));
10666       if ((CRHS->isAllOnesValue() &&
10667            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10668           (CRHS->isNullValue() &&
10669            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10670         return LHS.getOperand(0);
10671     }
10672 
10673     uint64_t CRHSVal = CRHS->getZExtValue();
10674     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10675         LHS.getOpcode() == ISD::SELECT &&
10676         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10677         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10678         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10679         isBoolSGPR(LHS.getOperand(0))) {
10680       // Given CT != FT:
10681       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10682       // setcc (select cc, CT, CF), CF, ne => cc
10683       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10684       // setcc (select cc, CT, CF), CT, eq => cc
10685       uint64_t CT = LHS.getConstantOperandVal(1);
10686       uint64_t CF = LHS.getConstantOperandVal(2);
10687 
10688       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10689           (CT == CRHSVal && CC == ISD::SETNE))
10690         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10691                            DAG.getConstant(-1, SL, MVT::i1));
10692       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10693           (CT == CRHSVal && CC == ISD::SETEQ))
10694         return LHS.getOperand(0);
10695     }
10696   }
10697 
10698   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10699                                            VT != MVT::f16))
10700     return SDValue();
10701 
10702   // Match isinf/isfinite pattern
10703   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10704   // (fcmp one (fabs x), inf) -> (fp_class x,
10705   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10706   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10707     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10708     if (!CRHS)
10709       return SDValue();
10710 
10711     const APFloat &APF = CRHS->getValueAPF();
10712     if (APF.isInfinity() && !APF.isNegative()) {
10713       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10714                                  SIInstrFlags::N_INFINITY;
10715       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10716                                     SIInstrFlags::P_ZERO |
10717                                     SIInstrFlags::N_NORMAL |
10718                                     SIInstrFlags::P_NORMAL |
10719                                     SIInstrFlags::N_SUBNORMAL |
10720                                     SIInstrFlags::P_SUBNORMAL;
10721       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10722       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10723                          DAG.getConstant(Mask, SL, MVT::i32));
10724     }
10725   }
10726 
10727   return SDValue();
10728 }
10729 
10730 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10731                                                      DAGCombinerInfo &DCI) const {
10732   SelectionDAG &DAG = DCI.DAG;
10733   SDLoc SL(N);
10734   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10735 
10736   SDValue Src = N->getOperand(0);
10737   SDValue Shift = N->getOperand(0);
10738 
10739   // TODO: Extend type shouldn't matter (assuming legal types).
10740   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10741     Shift = Shift.getOperand(0);
10742 
10743   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10744     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10745     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10746     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10747     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10748     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10749     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10750       Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10751                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10752 
10753       unsigned ShiftOffset = 8 * Offset;
10754       if (Shift.getOpcode() == ISD::SHL)
10755         ShiftOffset -= C->getZExtValue();
10756       else
10757         ShiftOffset += C->getZExtValue();
10758 
10759       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10760         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10761                            MVT::f32, Shift);
10762       }
10763     }
10764   }
10765 
10766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10767   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10768   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10769     // We simplified Src. If this node is not dead, visit it again so it is
10770     // folded properly.
10771     if (N->getOpcode() != ISD::DELETED_NODE)
10772       DCI.AddToWorklist(N);
10773     return SDValue(N, 0);
10774   }
10775 
10776   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10777   if (SDValue DemandedSrc =
10778           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10779     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10780 
10781   return SDValue();
10782 }
10783 
10784 SDValue SITargetLowering::performClampCombine(SDNode *N,
10785                                               DAGCombinerInfo &DCI) const {
10786   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10787   if (!CSrc)
10788     return SDValue();
10789 
10790   const MachineFunction &MF = DCI.DAG.getMachineFunction();
10791   const APFloat &F = CSrc->getValueAPF();
10792   APFloat Zero = APFloat::getZero(F.getSemantics());
10793   if (F < Zero ||
10794       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10795     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10796   }
10797 
10798   APFloat One(F.getSemantics(), "1.0");
10799   if (F > One)
10800     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10801 
10802   return SDValue(CSrc, 0);
10803 }
10804 
10805 
10806 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10807                                             DAGCombinerInfo &DCI) const {
10808   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10809     return SDValue();
10810   switch (N->getOpcode()) {
10811   case ISD::ADD:
10812     return performAddCombine(N, DCI);
10813   case ISD::SUB:
10814     return performSubCombine(N, DCI);
10815   case ISD::ADDCARRY:
10816   case ISD::SUBCARRY:
10817     return performAddCarrySubCarryCombine(N, DCI);
10818   case ISD::FADD:
10819     return performFAddCombine(N, DCI);
10820   case ISD::FSUB:
10821     return performFSubCombine(N, DCI);
10822   case ISD::SETCC:
10823     return performSetCCCombine(N, DCI);
10824   case ISD::FMAXNUM:
10825   case ISD::FMINNUM:
10826   case ISD::FMAXNUM_IEEE:
10827   case ISD::FMINNUM_IEEE:
10828   case ISD::SMAX:
10829   case ISD::SMIN:
10830   case ISD::UMAX:
10831   case ISD::UMIN:
10832   case AMDGPUISD::FMIN_LEGACY:
10833   case AMDGPUISD::FMAX_LEGACY:
10834     return performMinMaxCombine(N, DCI);
10835   case ISD::FMA:
10836     return performFMACombine(N, DCI);
10837   case ISD::AND:
10838     return performAndCombine(N, DCI);
10839   case ISD::OR:
10840     return performOrCombine(N, DCI);
10841   case ISD::XOR:
10842     return performXorCombine(N, DCI);
10843   case ISD::ZERO_EXTEND:
10844     return performZeroExtendCombine(N, DCI);
10845   case ISD::SIGN_EXTEND_INREG:
10846     return performSignExtendInRegCombine(N , DCI);
10847   case AMDGPUISD::FP_CLASS:
10848     return performClassCombine(N, DCI);
10849   case ISD::FCANONICALIZE:
10850     return performFCanonicalizeCombine(N, DCI);
10851   case AMDGPUISD::RCP:
10852     return performRcpCombine(N, DCI);
10853   case AMDGPUISD::FRACT:
10854   case AMDGPUISD::RSQ:
10855   case AMDGPUISD::RCP_LEGACY:
10856   case AMDGPUISD::RCP_IFLAG:
10857   case AMDGPUISD::RSQ_CLAMP:
10858   case AMDGPUISD::LDEXP: {
10859     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10860     SDValue Src = N->getOperand(0);
10861     if (Src.isUndef())
10862       return Src;
10863     break;
10864   }
10865   case ISD::SINT_TO_FP:
10866   case ISD::UINT_TO_FP:
10867     return performUCharToFloatCombine(N, DCI);
10868   case AMDGPUISD::CVT_F32_UBYTE0:
10869   case AMDGPUISD::CVT_F32_UBYTE1:
10870   case AMDGPUISD::CVT_F32_UBYTE2:
10871   case AMDGPUISD::CVT_F32_UBYTE3:
10872     return performCvtF32UByteNCombine(N, DCI);
10873   case AMDGPUISD::FMED3:
10874     return performFMed3Combine(N, DCI);
10875   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10876     return performCvtPkRTZCombine(N, DCI);
10877   case AMDGPUISD::CLAMP:
10878     return performClampCombine(N, DCI);
10879   case ISD::SCALAR_TO_VECTOR: {
10880     SelectionDAG &DAG = DCI.DAG;
10881     EVT VT = N->getValueType(0);
10882 
10883     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10884     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10885       SDLoc SL(N);
10886       SDValue Src = N->getOperand(0);
10887       EVT EltVT = Src.getValueType();
10888       if (EltVT == MVT::f16)
10889         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10890 
10891       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10892       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10893     }
10894 
10895     break;
10896   }
10897   case ISD::EXTRACT_VECTOR_ELT:
10898     return performExtractVectorEltCombine(N, DCI);
10899   case ISD::INSERT_VECTOR_ELT:
10900     return performInsertVectorEltCombine(N, DCI);
10901   case ISD::LOAD: {
10902     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10903       return Widended;
10904     LLVM_FALLTHROUGH;
10905   }
10906   default: {
10907     if (!DCI.isBeforeLegalize()) {
10908       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10909         return performMemSDNodeCombine(MemNode, DCI);
10910     }
10911 
10912     break;
10913   }
10914   }
10915 
10916   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10917 }
10918 
10919 /// Helper function for adjustWritemask
10920 static unsigned SubIdx2Lane(unsigned Idx) {
10921   switch (Idx) {
10922   default: return ~0u;
10923   case AMDGPU::sub0: return 0;
10924   case AMDGPU::sub1: return 1;
10925   case AMDGPU::sub2: return 2;
10926   case AMDGPU::sub3: return 3;
10927   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10928   }
10929 }
10930 
10931 /// Adjust the writemask of MIMG instructions
10932 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10933                                           SelectionDAG &DAG) const {
10934   unsigned Opcode = Node->getMachineOpcode();
10935 
10936   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10937   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10938   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10939     return Node; // not implemented for D16
10940 
10941   SDNode *Users[5] = { nullptr };
10942   unsigned Lane = 0;
10943   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10944   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10945   unsigned NewDmask = 0;
10946   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10947   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10948   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
10949                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10950   unsigned TFCLane = 0;
10951   bool HasChain = Node->getNumValues() > 1;
10952 
10953   if (OldDmask == 0) {
10954     // These are folded out, but on the chance it happens don't assert.
10955     return Node;
10956   }
10957 
10958   unsigned OldBitsSet = countPopulation(OldDmask);
10959   // Work out which is the TFE/LWE lane if that is enabled.
10960   if (UsesTFC) {
10961     TFCLane = OldBitsSet;
10962   }
10963 
10964   // Try to figure out the used register components
10965   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10966        I != E; ++I) {
10967 
10968     // Don't look at users of the chain.
10969     if (I.getUse().getResNo() != 0)
10970       continue;
10971 
10972     // Abort if we can't understand the usage
10973     if (!I->isMachineOpcode() ||
10974         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10975       return Node;
10976 
10977     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10978     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10979     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10980     // set, etc.
10981     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10982     if (Lane == ~0u)
10983       return Node;
10984 
10985     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10986     if (UsesTFC && Lane == TFCLane) {
10987       Users[Lane] = *I;
10988     } else {
10989       // Set which texture component corresponds to the lane.
10990       unsigned Comp;
10991       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10992         Comp = countTrailingZeros(Dmask);
10993         Dmask &= ~(1 << Comp);
10994       }
10995 
10996       // Abort if we have more than one user per component.
10997       if (Users[Lane])
10998         return Node;
10999 
11000       Users[Lane] = *I;
11001       NewDmask |= 1 << Comp;
11002     }
11003   }
11004 
11005   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11006   bool NoChannels = !NewDmask;
11007   if (NoChannels) {
11008     if (!UsesTFC) {
11009       // No uses of the result and not using TFC. Then do nothing.
11010       return Node;
11011     }
11012     // If the original dmask has one channel - then nothing to do
11013     if (OldBitsSet == 1)
11014       return Node;
11015     // Use an arbitrary dmask - required for the instruction to work
11016     NewDmask = 1;
11017   }
11018   // Abort if there's no change
11019   if (NewDmask == OldDmask)
11020     return Node;
11021 
11022   unsigned BitsSet = countPopulation(NewDmask);
11023 
11024   // Check for TFE or LWE - increase the number of channels by one to account
11025   // for the extra return value
11026   // This will need adjustment for D16 if this is also included in
11027   // adjustWriteMask (this function) but at present D16 are excluded.
11028   unsigned NewChannels = BitsSet + UsesTFC;
11029 
11030   int NewOpcode =
11031       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11032   assert(NewOpcode != -1 &&
11033          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11034          "failed to find equivalent MIMG op");
11035 
11036   // Adjust the writemask in the node
11037   SmallVector<SDValue, 12> Ops;
11038   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11039   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11040   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11041 
11042   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11043 
11044   MVT ResultVT = NewChannels == 1 ?
11045     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11046                            NewChannels == 5 ? 8 : NewChannels);
11047   SDVTList NewVTList = HasChain ?
11048     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11049 
11050 
11051   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11052                                               NewVTList, Ops);
11053 
11054   if (HasChain) {
11055     // Update chain.
11056     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11057     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11058   }
11059 
11060   if (NewChannels == 1) {
11061     assert(Node->hasNUsesOfValue(1, 0));
11062     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11063                                       SDLoc(Node), Users[Lane]->getValueType(0),
11064                                       SDValue(NewNode, 0));
11065     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11066     return nullptr;
11067   }
11068 
11069   // Update the users of the node with the new indices
11070   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11071     SDNode *User = Users[i];
11072     if (!User) {
11073       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11074       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11075       if (i || !NoChannels)
11076         continue;
11077     } else {
11078       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11079       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11080     }
11081 
11082     switch (Idx) {
11083     default: break;
11084     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11085     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11086     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11087     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11088     }
11089   }
11090 
11091   DAG.RemoveDeadNode(Node);
11092   return nullptr;
11093 }
11094 
11095 static bool isFrameIndexOp(SDValue Op) {
11096   if (Op.getOpcode() == ISD::AssertZext)
11097     Op = Op.getOperand(0);
11098 
11099   return isa<FrameIndexSDNode>(Op);
11100 }
11101 
11102 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11103 /// with frame index operands.
11104 /// LLVM assumes that inputs are to these instructions are registers.
11105 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11106                                                         SelectionDAG &DAG) const {
11107   if (Node->getOpcode() == ISD::CopyToReg) {
11108     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11109     SDValue SrcVal = Node->getOperand(2);
11110 
11111     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11112     // to try understanding copies to physical registers.
11113     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11114       SDLoc SL(Node);
11115       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11116       SDValue VReg = DAG.getRegister(
11117         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11118 
11119       SDNode *Glued = Node->getGluedNode();
11120       SDValue ToVReg
11121         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11122                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11123       SDValue ToResultReg
11124         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11125                            VReg, ToVReg.getValue(1));
11126       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11127       DAG.RemoveDeadNode(Node);
11128       return ToResultReg.getNode();
11129     }
11130   }
11131 
11132   SmallVector<SDValue, 8> Ops;
11133   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11134     if (!isFrameIndexOp(Node->getOperand(i))) {
11135       Ops.push_back(Node->getOperand(i));
11136       continue;
11137     }
11138 
11139     SDLoc DL(Node);
11140     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11141                                      Node->getOperand(i).getValueType(),
11142                                      Node->getOperand(i)), 0));
11143   }
11144 
11145   return DAG.UpdateNodeOperands(Node, Ops);
11146 }
11147 
11148 /// Fold the instructions after selecting them.
11149 /// Returns null if users were already updated.
11150 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11151                                           SelectionDAG &DAG) const {
11152   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11153   unsigned Opcode = Node->getMachineOpcode();
11154 
11155   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11156       !TII->isGather4(Opcode) &&
11157       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11158     return adjustWritemask(Node, DAG);
11159   }
11160 
11161   if (Opcode == AMDGPU::INSERT_SUBREG ||
11162       Opcode == AMDGPU::REG_SEQUENCE) {
11163     legalizeTargetIndependentNode(Node, DAG);
11164     return Node;
11165   }
11166 
11167   switch (Opcode) {
11168   case AMDGPU::V_DIV_SCALE_F32_e64:
11169   case AMDGPU::V_DIV_SCALE_F64_e64: {
11170     // Satisfy the operand register constraint when one of the inputs is
11171     // undefined. Ordinarily each undef value will have its own implicit_def of
11172     // a vreg, so force these to use a single register.
11173     SDValue Src0 = Node->getOperand(1);
11174     SDValue Src1 = Node->getOperand(3);
11175     SDValue Src2 = Node->getOperand(5);
11176 
11177     if ((Src0.isMachineOpcode() &&
11178          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11179         (Src0 == Src1 || Src0 == Src2))
11180       break;
11181 
11182     MVT VT = Src0.getValueType().getSimpleVT();
11183     const TargetRegisterClass *RC =
11184         getRegClassFor(VT, Src0.getNode()->isDivergent());
11185 
11186     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11187     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11188 
11189     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11190                                       UndefReg, Src0, SDValue());
11191 
11192     // src0 must be the same register as src1 or src2, even if the value is
11193     // undefined, so make sure we don't violate this constraint.
11194     if (Src0.isMachineOpcode() &&
11195         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11196       if (Src1.isMachineOpcode() &&
11197           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11198         Src0 = Src1;
11199       else if (Src2.isMachineOpcode() &&
11200                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11201         Src0 = Src2;
11202       else {
11203         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11204         Src0 = UndefReg;
11205         Src1 = UndefReg;
11206       }
11207     } else
11208       break;
11209 
11210     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11211     Ops[1] = Src0;
11212     Ops[3] = Src1;
11213     Ops[5] = Src2;
11214     Ops.push_back(ImpDef.getValue(1));
11215     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11216   }
11217   default:
11218     break;
11219   }
11220 
11221   return Node;
11222 }
11223 
11224 // Any MIMG instructions that use tfe or lwe require an initialization of the
11225 // result register that will be written in the case of a memory access failure.
11226 // The required code is also added to tie this init code to the result of the
11227 // img instruction.
11228 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11229   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11230   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11231   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11232   MachineBasicBlock &MBB = *MI.getParent();
11233 
11234   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11235   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11236   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11237 
11238   if (!TFE && !LWE) // intersect_ray
11239     return;
11240 
11241   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11242   unsigned LWEVal = LWE->getImm();
11243   unsigned D16Val = D16 ? D16->getImm() : 0;
11244 
11245   if (!TFEVal && !LWEVal)
11246     return;
11247 
11248   // At least one of TFE or LWE are non-zero
11249   // We have to insert a suitable initialization of the result value and
11250   // tie this to the dest of the image instruction.
11251 
11252   const DebugLoc &DL = MI.getDebugLoc();
11253 
11254   int DstIdx =
11255       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11256 
11257   // Calculate which dword we have to initialize to 0.
11258   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11259 
11260   // check that dmask operand is found.
11261   assert(MO_Dmask && "Expected dmask operand in instruction");
11262 
11263   unsigned dmask = MO_Dmask->getImm();
11264   // Determine the number of active lanes taking into account the
11265   // Gather4 special case
11266   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11267 
11268   bool Packed = !Subtarget->hasUnpackedD16VMem();
11269 
11270   unsigned InitIdx =
11271       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11272 
11273   // Abandon attempt if the dst size isn't large enough
11274   // - this is in fact an error but this is picked up elsewhere and
11275   // reported correctly.
11276   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11277   if (DstSize < InitIdx)
11278     return;
11279 
11280   // Create a register for the intialization value.
11281   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11282   unsigned NewDst = 0; // Final initialized value will be in here
11283 
11284   // If PRTStrictNull feature is enabled (the default) then initialize
11285   // all the result registers to 0, otherwise just the error indication
11286   // register (VGPRn+1)
11287   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11288   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11289 
11290   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11291   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11292     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11293     // Initialize dword
11294     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11295     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11296       .addImm(0);
11297     // Insert into the super-reg
11298     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11299       .addReg(PrevDst)
11300       .addReg(SubReg)
11301       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11302 
11303     PrevDst = NewDst;
11304   }
11305 
11306   // Add as an implicit operand
11307   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11308 
11309   // Tie the just added implicit operand to the dst
11310   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11311 }
11312 
11313 /// Assign the register class depending on the number of
11314 /// bits set in the writemask
11315 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11316                                                      SDNode *Node) const {
11317   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11318 
11319   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11320 
11321   if (TII->isVOP3(MI.getOpcode())) {
11322     // Make sure constant bus requirements are respected.
11323     TII->legalizeOperandsVOP3(MRI, MI);
11324 
11325     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11326     // This saves a chain-copy of registers and better ballance register
11327     // use between vgpr and agpr as agpr tuples tend to be big.
11328     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11329       unsigned Opc = MI.getOpcode();
11330       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11331       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11332                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11333         if (I == -1)
11334           break;
11335         MachineOperand &Op = MI.getOperand(I);
11336         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11337              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11338             !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11339           continue;
11340         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11341         if (!Src || !Src->isCopy() ||
11342             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11343           continue;
11344         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11345         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11346         // All uses of agpr64 and agpr32 can also accept vgpr except for
11347         // v_accvgpr_read, but we do not produce agpr reads during selection,
11348         // so no use checks are needed.
11349         MRI.setRegClass(Op.getReg(), NewRC);
11350       }
11351     }
11352 
11353     return;
11354   }
11355 
11356   // Replace unused atomics with the no return version.
11357   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11358   if (NoRetAtomicOp != -1) {
11359     if (!Node->hasAnyUseOfValue(0)) {
11360       int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11361                                                AMDGPU::OpName::cpol);
11362       if (CPolIdx != -1) {
11363         MachineOperand &CPol = MI.getOperand(CPolIdx);
11364         CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11365       }
11366       MI.RemoveOperand(0);
11367       MI.setDesc(TII->get(NoRetAtomicOp));
11368       return;
11369     }
11370 
11371     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11372     // instruction, because the return type of these instructions is a vec2 of
11373     // the memory type, so it can be tied to the input operand.
11374     // This means these instructions always have a use, so we need to add a
11375     // special case to check if the atomic has only one extract_subreg use,
11376     // which itself has no uses.
11377     if ((Node->hasNUsesOfValue(1, 0) &&
11378          Node->use_begin()->isMachineOpcode() &&
11379          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11380          !Node->use_begin()->hasAnyUseOfValue(0))) {
11381       Register Def = MI.getOperand(0).getReg();
11382 
11383       // Change this into a noret atomic.
11384       MI.setDesc(TII->get(NoRetAtomicOp));
11385       MI.RemoveOperand(0);
11386 
11387       // If we only remove the def operand from the atomic instruction, the
11388       // extract_subreg will be left with a use of a vreg without a def.
11389       // So we need to insert an implicit_def to avoid machine verifier
11390       // errors.
11391       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11392               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11393     }
11394     return;
11395   }
11396 
11397   if (TII->isMIMG(MI) && !MI.mayStore())
11398     AddIMGInit(MI);
11399 }
11400 
11401 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11402                               uint64_t Val) {
11403   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11404   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11405 }
11406 
11407 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11408                                                 const SDLoc &DL,
11409                                                 SDValue Ptr) const {
11410   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11411 
11412   // Build the half of the subregister with the constants before building the
11413   // full 128-bit register. If we are building multiple resource descriptors,
11414   // this will allow CSEing of the 2-component register.
11415   const SDValue Ops0[] = {
11416     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11417     buildSMovImm32(DAG, DL, 0),
11418     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11419     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11420     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11421   };
11422 
11423   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11424                                                 MVT::v2i32, Ops0), 0);
11425 
11426   // Combine the constants and the pointer.
11427   const SDValue Ops1[] = {
11428     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11429     Ptr,
11430     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11431     SubRegHi,
11432     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11433   };
11434 
11435   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11436 }
11437 
11438 /// Return a resource descriptor with the 'Add TID' bit enabled
11439 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11440 ///        of the resource descriptor) to create an offset, which is added to
11441 ///        the resource pointer.
11442 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11443                                            SDValue Ptr, uint32_t RsrcDword1,
11444                                            uint64_t RsrcDword2And3) const {
11445   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11446   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11447   if (RsrcDword1) {
11448     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11449                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11450                     0);
11451   }
11452 
11453   SDValue DataLo = buildSMovImm32(DAG, DL,
11454                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11455   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11456 
11457   const SDValue Ops[] = {
11458     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11459     PtrLo,
11460     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11461     PtrHi,
11462     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11463     DataLo,
11464     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11465     DataHi,
11466     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11467   };
11468 
11469   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11470 }
11471 
11472 //===----------------------------------------------------------------------===//
11473 //                         SI Inline Assembly Support
11474 //===----------------------------------------------------------------------===//
11475 
11476 std::pair<unsigned, const TargetRegisterClass *>
11477 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11478                                                StringRef Constraint,
11479                                                MVT VT) const {
11480   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11481 
11482   const TargetRegisterClass *RC = nullptr;
11483   if (Constraint.size() == 1) {
11484     const unsigned BitWidth = VT.getSizeInBits();
11485     switch (Constraint[0]) {
11486     default:
11487       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11488     case 's':
11489     case 'r':
11490       switch (BitWidth) {
11491       case 16:
11492         RC = &AMDGPU::SReg_32RegClass;
11493         break;
11494       case 64:
11495         RC = &AMDGPU::SGPR_64RegClass;
11496         break;
11497       default:
11498         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11499         if (!RC)
11500           return std::make_pair(0U, nullptr);
11501         break;
11502       }
11503       break;
11504     case 'v':
11505       switch (BitWidth) {
11506       case 16:
11507         RC = &AMDGPU::VGPR_32RegClass;
11508         break;
11509       default:
11510         RC = TRI->getVGPRClassForBitWidth(BitWidth);
11511         if (!RC)
11512           return std::make_pair(0U, nullptr);
11513         break;
11514       }
11515       break;
11516     case 'a':
11517       if (!Subtarget->hasMAIInsts())
11518         break;
11519       switch (BitWidth) {
11520       case 16:
11521         RC = &AMDGPU::AGPR_32RegClass;
11522         break;
11523       default:
11524         RC = TRI->getAGPRClassForBitWidth(BitWidth);
11525         if (!RC)
11526           return std::make_pair(0U, nullptr);
11527         break;
11528       }
11529       break;
11530     }
11531     // We actually support i128, i16 and f16 as inline parameters
11532     // even if they are not reported as legal
11533     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11534                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11535       return std::make_pair(0U, RC);
11536   }
11537 
11538   if (Constraint.size() > 1) {
11539     if (Constraint[1] == 'v') {
11540       RC = &AMDGPU::VGPR_32RegClass;
11541     } else if (Constraint[1] == 's') {
11542       RC = &AMDGPU::SGPR_32RegClass;
11543     } else if (Constraint[1] == 'a') {
11544       RC = &AMDGPU::AGPR_32RegClass;
11545     }
11546 
11547     if (RC) {
11548       uint32_t Idx;
11549       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11550       if (!Failed && Idx < RC->getNumRegs())
11551         return std::make_pair(RC->getRegister(Idx), RC);
11552     }
11553   }
11554 
11555   // FIXME: Returns VS_32 for physical SGPR constraints
11556   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11557 }
11558 
11559 static bool isImmConstraint(StringRef Constraint) {
11560   if (Constraint.size() == 1) {
11561     switch (Constraint[0]) {
11562     default: break;
11563     case 'I':
11564     case 'J':
11565     case 'A':
11566     case 'B':
11567     case 'C':
11568       return true;
11569     }
11570   } else if (Constraint == "DA" ||
11571              Constraint == "DB") {
11572     return true;
11573   }
11574   return false;
11575 }
11576 
11577 SITargetLowering::ConstraintType
11578 SITargetLowering::getConstraintType(StringRef Constraint) const {
11579   if (Constraint.size() == 1) {
11580     switch (Constraint[0]) {
11581     default: break;
11582     case 's':
11583     case 'v':
11584     case 'a':
11585       return C_RegisterClass;
11586     }
11587   }
11588   if (isImmConstraint(Constraint)) {
11589     return C_Other;
11590   }
11591   return TargetLowering::getConstraintType(Constraint);
11592 }
11593 
11594 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11595   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11596     Val = Val & maskTrailingOnes<uint64_t>(Size);
11597   }
11598   return Val;
11599 }
11600 
11601 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11602                                                     std::string &Constraint,
11603                                                     std::vector<SDValue> &Ops,
11604                                                     SelectionDAG &DAG) const {
11605   if (isImmConstraint(Constraint)) {
11606     uint64_t Val;
11607     if (getAsmOperandConstVal(Op, Val) &&
11608         checkAsmConstraintVal(Op, Constraint, Val)) {
11609       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11610       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11611     }
11612   } else {
11613     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11614   }
11615 }
11616 
11617 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11618   unsigned Size = Op.getScalarValueSizeInBits();
11619   if (Size > 64)
11620     return false;
11621 
11622   if (Size == 16 && !Subtarget->has16BitInsts())
11623     return false;
11624 
11625   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11626     Val = C->getSExtValue();
11627     return true;
11628   }
11629   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11630     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11631     return true;
11632   }
11633   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11634     if (Size != 16 || Op.getNumOperands() != 2)
11635       return false;
11636     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11637       return false;
11638     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11639       Val = C->getSExtValue();
11640       return true;
11641     }
11642     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11643       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11644       return true;
11645     }
11646   }
11647 
11648   return false;
11649 }
11650 
11651 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11652                                              const std::string &Constraint,
11653                                              uint64_t Val) const {
11654   if (Constraint.size() == 1) {
11655     switch (Constraint[0]) {
11656     case 'I':
11657       return AMDGPU::isInlinableIntLiteral(Val);
11658     case 'J':
11659       return isInt<16>(Val);
11660     case 'A':
11661       return checkAsmConstraintValA(Op, Val);
11662     case 'B':
11663       return isInt<32>(Val);
11664     case 'C':
11665       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11666              AMDGPU::isInlinableIntLiteral(Val);
11667     default:
11668       break;
11669     }
11670   } else if (Constraint.size() == 2) {
11671     if (Constraint == "DA") {
11672       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11673       int64_t LoBits = static_cast<int32_t>(Val);
11674       return checkAsmConstraintValA(Op, HiBits, 32) &&
11675              checkAsmConstraintValA(Op, LoBits, 32);
11676     }
11677     if (Constraint == "DB") {
11678       return true;
11679     }
11680   }
11681   llvm_unreachable("Invalid asm constraint");
11682 }
11683 
11684 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11685                                               uint64_t Val,
11686                                               unsigned MaxSize) const {
11687   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11688   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11689   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11690       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11691       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11692     return true;
11693   }
11694   return false;
11695 }
11696 
11697 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
11698   switch (UnalignedClassID) {
11699   case AMDGPU::VReg_64RegClassID:
11700     return AMDGPU::VReg_64_Align2RegClassID;
11701   case AMDGPU::VReg_96RegClassID:
11702     return AMDGPU::VReg_96_Align2RegClassID;
11703   case AMDGPU::VReg_128RegClassID:
11704     return AMDGPU::VReg_128_Align2RegClassID;
11705   case AMDGPU::VReg_160RegClassID:
11706     return AMDGPU::VReg_160_Align2RegClassID;
11707   case AMDGPU::VReg_192RegClassID:
11708     return AMDGPU::VReg_192_Align2RegClassID;
11709   case AMDGPU::VReg_224RegClassID:
11710     return AMDGPU::VReg_224_Align2RegClassID;
11711   case AMDGPU::VReg_256RegClassID:
11712     return AMDGPU::VReg_256_Align2RegClassID;
11713   case AMDGPU::VReg_512RegClassID:
11714     return AMDGPU::VReg_512_Align2RegClassID;
11715   case AMDGPU::VReg_1024RegClassID:
11716     return AMDGPU::VReg_1024_Align2RegClassID;
11717   case AMDGPU::AReg_64RegClassID:
11718     return AMDGPU::AReg_64_Align2RegClassID;
11719   case AMDGPU::AReg_96RegClassID:
11720     return AMDGPU::AReg_96_Align2RegClassID;
11721   case AMDGPU::AReg_128RegClassID:
11722     return AMDGPU::AReg_128_Align2RegClassID;
11723   case AMDGPU::AReg_160RegClassID:
11724     return AMDGPU::AReg_160_Align2RegClassID;
11725   case AMDGPU::AReg_192RegClassID:
11726     return AMDGPU::AReg_192_Align2RegClassID;
11727   case AMDGPU::AReg_256RegClassID:
11728     return AMDGPU::AReg_256_Align2RegClassID;
11729   case AMDGPU::AReg_512RegClassID:
11730     return AMDGPU::AReg_512_Align2RegClassID;
11731   case AMDGPU::AReg_1024RegClassID:
11732     return AMDGPU::AReg_1024_Align2RegClassID;
11733   default:
11734     return -1;
11735   }
11736 }
11737 
11738 // Figure out which registers should be reserved for stack access. Only after
11739 // the function is legalized do we know all of the non-spill stack objects or if
11740 // calls are present.
11741 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11742   MachineRegisterInfo &MRI = MF.getRegInfo();
11743   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11744   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11745   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11746   const SIInstrInfo *TII = ST.getInstrInfo();
11747 
11748   if (Info->isEntryFunction()) {
11749     // Callable functions have fixed registers used for stack access.
11750     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11751   }
11752 
11753   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11754                              Info->getStackPtrOffsetReg()));
11755   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11756     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11757 
11758   // We need to worry about replacing the default register with itself in case
11759   // of MIR testcases missing the MFI.
11760   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11761     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11762 
11763   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11764     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11765 
11766   Info->limitOccupancy(MF);
11767 
11768   if (ST.isWave32() && !MF.empty()) {
11769     for (auto &MBB : MF) {
11770       for (auto &MI : MBB) {
11771         TII->fixImplicitOperands(MI);
11772       }
11773     }
11774   }
11775 
11776   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
11777   // classes if required. Ideally the register class constraints would differ
11778   // per-subtarget, but there's no easy way to achieve that right now. This is
11779   // not a problem for VGPRs because the correctly aligned VGPR class is implied
11780   // from using them as the register class for legal types.
11781   if (ST.needsAlignedVGPRs()) {
11782     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
11783       const Register Reg = Register::index2VirtReg(I);
11784       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
11785       if (!RC)
11786         continue;
11787       int NewClassID = getAlignedAGPRClassID(RC->getID());
11788       if (NewClassID != -1)
11789         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
11790     }
11791   }
11792 
11793   TargetLoweringBase::finalizeLowering(MF);
11794 
11795   // Allocate a VGPR for future SGPR Spill if
11796   // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11797   // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11798   if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() &&
11799       !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction())
11800     Info->reserveVGPRforSGPRSpills(MF);
11801 }
11802 
11803 void SITargetLowering::computeKnownBitsForFrameIndex(
11804   const int FI, KnownBits &Known, const MachineFunction &MF) const {
11805   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11806 
11807   // Set the high bits to zero based on the maximum allowed scratch size per
11808   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11809   // calculation won't overflow, so assume the sign bit is never set.
11810   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11811 }
11812 
11813 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11814                                    KnownBits &Known, unsigned Dim) {
11815   unsigned MaxValue =
11816       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11817   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11818 }
11819 
11820 void SITargetLowering::computeKnownBitsForTargetInstr(
11821     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11822     const MachineRegisterInfo &MRI, unsigned Depth) const {
11823   const MachineInstr *MI = MRI.getVRegDef(R);
11824   switch (MI->getOpcode()) {
11825   case AMDGPU::G_INTRINSIC: {
11826     switch (MI->getIntrinsicID()) {
11827     case Intrinsic::amdgcn_workitem_id_x:
11828       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11829       break;
11830     case Intrinsic::amdgcn_workitem_id_y:
11831       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11832       break;
11833     case Intrinsic::amdgcn_workitem_id_z:
11834       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11835       break;
11836     case Intrinsic::amdgcn_mbcnt_lo:
11837     case Intrinsic::amdgcn_mbcnt_hi: {
11838       // These return at most the wavefront size - 1.
11839       unsigned Size = MRI.getType(R).getSizeInBits();
11840       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11841       break;
11842     }
11843     case Intrinsic::amdgcn_groupstaticsize: {
11844       // We can report everything over the maximum size as 0. We can't report
11845       // based on the actual size because we don't know if it's accurate or not
11846       // at any given point.
11847       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11848       break;
11849     }
11850     }
11851     break;
11852   }
11853   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11854     Known.Zero.setHighBits(24);
11855     break;
11856   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11857     Known.Zero.setHighBits(16);
11858     break;
11859   }
11860 }
11861 
11862 Align SITargetLowering::computeKnownAlignForTargetInstr(
11863   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11864   unsigned Depth) const {
11865   const MachineInstr *MI = MRI.getVRegDef(R);
11866   switch (MI->getOpcode()) {
11867   case AMDGPU::G_INTRINSIC:
11868   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11869     // FIXME: Can this move to generic code? What about the case where the call
11870     // site specifies a lower alignment?
11871     Intrinsic::ID IID = MI->getIntrinsicID();
11872     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11873     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11874     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11875       return *RetAlign;
11876     return Align(1);
11877   }
11878   default:
11879     return Align(1);
11880   }
11881 }
11882 
11883 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11884   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11885   const Align CacheLineAlign = Align(64);
11886 
11887   // Pre-GFX10 target did not benefit from loop alignment
11888   if (!ML || DisableLoopAlignment ||
11889       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11890       getSubtarget()->hasInstFwdPrefetchBug())
11891     return PrefAlign;
11892 
11893   // On GFX10 I$ is 4 x 64 bytes cache lines.
11894   // By default prefetcher keeps one cache line behind and reads two ahead.
11895   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11896   // behind and one ahead.
11897   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11898   // If loop fits 64 bytes it always spans no more than two cache lines and
11899   // does not need an alignment.
11900   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11901   // Else if loop is less or equal 192 bytes we need two lines behind.
11902 
11903   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11904   const MachineBasicBlock *Header = ML->getHeader();
11905   if (Header->getAlignment() != PrefAlign)
11906     return Header->getAlignment(); // Already processed.
11907 
11908   unsigned LoopSize = 0;
11909   for (const MachineBasicBlock *MBB : ML->blocks()) {
11910     // If inner loop block is aligned assume in average half of the alignment
11911     // size to be added as nops.
11912     if (MBB != Header)
11913       LoopSize += MBB->getAlignment().value() / 2;
11914 
11915     for (const MachineInstr &MI : *MBB) {
11916       LoopSize += TII->getInstSizeInBytes(MI);
11917       if (LoopSize > 192)
11918         return PrefAlign;
11919     }
11920   }
11921 
11922   if (LoopSize <= 64)
11923     return PrefAlign;
11924 
11925   if (LoopSize <= 128)
11926     return CacheLineAlign;
11927 
11928   // If any of parent loops is surrounded by prefetch instructions do not
11929   // insert new for inner loop, which would reset parent's settings.
11930   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11931     if (MachineBasicBlock *Exit = P->getExitBlock()) {
11932       auto I = Exit->getFirstNonDebugInstr();
11933       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11934         return CacheLineAlign;
11935     }
11936   }
11937 
11938   MachineBasicBlock *Pre = ML->getLoopPreheader();
11939   MachineBasicBlock *Exit = ML->getExitBlock();
11940 
11941   if (Pre && Exit) {
11942     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11943             TII->get(AMDGPU::S_INST_PREFETCH))
11944       .addImm(1); // prefetch 2 lines behind PC
11945 
11946     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11947             TII->get(AMDGPU::S_INST_PREFETCH))
11948       .addImm(2); // prefetch 1 line behind PC
11949   }
11950 
11951   return CacheLineAlign;
11952 }
11953 
11954 LLVM_ATTRIBUTE_UNUSED
11955 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11956   assert(N->getOpcode() == ISD::CopyFromReg);
11957   do {
11958     // Follow the chain until we find an INLINEASM node.
11959     N = N->getOperand(0).getNode();
11960     if (N->getOpcode() == ISD::INLINEASM ||
11961         N->getOpcode() == ISD::INLINEASM_BR)
11962       return true;
11963   } while (N->getOpcode() == ISD::CopyFromReg);
11964   return false;
11965 }
11966 
11967 bool SITargetLowering::isSDNodeSourceOfDivergence(
11968     const SDNode *N, FunctionLoweringInfo *FLI,
11969     LegacyDivergenceAnalysis *KDA) const {
11970   switch (N->getOpcode()) {
11971   case ISD::CopyFromReg: {
11972     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11973     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11974     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11975     Register Reg = R->getReg();
11976 
11977     // FIXME: Why does this need to consider isLiveIn?
11978     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11979       return !TRI->isSGPRReg(MRI, Reg);
11980 
11981     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11982       return KDA->isDivergent(V);
11983 
11984     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
11985     return !TRI->isSGPRReg(MRI, Reg);
11986   }
11987   case ISD::LOAD: {
11988     const LoadSDNode *L = cast<LoadSDNode>(N);
11989     unsigned AS = L->getAddressSpace();
11990     // A flat load may access private memory.
11991     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11992   }
11993   case ISD::CALLSEQ_END:
11994     return true;
11995   case ISD::INTRINSIC_WO_CHAIN:
11996     return AMDGPU::isIntrinsicSourceOfDivergence(
11997         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11998   case ISD::INTRINSIC_W_CHAIN:
11999     return AMDGPU::isIntrinsicSourceOfDivergence(
12000         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12001   case AMDGPUISD::ATOMIC_CMP_SWAP:
12002   case AMDGPUISD::ATOMIC_INC:
12003   case AMDGPUISD::ATOMIC_DEC:
12004   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12005   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12006   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12007   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12008   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12009   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12010   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12011   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12012   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12013   case AMDGPUISD::BUFFER_ATOMIC_AND:
12014   case AMDGPUISD::BUFFER_ATOMIC_OR:
12015   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12016   case AMDGPUISD::BUFFER_ATOMIC_INC:
12017   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12018   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12019   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12020   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12021   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12022   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12023     // Target-specific read-modify-write atomics are sources of divergence.
12024     return true;
12025   default:
12026     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12027       // Generic read-modify-write atomics are sources of divergence.
12028       return A->readMem() && A->writeMem();
12029     }
12030     return false;
12031   }
12032 }
12033 
12034 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12035                                                EVT VT) const {
12036   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12037   case MVT::f32:
12038     return hasFP32Denormals(DAG.getMachineFunction());
12039   case MVT::f64:
12040   case MVT::f16:
12041     return hasFP64FP16Denormals(DAG.getMachineFunction());
12042   default:
12043     return false;
12044   }
12045 }
12046 
12047 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12048                                                MachineFunction &MF) const {
12049   switch (Ty.getScalarSizeInBits()) {
12050   case 32:
12051     return hasFP32Denormals(MF);
12052   case 64:
12053   case 16:
12054     return hasFP64FP16Denormals(MF);
12055   default:
12056     return false;
12057   }
12058 }
12059 
12060 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12061                                                     const SelectionDAG &DAG,
12062                                                     bool SNaN,
12063                                                     unsigned Depth) const {
12064   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12065     const MachineFunction &MF = DAG.getMachineFunction();
12066     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12067 
12068     if (Info->getMode().DX10Clamp)
12069       return true; // Clamped to 0.
12070     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12071   }
12072 
12073   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12074                                                             SNaN, Depth);
12075 }
12076 
12077 // Global FP atomic instructions have a hardcoded FP mode and do not support
12078 // FP32 denormals, and only support v2f16 denormals.
12079 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12080   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12081   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12082   if (&Flt == &APFloat::IEEEsingle())
12083     return DenormMode == DenormalMode::getPreserveSign();
12084   return DenormMode == DenormalMode::getIEEE();
12085 }
12086 
12087 TargetLowering::AtomicExpansionKind
12088 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12089   switch (RMW->getOperation()) {
12090   case AtomicRMWInst::FAdd: {
12091     Type *Ty = RMW->getType();
12092 
12093     // We don't have a way to support 16-bit atomics now, so just leave them
12094     // as-is.
12095     if (Ty->isHalfTy())
12096       return AtomicExpansionKind::None;
12097 
12098     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12099       return AtomicExpansionKind::CmpXChg;
12100 
12101     unsigned AS = RMW->getPointerAddressSpace();
12102 
12103     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12104          Subtarget->hasAtomicFaddInsts()) {
12105       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12106       // floating point atomic instructions. May generate more efficient code,
12107       // but may not respect rounding and denormal modes, and may give incorrect
12108       // results for certain memory destinations.
12109       if (RMW->getFunction()
12110               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12111               .getValueAsString() != "true")
12112         return AtomicExpansionKind::CmpXChg;
12113 
12114       if (Subtarget->hasGFX90AInsts()) {
12115         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12116           return AtomicExpansionKind::CmpXChg;
12117 
12118         auto SSID = RMW->getSyncScopeID();
12119         if (SSID == SyncScope::System ||
12120             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12121           return AtomicExpansionKind::CmpXChg;
12122 
12123         return AtomicExpansionKind::None;
12124       }
12125 
12126       if (AS == AMDGPUAS::FLAT_ADDRESS)
12127         return AtomicExpansionKind::CmpXChg;
12128 
12129       return RMW->use_empty() ? AtomicExpansionKind::None
12130                               : AtomicExpansionKind::CmpXChg;
12131     }
12132 
12133     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12134     // to round-to-nearest-even.
12135     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12136     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) {
12137       if (!Ty->isDoubleTy())
12138         return AtomicExpansionKind::None;
12139 
12140       return (fpModeMatchesGlobalFPAtomicMode(RMW) ||
12141               RMW->getFunction()
12142                       ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12143                       .getValueAsString() == "true")
12144                  ? AtomicExpansionKind::None
12145                  : AtomicExpansionKind::CmpXChg;
12146     }
12147 
12148     return AtomicExpansionKind::CmpXChg;
12149   }
12150   default:
12151     break;
12152   }
12153 
12154   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12155 }
12156 
12157 const TargetRegisterClass *
12158 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12159   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12160   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12161   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12162     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12163                                                : &AMDGPU::SReg_32RegClass;
12164   if (!TRI->isSGPRClass(RC) && !isDivergent)
12165     return TRI->getEquivalentSGPRClass(RC);
12166   else if (TRI->isSGPRClass(RC) && isDivergent)
12167     return TRI->getEquivalentVGPRClass(RC);
12168 
12169   return RC;
12170 }
12171 
12172 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12173 // uniform values (as produced by the mask results of control flow intrinsics)
12174 // used outside of divergent blocks. The phi users need to also be treated as
12175 // always uniform.
12176 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12177                       unsigned WaveSize) {
12178   // FIXME: We asssume we never cast the mask results of a control flow
12179   // intrinsic.
12180   // Early exit if the type won't be consistent as a compile time hack.
12181   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12182   if (!IT || IT->getBitWidth() != WaveSize)
12183     return false;
12184 
12185   if (!isa<Instruction>(V))
12186     return false;
12187   if (!Visited.insert(V).second)
12188     return false;
12189   bool Result = false;
12190   for (auto U : V->users()) {
12191     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12192       if (V == U->getOperand(1)) {
12193         switch (Intrinsic->getIntrinsicID()) {
12194         default:
12195           Result = false;
12196           break;
12197         case Intrinsic::amdgcn_if_break:
12198         case Intrinsic::amdgcn_if:
12199         case Intrinsic::amdgcn_else:
12200           Result = true;
12201           break;
12202         }
12203       }
12204       if (V == U->getOperand(0)) {
12205         switch (Intrinsic->getIntrinsicID()) {
12206         default:
12207           Result = false;
12208           break;
12209         case Intrinsic::amdgcn_end_cf:
12210         case Intrinsic::amdgcn_loop:
12211           Result = true;
12212           break;
12213         }
12214       }
12215     } else {
12216       Result = hasCFUser(U, Visited, WaveSize);
12217     }
12218     if (Result)
12219       break;
12220   }
12221   return Result;
12222 }
12223 
12224 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12225                                                const Value *V) const {
12226   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12227     if (CI->isInlineAsm()) {
12228       // FIXME: This cannot give a correct answer. This should only trigger in
12229       // the case where inline asm returns mixed SGPR and VGPR results, used
12230       // outside the defining block. We don't have a specific result to
12231       // consider, so this assumes if any value is SGPR, the overall register
12232       // also needs to be SGPR.
12233       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12234       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12235           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12236       for (auto &TC : TargetConstraints) {
12237         if (TC.Type == InlineAsm::isOutput) {
12238           ComputeConstraintToUse(TC, SDValue());
12239           unsigned AssignedReg;
12240           const TargetRegisterClass *RC;
12241           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
12242               SIRI, TC.ConstraintCode, TC.ConstraintVT);
12243           if (RC) {
12244             MachineRegisterInfo &MRI = MF.getRegInfo();
12245             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
12246               return true;
12247             else if (SIRI->isSGPRClass(RC))
12248               return true;
12249           }
12250         }
12251       }
12252     }
12253   }
12254   SmallPtrSet<const Value *, 16> Visited;
12255   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12256 }
12257 
12258 std::pair<InstructionCost, MVT>
12259 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12260                                           Type *Ty) const {
12261   std::pair<InstructionCost, MVT> Cost =
12262       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12263   auto Size = DL.getTypeSizeInBits(Ty);
12264   // Maximum load or store can handle 8 dwords for scalar and 4 for
12265   // vector ALU. Let's assume anything above 8 dwords is expensive
12266   // even if legal.
12267   if (Size <= 256)
12268     return Cost;
12269 
12270   Cost.first = (Size + 255) / 256;
12271   return Cost;
12272 }
12273